Neutron-Star Radius from a Population of Binary Neutron Star Mergers.
Bose, Sukanta; Chakravarti, Kabir; Rezzolla, Luciano; Sathyaprakash, B S; Takami, Kentaro
2018-01-19
We show how gravitational-wave observations with advanced detectors of tens to several tens of neutron-star binaries can measure the neutron-star radius with an accuracy of several to a few percent, for mass and spatial distributions that are realistic, and with none of the sources located within 100 Mpc. We achieve such an accuracy by combining measurements of the total mass from the inspiral phase with those of the compactness from the postmerger oscillation frequencies. For estimating the measurement errors of these frequencies, we utilize analytical fits to postmerger numerical relativity waveforms in the time domain, obtained here for the first time, for four nuclear-physics equations of state and a couple of values for the mass. We further exploit quasiuniversal relations to derive errors in compactness from those frequencies. Measuring the average radius to well within 10% is possible for a sample of 100 binaries distributed uniformly in volume between 100 and 300 Mpc, so long as the equation of state is not too soft or the binaries are not too heavy. We also give error estimates for the Einstein Telescope.
Irvine, Kathryn M.; Thornton, Jamie; Backus, Vickie M.; Hohmann, Matthew G.; Lehnhoff, Erik A.; Maxwell, Bruce D.; Michels, Kurt; Rew, Lisa
2013-01-01
Commonly in environmental and ecological studies, species distribution data are recorded as presence or absence throughout a spatial domain of interest. Field based studies typically collect observations by sampling a subset of the spatial domain. We consider the effects of six different adaptive and two non-adaptive sampling designs and choice of three binary models on both predictions to unsampled locations and parameter estimation of the regression coefficients (species–environment relationships). Our simulation study is unique compared to others to date in that we virtually sample a true known spatial distribution of a nonindigenous plant species, Bromus inermis. The census of B. inermis provides a good example of a species distribution that is both sparsely (1.9 % prevalence) and patchily distributed. We find that modeling the spatial correlation using a random effect with an intrinsic Gaussian conditionally autoregressive prior distribution was equivalent or superior to Bayesian autologistic regression in terms of predicting to un-sampled areas when strip adaptive cluster sampling was used to survey B. inermis. However, inferences about the relationships between B. inermis presence and environmental predictors differed between the two spatial binary models. The strip adaptive cluster designs we investigate provided a significant advantage in terms of Markov chain Monte Carlo chain convergence when trying to model a sparsely distributed species across a large area. In general, there was little difference in the choice of neighborhood, although the adaptive king was preferred when transects were randomly placed throughout the spatial domain.
Spatial Distributions of Young Stars
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Hillenbrand, Lynne A.
2008-10-01
We analyze the spatial distribution of young stars in Taurus-Auriga and Upper Sco, as determined from the two-point correlation function (i.e., the mean surface density of neighbors). The corresponding power-law fits allow us to determine the fractal dimensions of each association's spatial distribution, measure the stellar velocity dispersions, and distinguish between the bound binary population and chance alignments of members. We find that the fractal dimension of Taurus is D ~ 1.05, consistent with its filamentary structure. The fractal dimension of Upper Sco may be even shallower (D ~ 0.7), but this fit is uncertain due to the limited area and possible spatially variable incompleteness. We also find that random stellar motions have erased all primordial structure on scales of lsim0.07° in Taurus and lsim1.7° in Upper Sco; given ages of ~1 and ~5 Myr, the corresponding internal velocity dispersions are ~0.2 and ~1.0 km s-1, respectively. Finally, we find that binaries can be distinguished from chance alignments at separations of lsim120'' (17,000 AU) in Taurus and lsim75'' (11,000 AU) in Upper Sco. The binary populations in these associations that we previously studied, spanning separations of 3''-30'', is dominated by binary systems. However, the few lowest mass pairs (Mprim <~ 0.3 M⊙) might be chance alignments.
Balk, Benjamin; Elder, Kelly
2000-01-01
We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.
Boltzmann equations for a binary one-dimensional ideal gas.
Boozer, A D
2011-09-01
We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.
Electronic holography using binary phase modulation
NASA Astrophysics Data System (ADS)
Matoba, Osamu
2014-06-01
A 3D display system by using a phase-only distribution is presented. Especially, binary phase distribution is used to reconstruct a 3D object for wide viewing zone angle. To obtain the phase distribution to be displayed on a phase-mode spatial light modulator, both of experimental and numerical processes are available. In this paper, we present a numerical process by using a computer graphics data. A random phase distribution is attached to all polygons of an input 3D object to reconstruct a 3D object well from the binary phase distribution. Numerical and experimental results are presented to show the effectiveness of the proposed system.
NASA Astrophysics Data System (ADS)
González, J. F.; Levato, H.; Grosso, M.
We present preliminary results of a long-term project devoted to the observational study of the binary star population in open clusters and its connection with the dynamical and evolutionary properties of the clusters. We report the discovery of 17 double-lined spectroscopic binaries, 30 radial velocity variables and about 30 suspected variables. In the 17 clusters of our sample the binary frequency ranges between 20 and 40 %, and reaches typically 60 % if all suspected binaries are included. We study the spatial distribution of the binary stars with respect to the cluster center and we discuss the statistical correlation of the mass-ratio distribution with the cluster age.
2015-12-07
Wallen, B., K.M. Smits and S.E. Howington. Thermal conductivity of binary sand mixtures evaluated through the full range of saturation. Hydrology Days...and T.H. Illangasekare. 2011. Thermal conductivity of soils as affected by temperature, Proceedings from Hydrology Days. Colorado State University...is mixed with very fine soil). Although it is well known that the apparent thermal conductivity (λ) of partially wet soil is a function of water (θ
Accreting binary population synthesis and feedback prescriptions
NASA Astrophysics Data System (ADS)
Fragos, Tassos
2016-04-01
Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.
Multi-epoch observations with high spatial resolution of multiple T Tauri systems
NASA Astrophysics Data System (ADS)
Csépány, Gergely; van den Ancker, Mario; Ábrahám, Péter; Köhler, Rainer; Brandner, Wolfgang; Hormuth, Felix; Hiss, Hector
2017-07-01
Context. In multiple pre-main-sequence systems the lifetime of circumstellar discs appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims: We report high spatial resolution observations of multiple T Tauri systems at optical and infrared wavelengths. We determine whether the components are gravitationally bound and orbital motion is visible, derive orbital parameters, and investigate possible correlations between the binary parameters and disc states. Methods: We selected 18 T Tau multiple systems (16 binary and two triple systems, yielding 16 + 2 × 2 = 20 binary pairs) in the Taurus-Auriga star-forming region from a previous survey, with spectral types from K1 to M5 and separations from 0.22″ (31 AU) to 5.8″ (814 AU). We analysed data acquired in 2006-07 at Calar Alto using the AstraLux lucky imaging system, along with data from SPHERE and NACO at the VLT, and from the literature. Results: We found ten pairs to orbit each other, five pairs that may show orbital motion, and five likely common proper motion pairs. We found no obvious correlation between the stellar parameters and binary configuration. The 10 μm infra-red excess varies between 0.1 and 7.2 mag (similar to the distribution in single stars, where it is between 1.7 and 9.1), implying that the presence of the binary star does not greatly influence the emission from the inner disc. Conclusions: We have detected orbital motion in young T Tauri systems over a timescale of ≈ 20 yr. Further observations with even longer temporal baseline will provide crucial information on the dynamics of these young stellar systems.
Estimating neighborhood variability with a binary comparison matrix.
Murphy, D.L.
1985-01-01
A technique which utilizes a binary comparison matrix has been developed to implement a neighborhood function for a raster format data base. The technique assigns an index value to the center pixel of 3- by 3-pixel neighborhoods. The binary comparison matrix provides additional information not found in two other neighborhood variability statistics; the function is sensitive to both the number of classes within the neighborhood and the frequency of pixel occurrence in each of the classes. Application of the function to a spatial data base from the Kenai National Wildlife Refuge, Alaska, demonstrates 1) the numerical distribution of the index values, and 2) the spatial patterns exhibited by the numerical values. -Author
NASA Astrophysics Data System (ADS)
Behzadi, Naghi; Ahansaz, Bahram
2018-04-01
We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.
Solidification of a binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.
1982-01-01
The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.
A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy
NASA Astrophysics Data System (ADS)
Hailey, Charles J.; Mori, Kaya; Bauer, Franz E.; Berkowitz, Michael E.; Hong, Jaesub; Hord, Benjamin J.
2018-04-01
The existence of a ‘density cusp’—a localized increase in number—of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.
A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy.
Hailey, Charles J; Mori, Kaya; Bauer, Franz E; Berkowitz, Michael E; Hong, Jaesub; Hord, Benjamin J
2018-04-04
The existence of a 'density cusp'-a localized increase in number-of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.
Optimizing binary phase and amplitude filters for PCE, SNR, and discrimination
NASA Technical Reports Server (NTRS)
Downie, John D.
1992-01-01
Binary phase-only filters (BPOFs) have generated much study because of their implementation on currently available spatial light modulator devices. On polarization-rotating devices such as the magneto-optic spatial light modulator (SLM), it is also possible to encode binary amplitude information into two SLM transmission states, in addition to the binary phase information. This is done by varying the rotation angle of the polarization analyzer following the SLM in the optical train. Through this parameter, a continuum of filters may be designed that span the space of binary phase and amplitude filters (BPAFs) between BPOFs and binary amplitude filters. In this study, we investigate the design of optimal BPAFs for the key correlation characteristics of peak sharpness (through the peak-to-correlation energy (PCE) metric), signal-to-noise ratio (SNR), and discrimination between in-class and out-of-class images. We present simulation results illustrating improvements obtained over conventional BPOFs, and trade-offs between the different performance criteria in terms of the filter design parameter.
Model-based optimization of near-field binary-pixelated beam shapers
Dorrer, C.; Hassett, J.
2017-01-23
The optimization of components that rely on spatially dithered distributions of transparent or opaque pixels and an imaging system with far-field filtering for transmission control is demonstrated. The binary-pixel distribution can be iteratively optimized to lower an error function that takes into account the design transmission and the characteristics of the required far-field filter. Simulations using a design transmission chosen in the context of high-energy lasers show that the beam-fluence modulation at an image plane can be reduced by a factor of 2, leading to performance similar to using a non-optimized spatial-dithering algorithm with pixels of size reduced by amore » factor of 2 without the additional fabrication complexity or cost. The optimization process preserves the pixel distribution statistical properties. Analysis shows that the optimized pixel distribution starting from a high-noise distribution defined by a random-draw algorithm should be more resilient to fabrication errors than the optimized pixel distributions starting from a low-noise, error-diffusion algorithm, while leading to similar beamshaping performance. Furthermore, this is confirmed by experimental results obtained with various pixel distributions and induced fabrication errors.« less
SAGE III L2 Monthly Cloud Presence Data (Binary)
Atmospheric Science Data Center
2016-06-14
... degrees South Spatial Resolution: 1 km vertical Temporal Coverage: 02/27/2002 - 12/31/2005 ... Parameters: Cloud Amount/Frequency Cloud Height Cloud Vertical Distribution Order Data: Search and ...
NASA Astrophysics Data System (ADS)
Pravec, P.; Scheirich, P.; Vokrouhlický, D.; Harris, A. W.; Kušnirák, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Galád, A.; Világi, J.; Gajdoš, Š.; Kornoš, L.; Oey, J.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Durkee, R.; Pollock, J.; Reichart, D. E.; Ivarsen, K.; Haislip, J.; LaCluyze, A.; Krugly, Yu. N.; Gaftonyuk, N.; Stephens, R. D.; Dyvig, R.; Reddy, V.; Chiorny, V.; Vaduvescu, O.; Longa-Peña, P.; Tudorica, A.; Warner, B. D.; Masi, G.; Brinsfield, J.; Gonçalves, R.; Brown, P.; Krzeminski, Z.; Gerashchenko, O.; Shevchenko, V.; Molotov, I.; Marchis, F.
2012-03-01
Our photometric observations of 18 main-belt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that it cannot be due to an observational selection effect and that the data strongly suggest that poles of mutual orbits between components of binary asteroids in the primary size range 3-8 km are not distributed randomly: The null hypothesis of an isotropic distribution of the orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to either of the two processes: (i) the YORP tilt of spin axes of their parent bodies toward the asymptotic states near obliquities 0° and 180° (pre-formation mechanism) or (ii) the YORP tilt of spin axes of the primary components of already formed binary systems toward the asymptotic states near obliquities 0° and 180° (post-formation mechanism). The alternative process of elimination of binaries with poles closer to the ecliptic by dynamical instability, such as the Kozai effect due to gravitational perturbations from the Sun, does not explain the observed orbit pole concentration. This is because for close binary asteroid systems, the gravitational effects of primary’s irregular shape dominate the solar-tide effect.
NASA Astrophysics Data System (ADS)
Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.
2015-03-01
The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.
Anisotropic distribution of orbit poles of binary asteroids
NASA Astrophysics Data System (ADS)
Pravec, P.; Scheirich, P.; Vokrouhlický, D.; Harris, A. W.; Kusnirak, P.; Hornoch, K.; Pray, D. P.; Higgins, D.; Galád, A.; Világi, J.; Gajdos, S.; Kornos, L.; Oey, J.; Husárik, M.; Cooney, W. R.; Gross, J.; Terrell, D.; Durkee, R.; Pollock, J.; Reichart, D.; Ivarsen, K.; Haislip, J.; Lacluyze, A.; Krugly, Y. N.; Gaftonyuk, N.; Dyvig, R.; Reddy, V.; Stephens, R. D.; Chiorny, V.; Vaduvescu, O.; Longa, P.; Tudorica, A.; Warner, B. D.; Masi, G.; Brinsfield, J.; Gonçalves, R.; Brown, P.; Krzeminski, Z.; Gerashchenko, O.; Marchis, F.
2011-10-01
Our photometric observations of 18 mainbelt binary systems in more than one apparition revealed a strikingly high number of 15 having positively re-observed mutual events in the return apparitions. Our simulations of the survey showed that the data strongly suggest that poles of mutual orbits between components of binary asteroids are not distributed randomly: The null hypothesis of the isotropic distribution of orbit poles is rejected at a confidence level greater than 99.99%. Binary orbit poles concentrate at high ecliptic latitudes, within 30° of the poles of the ecliptic. We propose that the binary orbit poles oriented preferentially up/down-right are due to formation of small binary systems by rotational fission of critically spinning parent bodies with poles near the YORP asymptotic states with obliquities near 0 and 180°. An alternative process of elimination of binaries with poles closer to the ecliptic by the Kozai dynamics of gravitational perturbations from the sun does not explain the observed orbit pole concentration as in the close asteroid binary systems the J2 perturbation due to the primary dominates the solar-tide effect.
