Spatial patterns of development drive water use
Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.
2018-01-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.
Spatial Patterns of Development Drive Water Use
NASA Astrophysics Data System (ADS)
Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.
2018-03-01
Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.
Predictor variable resolution governs modeled soil types
USDA-ARS?s Scientific Manuscript database
Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...
2017-06-18
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE
2013-01-01
Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...
Temporal and spatial variability in North Carolina piedmont stream temperature
J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer
2009-01-01
Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...
Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)
NASA Astrophysics Data System (ADS)
Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto
2017-04-01
The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.
A Method to Categorize 2-Dimensional Patterns Using Statistics of Spatial Organization.
López-Sauceda, Juan; Rueda-Contreras, Mara D
2017-01-01
We developed a measurement framework of spatial organization to categorize 2-dimensional patterns from 2 multiscalar biological architectures. We propose that underlying shapes of biological entities can be approached using the statistical concept of degrees of freedom, defining it through expansion of area variability in a pattern. To help scope this suggestion, we developed a mathematical argument recognizing the deep foundations of area variability in a polygonal pattern (spatial heterogeneity). This measure uses a parameter called eutacticity . Our measuring platform of spatial heterogeneity can assign particular ranges of distribution of spatial areas for 2 biological architectures: ecological patterns of Namibia fairy circles and epithelial sheets. The spatial organizations of our 2 analyzed biological architectures are demarcated by being in a particular position among spatial order and disorder. We suggest that this theoretical platform can give us some insights about the nature of shapes in biological systems to understand organizational constraints.
Quantifying Landscape Spatial Pattern: What Is the State of the Art?
Eric J. Gustafson
1998-01-01
Landscape ecology is based on the premise that there are strong links between ecological pattern and ecological function and process. Ecological systems are spatially heterogeneous, exhibiting consid-erable complexity and variability in time and space. This variability is typically represented by categorical maps or by a collection of samples taken at specific spatial...
Floodplain complexity and surface metrics: influences of scale and geomorphology
Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.
2015-01-01
Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.
NASA Astrophysics Data System (ADS)
Veiga, P.; Rubal, M.; Vieira, R.; Arenas, F.; Sousa-Pinto, I.
2013-03-01
Natural assemblages are variable in space and time; therefore, quantification of their variability is imperative to identify relevant scales for investigating natural or anthropogenic processes shaping these assemblages. We studied the variability of intertidal macroalgal assemblages on the North Portuguese coast, considering three spatial scales (from metres to 10 s of kilometres) following a hierarchical design. We tested the hypotheses that (1) spatial pattern will be invariant at all the studied scales and (2) spatial variability of macroalgal assemblages obtained by using species will be consistent with that obtained using functional groups. This was done considering as univariate variables: total biomass and number of taxa as well as biomass of the most important species and functional groups and as multivariate variables the structure of macroalgal assemblages, both considering species and functional groups. Most of the univariate results confirmed the first hypothesis except for the total number of taxa and foliose macroalgae that showed significant variability at the scale of site and area, respectively. In contrast, when multivariate patterns were examined, the first hypothesis was rejected except at the scale of 10 s of kilometres. Both uni- and multivariate results indicated that variation was larger at the smallest scale, and thus, small-scale processes seem to have more effect on spatial variability patterns. Macroalgal assemblages, both considering species and functional groups as surrogate, showed consistent spatial patterns, and therefore, the second hypothesis was confirmed. Consequently, functional groups may be considered a reliable biological surrogate to study changes on macroalgal assemblages at least along the investigated Portuguese coastline.
Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.
2017-01-01
The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2013-08-01
Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.
NASA Astrophysics Data System (ADS)
Zimmermann, A.
2007-05-01
The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.
The Signature of Southern Hemisphere Atmospheric Circulation Patterns in Antarctic Precipitation
Thompson, David W. J.; van den Broeke, Michiel R.
2017-01-01
Abstract We provide the first comprehensive analysis of the relationships between large‐scale patterns of Southern Hemisphere climate variability and the detailed structure of Antarctic precipitation. We examine linkages between the high spatial resolution precipitation from a regional atmospheric model and four patterns of large‐scale Southern Hemisphere climate variability: the southern baroclinic annular mode, the southern annular mode, and the two Pacific‐South American teleconnection patterns. Variations in all four patterns influence the spatial configuration of precipitation over Antarctica, consistent with their signatures in high‐latitude meridional moisture fluxes. They impact not only the mean but also the incidence of extreme precipitation events. Current coupled‐climate models are able to reproduce all four patterns of atmospheric variability but struggle to correctly replicate their regional impacts on Antarctic climate. Thus, linking these patterns directly to Antarctic precipitation variability may allow a better estimate of future changes in precipitation than using model output alone. PMID:29398735
Spatial patterns of throughfall isotopic composition at the event and seasonal timescales
Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell
2015-01-01
Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...
Stephanie Moore; Nathan J. Mantua; Jan A. Newton; Mitsuhiro Kawase; Mark J. Warner; Jonathan P. Kellogg
2008-01-01
Temporal and spatial patterns of variability in Puget Sound's oceanographic properties are determined using continuous vertical profile data from two long-term monitoring programs; monthly observations at 16 stations from 1993 to 2002, and biannual observations at 40 stations from 1998 to 2003. Climatological monthly means of temperature, salinity, and density...
NASA Astrophysics Data System (ADS)
Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin
2017-04-01
Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.
The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.
Congdon, Peter
2011-01-01
Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.
Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi
2017-01-01
The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.
Identifying, characterizing and predicting spatial patterns of lacustrine groundwater discharge
NASA Astrophysics Data System (ADS)
Tecklenburg, Christina; Blume, Theresa
2017-10-01
Lacustrine groundwater discharge (LGD) can significantly affect lake water balances and lake water quality. However, quantifying LGD and its spatial patterns is challenging because of the large spatial extent of the aquifer-lake interface and pronounced spatial variability. This is the first experimental study to specifically study these larger-scale patterns with sufficient spatial resolution to systematically investigate how landscape and local characteristics affect the spatial variability in LGD. We measured vertical temperature profiles around a 0.49 km2 lake in northeastern Germany with a needle thermistor, which has the advantage of allowing for rapid (manual) measurements and thus, when used in a survey, high spatial coverage and resolution. Groundwater inflow rates were then estimated using the heat transport equation. These near-shore temperature profiles were complemented with sediment temperature measurements with a fibre-optic cable along six transects from shoreline to shoreline and radon measurements of lake water samples to qualitatively identify LGD patterns in the offshore part of the lake. As the hydrogeology of the catchment is sufficiently homogeneous (sandy sediments of a glacial outwash plain; no bedrock control) to avoid patterns being dominated by geological discontinuities, we were able to test the common assumptions that spatial patterns of LGD are mainly controlled by sediment characteristics and the groundwater flow field. We also tested the assumption that topographic gradients can be used as a proxy for gradients of the groundwater flow field. Thanks to the extensive data set, these tests could be carried out in a nested design, considering both small- and large-scale variability in LGD. We found that LGD was concentrated in the near-shore area, but alongshore variability was high, with specific regions of higher rates and higher spatial variability. Median inflow rates were 44 L m-2 d-1 with maximum rates in certain locations going up to 169 L m-2 d-1. Offshore LGD was negligible except for two local hotspots on steep steps in the lake bed topography. Large-scale groundwater inflow patterns were correlated with topography and the groundwater flow field, whereas small-scale patterns correlated with grain size distributions of the lake sediment. These findings confirm results and assumptions of theoretical and modelling studies more systematically than was previously possible with coarser sampling designs. However, we also found that a significant fraction of the variance in LGD could not be explained by these controls alone and that additional processes need to be considered. While regression models using these controls as explanatory variables had limited power to predict LGD rates, the results nevertheless encourage the use of topographic indices and sediment heterogeneity as an aid for targeted campaigns in future studies of groundwater discharge to lakes.
NASA Astrophysics Data System (ADS)
Brustolin, Marco C.; Thomas, Micheli C.; Mafra, Luiz L.; Lana, Paulo da Cunha
2014-08-01
Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons - (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.
Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh
2009-01-01
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.
NASA Astrophysics Data System (ADS)
Stisen, S.; Demirel, C.; Koch, J.
2017-12-01
Evaluation of performance is an integral part of model development and calibration as well as it is of paramount importance when communicating modelling results to stakeholders and the scientific community. There exists a comprehensive and well tested toolbox of metrics to assess temporal model performance in the hydrological modelling community. On the contrary, the experience to evaluate spatial performance is not corresponding to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study aims at making a contribution towards advancing spatial pattern oriented model evaluation for distributed hydrological models. This is achieved by introducing a novel spatial performance metric which provides robust pattern performance during model calibration. The promoted SPAtial EFficiency (spaef) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multi-component approach is necessary in order to adequately compare spatial patterns. spaef, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are tested in a spatial pattern oriented model calibration of a catchment model in Denmark. The calibration is constrained by a remote sensing based spatial pattern of evapotranspiration and discharge timeseries at two stations. Our results stress that stand-alone metrics tend to fail to provide holistic pattern information to the optimizer which underlines the importance of multi-component metrics. The three spaef components are independent which allows them to complement each other in a meaningful way. This study promotes the use of bias insensitive metrics which allow comparing variables which are related but may differ in unit in order to optimally exploit spatial observations made available by remote sensing platforms. We see great potential of spaef across environmental disciplines dealing with spatially distributed modelling.
Post-Fire Spatial Patterns of Soil Nitrogen Mineralization and Microbial Abundance
Smithwick, Erica A. H.; Naithani, Kusum J.; Balser, Teri C.; Romme, William H.; Turner, Monica G.
2012-01-01
Stand-replacing fires influence soil nitrogen availability and microbial community composition, which may in turn mediate post-fire successional dynamics and nutrient cycling. However, fires create patchiness at both local and landscape scales and do not result in consistent patterns of ecological dynamics. The objectives of this study were to (1) quantify the spatial structure of microbial communities in forest stands recently affected by stand-replacing fire and (2) determine whether microbial variables aid predictions of in situ net nitrogen mineralization rates in recently burned stands. The study was conducted in lodgepole pine (Pinus contorta var. latifolia) and Engelmann spruce/subalpine fir (Picea engelmannii/Abies lasiocarpa) forest stands that burned during summer 2000 in Greater Yellowstone (Wyoming, USA). Using a fully probabilistic spatial process model and Bayesian kriging, the spatial structure of microbial lipid abundance and fungi-to-bacteria ratios were found to be spatially structured within plots two years following fire (for most plots, autocorrelation range varied from 1.5 to 10.5 m). Congruence of spatial patterns among microbial variables, in situ net N mineralization, and cover variables was evident. Stepwise regression resulted in significant models of in situ net N mineralization and included variables describing fungal and bacterial abundance, although explained variance was low (R2<0.29). Unraveling complex spatial patterns of nutrient cycling and the biotic factors that regulate it remains challenging but is critical for explaining post-fire ecosystem function, especially in Greater Yellowstone, which is projected to experience increased fire frequencies by mid 21st Century. PMID:23226324
Spatial correlations of interdecadal variation in global surface temperatures
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1993-01-01
We have analyzed spatial correlation patterns of interdecadal global surface temperature variability from an empirical perspective. Using multitaper coherence estimates from 140-yr records, we find that correlations between hemispheres are significant at about 95 percent confidence for nonrandomness for most of the frequency band in the 0.06-0.24 cyc/yr range. Coherence estimates of pairs of 100-yr grid-point temperature data series near 5-yr period reveal teleconnection patterns consistent with known patterns of ENSO variability. Significant correlated variability is observed near 15 year period, with the dominant teleconnection pattern largely confined to the Northern Hemisphere. Peak-to-peak Delta-T is at about 0.5 deg, with simultaneous warming and cooling of discrete patches on the earth's surface. A global average of this pattern would largely cancel.
Spatial Variability of Snowpack Properties On Small Slopes
NASA Astrophysics Data System (ADS)
Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.
The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.
Hongqing Wanga; Charles A.S. Halla; Frederick N. Scatenab; Ned Fetcherc; Wei Wua
2003-01-01
There are few studies that have examined the spatial variability of forest productivity over an entire tropical forested landscape. In this study, we used a spatially-explicit forest productivity model, TOPOPROD, which is based on the FORESTBGC model, to simulate spatial patterns of gross primary productivity (GPP), net primary productivity (NPP), and respiration over...
Jamie M. Lydersen; Malcolm P. North; Eric E. Knapp; Brandon M. Collins
2013-01-01
Fire suppression and past logging have dramatically altered forest conditions in many areas, but changes to within-stand tree spatial patterns over time are not as well understood. The few studies available suggest that variability in tree spatial patterns is an important structural feature of forests with intact frequent fire regimes that should be incorporated in...
1987-12-01
assessment of data collection techniques *quantification of temporal and spatial patterns of variables *assessment of end point variability...nutrient variables are also being examined as covarlates. Development of a model to test for differences in growth patterns is continuing. At each of...condition. These variables are recorded at the end of each growing season. For evaluation of height growth patterns , a subsample of 100 seedlings per
Baldissera, Ronei; Rodrigues, Everton N L; Hartz, Sandra M
2012-01-01
The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta-diversity patterns, which are probably linked to historical deforestation events.
NASA Astrophysics Data System (ADS)
Wang, Qiufeng; Tian, Jing; Yu, Guirui
2014-05-01
Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity and complexity of soil ecosystems. Therefore, information on spatial distribution of microbial community composition and functional diversity is urgently necessary. The spatial variability on a 26×36 m plot and vertical distribution (0-10 cm and 10-20 cm) of soil microbial community composition and functional diversity were studied in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The phospholipid fatty acid (PLFA) pattern was used to characterize the soil microbial community composition and was compared with the community substrate utilization pattern using Biolog. Bacterial biomass dominated and showed higher variability than fungal biomass at all scales examined. The microbial biomass decreased with soil depths increased and showed less variability in lower 10-20 cm soil layer. The Shannon-Weaver index value for microbial functional diversity showed higher variability in upper 0-10 cm than lower 10-20 cm soil layer. Carbohydrates, carboxylic acids, polymers and amino acids are the main carbon sources possessing higher utilization efficiency or utilization intensity. At the same time, the four carbon source types contributed to the differentiation of soil microbial communities. This study suggests the higher diversity and complexity for this mix forest ecosystem. To determine the driving factors that affect this spatial variability of microorganism is the next step for our study.
Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol
NASA Astrophysics Data System (ADS)
Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva
2013-04-01
Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.
Yao, Lei; Chen, Liding; Wei, Wei
2017-01-01
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521
Yao, Lei; Chen, Liding; Wei, Wei
2017-02-28
In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.
Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill
2014-01-01
In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...
Veiga, Puri; Torres, Ana Catarina; Aneiros, Fernando; Sousa-Pinto, Isabel; Troncoso, Jesús S; Rubal, Marcos
2016-09-01
Spatial variability of environmental factors and macrobenthos, using species and functional groups, was examined over the same scales (100s of cm to >100 km) in intertidal sediments of two transitional water systems. The objectives were to test if functional groups were a good species surrogate and explore the relationship between environmental variables and macrobenthos. Environmental variables, diversity and the multivariate assemblage structure showed the highest variability at the scale of 10s of km. However, abundance was more variable at 10s of m. Consistent patterns were achieved using species and functional groups therefore, these may be a good species surrogate. Total carbon, salinity and silt/clay were the strongest correlated with macrobenthic assemblages. Results are valuable for design and interpretation of future monitoring programs including detection of anthropogenic disturbances in transitional systems and propose improvements in environmental variable sampling to refine the assessment of their relationship with biological data across spatial scales. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.
2014-01-01
We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.
NASA Astrophysics Data System (ADS)
Wang, J.; Cai, X.
2007-12-01
A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.
NASA Astrophysics Data System (ADS)
Alexander, L.; Hupp, C. R.; Forman, R. T.
2002-12-01
Many geodisturbances occur across large spatial scales, spanning entire landscapes and creating ecological phenomena in their wake. Ecological study at large scales poses special problems: (1) large-scale studies require large-scale resources, and (2) sampling is not always feasible at the appropriate scale, and researchers rely on data collected at smaller scales to interpret patterns across broad regions. A criticism of landscape ecology is that findings at small spatial scales are "scaled up" and applied indiscriminately across larger spatial scales. In this research, landscape scaling is addressed through process-pattern relationships between hydrogeomorphic processes and patterns of plant diversity in forested wetlands. The research addresses: (1) whether patterns and relationships between hydrogeomorphic, vegetation, and spatial variables can transcend scale; and (2) whether data collected at small spatial scales can be used to describe patterns and relationships across larger spatial scales. Field measurements of hydrologic, geomorphic, spatial, and vegetation data were collected or calculated for 15- 1-ha sites on forested floodplains of six (6) Chesapeake Bay Coastal Plain streams over a total area of about 20,000 km2. Hydroperiod (day/yr), floodplain surface elevation range (m), discharge (m3/s), stream power (kg-m/s2), sediment deposition (mm/yr), relative position downstream and other variables were used in multivariate analyses to explain differences in species richness, tree diversity (Shannon-Wiener Diversity Index H'), and plant community composition at four spatial scales. Data collected at the plot (400-m2) and site- (c. 1-ha) scales are applied to and tested at the river watershed and regional spatial scales. Results indicate that plant species richness and tree diversity (Shannon-Wiener diversity index H') can be described by hydrogeomorphic conditions at all scales, but are best described at the site scale. Data collected at plot and site scales are tested for spatial heterogeneity across the Chesapeake Bay Coastal Plain using a geostatistical variogram, and multiple regression analysis is used to relate plant diversity, spatial, and hydrogeomorphic variables across Coastal Plain regions and hydrologic regimes. Results indicate that relationships between hydrogeomorphic processes and patterns of plant diversity at finer scales can proxy relationships at coarser scales in some, not all, cases. Findings also suggest that data collected at small scales can be used to describe trends across broader scales under limited conditions.
van Strien, Maarten J; Slager, Cornelis T J; de Vries, Bauke; Grêt-Regamey, Adrienne
2016-06-01
Many studies have assessed the effect of landscape patterns on spatial ecological processes by simulating these processes in computer-generated landscapes with varying composition and configuration. To generate such landscapes, various neutral landscape models have been developed. However, the limited set of landscape-level pattern variables included in these models is often inadequate to generate landscapes that reflect real landscapes. In order to achieve more flexibility and variability in the generated landscapes patterns, a more complete set of class- and patch-level pattern variables should be implemented in these models. These enhancements have been implemented in Landscape Generator (LG), which is a software that uses optimization algorithms to generate landscapes that match user-defined target values. Developed for participatory spatial planning at small scale, we enhanced the usability of LG and demonstrated how it can be used for larger scale ecological studies. First, we used LG to recreate landscape patterns from a real landscape (i.e., a mountainous region in Switzerland). Second, we generated landscape series with incrementally changing pattern variables, which could be used in ecological simulation studies. We found that LG was able to recreate landscape patterns that approximate those of real landscapes. Furthermore, we successfully generated landscape series that would not have been possible with traditional neutral landscape models. LG is a promising novel approach for generating neutral landscapes and enables testing of new hypotheses regarding the influence of landscape patterns on ecological processes. LG is freely available online.
NASA Astrophysics Data System (ADS)
Blume, T.; Hassler, S. K.; Weiler, M.
2017-12-01
Hydrological science still struggles with the fact that while we wish for spatially continuous images or movies of state variables and fluxes at the landscape scale, most of our direct measurements are point measurements. To date regional measurements resolving landscape scale patterns can only be obtained by remote sensing methods, with the common drawback that they remain near the earth surface and that temporal resolution is generally low. However, distributed monitoring networks at the landscape scale provide the opportunity for detailed and time-continuous pattern exploration. Even though measurements are spatially discontinuous, the large number of sampling points and experimental setups specifically designed for the purpose of landscape pattern investigation open up new avenues of regional hydrological analyses. The CAOS hydrological observatory in Luxembourg offers a unique setup to investigate questions of temporal stability, pattern evolution and persistence of certain states. The experimental setup consists of 45 sensor clusters. These sensor clusters cover three different geologies, two land use classes, five different landscape positions, and contrasting aspects. At each of these sensor clusters three soil moisture/soil temperature profiles, basic climate variables, sapflow, shallow groundwater, and stream water levels were measured continuously for the past 4 years. We will focus on characteristic landscape patterns of various hydrological state variables and fluxes, studying their temporal stability on the one hand and the dependence of patterns on hydrological states on the other hand (e.g. wet vs dry). This is extended to time-continuous pattern analysis based on time series of spatial rank correlation coefficients. Analyses focus on the absolute values of soil moisture, soil temperature, groundwater levels and sapflow, but also investigate the spatial pattern of the daily changes of these variables. The analysis aims at identifying hydrologic signatures of the processes or landscape characteristics acting as major controls. While groundwater, soil water and transpiration are closely linked by the water cycle, they are controlled by different processes and we expect this to be reflected in interlinked but not necessarily congruent patterns and responses.
The spatial patterns of subtidal benthic invertebrates and physical-chemical variables in the nearshore Gulf of Maine (Acadian Biogeographic Province) were studied to provide information needed to calibrate benthic indices of environmental condition, determine physical-chemical f...
Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R
2015-04-01
Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.
Calibration of a distributed hydrologic model for six European catchments using remote sensing data
NASA Astrophysics Data System (ADS)
Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.
2017-12-01
While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.
Geographic patterns of networks derived from extreme precipitation over the Indian subcontinent
NASA Astrophysics Data System (ADS)
Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen
2014-05-01
Complex networks (CN) and event synchronization (ES) methods have been applied to study a number of climate phenomena such as Indian Summer Monsoon (ISM), South-American Monsoon, and African Monsoon. These methods proved to be powerful tools to infer interdependencies in climate dynamics between geographical sites, spatial structures, and key regions of the considered climate phenomenon. Here, we use these methods to study the spatial temporal variability of the extreme rainfall over the Indian subcontinent, in order to filter the data by coarse-graining the network, and to identify geographic patterns that are signature features (spatial signatures) of the ISM. We find four main geographic patterns of networks derived from extreme precipitation over the Indian subcontinent using up-to-date satellite-derived, and high temporal and spatial resolution rain-gauge interpolated daily rainfall datasets. In order to prove that our results are also relevant for other climatic variables like pressure and temperature, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). We find that two of the patterns revealed from the CN extreme rainfall analysis coincide with those obtained for the pressure and temperature fields, and all four above mentioned patterns can be explained by topography, winds, and monsoon circulation. CN and ES enable to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to infer geographic pattern that are spatial signatures of the ISM. These patterns deserve a special attention for the meteorologists and can be used as markers of the ISM variability.
The unusual suspect: Land use is a key predictor of biodiversity patterns in the Iberian Peninsula
NASA Astrophysics Data System (ADS)
Martins, Inês Santos; Proença, Vânia; Pereira, Henrique Miguel
2014-11-01
Although land use change is a key driver of biodiversity change, related variables such as habitat area and habitat heterogeneity are seldom considered in modeling approaches at larger extents. To address this knowledge gap we tested the contribution of land use related variables to models describing richness patterns of amphibians, reptiles and passerines in the Iberian Peninsula. We analyzed the relationship between species richness and habitat heterogeneity at two spatial resolutions (i.e., 10 km × 10 km and 50 km × 50 km). Using both ordinary least square and simultaneous autoregressive models, we assessed the relative importance of land use variables, climate variables and topographic variables. We also compare the species-area relationship with a multi-habitat model, the countryside species-area relationship, to assess the role of the area of different types of habitats on species diversity across scales. The association between habitat heterogeneity and species richness varied with the taxa and spatial resolution. A positive relationship was detected for all taxa at a grain size of 10 km × 10 km, but only passerines responded at a grain size of 50 km × 50 km. Species richness patterns were well described by abiotic predictors, but habitat predictors also explained a considerable portion of the variation. Moreover, species richness patterns were better described by a multi-habitat species-area model, incorporating land use variables, than by the classic power model, which only includes area as the single explanatory variable. Our results suggest that the role of land use in shaping species richness patterns goes beyond the local scale and persists at larger spatial scales. These findings call for the need of integrating land use variables in models designed to assess species richness response to large scale environmental changes.
Peixoto, Roberta B.; Machado-Silva, Fausto; Marotta, Humberto; Enrich-Prast, Alex; Bastviken, David
2015-01-01
Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments. PMID:25860229
NASA Astrophysics Data System (ADS)
Ruttenberg, Kathleen C.; Dyhrman, Sonya T.
2005-10-01
High-frequency temporal and spatial shifts in the various dissolved P pools (total, inorganic, and organic) are linked to upwelling/relaxation events and to phytoplankton bloom dynamics in the upwelling-dominated Oregon coastal system. The presence and regulation of alkaline phosphatase activity (APA) is apparent in the bulk phytoplankton population and in studies of cell-specific APA using Enzyme Labeled Fluorescence (ELF®). Spatial and temporal variability are also evident in phytoplankton community composition and in APA. The spatial pattern of dissolved phosphorus and APA variability can be explained by bottom-controlled patterns of upwelling, and flushing times of different regions within the study area. The presence of APA in eukaryotic taxa indicates that dissolved organic phosphorus (DOP) may contribute to phytoplankton P nutrition in this system, highlighting the need for a more complete understanding of P cycling and bioavailability in the coastal ocean.
NASA Astrophysics Data System (ADS)
Koch, Julian; Cüneyd Demirel, Mehmet; Stisen, Simon
2018-05-01
The process of model evaluation is not only an integral part of model development and calibration but also of paramount importance when communicating modelling results to the scientific community and stakeholders. The modelling community has a large and well-tested toolbox of metrics to evaluate temporal model performance. In contrast, spatial performance evaluation does not correspond to the grand availability of spatial observations readily available and to the sophisticate model codes simulating the spatial variability of complex hydrological processes. This study makes a contribution towards advancing spatial-pattern-oriented model calibration by rigorously testing a multiple-component performance metric. The promoted SPAtial EFficiency (SPAEF) metric reflects three equally weighted components: correlation, coefficient of variation and histogram overlap. This multiple-component approach is found to be advantageous in order to achieve the complex task of comparing spatial patterns. SPAEF, its three components individually and two alternative spatial performance metrics, i.e. connectivity analysis and fractions skill score, are applied in a spatial-pattern-oriented model calibration of a catchment model in Denmark. Results suggest the importance of multiple-component metrics because stand-alone metrics tend to fail to provide holistic pattern information. The three SPAEF components are found to be independent, which allows them to complement each other in a meaningful way. In order to optimally exploit spatial observations made available by remote sensing platforms, this study suggests applying bias insensitive metrics which further allow for a comparison of variables which are related but may differ in unit. This study applies SPAEF in the hydrological context using the mesoscale Hydrologic Model (mHM; version 5.8), but we see great potential across disciplines related to spatially distributed earth system modelling.
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability
Fyke, Jeremy; Lenaerts, Jan T. M.; Wang, Hailong
2017-11-15
Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and icemore » core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.« less
Sunyer, Pau; Boixadera, Ester; Muñoz, Alberto; Bonal, Raúl; Espelta, Josep Maria
2015-01-01
The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitation effect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent's behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests.
Boixadera, Ester; Bonal, Raúl
2015-01-01
The patterns of seedling recruitment in animal-dispersed plants result from the interactions among environmental and behavioral variables. However, we know little on the contribution and combined effect of both kinds of variables. We designed a field study to assess the interplay between environment (vegetation structure, seed abundance, rodent abundance) and behavior (seed dispersal and predation by rodents, and rooting by wild boars), and their contribution to the spatial patterns of seedling recruitment in a Mediterranean mixed-oak forest. In a spatially explicit design, we monitored intensively all environmental and behavioral variables in fixed points at a small spatial scale from autumn to spring, as well as seedling emergence and survival. Our results revealed that the spatial patterns of seedling emergence were strongly related to acorn availability on the ground, but not by a facilitationeffect of vegetation cover. Rodents changed seed shadows generated by mother trees by dispersing most seeds from shrubby to open areas, but the spatial patterns of acorn dispersal/predation had no direct effect on recruitment. By contrast, rodents had a strong impact on recruitment as pilferers of cached seeds. Rooting by wild boars also reduced recruitment by reducing seed abundance, but also by changing rodent’s behavior towards higher consumption of acorns in situ. Hence, seed abundance and the foraging behavior of scatter-hoarding rodents and wild boars are driving the spatial patterns of seedling recruitment in this mature oak forest, rather than vegetation features. The contribution of vegetation to seedling recruitment (e.g. facilitation by shrubs) may be context dependent, having a little role in closed forests, or being overridden by directed seed dispersal from shrubby to open areas. We warn about the need of using broad approaches that consider the combined action of environment and behavior to improve our knowledge on the dynamics of natural regeneration in forests. PMID:26070129
NASA Technical Reports Server (NTRS)
Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.
2004-01-01
Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.
NASA Astrophysics Data System (ADS)
Llorens, Pilar; Garcia-Estringana, Pablo; Cayuela, Carles; Latron, Jérôme; Molina, Antonio; Gallart, Francesc
2015-04-01
Temporal and spatial variability of throughfall and stemflow patterns, due to differences in forest structure and seasonality of Mediterranean climate, may lead to significant changes in the volume of water that locally reaches the soil, with a potential effect on groundwater recharge and on hydrological response of forested hillslopes. Two forest stands in Mediterranean climatic conditions were studied to explore the role of vegetation on the temporal and spatial redistribution of rainfall. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of 20 automatic rain recorders to measuring throughfall, 7 stemflow rings connected to tipping-buckets and 40 automatic soil moisture probes. All data were recorded each 5 min. Bulk rainfall and meteorological conditions above both forest covers were also recorded, and canopy cover and biometric characteristics of the plots were measured. Results indicate a marked temporal stability of throughfall in both stands, and a lower persistence of spatial patterns in the leafless period than in the leafed one in the oaks stand. Moreover, in the oaks plot the ranks of gauges in the leafed and leafless periods were not significantly correlated, indicating different wet and dry hotspots in each season. The spatial distribution of throughfall varied significantly depending on rainfall volume, with small events having larger variability, whereas large events tended to homogenize the relative differences in point throughfall. Soil water content spatial variability increased with increasing soil water content, but direct dependence of soil water content variability on throughfall patterns is difficult to establish.
Range expansion through fragmented landscapes under a variable climate
Bennie, Jonathan; Hodgson, Jenny A; Lawson, Callum R; Holloway, Crispin TR; Roy, David B; Brereton, Tom; Thomas, Chris D; Wilson, Robert J
2013-01-01
Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high-resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine-resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine-scale, short-term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions. PMID:23701124
Yongqiang Liu
2003-01-01
The relations between monthly-seasonal soil moisture and precipitation variability are investigated by identifying the coupled patterns of the two hydrological fields using singular value decomposition (SVD). SVD is a technique of principal component analysis similar to empirical orthogonal knctions (EOF). However, it is applied to two variables simultaneously and is...
Multiscale drivers of spatially variable grass production and loss in the Chihuahuan Desert
USDA-ARS?s Scientific Manuscript database
Historic regime shifts from grass- to shrub-dominated states have been widespread in the Chihuahuan Desert and other arid and semiarid regions globally. These patterns of grass production and shifts to shrub dominance are spatially variable, and show a weak correlation with precipitation, suggesting...
Hassan, M Manzurul; Atkins, Peter J
2011-01-01
This article seeks to explore the spatial variability of groundwater arsenic (As) concentrations in Southwestern Bangladesh. Facts about spatial pattern of As are important to understand the complex processes of As concentrations and its spatial predictions in the unsampled areas of the study site. The relevant As data for this study were collected from Southwest Bangladesh and were analyzed with Flow Injection Hydride Generation Atomic Absorption Spectrometry (FI-HG-AAS). A geostatistical analysis with Indicator Kriging (IK) was employed to investigate the regionalized variation of As concentration. The IK prediction map shows a highly uneven spatial pattern of arsenic concentrations. The safe zones are mainly concentrated in the north, central and south part of the study area in a scattered manner, while the contamination zones are found to be concentrated in the west and northeast parts of the study area. The southwest part of the study area is contaminated with a highly irregular pattern. A Generalized Linear Model (GLM) was also used to investigate the relationship between As concentrations and aquifer depths. A negligible negative correlation between aquifer depth and arsenic concentrations was found in the study area. The fitted value with 95 % confidence interval shows a decreasing tendency of arsenic concentrations with the increase of aquifer depth. The adjusted mean smoothed lowess curve with a bandwidth of 0.8 shows an increasing trend of arsenic concentration up to a depth of 75 m, with some erratic fluctuations and regional variations at the depth between 30 m and 60 m. The borehole lithology was considered to analyze and map the pattern of As variability with aquifer depths. The study has performed an investigation of spatial pattern and variation of As concentrations.
MAPPING SPATIAL THEMATIC ACCURACY WITH FUZZY SETS
Thematic map accuracy is not spatially homogenous but variable across a landscape. Properly analyzing and representing spatial pattern and degree of thematic map accuracy would provide valuable information for using thematic maps. However, current thematic map accuracy measures (...
Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals
NASA Astrophysics Data System (ADS)
Chen, Youhua; Peng, Shushi
2017-03-01
Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.
Chen, Youhua; Peng, Shushi
2017-03-16
Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.
Spatial patterns of throughfall isotopic composition at the event and seasonal timescales
NASA Astrophysics Data System (ADS)
Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.
2015-03-01
Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.
Pattern-based, multi-scale segmentation and regionalization of EOSD land cover
NASA Astrophysics Data System (ADS)
Niesterowicz, Jacek; Stepinski, Tomasz F.
2017-10-01
The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.
Effects of Topography-driven Micro-climatology on Evaporation
NASA Astrophysics Data System (ADS)
Adams, D. D.; Boll, J.; Wagenbrenner, N. S.
2017-12-01
The effects of spatial-temporal variation of climatic conditions on evaporation in micro-climates are not well defined. Current spatially-based remote sensing and modeling for evaporation is limited for high resolutions and complex topographies. We investigated the effect of topography-driven micro-climatology on evaporation supported by field measurements and modeling. Fourteen anemometers and thermometers were installed in intersecting transects over the complex topography of the Cook Agronomy Farm, Pullman, WA. WindNinja was used to create 2-D vector maps based on recorded observations for wind. Spatial analysis of vector maps using ArcGIS was performed for analysis of wind patterns and variation. Based on field measurements, wind speed and direction show consequential variability based on hill-slope location in this complex topography. Wind speed and wind direction varied up to threefold and more than 45 degrees, respectively for a given time interval. The use of existing wind models enables prediction of wind variability over the landscape and subsequently topography-driven evaporation patterns relative to wind. The magnitude of the spatial-temporal variability of wind therefore resulted in variable evaporation rates over the landscape. These variations may contribute to uneven crop development patterns observed during the late growth stages of the agricultural crops at the study location. Use of hill-slope location indexes and appropriate methods for estimating actual evaporation support development of methodologies to better define topography-driven heterogeneity in evaporation. The cumulative effects of spatially-variable climatic factors on evaporation are important to quantify the localized water balance and inform precision farming practices.
Kalkhan, M.A.; Stohlgren, T.J.
2000-01-01
Land managers need better techniques to assess exoticplant invasions. We used the cross-correlationstatistic, IYZ, to test for the presence ofspatial cross-correlation between pair-wisecombinations of soil characteristics, topographicvariables, plant species richness, and cover ofvascular plants in a 754 ha study site in RockyMountain National Park, Colorado, U.S.A. Using 25 largeplots (1000 m2) in five vegetation types, 8 of 12variables showed significant spatial cross-correlationwith at least one other variable, while 6 of 12variables showed significant spatial auto-correlation. Elevation and slope showed significant spatialcross-correlation with all variables except percentcover of native and exotic species. Percent cover ofnative species had significant spatialcross-correlations with soil variables, but not withexotic species. This was probably because of thepatchy distributions of vegetation types in the studyarea. At a finer resolution, using data from ten1 m2 subplots within each of the 1000 m2 plots, allvariables showed significant spatial auto- andcross-correlation. Large-plot sampling was moreaffected by topographic factors than speciesdistribution patterns, while with finer resolutionsampling, the opposite was true. However, thestatistically and biologically significant spatialcorrelation of native and exotic species could only bedetected with finer resolution sampling. We foundexotic plant species invading areas with high nativeplant richness and cover, and in fertile soils high innitrogen, silt, and clay. Spatial auto- andcross-correlation statistics, along with theintegration of remotely sensed data and geographicinformation systems, are powerful new tools forevaluating the patterns and distribution of native andexotic plant species in relation to landscape structure.
Balint, Lajos; Dome, Peter; Daroczi, Gergely; Gonda, Xenia; Rihmer, Zoltan
2014-02-01
In the last century Hungary had astonishingly high suicide rates characterized by marked regional within-country inequalities, a spatial pattern which has been quite stable over time. To explain the above phenomenon at the level of micro-regions (n=175) in the period between 2005 and 2011. Our dependent variable was the age and gender standardized mortality ratio (SMR) for suicide while explanatory variables were factors which are supposed to influence suicide risk, such as measures of religious and political integration, travel time accessibility of psychiatric services, alcohol consumption, unemployment and disability pensionery. When applying the ordinary least squared regression model, the residuals were found to be spatially autocorrelated, which indicates the violation of the assumption on the independence of error terms and - accordingly - the necessity of application of a spatial autoregressive (SAR) model to handle this problem. According to our calculations the SARlag model was a better way (versus the SARerr model) of addressing the problem of spatial autocorrelation, furthermore its substantive meaning is more convenient. SMR was significantly associated with the "political integration" variable in a negative and with "lack of religious integration" and "disability pensionery" variables in a positive manner. Associations were not significant for the remaining explanatory variables. Several important psychiatric variables were not available at the level of micro-regions. We conducted our analysis on aggregate data. Our results may draw attention to the relevance and abiding validity of the classic Durkheimian suicide risk factors - such as lack of social integration - apropos of the spatial pattern of Hungarian suicides. © 2013 Published by Elsevier B.V.
The Spatial Pattern of Intelligence in a Small Town.
ERIC Educational Resources Information Center
Bailey, William H.
The document measures the spatial patterns of mental abilities of 94 seventh-grade students within a small town by correlating and mapping four variables--IQ test scores, achievement test scores, neighborhood quality as seen by town officials, and creativity test scores from the Torrance Tests of Creative Thinking. Objectives were to ascertain the…
Influence of tree spatial pattern and sample plot type and size on inventory
John-Pascall Berrill; Kevin L. O' Hara
2012-01-01
Sampling with different plot types and sizes was simulated using tree location maps and data collected in three even-aged coast redwood (Sequoia sempervirens) stands selected to represent uniform, random, and clumped spatial patterns of tree locations. Fixed-radius circular plots, belt transects, and variable-radius plots were installed by...
Ennen, Joshua R.; Agha, Mickey; Matamoros, Wilfredo A.; Hazzard, Sarah C.; Lovich, Jeffrey E.
2016-01-01
Our study investigates how factors, such as latitude, productivity, and several environmental variables, influence contemporary patterns of the species richness in North American turtles. In particular, we test several hypotheses explaining broad-scale species richness patterns on several species richness data sets: (i) total turtles, (ii) freshwater turtles only, (iii) aquatic turtles, (iv) terrestrial turtles only, (v) Emydidae, and (vi) Kinosternidae. In addition to spatial data, we used a combination of 25 abiotic variables in spatial regression models to predict species richness patterns. Our results provide support for multiple hypotheses related to broad-scale patterns of species richness, and in particular, hypotheses related to climate, productivity, water availability, topography, and latitude. In general, species richness patterns were positively associated with temperature, precipitation, diversity of streams, coefficient of variation of elevation, and net primary productivity. We also found that North America turtles follow the general latitudinal diversity gradient pattern (i.e., increasing species richness towards equator) by exhibiting a negative association with latitude. Because of the incongruent results among our six data sets, our study highlights the importance of considering phylogenetic constraints and guilds when interpreting species richness patterns, especially for taxonomic groups that occupy a myriad of habitats.
Boieiro, Mário; Carvalho, José C.; Cardoso, Pedro; Aguiar, Carlos A. S.; Rego, Carla; de Faria e Silva, Israel; Amorim, Isabel R.; Pereira, Fernando; Azevedo, Eduardo B.; Borges, Paulo A. V.; Serrano, Artur R. M.
2013-01-01
The development in recent years of new beta diversity analytical approaches highlighted valuable information on the different processes structuring ecological communities. A crucial development for the understanding of beta diversity patterns was also its differentiation in two components: species turnover and richness differences. In this study, we evaluate beta diversity patterns of ground beetles from 26 sites in Madeira Island distributed throughout Laurisilva – a relict forest restricted to the Macaronesian archipelagos. We assess how the two components of ground beetle beta diversity (βrepl – species turnover and βrich - species richness differences) relate with differences in climate, geography, landscape composition matrix, woody plant species richness and soil characteristics and the relative importance of the effects of these variables at different spatial scales. We sampled 1025 specimens from 31 species, most of which are endemic to Madeira Island. A spatially explicit analysis was used to evaluate the contribution of pure environmental, pure spatial and environmental spatially structured effects on variation in ground beetle species richness and composition. Variation partitioning showed that 31.9% of species turnover (βrepl) and 40.7% of species richness variation (βrich) could be explained by the environmental and spatial variables. However, different environmental variables controlled the two types of beta diversity: βrepl was influenced by climate, disturbance and soil organic matter content whilst βrich was controlled by altitude and slope. Furthermore, spatial variables, represented through Moran’s eigenvector maps, played a significant role in explaining both βrepl and βrich, suggesting that both dispersal ability and Madeira Island complex orography are crucial for the understanding of beta diversity patterns in this group of beetles. PMID:23724065
USDA-ARS?s Scientific Manuscript database
Determination of indicator bacteria concentrations in irrigation water recently became mandatory for farmers. These concentrations are known to have large spatial variability in ponds and reservoirs. This variability is partially attributed to affinity of indicator bacteria to algae accumulations. W...
Spatial Variation in Development of Epibenthic Assemblages in a Coastal Lagoon
NASA Astrophysics Data System (ADS)
Benedetti-Cecchi, L.; Rindi, F.; Bertocci, I.; Bulleri, F.; Cinelli, F.
2001-05-01
Spatial and temporal patterns in colonization of epibenthic assemblages were measured in a coastal lagoon on the west coast of Italy using recruitment panels. It was proposed that if the ecological processes influencing development of assemblages were homogeneous within the lagoon, then there should be no differences in mean cover of colonists nor in spatial patterns of variance in abundance in different areas of the lagoon. In contrast, heterogeneity in ecological processes affecting development would be revealed by spatial variability in colonization. To test these hypotheses, two sticks each with five replicate panels were placed 3-5 m apart in each of two sites 30-100 m apart in each of three locations 500-100 m apart; the experiment was repeated three times between April and December 1999, using new sites at each location each time. The results revealed considerable spatial variation in the structure of developing assemblages across locations. There were significant Location or Time×Location effects in the mean abundance of common taxa, such as Enteromorpha intestinalis , Ulva rigida, Cladophora spp., bryozoans and serpulids. Patterns in spatial variation differed among locations for these organisms. Collectively, the results supported a model of spatial heterogeneity in intensity of processes influencing patterns of recruitment and development of epibenthic assemblages in the Lagoon of Orbetello. The implications of these results for management of environmental problems in complex, variable habitats such as coastal lagoons, are discussed.
Built environment and Property Crime in Seattle, 1998-2000: A Bayesian Analysis.
Matthews, Stephen A; Yang, Tse-Chuan; Hayslett-McCall, Karen L; Ruback, R Barry
2010-06-01
The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998-2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary.
Built environment and Property Crime in Seattle, 1998–2000: A Bayesian Analysis
Matthews, Stephen A.; Yang, Tse-chuan; Hayslett-McCall, Karen L.; Ruback, R. Barry
2014-01-01
The past decade has seen a rapid growth in the use of a spatial perspective in studies of crime. In part this growth has been driven by the availability of georeferenced data, and the tools to analyze and visualize them: geographic information systems (GIS), spatial analysis, and spatial statistics. In this paper we use exploratory spatial data analysis (ESDA) tools and Bayesian models to help better understand the spatial patterning and predictors of property crime in Seattle, Washington for 1998–2000, including a focus on built environment variables. We present results for aggregate property crime data as well as models for specific property crime types: residential burglary, nonresidential burglary, theft, auto theft, and arson. ESDA confirms the presence of spatial clustering of property crime and we seek to explain these patterns using spatial Poisson models implemented in WinBUGS. Our results indicate that built environment variables were significant predictors of property crime, especially the presence of a highway on auto theft and burglary. PMID:24737924
Describing spatial pattern in stream networks: A practical approach
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
A geostatistical approach for describing spatial pattern in stream networks
Ganio, L.M.; Torgersen, C.E.; Gresswell, R.E.
2005-01-01
The shape and configuration of branched networks influence ecological patterns and processes. Recent investigations of network influences in riverine ecology stress the need to quantify spatial structure not only in a two-dimensional plane, but also in networks. An initial step in understanding data from stream networks is discerning non-random patterns along the network. On the other hand, data collected in the network may be spatially autocorrelated and thus not suitable for traditional statistical analyses. Here we provide a method that uses commercially available software to construct an empirical variogram to describe spatial pattern in the relative abundance of coastal cutthroat trout in headwater stream networks. We describe the mathematical and practical considerations involved in calculating a variogram using a non-Euclidean distance metric to incorporate the network pathway structure in the analysis of spatial variability, and use a non-parametric technique to ascertain if the pattern in the empirical variogram is non-random.
Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas
2013-07-15
Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.
2014-04-01
Spatial pattern information of carbon density in forest ecosystem including forest litter carbon (FLC) plays an important role in evaluating carbon sequestration potentials. The spatial variation of FLC density in the typical subtropical forests in southeastern China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (south-north) × 6 km (east-west) grid system in Zhejiang province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas, while Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) Basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS, could be used to study spatial patterns of environmental variables related to forest ecosystem.
Yitbarek, Senay; Vandermeer, John H; Allen, David
2011-10-01
Spatial patterns observed in ecosystems have traditionally been attributed to exogenous processes. Recently, ecologists have found that endogenous processes also have the potential to create spatial patterns. Yet, relatively few studies have attempted to examine the combined effects of exogenous and endogenous processes on the distribution of organisms across spatial and temporal scales. Here we aim to do this, by investigating whether spatial patterns of under-story tree species at a large spatial scale (18 ha) influences the spatial patterns of ground foraging ant species at a much smaller spatial scale (20 m by 20 m). At the regional scale, exogenous processes (under-story tree community) had a strong effect on the spatial patterns in the ground-foraging ant community. We found significantly more Camponotus noveboracensis, Formica subsericae, and Lasius alienus species in black cherry (Prunis serotine Ehrh.) habitats. In witch-hazel (Hamamelis virginiana L.) habitats, we similarly found significantly more Myrmica americana, Formica fusca, and Formica subsericae. At smaller spatial scales, we observed the emergence of mosaic ant patches changing rapidly in space and time. Our study reveals that spatial patterns are the result of both exogenous and endogenous forces, operating at distinct scales.
NASA Astrophysics Data System (ADS)
Sandrini-Neto, L.; Lana, P. C.
2012-06-01
Heterogeneity in the distribution of organisms occurs at a range of spatial scales, which may vary from few centimeters to hundreds of kilometers. The exclusion of small-scale variability from routine sampling designs may confound comparisons at larger scales and lead to inconsistent interpretation of data. Despite its ecological and social-economic importance, little is known about the spatial structure of the mangrove crab Ucides cordatus in the southwest Atlantic. Previous studies have commonly compared densities at relatively broad scales, relying on alleged distribution patterns (e.g., mangroves of distinct composition and structure). We have assessed variability patterns of U. cordatus in mangroves of Paranaguá Bay at four levels of spatial hierarchy (10 s km, km, 10 s m and m) using a nested ANOVA and variance components measures. The potential role of sediment parameters, pneumatophore density, and organic matter content in regulating observed patterns was assessed by multiple regression models. Densities of total and non-commercial size crabs varied mostly at 10 s m to km scales. Densities of commercial size crabs differed at the scales of 10 s m and 10 s km. Variance components indicated that small-scale variation was the most important, contributing up to 70% of the crab density variability. Multiple regression models could not explain the observed variations. Processes driving differences in crab abundance were not related to the measured variables. Small-scale patchy distribution has direct implications to current management practices of U. cordatus. Future studies should consider processes operating at smaller scales, which are responsible for a complex mosaic of patches within previously described patterns.
Burke, Ariane; Levavasseur, Guillaume; James, Patrick M A; Guiducci, Dario; Izquierdo, Manuel Arturo; Bourgeon, Lauriane; Kageyama, Masa; Ramstein, Gilles; Vrac, Mathieu
2014-08-01
The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Heuer, A.; Casper, M. C.; Vohland, M.
2009-04-01
Processes in natural systems and the resulting patterns occur in ecological space and time. To study natural structures and to understand the functional processes it is necessary to identify the relevant spatial and temporal space at which these all occur; or with other words to isolate spatial and temporal patterns. In this contribution we will concentrate on the spatial aspects of agro-ecological data analysis. Data were derived from two agricultural plots, each of about 5 hectares, in the area of Newel, located in Western Palatinate, Germany. The plots had been conventionally cultivated with a crop rotation of winter rape, winter wheat and spring barley. Data about physical and chemical soil properties, vegetation and topography were i) collected by measurements in the field during three vegetation periods (2005-2008) and/or ii) derived from hyperspectral image data, acquired by a HyMap airborne imaging sensor (2005). To detect spatial variability within the plots, we applied three different approaches that examine and describe relationships among data. First, we used variography to get an overview of the data. A comparison of the experimental variograms facilitated to distinguish variables, which seemed to occur in related or dissimilar spatial space. Second, based on data available in raster-format basic cell statistics were conducted, using a geographic information system. Here we could make advantage of the powerful classification and visualization tool, which supported the spatial distribution of patterns. Third, we used an approach that is being used for visualization of complex highly dimensional environmental data, the Kohonen self-organizing map. The self-organizing map (SOM) uses multidimensional data that gets further reduced in dimensionality (2-D) to detect similarities in data sets and correlation between single variables. One of SOM's advantages is its powerful visualization capability. The combination of the three approaches leads to comprehensive and reasonable results, which will be presented in detail. It can be concluded, that the chosen strategy made it possible to complement preliminary findings, to validate the results of a single approach and to clearly delineate spatial patterns.
Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.
Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858
NASA Astrophysics Data System (ADS)
Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia
2016-08-01
Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.
NASA Astrophysics Data System (ADS)
von Ruette, J.; Lehmann, P.; Or, D.
2014-10-01
The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.
Rasic, Gordana; Keyghobadi, Nusha
2012-01-01
The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge's habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual-based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full-sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Yuan, Tianle; Oreopoulos, Lazaros; Platnick, Steven E.; Meyer, Kerry
2018-05-01
Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.
The accuracy of thematic map products is not spatially homogenous, but instead variable across most landscapes. Properly analyzing and representing the spatial distribution (pattern) of thematic map accuracy would provide valuable user information for assessing appropriate applic...
Modeling and analyzing stripe patterns in fish skin
NASA Astrophysics Data System (ADS)
Zheng, Yibo; Zhang, Lei; Wang, Yuan; Liang, Ping; Kang, Junjian
2009-11-01
The formation mechanism of stripe patterns in the skin of tropical fishes has been investigated by a coupled two variable reaction diffusion model. Two types of spatial inhomogeneities have been introduced into a homogenous system. Several Turing modes pumped by the Turing instability give rise to a simple stripe pattern. It is found that the Turing mechanism can only determine the wavelength of stripe pattern. The orientation of stripe pattern is determined by the spatial inhomogeneity. Our numerical results suggest that it may be the most possible mechanism for the forming process of fish skin patterns.
NASA Technical Reports Server (NTRS)
Thomas, A. C.; Strub, P. T.
1989-01-01
A 5-year time series of coastal zone color scanner imagery (1980-1983, 1986) is used to examine changes in the large-scale pattern of chlorophyll pigment concentration coincident with the spring transition in winds and currents along the west coast of North America. The data show strong interannual variability in the timing and spatial patterns of pigment concentration at the time of the transition event. Interannual variability in the response of pigment concentration to the spring transition appears to be a function of spatial and temporal variability in vertical nutrient flux induced by wind mixing and/or the upwelling initiated at the time of the transition. Interannual differences in the mixing regime are illustrated with a one-dimensional mixing model.