Rotational properties of hypermassive neutron stars from binary mergers
NASA Astrophysics Data System (ADS)
Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst
2017-08-01
Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.
NASA Astrophysics Data System (ADS)
Wu, Zhisheng; Tao, Ou; Cheng, Wei; Yu, Lu; Shi, Xinyuan; Qiao, Yanjiang
2012-02-01
This study demonstrated that near-infrared chemical imaging (NIR-CI) was a promising technology for visualizing the spatial distribution and homogeneity of Compound Liquorice Tablets. The starch distribution (indirectly, plant extraction) could be spatially determined using basic analysis of correlation between analytes (BACRA) method. The correlation coefficients between starch spectrum and spectrum of each sample were greater than 0.95. Depending on the accurate determination of starch distribution, a method to determine homogeneous distribution was proposed by histogram graph. The result demonstrated that starch distribution in sample 3 was relatively heterogeneous according to four statistical parameters. Furthermore, the agglomerates domain in each tablet was detected using score image layers of principal component analysis (PCA) method. Finally, a novel method named Standard Deviation of Macropixel Texture (SDMT) was introduced to detect agglomerates and heterogeneity based on binary image. Every binary image was divided into different sizes length of macropixel and the number of zero values in each macropixel was counted to calculate standard deviation. Additionally, a curve fitting graph was plotted on the relationship between standard deviation and the size length of macropixel. The result demonstrated the inter-tablet heterogeneity of both starch and total compounds distribution, simultaneously, the similarity of starch distribution and the inconsistency of total compounds distribution among intra-tablet were signified according to the value of slope and intercept parameters in the curve.
High-Mass X-ray Binaries in hard X- rays
NASA Astrophysics Data System (ADS)
Lutovinov, Alexander
We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.
Zeroth-order phase-contrast technique.
Pizolato, José Carlos; Cirino, Giuseppe Antonio; Gonçalves, Cristhiane; Neto, Luiz Gonçalves
2007-11-01
What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.
NASA Astrophysics Data System (ADS)
Bouffon, T.; Rice, R.; Bales, R.
2006-12-01
The spatial distributions of snow water equivalent (SWE) and snow depth within a 1, 4, and 16 km2 grid element around two automated snow pillows in a forested and open- forested region of the Upper Merced River Basin (2,800 km2) of Yosemite National Park were characterized using field observations and analyzed using binary regression trees. Snow surveys occurred at the forested site during the accumulation and ablation seasons, while at the open-forest site a survey was performed only during the accumulation season. An average of 130 snow depth and 7 snow density measurements were made on each survey, within the 4 km2 grid. Snow depth was distributed using binary regression trees and geostatistical methods using the physiographic parameters (e.g. elevation, slope, vegetation, aspect). Results in the forest region indicate that the snow pillow overestimated average SWE within the 1, 4, and 16 km2 areas by 34 percent during ablation, but during accumulation the snow pillow provides a good estimate of the modeled mean SWE grid value, however it is suspected that the snow pillow was underestimating SWE. However, at the open forest site, during accumulation, the snow pillow was 28 percent greater than the mean modeled grid element. In addition, the binary regression trees indicate that the independent variables of vegetation, slope, and aspect are the most influential parameters of snow depth distribution. The binary regression tree and multivariate linear regression models explain about 60 percent of the initial variance for snow depth and 80 percent for density, respectively. This short-term study provides motivation and direction for the installation of a distributed snow measurement network to fill the information gap in basin-wide SWE and snow depth measurements. Guided by these results, a distributed snow measurement network was installed in the Fall 2006 at Gin Flat in the Upper Merced River Basin with the specific objective of measuring accumulation and ablation across topographic variables with the aim of providing guidance for future larger scale observation network designs.
Nonparametric statistical modeling of binary star separations
NASA Technical Reports Server (NTRS)
Heacox, William D.; Gathright, John
1994-01-01
We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a(exp -1) for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.; Marzari, Francesco; Rossi, Alessandro; Scheeres, Daniel J.
2016-10-01
From the results of a comprehensive asteroid population evolution model, we conclude that the YORP-induced rotational fission hypothesis is consistent with the observed population statistics of small asteroids in the main belt including binaries and contact binaries. These conclusions rest on the asteroid rotation model of Marzari et al. ([2011]Icarus, 214, 622-631), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis, described in detail within, and the binary evolution model of Jacobson et al. ([2011a] Icarus, 214, 161-178) and Jacobson et al. ([2011b] The Astrophysical Journal Letters, 736, L19). Our complete asteroid population evolution model is highly constrained by these and other previous works, and therefore it has only two significant free parameters: the ratio of low to high mass ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. We successfully reproduce characteristic statistics of the small asteroid population: the binary fraction, the fast binary fraction, steady-state mass ratio fraction and the contact binary fraction. We find that in order for the model to best match observations, rotational fission produces high mass ratio (> 0.2) binary components with four to eight times the frequency as low mass ratio (<0.2) components, where the mass ratio is the mass of the secondary component divided by the mass of the primary component. This is consistent with post-rotational fission binary system mass ratio being drawn from either a flat or a positive and shallow distribution, since the high mass ratio bin is four times the size of the low mass ratio bin; this is in contrast to the observed steady-state binary mass ratio, which has a negative and steep distribution. This can be understood in the context of the BYORP-tidal equilibrium hypothesis, which predicts that low mass ratio binaries survive for a significantly longer period of time than high mass ratio systems. We also find that the mean of the log-normal BYORP coefficient distribution μB ≳10-2 , which is consistent with estimates from shape modeling (McMahon and Scheeres, 2012a).
Selkowitz, David J.; Forster, Richard; Caldwell, Megan K.
2014-01-01
Remote sensing of snow-covered area (SCA) can be binary (indicating the presence/absence of snow cover at each pixel) or fractional (indicating the fraction of each pixel covered by snow). Fractional SCA mapping provides more information than binary SCA, but is more difficult to implement and may not be feasible with all types of remote sensing data. The utility of fractional SCA mapping relative to binary SCA mapping varies with the intended application as well as by spatial resolution, temporal resolution and period of interest, and climate. We quantified the frequency of occurrence of partially snow-covered (mixed) pixels at spatial resolutions between 1 m and 500 m over five dates at two study areas in the western U.S., using 0.5 m binary SCA maps derived from high spatial resolution imagery aggregated to fractional SCA at coarser spatial resolutions. In addition, we used in situ monitoring to estimate the frequency of partially snow-covered conditions for the period September 2013–August 2014 at 10 60-m grid cell footprints at two study areas with continental snow climates. Results from the image analysis indicate that at 40 m, slightly above the nominal spatial resolution of Landsat, mixed pixels accounted for 25%–93% of total pixels, while at 500 m, the nominal spatial resolution of MODIS bands used for snow cover mapping, mixed pixels accounted for 67%–100% of total pixels. Mixed pixels occurred more commonly at the continental snow climate site than at the maritime snow climate site. The in situ data indicate that some snow cover was present between 186 and 303 days, and partial snow cover conditions occurred on 10%–98% of days with snow cover. Four sites remained partially snow-free throughout most of the winter and spring, while six sites were entirely snow covered throughout most or all of the winter and spring. Within 60 m grid cells, the late spring/summer transition from snow-covered to snow-free conditions lasted 17–56 days and averaged 37 days. Our results suggest that mixed snow-covered snow-free pixels are common at the spatial resolutions imaged by both the Landsat and MODIS sensors. This highlights the additional information available from fractional SCA products and suggests fractional SCA can provide a major advantage for hydrological and climatological monitoring and modeling, particularly when accurate representation of the spatial distribution of snow cover is critical.
Open cluster evolutions in binary system: How they dissolved
NASA Astrophysics Data System (ADS)
Priyatikanto, R.; Arifyanto, M. I.; Wulandari, H. R. T.
2014-03-01
Binarity among stellar clusters in galaxy is such a reality which has been realized for a long time, but still hides several questions and problems to be solved. Some of binary star clusters are formed by close encounter, but the others are formed together from similar womb. Some of them undergo separation process, while the others are in the middle of merger toward common future. The products of merger binary star cluster have typical characteristics which differ from solo clusters, especially in their spatial distribution and their stellar members kinematics. On the other hand, these merger products still have to face dissolving processes triggered by both internal and external factors. In this study, we performed N-body simulations of merger binary clusters with different initial conditions. After merging, these clusters dissolve with greater mass-loss rate because of their angular momentum. These rotating clusters also experience more deceleration caused by external tidal field.
A New Equilibrium State for Singly Synchronous Binary Asteroids
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Unukovych, Vladyslav; Scheeres, Daniel J.
2018-04-01
The evolution of rotation states of small asteroids is governed by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, nonetheless some asteroids can stop their YORP evolution by attaining a stable equilibrium. The same is true for binary asteroids subjected to the binary YORP (BYORP) effect. Here we discuss a new type of equilibrium that combines these two, which is possible in a singly synchronous binary system. This equilibrium occurs when the normal YORP, the tangential YORP, and the BYORP compensate each other, and tidal torques distribute the angular momentum between the components of the system and dissipate energy. If unperturbed, such a system would remain singly synchronous in perpetuity with constant spin and orbit rates, as the tidal torques dissipate the incoming energy from impinging sunlight at the same rate. The probability of the existence of this kind of equilibrium in a binary system is found to be on the order of a few percent.
New observations and new models of spin-orbit coupling in binary asteroids
NASA Astrophysics Data System (ADS)
Margot, Jean-Luc; Naidu, Shantanu
2015-08-01
The YORP-induced rotational fission hypothesis is the leading candidate for explaining the formation of binaries, triples, and pairs among small (<20 km) asteroids (e.g., Margot et al, Asteroids IV, subm., 2015). Various evolutionary paths following rotational fission have been suggested, but many important questions remain about the evolutionary mechanisms and timescales. We test hypotheses about the evolution of binary asteroids by obtaining precise descriptions of the orbits and components of binary systems with radar and by examining the system dynamics with detailed numerical simulations. Predictions for component spin states and orbital precession rates can then be compared to observables in our data sets or in other data sets to elucidate the states of various systems and their likely evolutionary paths.Accurate simulations require knowledge of the masses, shapes, and spin states of individual binary components. Because radar observations can provide exquisite data sets spanning days with spatial resolutions at the decameter level, we can invert for the component shapes and measure spin states. We can also solve for the mutual orbit by fitting the observed separations between components. In addition, the superb (10e-7--10e-8) fractional uncertainties in range allow us to measure the reflex motions directly, allowing masses of individual components to be determined.We use recently published observations of the binary 2000 DP107 (Naidu et al. AJ, subm., 2015) and that of other systems to simulate the dynamics of components in well-characterized binary systems (Naidu and Margot, AJ 149, 80, 2015). We model the coupled spin and orbital motions of two rigid, ellipsoidal bodies under the influence of their mutual gravitational potential. We use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. The presence of chaotic regions may substantially increase spin synchronization timescales, delay BYORP-type evolution, extend the lifetime of binaries, and explain the observed fraction of asynchronous binaries.
CLOSE BINARIES WITH INFRARED EXCESS: DESTROYERS OF WORLDS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matranga, M.; Drake, J. J.; Kashyap, V. L.
2010-09-10
We present the results of a Spitzer photometric investigation into the IR excesses of close binary systems. In a sample of 10 objects, excesses in Infrared Array Camera and MIPS24 bands implying the presence of warm dust are found for 3. For two objects, we do not find excesses reported in earlier IRAS studies. We discuss the results in the context of the scenario suggested by Rhee and co-workers, in which warm dust is continuously created by destructive collisions between planetary bodies. A simple numerical model for the steady-state distribution of dust in one IR excess system shows a centralmore » clearing of radius 0.22 AU caused by dynamical perturbations from the binary star. This is consistent with the size of the central clearing derived from the Spitzer spectral energy distribution. We conclude that close binaries could be efficient 'destroyers of worlds' and lead to destabilization of the orbits of their planetary progeny by magnetically driven angular momentum loss and secular shrinkage of the binary separation.« less
WIYN Open Cluster Study. XXXII. Stellar Radial Velocities in the Old Open Cluster NGC 188
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.; McClure, Robert D.
2008-06-01
We present the results of our ongoing radial-velocity (RV) survey of the old (7 Gyr) open cluster NGC 188. Our WIYN 3.5 m data set spans a time baseline of 11 years, a magnitude range of 12 <= V <= 16.5 (1.18-0.94 M sun), and a 1° diameter region on the sky. With the addition of a Domain Astrophysical Observatory data set we extend our bright limit to V = 10.8 and, for some stars, extend our time baseline to 35 years. Our magnitude limits include solar-mass main-sequence stars, subgiants, giants, and blue stragglers (BSs), and our spatial coverage extends radially to 17 pc (~13 core radii). For the WIYN data we present a detailed description of our data reduction process and a thorough analysis of our measurement precision of 0.4 km s-1 for narrow-lined stars. We have measured radial velocities for 1046 stars in the direction of NGC 188, and have calculated RV membership probabilities for stars with >=3 measurements, finding 473 to be likely cluster members. We detect 124 velocity-variable cluster members, all of which are likely to be dynamically hard-binary stars. Using our single member stars, we find an average cluster radial velocity of -42.36 ± 0.04 km s-1. We use our precise RV and proper-motion membership data to greatly reduce field-star contamination in our cleaned color-magnitude diagram, from which we identify six stars of note that lie far from a standard single-star isochrone. We present a detailed study of the spatial distribution of cluster-member populations, and find the binaries to be centrally concentrated, providing evidence for the presence of mass segregation in NGC 188. We observe the BSs to populate a bimodal spatial distribution that is not centrally concentrated, suggesting that we may be observing two populations of BSs in NGC 188, including a centrally concentrated distribution as well as a halo population. Finally, we find NGC 188 to have a global RV dispersion of 0.64 ± 0.04 km s-1, which may be inflated by up to 0.23 km s-1 from unresolved binaries. When corrected for unresolved binaries, the NGC 188 RV dispersion has a nearly isothermal radial distribution. We use this mean-corrected velocity dispersion to derive a virial mass of 2300 ± 460 M sun .