NASA Astrophysics Data System (ADS)
Veiga, Puri; Rubal, Marcos; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel
2013-10-01
The crustose calcareous red macroalgae Lithophyllum byssoides (Lamarck) Foslie is a common ecosystem engineer along the Atlantic and Mediterranean coast of the Iberian Peninsula. This species is threatened by several anthropogenic impacts acting at different spatial scales, such as pollution or global warming. The aim of this study is to identify scales of spatial variation in the abundance and fragmentation patterns of L. byssoides along the Atlantic coast of the Iberian Peninsula. For this aim we used a hierarchical sampling design considering four spatial scales (from metres to 100s of kilometres). Results of the present study indicated no significant variability among regions investigated whereas significant variability was found at the scales of shore and site in spatial patterns of abundance and fragmentation of L. byssoides. Variance components were higher at the spatial scale of shore for abundance and fragmentation of L. byssoides with the only exception of percentage cover and thus, processes acting at the scale of 10s of kilometres seem to be more relevant in shaping the spatial variability both in abundance and fragmentation of L. byssoides. These results provided quantitative estimates of abundance and fragmentation of L. byssoides at the Atlantic coast of the Iberian Peninsula establishing the observational basis for future assessment, monitoring and experimental investigations to identify the processes and anthropogenic impacts affecting L. byssoides populations. Finally we have also identified percentage cover and patch density as the best variables for long-term monitoring programs aimed to detect future anthropogenic impacts on L. byssoides. Therefore, our results have important implications for conservation and management of this valuable ecosystem engineer along the Atlantic coast of the Iberian Peninsula.
Decoding the spatial signatures of multi-scale climate variability - a climate network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.
2017-12-01
During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.
Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.
2015-01-01
Local adaptation influences plant species’ responses to climate change and their performance in ecological restoration. Fine-scale physiological or phenological adaptations that direct demographic processes may drive intraspecific variability when baseline environmental conditions change. Landscape genomics characterize adaptive differentiation by identifying environmental drivers of adaptive genetic variability and mapping the associated landscape patterns. We applied such an approach to Sphaeralcea ambigua, an important restoration plant in the arid southwestern United States, by analyzing variation at 153 amplified fragment length polymorphism loci in the context of environmental gradients separating 47 Mojave Desert populations. We identified 37 potentially adaptive loci through a combination of genome scan approaches. We then used a generalized dissimilarity model (GDM) to relate variability in potentially adaptive loci with spatial gradients in temperature, precipitation, and topography. We identified non-linear thresholds in loci frequencies driven by summer maximum temperature and water stress, along with continuous variation corresponding to temperature seasonality. Two GDM-based approaches for mapping predicted patterns of local adaptation are compared. Additionally, we assess uncertainty in spatial interpolations through a novel spatial bootstrapping approach. Our study presents robust, accessible methods for deriving spatially-explicit models of adaptive genetic variability in non-model species that will inform climate change modelling and ecological restoration.
Kumar, S.; Simonson, S.E.; Stohlgren, T.J.
2009-01-01
We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen
2016-04-01
Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under different hydrologic conditions and the factors controlling the temporal variability of the ECa-soil moisture relationship. The approach provided valuable insight into the time-varying contribution of local and nonlocal factors to the characteristic spatial patterns of soil moisture and the transition mechanisms. The spatial organization of soil moisture was controlled by different processes in different soil horizons, and the topsoil's moisture did not mirror processes that take place within the soil profile. Results show that, for the Schäfertal hillslope site which is presumed to be representative for non-intensively managed soils with moderate clay content, local soil properties (e.g., soil texture and porosity) are the major control on the spatial pattern of ECa. In contrast, the ECa-soil moisture relationship is small and varies over time indicating that ECa is not a good proxy for soil moisture estimation at the investigated site.Occasionally observed stronger correlations between ECa and soil moisture may be explained by background dependencies of ECa to other state variables such as pore water electrical conductivity. The results will help to improve conceptual understanding for hydrological model studies at similar or smaller scales, and to transfer observation concepts and process understanding to larger or less instrumented sites, as well as to constrain the use of EMI-based ECa data for hydrological applications.
Spatially and temporally variable fire regime on Rincon Peak, Arizona, USA
Jose M. Iniguez; Thomas W. Swetnam; Christopher H. Baisa
2009-01-01
Spatial and temporal patterns of fire history are affected by factors such as topography, vegetation, and climate. It is unclear, however, how these factors influenced fire history patterns in small isolated forests, such as that found on Rincon Peak, a "sky island" mountain range in southern Arizona, USA. We reconstructed the fire history of Rincon Peak to...
NASA Astrophysics Data System (ADS)
Divíšek, Jan; Zelený, David; Culek, Martin; Št'astný, Karel
2014-08-01
Studies that explore species-environment relationships at a broad scale are usually limited by the availability of sufficient habitat description, which is often too coarse to differentiate natural habitat patches. Therefore, it is not well understood how the distribution of natural habitats affects broad-scale patterns in the distribution of animal species. In this study, we evaluate the role of field-mapped natural habitats, land-cover types derived from remote sensing and climate on the composition of assemblages of five distinct animal groups, namely non-volant mammals, birds, reptiles, amphibians and butterflies native to the Czech Republic. First, we used variation partitioning based on redundancy analysis to evaluate the extent to which the environmental variables and their spatial structure might underlie the observed spatial patterns in the composition of animal assemblages. Second, we partitioned variations explained by climate, natural habitats and land-cover to compare their relative importance. Finally, we tested the independent effects of each variable in order to evaluate the significance of their contributions to the environmental model. Our results showed that spatial patterns in the composition of assemblages of almost all the considered animal groups may be ascribed mostly to variations in the environment. Although the shared effects of climatic variables, natural habitats and land-cover types explained the largest proportion of variation in each animal group, the variation explained purely by natural habitats was always higher than the variation explained purely by climate or land-cover. We conclude that most spatial variation in the composition of assemblages of almost all animal groups probably arises from biological processes operating within a spatially structured environment and suggest that natural habitats are important to explain observed patterns because they often perform better than habitat descriptions based on remote sensing. This underlines the value of using appropriate habitat data, for which high-resolution and large-area field-mapping projects are necessary.
Crop yield response to climate change varies with crop spatial distribution pattern
Leng, Guoyong; Huang, Maoyi
2017-05-03
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
Crop yield response to climate change varies with crop spatial distribution pattern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Huang, Maoyi
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
NASA Astrophysics Data System (ADS)
Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.
2013-12-01
The spatial variation of forest litter carbon (FLC) density in the typical subtropical forests in southeast China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (South-North) × 6 km (East-West) grid system in Zhejiang Province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using Local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas. While Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns in distribution map were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS could be used to study spatial patterns of environmental variables related to forest ecosystem.
Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest
NASA Astrophysics Data System (ADS)
Dwomoh, F. K.; Wimberly, M. C.
2016-12-01
The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.
Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M
2014-01-01
The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.
Liang, Jia Xin; Li, Xin Ju
2018-02-01
With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.
McKenzie, D.; Hessl, Amy E.; Peterson, D.L.
2001-01-01
We explored spatial patterns of low-frequency variability in radial tree growth among western North American conifer species and identified predictors of the variability in these patterns. Using 185 sites from the International Tree-Ring Data Bank, each of which contained 10a??60 raw ring-width series, we rebuilt two chronologies for each site, using two conservative methods designed to retain any low-frequency variability associated with recent environmental change. We used factor analysis to identify regional low-frequency patterns in site chronologies and estimated the slope of the growth trend since 1850 at each site from a combination of linear regression and time-series techniques. This slope was the response variable in a regression-tree model to predict the effects of environmental gradients and species-level differences on growth trends. Growth patterns at 27 sites from the American Southwest were consistent with quasi-periodic patterns of drought. Either 12 or 32 of the 185 sites demonstrated patterns of increasing growth between 1850 and 1980 A.D., depending on the standardization technique used. Pronounced growth increases were associated with high-elevation sites (above 3000 m) and high-latitude sites in maritime climates. Future research focused on these high-elevation and high-latitude sites should address the precise mechanisms responsible for increased 20th century growth.
Range and variation in landscape patch dynamics: Implications for ecosystem management
Robert E. Keane; Janice L. Garner; Casey Teske; Cathy Stewart; Paul Hessburg
2001-01-01
Northern Rocky Mountain landscape patterns are shaped primarily by fire and succession, and conversely, these vegetation patterns influence burning patterns and plant colonization processes. Historical range and variability (HRV) of landscape pattern can be quantified from three sources: (1) historical chronosequences, (2) spatial series, and (3) simulated...
NASA Astrophysics Data System (ADS)
Pérez, Luis D.; Cumbrera, Ramiro; Mato, Juan; Millán, Humberto; Tarquis, Ana M.
2015-04-01
Spatial variability of soil properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns (Brouder et al., 2001; Millán et al., 2012). The objective of the present work was to quantify the spatial structure of soil penetrometer resistance (PR) collected from a transect data consisted of 221 points equidistant. In each sampling, readings were obtained from 0 cm till 70 cm of depth, with an interval of 5 cm (Pérez, 2012). The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years (Pérez et al., 2010). Recently, scaling approach has been applied on the determination of the scaling data properties (Tarquis et al., 2008; Millán et al., 2012; Pérez, 2012). We focus in the Hurst analysis to characterize the data variability for each depth. Previously a detrended analysis was conducted in order to better study de intrinsic variability of the series. The Hurst exponent (H) for each depth was estimated showing a characteristic pattern and differentiating PR evolution in depth. References Brouder, S., Hofmann, B., Reetz, H.F., 2001. Evaluating spatial variability of soil parameters for input management. Better Crops 85, 8-11. Millán, H; AM Tarquís, Luís D. Pérez, Juan Mato, Mario González-Posada, 2012. Spatial variability patterns of some Vertisol properties at a field scale using standardized data. Soil and Tillage Research, 120, 76-84. Pérez, Luís D. 2012. Influencia de la maquinaria agrícola sobre la variabilidad espacial de la compactación del suelo. Aplicación de la metodología geoestadística-fractal. PhD thesis, UPM (In Spanish). Pérez, Luís D., Humberto Millán, Mario González-Posada 2010. Spatial complexity of soil plow layer penetrometer resistance as influenced by sugarcane harvesting: A prefractal approach. Soil and Tillage Research, 110(1), 77-86. Tarquis, A.M., N. Bird, M.C. Cartagena, A. Whitmore and Y. Pachepsky, 2008. Multiscale entropy-based analyses of soil transect data. Vadose Zone Journal, 7(2), 563-569.
Utility of computer simulations in landscape genetics
Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale
2010-01-01
Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...
Pattern detection in stream networks: Quantifying spatialvariability in fish distribution
Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.
2004-01-01
Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.
Distribution, abundance, and diversity of stream fishes under variable environmental conditions
Christopher M. Taylor; Thomas L. Holder; Richard A. Fiorillo; Lance R. Williams; R. Brent Thomas; Melvin L. Warren
2006-01-01
The effects of stream size and flow regime on spatial and temporal variability of stream fish distribution, abundance, and diversity patterns were investigated. Assemblage variability and species richness were each significantly associated with a complex environmental gradient contrasting smaller, hydrologically variable stream localities with larger localities...
Patterns of distribution, abundance, and change over time in a subarctic marine bird community
NASA Astrophysics Data System (ADS)
Cushing, Daniel A.; Roby, Daniel D.; Irons, David B.
2018-01-01
Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989-2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.
Patterns of distribution, abundance, and change over time in a subarctic marine bird community
Cushing, Daniel; Roby, Daniel D.; Irons, David B.
2017-01-01
Over recent decades, marine ecosystems of Prince William Sound (PWS), Alaska, have experienced concurrent effects of natural and anthropogenic perturbations, including variability in the climate system of the northeastern Pacific Ocean. We documented spatial and temporal patterns of variability in the summer marine bird community in relation to habitat and climate variability using boat-based surveys of marine birds conducted during the period 1989–2012. We hypothesized that a major factor structuring marine bird communities in PWS would be proximity to the shoreline, which is theorized to relate to aspects of food web structure. We also hypothesized that shifts in physical ecosystem drivers differentially affected nearshore-benthic and pelagic components of PWS food webs. We evaluated support for our hypotheses using an approach centered on community-level patterns of spatial and temporal variability. We found that an environmental gradient related to water depth and distance from shore was the dominant factor spatially structuring the marine bird community. Responses of marine birds to this onshore-offshore environmental gradient were related to dietary specialization, and separated marine bird taxa by prey type. The primary form of temporal variability over the study period was monotonic increases or decreases in abundance for 11 of 18 evaluated genera of marine birds; 8 genera had declined, whereas 3 had increased. The greatest declines occurred in genera associated with habitats that were deeper and farther from shore. Furthermore, most of the genera that declined primarily fed on pelagic prey resources, such as forage fish and mesozooplankton, and few were directly affected by the 1989 Exxon Valdez oil spill. Our observations of synchronous declines are indicative of a shift in pelagic components of PWS food webs. This pattern was correlated with climate variability at time-scales of several years to a decade.
Lin, Guojun; Stralberg, Diana; Gong, Guiquan; Huang, Zhongliang; Ye, Wanhui; Wu, Linfang
2013-01-01
Quantifying the relative contributions of environmental conditions and spatial factors to species distribution can help improve our understanding of the processes that drive diversity patterns. In this study, based on tree inventory, topography and soil data from a 20-ha stem-mapped permanent forest plot in Guangdong Province, China, we evaluated the influence of different ecological processes at different spatial scales using canonical redundancy analysis (RDA) at the community level and multiple linear regression at the species level. At the community level, the proportion of explained variation in species distribution increased with grid-cell sizes, primarily due to a monotonic increase in the explanatory power of environmental variables. At the species level, neither environmental nor spatial factors were important determinants of overstory species' distributions at small cell sizes. However, purely spatial variables explained most of the variation in the distributions of understory species at fine and intermediate cell sizes. Midstory species showed patterns that were intermediate between those of overstory and understory species. At the 20-m cell size, the influence of spatial factors was stronger for more dispersal-limited species, suggesting that much of the spatial structuring in this community can be explained by dispersal limitation. Comparing environmental factors, soil variables had higher explanatory power than did topography for species distribution. However, both topographic and edaphic variables were highly spatial structured. Our results suggested that dispersal limitation has an important influence on fine-intermediate scale (from several to tens of meters) species distribution, while environmental variability facilitates species distribution at intermediate (from ten to tens of meters) and broad (from tens to hundreds of meters) scales.
NASA Astrophysics Data System (ADS)
Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.
2016-12-01
Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.
Collins, Doug; Benedict, Chris; Bary, Andy; Cogger, Craig
2015-01-01
The spatial heterogeneity of soil and weed populations poses a challenge to researchers. Unlike aboveground variability, below-ground variability is more difficult to discern without a strategic soil sampling pattern. While blocking is commonly used to control environmental variation, this strategy is rarely informed by data about current soil conditions. Fifty georeferenced sites were located in a 0.65 ha area prior to establishing a long-term field experiment. Soil organic matter (OM) and weed seed bank populations were analyzed at each site and the spatial structure was modeled with semivariograms and interpolated with kriging to map the surface. These maps were used to formulate three strategic blocking patterns and the efficiency of each pattern was compared to a completely randomized design and a west to east model not informed by soil variability. Compared to OM, weeds were more variable across the landscape and had a shorter range of autocorrelation, and models to increase blocking efficiency resulted in less increase in power. Weeds and OM were not correlated, so no model examined improved power equally for both parameters. Compared to the west to east blocking pattern, the final blocking pattern chosen resulted in a 7-fold increase in power for OM and a 36% increase in power for weeds.
The Nature of Antarctic Temperature Change
NASA Astrophysics Data System (ADS)
Markle, B. R.; Steig, E. J.
2017-12-01
The Antarctic is an important component of global climate. While the Arctic has warmed significantly in the last century, the Antarctic as a whole has shown considerably less variability. There is, however, a pronounced spatial pattern to modern Antarctic temperature change. The high East Antarctic Ice Sheet shows little to no warming over recent decades while West Antarctica and the Peninsula shows some of the largest rates of warming on the globe. Examining past climate variability can help reveal the physical processes governing this spatial pattern of Antarctic temperature change. Modern Antarctic temperature variability is known from satellite and weather station observations. Understanding changes in the past, however, requires paleoclimate-proxies such as ice-core water-isotope records. Here we assess the spatial pattern of Antarctic temperature changes across a range of timescales, from modern decadal changes to millennial and orbital-scale variability. We reconstruct past changes in absolute temperatures from a suite of deep ice core records and an improved isotope-temperature reconstruction method. We use δ18O and deuterium excess records to reconstruct both evaporation source and condensation site temperatures. In contrast to previous studies we use a novel method that accounts for nonlinearities in the water-isotope distillation process. We quantify past temperature changes over the Southern Ocean and Antarctic Continent and the magnitude of polar amplification. We identify patterns of Antarctic temperature change that are common across a wide range of timescales and independent of the source of forcing. We examine the nature of these changes and their relationship to atmospheric thermodynamics.
Large-Scale Circulation and Climate Variability. Chapter 5
NASA Technical Reports Server (NTRS)
Perlwitz, J.; Knutson, T.; Kossin, J. P.; LeGrande, A. N.
2017-01-01
The causes of regional climate trends cannot be understood without considering the impact of variations in large-scale atmospheric circulation and an assessment of the role of internally generated climate variability. There are contributions to regional climate trends from changes in large-scale latitudinal circulation, which is generally organized into three cells in each hemisphere-Hadley cell, Ferrell cell and Polar cell-and which determines the location of subtropical dry zones and midlatitude jet streams. These circulation cells are expected to shift poleward during warmer periods, which could result in poleward shifts in precipitation patterns, affecting natural ecosystems, agriculture, and water resources. In addition, regional climate can be strongly affected by non-local responses to recurring patterns (or modes) of variability of the atmospheric circulation or the coupled atmosphere-ocean system. These modes of variability represent preferred spatial patterns and their temporal variation. They account for gross features in variance and for teleconnections which describe climate links between geographically separated regions. Modes of variability are often described as a product of a spatial climate pattern and an associated climate index time series that are identified based on statistical methods like Principal Component Analysis (PC analysis), which is also called Empirical Orthogonal Function Analysis (EOF analysis), and cluster analysis.
Fine-Scale Analysis Reveals Cryptic Landscape Genetic Structure in Desert Tortoises
Latch, Emily K.; Boarman, William I.; Walde, Andrew; Fleischer, Robert C.
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately. PMID:22132143
Fine-scale analysis reveals cryptic landscape genetic structure in desert tortoises.
Latch, Emily K; Boarman, William I; Walde, Andrew; Fleischer, Robert C
2011-01-01
Characterizing the effects of landscape features on genetic variation is essential for understanding how landscapes shape patterns of gene flow and spatial genetic structure of populations. Most landscape genetics studies have focused on patterns of gene flow at a regional scale. However, the genetic structure of populations at a local scale may be influenced by a unique suite of landscape variables that have little bearing on connectivity patterns observed at broader spatial scales. We investigated fine-scale spatial patterns of genetic variation and gene flow in relation to features of the landscape in desert tortoise (Gopherus agassizii), using 859 tortoises genotyped at 16 microsatellite loci with associated data on geographic location, sex, elevation, slope, and soil type, and spatial relationship to putative barriers (power lines, roads). We used spatially explicit and non-explicit Bayesian clustering algorithms to partition the sample into discrete clusters, and characterize the relationships between genetic distance and ecological variables to identify factors with the greatest influence on gene flow at a local scale. Desert tortoises exhibit weak genetic structure at a local scale, and we identified two subpopulations across the study area. Although genetic differentiation between the subpopulations was low, our landscape genetic analysis identified both natural (slope) and anthropogenic (roads) landscape variables that have significantly influenced gene flow within this local population. We show that desert tortoise movements at a local scale are influenced by features of the landscape, and that these features are different than those that influence gene flow at larger scales. Our findings are important for desert tortoise conservation and management, particularly in light of recent translocation efforts in the region. More generally, our results indicate that recent landscape changes can affect gene flow at a local scale and that their effects can be detected almost immediately.
Gebler, J.B.
2004-01-01
The related topics of spatial variability of aquatic invertebrate community metrics, implications of spatial patterns of metric values to distributions of aquatic invertebrate communities, and ramifications of natural variability to the detection of human perturbations were investigated. Four metrics commonly used for stream assessment were computed for 9 stream reaches within a fairly homogeneous, minimally impaired stream segment of the San Pedro River, Arizona. Metric variability was assessed for differing sampling scenarios using simple permutation procedures. Spatial patterns of metric values suggest that aquatic invertebrate communities are patchily distributed on subsegment and segment scales, which causes metric variability. Wide ranges of metric values resulted in wide ranges of metric coefficients of variation (CVs) and minimum detectable differences (MDDs), and both CVs and MDDs often increased as sample size (number of reaches) increased, suggesting that any particular set of sampling reaches could yield misleading estimates of population parameters and effects that can be detected. Mean metric variabilities were substantial, with the result that only fairly large differences in metrics would be declared significant at ?? = 0.05 and ?? = 0.20. The number of reaches required to obtain MDDs of 10% and 20% varied with significance level and power, and differed for different metrics, but were generally large, ranging into tens and hundreds of reaches. Study results suggest that metric values from one or a small number of stream reach(es) may not be adequate to represent a stream segment, depending on effect sizes of interest, and that larger sample sizes are necessary to obtain reasonable estimates of metrics and sample statistics. For bioassessment to progress, spatial variability may need to be investigated in many systems and should be considered when designing studies and interpreting data.
Dambreville, Charline; Labarre, Audrey; Thibaudier, Yann; Hurteau, Marie-France
2015-01-01
When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds. PMID:26084910
NASA Astrophysics Data System (ADS)
Smale, Dan A.; Barnes, David K. A.; Barnes, Richard S. K.; Smith, David J.; Suggett, David J.
2012-04-01
Tropical nearshore ecosystems represent global hotspots of marine biodiversity and endemism but are often poorly understood and impacted by human activities. The Seychelles Archipelago (Western Indian Ocean) sustains a wealth of marine life, much of which is threatened by rapid development associated with tourism and climate change. Six marine parks exist within the Archipelago, but their biodiversity value and ecological health are poorly known, especially with regards to non-fish and coral species. Here we investigate spatial patterns of littoral biodiversity on 6 islands, 5 of which were granitic and within marine parks, including the first surveys of Curieuse and Ile Cocos. Our surveys formed a nested sampling design, to facilitate an examination of variability in species richness, faunal abundance, taxonomic distinctness and assemblage composition at multiple spatial scales, from islands (> 100 s km) to quadrats (metres). We identified (mostly to species) and enumerated two target taxa, brachyuran decapod crustaceans and gastropod molluscs, and recorded over 8300 individuals belonging to over 150 species. Crabs and gastropods exhibited different patterns of spatial variability, as crab assemblages were generally more distinct between islands, while gastropod assemblages were markedly variable at the smallest spatial scales of 'patch' and 'quadrat'. Intertidal biodiversity was greatest on Curieuse Island and least at Desroches, the latter was being the only coral atoll we surveyed and thereby differing in its geological and ecological context. We discuss likely drivers of these biodiversity patterns and highlight urgently-needed research directions. Our assessment of the status of poorly-known invertebrate assemblages across the Seychelles will complement more extensive surveys of coral and fish assemblages and, in doing so, provide a useful baseline for monitoring the effects of key stressors in the region, such as coastal development and climate change.
Batterman, Stuart
2015-01-01
Patterns of traffic activity, including changes in the volume and speed of vehicles, vary over time and across urban areas and can substantially affect vehicle emissions of air pollutants. Time-resolved activity at the street scale typically is derived using temporal allocation factors (TAFs) that allow the development of emissions inventories needed to predict concentrations of traffic-related air pollutants. This study examines the spatial and temporal variation of TAFs, and characterizes prediction errors resulting from their use. Methods are presented to estimate TAFs and their spatial and temporal variability and used to analyze total, commercial and non-commercial traffic in the Detroit, Michigan, U.S. metropolitan area. The variability of total volume estimates, quantified by the coefficient of variation (COV) representing the percentage departure from expected hourly volume, was 21, 33, 24 and 33% for weekdays, Saturdays, Sundays and holidays, respectively. Prediction errors mostly resulted from hour-to-hour variability on weekdays and Saturdays, and from day-to-day variability on Sundays and holidays. Spatial variability was limited across the study roads, most of which were large freeways. Commercial traffic had different temporal patterns and greater variability than noncommercial vehicle traffic, e.g., the weekday variability of hourly commercial volume was 28%. The results indicate that TAFs for a metropolitan region can provide reasonably accurate estimates of hourly vehicle volume on major roads. While vehicle volume is only one of many factors that govern on-road emission rates, air quality analyses would be strengthened by incorporating information regarding the uncertainty and variability of traffic activity. PMID:26688671
Spatial and temporal patterns in zooplankton community composition and abundance in near-coastal areas of the Gulf of Mexico are not well understood. This survey provides information on spatial and temporal differences in zoolplankton community composition and abundance for a coa...
Spatial patterns of fasting and fed antropyloric pressure waves in humans.
Sun, W M; Hebbard, G S; Malbert, C H; Jones, K L; Doran, S; Horowitz, M; Dent, J
1997-01-01
1. Gastric mechanics were investigated by categorizing the temporal and spatial patterning of pressure waves associated with individual gastric contractions. 2. In twelve healthy volunteers, intraluminal pressures were monitored from nine side hole recording points spaced at 1.5 cm intervals along the antrum, pylorus and duodenum. 3. Pressure wave sequences that occurred during phase II fasting contractions (n = 221) and after food (n = 778) were evaluated. 4. The most common pattern of pressure wave onset along the antrum was a variable combination of antegrade, synchronous and retrograde propagation between side hole pairs. This variable pattern accounted for 42% of sequences after food, and 34% during fasting (P < 0.05). Other common pressure wave sequence patterns were: purely antegrade-29% after food and 42% during fasting (P < 0.05); purely synchronous-23% fed and 17% fasting; and purely retrograde-6% fed and 8% fasting. The length of sequences was shorter after food (P < 0.05). Some sequences 'skipped' individual recording points. 5. The spatial patterning of gastric pressure wave sequences is diverse, and may explain the differing mechanical outcomes among individual gastric contractions. 6. Better understanding of gastric mechanics may be gained from temporally precise correlations of luminal flows and pressures and gastric wall motion during individual gastric contraction sequences. PMID:9306286
Spatial patterns in community response to aircraft noise associated with non-noise factors
NASA Astrophysics Data System (ADS)
Hall, F. L.; Taylor, S. M.; Birnie, S. E.
1980-08-01
Non-noise aspects of airport operations may affect individuals' responses to aircraft noise. Fear of crashes, other forms of pollution, and proximity to the flight path are three such non-noise aspects which have spatial patterns that are closely related to the pattern of noise contours around an airport. If these variables affect response to aircraft noise, they may therefore confound attempts to understand relationships between noise level and community response. Analyses based on data from 673 individuals around Toronto International Airport suggest that these factors do affect annoyance responses, but do not affect reported activity interference. Hence it may prove fruitful, in aggregate analyses of community response data, to control for these variables in order to better understand the noise-annoyance relationships.
NASA Astrophysics Data System (ADS)
O'Donnell, Alison J.; Cook, Edward R.; Palmer, Jonathan G.; Turney, Chris S. M.; Grierson, Pauline F.
2018-02-01
Proxy records have provided major insights into the variability of past climates over long timescales. However, for much of the Southern Hemisphere, the ability to identify spatial patterns of past climatic variability is constrained by the sparse distribution of proxy records. This is particularly true for mainland Australia, where relatively few proxy records are located. Here, we (1) assess the potential to use existing proxy records in the Australasian region—starting with the only two multi-century tree-ring proxies from mainland Australia—to reveal spatial patterns of past hydroclimatic variability across the western third of the continent, and (2) identify strategic locations to target for the development of new proxy records. We show that the two existing tree-ring records allow robust reconstructions of past hydroclimatic variability over spatially broad areas (i.e. > 3° × 3°) in inland north- and south-western Australia. Our results reveal synchronous periods of drought and wet conditions between the inland northern and southern regions of western Australia as well as a generally anti-phase relationship with hydroclimate in eastern Australia over the last two centuries. The inclusion of 174 tree-ring proxy records from Tasmania, New Zealand and Indonesia and a coral record from Queensland did not improve the reconstruction potential over western Australia. However, our findings suggest that the addition of relatively few new proxy records from key locations in western Australia that currently have low reconstruction skill will enable the development of a comprehensive drought atlas for the region, and provide a critical link to the drought atlases of monsoonal Asia and eastern Australia and New Zealand.
Spatial and temporal variability in rates of landsliding in seismically active mountain ranges
NASA Astrophysics Data System (ADS)
Parker, R.; Petley, D.; Rosser, N.; Densmore, A.; Gunasekera, R.; Brain, M.
2012-04-01
Where earthquake and precipitation driven disasters occur in steep, mountainous regions, landslides often account for a large proportion of the associated damage and losses. This research addresses spatial and temporal variability in rates of landslide occurrence in seismically active mountain ranges as a step towards developing better regional scale prediction of losses in such events. In the first part of this paper we attempt to explain reductively the variability in spatial rates of landslide occurrence, using data from five major earthquakes. This is achieved by fitting a regression-based conditional probability model to spatial probabilities of landslide occurrence, using as predictor variables proxies for spatial patterns of seismic ground motion and modelled hillslope stability. A combined model for all earthquakes performs well in hindcasting spatial probabilities of landslide occurrence as a function of readily-attainable spatial variables. We present validation of the model and demonstrate the extent to which it may be applied globally to derive landslide probabilities for future earthquakes. In part two we examine the temporal behaviour of rates of landslide occurrence. This is achieved through numerical modelling to simulate the behaviour of a hypothetical landscape. The model landscape is composed of hillslopes that continually weaken, fail and reset in response to temporally-discrete forcing events that represent earthquakes. Hillslopes with different geometries require different amounts of weakening to fail, such that they fail and reset at different temporal rates. Our results suggest that probabilities of landslide occurrence are not temporally constant, but rather vary with time, irrespective of changes in forcing event magnitudes or environmental conditions. Various parameters influencing the magnitude and temporal patterns of this variability are identified, highlighting areas where future research is needed. This model has important implications for landslide hazard and risk analysis in mountain areas as existing techniques usually assume that susceptibility to failure does not change with time.
Spatial Variance in Resting fMRI Networks of Schizophrenia Patients: An Independent Vector Analysis
Gopal, Shruti; Miller, Robyn L.; Michael, Andrew; Adali, Tulay; Cetin, Mustafa; Rachakonda, Srinivas; Bustillo, Juan R.; Cahill, Nathan; Baum, Stefi A.; Calhoun, Vince D.
2016-01-01
Spatial variability in resting functional MRI (fMRI) brain networks has not been well studied in schizophrenia, a disease known for both neurodevelopmental and widespread anatomic changes. Motivated by abundant evidence of neuroanatomical variability from previous studies of schizophrenia, we draw upon a relatively new approach called independent vector analysis (IVA) to assess this variability in resting fMRI networks. IVA is a blind-source separation algorithm, which segregates fMRI data into temporally coherent but spatially independent networks and has been shown to be especially good at capturing spatial variability among subjects in the extracted networks. We introduce several new ways to quantify differences in variability of IVA-derived networks between schizophrenia patients (SZs = 82) and healthy controls (HCs = 89). Voxelwise amplitude analyses showed significant group differences in the spatial maps of auditory cortex, the basal ganglia, the sensorimotor network, and visual cortex. Tests for differences (HC-SZ) in the spatial variability maps suggest, that at rest, SZs exhibit more activity within externally focused sensory and integrative network and less activity in the default mode network thought to be related to internal reflection. Additionally, tests for difference of variance between groups further emphasize that SZs exhibit greater network variability. These results, consistent with our prediction of increased spatial variability within SZs, enhance our understanding of the disease and suggest that it is not just the amplitude of connectivity that is different in schizophrenia, but also the consistency in spatial connectivity patterns across subjects. PMID:26106217
Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V., Oliver C.
2015-01-01
Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov–Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities. PMID:26207997
Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A
2015-01-06
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.
2015-01-01
Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.
Effects Of Spatial Variability In Marshes On Coastal Erosion Under Storm Conditions
NASA Astrophysics Data System (ADS)
Lunghino, B.; Suckale, J.; Fringer, O. B.; Maldonado, S.; Ferreira, C.; Marras, S.; Mandel, T.
2016-12-01
To quantify the contribution of marshes in protecting coastlines, engineers and planners need to evaluate how variability in marsh characteristics and storm conditions affect erosion in the inundation zone. Previous studies show that spatial patterns in marshes significantly affect flow and sediment transport under normal tidal conditions [1, 2]. This study investigates the effect of spatial variability on floodplain sediment transport under a range of extreme hydrodynamic conditions that occur during storm events. We model the hydrodynamics of storm surge conditions on an idealized coastal floodplain by solving the 2D shallow water equations. We approximate the effect of vegetation on hydrodynamics as a constant drag coefficient. The model calculates suspended sediment transport with the advection-diffusion equation and updates morphology with erosional and depositional fluxes. We conduct numerical experiments in which we vary both the scale of the storm event and the spatial patterns of vegetation and evaluate the impact on erosion and deposition on the floodplain. We find that the alongshore extent of the vegetation is the primary control on the net volume of sediment eroded. Scour occurs in narrow channels between vegetated areas, but this does not significantly alter the net volume of sediment transported. Deposition occurs in vegetated areas under the full range of flow velocities we test. These results suggest that resolving all variability in vegetation is not necessary to quantify net sediment transport volumes at the floodplain scale. Increasing the scale of the storm event does not alter the role of spatial variability. References [1] Meire, D. W., Kondziolka, J. M., and Nepf, H. M. Interaction between neighboring vegetation patches: Impact on flow and deposition. Water Resources Research 50, 5 (2014), 3809-3825. [2] Temmerman, S., Bouma, T., Govers, G., Wang, Z., De Vries, M., and Her- man, P. Impact of vegetation on flow routing and sedimentation patterns: Three-dimensional modeling for a tidal marsh. Journal of Geophysical Research: Earth Surface 110, F4 (2005).
Dong, Xiaoli; Grimm, Nancy B.
2017-01-01
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, “wetland”) system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995–2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns. PMID:28559326
Dong, Xiaoli; Ruhí, Albert; Grimm, Nancy B
2017-06-13
Nutrients in freshwater ecosystems are highly variable in space and time. Nevertheless, the variety of processes contributing to nutrient patchiness, and the wide range of spatial and temporal scales at which these processes operate, obfuscate how this spatial heterogeneity is generated. Here, we describe the spatial structure of stream nutrient concentration, quantify the relative importance of the physical template and biological processes, and detect and evaluate the role of self-organization in driving such patterns. We examined nutrient spatial patterns in Sycamore Creek, an intermittent desert stream in Arizona that experienced an ecosystem regime shift [from a gravel/algae-dominated to a vascular plant-dominated (hereafter, "wetland") system] in 2000 when cattle grazing ceased. We conducted high-resolution nutrient surveys in surface water along a 10-km stream reach over four visits spanning 18 y (1995-2013) that represent different successional stages and prewetland stage vs. postwetland state. As expected, groundwater upwelling had a major influence on nutrient spatial patterns. However, self-organization realized by the mechanism of spatial feedbacks also was significant and intensified over ecosystem succession, as a resource (nitrogen) became increasingly limiting. By late succession, the effects of internal spatial feedbacks and groundwater upwelling were approximately equal in magnitude. Wetland establishment influenced nutrient spatial patterns only indirectly, by modifying the extent of surface water/groundwater exchange. This study illustrates that multiple mechanisms interact in a dynamic way to create spatial heterogeneity in riverine ecosystems, and provides a means to detect spatial self-organization against physical template heterogeneity as a dominant driver of spatial patterns.
Spatial Variability of Dissolved Organic Carbon in Headwater Wetlands in Central Pennsylvania
NASA Astrophysics Data System (ADS)
Reichert-Eberhardt, A. J.; Wardrop, D.; Boyer, E. W.
2011-12-01
Dissolved organic carbon (DOC) is known to be of an important factor in many microbially mediated biochemical processes, such as denitrification, that occur in wetlands. The spatial variability of DOC within a wetland could impact the microbes that fuel these processes, which in turn can affect the ecosystem services provided by wetlands. However, the amount of spatial variability of DOC in wetlands is generally unknown. Furthermore, it is unknown how disturbance to wetlands can affect spatial variability of DOC. Previous research in central Pennsylvania headwater wetland soils has shown that wetlands with increased human disturbance had decreased heterogeneity in soil biochemistry. To address groundwater chemical variability 20 monitoring wells were installed in a random pattern in a 400 meter squared plot in a low-disturbance headwater wetland and a high-disturbance headwater wetland in central Pennsylvania. Water samples from these wells will be analyzed for DOC, dissolved inorganic carbon, nitrate, ammonia, and sulfate concentrations, as well as pH, conductivity, and temperature on a seasonal basis. It is hypothesized that there will be greater spatial variability of groundwater chemistry in the low disturbance wetland than the high disturbance wetland. This poster will present the initial data concerning DOC spatial variability in both the low and high impact headwater wetlands.
NASA Astrophysics Data System (ADS)
Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.
2007-10-01
To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.
NASA Astrophysics Data System (ADS)
Rosli, Norliana; Leduc, Daniel; Rowden, Ashley A.; Probert, P. Keith; Clark, Malcolm R.
2018-01-01
Deep-sea community attributes vary at a range of spatial scales. However, identifying the scale at which environmental factors affect variability in deep-sea communities remains difficult, as few studies have been designed in such a way as to allow meaningful comparisons across more than two spatial scales. In the present study, we investigated nematode diversity, community structure and trophic structure at different spatial scales (sediment depth (cm), habitat (seamount, canyon, continental slope; 1-100 km), and geographic region (100-10000 km)), while accounting for the effects of water depth, in two regions on New Zealand's continental margin. The greatest variability in community attributes was found between sediment depth layers and between regions, which explained 2-4 times more variability than habitats. The effect of habitat was consistently stronger in the Hikurangi Margin than the Bay of Plenty for all community attributes, whereas the opposite pattern was found in the Bay of Plenty where effect of sediment depth was greater in Bay of Plenty. The different patterns at each scale in each region reflect the differences in the environmental variables between regions that control nematode community attributes. Analyses suggest that nematode communities are mostly influenced by sediment characteristics and food availability, but that disturbance (fishing activity and bioturbation) also accounts for some of the observed patterns. The results provide new insight on the relative importance of processes operating at different spatial scales in regulating nematode communities in the deep-sea, and indicate potential differences in vulnerability to anthropogenic disturbance.
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio
2017-04-01
Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halvorson, J.J.; Smith, J.L.; Bolton, H. Jr.
1995-09-01
Geostatistics are often calculated for a single variable at a time, even though many natural phenomena are functions of several variables. The objective of this work was to demonstrate a nonparametric approach for assessing the spatial characteristics of multiple-variable phenomena. Specifically, we analyzed the spatial characteristics of resource islands in the soil under big sagebrush (Artemisia tridentala Nutt.), a dominant shrub in the intermountain western USA. For our example, we defined resource islands as a function of six soil variables representing concentrations of soil resources, populations of microorganisms, and soil microbial physiological variables. By collectively evaluating the indicator transformations ofmore » these individual variables, we created a new data set, termed a multiple-variable indicator transform or MVIT. Alternate MVITs were obtained by varying the selection criteria. Each MVIT was analyzed with variography to characterize spatial continuity, and with indicator kriging to predict the combined probability of their occurrence at unsampled locations in the landscape. Simple graphical analysis and variography demonstrated spatial dependence for all individual soil variables. Maps derived from ordinary kriging of MVITs suggested that the combined probabilities for encountering zones of above-median resources were greatest near big sagebrush. 51 refs., 5 figs., 1 tab.« less
Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region
Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall
2011-01-01
Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...
Environmental characteristics drive variation in Amazonian understorey bird assemblages
Magnusson, William E.; Anderson, Marti J.; Schlegel, Martin; Pe’er, Guy; Henle, Klaus
2017-01-01
Tropical bird assemblages display patterns of high alpha and beta diversity and, as tropical birds exhibit strong habitat specificity, their spatial distributions are generally assumed to be driven primarily by environmental heterogeneity and interspecific interactions. However, spatial distributions of some Amazonian forest birds are also often restricted by large rivers and other large-scale topographic features, suggesting that dispersal limitation may also play a role in driving species’ turnover. In this study, we evaluated the effects of environmental characteristics, topographic and spatial variables on variation in local assemblage structure and diversity of birds in an old-growth forest in central Amazonia. Birds were mist-netted in 72 plots distributed systematically across a 10,000 ha reserve in each of three years. Alpha diversity remained stable through time, but species composition changed. Spatial variation in bird-assemblage structure was significantly related to environmental and topographic variables but not strongly related to spatial variables. At a broad scale, we found bird assemblages to be significantly distinct between two watersheds that are divided by a central ridgeline. We did not detect an effect of the ridgeline per se in driving these patterns, indicating that most birds are able to fly across it, and that differences in assemblage structure between watersheds may be due to unmeasured environmental variables or unique combinations of measured variables. Our study indicates that complex geography and landscape features can act together with environmental variables to drive changes in the diversity and composition of tropical bird assemblages at local scales, but highlights that we still know very little about what makes different parts of tropical forest suitable for different species. PMID:28225774
Remote-sensing based approach to forecast habitat quality under climate change scenarios.
Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.
Remote-sensing based approach to forecast habitat quality under climate change scenarios
Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501
Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes
NASA Astrophysics Data System (ADS)
Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.
2017-12-01
Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.
A discussion of the links between solar variability and high-storm-surge events in Venice
NASA Astrophysics Data System (ADS)
Barriopedro, David; GarcíA-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo
2010-07-01
This study explores the long-term frequency variability of high-surge events (HSEs) in the North Adriatic, the so-called acqua alta, which, particularly during autumn, cause flooding of the historical city center of Venice. The period 1948-2008, when hourly observations of sea level are available, is considered. The frequency of HSEs is correlated with the 11 year solar cycle, solar maxima being associated with a significant increase in the October-November-December HSE frequency. The seasonal geopotential height pattern at 1000 hPa (storm surge pattern; SSP) associated with the increased frequency of HSEs is identified for the whole time period and found to be similar to the positive phase of the main variability mode of the regional atmospheric circulation (empirical orthogonal function 1; EOF1). However, further analysis indicates that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Under solar maxima, the occurrence of HSEs is enhanced by the main mode of regional atmospheric variability, namely, a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated with any dominant mode of atmospheric variability during low-solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSEs by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence, and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.
Spatial Uncertainty Modeling of Fuzzy Information in Images for Pattern Classification
Pham, Tuan D.
2014-01-01
The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744
NASA Astrophysics Data System (ADS)
Menenti, Massimo; Akdim, Nadia; Alfieri, Silvia Maria; Labbassi, Kamal; De Lorenzi, Francesca; Bonfante, Antonello; Basile, Angelo
2014-05-01
Frequent and contiguous observations of soil water content such as the ones to be provided by SMAP are potentially useful to improve distributed models of soil water balance. This requires matching of observations and model estimates provided both sample spatial patterns consistently. The spatial resolution of SMAP soil water content data products ranges from 3 km X 3 km to 40 km X 40 km. Even the highest spatial resolution may not be sufficient to capture the spatial variability due to terrain, soil properties and precipitation. We have evaluated the SMAP spatial resolution against spatial variability of soil water content in two Mediterranean landscapes: a hilly area dominated by vineyards and olive orchards in Central Italy and a large irrigation schemes (Doukkala) in Morocco. The "Valle Telesina" is a 20,000 ha complex landscape located in South Italy in the Campania region, which has a complex geology and geomorphology and it is characterised by an E-W elongated graben where the Calore river flows. The main crops are grapevine (6,448 ha) and olive (3,390 ha). Soil information was mainly derived from an existing soil map at 1:50 000 scale (Terribile et al., 1996). The area includes 47 SMUs (Soil Mapping Units) and about 60 soil typological units (STUs). (Bonfante et al., 2011). In Doukkala, the soil water retention and unsaturated capillary conductivity were estimated from grain size distribution of a number of samples (22 pilot points, each one sampled in 3 horizons of 20cm), and combined with a soil map. The land use classification was carried out using a NDVI time series at high spatial resolution (Landsat TM and SPOT HRV). We have calculated soil water content for each soil unit in each area in response to several climate cases generating daily maps of soil water content at different depths. To reproduce spatial sampling by SMAP we have filtered these spatial patterns by calculating box averages with grid sizes of 1 km X 1 km and 5 km X 5 km. We have repeated this procedure for soil water content in the 0 to 5 cm and 0 to 10 cm depths. For each case we have compared the variance of filtered soil water content with the expected accuracy of SMAP soil water content. The two areas are very different as regards morphology and soil formation. The Valle Telesina is characterized by a very significant variability of soil hydrological properties leading to complex patterns in soil water content. Contrariwise, the soil properties estimated for all soil mapping units in the Dhoukkala collapse into just two pairs of water retention and hydraulic conductivity characteristics, leading to smoother patterns of soil water content.
NASA Astrophysics Data System (ADS)
McGuire, K. J.; Bailey, S. W.; Ross, D. S.
2017-12-01
Heterogeneity in biophysical properties within catchments challenges how we quantify and characterize biogeochemical processes and interpret catchment outputs. Interactions between the spatiotemporal variability of hydrological states and fluxes and soil development can spatially structure catchments, leading to a framework for understanding patterns in biogeochemical processes. In an upland, glaciated landscape at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA, we are embracing the structure and organization of soils to understand the spatial relations between runoff production zones, distinct soil-biogeochemical environments, and solute retention and release. This presentation will use observations from the HBEF to demonstrate that a soil-landscape framework is essential in understanding the spatial and temporal variability of biogeochemical processes in this catchment. Specific examples will include how laterally developed soils reveal the location of active runoff production zones and lead to gradients in primary mineral dissolution and the distribution of weathering products along hillslopes. Soil development patterns also highlight potential carbon and nitrogen cycling hotspots, differentiate acidic conditions, and affect the regulation of surface water quality. Overall, this work demonstrates the importance of understanding the landscape-level structural organization of soils in characterizing the variation and extent of biogeochemical processes that occur in catchments.
NASA Astrophysics Data System (ADS)
Huang, X.; Tan, J.
2014-11-01
Commutes in urban areas create interesting travel patterns that are often stored in regional transportation databases. These patterns can vary based on the day of the week, the time of the day, and commuter type. This study proposes methods to detect underlying spatio-temporal variability among three groups of commuters (senior citizens, child/students, and adults) using data mining and spatial analytics. Data from over 36 million individual trip records collected over one week (March 2012) on the Singapore bus and Mass Rapid Transit (MRT) system by the fare collection system were used. Analyses of such data are important for transportation and landuse designers and contribute to a better understanding of urban dynamics. Specifically, descriptive statistics, network analysis, and spatial analysis methods are presented. Descriptive variables were proposed such as density and duration to detect temporal features of people. A directed weighted graph G ≡ (N , L, W) was defined to analyze the global network properties of every pair of the transportation link in the city during an average workday for all three categories. Besides, spatial interpolation and spatial statistic tools were used to transform the discrete network nodes into structured human movement landscape to understand the role of transportation systems in urban areas. The travel behaviour of the three categories follows a certain degree of temporal and spatial universality but also displays unique patterns within their own specialties. Each category is characterized by their different peak hours, commute distances, and specific locations for travel on weekdays.
Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa
2010-01-01
Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546
Collins, Doug; Benedict, Chris; Bary, Andy; Cogger, Craig
2015-01-01
The spatial heterogeneity of soil and weed populations poses a challenge to researchers. Unlike aboveground variability, below-ground variability is more difficult to discern without a strategic soil sampling pattern. While blocking is commonly used to control environmental variation, this strategy is rarely informed by data about current soil conditions. Fifty georeferenced sites were located in a 0.65 ha area prior to establishing a long-term field experiment. Soil organic matter (OM) and weed seed bank populations were analyzed at each site and the spatial structure was modeled with semivariograms and interpolated with kriging to map the surface. These maps were used to formulate three strategic blocking patterns and the efficiency of each pattern was compared to a completely randomized design and a west to east model not informed by soil variability. Compared to OM, weeds were more variable across the landscape and had a shorter range of autocorrelation, and models to increase blocking efficiency resulted in less increase in power. Weeds and OM were not correlated, so no model examined improved power equally for both parameters. Compared to the west to east blocking pattern, the final blocking pattern chosen resulted in a 7-fold increase in power for OM and a 36% increase in power for weeds. PMID:26247056
NASA Astrophysics Data System (ADS)
Virk, Ravinder
Areas with relatively high spatial heterogeneity generally have more biodiversity than spatially homogeneous areas due to increased potential habitat. Management practices such as controlled grazing also affect the biodiversity in grasslands, but the nature of this impact is not well understood. Therefore this thesis studies the impacts of variation in grazing on soil moisture and biomass heterogeneity. These are not only important in terms of management of protected grasslands, but also for designing an effective grazing system from a livestock management point of view. This research is a part of the cattle grazing experiment underway in Grasslands National Park (GNP) of Canada since 2006, as part of the adaptive management process for restoring ecological integrity of the northern mixed-grass prairie region. An experimental approach using field measurements and remote sensing (Landsat) was combined with modelling (CENTURY) to examine and predict the impacts of grazing intensity on the spatial heterogeneity and patterns of above-ground live plant biomass (ALB) in experimental pastures in a mixed grassland ecosystem. The field-based research quantified the temporal patterns and spatial variability in both soil moisture (SM) and ALB, and the influence of local intra-seasonal weather variability and slope location on the spatio-temporal variability of SM and ALB at field plot scales. Significant impacts of intra-seasonal weather variability, slope position and grazing pressure on SM and ALB across a range of scales (plot and local (within pasture)) were found. Grazing intensity significantly affected the ALB even after controlling for the effect of slope position. Satellite-based analysis extended the scale of interest to full pastures and the surrounding region to assess the effects of grazing intensity on the spatio-temporal pattern of ALB in mixed grasslands. Overall, low to moderate grazing intensity showed increase in ALB heterogeneity whereas no change in ALB heterogeneity over time was observed for heavy grazing intensity. All grazing intensities showed decrease in spatial range (patch size) over time indicating that grazing is a patchy process. The study demonstrates that cattle grazing with variable intensity can maintain and change the spatial patterns of vegetation in the studied region. Using a modelling approach, the relative degrees to which grazing intensity and soil properties affect grassland productivity and carbon dynamics at longer time-periods were investigated. Both grass productivity and carbon dynamics are sensitive to variability in soil texture and grazing intensity. Moderate grazing is predicted to be the best option in terms of maintaining sufficient heterogeneity to support species diversity, as well as for carbon management in the mixed grassland ecosystem.
NASA Astrophysics Data System (ADS)
Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar
2014-08-01
As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.
Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre
2014-12-05
Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.
Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil
Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J.
2016-01-01
Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns. PMID:27171522
Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil.
Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J
2016-01-01
Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns.
Petrovskaya, Natalia B.; Forbes, Emily; Petrovskii, Sergei V.; Walters, Keith F. A.
2018-01-01
Studies addressing many ecological problems require accurate evaluation of the total population size. In this paper, we revisit a sampling procedure used for the evaluation of the abundance of an invertebrate population from assessment data collected on a spatial grid of sampling locations. We first discuss how insufficient information about the spatial population density obtained on a coarse sampling grid may affect the accuracy of an evaluation of total population size. Such information deficit in field data can arise because of inadequate spatial resolution of the population distribution (spatially variable population density) when coarse grids are used, which is especially true when a strongly heterogeneous spatial population density is sampled. We then argue that the average trap count (the quantity routinely used to quantify abundance), if obtained from a sampling grid that is too coarse, is a random variable because of the uncertainty in sampling spatial data. Finally, we show that a probabilistic approach similar to bootstrapping techniques can be an efficient tool to quantify the uncertainty in the evaluation procedure in the presence of a spatial pattern reflecting a patchy distribution of invertebrates within the sampling grid. PMID:29495513
de Pablo, M A; Ramos, M; Molina, A; Prieto, M
2018-02-15
A new Circumpolar Active Layer Monitoring (CALM) site was established in 2009 at the Limnopolar Lake watershed in Byers Peninsula, Livingston Island, Antarctica, to provide a node in the western Antarctic Peninsula, one of the regions that recorded the highest air temperature increase in the planet during the last decades. The first detailed analysis of the temporal and spatial evolution of the thaw depth at the Limnopolar Lake CALM-S site is presented here, after eight years of monitoring. The average values range between 48 and 29cm, decreasing at a ratio of 16cm/decade. The annual thaw depth observations in the 100×100 m CALM grid are variable (Variability Index of 34 to 51%), although both the Variance Coefficient and the Climate Matrix Analysis Residual point to the internal consistency of the data. Those differences could be explained then by the terrain complexity and node-specific variability due to the ground properties. The interannual variability was about 60% during 2009-2012, increasing to 124% due to the presence of snow in 2013, 2015 and 2016. The snow has been proposed here as one of the most important factors controlling the spatial variability of ground thaw depth, since its values correlate with the snow thickness but also with the ground surface temperature and unconfined compression resistance, as measured in 2010. The topography explains the thaw depth spatial distribution pattern, being related to snowmelt water and its accumulation in low-elevation areas (downslope-flow). Patterned grounds and other surface features correlate well with high thaw depth patterns as well. The edaphic factor (E=0.05842m 2 /°C·day; R 2 =0.63) is in agreement with other permafrost environments, since frozen index (F>0.67) and MAAT (<-2°C) denote a continuous permafrost existence in the area. All these characteristics provided the basis for further comparative analyses between others nearby CALM sites. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.
2017-12-01
Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.
Lee, K.E.; Barber, L.B.; Schoenfuss, H.L.
2014-01-01
Alkylphenolic chemicals (APCs) and hormones were measured six times from February through October 2007 in three Minnesota streams receiving wastewater to identify spatial and temporal patterns in concentrations and in estrogen equivalency. Fish were collected once during the study to evaluate endpoints indicative of endocrine disruption. The most commonly detected APCs were 4-tert-octylphenol and 4-nonylphenol and the most commonly detected hormones were estrone and androstenedione. Chemical concentrations were greatest for nonylphenol ethoxycarboxylates (NPECs) (5,000-140,000 ng/l), followed by 4-nonlylphenol and 4-nonylphenolethoxylates (50-880 ng/l), 4-tert-octylphenol and 4-tert-octylphenolethoxylates with concentrations as great as 130 ng/l, and hormones (0.1-54 ng/l). Patterns in chemicals and estrogen equivalency indicated that wastewater effluent is a pathway of APCs and hormones to downstream locations in this study. However, upstream contributions can be equally or more important indicating alternative sources. This study indicates that aquatic organisms experience both spatially and temporally variable exposures in the number of compounds, total concentrations, and estrogenicity. This variability was evident in fish collected from the three rivers as no clear upstream to downstream pattern of endocrine disruption endpoints emerged.
Global linkages between teleconnection patterns and the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Dahlin, Kyla M.; Ault, Toby R.
2018-07-01
Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show that four modes of climate variability - El Niño/Southern Oscillation, the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Indian Ocean Dipole Mode - strongly impact interannual vegetation growth patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial distribution of these impacts is heterogeneous. Considering the patterns' impacts by biome, none has an exclusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global carbon cycle.
NASA Astrophysics Data System (ADS)
Rahman, A.; Kollet, S. J.; Sulis, M.
2013-12-01
In the terrestrial hydrological cycle, the atmosphere and the free groundwater table act as the upper and lower boundary condition, respectively, in the non-linear two-way exchange of mass and energy across the land surface. Identifying and quantifying the interactions among various atmospheric-subsurface-landsurface processes is complicated due to the diverse spatiotemporal scales associated with these processes. In this study, the coupled subsurface-landsurface model ParFlow.CLM was applied over a ~28,000 km2 model domain encompassing the Rur catchment, Germany, to simulate the fluxes of the coupled water and energy cycle. The model was forced by hourly atmospheric data from the COSMO-DE model (numerical weather prediction system of the German Weather Service) over one year. Following a spinup period, the model results were synthesized with observed river discharge, soil moisture, groundwater table depth, temperature, and landsurface energy flux data at different sites in the Rur catchment. It was shown that the model is able to reproduce reasonably the dynamics and also absolute values in observed fluxes and state variables without calibration. The spatiotemporal patterns in simulated water and energy fluxes as well as the interactions were studied using statistical, geostatistical and wavelet transform methods. While spatial patterns in the mass and energy fluxes can be predicted from atmospheric forcing and power law scaling in the transition and winter months, it appears that, in the summer months, the spatial patterns are determined by the spatially correlated variability in groundwater table depth. Continuous wavelet transform techniques were applied to study the variability of the catchment average mass and energy fluxes at varying time scales. From this analysis, the time scales associated with significant interactions among different mass and energy balance components were identified. The memory of precipitation variability in subsurface hydrodynamics acts at the 20-30 day time scale, while the groundwater contribution to sustain the long-term variability patterns in evapotranspiration acts at the 40-60 day scale. Diurnal patterns in connection with subsurface hydrodynamics were also detected. Thus, it appears that the subsurface hydrodynamics respond to the temporal patterns in land surface fluxes due to the variability in atmospheric forcing across multiple space and time scales.
Atmospheric circulation patterns and spatial climatic variations in Beringia
NASA Astrophysics Data System (ADS)
Mock, Cary J.; Bartlein, Patrick J.; Anderson, Patricia M.
1998-08-01
Analyses of more than 40 years of climatic data reveal intriguing spatial variations in climatic patterns for Beringia (North-eastern Siberia and Alaska), aiding the understanding of the hierarchy of climatic controls that operate at different spatial scales within the Arctic. A synoptic climatology, using a subjective classification methodology on January and July sea level pressure, and July 500 hPa height anomaly patterns, identified 13 major atmospheric circulation patterns (26 pairs consisting of 13 synoptic/temperature and 13 synoptic/precipitation comparisons) that occur over Beringia. Composite anomaly maps of circulation, temperature, and precipitation described the spatial variability of surface climatic responses to circulation. Results indicate that nine synoptic pairs yield homogeneous surface climatic anomaly patterns throughout most of Beringia. However, many of the surface climatic responses illustrate heterogeneous anomaly patterns as a result of variations in circulation controls, such as troughing over East Asia and the Pacific subtropical high superimposed over topography, with small shifts in atmospheric circulation dramatically altering spatial variations of anomaly patterns. Distinctive contrasts in climatic responses, as suggested from ten synoptic pairs, are clearly evident for Western Beringia versus Eastern Beringia. These results offer important implications for scholars interested in assessing late Quaternary climatic change in the region from interannual to millennial timescales.
Cross-scale interactions drive ecosystem responses to precipitation in the Chihuahuan Desert
USDA-ARS?s Scientific Manuscript database
Regime shifts from grass- to shrub-dominated states are widespread in arid and semiarid regions globally. These patterns of grass production and shifts to shrub dominance are spatially variable and correlate weakly with precipitation, suggesting that processes at different spatial and temporal scale...
Heino, Jani; Soininen, Janne; Alahuhta, Janne; Lappalainen, Jyrki; Virtanen, Risto
2017-01-01
Metacommunity patterns and underlying processes in aquatic organisms have typically been studied within a drainage basin. We examined variation in the composition of six freshwater organismal groups across various drainage basins in Finland. We first modelled spatial structures within each drainage basin using Moran eigenvector maps. Second, we partitioned variation in community structure among three groups of predictors using constrained ordination: (1) local environmental variables, (2) spatial variables, and (3) dummy variable drainage basin identity. Third, we examined turnover and nestedness components of multiple-site beta diversity, and tested the best fit patterns of our datasets using the "elements of metacommunity structure" analysis. Our results showed that basin identity and local environmental variables were significant predictors of community structure, whereas within-basin spatial effects were typically negligible. In half of the organismal groups (diatoms, bryophytes, zooplankton), basin identity was a slightly better predictor of community structure than local environmental variables, whereas the opposite was true for the remaining three organismal groups (insects, macrophytes, fish). Both pure basin and local environmental fractions were, however, significant after accounting for the effects of the other predictor variable sets. All organismal groups exhibited high levels of beta diversity, which was mostly attributable to the turnover component. Our results showed consistent Clementsian-type metacommunity structures, suggesting that subgroups of species responded similarly to environmental factors or drainage basin limits. We conclude that aquatic communities across large scales are mostly determined by environmental and basin effects, which leads to high beta diversity and prevalence of Clementsian community types.
NASA Astrophysics Data System (ADS)
Webb, R. W.; Williams, M. W.; Erickson, T. A.
2018-02-01
Snowmelt is an important part of the hydrologic cycle and ecosystem dynamics for headwater systems. However, the physical process of water flow through snow is a poorly understood aspect of snow hydrology as meltwater flow paths tend to be highly complex. Meltwater flow paths diverge and converge as percolating meltwater reaches stratigraphic layer interfaces creating high spatial variability. Additionally, a snowpack is temporally heterogeneous due to rapid localized metamorphism that occurs during melt. This study uses a snowmelt lysimeter array at tree line in the Niwot Ridge study area of northern Colorado. The array is designed to address the issue of spatial and temporal variability of basal discharge at 105 locations over an area of 1,300 m2. Observed coefficients of variation ranged from 0 to almost 10 indicating more variability than previously observed, though this variability decreased throughout each melt season. Snowmelt basal discharge also significantly increases as snow depth decreases displaying a cluster pattern that peaks during weeks 3-5 of the snowmelt season. These results are explained by the flow of meltwater along snow layer interfaces. As the snowpack becomes less stratified through the melt season, the pattern transforms from preferential flow paths to uniform matrix flow. Correlation ranges of the observed basal discharge correspond to a mean representative elementary area of 100 m2, or a characteristic length of 10 m. Snowmelt models representing processes at scales less than this will need to explicitly incorporate the spatial variability of snowmelt discharge and meltwater flow paths through snow between model pixels.
Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models
Phillips, D.L.; Marks, D.G.
1996-01-01
In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated inputs.
Climate-mediated spatiotemporal variability in the terrestrial productivity across Europe
NASA Astrophysics Data System (ADS)
Wu, X.; Mahecha, M. D.; Reichstein, M.; Ciais, P.; Wattenbach, M.; Babst, F.; Frank, D.; Zang, C.
2013-11-01
Quantifying the interannual variability (IAV) of the terrestrial productivity and its sensitivity to climate is crucial for improving carbon budget predictions. However, the influence of climate and other mechanisms underlying the spatiotemporal patterns of IAV of productivity are not well understood. In this study we investigated the spatiotemporal patterns of IAV of historical observations of crop yields, tree ring width, remote sensing retrievals of FAPAR and NDVI, and other variables relevant to the terrestrial productivity in Europe in tandem with a set of climate variables. Our results reveal distinct spatial patterns in the IAV of most variables linked to terrestrial productivity. In particular, we find higher IAV in water-limited regions of Europe (Mediterranean and temperate continental Europe) compared to other regions. Our results further indicate that variations in the water balance during active growing season exert a more pronounced and direct effect than variations of temperature on explaining the spatial patterns in IAV of productivity related variables in temperate Europe. We also observe a~temporally increasing trend in the IAV of terrestrial productivity and an increasing sensitivity of productivity to water availability in dry regions of Europe, which is likely attributable to the recently increased IAV of water availability in these regions. These findings suggest nonlinear responses of carbon fluxes to climate variability in Europe and that the IAV of terrestrial productivity has become more sensitive and more vulnerable to changes in water availability in the dry regions in Europe. The changing climate sensitivity of terrestrial productivity accompanied by the changing IAV of climate could impact carbon stocks and the net carbon balance of European ecosystems.
NASA Astrophysics Data System (ADS)
Huret, M.; Petitgas, P.; Woillez, M.
2010-10-01
Dispersal of fish early life stages explains part of the recruitment success, through interannual variability in spawning, transport and survival. Dispersal results from a complex interaction between physical and biological processes acting at different temporal and spatial scales, and at the individual or population level. In this paper we quantify the response of anchovy egg and larval dispersal in the Bay of Biscay to the following sources of variability: vertical larval behaviour, drift duration, adult spawning location and timing, and spatio-temporal variability in the hydrodynamics. We use simulations of Lagrangian trajectories in a 3-dimensional hydrodynamic model, as well as spatial indices describing different properties of the dispersal kernel: the mean transport (distance, direction), its variance, occupation of space by particles and their aggregation. We show that larval drift duration has a major impact on the dispersion at scales of ˜100 km, but that vertical behaviour becomes dominant reducing dispersion at scales of ˜1-10 km. Spawning location plays a major role in explaining connectivity patterns, in conjunction with spawning temporal variability. Interannual variability in the circulation dominates over seasonal variability. However, seasonal patterns become predominant for coastal spawning locations, revealing a recurrent shift in the direction of dispersal during the anchovy spawning season.
NASA Astrophysics Data System (ADS)
Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris
2018-04-01
As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.
Scale effects on spatially varying relationships between urban landscape patterns and water quality.
Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run
2014-08-01
Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.
Development of Spatiotemporal Bias-Correction Techniques for Downscaling GCM Predictions
NASA Astrophysics Data System (ADS)
Hwang, S.; Graham, W. D.; Geurink, J.; Adams, A.; Martinez, C. J.
2010-12-01
Accurately representing the spatial variability of precipitation is an important factor for predicting watershed response to climatic forcing, particularly in small, low-relief watersheds affected by convective storm systems. Although Global Circulation Models (GCMs) generally preserve spatial relationships between large-scale and local-scale mean precipitation trends, most GCM downscaling techniques focus on preserving only observed temporal variability on point by point basis, not spatial patterns of events. Downscaled GCM results (e.g., CMIP3 ensembles) have been widely used to predict hydrologic implications of climate variability and climate change in large snow-dominated river basins in the western United States (Diffenbaugh et al., 2008; Adam et al., 2009). However fewer applications to smaller rain-driven river basins in the southeastern US (where preserving spatial variability of rainfall patterns may be more important) have been reported. In this study a new method was developed to bias-correct GCMs to preserve both the long term temporal mean and variance of the precipitation data, and the spatial structure of daily precipitation fields. Forty-year retrospective simulations (1960-1999) from 16 GCMs were collected (IPCC, 2007; WCRP CMIP3 multi-model database: https://esg.llnl.gov:8443/), and the daily precipitation data at coarse resolution (i.e., 280km) were interpolated to 12km spatial resolution and bias corrected using gridded observations over the state of Florida (Maurer et al., 2002; Wood et al, 2002; Wood et al, 2004). In this method spatial random fields which preserved the observed spatial correlation structure of the historic gridded observations and the spatial mean corresponding to the coarse scale GCM daily rainfall were generated. The spatiotemporal variability of the spatio-temporally bias-corrected GCMs were evaluated against gridded observations, and compared to the original temporally bias-corrected and downscaled CMIP3 data for the central Florida. The hydrologic response of two southwest Florida watersheds to the gridded observation data, the original bias corrected CMIP3 data, and the new spatiotemporally corrected CMIP3 predictions was compared using an integrated surface-subsurface hydrologic model developed by Tampa Bay Water.
Some Spatial Aspects of Southeastern United States Climatology.
ERIC Educational Resources Information Center
Soule, Peter T.
1998-01-01
Focuses on the climatology of an eight-state region in the southern and southeastern United States. Discusses general controls of climate and spatial patterns of various climatic averages. Examines mapped extremes as a means of fostering increased awareness of the variability that exists for climatic conditions in the region. (CMK)
Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.
Lantschner, M Victoria; Corley, Juan C
2015-01-01
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.
Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando
2013-01-01
Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135
2014-01-01
Background There have been large-scale outbreaks of hand, foot and mouth disease (HFMD) in Mainland China over the last decade. These events varied greatly across the country. It is necessary to identify the spatial risk factors and spatial distribution patterns of HFMD for public health control and prevention. Climate risk factors associated with HFMD occurrence have been recognized. However, few studies discussed the socio-economic determinants of HFMD risk at a space scale. Methods HFMD records in Mainland China in May 2008 were collected. Both climate and socio-economic factors were selected as potential risk exposures of HFMD. Odds ratio (OR) was used to identify the spatial risk factors. A spatial autologistic regression model was employed to get OR values of each exposures and model the spatial distribution patterns of HFMD risk. Results Results showed that both climate and socio-economic variables were spatial risk factors for HFMD transmission in Mainland China. The statistically significant risk factors are monthly average precipitation (OR = 1.4354), monthly average temperature (OR = 1.379), monthly average wind speed (OR = 1.186), the number of industrial enterprises above designated size (OR = 17.699), the population density (OR = 1.953), and the proportion of student population (OR = 1.286). The spatial autologistic regression model has a good goodness of fit (ROC = 0.817) and prediction accuracy (Correct ratio = 78.45%) of HFMD occurrence. The autologistic regression model also reduces the contribution of the residual term in the ordinary logistic regression model significantly, from 17.25 to 1.25 for the odds ratio. Based on the prediction results of the spatial model, we obtained a map of the probability of HFMD occurrence that shows the spatial distribution pattern and local epidemic risk over Mainland China. Conclusions The autologistic regression model was used to identify spatial risk factors and model spatial risk patterns of HFMD. HFMD occurrences were found to be spatially heterogeneous over the Mainland China, which is related to both the climate and socio-economic variables. The combination of socio-economic and climate exposures can explain the HFMD occurrences more comprehensively and objectively than those with only climate exposures. The modeled probability of HFMD occurrence at the county level reveals not only the spatial trends, but also the local details of epidemic risk, even in the regions where there were no HFMD case records. PMID:24731248
Veiga, Puri; Redondo, Waldo; Sousa-Pinto, Isabel; Rubal, Marcos
2017-08-01
We establish baseline knowledge of abundance, diversity and multivariate structure of macrobenthos from shallow sublitoral soft bottoms in the North Portuguese coast and elucidate main environmental factors that shape their spatial patterns. In this area distribution of soft bottoms is patchy, surrounded by boulders and rocky substrates. This particular landscape and the lack of significant anthropogenic disturbances are values for the conservation of this habitat. Sediment and physicochemical properties of the water column were studied to provide models for each studied macrobenthic variable. Our models highlighted that most of variation (59%-72%) in macrobenthic spatial patterns was explained by the studied environmental variables. Sedimentary variables were more relevant that those of the water column. Therefore, disturbances affecting sedimentary environment could cause dramatic changes in macrobenthic assemblages because of the limited availability of soft bottoms in the area. In this way, results are useful to adopt right management and conservation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic Patterns of Modern Epidemics
NASA Astrophysics Data System (ADS)
Brockmann, Dirk; Hufnagel, Lars; Geisel, Theo
2004-03-01
We investigate the effects of scale-free travelling of humans and their inhomogeneous geographic distribution on the dynamic patterns of spreading epidemics. Our approach combines the susceptible/infected/recovered paradigm for the infection dynamics with superdiffusive dispersion of individuals and their inhomogeneous spatial distribution. We show that scale-free motion of individuals and their variable spatial distribution leads to the absence of wavefronts in dynamic epidemic patterns which are typical for the limiting cases of ordinary diffusion and spatially homogeneous populations. Instead, patterns emerge with isolated hotspots on highly populated areas from which regional epidemic outbursts are triggered. Hotspot sizes are independent of the correlation length in the spatial distribution of individuals and occur on all scales. Our theory predicts that highly populated areas are reached by an epidemic in advance and must receive special attention in control measure strategies. Furthermore, our analysis predicts strong fluctuations in the time course of the total infection which cannot be accounted for by ordinary reaction-diffusion models for epidemics.
Spatial variability of macrobenthic zonation on exposed sandy beaches
NASA Astrophysics Data System (ADS)
Veiga, Puri; Rubal, Marcos; Cacabelos, Eva; Maldonado, Cristina; Sousa-Pinto, Isabel
2014-07-01
We analysed the consistence of vertical patterns of distribution (i.e. zonation) for macrofauna at different spatial scales on four intermediate exposed beaches in the North of Portugal. We tested the hypothesis that biological zonation on exposed sandy beaches would vary at the studied spatial scales. For this aim, abundance, diversity and structure of macrobenthic assemblages were examined at the scales of transect and beach. Moreover, the main environmental factors that could potentially drive zonation patterns were investigated. Univariate and multivariate analyses revealed that the number of biological zones ranged from two to three depending on the beach and from indistinct zonation to three zones at the scale of transect. Therefore, results support our working hypothesis because zonation patterns were not consistent at the studied spatial scales. The median particle size, sorting coefficient and water content were significantly correlated with zonation patterns of macrobenthic assemblages. However, a high degree of correlation was not reached when the total structure of the assemblage was considered.
Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing
NASA Astrophysics Data System (ADS)
Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.
2014-12-01
Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.
Regional Patterns of Stress Transfer in the Ablation Zone of the Western Greenland Ice Sheet
NASA Astrophysics Data System (ADS)
Andrews, L. C.; Hoffman, M. J.; Neumann, T.; Catania, G. A.; Luethi, M. P.; Hawley, R. L.
2016-12-01
Current understanding of the subglacial system indicates that the seasonal evolution of ice flow is strongly controlled by the gradual upstream progression of an inefficient - efficient transition within the subglacial hydrologic system followed by the reduction of melt and a downstream collapse of the efficient system. Using a spatiotemporally dense network of GPS-derived surface velocities from the Pâkitsoq Region of the western Greenland Ice Sheet, we find that this pattern of subglacial development is complicated by heterogeneous bed topography, resulting in complex patterns of ice flow. Following low elevation melt onset, early melt season strain rate anomalies are dominated by regional extension, which then gives way to spatially expansive compression. However, once daily minimum ice velocities fall below the observed winter background velocities, an alternating spatial pattern of extension and compression prevails. This pattern of strain rate anomalies is correlated with changing basal topography and differences in the magnitude of diurnal surface ice speeds. Along subglacial ridges, diurnal variability in ice speed is large, suggestive of a mature, efficient subglacial system. In regions of subglacial lows, diurnal variability in ice velocity is relatively low, likely associated with a less developed efficient subglacial system. The observed pattern suggests that borehole observations and modeling results demonstrating the importance of longitudinal stress transfer at a single field location are likely widely applicable in our study area and other regions of the Greenland Ice Sheet with highly variable bed topography. Further, the complex pattern of ice flow and evidence of spatially extensive longitudinal stress transfer add to the body of work indicating that the bed character plays an important role in the development of the subglacial system; closely matching diurnal ice velocity patterns with subglacial models may be difficult without coupling these models to high order ice flow models.
Dripps, W.R.; Bradbury, K.R.
2010-01-01
Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.
Safavynia, Seyed A.
2012-01-01
Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219
Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola
2018-03-01
There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.
Tunno, Brett J; Dalton, Rebecca; Michanowicz, Drew R; Shmool, Jessie L C; Kinnee, Ellen; Tripathy, Sheila; Cambal, Leah; Clougherty, Jane E
2016-01-01
Health effects of fine particulate matter (PM2.5) vary by chemical composition, and composition can help to identify key PM2.5 sources across urban areas. Further, this intra-urban spatial variation in concentrations and composition may vary with meteorological conditions (e.g., mixing height). Accordingly, we hypothesized that spatial sampling during atmospheric inversions would help to better identify localized source effects, and reveal more distinct spatial patterns in key constituents. We designed a 2-year monitoring campaign to capture fine-scale intra-urban variability in PM2.5 composition across Pittsburgh, PA, and compared both spatial patterns and source effects during “frequent inversion” hours vs 24-h weeklong averages. Using spatially distributed programmable monitors, and a geographic information systems (GIS)-based design, we collected PM2.5 samples across 37 sampling locations per year to capture variation in local pollution sources (e.g., proximity to industry, traffic density) and terrain (e.g., elevation). We used inductively coupled plasma mass spectrometry (ICP-MS) to determine elemental composition, and unconstrained factor analysis to identify source suites by sampling scheme and season. We examined spatial patterning in source factors using land use regression (LUR), wherein GIS-based source indicators served to corroborate factor interpretations. Under both summer sampling regimes, and for winter inversion-focused sampling, we identified six source factors, characterized by tracers associated with brake and tire wear, steel-making, soil and road dust, coal, diesel exhaust, and vehicular emissions. For winter 24-h samples, four factors suggested traffic/fuel oil, traffic emissions, coal/industry, and steel-making sources. In LURs, as hypothesized, GIS-based source terms better explained spatial variability in inversion-focused samples, including a greater contribution from roadway, steel, and coal-related sources. Factor analysis produced source-related constituent suites under both sampling designs, though factors were more distinct under inversion-focused sampling. PMID:26507005
Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.
2010-01-01
This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.
NASA Astrophysics Data System (ADS)
Tzou, J. C.; Ward, M. J.
2018-06-01
Spot patterns, whereby the activator field becomes spatially localized near certain dynamically-evolving discrete spatial locations in a bounded multi-dimensional domain, is a common occurrence for two-component reaction-diffusion (RD) systems in the singular limit of a large diffusivity ratio. In previous studies of 2-D localized spot patterns for various specific well-known RD systems, the domain boundary was assumed to be impermeable to both the activator and inhibitor, and the reaction-kinetics were assumed to be spatially uniform. As an extension of this previous theory, we use formal asymptotic methods to study the existence, stability, and slow dynamics of localized spot patterns for the singularly perturbed 2-D Brusselator RD model when the domain boundary is only partially impermeable, as modeled by an inhomogeneous Robin boundary condition, or when there is an influx of inhibitor across the domain boundary. In our analysis, we will also allow for the effect of a spatially variable bulk feed term in the reaction kinetics. By applying our extended theory to the special case of one-spot patterns and ring patterns of spots inside the unit disk, we provide a detailed analysis of the effect on spot patterns of these three different sources of heterogeneity. In particular, when there is an influx of inhibitor across the boundary of the unit disk, a ring pattern of spots can become pinned to a ring-radius closer to the domain boundary. Under a Robin condition, a quasi-equilibrium ring pattern of spots is shown to exhibit a novel saddle-node bifurcation behavior in terms of either the inhibitor diffusivity, the Robin constant, or the ambient background concentration. A spatially variable bulk feed term, with a concentrated source of "fuel" inside the domain, is shown to yield a saddle-node bifurcation structure of spot equilibria, which leads to qualitatively new spot-pinning behavior. Results from our asymptotic theory are validated from full numerical simulations of the Brusselator model.
Importance of spatial autocorrelation in modeling bird distributions at a continental scale
Bahn, V.; O'Connor, R.J.; Krohn, W.B.
2006-01-01
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.
Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B
2013-01-01
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions.
Bourbonnais, Mathieu L.; Nelson, Trisalyn A.; Cattet, Marc R. L.; Darimont, Chris T.; Stenhouse, Gordon B.
2013-01-01
Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions. PMID:24386273
Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran
NASA Astrophysics Data System (ADS)
Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane
2017-09-01
Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.
Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?
NASA Astrophysics Data System (ADS)
Hassler, S. K.; Weiler, M.; Blume, T.
2017-12-01
Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were correlated to the temporal dynamics of potential evaporation. We conclude that spatial representation of transpiration in models could benefit from including patterns according to tree and site characteristics.
NASA Astrophysics Data System (ADS)
Bergström, Per; Lindegarth, Susanne; Lindegarth, Mats
2013-10-01
Human pressures on coastal seas are increasing and methods for sustainable management, including spatial planning and mitigative actions, are therefore needed. In coastal areas worldwide, the development of mussel farming as an economically and ecologically sustainable industry requires geographic information on the growth and potential production capacity. In practice this means that coherent maps of temporally stable spatial patterns of growth need to be available in the planning process and that maps need to be based on mechanistic or empirical models. Therefore, as a first step towards development of models of growth, we assessed empirically the fundamental requirement that there are temporally consistent spatial patterns of growth in the blue mussel, Mytilus edulis. Using a pilot study we designed and dimensioned a transplant experiment, where the spatial consistency in the growth of mussels was evaluated at two resolutions. We found strong temporal and scale-dependent spatial variability in growth but patterns suggested that spatial patterns were uncoupled between growth of shell and that of soft tissue. Spatial patterns of shell growth were complex and largely inconsistent among years. Importantly, however, the growth of soft tissue was qualitatively consistent among years at the scale of km. The results suggest that processes affecting the whole coastal area cause substantial differences in growth of soft tissue among years but that factors varying at the scale of km create strong and persistent spatial patterns of growth, with a potential doubling of productivity by identifying the most suitable locations. We conclude that the observed spatial consistency provides a basis for further development of predictive modelling and mapping of soft tissue growth in these coastal areas. Potential causes of observed patterns, consequences for mussel-farming as a tool for mitigating eutrophication, aspects of precision of modelling and sampling of mussel growth as well as ecological functions in general are discussed.
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; ...
2016-10-04
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
NASA Astrophysics Data System (ADS)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; Hu, Aixue; Hamlington, Benjamin; Kenigson, Jessica; Palanisamy, Hindumathi; Thompson, Philip
2017-01-01
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.
Moreira, Fabiana Tavares; Prantoni, Alessandro Lívio; Martini, Bruno; de Abreu, Michelle Alves; Stoiev, Sérgio Biato; Turra, Alexander
2016-01-15
Microplastics such as pellets have been reported for many years on sandy beaches around the globe. Nevertheless, high variability is observed in their estimates and distribution patterns across the beach environment are still to be unravelled. Here, we investigate the small-scale temporal and spatial variability in the abundance of pellets in the intertidal zone of a sandy beach and evaluate factors that can increase the variability in data sets. The abundance of pellets was estimated during twelve consecutive tidal cycles, identifying the position of the high tide between cycles and sampling drift-lines across the intertidal zone. We demonstrate that beach dynamic processes such as the overlap of strandlines and artefacts of the methods can increase the small-scale variability. The results obtained are discussed in terms of the methodological considerations needed to understand the distribution of pellets in the beach environment, with special implications for studies focused on patterns of input. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jordan, Gyozo; Petrik, Attila; De Vivo, Benedetto; Albanese, Stefano; Demetriades, Alecos; Sadeghi, Martiya
2017-04-01
Several studies have investigated the spatial distribution of chemical elements in topsoil (0-20 cm) within the framework of the EuroGeoSurveys Geochemistry Expert Group's 'Geochemical Mapping of Agricultural and Grazing Land Soil' project . Most of these studies used geostatistical analyses and interpolated concentration maps, Exploratory and Compositional Data and Analysis to identify anomalous patterns. The objective of our investigation is to demonstrate the use of digital image processing techniques for reproducible spatial pattern recognition and quantitative spatial feature characterisation. A single element (Ni) concentration in agricultural topsoil is used to perform the detailed spatial analysis, and to relate these features to possible underlying processes. In this study, simple univariate statistical methods were implemented first, and Tukey's inner-fence criterion was used to delineate statistical outliers. The linear and triangular irregular network (TIN) interpolation was used on the outlier-free Ni data points, which was resampled to a 10*10 km grid. Successive moving average smoothing was applied to generalise the TIN model and to suppress small- and at the same time enhance significant large-scale features of Nickel concentration spatial distribution patterns in European topsoil. The TIN map smoothed with a moving average filter revealed the spatial trends and patterns without losing much detail, and it was used as the input into digital image processing, such as local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction calculation, second derivative profile curvature calculation, edge detection, local variability assessment, lineament density and directional variogram analyses. The detailed image processing analysis revealed several NE-SW, E-W and NW-SE oriented elongated features, which coincide with different spatial parameter classes and alignment with local maxima and minima. The NE-SW oriented linear pattern is the dominant feature to the south of the last glaciation limit. Some of these linear features are parallel to the suture zone of the Iapetus Ocean, while the others follow the Alpine and Carpathian Chains. The highest variability zones of Ni concentration in topsoil are located in the Alps and in the Balkans where mafic and ultramafic rocks outcrop. The predominant NE-SW oriented pattern is also captured by the strong anisotropy in the semi-variograms in this direction. A single major E-W oriented north-facing feature runs along the southern border of the last glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated spatial features are less dominant and are located in the Pyrenees and Scandinavia. This study demonstrates the efficiency of systematic image processing analysis in identifying and characterising spatial geochemical patterns that often remain uncovered by the usual visual map interpretation techniques.
Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique
2012-01-01
We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254
NASA Astrophysics Data System (ADS)
Shen, Qin; Gao, Guangyao; Hu, Wei; Fu, Bojie
2016-09-01
Knowledge of the spatial-temporal variability of soil water content (SWC) is critical for understanding a range of hydrological processes. In this study, the spatial variance and temporal stability of SWC were investigated in a cropland-shelterbelt-desert site at the oasis-desert ecotone in the middle of the Heihe River Basin, China. The SWC was measured on 65 occasions to a depth of 2.8 m at 45 locations during two growing seasons from 2012 to 2013. The standard deviation of the SWC versus the mean SWC exhibited a convex upward relationship in the shelterbelt with the greatest spatial variation at the SWC of around 22.0%, whereas a linearly increasing relationship was observed for the cropland, desert, and land use pattern. The standard deviation of the relative difference was positively linearly correlated with the SWC (p < 0.05) for the land use pattern, whereas such a relationship was not found in the three land use types. The spatial pattern of the SWC was more time stable for the land use pattern, followed by desert, shelterbelt, and cropland. The spatial pattern of SWC changed dramatically among different soil layers. The locations representing the mean SWC varied with the depth, and no location could represent the whole soil profile due to different soil texture, root distribution and irrigation management. The representative locations of each soil layer could be used to estimate the mean SWC well. The statistics of temporal stability of the SWC could be presented equally well with a low frequency of observation (30-day interval) as with a high frequency (5-day interval). Sampling frequency had little effect on the selection of the representative locations of the field mean SWC. This study provides useful information for designing the optimal strategy for sampling SWC at the oasis-desert ecotone in the arid inland river basin.
Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity
2018-01-01
Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399
Kistemann, Thomas; Zimmer, Sonja; Vågsholm, Ivar; Andersson, Yvonne
2004-01-01
This article describes the spatial and temporal distribution of verotoxin-producing Escherichia coli among humans (EHEC) and cattle (VTEC) in Sweden, in order to evaluate relationships between the incidence of EHEC in humans, prevalence of VTEC O157 in livestock and agricultural structure by an ecological study. The spatial patterns of the distribution of human infections were described and compared with spatial patterns of occurrence in cattle, using a Geographic Information System (GIS). The findings implicate a concentration of human infection and cattle prevalence in the southwest of Sweden. The use of probability mapping confirmed unusual patterns of infection rates. The comparison of human and cattle infection indicated a spatial and statistical association. The correlation between variables of the agricultural structure and human EHEC incidence was high, indicating a significant statistical association of cattle and farm density with human infection. The explained variation of a multiple linear regression model was 0.56. PMID:15188718
Variability-induced transition in a net of neural elements: From oscillatory to excitable behavior.
Glatt, Erik; Gassel, Martin; Kaiser, Friedemann
2006-06-01
Starting with an oscillatory net of neural elements, increasing variability induces a phase transition to excitability. This transition is explained by a systematic effect of the variability, which stabilizes the formerly unstable, spatially uniform, temporally constant solution of the net. Multiplicative noise may also influence the net in a systematic way and may thus induce a similar transition. Adding noise into the model, the interplay of noise and variability with respect to the reported transition is investigated. Finally, pattern formation in a diffusively coupled net is studied, because excitability implies the ability of pattern formation and information transmission.
Middleton, B.; Wu, X.B.
2008-01-01
Agricultural development on floodplains contributes to hydrologic alteration and forest fragmentation, which may alter landscape-level processes. These changes may be related to shifts in the seed bank composition of floodplain wetlands. We examined the patterns of seed bank composition across a floodplain watershed by looking at the number of seeds germinating per m2 by species in 60 farmed and intact forested wetlands along the Cache River watershed in Illinois. The seed bank composition was compared above and below a water diversion (position), which artificially subdivides the watershed. Position of these wetlands represented the most variability of Axis I in a Nonmetric Multidimensional Scaling (NMS) analysis of site environmental variables and their relationship to seed bank composition (coefficient of determination for Axis 1: r2 = 0.376; Pearson correlation of position to Axis 1: r = 0.223). The 3 primary axes were also represented by other site environmental variables, including farming status (farmed or unfarmed), distance from the mouth of the river, latitude, and longitude. Spatial analysis based on Mantel correlograms showed that both water-dispersed and wind/water-dispersed seed assemblages had strong spatial structure in the upper Cache (above the water diversion), bur the spatial structure of water-dispersed seed assemblage was diminished in the lower Cache (below the water diversion), which lost floodpulsing. Bearing analysis also Suggested that water-dispersal process had a stronger influence on the overall spatial pattern of seed assemblage in the upper Cache, while wind/water-dispersal process had a stronger influence in the lower Cache. An analysis of the landscapes along the river showed that the mid-lower Cache (below the water diversion) had undergone greater land cover changes associated with agriculture than did the upper Cache watershed. Thus, the combination of forest fragmentation and hydrologic changes in the surrounding landscape may have had an influence on the seed bank composition and spatial distribution of the seed banks of the Cache River watershed. Our study suggests that the spatial pattern of seed bank composition may be influenced by landscape-level factors and processes.
NASA Astrophysics Data System (ADS)
Ke, L.; Ding, X.; Song, C.; Sheng, Y.
2016-12-01
Temperate glaciers can be highly sensitive to global climate change due to relatively humid and warm local climate. Numerous temperate glaciers are distributed in the southeastern Tibet Plateau (SETP) and their changes are still poorly represented. Based on a latest glacier inventory and ICESat altimetry measurements, we examine the spatial heterogeneity of glacier change in the SETP (including the central and eastern Nyainqêntanglha ranges) and further analyze its relation with climate change by using station-based and gridded meteorological data. Our results show that SETP glaciers experienced drastic surface lowering at about -0.84±0.26 m a-1 on average over 2003-2008. Debris-covered ice thinned at an average rate of -1.13±0.32 m a-1, in comparison with -0.92±0.17 m a-1 over the debris-free ice areas. The thinning rate is the strongest in the southeastern sub-region (up to -1.24 m a-1 ) and moderate ( -0.45 m a-1 ) in the central and northwestern parts, which is in general agreement with the pattern of surface mass changes based on the GRACE gravimetry observation. Long-term climate data at weather stations show that, in comparison with the period of 1992-2002, mean temperature increased by 0.46 °C - 0.59 °C in the recent decade (2003-2013); while the change of summer precipitation exhibited remarkably spatial variability, following a southeast-northwest contrasting pattern (decreasing by over 10% in the southeast, to stable level in the central region, and increment up to 10% in the northwest). This spatially variable precipitation change is consistent with results from CN05 grid data and ERA re-analysis data, and agrees well with the spatial pattern of glacier surface elevation changes. The results suggest that overall negative glacier mass balances in SETP are governed by temperature rising, while the different precipitation change could contribute to inconsistent glacier thinning rates. The spatial pattern of precipitation decrease and mass loss might be tele-connected with the dynamics of the Indian summer monsoon.
Pe'er, Guy; Zurita, Gustavo A.; Schober, Lucia; Bellocq, Maria I.; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. PMID:23724108
Pe'er, Guy; Zurita, Gustavo A; Schober, Lucia; Bellocq, Maria I; Strer, Maximilian; Müller, Michael; Pütz, Sandro
2013-01-01
Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.
Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé
2016-01-01
The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.
Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé
2016-01-01
The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044
Liébanas, G.; Guerrero, P.; Martín-García, J.-M.; Peña-Santiago, R.
2004-01-01
The aim of this study was to determine the incidence of 18 environmental variables in the spatial distribution of 30 chorotypes (species groups with significantly similar distribution patterns) of dorylaimid and mononchid nematodes by means of logistic regression in a natural area in the southeastern Iberian Peninsula. Six variables (elevation, color chroma, clay content, nitrogen content, CaCO₃, and plant community associated) were the most important environmental factors that helped explain the distribution of chorotypes. The distribution of most chorotypes was characterized by some (one to three) environmental variables; only two chorotypes were characterized by five or more variables, and four have not been characterized. PMID:19262795
Landscape ecology: Past, present, and future [Chapter 4
Samuel A. Cushman; Jeffrey S. Evans; Kevin McGarigal
2010-01-01
In the preceding chapters we discussed the central role that spatial and temporal variability play in ecological systems, the importance of addressing these explicitly within ecological analyses and the resulting need to carefully consider spatial and temporal scale and scaling. Landscape ecology is the science of linking patterns and processes across scale in both...
Effectiveness of conservation practices within watersheds: Case study in tile-drained systems
USDA-ARS?s Scientific Manuscript database
The effectiveness of conservation practices are governed in part by the spatial and temporal patterns of water flow as runoff and subsurface (tile) drainage. The variability in patterns of nitrate loss were examined using data from different sized catchments with four CEAP watersheds located in cent...
Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale
USDA-ARS?s Scientific Manuscript database
Soil water patterns vary significantly due to precipitation, soil properties, topographic features, and land use. We used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water across a 37-ha field of the Washington State University Cook Agronomy Farm near...
ERIC Educational Resources Information Center
Wilkie, Karina J.; Clarke, Doug M.
2016-01-01
Spatial visualisation of geometric patterns and their generalisation have become a recognised pathway to developing students' functional thinking and understanding of variables in algebra. This design-based research project investigated upper primary students' development of explicit generalisation of functional relationships and their…
Quantitative approaches in climate change ecology
Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J
2011-01-01
Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.
Antarctic Sea Ice-Atmosphere Interactions: A Self-organizing Map-based Perspective
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2005-12-01
Interactions between the ocean, sea ice and the atmosphere are a significant component of the dynamic nature of the Earth's climate system. Self-organizing maps (SOMs), an analysis tool from the field of artificial neural networks, have been used to study variability in Antarctic sea ice extent and the West Antarctic atmospheric circulation, plus the relationship and interactions between these two systems. Self-organizing maps enable unsupervised classification of large, multivariate/multidimensional data sets, e.g., time series of the atmospheric circulation or sea-ice extent, into a fixed number of distinct generalized states or modes, organized spatially as a two-dimensional grid, that are representative of the input data. When applied to atmospheric data, the analysis yields a nonlinear classification of the continuum of atmospheric conditions. In contrast to principal component analysis, SOMs do not force orthogonality or require subjective rotations to produce interpretable patterns. Twenty four years (1973-96) of monthly sea ice extent data (10 deg longitude bands; Simmonds and Jacka, 1995) were analyzed with a 30-node SOM. The resulting set of generalized patterns concisely captures the spatial and temporal variability in this data. An example of the former is variability in the longitudinal region of greatest extent. The SOM patterns readily show that there are multiple spatial patterns corresponding to "greatest extent conditions". Temporal variability is examined by creating frequency maps (i.e., which patterns occur most often) by month. With the annual cycle still in the data, the monthly frequency maps show a cycle moving from least extent, through expansion to greatest extent and back through retreat. When plotted in "SOM space", month-to-month transitions occur at different rates of change, suggesting that there is variability in the rate of change in extent at different times of the year, e.g., retreat in January is faster than November. Twenty five years (1977-2001) of monthly 500 mb temperature and pressure data (from the ECMWF 40-year reanalysis, ERA-40) from a region centered on the Antarctic Peninsula were analyzed independently for a separate SOMs-based study. Dominant SOM temperature patterns include the expected summer warmth and winter cold, plus "dipoles" of warm Atlantic (Pacific) and cold Pacific (Atlantic) sectors (with corresponding pressure patterns). Temporally, there is the expected annual progression from warmth, through cooling and back to warmth, with no particularly predominant patterns in many of the monthly frequency maps when the full record is used. Stratifying by high/low values of the Southern Oscillation Index (SOI) suggests that the spatial patterns of cooling and warming may be related to conditions in the tropical Pacific: in a low SOI year (1987), cooling and warming both begin in the Atlantic sector, with the opposite true in a high SOI year (1989). Further study of this aspect is planned. In addition to direct comparisons of the SOM analysis results from each study, a joint SOM analysis will be done on the combined data sets, exploiting the flexibility and power of this technique. We anticipate additional useful insights into the joint variability and relationships between Antarctic sea ice and the overlying atmosphere through this expanded analysis.
NASA Astrophysics Data System (ADS)
Reglero, Patricia; Santos, Maria; Balbín, Rosa; Laíz-Carrión, Raul; Alvarez-Berastegui, Diego; Ciannelli, Lorenzo; Jiménez, Elisa; Alemany, Francisco
2017-06-01
Tuna spawning habitats are traditionally characterized using data sets of larvae or gonads from mature adults and concurrent environmental variables. Data on egg distributions have never previously been used since molecular analyses are mandatory to identify tuna eggs to species level. However, in this study we use molecularly derived egg distribution data, in addition to larval data, to characterize hydrographic and biological drivers of the spatial distribution of eggs and larvae of bluefin Thunnus thynnus and albacore tuna Thunnus alalunga in the Balearic Sea, a main spawning area of these species in the Mediterranean. The effects of the hydrography, characterized by salinity, temperature and geostrophic velocity, on the spatial distributions of the eggs and larvae are investigated. Three biological variables are used to describe the productivity in the area: chlorophyll a in the mixed layer, chlorophyll a in the deep chlorophyll maximum and mesozooplankton biomass in the mixed layer. Our results point to the importance of salinity fronts and temperatures above a minimum threshold in shaping the egg and larval distribution of both species. The spatial distribution of the biotic variables was very scattered, and they did not emerge as significant variables in the presence-absence models. However, they became significant when modeling egg and larval abundances. The lack of correlation between the three biotic variables challenges the use of chlorophyll a to describe trophic scenarios for the larvae and suggests that the spatial distribution of resources is not persistent in time. The different patterns in relation to biotic variables across species and stages found in this and other studies indicate a still elusive understanding of the link between trophic levels involving tuna early larval stages. Our ability to improve short-term forecasting and long-term predictions of climate effects on the egg and larval distributions is discussed based on the consistency of the environmentally driven spatial patterns for the two species.
NASA Astrophysics Data System (ADS)
Baker, Patrick; Oborne, Lisa
2015-04-01
Large, high-intensity fires have direct and long-lasting effects on forest ecosystems and present a serious threat to human life and property. However, even within the most catastrophic fires there is important variability in local-scale intensity that has important ramifications for forest mortality and regeneration. Quantifying this variability is difficult due to the rarity of catastrophic fire events, the extreme conditions at the time of the fires, and their large spatial extent. Instead fire severity is typically measured or estimated from observed patterns of vegetation mortality; however, differences in species- and size-specific responses to fires often makes fire severity a poor proxy for fire intensity. We developed a statistical method using simple, plot-based measurements of individual tree mortality to simultaneously estimate plot-level fire intensity and species-specific mortality patterns as a function of tree size. We applied our approach to an area of forest burned in the catastrophic Black Saturday fires that occurred near Melbourne, Australia, in February 2009. Despite being the most devastating fire in the past 70 years and our plots being located in the area that experienced some of the most intense fires in the 350,000 ha fire complex, we found that the estimated fire intensity was highly variable at multiple spatial scales. All eight tree species in our study differed in their susceptibility to fire-induced mortality, particularly among the largest size classes. We also found that seedling height and species richness of the post-fire seedling communities were both positively correlated with fire intensity. Spatial variability in disturbance intensity has important, but poorly understood, consequences for the short- and long-term dynamics of forests in the wake of catastrophic wildfires. Our study provides a tool to estimate fire intensity after a fire has passed, allowing new opportunities for linking spatial variability in fire intensity to forest ecosystem dynamics.
Strong inter-population cooperation leads to partner intermixing in microbial communities
Momeni, Babak; Brileya, Kristen A.; Fields, Matthew W.; ...
2013-01-22
Patterns of spatial positioning of individuals within microbial communities are often critical to community function. However, understanding patterning in natural communities is hampered by the multitude of cell–cell and cell–environment interactions as well as environmental variability. Here, through simulations and experiments on communities in defined environments, we examined how ecological interactions between two distinct partners impacted community patterning. We found that in strong cooperation with spatially localized large fitness benefits to both partners, a unique pattern is generated: partners spatially intermixed by appearing successively on top of each other, insensitive to initial conditions and interaction dynamics. Intermixing was experimentally observedmore » in two obligatory cooperative systems: an engineered yeast community cooperating through metabolite-exchanges and a methane-producing community cooperating through redox-coupling. Even in simulated communities consisting of several species, most of the strongly-cooperating pairs appeared intermixed. Thus, when ecological interactions are the major patterning force, strong cooperation leads to partner intermixing.« less
Disturbance History,Spatial Variability, and Patterns of Biodiversity
NASA Astrophysics Data System (ADS)
Bendix, J.; Wiley, J. J.; Commons, M.
2012-12-01
The intermediate disturbance hypothesis predicts that species diversity will be maximized in environments experiencing intermediate intensity disturbance, after an intermediate timespan. Because many landscapes comprise mosaics with complex disturbance histories, the theory implies that each patch in those mosaics should have a distinct level of diversity reflecting combined impact of the magnitude of disturbance and the time since it occurred. We modeled the changing patterns of species richness across a landscape experiencing varied scenarios of simulated disturbance. Model outputs show that individual landscape patches have highly variable species richness through time, with the details reflecting the timing, intensity and sequence of their disturbance history. When the results are mapped across the landscape, the resulting temporal and spatial complexity illustrates both the contingent nature of diversity and the danger of generalizing about the impacts of disturbance.
Spotting effect in microarray experiments
Mary-Huard, Tristan; Daudin, Jean-Jacques; Robin, Stéphane; Bitton, Frédérique; Cabannes, Eric; Hilson, Pierre
2004-01-01
Background Microarray data must be normalized because they suffer from multiple biases. We have identified a source of spatial experimental variability that significantly affects data obtained with Cy3/Cy5 spotted glass arrays. It yields a periodic pattern altering both signal (Cy3/Cy5 ratio) and intensity across the array. Results Using the variogram, a geostatistical tool, we characterized the observed variability, called here the spotting effect because it most probably arises during steps in the array printing procedure. Conclusions The spotting effect is not appropriately corrected by current normalization methods, even by those addressing spatial variability. Importantly, the spotting effect may alter differential and clustering analysis. PMID:15151695
Dynamics of land change in India: a fine-scale spatial analysis
NASA Astrophysics Data System (ADS)
Meiyappan, P.; Roy, P. S.; Sharma, Y.; Jain, A. K.; Ramachandran, R.; Joshi, P. K.
2015-12-01
Land is scarce in India: India occupies 2.4% of worlds land area, but supports over 1/6th of worlds human and livestock population. This high population to land ratio, combined with socioeconomic development and increasing consumption has placed tremendous pressure on India's land resources for food, feed, and fuel. In this talk, we present contemporary (1985 to 2005) spatial estimates of land change in India using national-level analysis of Landsat imageries. Further, we investigate the causes of the spatial patterns of change using two complementary lines of evidence. First, we use statistical models estimated at macro-scale to understand the spatial relationships between land change patterns and their concomitant drivers. This analysis using our newly compiled extensive socioeconomic database at village level (~630,000 units), is 100x higher in spatial resolution compared to existing datasets, and covers over 200 variables. The detailed socioeconomic data enabled the fine-scale spatial analysis with Landsat data. Second, we synthesized information from over 130 survey based case studies on land use drivers in India to complement our macro-scale analysis. The case studies are especially useful to identify unobserved variables (e.g. farmer's attitude towards risk). Ours is the most detailed analysis of contemporary land change in India, both in terms of national extent, and the use of detailed spatial information on land change, socioeconomic factors, and synthesis of case studies.
Yu, Xiao-Dong; Lü, Liang; Wang, Feng-Yan; Luo, Tian-Hong; Zou, Si-Si; Wang, Cheng-Bin; Song, Ting-Ting; Zhou, Hong-Zhang
2016-01-01
The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae) along a geographic (longitudinal/precipitation) gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.
Temporally variable environments maintain more beta-diversity in Mediterranean landscapes
NASA Astrophysics Data System (ADS)
Martin, Beatriz; Ferrer, Miguel
2015-10-01
We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.
Bertolo, Andrea; Blanchet, F. Guillaume; Magnan, Pierre; Brodeur, Philippe; Mingelbier, Marc; Legendre, Pierre
2012-01-01
Larval dispersal is a crucial factor for fish recruitment. For fishes with relatively small-bodied larvae, drift has the potential to play a more important role than active habitat selection in determining larval dispersal; therefore, we expect small-bodied fish larvae to be poorly associated with habitat characteristics. To test this hypothesis, we used as model yellow perch (Perca flavescens), whose larvae are among the smallest among freshwater temperate fishes. Thus, we analysed the habitat association of yellow perch larvae at multiple spatial scales in a large shallow fluvial lake by explicitly modelling directional (e.g. due to water currents) and non-directional (e.g. due to aggregation) spatial patterns. This allowed us to indirectly assess the relative roles of drift (directional process) and potential habitat choice on larval dispersal. Our results give weak support to the drift hypothesis, whereas yellow perch show a strong habitat association at unexpectedly small sizes, when compared to other systems. We found consistent non-directional patterns in larvae distributions at both broad and medium spatial scales but only few significant directional components. The environmental variables alone (e.g. vegetation) generally explained a significant and biologically relevant fraction of the variation in fish larvae distribution data. These results suggest that (i) drift plays a minor role in this shallow system, (ii) larvae display spatial patterns that only partially covary with environmental variables, and (iii) larvae are associated to specific habitats. By suggesting that habitat association potentially includes an active choice component for yellow perch larvae, our results shed new light on the ecology of freshwater fish larvae and should help in building more realistic recruitment models. PMID:23185585
NASA Astrophysics Data System (ADS)
Sonam; Jain, Vikrant
2018-03-01
Long profiles of rivers provide a platform to analyse interaction between geological and geomorphic processes operating at different time scales. Identification of an appropriate model for river long profile becomes important in order to establish a quantitative relationship between the profile shape, its geomorphic effectiveness, and inherent geological characteristics. This work highlights the variability in the long profile shape of the Ganga River and its major tributaries, its impact on stream power distribution pattern, and role of the geological controls on it. Long profile shapes are represented by the sum of two exponential functions through the curve fitting method. We have shown that coefficients of river long profile equations are governed by the geological characteristics of subbasins. These equations further define the spatial distribution pattern of stream power and help to understand stream power variability in different geological terrains. Spatial distribution of stream power in different geological terrains successfully explains spatial variability in geomorphic processes within the Himalayan hinterland area. In general, the stream power peaks of larger rivers lie in the Higher Himalaya, and rivers in the eastern hinterland area are characterised by the highest magnitude of stream power.