NASA Technical Reports Server (NTRS)
Izmailov, Alexander; Myerson, Allan S.
1993-01-01
A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.
Self-organization in a system of binary strings with spatial interactions
NASA Astrophysics Data System (ADS)
Banzhaf, W.; Dittrich, P.; Eller, B.
1999-01-01
We consider an artificial reaction system whose components are binary strings. Upon encounter, two binary strings produce a third string which competes for storage space with the originators. String types or species can only survive when produced in sufficient numbers. Spatial interactions through introduction of a topology and rules for distance-dependent reactions are discussed. We observe various kinds of survival strategies of binary strings.
NASA Astrophysics Data System (ADS)
Hillen, M.; de Vries, B. L.; Menu, J.; Van Winckel, H.; Min, M.; Mulders, G. D.
2015-06-01
Context. Many post-asymptotic giant branch (post-AGB) stars in binary systems have an infrared (IR) excess arising from a dusty circumbinary disk. The disk formation, current structure, and further evolution are, however, poorly understood. Aims: We aim to constrain the structure of the circumstellar material around the post-AGB binary and RV Tauri pulsator AC Her. We want to constrain the spatial distribution of the amorphous and of the crystalline dust. Methods: We present very high-quality mid-IR interferometric data that were obtained with the MIDI/VLTI instrument. We analyze the MIDI visibilities and differential phases in combination with the full spectral energy distribution, using the MCMax radiative transfer code, to find a good structure model of AC Her's circumbinary disk. We include a grain size distribution and midplane settling of dust self-consistently in our models. The spatial distribution of crystalline forsterite in the disk is investigated with the mid-IR features, the 69 μm band and the 11.3 μm signatures in the interferometric data. Results: All the data are well fitted by our best model. The inclination and position angle of the disk are precisely determined at i = 50 ± 8° and PA = 305 ± 10°. We firmly establish that the inner disk radius is about an order of magnitude larger than the dust sublimation radius. The best-fit dust grain size distribution shows that significant grain growth has occurred, with a significant amount of mm-sized grains now being settled to the midplane of the disk. A large total dust mass ≥10-3 M⊙ is needed to fit the mm fluxes. By assuming αturb = 0.01, a good fit is obtained with a small grain size power law index of 3.25, combined with a small gas/dust ratio ≤10. The resulting gas mass is compatible with recent estimates employing direct gas diagnostics. The spatial distribution of the forsterite is different from the amorphous dust, as more warm forsterite is needed in the surface layers of the inner disk. Conclusions: The disk in the AC Her system is in a very evolved state, as shown by its small gas/dust ratio and large inner hole. Mid-IR interferometry offers unique constraints, complementary to mid-IR features, for studying the mineralogy in disks. A better uv coverage is needed to constrain in detail the distribution of the crystalline forsterite in the disk of AC Her, but we find strong similarities with the protoplanetary disk HD 100546. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 075.D-0605.
NASA Astrophysics Data System (ADS)
Mikołajewska, Joanna; Shara, Michael M.; Caldwell, Nelson; Iłkiewicz, Krystian; Zurek, David
2017-02-01
We present and discuss initial selection criteria and first results in M33 from a systematic search for extragalactic symbiotic stars. We show that the presence of diffuse ionized gas (DIG) emission can significantly contaminate the spectra of symbiotic star candidates. This important effect forces upon us a more stringent working definition of an extragalactic symbiotic star. We report the first detections and spectroscopic characterization of 12 symbiotic binaries in M33. We found that four of our systems contain carbon-rich giants. In another two of them, the giant seems to be a Zr-enhanced MS star, while the remaining six objects host M-type giants. The high number ratio of C to M giants in these binaries is consistent with the low metallicity of M33. The spatial and radial velocity distributions of these new symbiotic binaries are consistent with a wide range of progenitor star ages.
Shaping complex microwave fields in reverberating media with binary tunable metasurfaces
Kaina, Nadège; Dupré, Matthieu; Lerosey, Geoffroy; Fink, Mathias
2014-01-01
In this article we propose to use electronically tunable metasurfaces as spatial microwave modulators. We demonstrate that like spatial light modulators, which have been recently proved to be ideal tools for controlling light propagation through multiple scattering media, spatial microwave modulators can efficiently shape in a passive way complex existing microwave fields in reverberating environments with a non-coherent energy feedback. Unlike in free space, we establish that a binary-only phase state tunable metasurface allows a very good control over the waves, owing to the random nature of the electromagnetic fields in these complex media. We prove in an everyday reverberating medium, that is, a typical office room, that a small spatial microwave modulator placed on the walls can passively increase the wireless transmission between two antennas by an order of magnitude, or on the contrary completely cancel it. Interestingly and contrary to free space, we show that this results in an isotropic shaped microwave field around the receiving antenna, which we attribute again to the reverberant nature of the propagation medium. We expect that spatial microwave modulators will be interesting tools for fundamental physics and will have applications in the field of wireless communications. PMID:25331498
Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions
Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese; ...
2017-01-09
The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less
NASA Astrophysics Data System (ADS)
Laloy, Eric; Hérault, Romain; Lee, John; Jacques, Diederik; Linde, Niklas
2017-12-01
Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200-500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging.
Gravity Chromatic Imaging of the Eta Car's Core
NASA Astrophysics Data System (ADS)
Sanchez-Bermudez, Joel
2018-04-01
Eta Car is one of the most massive, and intriguing, Luminous Blue Variables known. In its core resides a binary with a 5.54 years orbital period. Visible, infrared, and X-raobservations suggest that the primary star exhibits a very dense wind with a terminal velocity of about 420 km/s, while the secondary shows a much faster and less dense wind with a terminal velocity of 3000 km/s. The wind-wind collision zone at the core of Eta Car is thus a complex region that deserves a detailed study to understand the effect of the binary interaction in the evolution of the system. Here, we will present a unique imaging campaign with GRAVITY/VLTI of the Eta Car's core. The superb quality of our interferometric data, together with state-of-the-art image reconstruction techniques, allowed us to obtain, with milliarcsecond resolution, continuum and chromatic images cross the BrG and HeI lines in the Eta Car K-band spectrum (R 4000). These new data together with models of the primary wind of Eta Car has letting us to characterize the spatial distribution of the dust and gas in the inner 40 AU wind-wind collision zone of the target.
The True Ultracool Binary Fraction Using Spectral Binaries
NASA Astrophysics Data System (ADS)
Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris
2018-01-01
Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (< 5 AU) binary systems of brown dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown dwarfs.
Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.
Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao
2017-11-01
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments
NASA Astrophysics Data System (ADS)
Chen, Zhanlong; Wu, Xin-cai; Wu, Liang
2008-12-01
Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the distributed operation, reduplication operation transfer operation of spatial index in the grid environment. The design of GSHR-Tree has ensured the performance of the load balance in the parallel computation. This tree structure is fit for the parallel process of the spatial information in the distributed network environments. Instead of spatial object's recursive comparison where original R tree has been used, the algorithm builds the spatial index by applying binary code operation in which computer runs more efficiently, and extended dynamic hash code for bit comparison. In GSHR-Tree, a new server is assigned to the network whenever a split of a full node is required. We describe a more flexible allocation protocol which copes with a temporary shortage of storage resources. It uses a distributed balanced binary spatial tree that scales with insertions to potentially any number of storage servers through splits of the overloaded ones. The application manipulates the GSHR-Tree structure from a node in the grid environment. The node addresses the tree through its image that the splits can make outdated. This may generate addressing errors, solved by the forwarding among the servers. In this paper, a spatial index data distribution algorithm that limits the number of servers has been proposed. We improve the storage utilization at the cost of additional messages. The structure of GSHR-Tree is believed that the scheme of this grid spatial index should fit the needs of new applications using endlessly larger sets of spatial data. Our proposal constitutes a flexible storage allocation method for a distributed spatial index. The insertion policy can be tuned dynamically to cope with periods of storage shortage. In such cases storage balancing should be favored for better space utilization, at the price of extra message exchanges between servers. This structure makes a compromise in the updating of the duplicated index and the transformation of the spatial index data. Meeting the needs of the grid computing, GSHRTree has a flexible structure in order to satisfy new needs in the future. The GSHR-Tree provides the R-tree capabilities for large spatial datasets stored over interconnected servers. The analysis, including the experiments, confirmed the efficiency of our design choices. The scheme should fit the needs of new applications of spatial data, using endlessly larger datasets. Using the system response time of the parallel processing of spatial scope query algorithm as the performance evaluation factor, According to the result of the simulated the experiments, GSHR-Tree is performed to prove the reasonable design and the high performance of the indexing structure that the paper presented.
DNA viewed as an out-of-equilibrium structure
NASA Astrophysics Data System (ADS)
Provata, A.; Nicolis, C.; Nicolis, G.
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ2 tests shows that DNA can not be described as a low order Markov chain of order up to r =6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
DNA viewed as an out-of-equilibrium structure.
Provata, A; Nicolis, C; Nicolis, G
2014-05-01
The complexity of the primary structure of human DNA is explored using methods from nonequilibrium statistical mechanics, dynamical systems theory, and information theory. A collection of statistical analyses is performed on the DNA data and the results are compared with sequences derived from different stochastic processes. The use of χ^{2} tests shows that DNA can not be described as a low order Markov chain of order up to r=6. Although detailed balance seems to hold at the level of a binary alphabet, it fails when all four base pairs are considered, suggesting spatial asymmetry and irreversibility. Furthermore, the block entropy does not increase linearly with the block size, reflecting the long-range nature of the correlations in the human genomic sequences. To probe locally the spatial structure of the chain, we study the exit distances from a specific symbol, the distribution of recurrence distances, and the Hurst exponent, all of which show power law tails and long-range characteristics. These results suggest that human DNA can be viewed as a nonequilibrium structure maintained in its state through interactions with a constantly changing environment. Based solely on the exit distance distribution accounting for the nonequilibrium statistics and using the Monte Carlo rejection sampling method, we construct a model DNA sequence. This method allows us to keep both long- and short-range statistical characteristics of the native DNA data. The model sequence presents the same characteristic exponents as the natural DNA but fails to capture spatial correlations and point-to-point details.
Explaining LIGO's observations via isolated binary evolution with natal kicks
NASA Astrophysics Data System (ADS)
Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel E.
2018-02-01
We compare binary evolution models with different assumptions about black-hole natal kicks to the first gravitational-wave observations performed by the LIGO detectors. Our comparisons attempt to reconcile merger rate, masses, spins, and spin-orbit misalignments of all current observations with state-of-the-art formation scenarios of binary black holes formed in isolation. We estimate that black holes (BHs) should receive natal kicks at birth of the order of σ ≃200 (50 ) km /s if tidal processes do (not) realign stellar spins. Our estimate is driven by two simple factors. The natal kick dispersion σ is bounded from above because large kicks disrupt too many binaries (reducing the merger rate below the observed value). Conversely, the natal kick distribution is bounded from below because modest kicks are needed to produce a range of spin-orbit misalignments. A distribution of misalignments increases our models' compatibility with LIGO's observations, if all BHs are likely to have natal spins. Unlike related work which adopts a concrete BH natal spin prescription, we explore a range of possible BH natal spin distributions. Within the context of our models, for all of the choices of σ used here and within the context of one simple fiducial parameterized spin distribution, observations favor low BH natal spin.
Dynamics of rotationally fissioned asteroids: Source of observed small asteroid systems
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.; Scheeres, Daniel J.
2011-07-01
We present a model of near-Earth asteroid (NEA) rotational fission and ensuing dynamics that describes the creation of synchronous binaries and all other observed NEA systems including: doubly synchronous binaries, high- e binaries, ternary systems, and contact binaries. Our model only presupposes the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect, "rubble pile" asteroid geophysics, and gravitational interactions. The YORP effect torques a "rubble pile" asteroid until the asteroid reaches its fission spin limit and the components enter orbit about each other (Scheeres, D.J. [2007]. Icarus 189, 370-385). Non-spherical gravitational potentials couple the spin states to the orbit state and chaotically drive the system towards the observed asteroid classes along two evolutionary tracks primarily distinguished by mass ratio. Related to this is a new binary process termed secondary fission - the secondary asteroid of the binary system is rotationally accelerated via gravitational torques until it fissions, thus creating a chaotic ternary system. The initially chaotic binary can be stabilized to create a synchronous binary by components of the fissioned secondary asteroid impacting the primary asteroid, solar gravitational perturbations, and mutual body tides. These results emphasize the importance of the initial component size distribution and configuration within the parent asteroid. NEAs may go through multiple binary cycles and many YORP-induced rotational fissions during their approximately 10 Myr lifetime in the inner Solar System. Rotational fission and the ensuing dynamics are responsible for all NEA systems including the most commonly observed synchronous binaries.
Structure of stable binary neutron star merger remnants: Role of initial spin
NASA Astrophysics Data System (ADS)
Kastaun, W.; Ciolfi, R.; Endrizzi, A.; Giacomazzo, B.
2017-08-01
We present general relativistic numerical simulations of binary neutron star (BNS) mergers with different initial spin configurations. We focus on models with stars of mass 1.4 M⊙ each, which employ the equation of state (EOS) by Shen, Horowitz, and Teige, and which result in stable NSs as merger remnants. For comparison, we consider two irrotational equal mass (M =1.35 M⊙) and unequal mass (M =1.29 , 1.42 M⊙ ) BNS models using the APR4 EOS, which result in a supramassive merger remnant. We present visualizations of the fluid flow and temperature distribution and find a strong impact of the spin on vortex structure and nonaxisymmetric deformation. We compute the radial mass distribution and the rotation profile in the equatorial plane using recently developed measures independent of spatial gauge, revealing slowly rotating cores that can be well approximated by the cores of spherical stars. We also study the influence of the spin on the inspiral phase and the gravitational wave (GW) signal. Using a newly developed analysis method, we further show that gravitational waveforms from BNS mergers can exhibit one or more phase jumps after merger, which occur together with minima of the strain amplitude. We provide a natural explanation in terms of the remnant's quadrupole moment, and show that cancellation effects due to phase jumps can have a strong impact on the GW power spectrum. Finally, we discuss the impact of the spin on the amount of ejected matter.
Imprints of dynamical interactions on brown dwarf pairing statistics and kinematics
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.
2003-03-01
We present statistically robust predictions of brown dwarf properties arising from dynamical interactions during their early evolution in small clusters. Our conclusions are based on numerical calculations of the internal cluster dynamics as well as on Monte-Carlo models. Accounting for recent observational constraints on the sub-stellar mass function and initial properties in fragmenting star forming clumps, we derive multiplicity fractions, mass ratios, separation distributions, and velocity dispersions. We compare them with observations of brown dwarfs in the field and in young clusters. Observed brown dwarf companion fractions around 15 +/- 7% for very low-mass stars as reported recently by Close et al. (\\cite{CSFB03}) are consistent with certain dynamical decay models. A significantly smaller mean separation distribution for brown dwarf binaries than for binaries of late-type stars can be explained by similar specific energy at the time of cluster formation for all cluster masses. Due to their higher velocity dispersions, brown-dwarfs and low-mass single stars will undergo time-dependent spatial segregation from higher-mass stars and multiple systems. This will cause mass functions and binary statistics in star forming regions to vary with the age of the region and the volume sampled.
Liu, Dong; Wang, Shengsheng; Huang, Dezhi; Deng, Gang; Zeng, Fantao; Chen, Huiling
2016-05-01
Medical image recognition is an important task in both computer vision and computational biology. In the field of medical image classification, representing an image based on local binary patterns (LBP) descriptor has become popular. However, most existing LBP-based methods encode the binary patterns in a fixed neighborhood radius and ignore the spatial relationships among local patterns. The ignoring of the spatial relationships in the LBP will cause a poor performance in the process of capturing discriminative features for complex samples, such as medical images obtained by microscope. To address this problem, in this paper we propose a novel method to improve local binary patterns by assigning an adaptive neighborhood radius for each pixel. Based on these adaptive local binary patterns, we further propose a spatial adjacent histogram strategy to encode the micro-structures for image representation. An extensive set of evaluations are performed on four medical datasets which show that the proposed method significantly improves standard LBP and compares favorably with several other prevailing approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Markowitz, A.; Uttley, P.
2005-01-01
We present a broadband power spectral density function (PSD) measured from extensive RXTE monitoring data of the low-luminosity AGN NGC 4258, which has an accurate, maser-determined black hole mass of (3.9 plus or minus 0.1) x 10(exp 7) solar mass. We constrain the PSD break time scale to be greater than 4.5 d at greater than 90% confidence, which appears to rule out the possibility that NGC 4258 is an analogue of black hole X-ray binaries (BHXRBs) in the high/soft state. In this sense, the PSD of NGC 4258 is different to that of some more-luminous Seyferts, which appear similar to the PSDs of high/soft state X-ray binaries. This result supports previous analogies between LLAGN and X-ray binaries in the low/hard state based on spectral energy distributions, indicating that the AGN/BHXRB analogy is valid across a broad range of accretion rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, R. Michael
Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.
The Fate of Merging Neutron Stars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-08-01
A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of state. They then combined this information with Monte Carlo simulations based on the mass distribution of neutron-star binaries in our galaxy. From these simulations, Piro and collaborators could predict the distribution of fates expected for merging neutron-star binaries, given different equations of state.The authors found that the fate of the merger could vary greatly depending on the equation of state you assume. Intriguingly, all equations of state resulted in a surprisingly high fraction of systems that merged to form a neutron star or a supramassive neutron star in fact, four out of the five equations of state predicted that 80100% of systems would result in a neutron star or a supermassive neutron star.Lessons from ObservationsThe frequency bands covered by various current and planned gravitational wave observatories. Advanced LIGO has the right frequency coverage to be able to explore a neutron-star remnant if the signal is loud enough. [Christopher Moore, Robert Cole and Christopher Berry]These results have important implications for our future observations. The high predicted fraction of neutron stars resulting from these mergers tells us that its especially important for gravitational-wave observatories to probe 14 kHz emission. This frequency range will enable us to study the post-merger neutron-star or supramassive-neutron-star remnants.Even if we cant observe the remnants behavior after it forms, we can still compare the distribution of remnants that we observe in the future to the predictions made by Piro and collaborators. This will potentially allow us to constrain the neutron-star equation of state, revealing the physics of neutron-star interiors even without direct observations.CitationAnthony L. Piro et al 2017 ApJL 844 L19. doi:10.3847/2041-8213/aa7f2f
Population of persistent high-mass X-ray binaries in the Milky Way
NASA Astrophysics Data System (ADS)
Lutovinov, A. A.; Revnivtsev, M. G.; Tsygankov, S. S.; Krivonos, R. A.
2013-05-01
We present results of the study of persistent high-mass X-ray binaries (HMXBs) in the Milky Way, obtained from the deep INTEGRAL Galactic plane survey. This survey provides us a new insight into the population of HMXBs because almost half of the whole sample consists of sources discovered with INTEGRAL. It is demonstrated for the first time that the majority of persistent HMXBs have supergiant companions and their luminosity function steepens somewhere around ˜2 × 1036 erg s-1. We show that the spatial density distribution of HMXBs correlates well with the star formation rate distribution in the Galaxy. The vertical distribution of HMXBs has a scale-height h ≃ 85 pc, that is somewhat larger than the distribution of young stars in the Galaxy. We propose a simple toy model, which adequately describes general properties of HMXBs in which neutron stars accrete a matter from the wind of its companion (wind-fed NS-HMXBs population). Using the elaborated model we argue that a flaring activity of the so-called supergiant fast X-ray transients, the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion.
X-ray Binaries and the Galaxy Structure in Hard X-rays
NASA Astrophysics Data System (ADS)
Lutovinov, Alexander
The Galaxy structure in the hard X-ray energy band (¿20 keV) was studied using data of the INTEGRAL observatory. A deep and nearly uniform coverage of the galactic plane allowed to increase significantly the sensitivity of the survey and discover several dozens new galac-tic sources. The follow-up observations with XMM-Newton and CHANDRA observatories in X-rays and ground-based telescopes in optical and infrared wavebands gave us a possibility to determine optical counterparts and distances for number of new and already known faint sources. That, in turn, allowed us to build the spatial distribution of different classes of galactic X-ray binaries and obtain preliminary results of the structure of the further part of the Galaxy.
NASA Astrophysics Data System (ADS)
Boo, G.; Fabrikant, S. I.; Leyk, S.
2015-08-01
In spatial epidemiology, disease incidence and demographic data are commonly summarized within larger regions such as administrative units because of privacy concerns. As a consequence, analyses using these aggregated data are subject to the Modifiable Areal Unit Problem (MAUP) as the geographical manifestation of ecological fallacy. In this study, we create small area disease estimates through dasymetric refinement, and investigate the effects on predictive epidemiological models. We perform a binary dasymetric refinement of municipality-aggregated dog tumor incidence counts in Switzerland for the year 2008 using residential land as a limiting ancillary variable. This refinement is expected to improve the quality of spatial data originally aggregated within arbitrary administrative units by deconstructing them into discontinuous subregions that better reflect the underlying population distribution. To shed light on effects of this refinement, we compare a predictive statistical model that uses unrefined administrative units with one that uses dasymetrically refined spatial units. Model diagnostics and spatial distributions of model residuals are assessed to evaluate the model performances in different regions. In particular, we explore changes in the spatial autocorrelation of the model residuals due to spatial refinement of the enumeration units in a selected mountainous region, where the rugged topography induces great shifts of the analytical units i.e., residential land. Such spatial data quality refinement results in a more realistic estimation of the population distribution within administrative units, and thus, in a more accurate modeling of dog tumor incidence patterns. Our results emphasize the benefits of implementing a dasymetric modeling framework in veterinary spatial epidemiology.
Generation of atmospheric wavefronts using binary micromirror arrays.
Anzuola, Esdras; Belmonte, Aniceto
2016-04-10
To simulate in the laboratory the influence that a turbulent atmosphere has on light beams, we introduce a practical method for generating atmospheric wavefront distortions that considers digital holographic reconstruction using a programmable binary micromirror array. We analyze the efficiency of the approach for different configurations of the micromirror array and experimentally demonstrate the benchtop technique. Though the mirrors on the digital array can only be positioned in one of two states, we show that the holographic technique can be used to devise a wide variety of atmospheric wavefront aberrations in a controllable and predictable way for a fraction of the cost of phase-only spatial light modulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese
The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less
Crop yield response to climate change varies with crop spatial distribution pattern
Leng, Guoyong; Huang, Maoyi
2017-05-03
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
Crop yield response to climate change varies with crop spatial distribution pattern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Huang, Maoyi
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
BOREAS RSS-8 BIOME-BGC SSA Simulation of Annual Water and Carbon Fluxes
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Kimball, John
2000-01-01
The BOREAS RSS-8 team performed research to evaluate the effect of seasonal weather and landcover heterogeneity on boreal forest regional water and carbon fluxes using a process-level ecosystem model, BIOME-BGC, coupled with remote sensing-derived parameter maps of key state variables. This data set contains derived maps of landcover type and crown and stem biomass as model inputs to determine annual evapotranspiration, gross primary production, autotrophic respiration, and net primary productivity within the BOREAS SSA-MSA, at a 30-m spatial resolution. Model runs were conducted over a 3-year period from 1994-1996; images are provided for each of those years. The data are stored in binary image format. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Beaulieu, Jeremy M; O'Meara, Brian C; Donoghue, Michael J
2013-09-01
The growth of phylogenetic trees in scope and in size is promising from the standpoint of understanding a wide variety of evolutionary patterns and processes. With trees comprised of larger, older, and globally distributed clades, it is likely that the lability of a binary character will differ significantly among lineages, which could lead to errors in estimating transition rates and the associated inference of ancestral states. Here we develop and implement a new method for identifying different rates of evolution in a binary character along different branches of a phylogeny. We illustrate this approach by exploring the evolution of growth habit in Campanulidae, a flowering plant clade containing some 35,000 species. The distribution of woody versus herbaceous species calls into question the use of traditional models of binary character evolution. The recognition and accommodation of changes in the rate of growth form evolution in different lineages demonstrates, for the first time, a robust picture of growth form evolution across a very large, very old, and very widespread flowering plant clade.
Trinary optical logic processors using shadow casting with polarized light
NASA Astrophysics Data System (ADS)
Ghosh, Amal K.; Basuray, A.
1990-10-01
An optical implementation is proposed of the modified trinary number (MTN) system (Datta et al., 1989) in which any binary number can have arithmetic operations performed on it in parallel without the need for carry and borrow steps. The present method extends the lensless shadow-casting technique of Tanida and Ichioka (1983, 1985). Three kinds of spatial coding are used for encoding the trinary input states, whereas in the decoding plane three states are identified by no light and light with two orthogonal states of polarization.
Inferring the post-merger gravitational wave emission from binary neutron star coalescences
NASA Astrophysics Data System (ADS)
Chatziioannou, Katerina; Clark, James Alexander; Bauswein, Andreas; Millhouse, Margaret; Littenberg, Tyson B.; Cornish, Neil
2017-12-01
We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complementary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of nondetection of a post-merger signal following a binary neutron star inspiral, we show that we can place upper limits on the energy emitted.
Modeling Spatial Relationships within a Fuzzy Framework.
ERIC Educational Resources Information Center
Petry, Frederick E.; Cobb, Maria A.
1998-01-01
Presents a model for representing and storing binary topological and directional relationships between 2-dimensional objects that is used to provide a basis for fuzzy querying capabilities. A data structure called an abstract spatial graph (ASG) is defined for the binary relationships that maintains all necessary information regarding topology and…
Propagating confined states in phase dynamics
NASA Technical Reports Server (NTRS)
Brand, Helmut R.; Deissler, Robert J.
1992-01-01
Theoretical treatment is given to the possibility of the existence of propagating confined states in the nonlinear phase equation by generalizing stationary confined states. The nonlinear phase equation is set forth for the case of propagating patterns with long wavelengths and low-frequency modulation. A large range of parameter values is shown to exist for propagating confined states which have spatially localized regions which travel on a background with unique wavelengths. The theoretical phenomena are shown to correspond to such physical systems as spirals in Taylor instabilities, traveling waves in convective systems, and slot-convection phenomena for binary fluid mixtures.
Spherical hashing: binary code embedding with hyperspheres.
Heo, Jae-Pil; Lee, Youngwoon; He, Junfeng; Chang, Shih-Fu; Yoon, Sung-Eui
2015-11-01
Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.
A Columnar Storage Strategy with Spatiotemporal Index for Big Climate Data
NASA Astrophysics Data System (ADS)
Hu, F.; Bowen, M. K.; Li, Z.; Schnase, J. L.; Duffy, D.; Lee, T. J.; Yang, C. P.
2015-12-01
Large collections of observational, reanalysis, and climate model output data may grow to as large as a 100 PB in the coming years, so climate dataset is in the Big Data domain, and various distributed computing frameworks have been utilized to address the challenges by big climate data analysis. However, due to the binary data format (NetCDF, HDF) with high spatial and temporal dimensions, the computing frameworks in Apache Hadoop ecosystem are not originally suited for big climate data. In order to make the computing frameworks in Hadoop ecosystem directly support big climate data, we propose a columnar storage format with spatiotemporal index to store climate data, which will support any project in the Apache Hadoop ecosystem (e.g. MapReduce, Spark, Hive, Impala). With this approach, the climate data will be transferred into binary Parquet data format, a columnar storage format, and spatial and temporal index will be built and attached into the end of Parquet files to enable real-time data query. Then such climate data in Parquet data format could be available to any computing frameworks in Hadoop ecosystem. The proposed approach is evaluated using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. Experimental results show that this approach could efficiently overcome the gap between the big climate data and the distributed computing frameworks, and the spatiotemporal index could significantly accelerate data querying and processing.
New service interface for River Forecasting Center derived quantitative precipitation estimates
Blodgett, David L.
2013-01-01
For more than a decade, the National Weather Service (NWS) River Forecast Centers (RFCs) have been estimating spatially distributed rainfall by applying quality-control procedures to radar-indicated rainfall estimates in the eastern United States and other best practices in the western United States to producea national Quantitative Precipitation Estimate (QPE) (National Weather Service, 2013). The availability of archives of QPE information for analytical purposes has been limited to manual requests for access to raw binary file formats that are difficult for scientists who are not in the climatic sciences to work with. The NWS provided the QPE archives to the U.S. Geological Survey (USGS), and the contents of the real-time feed from the RFCs are being saved by the USGS for incorporation into the archives. The USGS has applied time-series aggregation and added latitude-longitude coordinate variables to publish the RFC QPE data. Web services provide users with direct (index-based) data access, rendered visualizations of the data, and resampled raster representations of the source data in common geographic information formats.