Spatial and temporal patterns in fish assemblages of upper coastal plain streams, Mississippi, USA
Susan B. Adams; Melvin L. Warren; Wendell R. Haag
2004-01-01
We assessed spatial, seasonal, and annual variation in fish assemblages over 17 months in three small- to medium-sized, incised streams characteristic of northwestern Mississippi streams. We sampled 17 962 fish representing 52 species and compared assemblages within and among streams. Although annual and seasonal variability inassemblage structure was high, fish...
A Spatial Index for Identifying Opportunity Zones for Woody Cellulosic Conversion Facilities
Xia Huang; James H. Perdue; Timothy M. Young
2012-01-01
A challenge in the development of renewable energy is the ability to spatially assess the risk of feedstock supply to conversion facilities. Policy makers and investors need improved methods to identify the interactions associated with landscape features, socioeconomic conditions, and ownership patterns, and the influence these variables have on the geographic location...
USDA-ARS?s Scientific Manuscript database
Spatial patterns of ecosystem productivity arise from the terrain-modulated wetting and drying of the landscape. Using a daily relative greenness (rG) index we explore the relations between spatial variability of plant productivity and landscape morphology, and how these relations change over time...
Legacies of Lead in Charm City's Soil: Lessons from the Baltimore Ecosystem Study
Kirsten Schwarz; Richard Pouyat; Ian Yesilonis
2016-01-01
Understanding the spatial distribution of soil lead has been a focus of the Baltimore Ecosystem Study since its inception in 1997. Through multiple research projects that span spatial scales and use different methodologies, three overarching patterns have been identified: (1) soil lead concentrations often exceed state and federal regulatory limits; (2) the variability...
NASA Astrophysics Data System (ADS)
Walsh, J. P.; Corbett, D. R.; Kiker, J. M.; Orpin, A. R.; Hale, R. P.; Ogston, A. S.
2014-09-01
The stratigraphic record is the manifestation of a wide range of processes, interactions and responses to environmental drivers. Understanding the functioning of river sediment dispersal systems is necessary to determine the fate of sediment and associated material in the marine environment and differentiate key influences in the development of the stratigraphic record. To that end, this study uses sediment cores collected on four successive cruises (January, May and September 2010 and February 2011) on the Waipaoa River margin, New Zealand, to provide insight into spatial and temporal variability in sediment deposition and seabed character. The Waipaoa River discharges a large sediment load into an energetic coast that has a complex margin morphology. Several flood and wave events occurred during the study, and sedimentation varied spatially and temporally. X-radiographs and short-lived radioisotopes indicate emplacement of new event layers prior to all cruises. Notable variation in surficial seabed character (grain-size composition, loss-on-ignition percentage) was apparent on the inner shelf (water depths <40 m), but mid-shelf areas and seaward had more homogeneous sediment properties. 7Be inventories indicate variable patterns of deposition related to fluvial and oceanographic conditions prior to cruises. Ephemeral sediment storage occurs on the inner-shelf of Poverty Bay, into which the Waipaoa River discharges directly, and subsequent export and dispersal patterns are linked to the relative timing and size of flood and wave events. Surficial deposits with characteristics of fluid muds and wave-enhanced sediment gravity flows were noted at some (<25 sites total) mid-shelf and shallower sites from all cruises. During the last cruise considerable inter- and intra-site seabed variability occurred in the interbedded river-proximal inner-shelf deposits over spatial scales of less than a few kilometers. Evidence from earlier sidescan data infer that this could be related to variation in bedform development or influence. Contrasts in the observed event layering recorded over the experiment with the longer pattern of accumulation suggests stochastic dispersal behavior and reworking over time must shape the seabed to produce the time-averaged pattern of shelf sediment accumulation. This research highlights our improved ability to comprehend strata development and sheds light on the challenge of interpreting historical and ancient strata across spatial and temporal scales.
Measurement of visual contrast sensitivity
NASA Astrophysics Data System (ADS)
Vongierke, H. E.; Marko, A. R.
1985-04-01
This invention involves measurement of the visual contrast sensitivity (modulation transfer) function of a human subject by means of linear or circular spatial frequency pattern on a cathode ray tube whose contrast is automatically decreasing or increasing depending on the subject pressing or releasing a hand-switch button. The threshold of detection of the pattern modulation is found by the subject by adjusting the contrast to values which vary about the subject's threshold thereby determining the threshold and also providing by the magnitude of the contrast fluctuations between reversals some estimate of the variability of the subject's absolute threshold. The invention also involves the slow automatic sweeping of the spatial frequency of the pattern over the spatial frequencies after preset time intervals or after threshold has been defined at each frequency by a selected number of subject-determined threshold crossings; i.e., contrast reversals.
NASA Astrophysics Data System (ADS)
Yang, Lei; Chen, Liding; Wei, Wei
2017-04-01
Soil water stored below rainfall infiltration depth is a reliable water resource for plant growth in arid and semi-arid regions. For decreasing serious soil erosion, large-scale human-introduced vegetation restoration was initiated in Chinese Loess Plateau in late 1990s. However, these activities may result in excessive water consumption and soil water deficit if no appropriate scientific guidance were offered. This in turn impacts the regional ecological restoration and sustainable management of water resources. In this study, soil water content data in depth of 0-5 m was obtained by long-term field observation and geostatistical method in 6 small watersheds covered with different land use pattern. Profile characteristics and spatial-temporal patterns of soil water were compared between different land use types, hillslopes, and watersheds. The results showed that: (1) Introduced vegetation consumed excessive amount of water when compared with native grassland and farmland, and induced temporally stable soil desiccation in depth of 0-5 m. The introduced vegetation decreased soil water content to levels lower than the reference value representing no human impact in all soil layers. (2) The analysis of differences in soil water at hillslope and watershed scales indicated that land use determined the spatial and temporal variability of soil water. Soil water at watershed scale increased with the increasing area of farmland, and decreased with increasing percentage of introduced vegetation. Land use structure determined the soil water condition and land use pattern determined the spatial-temporal variability of soil water at watershed scale. (3) Large-scale revegetation with introduced vegetation diminished the spatial heterogeneity of soil water at different scales. Land use pattern adjustment could be used to improve the water resources management and maintain the sustainability of vegetation restoration.
Wildfire patterns and landscape changes in Mediterranean oak woodlands.
Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P
2015-12-01
Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of transition to shrubland. Copyright © 2015 Elsevier B.V. All rights reserved.
Pedological memory in forest soil development
Jonathan D. Phillips; Daniel A. Marion
2004-01-01
Individual trees may have significant impacts on soil morphology. If these impacts are non-random such that some microsites are repeatedly preferentially affected by trees, complex local spatial variability of soils would result. A model of self-reinforcing pedologic influences of trees (SRPIT) is proposed to explain patterns of soil variability in the Ouachita...
Climatic extremes improve predictions of spatial patterns of tree species
Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.
2009-01-01
Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.
Garrett, Robert G.
2009-01-01
The patterns of relative variability differ by transect and horizon. The N–S transect A-horizon soils show significant between-40-km scale variability for 29 elements, with only 4 elements (Ca, Mg, Pb and Sr) showing in excess of 50% of their variability at the within-40-km and ‘at-site’ scales. In contrast, the C-horizon data demonstrate significant between-40-km scale variability for 26 elements, with 21 having in excess of 50% of their variability at the within-40-km and ‘at-site’ scales. In 36 instances, the ‘at-site’ variability is statistically significant in terms of the sample preparation and analysis variability. It is postulated that this contrast between the A- and C- horizons along the N–S transect, that is dominated by agricultural land uses, is due to the local homogenization of Ap-horizon soils by tillage reducing the ‘at-site’ variability. The spatial variability is distributed similarly between scales for the A- and C-horizon soils of the E–W transect. For all elements, there is significant variability at the within-40-km scale. Notwithstanding this, there is significant between-40-km variability for 28 and 20 of the elements in the A- and C-horizon data, respectively. The differences between the two transects are attributed to (1) geology, the N–S transect runs generally parallel to regional strikes, whereas the E–W transect runs across regional structures and lithologies; and (2) land use, with agricultural tillage dominating along the N–S transect. The spatial analysis of the transect data indicates that continental-scale maps demonstrating statistically significant patterns of geochemical variability may be prepared for many elements from data on soil samples collected on a 40 x 40 km grid or similar sampling designs resulting in a sample density of 1 site per 1600 km2.
Mosaics of Change: Cross-Scale Forest Cover Dynamics and Drivers in Tibetan Yunnan, China
NASA Astrophysics Data System (ADS)
Van Den Hoek, Jamon
In reaction to devastating floods on the Yangtze River in the summer of 1998, the Chinese Central Government introduced a logging ban as part of the Natural Forest Protection Program (NFPP) with the goal of dramatically increasing national forest cover. Since then, over 11 billion USD has been allocated to the program, but the NFPP's success at promoting reforestation is unclear as neither the extent of forest cover change, nor the potential factors influencing the spatial variability of change have been examined. This research employs a case study in northwest Yunnan Province, southwest China, to evaluate the spatial variability of forest cover change under the NFPP and investigate drivers that have influenced recent patterns of change. I employ a mixed methods, cross-scale research framework that includes the analysis of areal trajectories and spatial variability of Landsat-5 imagery-derived forest cover change at three administrative levels before and after the NFPP's introduction; landscape ecology-based metrics to measure the shifting patterns of forest cover change at the patch level; and household interview data on village-level forest resource use patterns and processes in three neighboring villages. Prefecture- and county-level analyses suggest rather stable forest cover across the three-county study area since the introduction of the ban, though township-level measures of forest cover change show a degree of spatial variability as well as a temporal delay in policy implementation effectiveness. Village-level remote sensing analysis shows comparable amounts of forest cover change between study villages but disparate forest resource use patterns in terms of location and amount. Though all research villages continue to exploit local forests for firewood and timber relatively unfettered by policy restrictions, villagers with tourism-derived income are able to buy forest products collected in outside forests much more often; this redistributes local-scale deforestation to the benefit of local and detriment of distant forests. Tourism is often heralded as the solution to rural development challenges in China's southwest, but this research shows the unintended consequences that may result from inconsistent participation at the village-level, consequences which merely redirect, not reduce, forest use pressures, and that are contrary to the goals of state policy.
NASA Astrophysics Data System (ADS)
Suriano, Zachary J.
2018-02-01
Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.
NASA Astrophysics Data System (ADS)
Piazzi, L.; Bonaviri, C.; Castelli, A.; Ceccherelli, G.; Costa, G.; Curini-Galletti, M.; Langeneck, J.; Manconi, R.; Montefalcone, M.; Pipitone, C.; Rosso, A.; Pinna, S.
2018-07-01
In the Mediterranean Sea, Cystoseira species are the most important canopy-forming algae in shallow rocky bottoms, hosting high biodiverse sessile and mobile communities. A large-scale study has been carried out to investigate the structure of the Cystoseira-dominated assemblages at different spatial scales and to test the hypotheses that alpha and beta diversity of the assemblages, the abundance and the structure of epiphytic macroalgae, epilithic macroalgae, sessile macroinvertebrates and mobile macroinvertebrates associated to Cystoseira beds changed among scales. A hierarchical sampling design in a total of five sites across the Mediterranean Sea (Croatia, Montenegro, Sardinia, Tuscany and Balearic Islands) was used. A total of 597 taxa associated to Cystoseira beds were identified with a mean number per sample ranging between 141.1 ± 6.6 (Tuscany) and 173.9 ± 8.5(Sardinia). A high variability at small (among samples) and large (among sites) scale was generally highlighted, but the studied assemblages showed different patterns of spatial variability. The relative importance of the different scales of spatial variability should be considered to optimize sampling designs and propose monitoring plans of this habitat.
Bi, Zedong; Zhou, Changsong
2016-01-01
Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816
Shifting patterns of ENSO variability from a 492-year South Pacific coral core
NASA Astrophysics Data System (ADS)
Tangri, N.; Linsley, B. K.; Mucciarone, D.; Dunbar, R. B.
2017-12-01
Anticipating the impacts of ENSO in a changing climate requires detailed reconstructions of changes in its timing, amplitude, and spatial pattern, as well as attempts to attribute those changes to external forcing or internal variability. A continuous coral δ18O record from American Samoa, in the tropical South Pacific, sheds light on almost five centuries of these changes. We find evidence of internally-driven 50-100 year cycles with broad peaks of high variability punctuated by short transitions of low variability. We see a long, slow trend towards more frequent ENSO events, punctuated by sharp decreases in frequency; the 20th century in particular shows a strong trend towards higher-frequency ENSO. Due to the unique location of American Samoa with respect to ENSO sea surface temperature (SST) anomalies, we infer changes in the spatial pattern of ENSO. American Samoa currently lies on the ENSO 3.4 nodal line - the boomerang shape that separates waters warmed by El Niño from those that cool. Closer examination reveals that SST around American Samoa displays opposing responses to Eastern and Central Pacific ENSO events. However, this has not always been the case; in the late 19th and early 20th century, SST responded similarly to both flavors of ENSO. We interpret this to mean a geographic narrowing towards the equator of the eastern Pacific El Niño SST anomaly pattern in the first half of the 20th century.
Explaining European fungal fruiting phenology with climate variability.
Andrew, Carrie; Heegaard, Einar; Høiland, Klaus; Senn-Irlet, Beatrice; Kuyper, Thomas W; Krisai-Greilhuber, Irmgard; Kirk, Paul M; Heilmann-Clausen, Jacob; Gange, Alan C; Egli, Simon; Bässler, Claus; Büntgen, Ulf; Boddy, Lynne; Kauserud, Håvard
2018-06-01
Here we assess the impact of geographically dependent (latitude, longitude, and altitude) changes in bioclimatic (temperature, precipitation, and primary productivity) variability on fungal fruiting phenology across Europe. Two main nutritional guilds of fungi, saprotrophic and ectomycorrhizal, were further separated into spring and autumn fruiters. We used a path analysis to investigate how biogeographic patterns in fungal fruiting phenology coincided with seasonal changes in climate and primary production. Across central to northern Europe, mean fruiting varied by approximately 25 d, primarily with latitude. Altitude affected fruiting by up to 30 d, with spring delays and autumnal accelerations. Fruiting was as much explained by the effects of bioclimatic variability as by their large-scale spatial patterns. Temperature drove fruiting of autumnal ectomycorrhizal and saprotrophic groups as well as spring saprotrophic groups, while primary production and precipitation were major drivers for spring-fruiting ectomycorrhizal fungi. Species-specific phenology predictors were not stable, instead deviating from the overall mean. There is significant likelihood that further climatic change, especially in temperature, will impact fungal phenology patterns at large spatial scales. The ecological implications are diverse, potentially affecting food webs (asynchrony), nutrient cycling and the timing of nutrient availability in ecosystems. © 2018 by the Ecological Society of America.
Regional inequalities in premature mortality in Great Britain
Laroze, Denise; Neumayer, Eric
2018-01-01
Premature mortality exhibits strong spatial patterns in Great Britain. Local authorities that are located further North and West, that are more distant from its political centre London and that are more urban tend to have a higher premature mortality rate. Premature mortality also tends to cluster among geographically contiguous and proximate local authorities. We develop a novel analytical research design that relies on spatial pattern recognition to demonstrate that an empirical model that contains only socio-economic variables can eliminate these spatial patterns almost entirely. We demonstrate that socioeconomic factors across local authority districts explain 81 percent of variation in female and 86 percent of variation in male premature mortality in 2012–14. As our findings suggest, policy-makers cannot hope that health policies alone suffice to significantly reduce inequalities in health. Rather, it requires strong efforts to reduce the inequalities in socio-economic factors, or living conditions for short, in order to overcome the spatial disparities in health, of which premature mortality is a clear indication. PMID:29489918
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
NASA Astrophysics Data System (ADS)
Roberts, B. J.; Chelsky, A.; Bernhard, A. E.; Giblin, A. E.
2017-12-01
Salt marshes are important sites for retention and transformation of carbon and nutrients. Much of our current marsh biogeochemistry knowledge is based on sampling at times and in locations that are convenient, most often vegetated marsh platforms during low tide. Wetland loss rates are high in many coastal regions including Louisiana which has the highest loss rates in the US. This loss not only reduces total marsh area but also changes the relative allocation of subhabitats in the remaining marsh. Climate and other anthropogenic changes lead to further changes including inundation patterns, redox conditions, salinity regimes, and shifts in vegetation patterns across marsh landscapes. We present results from a series of studies examining biogeochemical rates, microbial communities, and soil properties along multiple edge to interior transects within Spartina alterniflora across the Louisiana coast; between expanding patches of Avicennia germinans and adjacent S. alterniflora marshes; in soils associated with the four most common Louisiana salt marsh plants species; and across six different marsh subhabitats. Spartina alterniflora marsh biogeochemistry and microbial populations display high spatial variability related to variability in soil properties which appear to be, at least in part, regulated by differences in elevation, hydrology, and redox conditions. Differences in rates between soils associated with different vegetation types were also related to soil properties with S. alterniflora soils often yielding the lowest rates. Biogeochemical process rates vary significantly across marsh subhabitats with individual process rates differing in their hotspot habitat(s) across the marsh. Distinct spatial patterns may influence the roles that marshes play in retaining and transforming nutrients in coastal regions and highlight the importance of incorporating spatial sampling when scaling up plot level measurements to landscape or regional scales.
Spatial prediction of near surface soil water retention functions using hydrogeophysics
NASA Astrophysics Data System (ADS)
Gibson, J. P.; Franz, T. E.
2017-12-01
The hydrological community often turns to widely available spatial datasets such as SSURGO to characterize the spatial variability of soil across a landscape of interest. This has served as a reasonable first approximation when lacking localized soil data. However, previous work has shown that information loss within land surface models primarily stems from parameterization. Localized soil sampling is both expensive and time intense, and thus a need exists in connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with larger spatial datasets. In this work, we utilize 2 geophysical techniques; cosmic ray neutron probe and electromagnetic induction, to identify temporally stable soil moisture patterns. This is achieved by measuring numerous times over a range of wet to dry field conditions in order to apply an empirical orthogonal function. We then present measured water retention functions of shallow cores extracted within each temporally stable zone. Lastly, we use soil moisture patterns as a covariate to predict soil hydraulic properties in areas without measurement and validate using a leave-one-out cross validation analysis. Using these approaches to better constrain soil hydraulic property variability, we speculate that further research can better estimate hydrologic fluxes in areas of interest.
NASA Astrophysics Data System (ADS)
Taguas, Encarnación; Vanderlinden, Karl; Pedrera-Parrilla, Aura; Giráldez, Juan V.; Gómez, Jose A.
2016-04-01
Spatial and temporal patterns of vegetal communities control local biogeophysical processes.. The use of cover crops and spontaneous grass cover as a soil erosion control measure is quite common, particularly in hilly agricultural areas. Spontaneous covers show usually irregular spatial and temporal patterns, resulting in a questionable efficiency and and unresolved management requirements. However, due to its zero cost, it is a helpful alternative for soil erosion control in marginal farms (Taguas et al., 2015). The main aim of this work was to characterize the spatial and temporal patterns of spontaneous grass cover in an olive orchard microcatchment to interpret its dependences on other physical features as well as its influence on soil loss control. The specific objectives were: i) to evaluate the relationships between the mean cover and the variables: accumulated precipitation, accumulated evapotranspiration and average minimum temperature for the preceding 5, 15, 30 and 60 days to the sampling date; ii) study the spatial aggregation degree of the cover, its temporal stability and its correlation with different topographical properties, the richness of species and the apparent electrical conductivity as a measure of soil variability; and iii) describe the influence of the cover on runoff and soil loss in the catchments. Cover percentage corresponding to spontaneous grass was evaluated on a seaonsal basis during 3 years (2011-2013), resulting in 12 surveys. A permanent and regular grid of 36 points covering the entire catchment (5-6 samples/ha) was used in each survey. At each location cover percentage was determined through image analyses. In order to explore the relations between cover percentage and meteorological variables, multiple linear regression was applied whereas the SADIE approach (Spatial analysis by distance indices; Perry, 1998) was used to describe possible spatial aggregation patterns and the correlation with features such as aspect, slope, drainage area, height, richness and apparent electrical conductivity. The mean annual cover percentage varied from 23% to 36% with a coefficient of variation of 57% and 6%, respectively. On the seasonal scale, the cover varied between 0.2% and 50% . Significant effects of accumulated precipitation during the precedubg 15 days on the cover percentage were detected. In addition, a permanent aggregated pattern of spontaneous grass was observed for different seasonal surveys with abundant preceding rainfall. No clear correlations were found with physical attributes with the exception of electrical conductivity (50 cm-depth). Finally, the differences found in the hydrological responses for similar events with different degrees of soil cover highlighted the role that spontaneous vegetation plays in the sediment discharge control during humid periods. REFERENCES: Perry, J. N., 1998. Measures of spatial pattern for counts. Ecology 79: 1008-1017. E. V. Taguas, C. Arroyo, A. Lora, G. Guzmán, K. Vanderlinden. J. A. Gómez. 2015. Exploring the linkage between spontaneous grass cover biodiversity and soil degradation in two olive orchard microcatchments with contrasting environmental and management conditions. SOIL, 1, 651-664.
Disturbance Impacts on Thermal Hot Spots and Hot Moments at the Peatland-Atmosphere Interface
NASA Astrophysics Data System (ADS)
Leonard, R. M.; Kettridge, N.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.; Krause, S.
2018-01-01
Soil-surface temperature acts as a master variable driving nonlinear terrestrial ecohydrological, biogeochemical, and micrometeorological processes, inducing short-lived or spatially isolated extremes across heterogeneous landscape surfaces. However, subcanopy soil-surface temperatures have been, to date, characterized through isolated, spatially discrete measurements. Using spatially complex forested northern peatlands as an exemplar ecosystem, we explore the high-resolution spatiotemporal thermal behavior of this critical interface and its response to disturbances by using Fiber-Optic Distributed Temperature Sensing. Soil-surface thermal patterning was identified from 1.9 million temperature measurements under undisturbed, trees removed and vascular subcanopy removed conditions. Removing layers of the structurally diverse vegetation canopy not only increased mean temperatures but it shifted the spatial and temporal distribution, range, and longevity of thermal hot spots and hot moments. We argue that linking hot spots and/or hot moments with spatially variable ecosystem processes and feedbacks is key for predicting ecosystem function and resilience.
Li, Lianfa; Laurent, Olivier; Wu, Jun
2016-02-05
Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors on spatial variability of the air pollution's effects. This study aimed to examine spatial variability of the effects of air pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability. We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air pollution exposure was modeled at individual level for nitrogen dioxide (NO2) and nitrogen oxides (NOx) using spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations between air pollution and term birth weight. Higher air pollution exposure was associated with lower term birth weight (average posterior effects: -14.7 (95 % CI: -19.8, -9.7) g per 10 ppb increment in NO2 and -6.9 (95 % CI: -12.9, -0.9) g per 10 ppb increment in NOx). The variation of the association across Census tracts was significantly influenced by the tract-level socio-demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship between these factors and the associations between air pollution and term birth weight: we observed the thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating factors might reflect additional exposure to environmental insults or lower socio-economic status with higher vulnerability, whereas attenuating factors might indicate reduced exposure or higher socioeconomic status with lower vulnerability. Our Bayesian models effectively combined a priori knowledge with training data to infer the posterior association of air pollution with term birth weight and to evaluate the influence of the tract-level factors on spatial variability of such association. This study contributes new findings about non-linear influences of socio-demographic factors, land-use patterns, and unaccounted exposures on spatial variability of the effects of air pollution.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
Spatial distribution of enzyme driven reactions at micro-scales
NASA Astrophysics Data System (ADS)
Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian
2017-04-01
Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).
Implicit learning of non-spatial sequences in schizophrenia
MARVEL, CHERIE L.; SCHWARTZ, BARBARA L.; HOWARD, DARLENE V.; HOWARD, JAMES H.
2006-01-01
Recent studies have reported abnormal implicit learning of sequential patterns in patients with schizophrenia. Because these studies were based on visuospatial cues, the question remained whether patients were impaired simply due to the demands of spatial processing. This study examined implicit sequence learning in 24 patients with schizophrenia and 24 healthy controls using a non-spatial variation of the serial reaction time test (SRT) in which pattern stimuli alternated with random stimuli on every other trial. Both groups showed learning by responding faster and more accurately to pattern trials than to random trials. Patients, however, showed a smaller magnitude of sequence learning. Both groups were unable to demonstrate explicit knowledge of the nature of the pattern, confirming that learning occurred without awareness. Clinical variables were not correlated with the patients' learning deficits. Patients with schizophrenia have a decreased ability to develop sensitivity to regularly occurring sequences of events within their environment. This type of deficit may affect an array of cognitive and motor functions that rely on the perception of event regularity. PMID:16248901
Scale-dependent associations of Band-tailed Pigeon counts at mineral sites
Overton, Cory T.; Casazza, Michael L.; Coates, Peter S.
2010-01-01
The abundance of Band-tailed Pigeons (Patagioenas fasciata monilis) has declined substantially from historic numbers along the Pacific Coast. Identification of patterns and causative factors of this decline are hampered because habitat use data are limited, and temporal and spatial variability patterns associated with population indices are not known. Furthermore, counts are influenced not only by pigeon abundance but also by rate of visitation to mineral sites, which may not be consistent. To address these issues, we conducted mineral site counts during 2001 and 2002 at 20 locations from 4 regions in the Pacific Northwest, including central Oregon and western Washington, USA, and British Columbia, Canada. We developed inference models that consisted of environmental factors and spatial characteristics at multiple spatial scales. Based on information theory, we compared models within a final set that included variables measured at 3 spatial scales (0.03 ha, 3.14 ha, and 7850 ha). Pigeon counts increased from central Oregon through northern Oregon and decreased into British Columbia. After accounting for this spatial pattern, we found that pigeon counts increased 12% ± 2.7 with a 10% increase in the amount of deciduous forested area within 100 m from a mineral site. Also, distance from the mineral site of interest to the nearest known mineral site was positively related to pigeon counts. These findings provide direction for future research focusing on understanding the relationships between indices of relative abundance and complete counts (censuses) of pigeon populations by identifying habitat characteristics that might influence visitation rates. Furthermore, our results suggest that spatial arrangement of mineral sites influences Band-tailed Pigeon counts and the populations which those counts represent.
Jordan R. Mayor; Edward A.G. Schuur; Michelle C. Mack; Teresa N. Hollingsworth; Erland Bääth
2012-01-01
Global patterns in soil, plant, and fungal stable isotopes of N (15N) show promise as integrated metrics of N cycling, particularly the activity of ectomycorrhizal (ECM) fungi. At small spatial scales, however, it remains difficult to differentiate the underlying causes of plant 15N variability and this limits the...
S. Gärtner; K.M. Reynolds; P.F. Hessburg; S.S. Hummel; M. Twery
2008-01-01
We evaluated changes (hereafter, departures) in spatial patterns of various patch types of forested landscapes in two subwatersheds ("east" and "west") in eastern Washington, USA, from the patterns of two sets of reference conditions; one representing the broad variability of pre-management era (~1900) conditions, and another representing the broad...
Maps and models of density and stiffness within individual Douglas-fir trees
Christine L. Todoroki; Eini C. Lowell; Dennis P. Dykstra; David G. Briggs
2012-01-01
Spatial maps of density and stiffness patterns within individual trees were developed using two methods: (1) measured wood properties of veneer sheets; and (2) mixed effects models, to test the hypothesis that within-tree patterns could be predicted from easily measurable tree variables (height, taper, breast-height diameter, and acoustic velocity). Sample trees...
Landscape patterns and soil organic carbon stocks in agricultural bocage landscapes
NASA Astrophysics Data System (ADS)
Viaud, Valérie; Lacoste, Marine; Michot, Didier; Walter, Christian
2014-05-01
Soil organic carbon (SOC) has a crucial impact on global carbon storage at world scale. SOC spatial variability is controlled by the landscape patterns resulting from the continuous interactions between the physical environment and the society. Natural and anthropogenic processes occurring and interplaying at the landscape scale, such as soil redistribution in the lateral and vertical dimensions by tillage and water erosion processes or spatial differentiation of land-use and land-management practices, strongly affect SOC dynamics. Inventories of SOC stocks, reflecting their spatial distribution, are thus key elements to develop relevant management strategies to improving carbon sequestration and mitigating climate change and soil degradation. This study aims to quantify SOC stocks and their spatial distribution in a 1,000-ha agricultural bocage landscape with dairy production as dominant farming system (Zone Atelier Armorique, LTER Europe, NW France). The site is characterized by high heterogeneity on short distance due to a high diversity of soils with varying waterlogging, soil parent material, topography, land-use and hedgerow density. SOC content and stocks were measured up to 105-cm depth in 200 sampling locations selected using conditioned Latin hypercube sampling. Additive sampling was designed to specifically explore SOC distribution near to hedges: 112 points were sampled at fixed distance on 14 transects perpendicular from hedges. We illustrate the heterogeneity of spatial and vertical distribution of SOC stocks at landscape scale, and quantify SOC stocks in the various landscape components. Using multivariate statistics, we discuss the variability and co-variability of existing spatial organization of cropping systems, environmental factors, and SOM stocks, over landscape. Ultimately, our results may contribute to improving regional or national digital soil mapping approaches, by considering the distribution of SOC stocks within each modeling unit and by accounting for the impact of sensitive ecosystems.
NASA Astrophysics Data System (ADS)
Mairota, Paola; Cafarelli, Barbara; Labadessa, Rocco; Lovergine, Francesco P.; Tarantino, Cristina; Nagendra, Harini; Didham, Raphael K.
2015-02-01
Modelling the empirical relationships between habitat quality and species distribution patterns is the first step to understanding human impacts on biodiversity. It is important to build on this understanding to develop a broader conceptual appreciation of the influence of surrounding landscape structure on local habitat quality, across multiple spatial scales. Traditional models which report that 'habitat amount' in the landscape is sufficient to explain patterns of biodiversity, irrespective of habitat configuration or spatial variation in habitat quality at edges, implicitly treat each unit of habitat as interchangeable and ignore the high degree of interdependence between spatial components of land-use change. Here, we test the contrasting hypothesis, that local habitat units are not interchangeable in their habitat attributes, but are instead dependent on variation in surrounding habitat structure at both patch- and landscape levels. As the statistical approaches needed to implement such hierarchical causal models are observation-intensive, we utilise very high resolution (VHR) Earth Observation (EO) images to rapidly generate fine-grained measures of habitat patch internal heterogeneities over large spatial extents. We use linear mixed-effects models to test whether these remotely-sensed proxies for habitat quality were influenced by surrounding patch or landscape structure. The results demonstrate the significant influence of surrounding patch and landscape context on local habitat quality. They further indicate that such an influence can be direct, when a landscape variable alone influences the habitat structure variable, and/or indirect when the landscape and patch attributes have a conjoined effect on the response variable. We conclude that a substantial degree of interaction among spatial configuration effects is likely to be the norm in determining the ecological consequences of habitat fragmentation, thus corroborating the notion of the spatial context dependence of habitat quality.
Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals
NASA Technical Reports Server (NTRS)
Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel
2014-01-01
To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.
Modelling spatial patterns of urban growth in Africa
Linard, Catherine; Tatem, Andrew J.; Gilbert, Marius
2013-01-01
The population of Africa is predicted to double over the next 40 years, driving exceptionally high urban expansion rates that will induce significant socio-economic, environmental and health changes. In order to prepare for these changes, it is important to better understand urban growth dynamics in Africa and better predict the spatial pattern of rural-urban conversions. Previous work on urban expansion has been carried out at the city level or at the global level with a relatively coarse 5–10 km resolution. The main objective of the present paper was to develop a modelling approach at an intermediate scale in order to identify factors that influence spatial patterns of urban expansion in Africa. Boosted Regression Tree models were developed to predict the spatial pattern of rural-urban conversions in every large African city. Urban change data between circa 1990 and circa 2000 available for 20 large cities across Africa were used as training data. Results showed that the urban land in a 1 km neighbourhood and the accessibility to the city centre were the most influential variables. Results obtained were generally more accurate than results obtained using a distance-based urban expansion model and showed that the spatial pattern of small, compact and fast growing cities were easier to simulate than cities with lower population densities and a lower growth rate. The simulation method developed here will allow the production of spatially detailed urban expansion forecasts for 2020 and 2025 for Africa, data that are increasingly required by global change modellers. PMID:25152552
NASA Astrophysics Data System (ADS)
Gomes, M. L.; Fike, D. A.; Bergmann, K.; Knoll, A. H.
2015-12-01
Sulfur (S) isotope signatures of sedimentary pyrite preserved in marine rocks provide a rich suite of information about changes in biogeochemical cycling associated with the evolution of microbial metabolisms and oxygenation of Earth surface environments. Conventionally, these S isotope records are based on bulk rock measurements. Yet, in modern microbial mat environments, S isotope compositions of sulfide can vary by up to 40‰ over a spatial range of ~ 1 mm. Similar ranges of S isotope variability have been found in Archean pyrite grains using both Secondary Ion Mass Spectrometry and other micro-analytical techniques. These micron-scale patterns have been linked to changes in rates of microbial sulfate reduction and/or sulfide oxidation, isotopic distillation of the sulfate reservoir due to microbial sulfate reduction, and post-depositional alteration. Fine-scale mapping of S isotope compositions of pyrite can thus be used to differentiate primary environmental signals from post-depositional overprinting - improving our understanding of both. Here, we examine micron-scale S isotope patterns of pyrite in microbialites from the Mesoproterozoic-Neoproterozoic Sukhaya Tunguska Formation and Neoproterozoic Draken Formation in order to explore S isotope variability associated with different mat textures and pyrite grain morphologies. A primary goal is to link modern observations of how sulfide spatial isotope distributions reflect active microbial communities present at given depths in the mats to ancient processes driving fine-sale pyrite variability in microbialites. We find large (up to 60‰) S isotope variability within a spatial range of less than 2.5cm. The micron-scale S isotope measurements converge around the S isotope composition of pyrite extracted from bulk samples of the same microbialites. These micron-scale pyrite S isotope patterns have the potential to reveal important information about ancient biogeochemical cycling in Proterozoic mat environments with implications for interpreting S isotope signatures from the geological record.
NASA Astrophysics Data System (ADS)
Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng
2014-11-01
Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.
Spatial and seasonal variability of forested headwater stream temperatures in western Oregon, USA
J. A. Leach; D. H. Olson; P. D. Anderson; B. N. I. Eskelson
2017-01-01
Thermal regimes of forested headwater streams control the growth and distribution of various aquatic organisms. In a western Oregon, USA, case study we examined: (1) forested headwater stream temperature variability in space and time; (2) relationships between stream temperature patterns and weather, above-stream canopy cover, and geomorphic attributes; and (3) the...
Optoelectronic fuzzy associative memory with controllable attraction basin sizes
NASA Astrophysics Data System (ADS)
Wen, Zhiqing; Campbell, Scott; Wu, Weishu; Yeh, Pochi
1995-10-01
We propose and demonstrate a new fuzzy associative memory model that provides an option to control the sizes of the attraction basins in neural networks. In our optoelectronic implementation we use spatial/polarization encoding to represent the fuzzy variables. Shadow casting of the encoded patterns is employed to yield the fuzzy-absolute difference between fuzzy variables.
NASA Astrophysics Data System (ADS)
Barada, Daisuke; Yatagai, Toyohiko
2016-09-01
Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.
NASA Astrophysics Data System (ADS)
Wolf, N.; Siegmund, A.; del Río, C.; Osses, P.; García, J. L.
2016-06-01
In the coastal Atacama Desert in Northern Chile plant growth is constrained to so-called `fog oases' dominated by monospecific stands of the genus Tillandsia. Adapted to the hyperarid environmental conditions, these plants specialize on the foliar uptake of fog as main water and nutrient source. It is this characteristic that leads to distinctive macro- and micro-scale distribution patterns, reflecting complex geo-ecological gradients, mainly affected by the spatiotemporal occurrence of coastal fog respectively the South Pacific Stratocumulus clouds reaching inlands. The current work employs remote sensing, machine learning and spatial pattern/GIS analysis techniques to acquire detailed information on the presence and state of Tillandsia spp. in the Tarapacá region as a base to better understand the bioclimatic and topographic constraints determining the distribution patterns of Tillandsia spp. Spatial and spectral predictors extracted from WorldView-3 satellite data are used to map present Tillandsia vegetation in the Tarapaca region. Regression models on Vegetation Cover Fraction (VCF) are generated combining satellite-based as well as topographic variables and using aggregated high spatial resolution information on vegetation cover derived from UAV flight campaigns as a reference. The results are a first step towards mapping and modelling the topographic as well as bioclimatic factors explaining the spatial distribution patterns of Tillandsia fog oases in the Atacama, Chile.
Distribution patterns in the native vascular flora of Iceland.
Wasowicz, Pawel; Pasierbiński, Andrzej; Przedpelska-Wasowicz, Ewa Maria; Kristinsson, Hörður
2014-01-01
The aim of our study was to reveal biogeographical patterns in the native vascular flora of Iceland and to define ecological factors responsible for these patterns. We analysed dataset of more than 500,000 records containing information on the occurrence of vascular plants. Analysis of ecological factors included climatic (derived from WORLDCLIM data), topographic (calculated from digital elevation model) and geological (bedrock characteristics) variables. Spherical k-means clustering and principal component analysis were used to detect biogeographical patterns and to study the factors responsible for them. We defined 10 biotic elements exhibiting different biogeographical patterns. We showed that climatic (temperature-related) and topographic variables were the most important factors contributing to the spatial patterns within the Icelandic vascular flora and that these patterns are almost completely independent of edaphic factors (bedrock type). Our study is the first one to analyse the biogeographical differentiation of the native vascular flora of Iceland.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lei; Qian, Yun; Zhang, Yaocun
This paper presents a comprehensive analysis of interannual and interdecadal variations of summer precipitation and precipitation-related extreme events in China associated with variations of the East Asian summer monsoon (EASM) from 1979-2012. A high-quality daily precipitation dataset covering 2287 weather stations in China is analyzed. Based on the precipitation pattern analysis using empirical orthogonal functions, three sub-periods of 1979-1992 (period I), 1993-1999 (period II) and 2000-2012 (period III) are identified to be representative of the precipitation variability. Similar significant variability of the extreme precipitation indices is found across four sub-regions in eastern China. The spatial patterns of summer mean precipitation,more » the number of days with daily rainfall exceeding 95th percentile precipitation (R95p) and the maximum number of consecutive wet days (CWD) anomalies are consistent, but opposite to that of maximum consecutive dry days (CDD) anomalies during the three sub-periods. However, the spatial patterns of hydroclimatic intensity (HY-INT) are notably different from that of the other three extreme indices, but highly correlated to the dry events. The changes of precipitation anomaly patterns are accompanied by the change of the EASM regime and the abrupt shift of the position of the west Pacific subtropical high around 1992/1993 and 1999/2000, respectively, which influence the moisture transport that contributes most to the precipitation anomalies. Lastly, the EASM intensity is linked to sea surface temperature anomaly over the tropical Indian and Pacific Ocean that influences deep convection over the oceans.« less
NASA Astrophysics Data System (ADS)
Neves, Maria C.; Costa, Luis; Monteiro, José P.
2016-06-01
Karst aquifers in semi-arid regions, like Querença-Silves (Portugal), are particularly vulnerable to climate variability. For the first time in this region, the temporal structure of a groundwater-level time series (1985-2010) was explored using the continuous wavelet transform. The investigation focused on a set of four piezometers, two at each side of the S. Marcos-Quarteira fault, to demonstrate how each of the two sectors of the aquifer respond to climate-induced patterns. Singular spectral analysis applied to an extended set of piezometers enabled identification of several quasi-periodic modes of variability, with periods of 6.5, 4.3, 3.2 and 2.6 years, which can be explained by low-frequency climate patterns. The geologic forcing accounts for ~15 % of the differential variability between the eastern and western sectors of the aquifer. The western sector displays spatially homogenous piezometric variations, large memory effects and low-pass filtering characteristics, which are consistent with relatively large and uniform values of water storage capacity and transmissivity properties. In this sector, the 6.5-year mode of variability accounts for ~70 % of the total variance of the groundwater levels. The eastern sector shows larger spatial and temporal heterogeneity, is more reactive to short-term variations, and is less influenced by the low-frequency components related to climate patterns.
Climate-mediated spatiotemporal variability in terrestrial productivity across Europe
NASA Astrophysics Data System (ADS)
Wu, X.; Babst, F.; Ciais, P.; Frank, D.; Reichstein, M.; Wattenbach, M.; Zang, C.; Mahecha, M. D.
2014-06-01
Quantifying the interannual variability (IAV) of the terrestrial ecosystem productivity and its sensitivity to climate is crucial for improving carbon budget predictions. In this context it is necessary to disentangle the influence of climate from impacts of other mechanisms underlying the spatiotemporal patterns of IAV of the ecosystem productivity. In this study we investigated the spatiotemporal patterns of IAV of historical observations of European crop yields in tandem with a set of climate variables. We further evaluated if relevant remote-sensing retrievals of NDVI (normalized difference vegetation index) and FAPAR (fraction of absorbed photosynthetically active radiation) depict a similar behaviour. Our results reveal distinct spatial patterns in the IAV of the analysed proxies linked to terrestrial productivity. In particular, we find higher IAV in water-limited regions of Europe (Mediterranean and temperate continental Europe) compared to other regions in both crop yield and remote-sensing observations. Our results further indicate that variations in the water balance during the active growing season exert a more pronounced and direct effect than variations of temperature on explaining the spatial patterns in IAV of productivity-related variables in temperate Europe. Overall, we observe a temporally increasing trend in the IAV of terrestrial productivity and an increasing sensitivity of productivity to water availability in dry regions of Europe during the 1975-2009 period. In the same regions, a simultaneous increase in the IAV of water availability was detected. These findings suggest intricate responses of carbon fluxes to climate variability in Europe and that the IAV of terrestrial productivity has become potentially more sensitive to changes in water availability in the dry regions in Europe. The changing sensitivity of terrestrial productivity accompanied by the changing IAV of climate is expected to impact carbon stocks and the net carbon balance of European ecosystems.
NASA Astrophysics Data System (ADS)
Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun
2017-10-01
Monitoring of fine particulate matter with diameter <2.5 μm (PM2.5) started from 1999 in the US and even later in many other countries. The lack of historical PM2.5 data limits epidemiological studies of long-term exposure of PM2.5 and health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter <10 μm (PM10) and meteorological variables. Monitoring data of PM10, PM2.5, and meteorological variables covering the entire state of California were obtained from 1999 through 2013. We developed a spatiotemporal model that quantified non-linear associations between PM2.5 concentrations and the following predictor variables: spatiotemporal factors (PM10 and meteorological variables), spatial factors (land-use patterns, traffic, elevation, distance to shorelines, and spatial autocorrelation), and season. Our model accounted for regional-(county) scale spatial autocorrelation, using spatial weight matrix, and local-scale spatiotemporal variability, using local covariates in additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.
Electrically tunable spatially variable switching in ferroelectric liquid crystal/water system
NASA Astrophysics Data System (ADS)
Choudhary, A.; Coondoo, I.; Prakash, J.; Sreenivas, K.; Biradar, A. M.
2009-04-01
An unusual switching phenomenon in the region outside conducting patterned area in ferroelectric liquid crystal (FLC) containing about 1-2 wt % of water has been observed. The presence of water in the studied heterogeneous system was confirmed by Fourier transform infrared spectroscopy. The observed optical studies have been emphasized on the "spatially variable switching" phenomenon of the molecules in the nonconducting region of the cell. The observed phenomenon is due to diffusion of water between the smectic layers of the FLC and the interaction of the curved electric field lines with the FLC molecules in the nonconducting region.
Spatial patterns of mixing in the Solomon Sea
NASA Astrophysics Data System (ADS)
Alberty, M. S.; Sprintall, J.; MacKinnon, J.; Ganachaud, A.; Cravatte, S.; Eldin, G.; Germineaud, C.; Melet, A.
2017-05-01
The Solomon Sea is a marginal sea in the southwest Pacific that connects subtropical and equatorial circulation, constricting transport of South Pacific Subtropical Mode Water and Antarctic Intermediate Water through its deep, narrow channels. Marginal sea topography inhibits internal waves from propagating out and into the open ocean, making these regions hot spots for energy dissipation and mixing. Data from two hydrographic cruises and from Argo profiles are employed to indirectly infer mixing from observations for the first time in the Solomon Sea. Thorpe and finescale methods indirectly estimate the rate of dissipation of kinetic energy (ɛ) and indicate that it is maximum in the surface and thermocline layers and decreases by 2-3 orders of magnitude by 2000 m depth. Estimates of diapycnal diffusivity from the observations and a simple diffusive model agree in magnitude but have different depth structures, likely reflecting the combined influence of both diapycnal mixing and isopycnal stirring. Spatial variability of ɛ is large, spanning at least 2 orders of magnitude within isopycnal layers. Seasonal variability of ɛ reflects regional monsoonal changes in large-scale oceanic and atmospheric conditions with ɛ increased in July and decreased in March. Finally, tide power input and topographic roughness are well correlated with mean spatial patterns of mixing within intermediate and deep isopycnals but are not clearly correlated with thermocline mixing patterns.
Temporal and spatial changes in social vulnerability to natural hazards
Cutter, Susan L.; Finch, Christina
2008-01-01
During the past four decades (1960–2000), the United States experienced major transformations in population size, development patterns, economic conditions, and social characteristics. These social, economic, and built-environment changes altered the American hazardscape in profound ways, with more people living in high-hazard areas than ever before. To improve emergency management, it is important to recognize the variability in the vulnerable populations exposed to hazards and to develop place-based emergency plans accordingly. The concept of social vulnerability identifies sensitive populations that may be less likely to respond to, cope with, and recover from a natural disaster. Social vulnerability is complex and dynamic, changing over space and through time. This paper presents empirical evidence on the spatial and temporal patterns in social vulnerability in the United States from 1960 to the present. Using counties as our study unit, we found that those components that consistently increased social vulnerability for all time periods were density (urban), race/ethnicity, and socioeconomic status. The spatial patterning of social vulnerability, although initially concentrated in certain geographic regions, has become more dispersed over time. The national trend shows a steady reduction in social vulnerability, but there is considerable regional variability, with many counties increasing in social vulnerability during the past five decades. PMID:18268336
NASA Astrophysics Data System (ADS)
Liguori, Giovanni; Di Lorenzo, Emanuele; Cabos, William
2017-02-01
Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east-west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics controlling the leading modes of heat flux variability may enhance our predictability of the climate of the Mediterranean area.
Capturing temporal and spatial variability in the chemistry of shallow permafrost ponds
NASA Astrophysics Data System (ADS)
Morison, Matthew Q.; Macrae, Merrin L.; Petrone, Richard M.; Fishback, LeeAnn
2017-12-01
Across the circumpolar north, the fate of small freshwater ponds and lakes (< 1 km2) has been the subject of scientific interest due to their ubiquity in the landscape, capacity to exchange carbon and energy with the atmosphere, and their potential to inform researchers about past climates through sediment records. A changing climate has implications for the capacity of ponds and lakes to support organisms and store carbon, which in turn has important feedbacks to climate change. Thus, an improved understanding of pond biogeochemistry is needed. To characterize spatial and temporal patterns in water column chemistry, a suite of tundra ponds were examined to answer the following research questions: (1) does temporal variability exceed spatial variability? (2) If temporal variability exists, do all ponds (or groups of ponds) behave in a similar temporal pattern, linked to seasonal hydrologic drivers or precipitation events? Six shallow ponds located in the Hudson Bay Lowlands region were monitored between May and October 2015 (inclusive, spanning the entire open-water period). The ponds span a range of biophysical conditions including pond area, perimeter, depth, and shoreline development. Water samples were collected regularly, both bimonthly over the ice-free season and intensively during and following a large summer storm event. Samples were analysed for nitrogen speciation (NO3-, NH4+, dissolved organic nitrogen) and major ions (Cl-, SO42-, K+, Ca2+, Mg2+, Na+). Across all ponds, temporal variability (across the season and within a single rain event) exceeded spatial variability (variation among ponds) in concentrations of several major species (Cl-, SO42-, K+, Ca2+, Na+). Evapoconcentration and dilution of pond water with precipitation and runoff inputs were the dominant processes influencing a set of chemical species which are hydrologically driven (Cl-, Na+, K+, Mg2+, dissolved organic nitrogen), whereas the dissolved inorganic nitrogen species were likely mediated by processes within ponds. This work demonstrates the importance of understanding hydrologically driven chemodynamics in permafrost ponds on multiple scales (seasonal and event scale).
NASA Astrophysics Data System (ADS)
Vanwalleghem, T.; Román, A.; Giraldez, J. V.
2016-12-01
There is a need for better understanding the processes influencing soil formation and the resulting distribution of soil properties. Soil properties can exhibit strong spatial variation, even at the small catchment scale. Especially soil carbon pools in semi-arid, mountainous areas are highly uncertain because bulk density and stoniness are very heterogeneous and rarely measured explicitly. In this study, we explore the spatial variability in key soil properties (soil carbon stocks, stoniness, bulk density and soil depth) as a function of processes shaping the critical zone (weathering, erosion, soil water fluxes and vegetation patterns). We also compare the potential of a geostatistical versus a mechanistic soil formation model (MILESD) for predicting these key soil properties. Soil core samples were collected from 67 locations at 6 depths. Total soil organic carbon stocks were 4.38 kg m-2. Solar radiation proved to be the key variable controlling soil carbon distribution. Stone content was mostly controlled by slope, indicating the importance of erosion. Spatial distribution of bulk density was found to be highly random. Finally, total carbon stocks were predicted using a random forest model whose main covariates were solar radiation and NDVI. The model predicts carbon stocks that are double as high on north versus south-facing slopes. However, validation showed that these covariates only explained 25% of the variation in the dataset. Apparently, present-day landscape and vegetation properties are not sufficient to fully explain variability in the soil carbon stocks in this complex terrain under natural vegetation. This is attributed to a high spatial variability in bulk density and stoniness, key variables controlling carbon stocks. Similar results were obtained with the mechanistic soil formation model MILESD, suggesting that more complex models might be needed to further explore this high spatial variability.
Xu, Haigen; Cao, Yun; Cao, Mingchang; Wu, Jun; Wu, Yi; Le, Zhifang; Cui, Peng; Li, Jiaqi; Ma, Fangzhou; Liu, Li; Hu, Feilong; Chen, Mengmeng; Tong, Wenjun
2017-11-01
Proxies are adopted to represent biodiversity patterns due to inadequate information for all taxa. Despite the wide use of proxies, their efficacy remains unclear. Previous analyses focused on overall species richness for fewer groups, affecting the generality and depth of inference. Biological taxa often exhibit very different habitat preferences. Habitat groupings may be an appropriate approach to advancing the study of richness patterns. Diverse geographical patterns of species richness and their potential mechanisms were then examined for habitat groups. We used a database of the spatial distribution of 32,824 species of mammals, birds, reptiles, amphibians and plants from 2,376 counties across China, divided the five taxa into 30 habitat groups, calculated Spearman correlations of species richness among taxa and habitat groups, and tested five hypotheses about richness patterns using multivariate models. We identified one major group [i.e., forest- and shrub-dependent (FS) groups], and some minor groups such as grassland-dependent vertebrates and desert-dependent vertebrates. There were mostly high or moderate correlations among FS groups, but mostly low or moderate correlations among other habitat groups. The prominent variables differed among habitat groups of the same taxon, such as birds and reptiles. The sets of predictors were also different within the same habitat, such as forests, grasslands, and deserts. Average correlations among the same habitat groups of vertebrates and among habitat groups of a single taxon were low or moderate, except correlations among FS groups. The sets of prominent variables of species richness differed strongly among habitat groups, although elevation range was the most important variable for most FS groups. The ecological and evolutionary processes that underpin richness patterns might be disparate among different habitat groups. Appropriate groupings based on habitats could reveal important patterns of richness gradients and valuable biodiversity components.