Spatial patterns and scale freedom in Prisoner's Dilemma cellular automata with Pavlovian strategies
NASA Astrophysics Data System (ADS)
Fort, H.; Viola, S.
2005-01-01
A cellular automaton in which cells represent agents playing the Prisoner's Dilemma (PD) game following the simple 'win—stay, lose—shift' strategy is studied. Individuals with binary behaviour, such that they can either cooperate (C) or defect (D), play repeatedly with their neighbours (Von Neumann's and Moore's neighbourhoods). Their utilities in each round of the game are given by a rescaled pay-off matrix described by a single parameter τ, which measures the ratio of temptation to defect to reward for cooperation. Depending on the region of the parameter space τ, the system self-organizes—after a transient—into dynamical equilibrium states characterized by different definite fractions of C agents \\bar {c}_\\infty (two states for the von Neumann neighbourhood and four for the Moore neighbourhood). For some ranges of τ the cluster size distributions, the power spectra P(f) and the perimeter-area curves follow power law scalings. Percolation below threshold is also found for D agent clusters. We also analyse the asynchronous dynamics version of this model and compare results.
Distribution, physical state and mixing of materials at the surface of Pluto from New Horizons
NASA Astrophysics Data System (ADS)
Schmitt, Bernard; Philippe, Sylvain; Grundy, Will; Reuter, D. C.; Quirico, Eric; Protopapa, Silvia; Côte, Rémi; Young, Leslie; Binzel, Richard; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Ennico, Kimberly; Howett, Carly; Jennings, Donald; Linscott, Ivan; Lunsford, A. W.; Olkin, Catherine B.; Parker, Joel Wm.; Parker, Alex; Singer, Kelsi N.; Spencer, John R.; Stansberry, John A.; Stern, S. Alan; Tsang, Constantine; Verbiscer, Anne J.; Weaver, Harold A.; New Horizons Science Team
2016-10-01
In July 2015 the New Horizons spacecraft recorded a large set of data on Pluto, in particular with the LEISA spectro-imager dedicated to the study of the surface composition.In this talk we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's surface and their mode and degree of mixing. Principal Component analysis as well as specific spectral indicators and correlation plots are used on high resolution LEISA spectro-images covering the whole illuminated face of Pluto. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. These maps indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich:(CO:N2?) ices and H2O ice. Their mixing lines and with the dark reddish material are studied. CH4 is mixed at the molecular level with N2 and CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a decrease of the CO/CH4 ratio tell us that a fractionation sublimation sequence transforms N2-rich ice into either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich(:CO:N2) ice crust that may hide the N2-rich ice below. The CH4-rich - H2O mixing line witnesses the subsequent sublimation of CH4 ice left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on cold H2O ice (S autumn). The very sharp spatial transitions between CH4-containing ices and the dark red material are probably due to thermal incompatibility. Finally there is some spatial mixing of the reddish material covering H2O ice. H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. The spatial distribution of these materials is very complex.The high spatial definition of all these composition maps will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active cold world.
High throughput dual-wavelength temperature distribution imaging via compressive imaging
NASA Astrophysics Data System (ADS)
Yao, Xu-Ri; Lan, Ruo-Ming; Liu, Xue-Feng; Zhu, Ge; Zheng, Fu; Yu, Wen-Kai; Zhai, Guang-Jie
2018-03-01
Thermal imaging is an essential tool in a wide variety of research areas. In this work we demonstrate high-throughput double-wavelength temperature distribution imaging using a modified single-pixel camera without the requirement of a beam splitter (BS). A digital micro-mirror device (DMD) is utilized to display binary masks and split the incident radiation, which eliminates the necessity of a BS. Because the spatial resolution is dictated by the DMD, this thermal imaging system has the advantage of perfect spatial registration between the two images, which limits the need for the pixel registration and fine adjustments. Two bucket detectors, which measures the total light intensity reflected from the DMD, are employed in this system and yield an improvement in the detection efficiency of the narrow-band radiation. A compressive imaging algorithm is utilized to achieve under-sampling recovery. A proof-of-principle experiment was presented to demonstrate the feasibility of this structure.
Double-Referential Holography and Spatial Quadrature Amplitude Modulation
NASA Astrophysics Data System (ADS)
Zukeran, Keisuke; Okamoto, Atsushi; Takabayashi, Masanori; Shibukawa, Atsushi; Sato, Kunihiro; Tomita, Akihisa
2013-09-01
We proposed a double-referential holography (DRH) that allows phase-detection without external additional beams. In the DRH, phantom beams, prepared in the same optical path as signal beams and preliminary multiplexed in a recording medium along with the signal, are used to produce interference fringes on an imager for converting a phase into an intensity distribution. The DRH enables stable and high-accuracy phase detection independent of the fluctuations and vibrations of the optical system owing to medium shift and temperature variation. Besides, the collinear arrangement of the signal and phantom beams leads to the compactness of the optical data storage system. We conducted an experiment using binary phase modulation signals for verifying the DRH operation. In addition, 38-level spatial quadrature amplitude modulation signals were successfully reproduced with the DRH by numerical simulation. Furthermore, we verified that the distributed phase-shifting method moderates the dynamic range consumption for the exposure of phantom beams.
Deep Hashing for Scalable Image Search.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2017-05-01
In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.
WIYN Open Cluster Study: Binary Orbits and Tidal Circularization in NGC 6819
NASA Astrophysics Data System (ADS)
Morscher, Meagan B.; Mathieu, R. D.; Kaeppler, S.; Hole, K. T.; Meibom, S.
2006-12-01
We are conducting a comprehensive stellar radial-velocity survey in NGC 6819, a rich, intermediate age ( 2.4 Gyr) open cluster with [Fe/H] -0.05. As of October 2006, we have obtained 7065 radial-velocity measurements of 1409 stars using the WIYN Hydra Multi-Object Spectrograph, with typical velocity measurement precisions of 0.4 km/s. Using an E/I criterion of 3, we have identified 282 velocity variables. In the past year we have expanded the number of final orbital solutions by 45 to a total of more than 80 solutions. In coeval stellar populations, circular binaries tend to have the shortest orbital periods, while longer period binaries show a distribution of non-zero eccentricities. The circularization of the shortest period orbits is the result of an exchange of stellar and orbital angular momentum due to tidal interactions. We defined a population’s tidal circularization period as the longest orbital period at which a binary of typical initial eccentricity has become circularized (e.g., has evolved to an eccentricity e = 0.01) over the lifetime of the cluster (Meibom & Mathieu, 2005, ApJ, 620, 970). We are studying the trend of increasing tidal circularization periods with population age. Preliminary results in NGC 6819 indicate a tidal circularization period of 7.5 days, which is consistent with this overall trend. We will recalculate the tidal circularization period in order to include the latest sample of orbital solutions. This comprehensive survey also allows us to investigate the relative spatial distributions of spectroscopic binaries and other constant-velocity cluster members of similar mass. We find the spectroscopic binaries to be more centrally concentrated at a statistically significant level, which we attribute to energy equipartition processes. MM was supported by REU NSF grant AST-0453442. RDM, SK, KTH, and SM were supported by NSF grant AST-0406615.
NASA Astrophysics Data System (ADS)
Liu, Hongliang; Zhang, Xin; Xiao, Yixin; Zhang, Jiuxing
2018-03-01
The density function theory been used to calculate the electronic structures of binary and doped rare earth hexaborides (REB6), which exhibits the large density of states (DOS) near Fermi level. The d orbital elections of RE element contribute the electronic states of election emission near the Fermi level, which imply that the REB6 (RE = La, Ce, Gd) with wide distribution of high density d orbital electrons could provide a lower work function and excellent emission properties. Doping RE elements into binary REB6 can adjust DOS and the position of the Fermi energy level. The calculated work functions of considered REB6 (100) surface show that the REB6 (RE = La, Ce, Gd) have lower work function and doping RE elements with active d orbital electrons can significantly reduce work function of binary REB6. The thermionic emission test results are basically accordant with the calculated value, proving the first principles calculation could provide a good theoretical guidance for the study of electron emission properties of REB6.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Biao; Wang, Lin-Xue; Chen, Guang-Ping
We perform a detailed numerical study of the equilibrium ground-state structures of a binary rotating Bose–Einstein condensate with unequal atomic masses. Our results show that the ground-state distribution and its related vortex configurations are complex events that differ markedly depending strongly on the strength of rotation frequency, as well as on the ratio of atomic masses. We also discuss the structures and radii of the clouds, the number and the size of the core region of the vortices, as a function of the rotation frequency, and of the ratio of atomic masses, and the analytical results agree well with ourmore » numerical simulations. This work may open an alternate way in the quantum control of the binary rotating quantum gases with unequal atomic masses. - Highlights: • A binary quantum gases with unequal atomic masses is considered. • Effects of the ratio of atomic masses and rotation frequency are discussed in full parameter space. • The detailed information about both the cloud and vortices are also discussed.« less
Energy and enthalpy distribution functions for a few physical systems.
Wu, K L; Wei, J H; Lai, S K; Okabe, Y
2007-08-02
The present work is devoted to extracting the energy or enthalpy distribution function of a physical system from the moments of the distribution using the maximum entropy method. This distribution theory has the salient traits that it utilizes only the experimental thermodynamic data. The calculated distribution functions provide invaluable insight into the state or phase behavior of the physical systems under study. As concrete evidence, we demonstrate the elegance of the distribution theory by studying first a test case of a two-dimensional six-state Potts model for which simulation results are available for comparison, then the biphasic behavior of the binary alloy Na-K whose excess heat capacity, experimentally observed to fall in a narrow temperature range, has yet to be clarified theoretically, and finally, the thermally induced state behavior of a collection of 16 proteins.
WIYN OPEN CLUSTER STUDY. XLVIII. THE HARD-BINARY POPULATION OF NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Mathieu, Robert D., E-mail: a-geller@northwestern.edu, E-mail: mathieu@astro.wisc.edu
2012-08-15
We present an in-depth study of the hard-binary population of the old (7 Gyr) open cluster NGC 188. Utilizing 85 spectroscopic binary orbits out of a complete sample of 129 detected binary members, we study the cluster binary frequency and the distributions of binary orbital elements among the main-sequence (MS), giant, and blue straggler (BS) populations. The results are derived from our ongoing radial velocity survey of the cluster, which spans in magnitude from the brightest stars in the cluster to V = 16.5 (about 1.1-0.9 M{sub Sun} ), and extends to a projected radius of 17 pc ({approx}13 coremore » radii). Our detectable binaries have periods ranging from a few days to of order 10{sup 4} days, and thus are hard binaries that dynamically power the cluster. The MS solar-type hard binaries in NGC 188 are nearly indistinguishable from similar binaries in the Galactic field. We observe a global solar-type MS hard-binary frequency in NGC 188 of 23% {+-} 2%, which when corrected for incompleteness results in a frequency of 29% {+-} 3% for binaries with periods less than 10{sup 4} days. For MS hard binaries in the cluster, we observe a log-period distribution that rises toward our detection limit, a roughly Gaussian eccentricity distribution centered on e = 0.35 (for binaries with periods longer than the circularization period), and a secondary-mass distribution that rises toward lower-mass companions. Importantly, the NGC 188 BS binaries show significantly different characteristics than the solar-type MS binaries in NGC 188. We observe a BS hard-binary frequency of 76% {+-} 19%, three times that of the MS. The excess of this binary frequency over the normal MS binary frequency is valid at the >99% confidence level. Furthermore, the BS binary eccentricity-log-period distribution is distinct from that of the MS at the 99% confidence level, with the majority of the BS binaries having periods of order 1000 days and lower eccentricities. The secondary-mass distribution for these long-period BS binaries is narrow and peaked with a mean value of about 0.5 M{sub Sun }. Predictions for mass-transfer products are most closely consistent with the binary properties of these NGC 188 BSs, which comprise two-thirds of the BS population. Additionally, we compare the NGC 188 binaries to those evolved within the sophisticated Hurley et al. (2005) N-body open cluster simulation. The MS hard-binary population predicted by the simulation is significantly different from the MS hard-binary population observed in NGC 188, in frequency and distributions of period and eccentricity. Many of these differences result from the adopted initial binary population, while others reflect on the physics used in the simulation (e.g., tidal circularization). Additional simulations with initial conditions that are better motivated by observations are necessary to properly investigate the dynamical evolution of a rich binary population in open clusters like NGC 188.« less
Phase-image-based content-addressable holographic data storage
NASA Astrophysics Data System (ADS)
John, Renu; Joseph, Joby; Singh, Kehar
2004-03-01
We propose and demonstrate the use of phase images for content-addressable holographic data storage. Use of binary phase-based data pages with 0 and π phase changes, produces uniform spectral distribution at the Fourier plane. The absence of strong DC component at the Fourier plane and more intensity of higher order spatial frequencies facilitate better recording of higher spatial frequencies, and improves the discrimination capability of the content-addressable memory. This improves the results of the associative recall in a holographic memory system, and can give low number of false hits even for small search arguments. The phase-modulated pixels also provide an opportunity of subtraction among data pixels leading to better discrimination between similar data pages.
High-Density, High-Bandwidth, Multilevel Holographic Memory
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
2008-01-01
A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold .1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s. The storage capacity of the state-of-theart system cannot be increased without also increasing the volume and mass of the system. However, in principle, the storage capacity could be increased greatly, without significantly increasing the volume and mass, if multilevel holograms were used instead of binary holograms. For example, a 3-bit (8-level) hologram could store 8 terabytes, or an 8-bit (256-level) hologram could store 256 terabytes, in a system having little or no more size and mass than does the state-of-the-art 1-terabyte binary holographic memory. The proposed system would utilize multilevel holograms. The system would include lasers, imaging lenses and other beam-forming optics, a block photorefractive crystal wherein the holograms would be formed, and two multilevel spatial light modulators in the form of commercially available deformable-mirror-device spatial light modulators (DMDSLMs) made for use in high speed input conversion of data up to 12 bits. For readout, the system would also include two arrays of complementary metal oxide/semiconductor (CMOS) photodetectors matching the spatial light modulators. The system would further include a reference-beam sterring device (equivalent of a scanning mirror), containing no sliding parts, that could be either a liquid-crystal phased-array device or a microscopic mirror actuated by a high-speed microelectromechanical system. Time-multiplexing and the multilevel nature of the DMDSLM would be exploited to enable writing and reading of multilevel holograms. The DMDSLM would also enable transfer of data at a rate of 7.6 Gb/s or perhaps somewhat higher.
Local Multi-Grouped Binary Descriptor With Ring-Based Pooling Configuration and Optimization.
Gao, Yongqiang; Huang, Weilin; Qiao, Yu
2015-12-01
Local binary descriptors are attracting increasingly attention due to their great advantages in computational speed, which are able to achieve real-time performance in numerous image/vision applications. Various methods have been proposed to learn data-dependent binary descriptors. However, most existing binary descriptors aim overly at computational simplicity at the expense of significant information loss which causes ambiguity in similarity measure using Hamming distance. In this paper, by considering multiple features might share complementary information, we present a novel local binary descriptor, referred as ring-based multi-grouped descriptor (RMGD), to successfully bridge the performance gap between current binary and floated-point descriptors. Our contributions are twofold. First, we introduce a new pooling configuration based on spatial ring-region sampling, allowing for involving binary tests on the full set of pairwise regions with different shapes, scales, and distances. This leads to a more meaningful description than the existing methods which normally apply a limited set of pooling configurations. Then, an extended Adaboost is proposed for an efficient bit selection by emphasizing high variance and low correlation, achieving a highly compact representation. Second, the RMGD is computed from multiple image properties where binary strings are extracted. We cast multi-grouped features integration as rankSVM or sparse support vector machine learning problem, so that different features can compensate strongly for each other, which is the key to discriminativeness and robustness. The performance of the RMGD was evaluated on a number of publicly available benchmarks, where the RMGD outperforms the state-of-the-art binary descriptors significantly.
NASA Astrophysics Data System (ADS)
Kim, Y. W.; Cress, R. P.
2016-11-01
Disordered binary alloys are modeled as a randomly close-packed assembly of nanocrystallites intermixed with randomly positioned atoms, i.e., glassy-state matter. The nanocrystallite size distribution is measured in a simulated macroscopic medium in two dimensions. We have also defined, and measured, the degree of crystallinity as the probability of a particle being a member of nanocrystallites. Both the distribution function and the degree of crystallinity are found to be determined by alloy composition. When heated, the nanocrystallites become smaller in size due to increasing thermal fluctuation. We have modeled this phenomenon as a case of thermal dissociation by means of the law of mass action. The crystallite size distribution function is computed for AuCu3 as a function of temperature by solving some 12 000 coupled algebraic equations for the alloy. The results show that linear thermal expansion of the specimen has contributions from the temperature dependence of the degree of crystallinity, in addition to respective thermal expansions of the nanocrystallites and glassy-state matter.
Learning Compact Binary Face Descriptor for Face Recognition.
Lu, Jiwen; Liong, Venice Erin; Zhou, Xiuzhuang; Zhou, Jie
2015-10-01
Binary feature descriptors such as local binary patterns (LBP) and its variations have been widely used in many face recognition systems due to their excellent robustness and strong discriminative power. However, most existing binary face descriptors are hand-crafted, which require strong prior knowledge to engineer them by hand. In this paper, we propose a compact binary face descriptor (CBFD) feature learning method for face representation and recognition. Given each face image, we first extract pixel difference vectors (PDVs) in local patches by computing the difference between each pixel and its neighboring pixels. Then, we learn a feature mapping to project these pixel difference vectors into low-dimensional binary vectors in an unsupervised manner, where 1) the variance of all binary codes in the training set is maximized, 2) the loss between the original real-valued codes and the learned binary codes is minimized, and 3) binary codes evenly distribute at each learned bin, so that the redundancy information in PDVs is removed and compact binary codes are obtained. Lastly, we cluster and pool these binary codes into a histogram feature as the final representation for each face image. Moreover, we propose a coupled CBFD (C-CBFD) method by reducing the modality gap of heterogeneous faces at the feature level to make our method applicable to heterogeneous face recognition. Extensive experimental results on five widely used face datasets show that our methods outperform state-of-the-art face descriptors.
A m-ary linear feedback shift register with binary logic
NASA Technical Reports Server (NTRS)
Perlman, M. (Inventor)
1973-01-01
A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.
Phase synchrony reveals organization in human atrial fibrillation
Vidmar, David; Narayan, Sanjiv M.
2015-01-01
It remains unclear if human atrial fibrillation (AF) is spatially nonhierarchical or exhibits a hierarchy of organization sustained by sources. We utilize activation times obtained at discrete locations during AF to compute the phase synchrony between tissue regions, to examine underlying spatial dynamics throughout both atria. We construct a binary synchronization network and show that this network can accurately define regions of coherence in coarse-grained in silico data. Specifically, domains controlled by spiral waves exhibit regions of high phase synchrony. We then apply this analysis to clinical data from patients experiencing cardiac arrhythmias using multielectrode catheters to simultaneously record from a majority of both atria. We show that pharmaceutical intervention with ibutilide organizes activation by increasing the size of the synchronized domain in AF and quantify the increase in temporal organization when arrhythmia changes from fibrillation to tachycardia. Finally, in recordings from 24 patients in AF we show that the level of synchrony is spatially broad with some patients showing large spatially contiguous regions of synchronization, while in others synchrony is localized to small pockets. Using computer simulations, we show that this distribution is inconsistent with distributions obtained from simulations that mimic multiwavelet reentry but is consistent with mechanisms in which one or more spatially conserved spiral waves is surrounded by tissue in which activation is disorganized. PMID:26475585
Relief diffracted elements recorded on absorbent photopolymers.
Gallego, S; Márquez, A; Ortuño, M; Francés, J; Pascual, I; Beléndez, A
2012-05-07
Relief surface changes provide interesting possibilities for storing diffractive optical elements on photopolymers and are an important source of information for characterizing and understanding the material behavior. In this paper we use a 3-dimensional model, based on direct parameter measurements, for predicting the relief structures generated on without-coverplate photopolymers. We have analyzed different spatial frequency and recording intensity distributions such as binary and blazed periodic patterns. This model was successfully applied to different photopolymers with different values of monomer diffusion.
NASA Astrophysics Data System (ADS)
Smith, Nathan; Götberg, Ylva; de Mink, Selma E.
2018-03-01
Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.
Schroeder, Natalia M; Matteucci, Silvia D; Moreno, Pablo G; Gregorio, Pablo; Ovejero, Ramiro; Taraborelli, Paula; Carmanchahi, Pablo D
2014-01-01
Monitoring species abundance and distribution is a prerequisite when assessing species status and population viability, a difficult task to achieve for large herbivores at ecologically meaningful scales. Co-occurrence patterns can be used to infer mechanisms of community organization (such as biotic interactions), although it has been traditionally applied to binary presence/absence data. Here, we combine density surface and null models of abundance data as a novel approach to analyze the spatial and seasonal dynamics of abundance and distribution of guanacos (Lama guanicoe) and domestic herbivores in northern Patagonia, in order to visually and analytically compare the dispersion and co-occurrence pattern of ungulates. We found a marked seasonal pattern in abundance and spatial distribution of L. guanicoe. The guanaco population reached its maximum annual size and spatial dispersion in spring-summer, decreasing up to 6.5 times in size and occupying few sites of the study area in fall-winter. These results are evidence of the seasonal migration process of guanaco populations, an increasingly rare event for terrestrial mammals worldwide. The maximum number of guanacos estimated for spring (25,951) is higher than the total population size (10,000) 20 years ago, probably due to both counting methodology and population growth. Livestock were mostly distributed near human settlements, as expected by the sedentary management practiced by local people. Herbivore distribution was non-random; i.e., guanaco and livestock abundances co-varied negatively in all seasons, more than expected by chance. Segregation degree of guanaco and small-livestock (goats and sheep) was comparatively stronger than that of guanaco and large-livestock, suggesting a competition mechanism between ecologically similar herbivores, although various environmental factors could also contribute to habitat segregation. The new and compelling combination of methods used here is highly useful for researchers who conduct counts of animals to simultaneously estimate population sizes, distributions, assess temporal trends and characterize multi-species spatial interactions.
Kinematic Clues to OB Field Star Origins: Radial Velocities, Runaways, and Binaries
NASA Astrophysics Data System (ADS)
Januszewski, Helen; Castro, Norberto; Oey, Sally; Becker, Juliette; Kratter, Kaitlin M.; Mateo, Mario; Simón-Díaz, Sergio; Bjorkman, Jon E.; Bjorkman, Karen; Sigut, Aaron; Smullen, Rachel; M2FS Team
2018-01-01
Field OB stars are a crucial probe of star formation in extreme conditions. Properties of massive stars formed in relative isolation can distinguish between competing star formation theories, while the statistics of runaway stars allow an indirect test of the densest conditions in clusters. To address these questions, we have obtained multi-epoch, spectroscopic observations for a spatially complete sample of 48 OB field stars in the SMC Wing with the IMACS and M2FS multi-object spectrographs at the Magellan Telescopes. The observations span 3-6 epochs per star, with sampling frequency ranging from one day to about one year. From these spectra, we have calculated the radial velocities (RVs) and, in particular, the systemic velocities for binaries. Thus, we present the intrinsic RV distribution largely uncontaminated by binary motions. We estimate the runaway frequency, corresponding to the high velocity stars in our sample, and we also constrain the binary frequency. The binary frequency and fitted orbital parameters also place important constraints on star formation theories, as these properties drive the process of runaway ejection in clusters, and we discuss these properties as derived from our sample. This unique kinematic analysis of a high mass field star population thus provides a new look at the processes governing formation and interaction of stars in environments at extreme densities, from isolation to dense clusters.
Kinetics of binary nucleation of vapors in size and composition space.
Fisenko, Sergey P; Wilemski, Gerald
2004-11-01
We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent variables: the total number of molecules g and the molar composition x of the cluster. The resulting kinetic equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coefficients in cluster size and composition space are obtained. For characterization of binary nucleation in gases three criteria are established. These criteria establish the relative importance of the rate processes in cluster size and composition space for different gas phase conditions and types of liquid mixtures. The equilibrium distribution function of the clusters is determined in terms of the variables g and x. We obtain an approximate analytical solution for the steady-state binary nucleation rate that has the correct limit in the transition to unary nucleation. To further illustrate our description, the nonequilibrium steady-state cluster concentrations are found by numerically solving the reformulated kinetic equation. For the reformulated transient problem, the relaxation or induction time for binary nucleation was calculated using Galerkin's method. This relaxation time is affected by processes in both size and composition space, but the contributions from each process can be separated only approximately.
Quasar Astrophysics with the Space Interferometry Mission
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Wehrle, Ann; Meier, David; Jones, Dayton; Piner, Glenn
2007-01-01
Optical astrometry of quasars and active galaxies can provide key information on the spatial distribution and variability of emission in compact nuclei. The Space Interferometry Mission (SIM PlanetQuest) will have the sensitivity to measure a significant number of quasar positions at the microarcsecond level. SIM will be very sensitive to astrometric shifts for objects as faint as V = 19. A variety of AGN phenomena are expected to be visible to SIM on these scales, including time and spectral dependence in position offsets between accretion disk and jet emission. These represent unique data on the spatial distribution and time dependence of quasar emission. It will also probe the use of quasar nuclei as fundamental astrometric references. Comparisons between the time-dependent optical photocenter position and VLBI radio images will provide further insight into the jet emission mechanism. Observations will be tailored to each specific target and science question. SIM will be able to distinguish spatially between jet and accretion disk emission; and it can observe the cores of galaxies potentially harboring binary supermassive black holes resulting from mergers.
The HTM Spatial Pooler-A Neocortical Algorithm for Online Sparse Distributed Coding.
Cui, Yuwei; Ahmad, Subutai; Hawkins, Jeff
2017-01-01
Hierarchical temporal memory (HTM) provides a theoretical framework that models several key computational principles of the neocortex. In this paper, we analyze an important component of HTM, the HTM spatial pooler (SP). The SP models how neurons learn feedforward connections and form efficient representations of the input. It converts arbitrary binary input patterns into sparse distributed representations (SDRs) using a combination of competitive Hebbian learning rules and homeostatic excitability control. We describe a number of key properties of the SP, including fast adaptation to changing input statistics, improved noise robustness through learning, efficient use of cells, and robustness to cell death. In order to quantify these properties we develop a set of metrics that can be directly computed from the SP outputs. We show how the properties are met using these metrics and targeted artificial simulations. We then demonstrate the value of the SP in a complete end-to-end real-world HTM system. We discuss the relationship with neuroscience and previous studies of sparse coding. The HTM spatial pooler represents a neurally inspired algorithm for learning sparse representations from noisy data streams in an online fashion.
Spatial analysis and statistical modelling of snow cover dynamics in the Central Himalayas, Nepal
NASA Astrophysics Data System (ADS)
Weidinger, Johannes; Gerlitz, Lars; Böhner, Jürgen
2017-04-01
General circulation models are able to predict large scale climate variations in global dimensions, however small scale dynamic characteristics, such as snow cover and its temporal variations in high mountain regions, are not represented sufficiently. Detailed knowledge about shifts in seasonal ablation times and spatial distribution of snow cover are crucial for various research interests. Since high mountain areas, for instance the Central Himalayas in Nepal, are generally remote, it is difficult to obtain data in high spatio-temporal resolutions. Regional climate models and downscaling techniques are implemented to compensate coarse resolution. Furthermore earth observation systems, such as MODIS, also permit bridging this gap to a certain extent. They offer snow (cover) data in daily temporal and medium spatial resolution of around 500 m, which can be applied as evaluation and training data for dynamical hydrological and statistical analyses. Within this approach two snow distribution models (binary snow cover and fractional snow cover) as well as one snow recession model were implemented for a research domain in the Rolwaling Himal in Nepal, employing the random forest technique, which represents a state of the art machine learning algorithm. Both bottom-up strategies provide inductive reasoning to derive rules for snow related processes out of climate (temperature, precipitation and irradiance) and climate-related topographic data sets (elevation, aspect and convergence index) obtained by meteorological network stations, remote sensing products (snow cover - MOD10-A1 and land surface temperatures - MOD11-A1) along with GIS. Snow distribution is predicted reliably on a daily basis in the research area, whereas further effort is necessary for predicting daily snow cover recession processes adequately. Swift changes induced by clear sky conditions with high insolation rates are well represented, whereas steady snow loss still needs continuing effort. All approaches underline the technical difficulties of snow cover modelling during the monsoon season, in accordance with previous studies. The developed methods in combination with continuous in situ measurements provide a basis for further downscaling approaches.