Bird diversity along a gradient of fragmented habitats of the Cerrado.
Jesus, Shayana DE; Pedro, Wagner A; Bispo, Arthur A
2018-01-01
Understanding the factors that affect biodiversity is of central interest to ecology, and essential to species conservation and ecosystems management. We sampled bird communities in 17 forest fragments in the Cerrado biome, the Central-West region of Brazil. We aimed to know the communities structure pattern and the influence of geographical distance and environmental variables on them, along a gradient of fragmented habitats at both local and landscape scales. Eight structural variables of the fragments served as an environmental distance measurement at the local scale while five metrics served as an environmental distance measurement at the landscape scale. Species presence-absence data were used to calculate the dissimilarity index. Beta diversity was calculated using three indices (βsim, βnes and βsor), representing the spatial species turnover, nestedness and total beta diversity, respectively. Spatial species turnover was the predominant pattern in the structure of the communities. Variations in beta diversity were explained only by the environmental variables of the landscape with spatial configuration being more important than the composition. This fact indicates that, in Cerrado of Goiás avian communities structure, deterministic ecological processes associated to differences in species responses to landscape fragmentation are more important than stochastic processes driven by species dispersal.
Meléndez, María José; Báez, José Carlos; Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David
2017-01-01
Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea.
NASA Astrophysics Data System (ADS)
Roy, M.; Rios, D.; Cosburn, K.
2017-12-01
Shear between the moving lithosphere and the underlying asthenospheric mantle can produce dynamic pressure gradients that control patterns of melt migration by percolative flow. Within continental interiors these pressure gradients may be large enough to focus melt migration into zones of low dynamic pressure and thus influence the surface distribution of magmatism. We build upon previous work to show that for a lithospheric keel that protrudes into the "mantle wind," spatially-variable melt migration can lead to spatially-variable thermal weakening of the lithosphere. Our models treat advective heat transfer in porous flow in the limit that heat transfer between the melt and surrounding matrix dominates over conductive heat transfer within either the melt or the solid alone. The models are parameterized by a heat transfer coefficient that we interpret to be related to the efficiency of heat transfer across the fluid-rock interface, related to the geometry and distribution of porosity. Our models quantitatively assess the viability of spatially variable thermal-weakening caused by melt-migration through continental regions that are characterized by variations in lithospheric thickness. We speculate upon the relevance of this process in producing surface patterns of Cenozoic magmatism and heatflow at the Colorado Plateau in the western US.
Geomorphic control of landscape carbon accumulation
Rosenbloom, N.A.; Harden, J.W.; Neff, J.C.; Schimel, D.S.
2006-01-01
We use the CREEP process-response model to simulate soil organic carbon accumulation in an undisturbed prairie site in Iowa. Our primary objectives are to identify spatial patterns of carbon accumulation, and explore the effect of erosion on basin-scale C accumulation. Our results point to two general findings. First, redistribution of soil carbon by erosion results in a net increase in basin-wide carbon storage relative to a noneroding environment. Landscape-average mean residence times are increased in an eroding landscape owing to the burial/preservation of otherwise labile C. Second, field observations taken along a slope transect may overlook significant intraslope variations in carbon accumulation. Spatial patterns of modeled deep C accumulation are complex. While surface carbon with its relatively short equilibration time is predictable from surface properties, deep carbon is strongly influenced by the landscape's geomorphic and climatic history, resulting in wide spatial variability. Convergence and divergence associated with upland swales and interfluves result in bimodal carbon distributions in upper and mid slopes; variability in carbon storage within modeled mid slopes was as high as simulated differences between erosional shoulders and depositional valley bottoms. The bimodality of mid-slope C variability in the model suggests that a three-dimensional sampling strategy is preferable over the traditional two-dimensional analog or "catena" approach. Copyright 2006 by the American Geophysical Union.
Wang, Xing; Yang, Xinguo; Wang, Lei; Chen, Lin; Song, Naiping; Gu, Junlong; Xue, Yi
2018-01-01
Excluding grazers is one of most efficient ways to restore degraded grasslands in desert-steppe communities, but may negatively affect the recovery of plant species diversity. However, diversity differences between grazed and fenced grasslands in desert-steppe are poorly known. In a Stipa breviflora desert steppe community in Northern China, we established six plots to examine spatial patterns of plant species diversity under grazed and fenced conditions, respectively. We addressed three aspects of species diversity: (1) The logistic, exponential and power models were used to describe the species-area curve (SAR). Species richness, abundance and Shannon diversity values change differently with increasing sampling areas inside and outside of the fence. The best fitted model for SAR was the logistic model. Excluding grazers had a significant impact on the shape of SAR. (2) Variograms was applied to examine the spatial characteristics of plant species diversity. We found strong spatial autocorrelations in the diversity variables both inside and outside the fence. After grazing exclusion, the spatial heterogeneity decreased in species richness, increased in abundance and did not change in Shannon diversity. (3) We used variance partitioning to determine the relative contributions of spatial and environmental factors to plant species diversity patterns. Environmental factors explained the largest proportion of variation in species diversity, while spatial factors contributed little. Our results suggest that grazing enclosures decreased species diversity patterns and the spatial pattern of the S. breviflora desert steppe community was predictable.
Wang, Xing; Yang, Xinguo; Wang, Lei; Chen, Lin; Gu, Junlong; Xue, Yi
2018-01-01
Excluding grazers is one of most efficient ways to restore degraded grasslands in desert-steppe communities, but may negatively affect the recovery of plant species diversity. However, diversity differences between grazed and fenced grasslands in desert-steppe are poorly known. In a Stipa breviflora desert steppe community in Northern China, we established six plots to examine spatial patterns of plant species diversity under grazed and fenced conditions, respectively. We addressed three aspects of species diversity: (1) The logistic, exponential and power models were used to describe the species-area curve (SAR). Species richness, abundance and Shannon diversity values change differently with increasing sampling areas inside and outside of the fence. The best fitted model for SAR was the logistic model. Excluding grazers had a significant impact on the shape of SAR. (2) Variograms was applied to examine the spatial characteristics of plant species diversity. We found strong spatial autocorrelations in the diversity variables both inside and outside the fence. After grazing exclusion, the spatial heterogeneity decreased in species richness, increased in abundance and did not change in Shannon diversity. (3) We used variance partitioning to determine the relative contributions of spatial and environmental factors to plant species diversity patterns. Environmental factors explained the largest proportion of variation in species diversity, while spatial factors contributed little. Our results suggest that grazing enclosures decreased species diversity patterns and the spatial pattern of the S. breviflora desert steppe community was predictable. PMID:29456890
NASA Astrophysics Data System (ADS)
Eivazy, Hesameddin; Esmaieli, Kamran; Jean, Raynald
2017-12-01
An accurate characterization and modelling of rock mass geomechanical heterogeneity can lead to more efficient mine planning and design. Using deterministic approaches and random field methods for modelling rock mass heterogeneity is known to be limited in simulating the spatial variation and spatial pattern of the geomechanical properties. Although the applications of geostatistical techniques have demonstrated improvements in modelling the heterogeneity of geomechanical properties, geostatistical estimation methods such as Kriging result in estimates of geomechanical variables that are not fully representative of field observations. This paper reports on the development of 3D models for spatial variability of rock mass geomechanical properties using geostatistical conditional simulation method based on sequential Gaussian simulation. A methodology to simulate the heterogeneity of rock mass quality based on the rock mass rating is proposed and applied to a large open-pit mine in Canada. Using geomechanical core logging data collected from the mine site, a direct and an indirect approach were used to model the spatial variability of rock mass quality. The results of the two modelling approaches were validated against collected field data. The study aims to quantify the risks of pit slope failure and provides a measure of uncertainties in spatial variability of rock mass properties in different areas of the pit.
NASA Astrophysics Data System (ADS)
Gasmi, Sonia; Bernard, Ismaël; Pouvreau, Stéphane; Maurer, Danièle; Schaal, Gauthier; Ganthy, Florian; Cominassi, Louise; Allain, Gwenhael; Sautour, Benoit; David, Valérie
2017-01-01
In macrotidal coastal ecosystems, spatial heterogeneity of the water column properties is induced by both oceanic and continental influences. Hydrodynamic processes generate a land-sea gradient of environmental conditions, affecting the biological performances of sedentary organisms. The aim of the present study is to establish an extensive spatial assessment in the reproductive investment of the wild Pacific oyster Crassostrea gigas in Arcachon Bay. This is done by looking for a relationship between the Lawrence and Scott condition index (LSCI) and two tidal processes: the immersion level (IL) and the local oceanic flushing time (LoFt). The LSCI of C. gigas was assessed, just before gamete release, at 68 sampling stations in Arcachon Bay. Oyster performance was overall low and spatially variable. Significant differences in the LSCI were detected between the outer and inner bay. Oyster reefs located toward the mouth of the bay exhibited high LSCI (between 9 and 11), while oyster reefs located in inner bay, especially in south-eastern part around the Eyre River, had low LSCI (below 6). Linear modelling allowed to highlight significant effects of both tidal processes IL and LoFt on the obtained LSCI gradient. IL, LoFt explained 33% of the spatial variability observed on LSCI (IL = 3%; LoFt = 17%; LoFt + IL: 13%), 6% were attributed to the intra-station variation (ISv). Thus, high IL and rapid LoFt favor a better development of somatic-gonadal volume, probably because of longer feeding time and higher supply of food from the ocean by tide flows. Disentangling the effects of IL and LoFt on LSCI allowed to describe the spatial pattern in 61% of variability not explained by both tidal factors. A residual gradient directed southeast-northwest highlighted that others factors, independent from IL and LoFt seems to hamper inner bay oyster reproductive performance. Consequently, investigating on the ecological functioning (Eyre influences), trophic potential and anthropogenic pressures of this zone seem crucial on the understanding of C. gigas reproductive pattern in Arcachon Bay.
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention. PMID:26000951
Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H
2015-01-01
Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with 'Near' distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal regimens will be a likely outcome of fragmentation. Conservation implications include possible manual interventions (manual manipulations of offspring dispersers and/or pollinators) in forest fragments to increase population recovery and genetic diversity retention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrego, Rodrigo; Barra, Ricardo; Chiang, Gustavo
2008-03-01
Patterns of fish community composition in a south-central Chile river were investigated along the altitudinal-spatial and environmental gradient and as a function of anthropogenic factors. The spatial pattern of fish communities in different biocoenotic zones of the Chillan River is influenced by both natural factors such a hydrologic features, habitat, and feeding types, and also by water quality variables which can reduce the diversity and abundance of sensitive species. A principal component analysis incorporating both water quality parameters and biomarker responses of representative fish species was used to evaluate the status of fish communities along the spatial gradient of themore » stream. The abundance and diversity of the fish community changed from a low in the upper reaches where the low pollution-tolerant species such as salmonid dominated, to a reduced diversity in the lower reaches of the river where tolerant browser species such as cypriniformes dominated. Even though the spatial pattern of fish community structure is similar to that found for the Chilean Rivers, the structure of these communities is highly influenced by human disturbance, particularly along the lower reaches of the river.« less
SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign
NASA Astrophysics Data System (ADS)
Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.
2010-12-01
We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.
High storm surge events in Venice and the 11-yr solar cycle
NASA Astrophysics Data System (ADS)
Barriopedro, David; García-Herrera, Ricardo; Lionello, Piero; Pino, Cosimo
2010-05-01
In the last years the Venice lagoon has received much attention as a case of coastal vulnerability, mainly because of relative sea level rise and increase frequency of storm surge events, the so-called "aqua alta", which, particularly during autumn, cause the flooding of the Venice historical city center. Long-term fluctuations in solar activity and large-scale climate patterns have been suggested as feasible factors of flooding variability. This study explores the long-term frequency variability of High Surge Events (HSE) in Venice for the period 1948-2008 and its modulation by the 11-yr solar cycle. A significant decadal variability in the frequency of HSE is found in good correspondence with the 11-yr cycle, solar maxima being associated to a significant increase of the October-November-December HSE frequency. A Storm Surge Pattern (SSP), i.e. the seasonal 1000 hPa height pattern associated to increased frequency of HSE, is identified and found similar to the positive phase of the main variability mode of the regional atmospheric circulation (EOF1). However, further analyses indicate that the increase of HSE in solar maxima cannot be simply explained by a higher recurrence of positive EOF1 phases during high solar years. It rather seems that solar activity modulates the spatial patterns of the atmospheric circulation (EOF) and the favorable conditions for HSE occurrence (SSP). Thus, under solar maxima, the occurrence of HSE is enhanced by the EOF1, namely a large-scale wave train pattern that is symptomatic of storm track paths over northern Europe. Solar minima reveal a substantially different and less robust SSP, consisting of a meridionally oriented dipole with a preferred southward path of storm track activity, which is not associated to any EOF during low solar periods. It is concluded that solar activity plays an indirect role in the frequency of HSE by modulating the spatial patterns of the main modes of atmospheric regional variability, the favorable patterns for HSE occurrence and their mutual relationships, so that constructive interaction between them is enhanced during solar maxima and inhibited in solar minima.
NASA Astrophysics Data System (ADS)
Han, W.; Stammer, D.; Meehl, G. A.; Hu, A.; Sienz, F.
2016-12-01
Sea level varies on decadal and multi-decadal timescales over the Indian Ocean. The variations are not spatially uniform, and can deviate considerably from the global mean sea level rise (SLR) due to various geophysical processes. One of these processes is the change of ocean circulation, which can be partly attributed to natural internal modes of climate variability. Over the Indian Ocean, the most influential climate modes on decadal and multi-decadal timescales are the Interdecadal Pacific Oscillation (IPO) and decadal variability of the Indian Ocean dipole (IOD). Here, we first analyze observational datasets to investigate the impacts of IPO and IOD on spatial patterns of decadal and interdecadal (hereafter decal) sea level variability & multi-decadal trend over the Indian Ocean since the 1950s, using a new statistical approach of Bayesian Dynamical Linear regression Model (DLM). The Bayesian DLM overcomes the limitation of "time-constant (static)" regression coefficients in conventional multiple linear regression model, by allowing the coefficients to vary with time and therefore measuring "time-evolving (dynamical)" relationship between climate modes and sea level. For the multi-decadal sea level trend since the 1950s, our results show that climate modes and non-climate modes (the part that cannot be explained by climate modes) have comparable contributions in magnitudes but with different spatial patterns, with each dominating different regions of the Indian Ocean. For decadal variability, climate modes are the major contributors for sea level variations over most region of the tropical Indian Ocean. The relative importance of IPO and decadal variability of IOD, however, varies spatially. For example, while IOD decadal variability dominates IPO in the eastern equatorial basin (85E-100E, 5S-5N), IPO dominates IOD in causing sea level variations in the tropical southwest Indian Ocean (45E-65E, 12S-2S). To help decipher the possible contribution of external forcing to the multi-decadal sea level trend and decadal variability, we also analyze the model outputs from NCAR's Community Earth System Model (CESM) Large Ensemble Experiments, and compare the results with our observational analyses.
Severe wind and fire regimes in northern forests: historical variability at the regional scale
Lisa A. Schulte; David J. Mladenoff
2005-01-01
Within the northern Great Lakes region, mesoscale (10s to 100s of km2) forest patterning is driven by disturbance dynamics. Using original Public Land Survey (PLS) records in northern Wisconsin, USA, we study spatial patterns of wind and fire disturbances during the pre-Euroamerican settlement period (ca. 1850). Our goals were: (1) to...
Ecosystem classifications based on summer and winter conditions.
Andrew, Margaret E; Nelson, Trisalyn A; Wulder, Michael A; Hobart, George W; Coops, Nicholas C; Farmer, Carson J Q
2013-04-01
Ecosystem classifications map an area into relatively homogenous units for environmental research, monitoring, and management. However, their effectiveness is rarely tested. Here, three classifications are (1) defined and characterized for Canada along summertime productivity (moderate-resolution imaging spectrometer fraction of absorbed photosynthetically active radiation) and wintertime snow conditions (special sensor microwave/imager snow water equivalent), independently and in combination, and (2) comparatively evaluated to determine the ability of each classification to represent the spatial and environmental patterns of alternative schemes, including the Canadian ecozone framework. All classifications depicted similar patterns across Canada, but detailed class distributions differed. Class spatial characteristics varied with environmental conditions within classifications, but were comparable between classifications. There was moderate correspondence between classifications. The strongest association was between productivity classes and ecozones. The classification along both productivity and snow balanced these two sets of variables, yielding intermediate levels of association in all pairwise comparisons. Despite relatively low spatial agreement between classifications, they successfully captured patterns of the environmental conditions underlying alternate schemes (e.g., snow classes explained variation in productivity and vice versa). The performance of ecosystem classifications and the relevance of their input variables depend on the environmental patterns and processes used for applications and evaluation. Productivity or snow regimes, as constructed here, may be desirable when summarizing patterns controlled by summer- or wintertime conditions, respectively, or of climate change responses. General purpose ecosystem classifications should include both sets of drivers. Classifications should be carefully, quantitatively, and comparatively evaluated relative to a particular application prior to their implementation as monitoring and assessment frameworks.
NASA Astrophysics Data System (ADS)
Reusch, D. B.
2016-12-01
Any analysis that wants to use a GCM-based scenario of future climate benefits from knowing how much uncertainty the GCM's inherent variability adds to the development of climate change predictions. This is extra relevant in the polar regions due to the potential of global impacts (e.g., sea level rise) from local (ice sheet) climate changes such as more frequent/intense surface melting. High-resolution, regional-scale models using GCMs for boundary/initial conditions in future scenarios inherit a measure of GCM-derived externally-driven uncertainty. We investigate these uncertainties for the Greenland ice sheet using the 30-member CESM1.0-CAM5-BGC Large Ensemble (CESMLE) for recent (1981-2000) and future (2081-2100, RCP 8.5) decades. Recent simulations are skill-tested against the ERA-Interim reanalysis and AWS observations with results informing future scenarios. We focus on key variables influencing surface melting through decadal climatologies, nonlinear analysis of variability with self-organizing maps (SOMs), regional-scale modeling (Polar WRF), and simple melt models. Relative to the ensemble average, spatially averaged climatological July temperature anomalies over a Greenland ice-sheet/ocean domain are mostly between +/- 0.2 °C. The spatial average hides larger local anomalies of up to +/- 2 °C. The ensemble average itself is 2 °C cooler than ERA-Interim. SOMs extend our diagnostics by providing a concise, objective summary of model variability as a set of generalized patterns. For CESMLE, the SOM patterns summarize the variability of multiple realizations of climate. Changes in pattern frequency by ensemble member show the influence of initial conditions. For example, basic statistical analysis of pattern frequency yields interquartile ranges of 2-4% for individual patterns across the ensemble. In climate terms, this tells us about climate state variability through the range of the ensemble, a potentially significant source of melt-prediction uncertainty. SOMs can also capture the different trajectories of climate due to intramodel variability over time. Polar WRF provides higher resolution regional modeling with improved, polar-centric model physics. Simple melt models allow us to characterize impacts of the upstream uncertainties on estimates of surface melting.
Do we really use rainfall observations consistent with reality in hydrological modelling?
NASA Astrophysics Data System (ADS)
Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves
2017-04-01
Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.
Classification and regression trees
G. G. Moisen
2008-01-01
Frequently, ecologists are interested in exploring ecological relationships, describing patterns and processes, or making spatial or temporal predictions. These purposes often can be addressed by modeling the relationship between some outcome or response and a set of features or explanatory variables.
Texture-dependent motion signals in primate middle temporal area
Gharaei, Saba; Tailby, Chris; Solomon, Selina S; Solomon, Samuel G
2013-01-01
Neurons in the middle temporal (MT) area of primate cortex provide an important stage in the analysis of visual motion. For simple stimuli such as bars and plaids some neurons in area MT – pattern cells – seem to signal motion independent of contour orientation, but many neurons – component cells – do not. Why area MT supports both types of receptive field is unclear. To address this we made extracellular recordings from single units in area MT of anaesthetised marmoset monkeys and examined responses to two-dimensional images with a large range of orientations and spatial frequencies. Component and pattern cell response remained distinct during presentation of these complex spatial textures. Direction tuning curves were sharpest in component cells when a texture contained a narrow range of orientations, but were similar across all neurons for textures containing all orientations. Response magnitude of pattern cells, but not component cells, increased with the spatial bandwidth of the texture. In addition, response variability in all neurons was reduced when the stimulus was rich in spatial texture. Fisher information analysis showed that component cells provide more informative responses than pattern cells when a texture contains a narrow range of orientations, but pattern cells had more informative responses for broadband textures. Component cells and pattern cells may therefore coexist because they provide complementary and parallel motion signals. PMID:24000175
NASA Astrophysics Data System (ADS)
Kiani, M.; Hernandez Ramirez, G.; Quideau, S.
2016-12-01
Improved knowledge about the spatial variability of plant available water (PAW), soil organic carbon (SOC), and microbial biomass carbon (MBC) as affected by land-use systems can underpin the identification and inventory of beneficial ecosystem good and services in both agricultural and wild lands. Little research has been done that addresses the spatial patterns of PAW, SOC, and MBC under different land use types at a field scale. Therefore, we collected 56 soil samples (5-10 cm depth increment), using a nested cyclic sampling design within both a native grassland (NG) site and an irrigated cultivated (IC) site located near Brooks, Alberta. Using classical statistical and geostatistical methods, we characterized the spatial heterogeneities of PAW, SOC, and MBC under NG and IC using several geostatistical methods such as ordinary kriging (OK), regression-kriging (RK), cokriging (COK), and regression-cokriging (RCOK). Converting the native grassland to irrigated cultivated land altered soil pore distribution by reducing macroporosity which led to lower saturated water content and half hydraulic conductivity in IC compared to NG. This conversion also decreased the relative abundance of gram-negative bacteria, while increasing both the proportion of gram-positive bacteria and MBC concentration. At both studied sites, the best fitted spatial model was Gaussian based on lower RSS and higher R2 as criteria. The IC had stronger degree of spatial dependence and longer range of spatial auto-correlation revealing a homogenization of the spatial variability of soil properties as a result of intensive, recurrent agricultural activities. Comparison of OK, RK, COK, and RCOK approaches indicated that cokriging method had the best performance demonstrating a profound improvement in the accuracy of spatial estimations of PAW, SOC, and MBC. It seems that the combination of terrain covariates such as elevation and depth-to-water with kriging techniques offers more capability for incorporating explicit ancillary information in predictive soil mapping. Overall, identification of spatial patterns of soil properties in agricultural lands gives a bird's eye view to land owners to implement and improve management practices which lead to more sustainable production.
Eddie L. Shea; Lisa A. Schulte; Brian J. Palik
2017-01-01
Structural complexity is widely recognized as an inherent characteristic of unmanaged forests critical to their function and resilience, but often reduced in their managed counterparts. Variable retention harvesting (VRH) has been proposed as a way to restore or enhance structural complexity in managed forests, and thereby sustain attendant biodiversity and ecosystem...
Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups
Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun
2015-01-01
Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity. PMID:26629903
Methylmercury bioaccumulation in an urban estuary: Delaware River USA.
Buckman, Kate; Taylor, Vivien; Broadley, Hannah; Hocking, Daniel; Balcom, Prentiss; Mason, Rob; Nislow, Keith; Chen, Celia
2017-09-01
Spatial variation in mercury (Hg) and methylmercury (MeHg) bioaccumulation in urban coastal watersheds reflects complex interactions between Hg sources, land use, and environmental gradients. We examined MeHg concentrations in fauna from the Delaware River estuary, and related these measurements to environmental parameters and human impacts on the waterway. The sampling sites followed a north to south gradient of increasing salinity, decreasing urban influence, and increasing marsh cover. Although mean total Hg in surface sediments (top 4cm) peaked in the urban estuarine turbidity maximum and generally decreased downstream, surface sediment MeHg concentrations showed no spatial patterns consistent with the examined environmental gradients, indicating urban influence on Hg loading to the sediment but not subsequent methylation. Surface water particulate MeHg concentration showed a positive correlation with marsh cover whereas dissolved MeHg concentrations were slightly elevated in the estuarine turbidity maximum region. Spatial patterns of MeHg bioaccumulation in resident fauna varied across taxa. Small fish showed increased MeHg concentrations in the more urban/industrial sites upstream, with concentrations generally decreasing farther downstream. Invertebrates either showed no clear spatial patterns in MeHg concentrations (blue crabs, fiddler crabs) or increasing concentrations further downstream (grass shrimp). Best-supported linear mixed models relating tissue concentration to environmental variables reflected these complex patterns, with species specific model results dominated by random site effects with a combination of particulate MeHg and landscape variables influencing bioaccumulation in some species. The data strengthen accumulating evidence that bioaccumulation in estuaries can be decoupled from sediment MeHg concentration, and that drivers of MeHg production and fate may vary within a small region.
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
Drive by Soil Moisture Measurement: A Citizen Science Project
NASA Astrophysics Data System (ADS)
Senanayake, I. P.; Willgoose, G. R.; Yeo, I. Y.; Hancock, G. R.
2017-12-01
Two of the common attributes of soil moisture are that at any given time it varies quite markedly from point to point, and that there is a significant deterministic pattern that underlies this spatial variation and which is typically 50% of the spatial variability. The spatial variation makes it difficult to determine the time varying catchment average soil moisture using field measurements because any individual measurement is unlikely to be equal to the average for the catchment. The traditional solution to this is to make many measurements (e.g. with soil moisture probes) spread over the catchment, which is very costly and manpower intensive, particularly if we need a time series of soil moisture variation across a catchment. An alternative approach, explored in this poster is to use the deterministic spatial pattern of soil moisture to calibrate one site (e.g. a permanent soil moisture probe at a weather station) to the spatial pattern of soil moisture over the study area. The challenge is then to determine the spatial pattern of soil moisture. This poster will present results from a proof of concept project, where data was collected by a number of undergraduate engineering students, to estimate the spatial pattern. The approach was to drive along a series of roads in a catchment and collect soil moisture measurements at the roadside using field portable soil moisture probes. This drive was repeated a number of times over the semester, and the time variation and spatial persistence of the soil moisture pattern were examined. Provided that the students could return to exactly the same location on each collection day there was a strong persistent pattern in the soil moisture, even while the average soil moisture varied temporally as a result of preceding rainfall. The poster will present results and analysis of the student data, and compare these results with several field sites where we have spatially distributed permanently installed soil moisture probes. The poster will also outline an experimental design, based on our experience, that will underpin a proposed citizen science project involving community environment and farming groups, and high school students.
NASA Astrophysics Data System (ADS)
Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.
2017-12-01
The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Wei; Balkovic, Juraj; van der Velde, M.
Crop models are increasingly used to assess impacts of climate change/variability and management practices on productivity and environmental performance of alternative cropping systems. Calibration is an important procedure to improve reliability of model simulations, especially for large area applications. However, global-scale crop model calibration has rarely been exercised due to limited data availability and expensive computing cost. Here we present a simple approach to calibrate Environmental Policy Integrated Climate (EPIC) model for a global implementation of rice. We identify four parameters (potential heat unit – PHU, planting density – PD, harvest index – HI, and biomass energy ratio – BER)more » and calibrate them regionally to capture the spatial pattern of reported rice yield in 2000. Model performance is assessed by comparing simulated outputs with independent FAO national data. The comparison demonstrates that the global calibration scheme performs satisfactorily in reproducing the spatial pattern of rice yield, particularly in main rice production areas. Spatial agreement increases substantially when more parameters are selected and calibrated, but with varying efficiencies. Among the parameters, PHU and HI exhibit the highest efficiencies in increasing the spatial agreement. Simulations with different calibration strategies generate a pronounced discrepancy of 5–35% in mean yields across latitude bands, and a small to moderate difference in estimated yield variability and yield changing trend for the period of 1981–2000. Present calibration has little effects in improving simulated yield variability and trends at both regional and global levels, suggesting further works are needed to reproduce temporal variability of reported yields. This study highlights the importance of crop models’ calibration, and presents the possibility of a transparent and consistent up scaling approach for global crop simulations given current availability of global databases of weather, soil, crop calendar, fertilizer and irrigation management information, and reported yield.« less
Modeling α- and β-diversity in a tropical forest from remotely sensed and spatial data
NASA Astrophysics Data System (ADS)
Hernández-Stefanoni, J. Luis; Gallardo-Cruz, J. Alberto; Meave, Jorge A.; Rocchini, Duccio; Bello-Pineda, Javier; López-Martínez, J. Omar
2012-10-01
Comprehensive information on species distribution and species composition patterns of plant communities is required for effective conservation and management of biodiversity. Remote sensing offers an inexpensive means of attaining complete spatial coverage for large areas, at regular time intervals, and can therefore be extremely useful for estimating both species richness and spatial variation of species composition (α- and β-diversity). An essential step to map such attributes is to identify and understand their main drivers. We used remotely sensed data as a surrogate of plant productivity and habitat structure variables for explaining α- and β-diversity, and evaluated the relative roles of productivity-habitat structure and spatial variables in explaining observed patterns of α- and β-diversity by using a Principal Coordinates of Neighbor Matrices analysis. We also examined the relationship between remotely sensed and field data, in order to map α- and β-diversity at the landscape-level in the Yucatan Peninsula, using a regression kriging procedure. These two procedures integrate the relationship of species richness and spatial species turnover both with remotely sensed data and spatial structure. The empirical models so obtained can be used to predict species richness and variation in species composition, and they can be regarded as valuable tools not only for identifying areas with high local species richness (α-diversity), but also areas with high species turnover (β-diversity). Ultimately, information obtained in this way can help maximize the number of species preserved in a landscape.
What spatial scales are believable for climate model projections of sea surface temperature?
NASA Astrophysics Data System (ADS)
Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.
2014-09-01
Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (<8°). Our findings suggest that output from current generation ESMs is not yet suitable for making sub-regional projections of change in coral bleaching frequency and other marine processes linked to SST warming.
Heat tracing to determine spatial patterns of hyporheic exchange across a river transect
NASA Astrophysics Data System (ADS)
Lu, Chengpeng; Chen, Shuai; Zhang, Ying; Su, Xiaoru; Chen, Guohao
2017-09-01
Significant spatial variability of water fluxes may exist at the water-sediment interface in river channels and has great influence on a variety of water issues. Understanding the complicated flow systems controlling the flux exchanges along an entire river is often limited due to averaging of parameters or the small number of discrete point measurements usually used. This study investigated the spatial pattern of the hyporheic flux exchange across a river transect in China, using the heat tracing approach. This was done with measurements of temperature at high spatial resolution during a 64-h monitoring period and using the data to identify the spatial pattern of the hyporheic exchange flux with the aid of a one-dimensional conduction-advection-dispersion model (VFLUX). The threshold of neutral exchange was considered as 126 L m-2 d-1 in this study and the heat tracing results showed that the change patterns of vertical hyporheic flux varied with buried depth along the river transect; however, the hyporheic flux was not simply controlled by the streambed hydraulic conductivity and water depth in the river transect. Also, lateral flow dominated the hyporheic process within the shallow high-permeability streambed, while the vertical flow was dominant in the deep low-permeability streambed. The spatial pattern of hyporheic exchange across the river transect was naturally controlled by the heterogeneity of the streambed and the bedform of the stream cross-section. Consequently, a two-dimensional conceptual illustration of the hyporheic process across the river transect is proposed, which could be applicable to river transects of similar conditions.
Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi
2014-01-01
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500–1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks. PMID:24824445
Torné-Noguera, Anna; Rodrigo, Anselm; Arnan, Xavier; Osorio, Sergio; Barril-Graells, Helena; da Rocha-Filho, Léo Correia; Bosch, Jordi
2014-01-01
Understanding biodiversity distribution is a primary goal of community ecology. At a landscape scale, bee communities are affected by habitat composition, anthropogenic land use, and fragmentation. However, little information is available on local-scale spatial distribution of bee communities within habitats that are uniform at the landscape scale. We studied a bee community along with floral and nesting resources over a 32 km2 area of uninterrupted Mediterranean scrubland. Our objectives were (i) to analyze floral and nesting resource composition at the habitat scale. We ask whether these resources follow a geographical pattern across the scrubland at bee-foraging relevant distances; (ii) to analyze the distribution of bee composition across the scrubland. Bees being highly mobile organisms, we ask whether bee composition shows a homogeneous distribution or else varies spatially. If so, we ask whether this variation is irregular or follows a geographical pattern and whether bees respond primarily to flower or to nesting resources; and (iii) to establish whether body size influences the response to local resource availability and ultimately spatial distribution. We obtained 6580 specimens belonging to 98 species. Despite bee mobility and the absence of environmental barriers, our bee community shows a clear geographical pattern. This pattern is mostly attributable to heterogeneous distribution of small (<55 mg) species (with presumed smaller foraging ranges), and is mostly explained by flower resources rather than nesting substrates. Even then, a large proportion (54.8%) of spatial variability remains unexplained by flower or nesting resources. We conclude that bee communities are strongly conditioned by local effects and may exhibit spatial heterogeneity patterns at a scale as low as 500-1000 m in patches of homogeneous habitat. These results have important implications for local pollination dynamics and spatial variation of plant-pollinator networks.
A comparison of data-driven groundwater vulnerability assessment methods
Sorichetta, Alessandro; Ballabio, Cristiano; Masetti, Marco; Robinson, Gilpin R.; Sterlacchini, Simone
2013-01-01
Increasing availability of geo-environmental data has promoted the use of statistical methods to assess groundwater vulnerability. Nitrate is a widespread anthropogenic contaminant in groundwater and its occurrence can be used to identify aquifer settings vulnerable to contamination. In this study, multivariate Weights of Evidence (WofE) and Logistic Regression (LR) methods, where the response variable is binary, were used to evaluate the role and importance of a number of explanatory variables associated with nitrate sources and occurrence in groundwater in the Milan District (central part of the Po Plain, Italy). The results of these models have been used to map the spatial variation of groundwater vulnerability to nitrate in the region, and we compare the similarities and differences of their spatial patterns and associated explanatory variables. We modify the standard WofE method used in previous groundwater vulnerability studies to a form analogous to that used in LR; this provides a framework to compare the results of both models and reduces the effect of sampling bias on the results of the standard WofE model. In addition, a nonlinear Generalized Additive Model has been used to extend the LR analysis. Both approaches improved discrimination of the standard WofE and LR models, as measured by the c-statistic. Groundwater vulnerability probability outputs, based on rank-order classification of the respective model results, were similar in spatial patterns and identified similar strong explanatory variables associated with nitrate source (population density as a proxy for sewage systems and septic sources) and nitrate occurrence (groundwater depth).
NASA Astrophysics Data System (ADS)
Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.
2017-12-01
Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.
NASA Astrophysics Data System (ADS)
Balata, David; Bertocci, Iacopo; Piazzi, Luigi; Nesti, Ugo
2008-09-01
This paper aimed to compare epiphyte assemblages of leaves and rhizomes of Posidonia oceanica exposed to different levels of concentration of nutrients. The same design including a potentially impacted meadow and two reference meadows was used in each of two locations, characterized by the presence of a city or of suspended cages of a fish farm, respectively. This allowed to test for the consistency of responses of epiphytic assemblages to different sources of eutrophication. In both studies, results documented differences in patterns of composition and abundance of epiphytic assemblages on leaves between disturbed and reference meadows, while assemblages on rhizomes did not appear sensitive to this kind of disturbance. Moreover, in potentially impacted meadows, both assemblages showed different patterns of spatial variability compared to reference assemblages. Species composition and abundance of epiphyte assemblages seemed suitable for detecting moderate nutrient increases, even if adequate sampling designs are needed to separate patterns related to the large natural spatial variability of these systems from those related to changes in environmental conditions.
Global Diffusion Pattern and Hot SPOT Analysis of Vaccine-Preventable Diseases
NASA Astrophysics Data System (ADS)
Jiang, Y.; Fan, F.; Zanoni, I. Holly; Li, Y.
2017-10-01
Spatial characteristics reveal the concentration of vaccine-preventable disease in Africa and the Near East and that disease dispersion is variable depending on disease. The exception is whooping cough, which has a highly variable center of concentration from year to year. Measles exhibited the only statistically significant spatial autocorrelation among all the diseases under investigation. Hottest spots of measles are in Africa and coldest spots are in United States, warm spots are in Near East and cool spots are in Western Europe. Finally, cases of measles could not be explained by the independent variables, including Gini index, health expenditure, or rate of immunization. Since the literature confirms that each of the selected variables is considered determinants of disease dissemination, it is anticipated that the global dataset of disease cases was influenced by reporting bias.
Effects of spatial variability and scale on areal -average evapotranspiration
NASA Technical Reports Server (NTRS)
Famiglietti, J. S.; Wood, Eric F.
1993-01-01
This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.
Yang, Xiaohuan; Huang, Yaohuan; Dong, Pinliang; Jiang, Dong; Liu, Honghui
2009-01-01
The spatial distribution of population is closely related to land use and land cover (LULC) patterns on both regional and global scales. Population can be redistributed onto geo-referenced square grids according to this relation. In the past decades, various approaches to monitoring LULC using remote sensing and Geographic Information Systems (GIS) have been developed, which makes it possible for efficient updating of geo-referenced population data. A Spatial Population Updating System (SPUS) is developed for updating the gridded population database of China based on remote sensing, GIS and spatial database technologies, with a spatial resolution of 1 km by 1 km. The SPUS can process standard Moderate Resolution Imaging Spectroradiometer (MODIS L1B) data integrated with a Pattern Decomposition Method (PDM) and an LULC-Conversion Model to obtain patterns of land use and land cover, and provide input parameters for a Population Spatialization Model (PSM). The PSM embedded in SPUS is used for generating 1 km by 1 km gridded population data in each population distribution region based on natural and socio-economic variables. Validation results from finer township-level census data of Yishui County suggest that the gridded population database produced by the SPUS is reliable.
Spatial variability of harmful algal blooms in Milford Lake, Kansas, July and August 2015
Foster, Guy M.; Graham, Jennifer L.; Stiles, Tom C.; Boyer, Marvin G.; King, Lindsey R.; Loftin, Keith A.
2017-01-09
Cyanobacterial harmful algal blooms (CyanoHABs) tend to be spatially variable vertically in the water column and horizontally across the lake surface because of in-lake and weather-driven processes and can vary by orders of magnitude in concentration across relatively short distances (meters or less). Extreme spatial variability in cyanobacteria and associated compounds poses unique challenges to collecting representative samples for scientific study and public-health protection. The objective of this study was to assess the spatial variability of cyanobacteria and microcystin in Milford Lake, Kansas, using data collected on July 27 and August 31, 2015. Spatially dense near-surface data were collected by the U.S. Geological Survey, nearshore data were collected by the Kansas Department of Health and Environment, and open-water data were collected by U.S. Army Corps of Engineers. CyanoHABs are known to be spatially variable, but that variability is rarely quantified. A better understanding of the spatial variability of cyanobacteria and microcystin will inform sampling and management strategies for Milford Lake and for other lakes with CyanoHAB issues throughout the Nation.The CyanoHABs in Milford Lake during July and August 2015 displayed the extreme spatial variability characteristic of cyanobacterial blooms. The phytoplankton community was almost exclusively cyanobacteria (greater than 90 percent) during July and August. Cyanobacteria (measured directly by cell counts and indirectly by regression-estimated chlorophyll) and microcystin (measured directly by enzyme-linked immunosorbent assay [ELISA] and indirectly by regression estimates) concentrations varied by orders of magnitude throughout the lake. During July and August 2015, cyanobacteria and microcystin concentrations decreased in the downlake (towards the outlet) direction.Nearshore and open-water surface grabs were collected and analyzed for microcystin as part of this study. Samples were collected in the uplake (Zone C), midlake (Zone B), and downlake (Zone A) parts of the lake. Overall, no consistent pattern was indicated as to which sample location (nearshore or open water) had the highest microcystin concentrations. In July, the maximum microcystin concentration observed in each zone was detected at a nearshore site, and in August, maximum microcystin concentrations in each zone were detected at an open-water site.The Kansas Department of Health and Environment uses two guidance levels (a watch and a warning level) to issue recreational public-health advisories for CyanoHABs in Kansas lakes. The levels are based on concentrations of microcystin and numbers of cyanobacteria. In July and August, discrete water-quality samples were predominantly indicative of warning status in Zone C, watch status in Zone B, and no advisories in Zone A. Regression-estimated microcystin concentrations, which provided more thorough coverage of Milford Lake (n=683–720) than discrete samples (n=21–24), generally indicated the same overall pattern. Regardless of the individual agencies sampling approach, the overall public-health advisory status of each zone in Milford Lake was similar according to the Kansas Department of Health and Environment guidance levels.
Malvisi, Lucio; Troisi, Catherine L; Selwyn, Beatrice J
2018-06-23
The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G * (d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G * (d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.
Framework for Evaluating Water Quality of the New England Crystalline Rock Aquifers
Harte, Philip T.; Robinson, Gilpin R.; Ayotte, Joseph D.; Flanagan, Sarah M.
2008-01-01
Little information exists on regional ground-water-quality patterns for the New England crystalline rock aquifers (NECRA). A systematic approach to facilitate regional evaluation is needed for several reasons. First, the NECRA are vulnerable to anthropogenic and natural contaminants such as methyl tert-butyl ether (MTBE), arsenic, and radon gas. Second, the physical characteristics of the aquifers, termed 'intrinsic susceptibility', can lead to variable and degraded water quality. A framework approach for characterizing the aquifer region into areas of similar hydrogeology is described in this report and is based on hypothesized relevant physical features and chemical conditions (collectively termed 'variables') that affect regional patterns of ground-water quality. A framework for comparison of water quality across the NECRA consists of a group of spatial variables related to aquifer properties, hydrologic conditions, and contaminant sources. These spatial variables are grouped under four general categories (features) that can be mapped across the aquifers: (1) geologic, (2) hydrophysiographic, (3) land-use land-cover, and (4) geochemical. On a regional scale, these variables represent indicators of natural and anthropogenic sources of contaminants, as well as generalized physical and chemical characteristics of the aquifer system that influence ground-water chemistry and flow. These variables can be used in varying combinations (depending on the contaminant) to categorize the aquifer into areas of similar hydrogeologic characteristics to evaluate variation in regional water quality through statistical testing.
NASA Astrophysics Data System (ADS)
Carmona, Alejandra M.; Sivapalan, Murugesu; Yaeger, Mary A.; Poveda, Germán.
2014-12-01
Patterns of interannual variability of the annual water balance are explored using data from 190 MOPEX catchments across the continental U.S. This analysis has led to the derivation of a quantitative, dimensionless, Budyko-type framework to characterize the observed interannual variability of annual water balances. The resulting model is expressed in terms of a humidity index that measures the competition between water and energy availability at the annual time scale, and a similarity parameter (α) that captures the net effects of other short-term climate features and local landscape characteristics. This application of the model to the 190 study catchments revealed the existence of space-time symmetry between spatial (between-catchment) variability and general trends in the temporal (between-year) variability of the annual water balances. The MOPEX study catchments were classified into eight similar catchment groups on the basis of magnitudes of the similarity parameter α. Interesting regional trends of α across the continental U.S. were brought out through identification of similarities between the spatial positions of the catchment groups with the mapping of distinctive ecoregions that implicitly take into account common climatic and vegetation characteristics. In this context, this study has introduced a deep sense of similarity that is evident in observed space-time variability of water balances that also reflect the codependence and coevolution of climate and landscape properties.
Sampling design optimization for spatial functions
Olea, R.A.
1984-01-01
A new procedure is presented for minimizing the sampling requirements necessary to estimate a mappable spatial function at a specified level of accuracy. The technique is based on universal kriging, an estimation method within the theory of regionalized variables. Neither actual implementation of the sampling nor universal kriging estimations are necessary to make an optimal design. The average standard error and maximum standard error of estimation over the sampling domain are used as global indices of sampling efficiency. The procedure optimally selects those parameters controlling the magnitude of the indices, including the density and spatial pattern of the sample elements and the number of nearest sample elements used in the estimation. As an illustration, the network of observation wells used to monitor the water table in the Equus Beds of Kansas is analyzed and an improved sampling pattern suggested. This example demonstrates the practical utility of the procedure, which can be applied equally well to other spatial sampling problems, as the procedure is not limited by the nature of the spatial function. ?? 1984 Plenum Publishing Corporation.
Wang, Hongqing; Chen, Qin; Hu, Kelin; LaPeyre, Megan K.
2017-01-01
Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnitudes and spatial and temporal patterns in estuarine water quality variables will change in response to freshwater and sediment management in the context of future SLR. In this study, we applied the Delft3D model that couples hydrodynamics and water quality processes to examine the spatial and temporal variations of salinity, total suspended solids, and chlorophyll-α concentration in response to small (142 m3 s−1) and large (7080 m3 s−1) Mississippi River (MR) diversions under low (0.38 m) and high (1.44 m) relative SLR (RSLR = eustatic SLR + subsidence) scenarios in the Breton Sound Estuary, Louisiana, USA. The hydrodynamics and water quality model were calibrated and validated via field observations at multiple stations across the estuary. Model results indicate that the large MR diversion would significantly affect the magnitude and spatial and temporal patterns of the studied water quality variables across the entire estuary, whereas the small diversion tends to influence water quality only in small areas near the diversion. RSLR would also play a significant role on the spatial heterogeneity in estuary water quality by acting as an opposite force to river diversions; however, RSLR plays a greater role than the small-scale diversion on the magnitude and spatial pattern of the water quality parameters in this deltaic estuary.
Baracat, Patrícia Junqueira Ferraz; de Sá Ferreira, Arthur
2013-12-01
The present study investigated the association between postural tasks and center of pressure spatial patterns of three-dimensional statokinesigrams. Young (n=35; 27.0±7.7years) and elderly (n=38; 67.3±8.7years) healthy volunteers maintained an undisturbed standing position during postural tasks characterized by combined sensory (vision/no vision) and biomechanical challenges (feet apart/together). A method for the analysis of three-dimensional statokinesigrams based on nonparametric statistics and image-processing analysis was employed. Four patterns of spatial distribution were derived from ankle and hip strategies according to the quantity (single; double; multi) and location (anteroposterior; mediolateral) of high-density regions on three-dimensional statokinesigrams. Significant associations between postural task and spatial pattern were observed (young: gamma=0.548, p<.001; elderly: gamma=0.582, p<.001). Robustness analysis revealed small changes related to parameter choices for histogram processing. MANOVA revealed multivariate main effects for postural task [Wilks' Lambda=0.245, p<.001] and age [Wilks' Lambda=0.308, p<.001], with interaction [Wilks' Lambda=0.732, p<.001]. The quantity of high-density regions was positively correlated to stabilogram and statokinesigram variables (p<.05 or lower). In conclusion, postural tasks are associated with center of pressure spatial patterns and are similar in young and elderly healthy volunteers. Single-centered patterns reflected more stable postural conditions and were more frequent with complete visual input and a wide base of support. Copyright © 2013 Elsevier B.V. All rights reserved.
Wörheide, Gert; Solé-Cava, Antonio M; Hooper, John N A
2005-04-01
Marine sponges are an ecologically important and highly diverse component of marine benthic communities, found in all the world's oceans, at all depths. Although their commercial potential and evolutionary importance is increasingly recognized, many pivotal aspects of their basic biology remain enigmatic. Knowledge of historical biogeographic affinities and biodiversity patterns is rudimentary, and there are still few data about genetic variation among sponge populations and spatial patterns of this variation. Biodiversity analyses of tropical Australasian sponges revealed spatial trends not universally reflected in the distributions of other marine phyla within the Indo-West Pacific region. At smaller spatial scales sponges frequently form heterogeneous, spatially patchy assemblages, with some empirical evidence suggesting that environmental variables such as light and/or turbidity strongly contribute to local distributions. There are no apparent latitudinal diversity gradients at larger spatial scales but stochastic processes, such as changing current patterns, the presence or absence of major carbonate platforms and historical biogeography, may determine modern day distributions. Studies on Caribbean oceanic reefs have revealed similar patterns, only weakly correlated with environmental factors. However, several questions remain where molecular approaches promise great potential, e.g., concerning connectivity and biogeographic relationships. Studies to date have helped to reveal that sponge populations are genetically highly structured and that historical processes might play an important role in determining such structure. Increasingly sophisticated molecular tools are now being applied, with results contributing significantly to a better understanding of poriferan microevolutionary processes and molecular ecology.
North Atlantic climate variability: The role of the North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Hurrell, James W.; Deser, Clara
2009-08-01
Marine ecosystems are undergoing rapid change at local and global scales. To understand these changes, including the relative roles of natural variability and anthropogenic effects, and to predict the future state of marine ecosystems requires quantitative understanding of the physics, biogeochemistry and ecology of oceanic systems at mechanistic levels. Central to this understanding is the role played by dominant patterns or "modes" of atmospheric and oceanic variability, which orchestrate coherent variations in climate over large regions with profound impacts on ecosystems. We review the spatial structure of extratropical climate variability over the Northern Hemisphere and, specifically, focus on modes of climate variability over the extratropical North Atlantic. A leading pattern of weather and climate variability over the Northern Hemisphere is the North Atlantic Oscillation (NAO). The NAO refers to a redistribution of atmospheric mass between the Arctic and the subtropical Atlantic, and swings from one phase to another producing large changes in surface air temperature, winds, storminess and precipitation over the Atlantic as well as the adjacent continents. The NAO also affects the ocean through changes in heat content, gyre circulations, mixed layer depth, salinity, high latitude deep water formation and sea ice cover. Thus, indices of the NAO have become widely used to document and understand how this mode of variability alters the structure and functioning of marine ecosystems. There is no unique way, however, to define the NAO. Several approaches are discussed including both linear (e.g., principal component analysis) and nonlinear (e.g., cluster analysis) techniques. The former, which have been most widely used, assume preferred atmospheric circulation states come in pairs, in which anomalies of opposite polarity have the same spatial structure. In contrast, nonlinear techniques search for recurrent patterns of a specific amplitude and sign. They reveal, for instance, spatial asymmetries between different phases of the NAO that are likely important for ecological studies. It also follows that there is no universally accepted index to describe the temporal evolution of the NAO. Several of the most common measures are presented and compared. All reveal that there is no preferred time scale of variability for the NAO: large changes occur from one winter to the next and from one decade to the next. There is also a large amount of within-season variability in the patterns of atmospheric circulation of the North Atlantic, so that most winters cannot be characterized solely by a canonical NAO structure. A better understanding of how the NAO responds to external forcing, including sea surface temperature changes in the tropics, stratospheric influences, and increasing greenhouse gas concentrations, is crucial to the current debate on climate variability and change.
North Atlantic climate variability: The role of the North Atlantic Oscillation
NASA Astrophysics Data System (ADS)
Hurrell, James W.; Deser, Clara
2010-02-01
Marine ecosystems are undergoing rapid change at local and global scales. To understand these changes, including the relative roles of natural variability and anthropogenic effects, and to predict the future state of marine ecosystems requires quantitative understanding of the physics, biogeochemistry and ecology of oceanic systems at mechanistic levels. Central to this understanding is the role played by dominant patterns or "modes" of atmospheric and oceanic variability, which orchestrate coherent variations in climate over large regions with profound impacts on ecosystems. We review the spatial structure of extratropical climate variability over the Northern Hemisphere and, specifically, focus on modes of climate variability over the extratropical North Atlantic. A leading pattern of weather and climate variability over the Northern Hemisphere is the North Atlantic Oscillation (NAO). The NAO refers to a redistribution of atmospheric mass between the Arctic and the subtropical Atlantic, and swings from one phase to another producing large changes in surface air temperature, winds, storminess and precipitation over the Atlantic as well as the adjacent continents. The NAO also affects the ocean through changes in heat content, gyre circulations, mixed layer depth, salinity, high latitude deep water formation and sea ice cover. Thus, indices of the NAO have become widely used to document and understand how this mode of variability alters the structure and functioning of marine ecosystems. There is no unique way, however, to define the NAO. Several approaches are discussed including both linear (e.g., principal component analysis) and nonlinear (e.g., cluster analysis) techniques. The former, which have been most widely used, assume preferred atmospheric circulation states come in pairs, in which anomalies of opposite polarity have the same spatial structure. In contrast, nonlinear techniques search for recurrent patterns of a specific amplitude and sign. They reveal, for instance, spatial asymmetries between different phases of the NAO that are likely important for ecological studies. It also follows that there is no universally accepted index to describe the temporal evolution of the NAO. Several of the most common measures are presented and compared. All reveal that there is no preferred time scale of variability for the NAO: large changes occur from one winter to the next and from one decade to the next. There is also a large amount of within-season variability in the patterns of atmospheric circulation of the North Atlantic, so that most winters cannot be characterized solely by a canonical NAO structure. A better understanding of how the NAO responds to external forcing, including sea surface temperature changes in the tropics, stratospheric influences, and increasing greenhouse gas concentrations, is crucial to the current debate on climate variability and change.