Coherence area profiling in multi-spatial-mode squeezed states
Lawrie, Benjamin J.; Pooser, Raphael C.; Otterstrom, Nils T.
2015-09-12
The presence of multiple bipartite entangled modes in squeezed states generated by four-wave mixing enables ultra-trace sensing, imaging, and metrology applications that are impossible to achieve with single-spatial-mode squeezed states. For Gaussian seed beams, the spatial distribution of these bipartite entangled modes, or coherence areas, across each beam is largely dependent on the spatial modes present in the pump beam, but it has proven difficult to map the distribution of these coherence areas in frequency and space. We demonstrate an accessible method to map the distribution of the coherence areas within these twin beams. In addition, we also show thatmore » the pump shape can impart different noise properties to each coherence area, and that it is possible to select and detect coherence areas with optimal squeezing with this approach.« less
Star formation history: Modeling of visual binaries
NASA Astrophysics Data System (ADS)
Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.
2018-05-01
Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.
NASA Astrophysics Data System (ADS)
Fahnestock, Eugene Gregory
The Full Two-Body-Problem (F2BP) describes the dynamics of two unconstrained rigid bodies in close proximity, having arbitrary spatial distribution of mass, charge, or similar field quantity, and interacting through a mutual potential dependent on that distribution. While the F2BP has applications in areas as wide ranging as molecular dynamics to satellite formation flying, this dissertation focuses on its application to natural bodies in space with nontrivial mass distribution interacting through mutual gravitational potential, i.e. binary asteroids. This dissertation first describes further development and implementation of methods for accurate and efficient F2BP propagation based upon a flexible method for computing the mutual potential between bodies modeled as homogenous polyhedra. Next application of these numerical tools to the study of binary asteroid (66391) 1999 KW4 is summarized. This system typifies the largest class of NEO binaries, which includes nearly half of them, characterized by a roughly oblate spheroid primary rotating rapidly and roughly triaxial ellipsoid secondary in on-average synchronous rotation. Thus KW4's dynamics generalize to any member of that class. Analytical formulae are developed which separately describe the effects of primary oblateness and secondary triaxial ellipsoid shape on frequencies of system motions revealed through the F2BP simulation. These formulae are useful for estimating inertia elements and highest-level internal mass distributions of bodies in any similar system, simply from standoff observation of these motion frequencies. Finally precise dynamical simulation and analysis of the motion of test particles within the time-varying gravity field of the F2BP system is detailed. This Restricted Full-detail Three-Body-Problem encompasses exploration of three types of particle motion within a binary asteroid: (1) Orbital motion such as that for a spacecraft flying within the system about the primary, secondary, or system barycenter at large distance; (2) Motion of ejecta particles originating from the body surfaces with substantial initial surface-relative velocity; (3) Motion of particles originating from the primary surface near the equator, with no initial surface-relative velocity, but when primary spin rate is raised past the "disruption spin rate" for which material on the surface will be spun off.
Gartner, Danielle R; Taber, Daniel R; Hirsch, Jana A; Robinson, Whitney R
2016-04-01
Although obesity disparities between racial and socioeconomic groups have been well characterized, those based on gender and geography have not been as thoroughly documented. This study describes obesity prevalence by state, gender, and race and/or ethnicity to (1) characterize obesity gender inequality, (2) determine if the geographic distribution of inequality is spatially clustered, and (3) contrast the spatial clustering patterns of obesity gender inequality with overall obesity prevalence. Data from the Centers for Disease Control and Prevention's 2013 Behavioral Risk Factor Surveillance System were used to calculate state-specific obesity prevalence and gender inequality measures. Global and local Moran's indices were calculated to determine spatial autocorrelation. Age-adjusted, state-specific obesity prevalence difference and ratio measures show spatial autocorrelation (z-score = 4.89, P-value < .001). Local Moran's indices indicate the spatial distributions of obesity prevalence and obesity gender inequalities are not the same. High and low values of obesity prevalence and gender inequalities cluster in different areas of the United States. Clustering of gender inequality suggests that spatial processes operating at the state level, such as occupational or physical activity policies or social norms, are involved in the etiology of the inequality and necessitate further attention to the determinates of obesity gender inequality. Copyright © 2016 Elsevier Inc. All rights reserved.
Russell, Robin E.; Tinsley, Karl; Erickson, Richard A.; Thogmartin, Wayne E.; Jennifer A. Szymanski,
2014-01-01
Depicting the spatial distribution of wildlife species is an important first step in developing management and conservation programs for particular species. Accurate representation of a species distribution is important for predicting the effects of climate change, land-use change, management activities, disease, and other landscape-level processes on wildlife populations. We developed models to estimate the spatial distribution of little brown bat (Myotis lucifugus) wintering populations in the United States east of the 100th meridian, based on known hibernacula locations. From this data, we developed several scenarios of wintering population counts per county that incorporated uncertainty in the spatial distribution of the hibernacula as well as uncertainty in the size of the current little brown bat population. We assessed the variability in our results resulting from effects of uncertainty. Despite considerable uncertainty in the known locations of overwintering little brown bats in the eastern United States, we believe that models accurately depicting the effects of the uncertainty are useful for making management decisions as these models are a coherent organization of the best available information.
Young Binaries and Early Stellar Evolution
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang
1996-07-01
Most main-sequence stars are members of binary or multiple systems. The same is true for pre-main-sequence (PMS) stars, as recent surveys have shown. Therefore studying star formation means to a large extent studying the formation of binary systems. Similarly, studying early stellar evolution primarily involves PMS binary systems. In this thesis I have studied the binary frequency among ROSAT selected T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association, and the evolutionary status of Hα-selected PMS binaries in the T associations of Chamaeleon, Lupus, and ρ Ophiuchi. The direct imaging and spectroscopic observations in the optical have been carried out under subarcsec seeing conditions at the ESO New Technology Telescope (NTT) at La Silla. Furthermore, high-spatial resolution images of selected PMS stars in the near infrared were obtained with the ESO adaptive optics system COME-ON+/ADONIS. Among 195 T Tauri stars observed using direct imaging 31 binaries could be identified, 12 of them with subarcsec separation. Based on statistical arguments alone I conclude that almost all of them are indeed physical (i.e. gravitationally bound) binary or multiple systems. Using astrometric measurements of some binaries I showed that the components of these binaries are common proper motion pairs, very likely in a gravitationally bound orbit around each other. The overall binary frequency among T Tauri stars with a range of separations between 120 and 1800 AU is in agreement with the binary frequency observed among main-sequence stars in the solar neighbourhood. However, within individual regions the spatial distribution of binaries is non-uniform. In particular, in Upper Scorpius, weak-line T Tauri stars in the vicinity of early type stars seem to be almost devoid of multiple systems, whereas in another area in Upper Scorpius half of all weak-line T Tauri stars have a companion in a range of separation between 0.''7 and 3.''0. For a sample of 14 spatially resolved PMS binaries (separations 0.''6 to 1.prime'7) located in the above mentioned T associations both photometric and spectroscopic information has been analyzed. All binaries (originally unresolved) were identified as PMS stars based on their strong Hα emission and their association with dark clouds. Using the spectral A index, which measures the strength of the CaH band at 697.5nm relative to the nearby continuum as a luminosity class indicator, I showed that the classical T Tauri stars in the sample tend to be close to luminosity class V. Eight out of the 14 pairs could be placed on an H--R diagram. When comparing with theoretical PMS evolutionary tracks the individual components of all pairs appear to be coeval within the observational errors. This result is similar to Hartigan et al. (1994) who found two thirds of the wider pairs with separations from 400 AU to 6000 AU to be coeval. However, unlike Hartigan et al.'s finding for the wider pairs, I find no non-coeval pairs. One of the presumed binaries in our sample (ESO Hα 281) turned out to be a likely chance projection with the ``primary'' showing neither Hα emission nor Li absorption. Finally, using adaptive optics at the ESO 3.6m telescope, diffraction-limited JHK images of the region around the Herbig AeBe star NX Pup were obtained. The close companion (sep. 0.''128) to NX Pup -- originally discovered by HST -- was clearly resolved and its JHK magnitudes were determined. A third object at a separation of 7.''0 from NX Pup was identified as a classical T Tauri star so that NX Pup may in fact form a hierarchical triple system. I discuss the evolutionary status of these stars and derive estimates for their spectral types, luminosities, masses, and ages. My conclusions are that binarity is established very early in stellar evolution, that the orbital parameters of wide binaries (a >= 120AU) remain virtually unchanged during their PMS evolution, and that the components of the wide binaries were formed at the same time --- perhaps either through collisional fragmentation or fragmentation of rotating filaments. (Copies of the thesis (written in German) and related pre-/reprints are available from the author upon request.)
The observed distribution of spectroscopic binaries from the Anglo-Australian Planet Search
NASA Astrophysics Data System (ADS)
Jenkins, J. S.; Díaz, M.; Jones, H. R. A.; Butler, R. P.; Tinney, C. G.; O'Toole, S. J.; Carter, B. D.; Wittenmyer, R. A.; Pinfield, D. J.
2015-10-01
We report the detection of sixteen binary systems from the Anglo-Australian Planet Search. Solutions to the radial velocity data indicate that the stars have companions orbiting with a wide range of masses, eccentricities and periods. Three of the systems potentially contain brown-dwarf companions while another two have eccentricities that place them in the extreme upper tail of the eccentricity distribution for binaries with periods less than 1000 d. For periods up to 12 years, the distribution of our stellar companion masses is fairly flat, mirroring that seen in other radial velocity surveys, and contrasts sharply with the current distribution of candidate planetary masses, which rises strongly below 10 MJ. When looking at a larger sample of binaries that have FGK star primaries as a function of the primary star metallicity, we find that the distribution maintains a binary fraction of ˜43 ± 4 per cent between -1.0 and +0.6 dex in metallicity. This is in stark contrast to the giant exoplanet distribution. This result is in good agreement with binary formation models that invoke fragmentation of a collapsing giant molecular cloud, suggesting that this is the dominant formation mechanism for close binaries and not fragmentation of the primary star's remnant protoplanetary disc.
Gartner, Danielle R.; Taber, Daniel R.; Hirsch, Jana A.; Robinson, Whitney R.
2016-01-01
Purpose While obesity disparities between racial and socioeconomic groups have been well characterized, those based on gender and geography have not been as thoroughly documented. This study describes obesity prevalence by state, gender, and race/ethnicity to (1) characterize obesity gender inequality, (2) determine if the geographic distribution of inequality is spatially clustered and (3) contrast the spatial clustering patterns of obesity gender inequality with overall obesity prevalence. Methods Data from the Centers for Disease Control and Prevention’s 2013 Behavioral Risk Factor Surveillance System (BRFSS) were used to calculate state-specific obesity prevalence and gender inequality measures. Global and Local Moran’s Indices were calculated to determine spatial autocorrelation. Results Age-adjusted, state-specific obesity prevalence difference and ratio measures show spatial autocorrelation (z-score=4.89, p-value <0.001). Local Moran’s Indices indicate the spatial distributions of obesity prevalence and obesity gender inequalities are not the same. High and low values of obesity prevalence and gender inequalities cluster in different areas of the U.S. Conclusion Clustering of gender inequality suggests that spatial processes operating at the state level, such as occupational or physical activity policies or social norms, are involved in the etiology of the inequality and necessitate further attention to the determinates of obesity gender inequality. PMID:27039046
Discrimination of isotrigon textures using the Rényi entropy of Allan variances.
Gabarda, Salvador; Cristóbal, Gabriel
2008-09-01
We present a computational algorithm for isotrigon texture discrimination. The aim of this method consists in discriminating isotrigon textures against a binary random background. The extension of the method to the problem of multitexture discrimination is considered as well. The method relies on the fact that the information content of time or space-frequency representations of signals, including images, can be readily analyzed by means of generalized entropy measures. In such a scenario, the Rényi entropy appears as an effective tool, given that Rényi measures can be used to provide information about a local neighborhood within an image. Localization is essential for comparing images on a pixel-by-pixel basis. Discrimination is performed through a local Rényi entropy measurement applied on a spatially oriented 1-D pseudo-Wigner distribution (PWD) of the test image. The PWD is normalized so that it may be interpreted as a probability distribution. Prior to the calculation of the texture's PWD, a preprocessing filtering step replaces the original texture with its localized spatially oriented Allan variances. The anisotropic structure of the textures, as revealed by the Allan variances, turns out to be crucial later to attain a high discrimination by the extraction of Rényi entropy measures. The method has been empirically evaluated with a family of isotrigon textures embedded in a binary random background. The extension to the case of multiple isotrigon mosaics has also been considered. Discrimination results are compared with other existing methods.
Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyu; Gurney, Kevin R.
2011-07-01
Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy« less
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
NASA Astrophysics Data System (ADS)
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
BOREAS Level-1B TIMS Imagery: At-sensor Radiance in BSQ Format
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Strub, Richard; Newcomer, Jeffrey A.; Chernobieff, Sonia
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed satellite data products they needed to compare and spatially extend point results. For BOREAS, the Thermal Infrared Multispectral Scanner (TIMS) imagery, along with other aircraft images, was collected to provide spatially extensive information over the primary study areas. The Level-1b TIMS images cover the time periods of 16 to 20 Apr 1994 and 06 to 17 Sep 1994. The system calibrated images are stored in binary image format files. The TIMS images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
NASA Astrophysics Data System (ADS)
Cottaar, M.; Hénault-Brunet, V.