Andrzej Bobiec
2000-01-01
Variability of external and internal factors entails specific spatial patterns and functional dynamics of communities. The study of the oak-lime-hornbeam (Quercus robur-Tilia cordata-Carpimus) forest in the Bialowieza Primeval Forest supports the concept of silvatic unit, determining the minimal structural area. To find out if the dynamics of a stand...
Arnan, Xavier; Cerdá, Xim; Retana, Javier
2015-01-01
We analyze the relative contribution of environmental and spatial variables to the alpha and beta components of taxonomic (TD), phylogenetic (PD), and functional (FD) diversity in ant communities found along different climate and anthropogenic disturbance gradients across western and central Europe, in order to assess the mechanisms structuring ant biodiversity. To this aim we calculated alpha and beta TD, PD, and FD for 349 ant communities, which included a total of 155 ant species; we examined 10 functional traits and phylogenetic relatedness. Variation partitioning was used to examine how much variation in ant diversity was explained by environmental and spatial variables. Autocorrelation in diversity measures and each trait's phylogenetic signal were also analyzed. We found strong autocorrelation in diversity measures. Both environmental and spatial variables significantly contributed to variation in TD, PD, and FD at both alpha and beta scales; spatial structure had the larger influence. The different facets of diversity showed similar patterns along environmental gradients. Environment explained a much larger percentage of variation in FD than in TD or PD. All traits demonstrated strong phylogenetic signals. Our results indicate that environmental filtering and dispersal limitations structure all types of diversity in ant communities. Strong dispersal limitations appear to have led to clustering of TD, PD, and FD in western and central Europe, probably because different historical and evolutionary processes generated different pools of species. Remarkably, these three facets of diversity showed parallel patterns along environmental gradients. Trait-mediated species sorting and niche conservatism appear to structure ant diversity, as evidenced by the fact that more variation was explained for FD and that all traits had strong phylogenetic signals. Since environmental variables explained much more variation in FD than in PD, functional diversity should be a better indicator of community assembly processes than phylogenetic diversity.
NASA Technical Reports Server (NTRS)
Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.
2014-01-01
Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.
Flea species infesting dogs in Spain: updated spatial and seasonal distribution patterns.
Gálvez, R; Montoya, A; Checa, R; Martín, O; Marino, V; Miró, G
2017-03-01
This entomological survey examines the spatial and seasonal distribution patterns of flea species infesting dogs in Spain. Bioclimatic zones covering broad climate and vegetation ranges were surveyed according to size. In a cross-sectional spatial survey carried out from late May 2013 to mid-July 2015, 1084 dogs from 42 different locations were examined. A total of 3032 fleas were collected and identified as belonging to the following species: Ctenocephalides felis (Siphonaptera: Pulicidae) (81.7%, 2476 fleas); Ctenocephalides canis (11.4%, 347 fleas); Pulex irritans (Siphonaptera: Pulicidae) (6.9%, 208 fleas), and Echidnophaga gallinacea (Siphonaptera: Pulicidae) (0.03%, one flea). Variables observed to have effects on flea abundance were animal weight, sex, length of hair and habitat. In the seasonal survey conducted from June 2014 to June 2015, 1014 fleas were collected from 239 dogs at 30 veterinary practices across Spain. Peaks in C. felis abundance were observed in early summer and late autumn, whereas high numbers of P. irritans and C. canis were recorded in autumn. Numbers of fleas detected in winter were low overall. Based on these findings, the present study updates the spatial and seasonal distributions of flea species in Spain and assesses the impacts of host and habitat variables on flea infestation. © 2016 The Royal Entomological Society.
NASA Astrophysics Data System (ADS)
Korres, W.; Reichenau, T. G.; Schneider, K.
2012-12-01
Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture, influencing the partitioning of solar energy into latent and sensible heat flux as well as the partitioning of precipitation into runoff and percolation. Numerous studies have shown that in addition to natural factors (rainfall, soil, topography etc.) agricultural management is one of the key drivers for spatio-temporal patterns of soil moisture in agricultural landscapes. Interactions between plant growth, soil hydrology and soil nitrogen transformation processes are modeled by using a dynamically coupled modeling approach. The process-based ecohydrological model components of the integrated decision support system DANUBIA are used to identify the important processes and feedbacks determining soil moisture patterns in agroecosystems. Integrative validation of plant growth and surface soil moisture dynamics serves as a basis for a spatially distributed modeling analysis of surface soil moisture patterns in the northern part of the Rur catchment (1100 sq km), Western Germany. An extensive three year dataset (2007-2009) of surface soil moisture-, plant- (LAI, organ specific biomass and N) and soil- (texture, N, C) measurements was collected. Plant measurements were carried out biweekly for winter wheat, maize, and sugar beet during the growing season. Soil moisture was measured with three FDR soil moisture stations. Meteorological data was measured with an eddy flux station. The results of the model validation showed a very good agreement between the modeled plant parameters (biomass, green LAI) and the measured parameters with values between 0.84 and 0.98 (Willmotts index of agreement). The modeled surface soil moisture (0 - 20 cm) showed also a very favorable agreement with the measurements for winter wheat and sugar beet with an RMSE between 1.68 and 3.45 Vol.-%. For maize, the RMSE was less favorable particularly in the 1.5 months prior to harvest. The modeled soil moisture remained in contrast to the measurements very responsive to precipitation with high soil moisture after precipitation events. This behavior indicates that the soil properties might have changed due to the formation of a surface crust or seal towards the end of the growing season. Spatial soil moisture patterns were investigated using a grid resolution of 150 meter. Spatial autocorrelation was computed on a daily basis using patterns of soil texture as well as transpiration and precipitation indices as co-variables. Spatial patterns of surface soil moisture are mostly determined by the structure of the soil properties (soil type) during winter, early growing season and after harvest of all crops. Later in the growing season, after establishment of a closed canopy the dependence of the soil moisture patterns on soil texture patterns becomes smaller and diminishes quickly after precipitation events, due to differences of the transpiration rate of the different crops. When changing the spatial scale of the analysis, the highest autocorrelation values can be found on a grid cell size between 450 and 1200 meters. Thus, small scale variability of transpiration induced by the land use pattern almost averages out, leaving the larger scale structure of soil properties to explain the soil moisture patterns.
NASA Astrophysics Data System (ADS)
Rice, Joshua S.; Emanuel, Ryan E.; Vose, James M.
2016-09-01
As human activity and climate variability alter the movement of water through the environment the need to better understand hydrologic cycle responses to these changes has grown. A reasonable starting point for gaining such insight is studying changes in streamflow given the importance of streamflow as a source of renewable freshwater. Using a wavelet assisted method we analyzed trends in the magnitude of annual scale streamflow variability from 967 watersheds in the continental U.S. (CONUS) over a 70 year period (1940-2009). Decreased annual variability was the dominant pattern at the CONUS scale. Ecoregion scale results agreed with the CONUS pattern with the exception of two ecoregions closely divided between increases and decreases and one where increases dominated. A comparison of trends in reference and non-reference watersheds indicated that trend magnitudes in non-reference watersheds were significantly larger than those in reference watersheds. Boosted regression tree (BRT) models were used to study the relationship between watershed characteristics and the magnitude of trends in streamflow. At the CONUS scale, the balance between precipitation and evaporative demand, and measures of geographic location were of high relative importance. Relationships between the magnitude of trends and watershed characteristics at the ecoregion scale exhibited differences from the CONUS results and substantial variability was observed among ecoregions. Additionally, the methodology used here has the potential to serve as a robust framework for top-down, data driven analyses of the relationships between changes in the hydrologic cycle and the spatial context within which those changes occur.
Li, Feng-Rui; Wang, Tao; Zhang, Ai-Sheng; Zhao, Li-Ya; Kang, Ling-Fen; Chen, Wen
2005-07-01
Artemisia halodendron is a native sub-shrub that occurs mainly in moving and semi-fixed sandy lands in Inner Mongolia, China. Information on the spatial patterns of wind-dispersed seed deposition and seedling recruitment of A. halodendron inhabiting moving sandy lands is very limited. The aim of this study was to examine wind-dispersed seed deposition patterns and post-dispersal recruitment of A. halodendron seedlings. * The spatial patterns of wind-dispersed seed deposition and seedling recruitment of A. halodendron were examined by investigating the numbers of deposited seeds, emerged and surviving seedlings using sampling points at a range of distances from the parent plant in eight compass directions for two consecutive growing seasons. * Wind-dispersed seed deposition showed considerable variation between directions and years. Wind transported A. halodendron seeds only a few meters away from the parent plant in all eight directions. Seedling emergence and establishment also showed between-direction and between-year variability, but the spatial pattern of seedling distribution differed from that of seed deposition. Only a very small fraction (<1 %) of the deposited seeds emerged in the field and survived for long enough to be included in our seedling censuses at the end of the growing season. * The spatial variation in wind speed and frequency strongly affects the pattern of seed deposition, although the variation in seed deposition does not determine the spatial pattern of seedling recruitment. Seeds of A. halodendron are not dispersed very well by wind. The low probability of recruitment success for A. halodendron seedlings suggests that this species does not rely on seedling recruitment for its persistence and maintenance of population.
NASA Astrophysics Data System (ADS)
Stagličić, N.; Matić-Skoko, S.; Pallaoro, A.; Grgičević, R.; Kraljević, M.; Tutman, P.; Dragičević, B.; Dulčić, J.
2011-09-01
Long-term interannual changes in abundance, biomass, diversity and structure of littoral fish assemblages were examined between 1993 and 2009 by experimental trammel net fishing up to six times per year, within the warm period - May to September, at multiple areas along the eastern Adriatic coast with the aim of testing for the consistency of patterns of change across a large spatial scale (˜600 km). The results revealed spatially consistent increasing trends of total fish abundance and biomass growing at an average rate of 15 and 14% per year, respectively. Of the diversity indices analysed, the same pattern of variability was observed for Shannon diversity, while Pielou evenness and average taxonomic distinctness measures Δ ∗ and Δ + showed spatial variability with no obvious temporal trends. Multivariate fish assemblage structure underwent a directional change displaying a similar pattern through time for all the areas. The structural change in fish assemblages generally involved most of the species present in trammel net catches. A large pool of fish species responsible for producing the temporal pattern of assemblage change was relatively different in each of the areas reflecting a large geographic range covered by the study. An analysis of 4 fish species ( Symphodus tinca, Pagellus erythrinus, Mullus surmuletus, Scorpaena porcus) common to each of the study areas as the ones driving the temporal change indicated that there were clear increasing trends of their mean catches across the years at all the study areas. A common pattern among time trajectories across the spatial scale studied implies that the factor affecting the littoral fish assemblages is not localised but regional in nature. As an underlying factor having the potential to induce such widespread and consistent improvements in littoral fish assemblages, a more restrictive artisanal fishery management that has progressively been put in place during the study period, is suggested and discussed.
Justin P. Ziegler; Chad M. Hoffman; Paula J. Fornwalt; Carolyn H. Sieg; Michael A. Battaglia; Marin E. Chambers; Jose M. Iniguez
2017-01-01
Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses...
J.M. Warren; F.C. Meinzer; J.R. Brooks; J.-C. Domec; R. Coulombe
2006-01-01
We incorporated soil/plant biophysical properties into a simple model to predict seasonal trajectories of hydraulic redistribution (HR). We measured soil water content, water potential root conductivity, and climate across multiple years in two old-growth coniferous forests. The HR variability within sites (0 to 0.5 mm/d) was linked to spatial patterns of roots, soil...
Michael J. Clifford; Patrick D. Royer; Neil S. Cobb; David D. Breshears; Paulette L. Ford
2013-01-01
Recent regional tree die-off events appear to have been triggered by a combination of drought and heat - referred to as 'global-change-type drought'. To complement experiments focused on resolving mechanisms of drought-induced tree mortality, an evaluation of how patterns of tree die-off relate to highly spatially variable precipitation is needed....
Modeling spatial variation in avian survival and residency probabilities
Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth
2010-01-01
The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.
Luiz, Amom Mendes; Sawaya, Ricardo J.
2018-01-01
Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575
Gosme, Marie; Lucas, Philippe
2009-07-01
Spatial patterns of both the host and the disease influence disease spread and crop losses. Therefore, the manipulation of these patterns might help improve control strategies. Considering disease spread across multiple scales in a spatial hierarchy allows one to capture important features of epidemics developing in space without using explicitly spatialized variables. Thus, if the system under study is composed of roots, plants, and planting hills, the effect of host spatial pattern can be studied by varying the number of plants per planting hill. A simulation model based on hierarchy theory was used to simulate the effects of large versus small planting hills, low versus high level of initial infections, and aggregated versus uniform distribution of initial infections. The results showed that aggregating the initially infected plants always resulted in slower epidemics than spreading out the initial infections uniformly. Simulation results also showed that, in most cases, disease epidemics were slower in the case of large host aggregates (100 plants/hill) than with smaller aggregates (25 plants/hill), except when the initially infected plants were both numerous and spread out uniformly. The optimal strategy for disease control depends on several factors, including initial conditions. More importantly, the model offers a framework to account for the interplay between the spatial characteristics of the system, rates of infection, and aggregation of the disease.
S. A. Drury; T. T. Veblen
2008-01-01
Patterns of fire occurrence within the Las Bayas Forestry Reserve, Mexico are analyzed in relation to variability in climate, topography, and human land-use. Significantly more fires with shorter fire return intervals occurred from 1900 to 1950 than from 1950 to 2001. However, the frequency of widespread fire years (25% filter) was unchanged over time, as widespread...
Simulating historical variability in the amount of old forests in the Oregon Coast Range.
M.C. Wimberly; T.M. Spies; C.J. Long; C. Whitlock
2000-01-01
We developed the landscape age-class demographics simulator (LADS) to model historical variability in the amount of old-growth and late-successional forest in the Oregon Coast Range over the past 3,000 years. The model simulated temporal and spatial patterns of forest fires along with the resulting fluctuations in the distribution of forest age classes across the...
NASA Astrophysics Data System (ADS)
Rose, K.; Glosser, D.; Bauer, J. R.; Barkhurst, A.
2015-12-01
The products of spatial analyses that leverage the interpolation of sparse, point data to represent continuous phenomena are often presented without clear explanations of the uncertainty associated with the interpolated values. As a result, there is frequently insufficient information provided to effectively support advanced computational analyses and individual research and policy decisions utilizing these results. This highlights the need for a reliable approach capable of quantitatively producing and communicating spatial data analyses and their inherent uncertainties for a broad range of uses. To address this need, we have developed the Variable Grid Method (VGM), and associated Python tool, which is a flexible approach that can be applied to a variety of analyses and use case scenarios where users need a method to effectively study, evaluate, and analyze spatial trends and patterns while communicating the uncertainty in the underlying spatial datasets. The VGM outputs a simultaneous visualization representative of the spatial data analyses and quantification of underlying uncertainties, which can be calculated using data related to sample density, sample variance, interpolation error, uncertainty calculated from multiple simulations, etc. We will present examples of our research utilizing the VGM to quantify key spatial trends and patterns for subsurface data interpolations and their uncertainties and leverage these results to evaluate storage estimates and potential impacts associated with underground injection for CO2 storage and unconventional resource production and development. The insights provided by these examples identify how the VGM can provide critical information about the relationship between uncertainty and spatial data that is necessary to better support their use in advance computation analyses and informing research, management and policy decisions.
NASA Astrophysics Data System (ADS)
Holmes, K. W.; Kyriakidis, P. C.; Chadwick, O. A.; Matricardi, E.; Soares, J. V.; Roberts, D. A.
2003-12-01
The natural controls on soil variability and the spatial scales at which correlation exists among soil and environmental variables are critical information for evaluating the effects of deforestation. We detect different spatial scales of variability in soil nutrient levels over a large region (hundreds of thousands of km2) in the Amazon, analyze correlations among soil properties at these different scales, and evaluate scale-specific relationships among soil properties and the factors potentially driving soil development. Statistical relationships among physical drivers of soil formation, namely geology, precipitation, terrain attributes, classified soil types, and land cover derived from remote sensing, were included to determine which factors are related to soil biogeochemistry at each spatial scale. Surface and subsurface soil profile data from a 3000 sample database collected in Rond“nia, Brazil, were used to investigate patterns in pH, phosphorus, nitrogen, organic carbon, effective cation exchange capacity, calcium, magnesium, potassium, aluminum, sand, and clay in this environment grading from closed canopy tropical forest to savanna. We focus on pH in this presentation for simplicity, because pH is the single most important soil characteristic for determining the chemical environment of higher plants and soil microbial activity. We determined four spatial scales which characterize integrated patterns of soil chemistry: less than 3 km; 3 to 10 km; 10 to 68 km; and from 68 to 550 km (extent of study area). Although the finest observable scale was fixed by the field sampling density, the coarser scales were determined from relationships in the data through coregionalization modeling, rather than being imposed by the researcher. Processes which affect soils over short distances, such as land cover and terrain attributes, were good predictors of fine scale spatial components of nutrients; processes which affect soils over very large distances, such as precipitation and geology, were better predictors at coarse spatial scales. However, this result may be affected by the resolution of the available predictor maps. Land-cover change exerted a strong influence on soil chemistry at fine spatial scales, and had progressively less of an effect at coarser scales. It is important to note that land cover, and interactions among land cover and the other predictors, continued to be a significant predictor of soil chemistry at every spatial scale up to hundreds of thousands of kilometers.
Global Autocorrelation Scales of the Partial Pressure of Oceanic CO2
NASA Technical Reports Server (NTRS)
Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.
2004-01-01
A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. For example, the global maximum of the distance at which autocorrelations exceed 0.8 averages about 140 km in the equatorial Pacific. Also, the lag distance at which the autocorrelation exceed 0.8 is greater in the vicinity of the Gulf Stream than it is near the Kuroshio, approximately 50 km near the Gulf Stream as opposed to 20 km near the Kuroshio. Separate calculations for times when the sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) 'P', in the eastern subarctic Pacific (50 N, 145 W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS 'P', is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.
Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.
Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J
2010-12-01
Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies conservation planning. Journal compilation © 2010 Society for Conservation Biology. No claim to original US government works.
Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.
2006-01-01
A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sangil, Carlos; Guzman, Hector M.
2016-11-01
Long-term changes in macroalgal cover, spatial variation between macroalgal communities, and relationships with environmental variables and benthic groups were assessed in coral reefs along the Caribbean coast of Panama. Sampling was conducted in two regions: Western and Central. Data collected between 2000 and 2012 showed a continuous increase in macroalgal abundance, although patterns differed according to region and site. There were differences in macroalgal communities between regions, as well as within regions between different wave-exposure levels. There were also differences between sites within regions exposed to the same level of wave action. Multivariate analysis found that wave exposure along with herbivore density (Echinometra viridis) and sedimentation were the variables that explained most of the variability between communities. Other variables such as Echinometra lucunter and Diadema antillarum densities, fish density, productivity, and live coral cover had significant relationships with community structure, but explained less of the variability.
NASA Astrophysics Data System (ADS)
Willgoose, G. R.
2006-12-01
In humid catchments the spatial distribution of soil water is dominated by subsurface lateral fluxes, which leads to a persistent spatial pattern of soil moisture principally described by the topographic index. In contrast, semi-arid, and dryer, catchments are dominated by vertical fluxes (infiltration and evapotranspiration) and persistent spatial patterns, if they exist, are subtler. In the first part of this presentation the results of a reanalysis of a number of catchment-scale long-term spatially-distributed soil moisture data sets are presented. We concentrate on Tarrawarra and SASMAS, both catchments in Australia that are water-limited for at least part of the year and which have been monitored using a variety of technologies. Using the data from permanently installed instruments (neutron probe and reflectometry) both catchments show persistent patterns at the 1-3 year timescale. This persistent pattern is not evident in the field campaign data where field portable instruments (reflectometry) instruments were used. We argue, based on high-resolution soil moisture semivariograms, that high short-distance variability (100mm scale) means that field portable instrument cannot be replaced at the same location with sufficient accuracy to ensure deterministic repeatability of soil moisture measurements from campaign to campaign. The observed temporal persistence of the spatial pattern can be caused by; (1) permanent features of the landscape (e.g. vegetation, soils), or (2) long term memory in the soil moisture store. We argue that it is permanent in which case it is possible to monitor the soil moisture status of a catchment using a single location measurement (continuous in time) of soil moisture using a permanently installed reflectometry instrument. This instrument will need to be calibrated to the catchment averaged soil moisture but the temporal persistence of the spatial pattern of soil moisture will mean that this calibration will be deterministically stable with time. In the second part of this presentation we will explore aspects of the calibration using data from the SASMAS site using the multiscale spatial resolution data (100m to 10km) provided by permanently installed reflectometry instruments, and how this single site measurement technique may complement satellite data.
Spatio-temporal patterns of soil water storage under dryland agriculture at the watershed scale
NASA Astrophysics Data System (ADS)
Ibrahim, Hesham M.; Huggins, David R.
2011-07-01
SummarySpatio-temporal patterns of soil water are major determinants of crop yield potential in dryland agriculture and can serve as the basis for delineating precision management zones. Soil water patterns can vary significantly due to differences in seasonal precipitation, soil properties and topographic features. In this study we used empirical orthogonal function (EOF) analysis to characterize the spatial variability of soil water at the Washington State University Cook Agronomy Farm (CAF) near Pullman, WA. During the period 1999-2006, the CAF was divided into three roughly equal blocks (A, B, and C), and soil water at 0.3 m intervals to a depth of 1.5 m measured gravimetrically at approximately one third of the 369 geo-referenced points on the 37-ha watershed. These data were combined with terrain attributes, soil bulk density and apparent soil conductivity (EC a). The first EOF generated from the three blocks explained 73-76% of the soil water variability. Field patterns of soil water based on EOF interpolation varied between wet and dry conditions during spring and fall seasons. Under wet conditions, elevation and wetness index were the dominant factors regulating the spatial patterns of soil water. As soil dries out during summer and fall, soil properties (EC a and bulk density) become more important in explaining the spatial patterns of soil water. The EOFs generated from block B, which represents average topographic and soil properties, provided better estimates of soil water over the entire watershed with larger Nash-Sutcliffe Coefficient of Efficiency (NSCE) values, especially when the first two EOFs were retained. Including more than the first two EOFs did not significantly increase the NSCE of soil water estimate. The EOF interpolation method to estimate soil water variability worked slightly better during spring than during fall, with average NSCE values of 0.23 and 0.20, respectively. The predictable patterns of stored soil water in the spring could serve as the basis for delineating precision management zones as yield potential is largely driven by water availability. The EOF-based method has the advantage of estimating the soil water variability based on soil water data from several measurement times, whereas in regression methods only soil water measurement at a single time are used. The EOF-based method can also be used to estimate soil water at any time other than measurement times, assuming the average soil water of the watershed is known at that time.
Global patterns and predictors of fish species richness in estuaries.
Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N
2015-09-01
1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these habitats. In summary, patterns of species richness in estuaries across large spatial extents seem to reflect from global to local processes acting on community colonization. The importance of considering spatial extent, sampling effects and of combining history and contemporary environmental characteristics when exploring biodiversity is highlighted. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons on behalf of the British Ecological Society.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
Spatial analysis of soil organic carbon in Zhifanggou catchment of the Loess Plateau.
Li, Mingming; Zhang, Xingchang; Zhen, Qing; Han, Fengpeng
2013-01-01
Soil organic carbon (SOC) reflects soil quality and plays a critical role in soil protection, food safety, and global climate changes. This study involved grid sampling at different depths (6 layers) between 0 and 100 cm in a catchment. A total of 1282 soil samples were collected from 215 plots over 8.27 km(2). A combination of conventional analytical methods and geostatistical methods were used to analyze the data for spatial variability and soil carbon content patterns. The mean SOC content in the 1282 samples from the study field was 3.08 g · kg(-1). The SOC content of each layer decreased with increasing soil depth by a power function relationship. The SOC content of each layer was moderately variable and followed a lognormal distribution. The semi-variograms of the SOC contents of the six different layers were fit with the following models: exponential, spherical, exponential, Gaussian, exponential, and exponential, respectively. A moderate spatial dependence was observed in the 0-10 and 10-20 cm layers, which resulted from stochastic and structural factors. The spatial distribution of SOC content in the four layers between 20 and 100 cm exhibit were mainly restricted by structural factors. Correlations within each layer were observed between 234 and 562 m. A classical Kriging interpolation was used to directly visualize the spatial distribution of SOC in the catchment. The variability in spatial distribution was related to topography, land use type, and human activity. Finally, the vertical distribution of SOC decreased. Our results suggest that the ordinary Kriging interpolation can directly reveal the spatial distribution of SOC and the sample distance about this study is sufficient for interpolation or plotting. More research is needed, however, to clarify the spatial variability on the bigger scale and better understand the factors controlling spatial variability of soil carbon in the Loess Plateau region.
Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama
Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.
2008-01-01
Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K and Mg is mainly influenced by lithology. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rice, Joshua S.; Emanuel, Ryan E.; Vose, James M.; Nelson, Stacy A. C.
2015-08-01
Changes in streamflow are an important area of ongoing research in the hydrologic sciences. To better understand spatial patterns in past changes in streamflow, we examined relationships between watershed-scale spatial characteristics and trends in streamflow. Trends in streamflow were identified by analyzing mean daily flow observations between 1940 and 2009 from 967 U.S. Geological Survey stream gages. Results indicated that streamflow across the continental U.S., as a whole, increased while becoming less extreme between 1940 and 2009. However, substantial departures from the continental U.S. (CONUS) scale pattern occurred at the regional scale, including increased annual maxima, decreased annual minima, overall drying trends, and changes in streamflow variability. A subset of watersheds belonging to a reference data set exhibited significantly smaller trend magnitudes than those observed in nonreference watersheds. Boosted regression tree models were applied to examine the influence of watershed characteristics on streamflow trend magnitudes at both the CONUS and regional scale. Geographic location was found to be of particular importance at the CONUS scale while local variability in hydroclimate and topography tended to have a strong influence on regional-scale patterns in streamflow trends. This methodology facilitates detailed, data-driven analyses of how the characteristics of individual watersheds interact with large-scale hydroclimate forces to influence how changes in streamflow manifest.
Landscape-Level Spatial Patterns of West Nile Virus Risk in the Northern Great Plains
Chuang, Ting-Wu; Hockett, Christine W.; Kightlinger, Lon; Wimberly, Michael C.
2012-01-01
Understanding the landscape-level determinants of West Nile virus (WNV) can aid in mapping high-risk areas and enhance disease control and prevention efforts. This study analyzed the spatial patterns of human WNV cases in three areas in South Dakota during 2003–2007 and investigated the influences of land cover, hydrology, soils, irrigation, and elevation by using case–control models. Land cover, hydrology, soils, and elevation all influenced WNV risk, although the main drivers were different in each study area. Risk for WNV was generally higher in areas with rural land cover than in developed areas, and higher close to wetlands or soils with a high ponding frequency. In western South Dakota, WNV risk also decreased with increasing elevation and was higher in forested areas. Our results showed that the spatial patterns of human WNV risk were associated with landscape-level features that likely reflect variability in mosquito ecology, avian host communities, and human activity. PMID:22492161
Bače, Radek; Svoboda, Miroslav; Janda, Pavel; Morrissey, Robert C.; Wild, Jan; Clear, Jennifer L.; Čada, Vojtěch; Donato, Daniel C.
2015-01-01
Background Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. Methods Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. Results Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand’s height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. Conclusion These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations. PMID:26421726
Park, Gewnhi; Moon, Eunok; Kim, Do-Won; Lee, Seung-Hwan
2012-12-01
A previous study has shown that greater cardiac vagal tone, reflecting effective self-regulatory capacity, was correlated with superior visual discrimination of fearful faces at high spatial frequency Park et al. (Biological Psychology 90:171-178, 2012b). The present study investigated whether individual differences in cardiac vagal tone (indexed by heart rate variability) were associated with different event-related brain potentials (ERPs) in response to fearful and neutral faces. Thirty-six healthy participants discriminated the emotion of fearful and neutral faces at broad, high, and low spatial frequencies, while ERPs were recorded. Participants with low resting heart rate variability-characterized by poor functioning of regulatory systems-exhibited significantly greater N200 activity in response to fearful faces at low spatial frequency and greater LPP responses to neutral faces at high spatial frequency. Source analyses-estimated by standardized low-resolution brain electromagnetic tomography (sLORETA)-tended to show that participants with low resting heart rate variability exhibited increased source activity in visual areas, such as the cuneus and the middle occipital gyrus, as compared with participants with high resting heart rate variability. The hyperactive neural activity associated with low cardiac vagal tone may account for hypervigilant response patterns and emotional dysregulation, which heightens the risk of developing physical and emotional problems.
NASA Astrophysics Data System (ADS)
Pascual, M.; Cash, B.; Reiner, R.; King, A.; Emch, M.; Yunus, M.; Faruque, A. S.
2012-12-01
The influence of climate variability on the population dynamics of infectious diseases is considered a large scale, regional, phenomenon, and as such, has been previously addressed for cholera with temporal models that do not incorporate fine-scale spatial structure. In our previous work, evidence for a role of ENSO (El Niño Southern Oscillation) on cholera in Bangladesh was elucidated, and shown to influence the regional climate through precipitation. With a probabilistic spatial model for cholera dynamics in the megacity of Dhaka, we found that the action of climate variability (ENSO and flooding) is localized: there is a climate-sensitive urban core that acts to propagate risk to the rest of the city. Here, we consider long-term surveillance data for shigellosis, another diarrheal disease that coexists with cholera in Bangladesh. We compare the patterns of association with climate variables for these two diseases in a rural setting, as well as the spatial structure in their spatio-temporal dynamics in an urban one. Evidence for similar patterns is presented, and discussed in the context of the differences in the routes of transmission of the two diseases and the proposed role of an environmental reservoir in cholera. The similarities provide evidence for a more general influence of hydrology and of socio-economic factors underlying human susceptibility and sanitary conditions.
Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David
2017-01-01
Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea. PMID:28406963
Landscape analysis of methane flux across complex terrain
NASA Astrophysics Data System (ADS)
Kaiser, K. E.; McGlynn, B. L.; Dore, J. E.
2014-12-01
Greenhouse gas (GHG) fluxes into and out of the soil are influenced by environmental conditions resulting in landscape-mediated patterns of spatial heterogeneity. The temporal variability of inputs (e.g. precipitation) and internal redistribution (e.g. groundwater flow) and dynamics (e.g. microbial communities) make predicating these fluxes challenging. Complex terrain can provide a laboratory for improving understanding of the spatial patterns, temporal dynamics, and drivers of trace gas flux rates, requisite to constraining current GHG budgets and future scenarios. Our research builds on previous carbon cycle research at the USFS Tenderfoot Creek Experimental Forest, Little Belt Mountains, Montana that highlighted the relationships between landscape position and seasonal CO2 efflux, induced by the topographic redistribution of water. Spatial patterns and landscape scale mediation of CH4 fluxes in seasonally aerobic soils have not yet been elucidated. We measured soil methane concentrations and fluxes across a full range of landscape positions, leveraging topographic and seasonal gradients, to examine the relationships between environmental variables, hydrologic dynamics, and CH4 production and consumption. We determined that a threshold of ~30% VWC distinguished the direction of flux at individual time points, with the riparian area and uplands having distinct source/sink characteristics respectively. Riparian locations were either strong sources or fluctuated between sink and source behavior, resulting in near neutral seasonal flux. Upland sites however, exhibited significant relationships between sink strength and topographic/energy balance indices. Our results highlight spatial and temporal coherence to landscape scale heterogeneity of CH4 dynamics that can improve estimates of landscape scale CH4 balances and sensitivity to change.
NASA Astrophysics Data System (ADS)
Oroza, C.; Bales, R. C.; Zheng, Z.; Glaser, S. D.
2017-12-01
Predicting the spatial distribution of soil moisture in mountain environments is confounded by multiple factors, including complex topography, spatial variably of soil texture, sub-surface flow paths, and snow-soil interactions. While remote-sensing tools such as passive-microwave monitoring can measure spatial variability of soil moisture, they only capture near-surface soil layers. Large-scale sensor networks are increasingly providing soil-moisture measurements at high temporal resolution across a broader range of depths than are accessible from remote sensing. It may be possible to combine these in-situ measurements with high-resolution LIDAR topography and canopy cover to estimate the spatial distribution of soil moisture at high spatial resolution at multiple depths. We study the feasibility of this approach using six years (2009-2014) of daily volumetric water content measurements at 10-, 30-, and 60-cm depths from the Southern Sierra Critical Zone Observatory. A non-parametric, multivariate regression algorithm, Random Forest, was used to predict the spatial distribution of depth-integrated soil-water storage, based on the in-situ measurements and a combination of node attributes (topographic wetness, northness, elevation, soil texture, and location with respect to canopy cover). We observe predictable patterns of predictor accuracy and independent variable ranking during the six-year study period. Predictor accuracy is highest during the snow-cover and early recession periods but declines during the dry period. Soil texture has consistently high feature importance. Other landscape attributes exhibit seasonal trends: northness peaks during the wet-up period, and elevation and topographic-wetness index peak during the recession and dry period, respectively.
Surface NO2 fields derived from joint use of OMI and GOME-2A observations with EMEP model output
NASA Astrophysics Data System (ADS)
Schneider, Philipp; Svendby, Tove; Stebel, Kerstin
2016-04-01
Nitrogen dioxide (NO2) is one of the most prominent air pollutants. Emitted primarily by transport and industry, NO2 has a major impact on health and economy. In contrast to the very sparse network of air quality monitoring stations, satellite data of NO2 is ubiquitous and allows for quantifying the NO2 levels worldwide. However, one drawback of satellite-derived NO2 products is that they provide solely an estimate of the entire tropospheric column, whereas what is generally needed for air quality applications are the concentrations of NO2 near the surface. Here we derive surface NO2 concentration fields from OMI and GOME-2A tropospheric column products using the EMEP chemical transport model as auxiliary information. The model is used for providing information of the boundary layer contribution to the total tropospheric column. For preparation of deriving the surface product, a comprehensive model-based analysis of the spatial and temporal patterns of the NO2 surface-to-column ratio in Europe was carried out for the year 2011. The results from this analysis indicate that the spatial patterns of the surface-to-column ratio vary only slightly. While the highest ratio values can be found in some shipping lanes, the spatial variability of the ratio in some of the most polluted areas of Europe is not very high. Some but not all urban agglomeration shows high ratio values. Focusing on the temporal behavior, the analysis showed that the European-wide average ratio varies throughout the year. The surface-to-column ratio increases from January all the way through April when it reaches its maximum, then decreases relatively rapidly to average levels and then stays mostly constant throughout the summer. The minimum ratio is observed in December. The knowledge gained from analyzing the spatial and temporal patterns of the surface-to-column ratio was then used to produce surface NO2 products from the daily NO2 data for OMI and GOME-2A. This was carried out using two methods, namely using 1) hourly surface-to-column ratio at the time of the satellite overpass as well as 2) using annual average ratios thus eliminating the temporal variability and focusing solely on the spatial patterns. A validation of the resulting surface NO2 fields was performed using station observations of NO2 as provided by the Airbase database maintained by the European Environment Agency. First results indicate that the methodology is capable of producing surface concentration fields that reproduce the station-observed surface NO2 levels significantly better than the model surface fields as measured by the root mean squared error. The results also show that the spatial patterns of the surface-to-column ratio are more significant than its temporal variability. In addition to deriving satellite-based surface NO2, we further present initial results of a geostatistical methodology for downscaling satellite products of NO2 to spatial scales that are more relevant for applications in urban air quality. This is being carried out by applying area-to-point kriging techniques while using high-resolution (1-2 km spatial resolution) runs of a chemical transport model as a spatial proxy. In combination, these two techniques for deriving surface NO2 and spatially downscaling satellite-based NO2 fields have significant potential for improving satellite-based monitoring and mapping of regional and local-scale air pollution.
Temporal and spatial patterns of ambient endotoxin concentrations in Fresno, California.
Tager, Ira B; Lurmann, Frederick W; Haight, Thaddeus; Alcorn, Siana; Penfold, Bryan; Hammond, S Katharine
2010-10-01
Endotoxins are found in indoor dust generated by human activity and pets, in soil, and adsorbed onto the surfaces of ambient combustion particles. Endotoxin concentrations have been associated with respiratory symptoms and the risk of atopy and asthma in children. We characterized the temporal and spatial variability of ambient endotoxin in Fresno/Clovis, California, located in California's Central Valley, to identify correlates and potential predictors of ambient endotoxin concentrations in a cohort of children with asthma [Fresno Asthmatic Children's Environment Study (FACES)]. Between May 2001 and October 2004, daily ambient endotoxin and air pollutants were collected at the central ambient monitoring site of the California Air Resources Board in Fresno and, for shorter time periods, at 10 schools and indoors and outdoors at 84 residences in the community. Analyses were restricted to May-October, the dry months during which endotoxin concentrations are highest. Daily endotoxin concentration patterns were determined mainly by meteorologic factors, particularly the degree of air stagnation. Overall concentrations were lowest in areas distant from agricultural activities. Highest concentrations were found in areas immediately downwind from agricultural/pasture land. Among three other measured air pollutants [fine particulate matter, elemental carbon (a marker of traffic in Fresno), and coarse particulate matter (PMc)], PMc was the only pollutant correlated with endotoxin. Endotoxin, however, was the most spatially variable. Our data support the need to evaluate the spatial/temporal variability of endotoxin concentrations, rather than relying on a few measurements made at one location, in studies of exposure and and respiratory health effects, particularly in children with asthma and other chronic respiratory diseases.
Coronal energy distribution and X-ray activity in the small scale magnetic field of the quiet sun
NASA Technical Reports Server (NTRS)
Habbal, S. R.
1992-01-01
The energy distribution in the small-scale magnetic field that pervades the solar surface, and its relationship to X-ray/coronal activity are discussed. The observed emission from the small scale structures, at temperatures characteristic of the chromosphere, transition region and corona, emanates from the boundaries of supergranular cells, within coronal bright points. This emission is characterized by a strong temporal and spatial variability with no definite pattern. The analysis of simultaneous, multiwavelength EUV observations shows that the spatial density of the enhanced as well as variable emission from the small scale structures exhibits a pronounced temperature dependence with significant maxima at 100,000 and 1,000,000 K. Within the limits of the spatial (1-5 arcsec) and temporal (1-5 min) resolution of data available at present, the observed variability in the small scale structure cannot account for the coroal heating of the quiet sun. The characteristics of their emission are more likely to be an indicator of the coronal heating mechanisms.
NASA Astrophysics Data System (ADS)
Santos, Monica; Fragoso, Marcelo
2010-05-01
Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.
Manier, Daniel J.; Rover, Jennifer R.
2018-02-15
To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for these patterns. We demonstrate the feasibility of using classification of Landsat satellite imagery to describe playa-wetland inundation across years and seasons. Evaluating classifications representing only 4 years of imagery, we found significant year-to-year and state-to-state differences in inundation rates.
Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng
2014-01-01
To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.
Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng
2014-01-01
To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827
Li, Tao; Hao, Xinmei; Kang, Shaozhong
2016-01-01
There is a growing interest in precision viticulture with the development of global positioning system and geographical information system technologies. Limited information is available on spatial variation of bud behavior and its possible association with soil properties. The objective of this study was to investigate spatial variability of bud burst percentage and its association with soil properties based on 2-year experiments at a vineyard of arid northwest China. Geostatistical approach was used to describe the spatial variation in bud burst percentage within the vineyard. Partial least square regressions (PLSRs) of bud burst percentage with soil properties were used to evaluate the contribution of soil properties to overall spatial variability in bud burst percentage for the high, medium and low bud burst percentage groups. Within the vineyard, the coefficient of variation (CV) of bud burst percentage was 20% and 15% for 2012 and 2013 respectively. Bud burst percentage within the vineyard showed moderate spatial variability, and the overall spatial pattern of bud burst percentage was similar between the two years. Soil properties alone explained 31% and 37% of the total spatial variation respectively for the low group of 2012 and 2013, and 16% and 24% for the high group of 2012 and 2013 respectively. For the low group, the fraction of variations explained by soil properties was found similar between the two years, while there was substantial difference for the high group. The findings are expected to lay a good foundation for developing remedy measures in the areas with low bud burst percentage, thus in turn improving the overall grape yield and quality. PMID:27798692
NASA Astrophysics Data System (ADS)
Wachter, Paul; Beck, Christoph; Philipp, Andreas; Jacobeit, Jucundus; Höppner, Kathrin
2017-04-01
Large parts of the Polar Regions are affected by a warming trend associated with substantial changes in the cryosphere. In Antarctica this positive trend pattern is most dominant in the western part of the continent and on the Antarctic Peninsula (AP). An important driving mechanism of temperature variability and trends in this region is the atmospheric circulation. Changes in atmospheric circulation modes and frequencies of circulation types have major impacts on temperature characteristics at a certain station or region. We present results of a statistical downscaling study focused on AP temperature variability showing both results of large-scale atmospheric circulation modes and regional weather type classifications derived from monthly and daily gridded reanalysis data sets. In order to investigate spatial trends and variabilities of the Southern Annular Mode (SAM), we analyze spatio-temporally resolved SAM-pattern maps from 1979 to 2015. First results show dominant multi-annual to decadal pattern variabilities which can be directly linked to temperature variabilities at the Antarctic Peninsula. A sub-continental to regional view on the influence of atmospheric circulation on AP temperature variability is given by the analysis of weather type classifications (WTC). With this analysis we identify significant changes in the frequency of occurrence of highly temperature-relevant circulation patterns. The investigated characteristics of weather type frequencies can also be related to the identified changes of the SAM.
Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A
2015-08-01
Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Bogunović, Igor; Trevisani, Sebastiano; Pereira, Paulo; Šeput, Miranda
2017-04-01
Climate change is expected to have an important influence on the crop production in agricultural regions. Soil carbon represents an important soil property that contributes to mitigate the negative influence of climate change on intensive cropped areas. Based on 5063 soil samples sampled from soil top layer (0-30 cm) we studied the spatial distribution of total carbon (TC) and soil organic carbon (SOC) content in various soil types (Anthrosols, Cambisols, Chernozems, Fluvisols, Gleysols, Luvisols) in Baranja region, Croatia. TC concentrations ranged from 2.10 to 66.15 mg/kg (with a mean of 16.31 mg/kg). SOC concentrations ranged from 1.86 to 58.00 mg/kg (with a mean of 13.35 mg/kg). TC and SOC showed moderate heterogeneity with coefficient of variation (CV) of 51.3% and 33.8%, respectively. Average concentrations of soil TC vary in function of soil types in the following decreasing order: Anthrosols (20.9 mg/kg) > Gleysols (19.3 mg/kg) > Fluvisols (15.6 mg/kg) > Chernozems (14.2 mg/kg) > Luvisols (12.6 mg/kg) > Cambisols (11.1 mg/kg), while SOC concentrations follow next order: Gleysols (15.4 mg/kg) > Fluvisols (13.2 mg/kg) = Anthrosols (13.2 mg/kg) > Chernozems (12.6 mg/kg) > Luvisols (11.4 mg/kg) > Cambisols (10.5 mg/kg). Performed geostatistical analysis of TC and SOC; both the experimental variograms as well as the interpolated maps reveal quite different spatial patterns of the two studied soil properties. The analysis of the spatial variability and of the spatial patterns of the produced maps show that SOC is likely influenced by antrophic processes. Spatial variability of SOC indicates soil health deterioration on an important significant portion of the studied area; this suggests the need for future adoption of environmentally friendly soil management in the Baranja region. Regional maps of TC and SOC provide quantitative information for regional planning and environmental monitoring and protection purposes.
Dynamic hydro-climatic networks in pristine and regulated rivers
NASA Astrophysics Data System (ADS)
Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.
2014-12-01
Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.
NASA Astrophysics Data System (ADS)
Baker, Matthew R.; Hollowed, Anne B.
2014-11-01
Characterizing spatial structure and delineating meaningful spatial boundaries have useful applications to understanding regional dynamics in marine systems, and are integral to ecosystem approaches to fisheries management. Physical structure and drivers combine with biological responses and interactions to organize marine systems in unique ways at multiple scales. We apply multivariate statistical methods to define spatially coherent ecological units or ecoregions in the eastern Bering Sea. We also illustrate a practical approach to integrate data on species distribution, habitat structure and physical forcing mechanisms to distinguish areas with distinct biogeography as one means to define management units in large marine ecosystems. We use random forests to quantify the relative importance of habitat and environmental variables to the distribution of individual species, and to quantify shifts in multispecies assemblages or community composition along environmental gradients. Threshold shifts in community composition are used to identify regions with distinct physical and biological attributes, and to evaluate the relative importance of predictor variables to determining regional boundaries. Depth, bottom temperature and frontal boundaries were dominant factors delineating distinct biological communities in this system, with a latitudinal divide at approximately 60°N. Our results indicate that distinct climatic periods will shift habitat gradients and that dynamic physical variables such as temperature and stratification are important to understanding temporal stability of ecoregion boundaries. We note distinct distribution patterns among functional guilds and also evidence for resource partitioning among individual species within each guild. By integrating physical and biological data to determine spatial patterns in community composition, we partition ecosystems along ecologically significant gradients. This may provide a basis for defining spatial management units or serve as a baseline index for analyses of structural shifts in the physical environment, species abundance and distribution, and community dynamics over time.
Citizen science: A new perspective to evaluate spatial patterns in hydrology.
NASA Astrophysics Data System (ADS)
Koch, J.; Stisen, S.
2016-12-01
Citizen science opens new pathways that can complement traditional scientific practice. Intuition and reasoning make humans often more effective than computer algorithms in various realms of problem solving. In particular, a simple visual comparison of spatial patterns is a task where humans are often considered to be more reliable than computer algorithms. However, in practice, science still largely depends on computer based solutions, which is inevitable giving benefits such as speed and the possibility to automatize processes. This study highlights the integration of the generally underused human resource into hydrology. We established a citizen science project on the zooniverse platform entitled Pattern Perception. The aim is to employ the human perception to rate similarity and dissimilarity between simulated spatial patterns of a hydrological catchment model. In total, the turnout counts more than 2,800 users that provided over 46,000 classifications of 1,095 individual subjects within 64 days after the launch. Each subject displays simulated spatial patterns of land-surface variables of a baseline model and six modelling scenarios. The citizen science data discloses a numeric pattern similarity score for each of the scenarios with respect to the reference. We investigate the capability of a set of innovative statistical performance metrics to mimic the human perception to distinguish between similarity and dissimilarity. Results suggest that more complex metrics are not necessarily better at emulating the human perception, but clearly provide flexibility and auxiliary information that is valuable for model diagnostics. The metrics clearly differ in their ability to unambiguously distinguish between similar and dissimilar patterns which is regarded a key feature of a reliable metric.
Temporal and spatial patterns in vegetation and atmospheric properties from AVIRIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, D.A.; Green, R.O.; Adams, J.B.
1997-12-01
Little research has focused on the use of imaging spectrometry for change detection. In this paper, the authors apply Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to the monitoring of seasonal changes in atmospheric water vapor, liquid water, and surface cover in the vicinity of the Jasper Ridge, CA, for three dates in 1992. Apparent surface reflectance was retrieved and water vapor and liquid water mapped by using a radiative-transfer-based inversion that accounts for spatially variable atmospheres. Spectral mixture analysis (SMA) was used to model reflectance data as mixtures of green vegetation (GV), nonphotosynthetic vegetation (NPV), soil, and shade. Temporal andmore » spatial patterns in endmember fractions and liquid water were compared to the normalized difference vegetation index (NDVI). The reflectance retrieval algorithm was tested by using a temporally invariant target.« less
NASA Astrophysics Data System (ADS)
Tyralis, Hristos; Mamassis, Nikos; Photis, Yorgos N.
2016-04-01
We investigate various uses of electricity demand in Greece (agricultural, commercial, domestic, industrial use as well as use for public and municipal authorities and street lightning) and we examine their relation with variables such as population, total area, population density and the Gross Domestic Product. The analysis is performed on data which span from 2008 to 2012 and have annual temporal resolution and spatial resolution down to the level of prefecture. We both visualize the results of the analysis and we perform cluster and outlier analysis using the Anselin local Moran's I statistic as well as hot spot analysis using the Getis-Ord Gi* statistic. The definition of the spatial patterns and relationships of the aforementioned variables in a GIS environment provides meaningful insight and better understanding of the regional development model in Greece and justifies the basis for an energy demand forecasting methodology. Acknowledgement: This research has been partly financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA II: Reinforcement of the interdisciplinary and/ or inter-institutional research and innovation (CRESSENDO project; grant number 5145).
Cross-taxon congruence and environmental conditions.
Toranza, Carolina; Arim, Matías
2010-07-16
Diversity patterns of different taxa typically covary in space, a phenomenon called cross-taxon congruence. This pattern has been explained by the effect of one taxon diversity on taxon diversity, shared biogeographic histories of different taxa, and/or common responses to environmental conditions. A meta-analysis of the association between environment and diversity patterns found that in 83 out of 85 studies, more than 60% of the spatial variability in species richness was related to variables representing energy, water or their interaction. The role of the environment determining taxa diversity patterns leads us to hypothesize that this would explain the observed cross-taxon congruence. However, recent analyses reported the persistence of cross-taxon congruence when environmental effect was statistically removed. Here we evaluate this hypothesis, analyzing the cross-taxon congruence between birds and mammals in the Brazilian Cerrado, and assess the environmental role on the spatial covariation in diversity patterns. We found a positive association between avian and mammal richness and a positive latitudinal trend for both groups in the Brazilian Cerrado. Regression analyses indicated an effect of latitude, PET, and mean temperature over both biological groups. In addition, we show that NDVI was only associated with avian diversity; while the annual relative humidity, was only correlated with mammal diversity. We determined the environmental effects on diversity in a path analysis that accounted for 73% and 76% of the spatial variation in avian and mammal richness. However, an association between avian and mammal diversity remains significant. Indeed, the importance of this link between bird and mammal diversity was also supported by a significant association between birds and mammal spatial autoregressive model residuals. Our study corroborates the main role of environmental conditions on diversity patterns, but suggests that other important mechanisms, which have not been properly evaluated, are involved in the observed cross-taxon congruence. The approaches introduced here indicate that the prevalence of a significant association among taxa, after considering the environmental determinant, could indicate both the need to incorporate additional processes (e.g. biogeographic and evolutionary history or trophic interactions) and/or the existence of a shared trend in detection biases among taxa and regions.
Marston, Christopher G.; Danson, F. Mark; Armitage, Richard P.; Giraudoux, Patrick; Pleydell, David R.J.; Wang, Qian; Qui, Jiamin; Craig, Philip S.
2014-01-01
Understanding distribution patterns of hosts implicated in the transmission of zoonotic disease remains a key goal of parasitology. Here, random forests are employed to model spatial patterns of the presence of the plateau pika (Ochotona spp.) small mammal intermediate host for the parasitic tapeworm Echinococcus multilocularis which is responsible for a significant burden of human zoonoses in western China. Landsat ETM+ satellite imagery and digital elevation model data were utilized to generate quantified measures of environmental characteristics across a study area in Sichuan Province, China. Land cover maps were generated identifying the distribution of specific land cover types, with landscape metrics employed to describe the spatial organisation of land cover patches. Random forests were used to model spatial patterns of Ochotona spp. presence, enabling the relative importance of the environmental characteristics in relation to Ochotona spp. presence to be ranked. An index of habitat aggregation was identified as the most important variable in influencing Ochotona spp. presence, with area of degraded grassland the most important land cover class variable. 71% of the variance in Ochotona spp. presence was explained, with a 90.98% accuracy rate as determined by ‘out-of-bag’ error assessment. Identification of the environmental characteristics influencing Ochotona spp. presence enables us to better understand distribution patterns of hosts implicated in the transmission of Em. The predictive mapping of this Em host enables the identification of human populations at increased risk of infection, enabling preventative strategies to be adopted. PMID:25386042
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2014-03-01
Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.
2012-01-01
Background Ticks are the most important pathogen vectors in Europe. They are known to be influenced by environmental factors, but these links are usually studied at specific temporal or spatial scales. Focusing on Ixodes ricinus in Belgium, we attempt to bridge the gap between current “single-sided” studies that focus on temporal or spatial variation only. Here, spatial and temporal patterns of ticks are modelled together. Methods A multi-level analysis of the Ixodes ricinus patterns in Belgium was performed. Joint effects of weather, habitat quality and hunting on field sampled tick abundance were examined at two levels, namely, sampling level, which is associated with temporal dynamics, and site level, which is related to spatial dynamics. Independent variables were collected from standard weather station records, game management data and remote sensing-based land cover data. Results At sampling level, only a marginally significant effect of daily relative humidity and temperature on the abundance of questing nymphs was identified. Average wind speed of seven days prior to the sampling day was found important to both questing nymphs and adults. At site level, a group of landscape-level forest fragmentation indices were highlighted for both questing nymph and adult abundance, including the nearest-neighbour distance, the shape and the aggregation level of forest patches. No cross-level effects or spatial autocorrelation were found. Conclusions Nymphal and adult ticks responded differently to environmental variables at different spatial and temporal scales. Our results can advise spatio-temporal extents of environment data collection for continuing empirical investigations and potential parameters for biological tick models. PMID:22830528
Selwyn, Jason D; Hogan, J Derek; Downey-Wall, Alan M; Gurski, Lauren M; Portnoy, David S; Heath, Daniel D
2016-01-01
The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.
Murphy, Stephen J; Audino, Livia D; Whitacre, James; Eck, Jenalle L; Wenzel, John W; Queenborough, Simon A; Comita, Liza S
2015-03-01
Patterns of diversity and community composition in forests are controlled by a combination of environmental factors, historical events, and stochastic or neutral mechanisms. Each of these processes has been linked to forest community assembly, but their combined contributions to alpha and beta-diversity in forests has not been well explored. Here we use variance partitioning to analyze approximately 40,000 individual trees of 49 species, collected within 137 ha of sampling area spread across a 900-ha temperate deciduous forest reserve in Pennsylvania to ask (1) To what extent is site-to-site variation in species richness and community composition of a temperate forest explained by measured environmental gradients and by spatial descriptors (used here to estimate dispersal-assembly or unmeasured, spatially structured processes)? (2) How does the incorporation of land-use history information increase the importance attributed to deterministic community assembly? and (3) How do the distributions and abundances of individual species within the community correlate with these factors? Environmental variables (i.e., topography, soils, and distance to stream), spatial descriptors (i.e., spatial eigenvectors derived from Cartesian coordinates), and land-use history variables (i.e., land-use type and intensity, forest age, and distance to road), explained about half of the variation in both species richness and community composition. Spatial descriptors explained the most variation, followed by measured environmental variables and then by land- use history. Individual species revealed variable responses to each of these sets of predictor variables. Several species were associated with stream habitats, and others were strictly delimited across opposing north- and south-facing slopes. Several species were also associated with areas that experienced recent (i.e., <100 years) human land-use impacts. These results indicate that deterministic factors, including environmental and land-use history variables, are important drivers of community response. The large amount of "unexplained" variation seen here (about 50%) is commonly observed in other such studies attempting to explain distribution and abundance patterns of plant communities. Determining whether such large fractions of unaccounted for variation are caused by a lack of sufficient data, or are an indication of stochastic features of forest communities globally, will remain an important challenge for ecologists in the future.
Zhang, Jianfeng; Huang, Zirui; Chen, Yali; Zhang, Jun; Ghinda, Diana; Nikolova, Yuliya; Wu, Jinsong; Xu, Jianghui; Bai, Wenjie; Mao, Ying; Yang, Zhong; Duncan, Niall; Qin, Pengmin; Wang, Hao; Chen, Bing; Weng, Xuchu; Northoff, Georg
2018-05-01
Which temporal features that can characterize different brain states (i.e., consciousness or unconsciousness) is a fundamental question in the neuroscience of consciousness. Using resting-state functional magnetic resonance imaging (rs-fMRI), we investigated the spatial patterns of two temporal features: the long-range temporal correlations (LRTCs), measured by power-law exponent (PLE), and temporal variability, measured by standard deviation (SD) during wakefulness and anesthetic-induced unconsciousness. We found that both PLE and SD showed global reductions across the whole brain during anesthetic state comparing to wakefulness. Importantly, the relationship between PLE and SD was altered in anesthetic state, in terms of a spatial "decoupling." This decoupling was mainly driven by a spatial pattern alteration of the PLE, rather than the SD, in the anesthetic state. Our results suggest differential physiological grounds of PLE and SD and highlight the functional importance of the topographical organization of LRTCs in maintaining an optimal spatiotemporal configuration of the neural dynamics during normal level of consciousness. The central role of the spatial distribution of LRTCs, reflecting temporo-spatial nestedness, may support the recently introduced temporo-spatial theory of consciousness (TTC). © 2018 Wiley Periodicals, Inc.
Regionalization of precipitation characteristics in Iran's Lake Urmia basin
NASA Astrophysics Data System (ADS)
Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn
2018-04-01
Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.
NASA Astrophysics Data System (ADS)
Möller, R.; Möller, M.; Kukla, P. A.; Schneider, C.; Römer, W.; Lehmkuhl, F.; Gudmundsson, M. T.
2016-12-01
On Iceland, explosive subglacial eruptions are common. The two latest eruptions were at Eyjafjallajökull 2010 and at Grímsvötn 2011. Both eruptions produced considerable amounts of tephra fallout that were deposited over large parts of major Icelandic ice caps. These extensive supraglacial tephra deposits are known to considerably alter the energy and mass balance of the ice caps at a strong spatial and temporal variability. We present a statistical evaluation of relationships and links between geochemistry, thermal conductivity, spectral reflectance characteristics, albedo and deposition thickness of the tephra covers and their variability in space and time. Samples of the tephra deposits were gathered in the field and analyzed in the laboratory regarding their chemical and mineralogical composition using X-ray fluorescence and diffraction analyses. Spatial patterns of spectral reflectance over the tephra-covered areas of the three major ice caps Eyjafjallajökull, Myrdalsjökull and Vatnajökull were obtained from multispectral ASTER and MODIS satellite datasets. Spatial patterns of broad-band albedo across the tephra-covered areas and differences to the albedo of unaffected surfaces were obtained from remotely-sensed data and geostatistical modeling. Changes in tephra-cover thickness with time were assessed using a modeling approach that includes thermal conductivity of the tephra cover and surface temperature. The former is derived from laboratory analysis while the latter is based on MODIS observations. We found that there are characteristic patterns of spectral reflectance that could be linked to deposition thickness and geochemical composition of the respective tephra. The temporal variability of the albedo patterns across the ice caps is strongly linked to the evolution of the deposition thicknesses over time.
NASA Astrophysics Data System (ADS)
Bawden, A. J.; Burn, D. H.; Prowse, T. D.
2012-12-01
Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non-parametric trend test. Large-scale spatial patterns are determined through examination of trends and contrasts between upper and lower reaches of individual sub-basins, as well as via analysis of streamflow redistributions within the CROCWR region as an entirety (i.e. north, south, east and/or west-moving patterns). Results are used to predict future implications of hydroclimatic variability and change on western Canada's water resources and recommend measures to be taken by water managers in response to these changes. This research is part of a larger hydroclimatic study that includes an analysis of the climatic drivers contributing to shifting flow regimes in western Canada as well as a study of the controlling synoptic patterns and teleconnections associated with changes in these driving forces.
High spatial variability of carbon dioxide and methane emission in three tropical reservoirs
NASA Astrophysics Data System (ADS)
Reinaldo Paranaiba, José; Barros, Nathan O.; Mendonça, Raquel F.; Linkhorst, Annika; Isidorova, Anastasija; Roland, Fabio; Sobek, Sebastian
2017-04-01
In the tropics, many new large hydropower dams are being built, in order to produce renewable energy for economic growth. Most inland waters, such as rivers, lakes and reservoirs, emit greenhouse gases to the atmosphere, and especially tropical reservoirs have been pointed out as strong sources of methane. However, present estimates of greenhouse gas emission from reservoirs are limited by the amount of available data. In particular, the spatial variability of greenhouse gas emission from reservoirs is insufficiently understood. In order to test the hypothesis that the diffusive emission of carbon dioxide (CO2) and methane (CH4) from tropical reservoirs is characterized by strong spatial variability and incorrectly represented by measurements at one site only, we studied three reservoirs situated in different tropical climates, during the dry period. We conducted spatially resolved measurements of surface water concentrations of dissolved carbon dioxide and methane using an on-line equilibration system, as well as of the gas exchange velocity using floating chambers. We found pronounced spatial variability of diffusive CO2 and CH4 emission in all three reservoirs. River inflow areas were more likely to have high concentrations of particularly CH4, but also CO2, than other areas in the reservoirs. Close to the dam, CH4 concentrations were comparatively low in each reservoir. The variability of CH4 concentration was linked to geographical position, which we ascribe to hot spots of methanogenesis at sites of high sediment deposition, such as river inflow areas. The variability of CO2 concentration seemed instead rather to be linked to in-situ metabolism. Also the gas exchange velocity varied pronouncedly in each reservoir, but without any detectable systematic patterns, calling for further studies. We conclude that accurate upscaling of reservoir greenhouse gas emissions requires accounting for within-reservoir spatial variability, and that the anthropogenic increase of sediment flux from catchments to downstream reservoirs may be linked to increased reservoir CH4 emission.
Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration
NASA Astrophysics Data System (ADS)
Kathrin Hassler, Sibylle; Weiler, Markus; Blume, Theresa
2018-01-01
Transpiration is a key process in the hydrological cycle, and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation and evaluation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology and soils, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls.We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites across a 290 km2 catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocity and derived sap flow patterns of these 61 trees, and we determined the importance of the different controls.Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, geology and aspect. For sap flow we included only the stand- and site-specific predictors in the models to ensure variable independence. Of those, geology and aspect were most important. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, are correlated to the temporal dynamics of potential evaporation. We conclude that transpiration estimates on the landscape scale would benefit from not only consideration of hydro-meteorological drivers, but also tree, stand and site characteristics in order to improve the spatial and temporal representation of transpiration for hydrological and soil-vegetation-atmosphere transfer models.
Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration
NASA Astrophysics Data System (ADS)
Hassler, Sibylle; Markus, Weiler; Theresa, Blume
2017-04-01
Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls. We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km2-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocities of these 61 trees and determined the importance of the different predictors. Results indicate that a combination of tree-, stand- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, the stand density, geology and aspect. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, are correlated to the temporal dynamics of potential evaporation. Thus, transpiration estimates at the landscape scale would benefit from not only considering hydro-meteorological drivers, but also including tree, stand and site characteristics in order to improve the spatial representation of transpiration for hydrological and soil-vegetation-atmosphere transfer models.
NASA Astrophysics Data System (ADS)
Oster, J. L.; Weisman, I. E.; Sharp, W. D.; Ibarra, D. E.
2017-12-01
The synthesis of hydrologically sensitive proxy records across western North America reveals spatial patterns of variability that persist, with some variation, over multiple temporal scales. For example, tree ring records from the last century highlight a distinct north-south dipole pattern in the response of regional precipitation anomalies to ENSO and the PDO, while a similar dipole pattern of wet and dry precipitation anomalies developed across the region in response to climate forcing at the Last Glacial Maximum (LGM). Hydrologically sensitive proxy records from the intervening transition zone can shed light on the stationarity and spatial scale of this pattern over time. Here we present records of δ18O and δ13C from a Lake Shasta Caverns stalagmite (LSC3) from Northern California that grew from 36 to 14 ka. This cave, located at 40.8°N, is situated within the transition zone and is well-positioned to enhance our understanding of regional precipitation patterns and moisture transport variability during the last glacial period and deglaciation. Six years of weekly rain isotope data indicate that varying atmospheric temperatures and moisture sources are primary controls on δ18O in Northern California precipitation. Increased δ18O and δ13C in LSC3 and slower stalagmite growth rates during MIS 2 suggest increased subtropical moisture but also dry conditions in Northern California. The δ13C record displays distinct millennial-scale oscillations during MIS 3, suggesting drier conditions also occurred during interstadials associated with Dansgaard-Oeschger cycles. The LSC3 δ18O record documents changes synchronous with δ18O in the Fort Stanton stalagmite in New Mexico, though sometimes in phase (e.g. during Heinrich Stadial 1; HS1) and sometimes anti-phased (e.g. during the Bölling-Alleröd). Likewise, the LSC3 δ13C record suggests a transition from wet to drier conditions during HS1 in marked contrast to many more southerly records that indicate wetter conditions later in HS1. These comparisons show that changes in Northern California climate were both in and out of phase with hydroclimate variations occurring to the south and southeast. Thus, the LSC3 record refines our understanding of spatial patterns of hydroclimatic change in western North America.
Iglesias, Isabel; Lorenzo, M Nieves; Lázaro, Clara; Fernandes, M Joana; Bastos, Luísa
2017-12-31
Sea level anomaly (SLA), provided globally by satellite altimetry, is considered a valuable proxy for detecting long-term changes of the global ocean, as well as short-term and annual variations. In this manuscript, monthly sea level anomaly grids for the period 1993-2013 are used to characterise the North Atlantic Ocean variability at inter-annual timescales and its response to the North Atlantic main patterns of atmospheric circulation variability (North Atlantic Oscillation, Eastern Atlantic, Eastern Atlantic/Western Russia, Scandinavian and Polar/Eurasia) and main driven factors as sea level pressure, sea surface temperature and wind fields. SLA variability and long-term trends are analysed for the North Atlantic Ocean and several sub-regions (North, Baltic and Mediterranean and Black seas, Bay of Biscay extended to the west coast of the Iberian Peninsula, and the northern North Atlantic Ocean), depicting the SLA fluctuations at basin and sub-basin scales, aiming at representing the regions of maximum sea level variability. A significant correlation between SLA and the different phases of the teleconnection patterns due to the generated winds, sea level pressure and sea surface temperature anomalies, with a strong variability on temporal and spatial scales, has been identified. Long-term analysis reveals the existence of non-stationary inter-annual SLA fluctuations in terms of the temporal scale. Spectral density analysis has shown the existence of long-period signals in the SLA inter-annual component, with periods of ~10, 5, 4 and 2years, depending on the analysed sub-region. Also, a non-uniform increase in sea level since 1993 is identified for all sub-regions, with trend values between 2.05mm/year, for the Bay of Biscay region, and 3.98mm/year for the Baltic Sea (no GIA correction considered). The obtained results demonstrated a strong link between the atmospheric patterns and SLA, as well as strong long-period fluctuations of this variable in spatial and temporal scales. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Grbec, Branka; Matić, Frano; Beg Paklar, Gordana; Morović, Mira; Popović, Ružica; Vilibić, Ivica
2018-02-01
This paper examines long-term series of in situ sea surface temperature (SST) data measured at nine coastal and one open sea stations along the eastern Adriatic Sea for the period 1959-2015. Monthly and yearly averages were used to document SST trends and variability, while clustering and connections to hemispheric indices were achieved by applying the Principal Component Analysis (PCA) and Self-Organizing Maps (SOM) method. Both PCA and SOM revealed the dominance of temporal changes with respect to the effects of spatial differences in SST anomalies, indicating the prevalence of hemispheric processes over local dynamics, such as bora wind spatial inhomogeneity. SST extremes were connected with blocking atmospheric patterns. A substantial warming between 1979 and 2015, in total exceeding 1 °C, was preceded by a period with a negative SST trend, implying strong multidecadal variability in the Adriatic. The strongest connection was found between yearly SST and the East Atlantic (EA) pattern, while North Atlantic Oscillation (NAO) and East Atlantic/West Russia (EAWR) patterns were found to also affect February SST values. Quantification of the Adriatic SST and their connection to hemispheric indices allow for more precise projections of future SST, considered to be rather important for Adriatic thermohaline circulation, biogeochemistry and fisheries, and sensitive to ongoing climate change.
Eckert, Andrew J; Shahi, Hurshbir; Datwyler, Shannon L; Neale, David B
2012-08-01
Plant populations arrayed across sharp environmental gradients are ideal systems for identifying the genetic basis of ecologically relevant phenotypes. A series of five uplifted marine terraces along the northern coast of California represents one such system where morphologically distinct populations of lodgepole pine (Pinus contorta) are distributed across sharp soil gradients ranging from fertile soils near the coast to podzolic soils ca. 5 km inland. A total of 92 trees was sampled across four coastal marine terraces (N = 10-46 trees/terrace) located in Mendocino County, California and sequenced for a set of 24 candidate genes for growth and responses to various soil chemistry variables. Statistical analyses relying on patterns of nucleotide diversity were employed to identify genes whose diversity patterns were inconsistent with three null models. Most genes displayed patterns of nucleotide diversity that were consistent with null models (N = 19) or with the presence of paralogs (N = 3). Two genes, however, were exceptional: an aluminum responsive ABC-transporter with F(ST) = 0.664 and an inorganic phosphate transporter characterized by divergent haplotypes segregating at intermediate frequencies in most populations. Spatially variable natural selection along gradients of aluminum and phosphate ion concentrations likely accounted for both outliers. These results shed light on some of the genetic components comprising the extended phenotype of this ecosystem, as well as highlight ecotones as fruitful study systems for the detection of adaptive genetic variants.
Space and time variability of the surface color field in the northern Adriatic Sea
NASA Technical Reports Server (NTRS)
Barale, Vittorio; Mcclain, Charles R.; Malanotte-Rizzoli, Paola
1986-01-01
A time series of coastal zone color scanner images for the years 1979 and 1980 was used to observe the spatial and temporal variability of bio-optical processes and circulation patterns of the northern Adriatic Sea on monthly, seasonal, and interannual scales. The chlorophyll-like pigment concentrations derived from satellite data exhibited a high correlation with sea truth measurements performed during seven surveys in the summer of both years. Comparison of the mean pigment fields indicates a general increase in concentration values and larger scales of coastal features from 1979 to 1980. This variability may be linked to the different patterns of nutrient influx due to coastal runoff in the 2 years. The distribution of surface features is consistent with the general cyclonic circulation pattern. The pigment heterogeneity appears to be governed by fluctuations of freshwater discharge, while the dominant wind fields do not appear to have important direct effects. The Po River presents a plume spreading predominantly in a southeastern direction, with scales positively correlated with its outflow. The spatial scales of the western coastal layer, in contrast, are negatively correlated with this outflow and the plume scales. Both results are consistent with, and may be rationalized by, recent theoretical and experimental results involving a dynamical balance between nonlinear advection and bottom friction, with alternate predominance of one of the two effects.
NASA Astrophysics Data System (ADS)
Tolu, Julie; Rydberg, Johan; Meyer-Jacob, Carsten; Gerber, Lorenz; Bindler, Richard
2017-04-01
The composition of sediment organic matter (OM) exerts a strong control on biogeochemical processes in lakes, such as those involved in the fate of carbon, nutrients and trace metals. While between-lake spatial variability of OM quality is increasingly investigated, we explored in this study how the molecular composition of sediment OM varies spatially within a single lake and related this variability to physical parameters and elemental geochemistry. Surface sediment samples (0-10 cm) from 42 locations in Härsvatten - a small boreal forest lake with a complex basin morphometry - were analyzed for OM molecular composition using pyrolysis gas chromatography mass spectrometry for the contents of 23 major and trace elements and biogenic silica. We identified 162 organic compounds belonging to different biochemical classes of OM (e.g., carbohydrates, lignin and lipids). Close relationships were found between the spatial patterns of sediment OM molecular composition and elemental geochemistry. Differences in the source types of OM (i.e., terrestrial, aquatic plant and algal) were linked to the individual basin morphometries and chemical status of the lake. The variability in OM molecular composition was further driven by the degradation status of these different source pools, which appeared to be related to sedimentary physicochemical parameters (e.g., redox conditions) and to the molecular structure of the organic compounds. Given the high spatial variation in OM molecular composition within Härsvatten and its close relationship with elemental geochemistry, the potential for large spatial variability across lakes should be considered when studying biogeochemical processes involved in the cycling of carbon, nutrients and trace elements or when assessing lake budgets.
NASA Technical Reports Server (NTRS)
Mehta, Vikram M.; Delworth, Thomas
1995-01-01
Sea surface temperature (SST) variability was investigated in a 200-yr integration of a global model of the coupled oceanic and atmospheric general circulations developed at the Geophysical Fluid Dynamics Laboratory (GFDL). The second 100 yr of SST in the coupled model's tropical Atlantic region were analyzed with a variety of techniques. Analyses of SST time series, averaged over approximately the same subregions as the Global Ocean Surface Temperature Atlas (GOSTA) time series, showed that the GFDL SST anomalies also undergo pronounced quasi-oscillatory decadal and multidecadal variability but at somewhat shorter timescales than the GOSTA SST anomalies. Further analyses of the horizontal structures of the decadal timescale variability in the GFDL coupled model showed the existence of two types of variability in general agreement with results of the GOSTA SST time series analyses. One type, characterized by timescales between 8 and 11 yr, has high spatial coherence within each hemisphere but not between the two hemispheres of the tropical Atlantic. A second type, characterized by timescales between 12 and 20 yr, has high spatial coherence between the two hemispheres. The second type of variability is considerably weaker than the first. As in the GOSTA time series, the multidecadal variability in the GFDL SST time series has approximately opposite phases between the tropical North and South Atlantic Oceans. Empirical orthogonal function analyses of the tropical Atlantic SST anomalies revealed a north-south bipolar pattern as the dominant pattern of decadal variability. It is suggested that the bipolar pattern can be interpreted as decadal variability of the interhemispheric gradient of SST anomalies. The decadal and multidecadal timescale variability of the tropical Atlantic SST, both in the actual and in the GFDL model, stands out significantly above the background 'red noise' and is coherent within each of the time series, suggesting that specific sets of processes may be responsible for the choice of the decadal and multidecadal timescales. Finally, it must be emphasized that the GFDL coupled ocean-atmosphere model generates the decadal and multidecadal timescale variability without any externally applied force, solar or lunar, at those timescales.
Cooper, K M; Barry, J
2017-09-29
In this study we produce a standardised dataset for benthic macrofauna and sediments through integration of data (33,198 samples) from 777 grab surveys. The resulting dataset is used to identify spatial and temporal patterns in faunal distribution around the UK, and the role of sediment composition and other explanatory variables in determining such patterns. We show how insight into natural variability afforded by the dataset can be used to improve the sustainability of activities which affect sediment composition, by identifying conditions which should remain favourable for faunal recolonisation. Other big data applications and uses of the dataset are discussed.
NASA Astrophysics Data System (ADS)
Ye, Ran; Cai, Yanhong; Wei, Yongjie; Li, Xiaoming
2017-04-01
The spatial pattern of phytoplankton community can indicate potential environmental variation in different water bodies. In this context, spatial pattern of phytoplankton community and its response to environmental and spatial factors were studied in the coastal waters of northern Zhejiang, East China Sea using multivariate statistical techniques. Results showed that 94 species belonging to 40 genera, 5 phyla were recorded (the remaining 9 were identified to genus level) with diatoms being the most dominant followed by dinoflagellates. Hierarchical clustering analysis (HCA), nonmetric multidimentional scaling (NMDS), and analysis of similarity (ANOSIM) all demomstrated that the whole study area could be divided into 3 subareas with significant differences. Indicator species analysis (ISA) further confirmed that the indicator species of each subarea correlated significantly with specific environmental factors. Distance-based linear model (Distlm) and Mantel test revealed that silicate (SiO32-), phosphate (PO43-), pH, and dissolved oxygen (DO) were the most important environmental factors influencing phytoplankton community. Variation portioning (VP) finally concluded that the shared fractions of environmental and spatial factors were higher than either the pure environmental effects or the pure spatial effects, suggesting phytoplankton biogeography were mainly affected by both the environmental variability and dispersal limitation. Additionally, other factors (eg., trace metals, biological grazing, climate change, and time-scale variation) may also be the sources of the unexplained variation which need further study.
Pressey, Robert L.; Weeks, Rebecca; Andréfouët, Serge; Moloney, James
2016-01-01
Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors—planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs—on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs. PMID:27829042
Cheok, Jessica; Pressey, Robert L; Weeks, Rebecca; Andréfouët, Serge; Moloney, James
2016-01-01
Spatial data characteristics have the potential to influence various aspects of prioritising biodiversity areas for systematic conservation planning. There has been some exploration of the combined effects of size of planning units and level of classification of physical environments on the pattern and extent of priority areas. However, these data characteristics have yet to be explicitly investigated in terms of their interaction with different socioeconomic cost data during the spatial prioritisation process. We quantify the individual and interacting effects of three factors-planning-unit size, thematic resolution of reef classes, and spatial variability of socioeconomic costs-on spatial priorities for marine conservation, in typical marine planning exercises that use reef classification maps as a proxy for biodiversity. We assess these factors by creating 20 unique prioritisation scenarios involving combinations of different levels of each factor. Because output data from these scenarios are analogous to ecological data, we applied ecological statistics to determine spatial similarities between reserve designs. All three factors influenced prioritisations to different extents, with cost variability having the largest influence, followed by planning-unit size and thematic resolution of reef classes. The effect of thematic resolution on spatial design depended on the variability of cost data used. In terms of incidental representation of conservation objectives derived from finer-resolution data, scenarios prioritised with uniform cost outperformed those prioritised with variable cost. Following our analyses, we make recommendations to help maximise the spatial and cost efficiency and potential effectiveness of future marine conservation plans in similar planning scenarios. We recommend that planners: employ the smallest planning-unit size practical; invest in data at the highest possible resolution; and, when planning across regional extents with the intention of incidentally representing fine-resolution features, prioritise the whole region with uniform costs rather than using coarse-resolution data on variable costs.
Can Geostatistical Models Represent Nature's Variability? An Analysis Using Flume Experiments
NASA Astrophysics Data System (ADS)
Scheidt, C.; Fernandes, A. M.; Paola, C.; Caers, J.
2015-12-01
The lack of understanding in the Earth's geological and physical processes governing sediment deposition render subsurface modeling subject to large uncertainty. Geostatistics is often used to model uncertainty because of its capability to stochastically generate spatially varying realizations of the subsurface. These methods can generate a range of realizations of a given pattern - but how representative are these of the full natural variability? And how can we identify the minimum set of images that represent this natural variability? Here we use this minimum set to define the geostatistical prior model: a set of training images that represent the range of patterns generated by autogenic variability in the sedimentary environment under study. The proper definition of the prior model is essential in capturing the variability of the depositional patterns. This work starts with a set of overhead images from an experimental basin that showed ongoing autogenic variability. We use the images to analyze the essential characteristics of this suite of patterns. In particular, our goal is to define a prior model (a minimal set of selected training images) such that geostatistical algorithms, when applied to this set, can reproduce the full measured variability. A necessary prerequisite is to define a measure of variability. In this study, we measure variability using a dissimilarity distance between the images. The distance indicates whether two snapshots contain similar depositional patterns. To reproduce the variability in the images, we apply an MPS algorithm to the set of selected snapshots of the sedimentary basin that serve as training images. The training images are chosen from among the initial set by using the distance measure to ensure that only dissimilar images are chosen. Preliminary investigations show that MPS can reproduce fairly accurately the natural variability of the experimental depositional system. Furthermore, the selected training images provide process information. They fall into three basic patterns: a channelized end member, a sheet flow end member, and one intermediate case. These represent the continuum between autogenic bypass or erosion, and net deposition.
NASA Astrophysics Data System (ADS)
Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia
2017-04-01
The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to be sought to explain the poor agreement in spatial patterns between satellite derived and modelled SSM. This presentation will hopefully contribute to the discussion of how SMOS and other observations can be used to prepare, carry-out and exploit a field campaign over the Iberian Peninsula which aims at improving our understanding of semi-arid land surface processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong
The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota,more » Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated the change trend of corn yield variability, in projecting its future changes.« less
Sensor-based precision fertilization for field crops
USDA-ARS?s Scientific Manuscript database
From the development of the first viable variable-rate fertilizer systems in the upper Midwest USA, precision agriculture is now approaching three decades old. Early precision fertilization practice relied on laboratory analysis of soil samples collected on a spatial pattern to define the nutrient-s...
NASA Technical Reports Server (NTRS)
Glick, B. J.
1985-01-01
Techniques for classifying objects into groups or clases go under many different names including, most commonly, cluster analysis. Mathematically, the general problem is to find a best mapping of objects into an index set consisting of class identifiers. When an a priori grouping of objects exists, the process of deriving the classification rules from samples of classified objects is known as discrimination. When such rules are applied to objects of unknown class, the process is denoted classification. The specific problem addressed involves the group classification of a set of objects that are each associated with a series of measurements (ratio, interval, ordinal, or nominal levels of measurement). Each measurement produces one variable in a multidimensional variable space. Cluster analysis techniques are reviewed and methods for incuding geographic location, distance measures, and spatial pattern (distribution) as parameters in clustering are examined. For the case of patterning, measures of spatial autocorrelation are discussed in terms of the kind of data (nominal, ordinal, or interval scaled) to which they may be applied.
NASA Astrophysics Data System (ADS)
Flantua, S. G. A.; Hooghiemstra, H.; Vuille, M.; Behling, H.; Carson, J. F.; Gosling, W. D.; Hoyos, I.; Ledru, M. P.; Montoya, E.; Mayle, F.; Maldonado, A.; Rull, V.; Tonello, M. S.; Whitney, B. S.; González-Arango, C.
2015-07-01
An improved understanding of present-day climate variability and change relies on high-quality data sets from the past two millennia. Global efforts to reconstruct regional climate modes are in the process of validating and integrating paleo-proxies. For South America, however, the full potential of vegetation records for evaluating and improving climate models has hitherto not been sufficiently acknowledged due to its unknown spatial and temporal coverage. This paper therefore serves as a guide to high-quality pollen records that capture environmental variability during the last two millennia. We identify the pollen records with the required temporal characteristics for PAGES-2 ka climate modelling and we discuss their sensitivity to the spatial signature of climate modes throughout the continent. Diverse patterns of vegetation response to climate change are observed, with more similar patterns of change in the lowlands and varying intensity and direction of responses in the highlands. Pollen records display local scale responses to climate modes, thus it is necessary to understand how vegetation-climate interactions might diverge under variable settings. Additionally, pollen is an excellent indicator of human impact through time. Evidence for human land use in pollen records is useful for archaeological hypothesis testing and important in distinguishing natural from anthropogenically driven vegetation change. We stress the need for the palynological community to be more familiar with climate variability patterns to correctly attribute the potential causes of observed vegetation dynamics. The LOTRED-SA-2 k initiative provides the ideal framework for the integration of the various paleoclimatic sub-disciplines and paleo-science, thereby jumpstarting and fostering multi-disciplinary research into environmental change on centennial and millennial time scales.
Kraan, Casper; Aarts, Geert; Van der Meer, Jaap; Piersma, Theunis
2010-06-01
Ongoing statistical sophistication allows a shift from describing species' spatial distributions toward statistically disentangling the possible roles of environmental variables in shaping species distributions. Based on a landscape-scale benthic survey in the Dutch Wadden Sea, we show the merits of spatially explicit generalized estimating equations (GEE). The intertidal macrozoobenthic species, Macoma balthica, Cerastoderma edule, Marenzelleria viridis, Scoloplos armiger, Corophium volutator, and Urothoe poseidonis served as test cases, with median grain-size and inundation time as typical environmental explanatory variables. GEEs outperformed spatially naive generalized linear models (GLMs), and removed much residual spatial structure, indicating the importance of median grain-size and inundation time in shaping landscape-scale species distributions in the intertidal. GEE regression coefficients were smaller than those attained with GLM, and GEE standard errors were larger. The best fitting GEE for each species was used to predict species' density in relation to median grain-size and inundation time. Although no drastic changes were noted compared to previous work that described habitat suitability for benthic fauna in the Wadden Sea, our predictions provided more detailed and unbiased estimates of the determinants of species-environment relationships. We conclude that spatial GEEs offer the necessary methodological advances to further steps toward linking pattern to process.
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
El Niño-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with coupled general circulation models (CGCMs) to investigate how regional precipitation in the twenty-first century may be affected by changes in both ENSO-driven precipitation variability and slowly evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of twentieth-century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in twenty-first-century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with twentieth-century observations and more stationary during the twenty-first century. Finally, the model-predicted twenty-first-century rainfall response to cENSO is decomposed into the sum of three terms: 1) the twenty-first-century change in the mean state of precipitation, 2) the historical precipitation response to the cENSO pattern, and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
NASA Technical Reports Server (NTRS)
Bonfils, Celine J. W.; Santer, Benjamin D.; Phillips, Thomas J.; Marvel, Kate; Leung, L. Ruby; Doutriaux, Charles; Capotondi, Antonietta
2015-01-01
The El Nino-Southern Oscillation (ENSO) is an important driver of regional hydroclimate variability through far-reaching teleconnections. This study uses simulations performed with Coupled General Circulation Models (CGCMs) to investigate how regional precipitation in the 21st century may be affected by changes in both ENSO-driven precipitation variability and slowly-evolving mean rainfall. First, a dominant, time-invariant pattern of canonical ENSO variability (cENSO) is identified in observed SST data. Next, the fidelity with which 33 state-of-the-art CGCMs represent the spatial structure and temporal variability of this pattern (as well as its associated precipitation responses) is evaluated in simulations of 20th century climate change. Possible changes in both the temporal variability of this pattern and its associated precipitation teleconnections are investigated in 21st century climate projections. Models with better representation of the observed structure of the cENSO pattern produce winter rainfall teleconnection patterns that are in better accord with 20th century observations and more stationary during the 21st century. Finally, the model-predicted 21st century rainfall response to cENSO is decomposed into the sum of three terms: 1) the 21st century change in the mean state of precipitation; 2) the historical precipitation response to the cENSO pattern; and 3) a future enhancement in the rainfall response to cENSO, which amplifies rainfall extremes. By examining the three terms jointly, this conceptual framework allows the identification of regions likely to experience future rainfall anomalies that are without precedent in the current climate.
Understanding the spatial complexity of surface hoar from slope to range scale
NASA Astrophysics Data System (ADS)
Hendrikx, J.
2015-12-01
Surface hoar, once buried, is a common weak layer type in avalanche accidents in continental and intermountain snowpacks around the World. Despite this, there is still limited understanding of the spatial variability in both the formation of, and eventual burial of, surface hoar at spatial scales which are of critical importance to avalanche forecasters. While it is relatively well understood that aspect plays an important role in the spatial location of the formation, and burial of these grain forms, due to the unequal distribution of incoming radiation, this factor alone does not explain the complex and often confusing spatial pattern of these grains forms throughout the landscape at different spatial scales. In this paper we present additional data from a unique data set including over two hundred days of manual observations of surface hoar at sixteen locations on Pioneer Mountain at the Yellowstone Club in southwestern Montana. Using this wealth of observational data located on different aspects, elevations and exposures, coupled with detailed meteorological observations, and detailed slope scale observation, we examine the spatial variability of surface hoar at this scale, and examine the factors that control its spatial distribution. Our results further supports our preliminary work, which shows that small-scale slope conditions, meteorological differences, and local scale lapse rates, can greatly influence the spatial variability of surface hoar, over and above that which aspect alone can explain. These results highlight our incomplete understanding of the processes at both the slope and range scale, and are likely to have implications for both regional and local scale avalanche forecasting in environments where surface hoar cause ongoing instabilities.
NASA Astrophysics Data System (ADS)
Chen, R. S.; Levy, M.; Baptista, S.; Adamo, S.
2010-12-01
Vulnerability to climate variability and change will depend on dynamic interactions between different aspects of climate, land-use change, and socioeconomic trends. Measurements and projections of these changes are difficult at the local scale but necessary for effective planning. New data sources and methods make it possible to assess land-use and socioeconomic changes that may affect future patterns of climate vulnerability. In this paper we report on new time series data sets that reveal trends in the spatial patterns of climate vulnerability in the Caribbean/Gulf of Mexico Region. Specifically, we examine spatial time series data for human population over the period 1990-2000, time series data on land use and land cover over 2000-2009, and infant mortality rates as a proxy for poverty for 2000-2008. We compare the spatial trends for these measures to the distribution of climate-related natural disaster risk hotspots (cyclones, floods, landslides, and droughts) in terms of frequency, mortality, and economic losses. We use these data to identify areas where climate vulnerability appears to be increasing and where it may be decreasing. Regions where trends and patterns are especially worrisome include coastal areas of Guatemala and Honduras.
Estimating neighborhood variability with a binary comparison matrix.
Murphy, D.L.
1985-01-01
A technique which utilizes a binary comparison matrix has been developed to implement a neighborhood function for a raster format data base. The technique assigns an index value to the center pixel of 3- by 3-pixel neighborhoods. The binary comparison matrix provides additional information not found in two other neighborhood variability statistics; the function is sensitive to both the number of classes within the neighborhood and the frequency of pixel occurrence in each of the classes. Application of the function to a spatial data base from the Kenai National Wildlife Refuge, Alaska, demonstrates 1) the numerical distribution of the index values, and 2) the spatial patterns exhibited by the numerical values. -Author
Modern Climate Analogues of Late-Quaternary Paleoclimates for the Western United States.
NASA Astrophysics Data System (ADS)
Mock, Cary Jeffrey
This study examined spatial variations of modern and late-Quaternary climates for the western United States. Synoptic climatological analyses of the modern record identified the predominate climatic controls that normally produce the principal modes of spatial climatic variability. They also provided a modern standard to assess past climates. Maps of the month-to-month changes in 500 mb heights, sea-level pressure, temperature, and precipitation illustrated how different climatic controls govern the annual cycle of climatic response. The patterns of precipitation ratios, precipitation bar graphs, and the seasonal precipitation maximum provided additional insight into how different climatic controls influence spatial climatic variations. Synoptic-scale patterns from general circulation model (GCM) simulations or from analyses of climatic indices were used as the basis for finding modern climate analogues for 18 ka and 9 ka. Composite anomaly maps of atmospheric circulation, precipitation, and temperature were compared with effective moisture maps compiled from proxy data to infer how the patterns, which were evident from the proxy data, were generated. The analyses of the modern synoptic climatology indicate that smaller-scale climatic controls must be considered along with larger-scale ones in order to explain patterns of spatial climate heterogeneity. Climatic extremes indicate that changes in the spatial patterns of precipitation seasonality are the exception rather than the rule, reflecting the strong influence of smaller-scale controls. Modern climate analogues for both 18 ka and 9 ka clearly depict the dry Northwest/wet Southwest contrast that is suggested by GCM simulations and paleoclimatic evidence. 18 ka analogues also show the importance of smaller-scale climatic controls in explaining spatial climatic variation in the Northwest and northern Great Plains. 9 ka analogues provide climatological explanations for patterns of spatial heterogeneity over several mountainous areas as suggested by paleoclimatic evidence. Modern analogues of past climates supplement modeling approaches by providing information below the resolution of model simulations. Analogues can be used to examine the controls of spatial paleoclimatic variation if sufficient instrumental data and paleoclimatic evidence are available, and if one carefully exercises uniformitarianism when extrapolating modern relationships to the past.
Climatic change by cloudiness linked to the spatial variability of sea surface temperatures
NASA Technical Reports Server (NTRS)
Otterman, J.
1975-01-01
An active role in modifying the earth's climate is suggested for low cloudiness over the circumarctic oceans. Such cloudiness, linked to the spatial differences in ocean surface temperatures, was studied. The temporal variations from year to year of ocean temperature patterns can be pronounced and therefore, the low cloudiness over this region should also show strong temporal variations, affecting the albedo of the earth and therefore the climate. Photographs are included.
Lindegarth, M
2001-05-01
Assemblages of animals in soft-sediments were studied in relation to pontoons for mooring private boats in two estuaries near Sydney, Australia. Based on previously observed patterns around other types of artificial structures, it was predicted that assemblages of animals under pontoons would be different from those in similar areas away from pontoons. Hypotheses about overall differences in average abundance and composition between sites with and without pontoons were tested, as were hypotheses about variable differences among and within estuaries. Analyses revealed that there were fewer crustaceans under pontoons in one estuary. The most conspicuous patterns related to pontoons were, however, differences in variability among sites with pontoons compared to sites without pontoons. Differences in spatial variability were found for the overall multivariate structure using Bray-Curtis dissimilarities and for abundances of most major taxa. Total abundance was approximately 60 times more variable among sites without pontoons and number of taxa were seven times more variable among sites with pontoons. Such patterns indicate that impacts of pontoons occur at some sites but not at others. This may be explained by intrinsic differences among sites or by differences in practices for maintenance. Predictions from these two contrasting models need to be tested in order to achieve efficient management of this type of structure.
Vieira, Verónica M.; Fabian, M. Patricia; Webster, Thomas F.; Levy, Jonathan I.; Korrick, Susan A.
2017-01-01
Abstract Attention-deficit/hyperactivity disorder (ADHD) has an uncertain etiology, with potential contributions from different risk factors such as prenatal environmental exposure to organochlorines and metals, social risk factors, and genetics. The degree to which geographic variability in ADHD is independent of, or explained by, risk factors may provide etiological insight. We investigated determinants of geographic variation in ADHD-related behaviors among children living near the polychlorinated biphenyl–contaminated New Bedford Harbor (NBH) Superfund site in Massachusetts. Participants were 573 children recruited at birth (1993–1998) who were born to mothers residing near the NBH site. We assessed ADHD-related behaviors at age 8 years using Conners’ Teacher Rating Scale–Revised: Long Version. Adjusted generalized additive models were used to smooth the association of pregnancy residence with ADHD-related behaviors and assess whether prenatal organochlorine or metal exposures, sociodemographic factors, or other factors explained spatial patterns. Models that adjusted for child's age and sex displayed significantly increased ADHD-related behavior among children whose mothers resided west of the NBH site during pregnancy. These spatial patterns persisted after adjusting for prenatal exposure to organochlorines and metals but were no longer significant after controlling for sociodemographic factors. The findings underscore the value of spatial analysis in identifying high-risk subpopulations and evaluating candidate risk factors. PMID:28444119
Rasmussen, Pil U; Hugerth, Luisa W; Blanchet, F Guillaume; Andersson, Anders F; Lindahl, Björn D; Tack, Ayco J M
2018-03-24
Arbuscular mycorrhizal (AM) fungi form diverse communities and are known to influence above-ground community dynamics and biodiversity. However, the multiscale patterns and drivers of AM fungal composition and diversity are still poorly understood. We sequenced DNA markers from roots and root-associated soil from Plantago lanceolata plants collected across multiple spatial scales to allow comparison of AM fungal communities among neighbouring plants, plant subpopulations, nearby plant populations, and regions. We also measured soil nutrients, temperature, humidity, and community composition of neighbouring plants and nonAM root-associated fungi. AM fungal communities were already highly dissimilar among neighbouring plants (c. 30 cm apart), albeit with a high variation in the degree of similarity at this small spatial scale. AM fungal communities were increasingly, and more consistently, dissimilar at larger spatial scales. Spatial structure and environmental drivers explained a similar percentage of the variation, from 7% to 25%. A large fraction of the variation remained unexplained, which may be a result of unmeasured environmental variables, species interactions and stochastic processes. We conclude that AM fungal communities are highly variable among nearby plants. AM fungi may therefore play a major role in maintaining small-scale variation in community dynamics and biodiversity. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.
Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M
2018-05-30
Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.
Monitoring of oceanographic properties of Glacier Bay, Alaska 2004
Madison, Erica N.; Etherington, Lisa L.
2005-01-01
Glacier Bay is a recently (300 years ago) deglaciated fjord estuarine system that has multiple sills, very deep basins, tidewater glaciers, and many streams. Glacier Bay experiences a large amount of runoff, high sedimentation, and large tidal variations. High freshwater discharge due to snow and ice melt and the presence of the tidewater glaciers makes the bay extremely cold. There are many small- and large-scale mixing and upwelling zones at sills, glacial faces, and streams. The complex topography and strong currents lead to highly variable salinity, temperature, sediment, primary productivity, light penetration, stratification levels, and current patterns within a small area. The oceanographic patterns within Glacier Bay drive a large portion of the spatial and temporal variability of the ecosystem. It has been widely recognized by scientists and resource managers in Glacier Bay that a program to monitor oceanographic patterns is essential for understanding the marine ecosystem and to differentiate between anthropogenic disturbance and natural variation. This year’s sampling marks the 12th continuous year of monitoring the oceanographic conditions at 23 stations along the primary axes within Glacier Bay, AK, making this a very unique and valuable data set in terms of its spatial and temporal coverage.
Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang
2018-05-01
Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.
Spatial extreme value analysis to project extremes of large-scale indicators for severe weather
Gilleland, Eric; Brown, Barbara G; Ammann, Caspar M
2013-01-01
Concurrently high values of the maximum potential wind speed of updrafts (Wmax) and 0–6 km wind shear (Shear) have been found to represent conducive environments for severe weather, which subsequently provides a way to study severe weather in future climates. Here, we employ a model for the product of these variables (WmSh) from the National Center for Atmospheric Research/United States National Center for Environmental Prediction reanalysis over North America conditioned on their having extreme energy in the spatial field in order to project the predominant spatial patterns of WmSh. The approach is based on the Heffernan and Tawn conditional extreme value model. Results suggest that this technique estimates the spatial behavior of WmSh well, which allows for exploring possible changes in the patterns over time. While the model enables a method for inferring the uncertainty in the patterns, such analysis is difficult with the currently available inference approach. A variation of the method is also explored to investigate how this type of model might be used to qualitatively understand how the spatial patterns of WmSh correspond to extreme river flow events. A case study for river flows from three rivers in northwestern Tennessee is studied, and it is found that advection of WmSh from the Gulf of Mexico prevails while elsewhere, WmSh is generally very low during such extreme events. © 2013 The Authors. Environmetrics published by JohnWiley & Sons, Ltd. PMID:24223482
NASA Astrophysics Data System (ADS)
Yi, Xing; Hünicke, Birgit; Tim, Nele; Zorita, Eduardo
2018-01-01
Studies based on sediment records, sea-surface temperature and wind suggest that upwelling along the western coast of Arabian Sea is strongly affected by the Indian summer Monsoon. We examine this relationship directly in an eddy-resolving global ocean simulation STORM driven by atmospheric reanalysis over the last 61 years. With its very high spatial resolution (10 km), STORM allows us to identify characteristics of the upwelling system. We analyse the co-variability between upwelling and meteorological and oceanic variables from 1950 to 2010. The analysis reveals high interannual correlations between coastal upwelling and along-shore wind-stress (r = 0.73) as well as with sea-surface temperature (r = -0.83). However, the correlation between the upwelling and the Monsoon is small. We find an atmospheric circulation pattern different from the one that drives the Monsoon as the main modulator of the upwelling variability. In spite of this, the patterns of temperature anomalies that are either linked to Arabian Sea upwelling or to the Monsoon are spatially quite similar, although the physical mechanisms of these links are different. In addition, no long-term trend is detected in our modelled upwelling in the Arabian Sea.
NASA Astrophysics Data System (ADS)
Hasan, M. A.; Akanda, A. S.; Jutla, A.; Colwell, R. R.
2016-12-01
Rotavirus is the leading cause of severe dehydrating diarrhea among children under 5. Over 80% of the approximate half a million child deaths every year occur in South Asia and sub-Saharan Africa alone. Although less explored than cholera as a climate driven and influenced global health problem, recent studies have showed that the disease shown strong seasonality and spatio-temporal variability depending on regional hydroclimatic and local environmental conditions. Understanding the epidemiology of this disease, especially the spatio-temporal incidence patterns with respect to environmental factors is vitally important to allow for identification of "hotspots", preventative preparations, and vaccination strategies to improve wellbeing of the vulnerable populations. With climate change, spatio-temporal signatures and footprints of the disease are changing along with increasing burden. However, a robust understanding of the relationships between rotavirus epidemiology and hydroclimatic drivers is yet to be developed. In this study, we evaluate the seasonality and epidemiologic characteristics of rotavirous infection and its spatio-temporal incidence patterns with respect to regional hydroclimatic variables and their extremes in an endemic region in South Asia. Hospital-based surveillance data from different geographic locations allowed us to explore the detailed spatial and temporal characteristics of rotavirus propagation under the influence of climate variables in both coastal and inland areas. The rotavirus transmission patterns show two peaks in a year in the capital city of Dhaka, where winter season (highest in January) shows a high peak and the July-August monsoon season shows a smaller peak. Correlation with climate variables revealed that minimum temperature has strong influence on the winter season outbreak, while rainfall extremes show a strong positive association with the secondary monsoon peak. Spatial analysis also revealed that humidity and soil wetness may influence the timing as drier areas experience earlier outbreaks than wetter areas. Accurate understanding of rotavirus propagation with respect to hydroclimatic and environmental variability can be utilized to establish global surveillance and forecast imminent risk of diarrheal outbreaks in vulnerable regions.
Coupled economic-coastline modeling with suckers and free riders
NASA Astrophysics Data System (ADS)
Williams, Zachary C.; McNamara, Dylan E.; Smith, Martin D.; Murray, A. Brad.; Gopalakrishnan, Sathya
2013-06-01
erosion is a natural trend along most sandy coastlines. Humans often respond to shoreline erosion with beach nourishment to maintain coastal property values. Locally extending the shoreline through nourishment alters alongshore sediment transport and changes shoreline dynamics in adjacent coastal regions. If left unmanaged, sandy coastlines can have spatially complex or simple patterns of erosion due to the relationship of large-scale morphology and the local wave climate. Using a numerical model that simulates spatially decentralized and locally optimal nourishment decisions characteristic of much of U.S. East Coast beach management, we find that human erosion intervention does not simply reflect the alongshore erosion pattern. Spatial interactions generate feedbacks in economic and physical variables that lead to widespread emergence of "free riders" and "suckers" with subsequent inequality in the alongshore distribution of property value. Along cuspate coastlines, such as those found along the U.S. Southeast Coast, these long-term property value differences span an order of magnitude. Results imply that spatially decentralized management of nourishment can lead to property values that are divorced from spatial erosion signals; this management approach is unlikely to be optimal.
Spatial drought reconstructions for central High Asia based on tree rings
NASA Astrophysics Data System (ADS)
Fang, Keyan; Davi, Nicole; Gou, Xiaohua; Chen, Fahu; Cook, Edward; Li, Jinbao; D'Arrigo, Rosanne
2010-11-01
Spatial reconstructions of drought for central High Asia based on a tree-ring network are presented. Drought patterns for central High Asia are classified into western and eastern modes of variability. Tree-ring based reconstructions of the Palmer drought severity index (PDSI) are presented for both the western central High Asia drought mode (1587-2005), and for the eastern central High Asia mode (1660-2005). Both reconstructions, generated using a principal component regression method, show an increased variability in recent decades. The wettest epoch for both reconstructions occurred from the 1940s to the 1950s. The most extreme reconstructed drought for western central High Asia was from the 1640s to the 1650s, coinciding with the collapse of the Chinese Ming Dynasty. The eastern central High Asia reconstruction has shown a distinct tendency towards drier conditions since the 1980s. Our spatial reconstructions agree well with previous reconstructions that fall within each mode, while there is no significant correlation between the two spatial reconstructions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Q; Xie, S
This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutionsmore » for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.« less
Pennington, Victoria E.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.
2017-01-01
Article for outlet: Plant Ecology. Abstract: Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread non-forested drylands in western North American and similar to all shrub steppe ecosystems world-wide are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored the geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the small and large-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis and nonmetric multidimensional scaling to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, with important consequences for forb species richness and composition, which suggests climate-change induced modification of soil water availability may have important implications for plant species diversity in the future. Our paper is the first to our knowledge to examine forb biodiversity patterns in big sagebrush ecosystems in relation to environmental factors across the big sagebrush region.
Lauren S. Urgenson; Charles B. Halpern; Paul D. Anderson
2013-01-01
Mortality of retained trees can compromise the ecological objectives of variable-retention harvest. We used a large-scale experiment replicated at six locations in western Washington and Oregon to examine the influences of retention level (40% vs. 15% of original basal area) and its spatial pattern (aggregated vs.dispersed) on the rate and form of tree mortality for 11...
Vegetation-induced spatial variability of soil redox properties in wetlands
NASA Astrophysics Data System (ADS)
Szalai, Zoltán; Jakab, Gergely; Kiss, Klaudia; Ringer, Marianna; Balázs, Réka; Zacháry, Dóra; Horváth Szabó, Kata; Perényi, Katalin
2016-04-01
Vegetation induced land patches may result spatial pattern of on soil Eh and pH. These spatial pattern are mainly emerged by differences of aeration and exudation of assimilates. Present paper focuses on vertical extent and temporal dynamics of these patterns in wetlands. Two study sites were selected: 1. a plain wetland on calcareous sandy parent material (Ceglédbercel, Danube-Tisza Interfluve, Hungary); 2. headwater wetland with calcareous loamy parent material (Bátaapáti, Hungary). Two vegetation patches were studied in site 1: sedgy (dominated by Carex riparia) and reedy (dominated by Phragmites australis). Three patches were studied in site2: sedgy1 (dominated by C vulpina), sedgy 2 (C. riparia); nettle-horsetail (Urtica dioica and Equisetum arvense). Boundaries between patches were studied separately. Soil redox, pH and temperature studied by automated remote controlled instruments. Three digital sensors (Ponsell) were installed in each locations: 20cm and 40cm sensors represent the solum and 100 cm sensor monitors the subsoil). Groundwater wells were installed near to triplets for soil water sampling. Soil Eh, pH and temperature values were recorded in each 10 minutes. Soil water sampling for iron and DOC were carried out during saturated periods. Spatial pattern of soil Eh is clearly caused by vegetation. We measured significant differences between Eh values of the studied patches in the solum. We did not find this kinds horizontal differences in the subsoil. Boundaries of the patches usually had more reductive soil environment than the core areas. We have found temporal dynamics of the spatial redox pattern. Differences were not so well expressed during wintertime. These spatial patterns had influence on the DOC and iron content of porewater, as well. Highest temporal dynamics of soil redox properties and porewater iron could be found in the boundaries. These observations refer to importance patchiness of vegetation on soil chemical properties in wetlands. Authors are grateful to Hungarian Scientific research Fund (K100180)
NASA Astrophysics Data System (ADS)
Sohoulande Djebou, Dagbegnon C.; Singh, Vijay P.; Frauenfeld, Oliver W.
2014-04-01
With climate change, precipitation variability is projected to increase. The present study investigates the potential interactions between watershed characteristics and precipitation variability. The watershed is considered as a functional unit that may impact seasonal precipitation. The study uses historical precipitation data from 370 meteorological stations over the last five decades, and digital elevation data from regional watersheds in the southwestern United States. This domain is part of the North American Monsoon region, and the summer period (June-July-August, JJA) was considered. Based on an initial analysis for 1895-2011, the JJA precipitation accounts, on average, for 22-43% of the total annual precipitation, with higher percentages in the arid part of the region. The unique contribution of this research is that entropy theory is used to address precipitation variability in time and space. An entropy-based disorder index was computed for each station's precipitation record. The JJA total precipitation and number of precipitation events were considered in the analysis. The precipitation variability potentially induced by watershed topography was investigated using spatial regionalization combining principal component and cluster analysis. It was found that the disorder in precipitation total and number of events tended to be higher in arid regions. The spatial pattern showed that the entropy-based variability in precipitation amount and number of events gradually increased from east to west in the southwestern United States. Regarding the watershed topography influence on summer precipitation patterns, hilly relief has a stabilizing effect on seasonal precipitation variability in time and space. The results show the necessity to include watershed topography in global and regional climate model parameterizations.
Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer
NASA Astrophysics Data System (ADS)
Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel
2017-04-01
This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.
Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun
2015-06-01
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.
Scheiner, Samuel M
2014-02-01
One potential evolutionary response to environmental heterogeneity is the production of randomly variable offspring through developmental instability, a type of bet-hedging. I used an individual-based, genetically explicit model to examine the evolution of developmental instability. The model considered both temporal and spatial heterogeneity alone and in combination, the effect of migration pattern (stepping stone vs. island), and life-history strategy. I confirmed that temporal heterogeneity alone requires a threshold amount of variation to select for a substantial amount of developmental instability. For spatial heterogeneity only, the response to selection on developmental instability depended on the life-history strategy and the form and pattern of dispersal with the greatest response for island migration when selection occurred before dispersal. Both spatial and temporal variation alone select for similar amounts of instability, but in combination resulted in substantially more instability than either alone. Local adaptation traded off against bet-hedging, but not in a simple linear fashion. I found higher-order interactions between life-history patterns, dispersal rates, dispersal patterns, and environmental heterogeneity that are not explainable by simple intuition. We need additional modeling efforts to understand these interactions and empirical tests that explicitly account for all of these factors.
NASA Astrophysics Data System (ADS)
Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo
2017-05-01
Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.
Scaling biodiversity responses to hydrological regimes.
Rolls, Robert J; Heino, Jani; Ryder, Darren S; Chessman, Bruce C; Growns, Ivor O; Thompson, Ross M; Gido, Keith B
2018-05-01
Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of freshwater biodiversity responses to hydrological regimes. The protection and restoration of freshwater biodiversity is both a fundamental justification and a central goal of environmental water allocation worldwide. Clearer integration of concepts of spatial scaling in the context of understanding impacts of hydrological regimes on biodiversity will increase uptake of evidence into environmental flow implementation, identify suitable biodiversity targets responsive to hydrological change or restoration, and identify and manage risks of environmental flows contributing to biodiversity decline. © 2017 Cambridge Philosophical Society.
Contrasting patterns of fine-scale herb layer species composition in temperate forests
NASA Astrophysics Data System (ADS)
Chudomelová, Markéta; Zelený, David; Li, Ching-Feng
2017-04-01
Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of spatial processes at fine scale has not been detected. Ecologists should keep this in mind when making generalizations about community dynamics.
1. The population dynamics of native herbivore species in central Appalachian deciduous forests were studied by analysing patterns of synchrony among intra- and interspecific populations and weather. 2. Spatial synchrony of 10 Lepidoptera species and three weather variables (min...
Elemental signatures in otoliths (fish ear-stones) have become a powerful tool in fisheries science for identifying fish migration patterns, reconstructing environmental histories, and for delineating the nursery origins of adult fish populations. Assessing connectivity between a...
Concurrent temporal stability of the apparent electrical conductivity and soil water content
USDA-ARS?s Scientific Manuscript database
Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...
Lake Superior: Nearshore Variability and a Landscape Driver Concept
High spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches are also observed and found to be robust across a seasonal time frame. Less is known about robustness of inter-annual variation wi...
Ecker, Christine; Marquand, Andre; Mourão-Miranda, Janaina; Johnston, Patrick; Daly, Eileen M; Brammer, Michael J; Maltezos, Stefanos; Murphy, Clodagh M; Robertson, Dene; Williams, Steven C; Murphy, Declan G M
2010-08-11
Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.
Gao, Jie; Zhang, Zhijie; Hu, Yi; Bian, Jianchao; Jiang, Wen; Wang, Xiaoming; Sun, Liqian; Jiang, Qingwu
2014-05-19
County-based spatial distribution characteristics and the related geological factors for iodine in drinking-water were studied in Shandong Province (China). Spatial autocorrelation analysis and spatial scan statistic were applied to analyze the spatial characteristics. Generalized linear models (GLMs) and geographically weighted regression (GWR) studies were conducted to explore the relationship between water iodine level and its related geological factors. The spatial distribution of iodine in drinking-water was significantly heterogeneous in Shandong Province (Moran's I = 0.52, Z = 7.4, p < 0.001). Two clusters for high iodine in drinking-water were identified in the south-western and north-western parts of Shandong Province by the purely spatial scan statistic approach. Both GLMs and GWR indicated a significantly global association between iodine in drinking-water and geological factors. Furthermore, GWR showed obviously spatial variability across the study region. Soil type and distance to Yellow River were statistically significant at most areas of Shandong Province, confirming the hypothesis that the Yellow River causes iodine deposits in Shandong Province. Our results suggested that the more effective regional monitoring plan and water improvement strategies should be strengthened targeting at the cluster areas based on the characteristics of geological factors and the spatial variability of local relationships between iodine in drinking-water and geological factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yan; Piao, Shilong; Huang, Mengtian
Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less
Sun, Yan; Piao, Shilong; Huang, Mengtian; ...
2015-12-23
Our aim is to investigate how ecosystem water-use efficiency (WUE) varies spatially under different climate conditions, and how spatial variations in WUE differ from those of transpiration-based water-use efficiency (WUE t) and transpiration-based inherent water-use efficiency (IWUE t). LocationGlobal terrestrial ecosystems. We investigated spatial patterns of WUE using two datasets of gross primary productivity (GPP) and evapotranspiration (ET) and four biosphere model estimates of GPP and ET. Spatial relationships between WUE and climate variables were further explored through regression analyses. Global WUE estimated by two satellite-based datasets is 1.9 ± 0.1 and 1.8 ± 0.6g C m -2mm -1 lowermore » than the simulations from four process-based models (2.0 ± 0.3g C m -2mm -1) but comparable within the uncertainty of both approaches. In both satellite-based datasets and process models, precipitation is more strongly associated with spatial gradients of WUE for temperate and tropical regions, but temperature dominates north of 50 degrees N. WUE also increases with increasing solar radiation at high latitudes. The values of WUE from datasets and process-based models are systematically higher in wet regions (with higher GPP) than in dry regions. WUE t shows a lower precipitation sensitivity than WUE, which is contrary to leaf- and plant-level observations. IWUE t, the product of WUE t and water vapour deficit, is found to be rather conservative with spatially increasing precipitation, in agreement with leaf- and plant-level measurements. In conclusion, WUE, WUE t and IWUE t produce different spatial relationships with climate variables. In dry ecosystems, water losses from evaporation from bare soil, uncorrelated with productivity, tend to make WUE lower than in wetter regions. Yet canopy conductance is intrinsically efficient in those ecosystems and maintains a higher IWUEt. This suggests that the responses of each component flux of evapotranspiration should be analysed separately when investigating regional gradients in WUE, its temporal variability and its trends.« less
Zhu, Yan; Getzin, Stephan; Wiegand, Thorsten; Ren, Haibao; Ma, Keping
2013-01-01
The Janzen-Connell hypothesis is among the most important theories put forward to explain species coexistence in species-rich communities. However, the relative importance of Janzen-Connell effects with respect to other prominent mechanisms of community assembly, such as dispersal limitation, self-thinning due to competition, or habitat association, is largely unresolved. Here we use data from a 24-ha Gutianshan subtropical forest to address it. First we tested for significant associations of adults, juveniles, and saplings with environmental variables. Second we evaluated if aggregation decreased with life stage. In a third analysis we approximately factored out the effect of habitat association and comprehensively analyzed the spatial associations of intraspecific adults and offspring (saplings, juveniles) of 46 common species at continuous neighborhood distances. We found i) that, except for one, all species were associated with at least one environmental variable during at least one of their life stages, but the frequency of significant habitat associations declined with increasing life stage; ii) a decline in aggregation with increasing life stage that was strongest from juveniles to adults; and iii) intraspecific adult-offspring associations were dominated by positive relationships at neighborhood distances up to 10 m. Our results suggest that Janzen-Connell effects were not the dominant mechanisms in structuring the spatial patterns of established trees in the subtropical Gutianshan forest. The spatial patterns may rather reflect the joint effects of size-dependent self-thinning, dispersal limitation and habitat associations. Our findings contribute to a more comprehensive understanding of the relative importance of Janzen-Connell effects in influencing plant community structure under strong topographic heterogeneity. PMID:24040283
NASA Astrophysics Data System (ADS)
Yang, Xuhong; Jin, Xiaobin; Guo, Beibei; Long, Ying; Zhou, Yinkang
2015-05-01
Constructing a spatially explicit time series of historical cultivated land is of upmost importance for climatic and ecological studies that make use of Land Use and Cover Change (LUCC) data. Some scholars have made efforts to simulate and reconstruct the quantitative information on historical land use at the global or regional level based on "top-down" decision-making behaviors to match overall cropland area to land parcels using land arability and universal parameters. Considering the concentrated distribution of cultivated land and various factors influencing cropland distribution, including environmental and human factors, this study developed a "bottom-up" model of historical cropland based on constrained Cellular Automaton (CA). Our model takes a historical cropland area as an external variable and the cropland distribution in 1980 as the maximum potential scope of historical cropland. We selected elevation, slope, water availability, average annual precipitation, and distance to the nearest rural settlement as the main influencing factors of land use suitability. Then, an available labor force index is used as a proxy for the amount of cropland to inspect and calibrate these spatial patterns. This paper applies the model to a traditional cultivated region in China and reconstructs its spatial distribution of cropland during 6 periods. The results are shown as follows: (1) a constrained CA is well suited for simulating and reconstructing the spatial distribution of cropland in China's traditional cultivated region. (2) Taking the different factors affecting spatial pattern of cropland into consideration, the partitioning of the research area effectively reflected the spatial differences in cropland evolution rules and rates. (3) Compared with "HYDE datasets", this research has formed higher-resolution Boolean spatial distribution datasets of historical cropland with a more definitive concept of spatial pattern in terms of fractional format. We conclude that our reconstruction is closer to the actual change pattern of the traditional cultivated region in China.
Spatial pattern dynamics due to the fitness gradient flux in evolutionary games.
deForest, Russ; Belmonte, Andrew
2013-06-01
We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.
Spatial pattern dynamics due to the fitness gradient flux in evolutionary games
NASA Astrophysics Data System (ADS)
deForest, Russ; Belmonte, Andrew
2013-06-01
We introduce a nondiffusive spatial coupling term into the replicator equation of evolutionary game theory. The spatial flux is based on motion due to local gradients in the relative fitness of each strategy, providing a game-dependent alternative to diffusive coupling. We study numerically the development of patterns in one dimension (1D) for two-strategy games including the coordination game and the prisoner's dilemma, and in two dimensions (2D) for the rock-paper-scissors game. In 1D we observe modified traveling wave solutions in the presence of diffusion, and asymptotic attracting states under a frozen-strategy assumption without diffusion. In 2D we observe spiral formation and breakup in the frozen-strategy rock-paper-scissors game without diffusion. A change of variables appropriate to replicator dynamics is shown to correctly capture the 1D asymptotic steady state via a nonlinear diffusion equation.
Valari, Myrto; Menut, Laurent; Chatignoux, Edouard
2011-02-01
Environmental epidemiology and more specifically time-series analysis have traditionally used area-averaged pollutant concentrations measured at central monitors as exposure surrogates to associate health outcomes with air pollution. However, spatial aggregation has been shown to contribute to the overall bias in the estimation of the exposure-response functions. This paper presents the benefit of adding features of the spatial variability of exposure by using concentration fields modeled with a chemistry transport model instead of monitor data and accounting for human activity patterns. On the basis of county-level census data for the city of Paris, France, and a Monte Carlo simulation, a simple activity model was developed accounting for the temporal variability between working and evening hours as well as during transit. By combining activity data with modeled concentrations, the downtown, suburban, and rural spatial patterns in exposure to nitrogen dioxide, ozone, and PM2.5 (particulate matter [PM] < or = 10 microm in aerodynamic diameter) were captured and parametrized. Exposures predicted with this model were used in a time-series study of the short-term effect of air pollution on total nonaccidental mortality for the 4-yr period from 2001 to 2004. It was shown that the time series of the exposure surrogates developed here are less correlated across co-pollutants than in the case of the area-averaged monitor data. This led to less biased exposure-response functions when all three co-pollutants were inserted simultaneously in the same regression model. This finding yields insight into pollutant-specific health effects that are otherwise masked by the high correlation among co-pollutants.
Landguth, Erin L.; Gedy, Bradley C.; Oyler-McCance, Sara J.; Garey, Andrew L.; Emel, Sarah L.; Mumma, Matthew; Wagner, Helene H.; Fortin, Marie-Josée; Cushman, Samuel A.
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals.
Landguth, E.L.; Fedy, B.C.; Oyler-McCance, S.J.; Garey, A.L.; Emel, S.L.; Mumma, M.; Wagner, H.H.; Fortin, M.-J.; Cushman, S.A.
2012-01-01
The influence of study design on the ability to detect the effects of landscape pattern on gene flow is one of the most pressing methodological gaps in landscape genetic research. To investigate the effect of study design on landscape genetics inference, we used a spatially-explicit, individual-based program to simulate gene flow in a spatially continuous population inhabiting a landscape with gradual spatial changes in resistance to movement. We simulated a wide range of combinations of number of loci, number of alleles per locus and number of individuals sampled from the population. We assessed how these three aspects of study design influenced the statistical power to successfully identify the generating process among competing hypotheses of isolation-by-distance, isolation-by-barrier, and isolation-by-landscape resistance using a causal modelling approach with partial Mantel tests. We modelled the statistical power to identify the generating process as a response surface for equilibrium and non-equilibrium conditions after introduction of isolation-by-landscape resistance. All three variables (loci, alleles and sampled individuals) affect the power of causal modelling, but to different degrees. Stronger partial Mantel r correlations between landscape distances and genetic distances were found when more loci were used and when loci were more variable, which makes comparisons of effect size between studies difficult. Number of individuals did not affect the accuracy through mean equilibrium partial Mantel r, but larger samples decreased the uncertainty (increasing the precision) of equilibrium partial Mantel r estimates. We conclude that amplifying more (and more variable) loci is likely to increase the power of landscape genetic inferences more than increasing number of individuals. ?? 2011 Blackwell Publishing Ltd.
Temporal and Spatial Patterns of Ambient Endotoxin Concentrations in Fresno, California
Tager, Ira B.; Lurmann, Frederick W.; Haight, Thaddeus; Alcorn, Siana; Penfold, Bryan; Hammond, S. Katharine
2010-01-01
Background Endotoxins are found in indoor dust generated by human activity and pets, in soil, and adsorbed onto the surfaces of ambient combustion particles. Endotoxin concentrations have been associated with respiratory symptoms and the risk of atopy and asthma in children. Objective We characterized the temporal and spatial variability of ambient endotoxin in Fresno/Clovis, California, located in California’s Central Valley, to identify correlates and potential predictors of ambient endotoxin concentrations in a cohort of children with asthma [Fresno Asthmatic Children’s Environment Study (FACES)]. Methods Between May 2001 and October 2004, daily ambient endotoxin and air pollutants were collected at the central ambient monitoring site of the California Air Resources Board in Fresno and, for shorter time periods, at 10 schools and indoors and outdoors at 84 residences in the community. Analyses were restricted to May–October, the dry months during which endotoxin concentrations are highest. Results Daily endotoxin concentration patterns were determined mainly by meteorologic factors, particularly the degree of air stagnation. Overall concentrations were lowest in areas distant from agricultural activities. Highest concentrations were found in areas immediately downwind from agricultural/pasture land. Among three other measured air pollutants [fine particulate matter, elemental carbon (a marker of traffic in Fresno), and coarse particulate matter (PMc)], PMc was the only pollutant correlated with endotoxin. Endotoxin, however, was the most spatially variable. Conclusions Our data support the need to evaluate the spatial/temporal variability of endotoxin concentrations, rather than relying on a few measurements made at one location, in studies of exposure and and respiratory health effects, particularly in children with asthma and other chronic respiratory diseases. PMID:20494854
Snow depth spatial structure from hillslope to basin scale
NASA Astrophysics Data System (ADS)
Deems, J. S.
2017-12-01
Knowledge of spatial patterns of snow accumulation is required for understanding the hydrology, climatology, and ecology of mountain regions. Spatial structure in snow accumulation patterns changes with the scale of observation, a feature that has been characterized using fractal dimensions calculated from lidar-derived snow depth maps: fractal scaling structure at short length scales, with a `scale break' transition to more stochastic patterns at longer separation distances. Previous work has shown that this fractal structure of snow depth distributions differs between sites with different vegetation and terrain characteristics. Forested areas showed a transition to a nearly random spatial distribution at a much shorter lag distance than do unforested sites, enabling a statistical characterization. Alpine areas, however, showed strong spatial structure for a much wider scale range, and were the source of the dominant spatial pattern observable over a wider area. These spatial structure characteristics suggest that the choice of measurement or model resolution (satellite sensor, DEM, field survey point spacing, etc.) will strongly affect the estimates of snow volume or mass, as well as the magnitude of spatial variability. These prior efforts used data sets that were high resolution ( 1 m laser point spacing) but of limited extent ( 1 km2), constraining detection of scale features such as fractal dimension or scale breaks to areas of relatively similar characteristics and to lag distances of under 500 m. New datasets available from the NASA JPL Airborne Snow Observatory (ASO) provide similar resolution but over large areas, enabling assessment of snow spatial structure across an entire watershed, or in similar vegetation or physiography but in different parts of the basin. Additionally, the multi-year ASO time series allows an investigation into the temporal stability of these scale characteristics, within a single snow season and between seasons of strongly varying accumulation totals and patterns. This presentation will explore initial results from this study, using data from the Tuolumne River Basin in California, USA. Fractal scaling characteristics derived from ASO lidar snow depth measurements are examined at the basin scale, as well as in varying topographic and forest cover environments.
Belmecheri, Soumaya; Babst, Flurin; Hudson, Amy R.; Betancourt, Julio L.; Trouet, Valerie
2017-01-01
The latitudinal position of the Northern Hemisphere jet stream (NHJ) modulates the occurrence and frequency of extreme weather events. Precipitation anomalies in particular are associated with NHJ variability; the resulting floods and droughts can have considerable societal and economic impacts. This study develops a new climatology of the 300-hPa NHJ using a bottom-up approach based on seasonally explicit latitudinal NHJ positions. Four seasons with coherent NHJ patterns were identified (January–February, April–May, July–August, and October–November), along with 32 longitudinal sectors where the seasonal NHJ shows strong spatial coherence. These 32 longitudinal sectors were then used as NHJ position indices to examine the influence of seasonal NHJ position on the geographical distribution of NH precipitation and temperature variability and their link to atmospheric circulation pattern. The analyses show that the NHJ indices are related to broad-scale patterns in temperature and precipitation variability, in terrestrial vegetation productivity and spring phenology, and can be used as diagnostic/prognostic tools to link ecosystem and socioeconomic dynamics to upper-level atmospheric patterns.
NASA Astrophysics Data System (ADS)
Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.
2010-12-01
We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales (plots vs. hillslopes) and levels of biophysical organization (individual plants vs. aggregate plant biomass) can help us to understand how and why mountainous ecosystems may have distinctive responses to climate variability and climate change.
Pattern formation--A missing link in the study of ecosystem response to environmental changes.
Meron, Ehud
2016-01-01
Environmental changes can affect the functioning of an ecosystem directly, through the response of individual life forms, or indirectly, through interspecific interactions and community dynamics. The feasibility of a community-level response has motivated numerous studies aimed at understanding the mutual relationships between three elements of ecosystem dynamics: the abiotic environment, biodiversity and ecosystem function. Since ecosystems are inherently nonlinear and spatially extended, environmental changes can also induce pattern-forming instabilities that result in spatial self-organization of life forms and resources. This, in turn, can affect the relationships between these three elements, and make the response of ecosystems to environmental changes far more complex. Responses of this kind can be expected in dryland ecosystems, which show a variety of self-organizing vegetation patterns along the rainfall gradient. This paper describes the progress that has been made in understanding vegetation patterning in dryland ecosystems, and the roles it plays in ecosystem response to environmental variability. The progress has been achieved by modeling pattern-forming feedbacks at small spatial scales and up-scaling their effects to large scales through model studies. This approach sets the basis for integrating pattern formation theory into the study of ecosystem dynamics and addressing ecologically significant questions such as the dynamics of desertification, restoration of degraded landscapes, biodiversity changes along environmental gradients, and shrubland-grassland transitions. Copyright © 2015 Elsevier Inc. All rights reserved.
Benson, Thomas J; Ward, Michael P; Lampman, Richard L; Raim, Arlo; Weatherhead, Patrick J
2012-10-01
The arrival of West Nile virus (WNV) in North America has led to interest in the interaction between birds, the amplification hosts of WNV, and Culex mosquitoes, the primary WNV vectors. American robins (Turdus migratorius) are particularly important amplification hosts of WNV, and because the vector Culex mosquitoes are primarily nocturnal and feed on roosting birds, robin communal roosting behavior may play an important role in the transmission ecology of WNV. Using data from 43 radio-tracked individuals, we determined spatial and temporal patterns of robin roosting behavior, and how these patterns related to the distribution of WNV-infected mosquitoes. Use of the communal roost and fidelity to foraging areas was highly variable both within and among individual robins, and differed markedly from patterns documented in a previous study of robin roosting. Although there were clear seasonal patterns to both robin roosting and WNV occurrence, there was no significant relationship between communal roosting by robins and temporal or spatial patterns of WNV-positive mosquitoes. Our results suggest that, although robins may be important as WNV hosts, communal roosts are not necessarily important for WNV amplification. Other factors, including the availability and distribution of high-quality mosquito habitat and favorable weather for mosquito reproduction, may influence the importance of robin roosts for local WNV amplification and transmission.
Changing Pattern of Indian Monsoon Extremes: Global and Local Factors
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha
2017-04-01
Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).
NASA Astrophysics Data System (ADS)
Carmo, Vanda; Santos, Mariana; Menezes, Gui M.; Loureiro, Clara M.; Lambardi, Paolo; Martins, Ana
2013-12-01
Seamounts are common topographic features around the Azores archipelago (NE Atlantic). Recently there has been increasing research effort devoted to the ecology of these ecosystems. In the Azores, the mesozooplankon is poorly studied, particularly in relation to these seafloor elevations. In this study, zooplankton communities in the Condor seamount area (Azores) were investigated during March, July and September 2010. Samples were taken during both day and night with a Bongo net of 200 µm mesh that towed obliquely within the first 100 m of the water column. Total abundance, biomass and chlorophyll a concentrations did not vary with sampling site or within the diel cycle but significant seasonal variation was observed. Moreover, zooplankton community composition showed the same strong seasonal pattern regardless of spatial or daily variability. Despite seasonal differences, the zooplankton community structure remained similar for the duration of this study. Seasonal variability better explained our results than mesoscale spatial variability. Spatial homogeneity is probably related with island proximity and local dynamics over Condor seamount. Zooplankton literature for the region is sparse, therefore a short review of the most important zooplankton studies from the Azores is also presented.
Scribner, Kim T.; Garner, G.W.; Amstrup, Steven C.; Cronin, M.A.; Dizon, Andrew E.; Chivers, Susan J.; Perrin, William F.
1997-01-01
A summary of existing population genetics literature is presented for polar bears (Ursus maritimus) and interpreted in the context of the species' life-history characteristics and regional heterogeneity in environmental regimes and movement patterns. Several nongenetic data sets including morphology, contaminant levels, geographic variation in reproductive characteristics, and the location and distribution of open-water foraging habitat suggest some degree of spatial structuring. Eleven populations are recognized by the IUCN Polar Bear Specialist Group. Few genetics studies exist for polar bears. Interpretation and generalizations of regional variation in intra- and interpopulation levels of genetic variability are confounded by the paucity of data from many regions and by the fact that no single informative genetic marker has been employed in multiple regions. Early allozyme studies revealed comparatively low levels of genetic variability and no compelling evidence of spatial structuring. Studies employing mitochondrial DNA (mtDNA) also found low levels of genetic variation, a lack of phylogenetic structure, and no significant evidence for spatial variation in haplotype frequency. In contrast, microsatellite variable number of tandem repeat (VNTR) loci have revealed significant heterogeneity in allele frequency among populations in the Canadian Arctic. These regions are characterized by archipelgic patterns of sea-ice movements. Further studies using highly polymorphic loci are needed in regions characterized by greater polar bear dependency on pelagic sea-ice movements and in regions for which no data currently exist (i.e., Laptev and Novaya Zemlya/Franz Josef).
Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States
Liu, Zhihua; Wimberly, Michael C.
2015-01-01
An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959
NASA Astrophysics Data System (ADS)
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-10-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7-27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity.
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-01-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7–27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity. PMID:27775021
Guo, Qiang; Xu, Pengpeng; Pei, Xin; Wong, S C; Yao, Danya
2017-02-01
Pedestrian safety is increasingly recognized as a major public health concern. Extensive safety studies have been conducted to examine the influence of multiple variables on the occurrence of pedestrian-vehicle crashes. However, the explicit relationship between pedestrian safety and road network characteristics remains unknown. This study particularly focused on the role of different road network patterns on the occurrence of crashes involving pedestrians. A global integration index via space syntax was introduced to quantify the topological structures of road networks. The Bayesian Poisson-lognormal (PLN) models with conditional autoregressive (CAR) prior were then developed via three different proximity structures: contiguity, geometry-centroid distance, and road network connectivity. The models were also compared with the PLN counterpart without spatial correlation effects. The analysis was based on a comprehensive crash dataset from 131 selected traffic analysis zones in Hong Kong. The results indicated that higher global integration was associated with more pedestrian-vehicle crashes; the irregular pattern network was proved to be safest in terms of pedestrian crash occurrences, whereas the grid pattern was the least safe; the CAR model with a neighborhood structure based on road network connectivity was found to outperform in model goodness-of-fit, implying the importance of accurately accounting for spatial correlation when modeling spatially aggregated crash data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global patterns of evolutionary distinct and globally endangered amphibians and mammals.
Safi, Kamran; Armour-Marshall, Katrina; Baillie, Jonathan E M; Isaac, Nick J B
2013-01-01
Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED) and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE). Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.
Chen, Yaning; Li, Weihong; Liu, Zuhan; Wei, Chunmeng; Tang, Jie
2013-01-01
Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD), classical statistics, and geostatistics. The main conclusions are as follows (1) The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2) The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3) The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform. PMID:23843732
Macromolecular Crowding Induces Spatial Correlations That Control Gene Expression Bursting Patterns.
Norred, S Elizabeth; Caveney, Patrick M; Chauhan, Gaurav; Collier, Lauren K; Collier, C Patrick; Abel, Steven M; Simpson, Michael L
2018-05-18
Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting-the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increase in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA ("spatial noise") that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. These results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.
Monitoring air quality in mountains: Designing an effective network
Peterson, D.L.
2000-01-01
A quantitatively robust yet parsimonious air-quality monitoring network in mountainous regions requires special attention to relevant spatial and temporal scales of measurement and inference. The design of monitoring networks should focus on the objectives required by public agencies, namely: 1) determine if some threshold has been exceeded (e.g., for regulatory purposes), and 2) identify spatial patterns and temporal trends (e.g., to protect natural resources). A short-term, multi-scale assessment to quantify spatial variability in air quality is a valuable asset in designing a network, in conjunction with an evaluation of existing data and simulation-model output. A recent assessment in Washington state (USA) quantified spatial variability in tropospheric ozone distribution ranging from a single watershed to the western third of the state. Spatial and temporal coherence in ozone exposure modified by predictable elevational relationships ( 1.3 ppbv ozone per 100 m elevation gain) extends from urban areas to the crest of the Cascade Range. This suggests that a sparse network of permanent analyzers is sufficient at all spatial scales, with the option of periodic intensive measurements to validate network design. It is imperative that agencies cooperate in the design of monitoring networks in mountainous regions to optimize data collection and financial efficiencies.
Global-scale modes of surface temperature variability on interannual to century timescales
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1994-01-01
Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.
Wei Wu; Charlesb Hall; Lianjun Zhang
2006-01-01
We predicted the spatial pattern of hourly probability of cloud cover in the Luquillo Experimental Forest (LEF) in North-Eastern Puerto Rico using four different models. The probability of cloud cover (defined as âthe percentage of the area covered by clouds in each pixel on the mapâ in this paper) at any hour and any place is a function of three topographic variables...
CWDPRNP: A tool for cervid prion sequence analysis in program R
Miller, William L.; Walter, W. David
2017-01-01
Chronic wasting disease is a fatal, neurological disease caused by an infectious prion protein, which affects economically and ecologically important members of the family Cervidae. Single nucleotide polymorphisms within the prion protein gene have been linked to differential susceptibility to the disease in many species. Wildlife managers are seeking to determine the frequencies of disease-associated alleles and genotypes and delineate spatial genetic patterns. The CWDPRNP package, implemented in program R, provides a unified framework for analyzing prion protein gene variability and spatial structure.
Improved pattern scaling approaches for the use in climate impact studies
NASA Astrophysics Data System (ADS)
Herger, Nadja; Sanderson, Benjamin M.; Knutti, Reto
2015-05-01
Pattern scaling is a simple way to produce climate projections beyond the scenarios run with expensive global climate models (GCMs). The simplest technique has known limitations and assumes that a spatial climate anomaly pattern obtained from a GCM can be scaled by the global mean temperature (GMT) anomaly. We propose alternatives and assess their skills and limitations. One approach which avoids scaling is to consider a period in a different scenario with the same GMT change. It is attractive as it provides patterns of any temporal resolution that are consistent across variables, and it does not distort variability. Second, we extend the traditional approach with a land-sea contrast term, which provides the largest improvements over the traditional technique. When interpolating between known bounding scenarios, the proposed methods significantly improve the accuracy of the pattern scaled scenario with little computational cost. The remaining errors are much smaller than the Coupled Model Intercomparison Project Phase 5 model spread.
Xu, Guangjian; Yang, Eun Jin; Xu, Henglong
2017-08-15
Trophic-functional groupings are an important biological trait to summarize community structure in functional space. The heterogeneity of the tropic-functional pattern of protozoan communities and its environmental drivers were studied in coastal waters of the Yellow Sea during a 1-year cycle. Samples were collected using the glass slide method at four stations within a water pollution gradient. A second-stage matrix-based analysis was used to summarize spatial variation in the annual pattern of the functional structure. A clustering analysis revealed significant variability in the trophic-functional pattern among the four stations during the 1-year cycle. The heterogeneity in the trophic-functional pattern of the communities was significantly related to changes in environmental variables, particularly ammonium-nitrogen and nitrates, alone or in combination with dissolved oxygen. These results suggest that the heterogeneity in annual patterns of protozoan trophic-functional structure may reflect water quality status in coastal ecosystems. Copyright © 2017. Published by Elsevier Ltd.
Durán, Jorge; Delgado-Baquerizo, Manuel; Dougill, Andrew J; Guuroh, Reginald T; Linstädter, Anja; Thomas, Andrew D; Maestre, Fernando T
2018-05-01
The relationship between the spatial variability of soil multifunctionality (i.e., the capacity of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems from six continents to evaluate the relative importance of aridity and mean annual temperature, and of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling. We found that increases in temperature and aridity were globally correlated to increases in SVM. Some of these climatic effects on SVM were direct, but others were indirectly driven through reductions in the number of vegetation patches and increases in soil sand content. The predictive capacity of our structural equation modelling was clearly higher for the spatial variability of N- than for C- and P-related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via changes in plant attributes. These results suggest that future changes in climate may decouple the spatial availability of these elements for plants and microbes in dryland soils. Our findings significantly advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe, which is critical for predicting changes in ecosystem functioning in response to climate change. © 2018 by the Ecological Society of America.
Spatio-temporal representativeness of ground-based downward solar radiation measurements
NASA Astrophysics Data System (ADS)
Schwarz, Matthias; Wild, Martin; Folini, Doris
2017-04-01
Surface solar radiation (SSR) is most directly observed with ground based pyranometer measurements. Besides measurement uncertainties, which arise from the pyranometer instrument itself, also errors attributed to the limited spatial representativeness of observations from single sites for their large-scale surrounding have to be taken into account when using such measurements for energy balance studies. In this study the spatial representativeness of 157 homogeneous European downward surface solar radiation time series from the Global Energy Balance Archive (GEBA) and the Baseline Surface Radiation Network (BSRN) were examined for the period 1983-2015 by using the high resolution (0.05°) surface solar radiation data set from the Satellite Application Facility on Climate Monitoring (CM-SAF SARAH) as a proxy for the spatiotemporal variability of SSR. By correlating deseasonalized monthly SSR time series form surface observations against single collocated satellite derived SSR time series, a mean spatial correlation pattern was calculated and validated against purely observational based patterns. Generally decreasing correlations with increasing distance from station, with high correlations (R2 = 0.7) in proximity to the observational sites (±0.5°), was found. When correlating surface observations against time series from spatially averaged satellite derived SSR data (and thereby simulating coarser and coarser grids), very high correspondence between sites and the collocated pixels has been found for pixel sizes up to several degrees. Moreover, special focus was put on the quantification of errors which arise in conjunction to spatial sampling when estimating the temporal variability and trends for a larger region from a single surface observation site. For 15-year trends on a 1° grid, errors due to spatial sampling in the order of half of the measurement uncertainty for monthly mean values were found.
Campbell, M A; Lopéz, J A
2014-02-01
Mitochondrial genetic variability among populations of the blackfish genus Dallia (Esociformes) across Beringia was examined. Levels of divergence and patterns of geographic distribution of mitochondrial DNA lineages were characterized using phylogenetic inference, median-joining haplotype networks, Bayesian skyline plots, mismatch analysis and spatial analysis of molecular variance (SAMOVA) to infer genealogical relationships and to assess patterns of phylogeography among extant mitochondrial lineages in populations of species of Dallia. The observed variation includes extensive standing mitochondrial genetic diversity and patterns of distinct spatial segregation corresponding to historical and contemporary barriers with minimal or no mixing of mitochondrial haplotypes between geographic areas. Mitochondrial diversity is highest in the common delta formed by the Yukon and Kuskokwim Rivers where they meet the Bering Sea. Other regions sampled in this study host comparatively low levels of mitochondrial diversity. The observed levels of mitochondrial diversity and the spatial distribution of that diversity are consistent with persistence of mitochondrial lineages in multiple refugia through the last glacial maximum. © 2014 The Fisheries Society of the British Isles.
Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea.
Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas
2012-01-01
This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool.
Hoos, A.B.; McMahon, G.
2009-01-01
Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States - higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.
Hoos, Anne B.; McMahon, Gerard
2009-01-01
Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States—higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow.
Residential expansion as a continental threat to U.S. coastal ecosystems
J.G. Bartlett; D.M. Mageean; R.J. O' Connor
2000-01-01
Spatially extensive analysis of satellite, climate, and census data reveals human-environment interactions of regional or continental concern in the United States. A grid-based principal components analysis of Bureau of Census variables revealed two independent demographic phenomena, a-settlement reflecting traditional human settlement patterns and p-settlement...
Lake Superior: Nearshore Variability and a Landscape Driver Concept (journal article)
Spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches also have been observed and found to be robust across seasonal time frames. Less is known about robustness of inter-annual variation wi...
Spatial variability in slug emergence patterns - third year results
USDA-ARS?s Scientific Manuscript database
Gray field slugs damage new plantings of crops such as perennial ryegrass grown for seed, and growers routinely make multiple applications of metaldehyde and iron posphate based slug baits. Two major challenges for growers are: (1) choosing the best timing for the first heavy application of slug bai...
Spatial and Temporal Lingual Coarticulation and Motor Control in Preadolescents
ERIC Educational Resources Information Center
Zharkova, Natalia; Hewlett, Nigel; Hardcastle, William J.; Lickley, Robin J.
2014-01-01
Purpose: In this study, the authors compared coarticulation and lingual kinematics in preadolescents and adults in order to establish whether preadolescents had a greater degree of random variability in tongue posture and whether their patterns of lingual coarticulation differed from those of adults. Method: High-speed ultrasound tongue contour…
de Pierrefeu, Amicie; Fovet, Thomas; Hadj-Selem, Fouad; Löfstedt, Tommy; Ciuciu, Philippe; Lefebvre, Stephanie; Thomas, Pierre; Lopes, Renaud; Jardri, Renaud; Duchesnay, Edouard
2018-04-01
Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time-consuming. This article first proposes a machine-learning algorithm to automatically identify resting-state fMRI periods that precede hallucinations versus periods that do not. When applied to whole-brain fMRI data, state-of-the-art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech-related brain regions. The variation in transition-to-hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI-guided therapy for drug-resistant hallucinations, such as fMRI-based neurofeedback. © 2018 Wiley Periodicals, Inc.
Dispersal, environmental niches and oceanic-scale turnover in deep-sea bivalves
McClain, Craig R.; Stegen, James C.; Hurlbert, Allen H.
2012-01-01
Patterns of beta-diversity or distance decay at oceanic scales are completely unknown for deep-sea communities. Even when appropriate data exist, methodological problems have made it difficult to discern the relative roles of environmental filtering and dispersal limitation for generating faunal turnover patterns. Here, we combine a spatially extensive dataset on deep-sea bivalves with a model incorporating ecological dynamics and shared evolutionary history to quantify the effects of environmental filtering and dispersal limitation. Both the model and empirical data are used to relate functional, taxonomic and phylogenetic similarity between communities to environmental and spatial distances separating them for 270 sites across the Atlantic Ocean. This study represents the first ocean-wide analysis examining distance decay as a function of a broad suite of explanatory variables. We find that both strong environmental filtering and dispersal limitation drive turnover in taxonomic, functional and phylogenetic composition in deep-sea bivalves, explaining 26 per cent, 34 per cent and 9 per cent of the variation, respectively. This contrasts with previous suggestions that dispersal is not limiting in broad-scale biogeographic and biodiversity patterning in marine systems. However, rates of decay in similarity with environmental distance were eightfold to 44-fold steeper than with spatial distance. Energy availability is the most influential environmental variable evaluated, accounting for 3.9 per cent, 9.4 per cent and 22.3 per cent of the variation in functional, phylogenetic and taxonomic similarity, respectively. Comparing empirical patterns with process-based theoretical predictions provided quantitative estimates of dispersal limitation and niche breadth, indicating that 95 per cent of deep-sea bivalve propagules will be able to persist in environments that deviate from their optimum by up to 2.1 g m−2 yr−1 and typically disperse 749 km from their natal site. PMID:22189399
NASA Astrophysics Data System (ADS)
Lillis, Ashlee; Mooney, T. Aran
2018-06-01
The rich acoustic environment of coral reefs, including the sounds of a variety of fish and invertebrates, is a reflection of the structural complexity and biological diversity of these habitats. Emerging interest in applying passive acoustic monitoring and soundscape analysis to measure coral reef habitat characteristics and track ecological patterns is hindered by a poor understanding of the most common and abundant sound producers on reefs—the snapping shrimp. Here, we sought to address several basic biophysical drivers of reef sound by investigating acoustic activity patterns of snapping shrimp populations on two adjacent coral reefs using a detailed snap detection analysis routine to a high-resolution 2.5-month acoustic dataset from the US Virgin Islands. The reefs exhibited strong diel and lunar periodicity in snap rates and clear spatial differences in snapping levels. Snap rates peaked at dawn and dusk and were higher overall during daytime versus nighttime, a seldom-reported pattern in earlier descriptions of diel snapping shrimp acoustic activity. Small differences between the sites in snap rate rhythms were detected and illustrate how analyses of specific soundscape elements might reveal subtle between-reef variation. Snap rates were highly correlated with environmental variables, including water temperature and light, and were found to be sensitive to changes in oceanographic forcing. This study further establishes snapping shrimp as key players in the coral reef chorus and provides evidence that their acoustic output reflects a combination of environmental conditions, celestial influences, and spatial habitat variation. Effective application of passive acoustic monitoring in coral reef habitats using snap rates or snapping-influenced acoustic metrics will require a mechanistic understanding of the underlying spatial and temporal variation in snapping shrimp sound production across multiple scales.
Heat exposure in cities: combining the dynamics of temperature and population
NASA Astrophysics Data System (ADS)
Hu, L.; Wilhelmi, O.; Uejio, C. K.
2017-12-01
Assessment of human exposure to extreme heat requires the distributions of temperature and population. However, both variables are dynamic, thus presenting many challenges in capturing temperature and population patterns spatially and over time in an urban context. This study aims to improve the understanding of spatiotemporal patterns of urban population exposure to heat, taking Chicago, USA as an example. We estimate the hourly, geographically variable, population distribution considering commute of workers and students in a regular weekday and analyze the diurnal air temperature patterns during different meteorological conditions from satellite observations. The results show a relatively larger temperature increase in less urbanized areas during extreme heat events (EHEs), resulting in a spatially homogeneous temperature distribution over Chicago Metropolitan area. A lake cooling effect is weaker during EHEs. Population dynamics due to daily commute determine higher population density in more urbanized areas during daytime. The city-wide analysis reveals that the exposure is more sensitive to the nighttime temperature increases, and EHEs enhance this sensitivity. The high exposure hotspots are identified at the northwest Chicago, Cicero and Oak Park areas, where the influence from Lake Michigan is weakened, while the spatial extent of high outdoor exposure areas varies diurnally. This study's findings have potential to better inform general heat mitigation strategies during hot summer months and facilitate emergency response during EHEs. Availability of remotely-sensed temperature observations as well as the workers and students commute-adjusted population data allows for the adoption of this study's methodology in other major metropolitan areas. A better understanding of space-time patterns of urban population's exposure to heat will further enable local decision makers to mitigate extreme heat health risks and develop more targeted heat preparedness and response strategies.
Punchi-Manage, Ruwan; Wiegand, Thorsten; Wiegand, Kerstin; Getzin, Stephan; Huth, Andreas; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal
2015-07-01
Interactions among neighboring individuals influence plant performance and should create spatial patterns in local community structure. In order to assess the role of large trees in generating spatial patterns in local species richness, we used the individual species-area relationship (ISAR) to evaluate the species richness of trees of different size classes (and dead trees) in circular neighborhoods with varying radius around large trees of different focal species. To reveal signals of species interactions, we compared the ISAR function of the individuals of focal species with that of randomly selected nearby locations. We expected that large trees should strongly affect the community structure of smaller trees in their neighborhood, but that these effects should fade away with increasing size class. Unexpectedly, we found that only few focal species showed signals of species interactions with trees of the different size classes and that this was less likely for less abundant focal species. However, the few and relatively weak departures from independence were consistent with expectations of the effect of competition for space and the dispersal syndrome on spatial patterns. A noisy signal of competition for space found for large trees built up gradually with increasing life stage; it was not yet present for large saplings but detectable for intermediates. Additionally, focal species with animal-dispersed seeds showed higher species richness in their neighborhood than those with gravity- and gyration-dispersed seeds. Our analysis across the entire ontogeny from recruits to large trees supports the hypothesis that stochastic effects dilute deterministic species interactions in highly diverse communities. Stochastic dilution is a consequence of the stochastic geometry of biodiversity in species-rich communities where the identities of the nearest neighbors of a given plant are largely unpredictable. While the outcome of local species interactions is governed for each plant by deterministic fitness and niche differences, the large variability of competitors causes also a large variability in the outcomes of interactions and does not allow for strong directed responses at the species level. Collectively, our results highlight the critical effect of the stochastic geometry of biodiversity in structuring local spatial patterns of tropical forest diversity.
Spatial Patterns of Forest Cover Loss in the Democratic Republic of Congo
NASA Astrophysics Data System (ADS)
Molinario, G.; Hansen, M.; Potapov, P.; Justice, C. O.
2013-12-01
Three groups of metrics of spatial patterns of forest cover loss were calculated for the Democratic Republic of Congo (DRC). While other studies had previously assessed landscape patterns in the Congo Basin, they had done so for small areas due to data limitations. The input data for this study, the Forets d;Afrique Central Evaluee par Teledetection(FACET), allowed the analysis to be performed at the national level. FACET is a landsat-scale dataset giving an unprecedented synoptic view of forest cover and forest cover loss for the DRC for three time periods: 2000, 2005 and 2010. The three groups of metrics evaluated the following spatial characteristics of forest cover loss for the same standard 1.5km unit of area: proportions of typologies of forest lost, forest fragmentation and proximity of forest loss patches from other land cover types. Results indicate that there are several different typologies of forest cover loss in the DRC, and offer quantitative explanations of these differences, providing a valuable locally-relevant tool for land use planning, available at the national level. Spatial patterns of forest cover loss highlight differences between areas of high primary forest loss due to agriculture conversion in frontier deforestation, such as in the east of the country, areas of equivalent primary and secondary forest loss emanating from the rural complex and areas of variable proportions of primary and secondary forest loss but important ecological repercussions of forest fragmentation due to isolated, but systematic forest perforations. Typologies of spatial patterns of forest cover loss are presented as well as their correlated drivers, and ecological, conservation and land use planning considerations are discussed.
NASA Astrophysics Data System (ADS)
Huntington, B. E.; Lirman, D.
2012-12-01
Landscape-scale attributes of patch size, spatial isolation, and topographic complexity are known to influence diversity and abundance in terrestrial and marine systems, but remain collectively untested for reef-building corals. To investigate the relationship between the coral assemblage and seascape variation in reef habitats, we took advantage of the distinct boundaries, spatial configurations, and topographic complexities among artificial reef patches to overcome the difficulties of manipulating natural reefs. Reef size (m2) was found to be the foremost predictor of coral richness in accordance with species-area relationship predictions. Larger reefs were also found to support significantly higher colony densities, enabling us to reject the null hypothesis of random placement (a sampling artifact) in favor of target area predictions that suggest greater rates of immigration on larger reefs. Unlike the pattern previously documented for reef fishes, topographic complexity was not a significant predictor of any coral assemblage response variable, despite the range of complexity values sampled. Lastly, coral colony density was best explained by both increasing reef size and decreasing reef spatial isolation, a pattern found exclusively among brooding species with shorter larval dispersal distances. We conclude that seascape attributes of reef size and spatial configuration within the seascape can influence the species richness and abundance of the coral community at relatively small spatial scales (<1 km). Specifically, we demonstrate how patterns in the coral communities that have naturally established on these manipulated reefs agree with the target area and island biogeography mechanisms to drive species-area relationships in reef-building corals. Based on the patterns documented in artificial reefs, habitat degradation that results in smaller, more isolated natural reefs may compromise coral diversity.
NASA Astrophysics Data System (ADS)
Peng, L.; Sheffield, J.; Verbist, K. M. J.
2016-12-01
Hydrological predictions at regional-to-global scales are often hampered by the lack of meteorological forcing data. The use of large-scale gridded meteorological data is able to overcome this limitation, but these data are subject to regional biases and unrealistic values at local scale. This is especially challenging in regions such as Chile, where climate exhibits high spatial heterogeneity as a result of long latitude span and dramatic elevation changes. However, regional station-based observational datasets are not fully exploited and have the potential of constraining biases and spatial patterns. This study aims at adjusting precipitation and temperature estimates from the Princeton University global meteorological forcing (PGF) gridded dataset to improve hydrological simulations over Chile, by assimilating 982 gauges from the Dirección General de Aguas (DGA). To merge station data with the gridded dataset, we use a state-space estimation method to produce optimal gridded estimates, considering both the error of the station measurements and the gridded PGF product. The PGF daily precipitation, maximum and minimum temperature at 0.25° spatial resolution are adjusted for the period of 1979-2010. Precipitation and temperature gauges with long and continuous records (>70% temporal coverage) are selected, while the remaining stations are used for validation. The leave-one-out cross validation verifies the robustness of this data assimilation approach. The merged dataset is then used to force the Variable Infiltration Capacity (VIC) hydrological model over Chile at daily time step which are compared to the observations of streamflow. Our initial results show that the station-merged PGF precipitation effectively captures drizzle and the spatial pattern of storms. Overall the merged dataset has significant improvements compared to the original PGF with reduced biases and stronger inter-annual variability. The invariant spatial pattern of errors between the station data and the gridded product opens up the possibility of merging real-time satellite and intermittent gauge observations to produce more accurate real-time hydrological predictions.
Arriaga-Jiménez, Alfonsina; Halffter, Gonzalo
2018-01-01
Insect diversity patterns of high mountain ecosystems remain poorly studied in the tropics. Sampling dung beetles of the subfamilies Aphodiinae, Scarabaeinae, and Geotrupinae was carried out at four volcanoes in the Trans-Mexican Volcanic Belt (TMVB) in the Mexican transition zone at 2,700 and 3,400 MASL, and on the windward and leeward sides. Sampling units represented a forest–shrubland–pasture (FSP) mosaic typical of this mountain region. A total of 3,430 individuals of 29 dung beetle species were collected. Diversity, abundance and compositional similarity (CS) displayed a high variability at all scales; elevation, cardinal direction, or FSP mosaics did not show any patterns of higher or lower values of those measures. The four mountains were different regarding dispersion patterns and taxonomic groups, both for species and individuals. Onthophagus chevrolati dominated all four mountains with an overall relative abundance of 63%. CS was not related to distance among mountains, but when O. chevrolati was excluded from the analysis, CS values based on species abundance decreased with increasing distance. Speciation, dispersion, and environmental instability are suggested as the main drivers of high mountain diversity patterns, acting together at different spatial and temporal scales. Three species new to science were collected (>10% of all species sampled). These discoveries may indicate that speciation rate is high among these volcanoes—a hypothesis that is also supported by the elevated number of collected species with a restricted montane distribution. Dispersion is an important factor in driving species composition, although naturally limited between high mountains; horizontal colonization events at different time scales may best explain the observed species composition in the TMVB, complemented by vertical colonization events to a lesser extent. Environmental instability may be the main factor causing the high variability of diversity and abundance patterns found during sampling. Together, we interpret these results as indicating that species richness and composition in the high mountains of the TMVB may be driven by biogeographical history while variability in diversity is determined by ecological factors. We argue that current conservation strategies do not focus sufficiently on protecting high mountain fauna, and that there is a need for developing and applying new conservation concepts that take into account the high spatial and temporal variability of this system. PMID:29507842