2014-02-01
Orbital motions from binary stars can broaden the observed line-of-sight velocity distribution of a stellar system and artificially inflate the measured line-of-sight velocity dispersion, which can in turn lead to erroneous conclusions about the dynamical state of the system. Recently, a maximum-likelihood procedure was proposed to recover the intrinsic velocity dispersion of a resolved star cluster from a single epoch of radial velocity data of individual stars, which was achieved by simultaneously fitting the intrinsic velocity distribution of the single stars and the centers of mass of the binaries along with the velocity shifts caused by binary orbital motions. Assuming well-characterized binary properties, this procedure can accurately reproduce intrinsic velocity dispersions below 1 km s-1 for solar-type stars. Here we investigate the systematic offsets induced when the binary properties are uncertain and we show that two epochs of radial velocity data with an appropriate baseline can help to mitigate these systematic effects. We first test the method described above using Monte Carlo simulations, taking into account the large uncertainties in the binary properties of OB stars. We then apply it to radial velocity data in the young massive cluster R136 for which the intrinsic velocity dispersion of O-type stars is known from an intensive multi-epoch approach. For typical velocity dispersions of young massive clusters (≳4 km s-1) and with a single epoch of data, we demonstrate that the method can just about distinguish between a cluster in virial equilibrium and an unbound cluster. This is due to the higher spectroscopic binary fraction and more loosely constrained distributions of orbital parameters of OB stars compared to solar-type stars. By extending the maximum-likelihood method to multi-epoch data, we show that the accuracy on the fitted velocity dispersion can be improved by only a few percent by using only two epochs of radial velocities. This procedure offers a promising method of accurately measuring the intrinsic stellar velocity dispersion in other systems for which the binary properties are poorly constrained, for example, young clusters and associations whose luminosity is dominated by OB stars. Appendix A is available in electronic form at http://www.aanda.org
Dynamical Evolution and Momentum Transfer for Binary Asteroid Systems
NASA Astrophysics Data System (ADS)
Bellerose, Julie
Over the past decade, robotic missions have been sent to small bodies, providing a basic understanding of their environment. Some of these small systems are found to be in pairs, orbiting each other, which are thought to represent about 16% of the near-Earth asteroid population. It is fair to assume that a mission will target a binary asteroid system in the near future as they can enable scientific insight into both the geology and dynamics of asteroids. In previous work, the dynamical evolution of binary systems was investigated for an ellipsoidsphere model. From the dynamics of two celestial bodies, equilibrium configurations and their stability were analyzed. For a given value of angular momentum, it was shown that there are in general two relative equilibrium configurations which are opposite in stability. When perturbations are introduced, we found that the equilibrium states are the minimum energy points of nearby periodic families. General dynamics from unstable to stable configurations were investigated for binaries in close proximity. Accounting for the dynamics of binaries, the dynamics of particles in this gravitational field were also studied. The location of the analogue Lagrangian points and energy associated with them were characterized. The L1 region is a key element for transfers between the bodies. It was shown that L1 can be situated between or inside the bodies depending on the free parameters of the system modifying the transfer possibilities since L1 has a hyperbolic manifold associated with it. In the current work, we look at the L1 region for binary system where the bodies are in relative equilibrium, close to each other. We find that L1 transits from outside to inside the ellipsoid when the mass ratio is larger than 0.6. For binary systems in close proximity with L1 being inside the ellipsoidal body, simulations show that particles on the surface tend to move away from the ellipsoid, toward the spherical primary. We can relate this to the Roche limit of binaries which affect the distribution of mass between the bodies. Other parameters such as the spin rate of a larger spherical primary may also influence particle distribution. Hence, we can map and characterize the mass distribution and momentum exchange that may occur within a closely formed binary systems.
Interface structure and contact melting in AgCu eutectic. A molecular dynamics study
NASA Astrophysics Data System (ADS)
Bystrenko, O.; Kartuzov, V.
2017-12-01
Molecular dynamics simulations of the interface structure in binary AgCu eutectic were performed by using the realistic EAM potential. In simulations, we examined the time dependence of the total energy in the process of equilibration, the probability distributions, the composition profiles for the components, and the component diffusivities within the interface zone. It is shown that the relaxation to the equilibrium in the solid state is accompanied by the formation of the steady disordered diffusion zone at the boundary between the crystalline components. At higher temperatures, closer to the eutectic point, the increase in the width of the steady diffusion zone is observed. The particle diffusivities grow therewith to the numbers typical for the liquid metals. Above the eutectic point, the steady zone does not form, instead, the complete contact melting in the system occurs. The results of simulations indicate that during the temperature increase the phenomenon of contact melting is preceded by the similar process spatially localized in the vicinity of the interface.
Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures
Zavodszky, Maria I.
2017-01-01
Background Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. Results The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. Conclusions MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information). PMID:29190747
Shapes and binary fractions of Jovian Trojans and Hildas through NEOWISE
NASA Astrophysics Data System (ADS)
Sonnett, S.; Mainzer, A.; Grav, T.; Bauer, J.; Masiero, J.; Stevenson, R.; Nugent, C.
2014-07-01
Jovian Trojans (hereafter, Trojans) and Hildas are indicative of planetary migration patterns since their capture and physical state must be explained by dynamical evolution models. Early models of minimal planetary migration necessitate that Trojans were dynamically captured from the giant planet region (e.g., Marzari & Scholl 1998). The Nice model instead suggests that Trojans were injected from the outer solar system during a period of significant giant planet migration (e.g., Morbidelli et al. 2005). A more recent version of the Nice model suggests that asymmetric scatterings and collisions would have taken place, producing dissimilar L4 and L5 clouds (Nesvorny et al. 2013). Each of these formation scenarios predicts a different origin and/or collisional evolution for Trojans, which can be inferred from rotation properties. Namely, the physical shape as a function of size helps determine the degree of collisional processing (Farinella et al. 1992). Also, the binary fraction as a function of separation between the two components can be used to determine the dominant binary formation mechanism and thus helps characterize the dynamical environment (e.g., Kern & Elliot 2006). Rotational variation usually corresponds to elongated shapes, but high amplitudes (> 0.9 magnitudes; Sheppard & Jewitt 2004) can only be explained by close or contact binaries. Therefore, rotational lightcurves can be used to infer both shape and the presence of a close companion. Motivated by the need for more observational constraints on solar system formation models and a poor understanding of the rotation properties and binary fraction of Trojans and Hildas, we are studying their rotational lightcurve amplitudes using infrared photometry from NEOWISE (Mainzer et al. 2011; Grav et al. 2011) in order to determine debiased rotational lightcurve amplitude distributions for various Trojan subpopulations and for Trojans compared to Hildas. Preliminary amplitude distributions show a large fraction of potential close or contact binaries (having Δ m > 0.9). These distributions can be used to constrain the collisional and dynamical history of solar system formation models.
On ternary species mixing and combustion in isotropic turbulence at high pressure
NASA Astrophysics Data System (ADS)
Lou, Hong; Miller, Richard S.
2004-05-01
Effects of Soret and Dufour cross-diffusion, whereby both concentration and thermal diffusion occur in the presence of mass fraction, temperature, and pressure gradients, are investigated in the context of both binary and ternary species mixing and combustion in isotropic turbulence at large pressure. The compressible flow formulation is based on a cubic real-gas state equation, and includes generalized forms for heat and mass diffusion derived from nonequilibrium thermodynamics and fluctuation theory. A previously derived formulation of the generalized binary species heat and mass fluxes is first extended to the case of ternary species, and appropriate treatment of the thermal and mass diffusion factors is described. Direct numerical simulations (DNS) are then conducted for both binary and ternary species mixing and combustion in stationary isotropic turbulence. Mean flow temperatures and pressures of
Prediction and generation of binary Markov processes: Can a finite-state fox catch a Markov mouse?
NASA Astrophysics Data System (ADS)
Ruebeck, Joshua B.; James, Ryan G.; Mahoney, John R.; Crutchfield, James P.
2018-01-01
Understanding the generative mechanism of a natural system is a vital component of the scientific method. Here, we investigate one of the fundamental steps toward this goal by presenting the minimal generator of an arbitrary binary Markov process. This is a class of processes whose predictive model is well known. Surprisingly, the generative model requires three distinct topologies for different regions of parameter space. We show that a previously proposed generator for a particular set of binary Markov processes is, in fact, not minimal. Our results shed the first quantitative light on the relative (minimal) costs of prediction and generation. We find, for instance, that the difference between prediction and generation is maximized when the process is approximately independently, identically distributed.
Judging The Effectiveness Of Wool Combing By The Entropy Of The Images Of Wool Slivers
NASA Astrophysics Data System (ADS)
Rodrigues, F. Carvalho; Carvalho, Fernando D.; Peixoto, J. Pinto; Silva, M. Santos
1989-04-01
In general it can be said that the textile industry endeavours to render a bunch of fibers chaotically distributed in space into an ordered spatial distribution. This fact is independent of the nature the fibers, i.e., the aim of getting into higher order states in the spatial distribution of the fibers dictates different industrial processes depending on whether the fibers are wool, cotton or man made but the all effect is centred on obtaining at every step of any of the processes a more ordered state regarding the spatial distribution of the fibers. Thinking about the textile processes as a method of getting order out of chaos, the concept of entropy appears as the most appropriate judging parameter on the effectiveness of a step in the chain of an industrial process to produce a regular textile. In fact, entropy is the hidden parameter not only for the textile industry but also for the non woven and paper industrial processes. It happens that in these industries the state of order is linked with the spatial distribution of fibers and to obtain an image of a spatial distribution is an easy matter. To compute the image entropy from the grey level distribution requires only the use of the Shannon formula. In this paper to illustrate the usefulness of employing the entropy of an image concept to textiles the evolution of the entropy of wool slivers along the combing process is matched against the state of parallelization of the fibbers along the seven steps as measured by the existing method. The advantages of the entropy method over the previous method based on diffraction is also demonstrated.
Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon
2016-06-01
The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of the primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot-hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot-hot binaries, but not for hot-cool or cool-cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.
ORBITAL CIRCULARIZATION OF HOT AND COOL KEPLER ECLIPSING BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eylen, Vincent Van; Albrecht, Simon; Winn, Joshua N., E-mail: vincent@phys.au.dk
The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler . This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of themore » primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot–hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot–hot binaries, but not for hot–cool or cool–cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.« less
Coincidence studies of diffraction structures in binary encounter electron spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, C.; Hagmann, S.; Richard, P.
The authors have measured binary encounter electron (BEe) production in collisions of 0.3 MeV/u Cu{sup q+} (q=4,12) projectiles on H{sub 2} targets from 0 to 70 degrees with respect to the beam direction. Prominent features are the appearance of the BEe peak splitting and a very strong forward peaked angular distribution which are attributed to the diffractive scattering of the quasifree target electrons in the short range potential of the projectile. Using electron-projectile final charge state coincidence techniques, different collision reaction channels can be separated. Measurements of this type are being pursued.
Koley, Somnath; Ghosh, Subhadip
2016-11-30
An insight study reveals the strong synergistic solvation behaviours from reporter dye molecules within the acetonitrile (ACN)-water (WT) binary mixture. Synergism of a binary mixture refers to some unique changes of the physical and thermodynamic properties of the solvent mixture, originating from the interactions among its cosolvents, which are absent within the pure cosolvents. Synergistic solvation of a binary mixture is likely to be fundamental for greater stabilization of an excited state solute dipole; at least to some extent greater as compared to one stabilized by any of its cosolvents alone. A dynamic Stokes shift due to the solvation of an excited dipole in the ACN-WT binary mixture is found to be highly relevant to the ground state physical properties of the solute molecule (polarity, hydrophilicity, acidity, etc.). Largely different solvation times in the ACN-WT mixture are observed from different dye molecules with widely varying polarities. However, earlier study shows that dye molecules, irrespective of their varying polarities, exhibit very similar solvation times within a pure solvent (J. Phys. Chem. B, 2014, 118, 7577-7785). On further study with fluorescence correlation spectroscopy (FCS) we observed that, unlike the translational diffusion coefficient (D t ) of a dye molecule within a pure solvent, which remains the same irrespective of the location of the dye molecule inside the solvent, a broad distribution among the D t values of a dye molecule is obtained from different locations within the ACN-WT binary mixture. Lastly our 1 H NMR study in the ACN-WT binary mixture shows the existence of strong hydrogen bond interactions among the cosolvents in the ACN-WT mixture.
NASA Astrophysics Data System (ADS)
Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin
2018-04-01
The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.
Selective protected state preparation of coupled dissipative quantum emitters
Plankensteiner, D.; Ostermann, L.; Ritsch, H.; Genes, C.
2015-01-01
Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501
Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong
Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.
INTERACTION BETWEEN THE SUPERNOVA REMNANT HB 3 AND THE NEARBY STAR-FORMING REGION W3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xin; Yang, Ji; Fang, Min
We performed millimeter observations of CO lines toward the supernova remnant (SNR) HB 3. Substantial molecular gas around −45 km s{sup −1} is detected in the conjunction region between the SNR HB 3 and the nearby W3 complex. This molecular gas is distributed along the radio continuum shell of the remnant. Furthermore, the shocked molecular gas indicated by line wing broadening features is also distributed along the radio shell and inside it. By both morphological correspondence and dynamical evidence, we confirm that the SNR HB 3 interacts with the −45 km s{sup −1} molecular cloud (MC), in essence, with the nearby H ii region/MC complexmore » W3. The redshifted line wing broadening features indicate that the remnant is located at the nearside of the MC. With this association, we could place the remnant at the same distance as the W3/W4 complex, which is 1.95 ± 0.04 kpc. The spatial distribution of aggregated young stellar object candidates shows a correlation with the shocked molecular strip associated with the remnant. We also find a binary clump of CO at ( l = 132.°94, b = 1.°12) around −51.5 km s{sup −1} inside the projected extent of the remnant, and it is associated with significant mid-infrared emission. The binary system also has a tail structure resembling the tidal tails of interacting galaxies. According to the analysis of CO emission lines, the larger clump in this binary system is about stable, and the smaller clump is significantly disturbed.« less
NASA Astrophysics Data System (ADS)
Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.
2013-01-01
Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.
Cruz, Gustavo N; Lima, Filipe S; Dias, Luís G; El Seoud, Omar A; Horinek, Dominik; Chaimovich, Hernan; Cuccovia, Iolanda M
2015-09-04
The dediazoniation of aryldiazonium salts in mixed solvents proceeds by a borderline SN1 and SN2 pathway, and product distribution should be proportional to the composition of the solvation shell of the carbon attached to the -N2 group (ipso carbon). The rates of dediazoniation of 2,4,6-trimethylbenzenediazonium in water, methanol, ethanol, propanol, and acetonitrile were similar, but measured product distributions were noticeably dependent on the nature of the water/cosolvent mixture. Here we demonstrated that solvent distribution in the first solvation shell of the ipso carbon, calculated from classical molecular dynamics simulations, is equal to the measured product distribution. Furthermore, we showed that regardless of the charge distribution of the initial state, i.e., whether the positive charge is smeared over the molecule or localized on phenyl moiety, the solvent distribution around the reaction center is nearly the same.
Binary Star Fractions from the LAMOST DR4
NASA Astrophysics Data System (ADS)
Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua
2018-05-01
Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.
NASA Astrophysics Data System (ADS)
Gao, Cheng-Yan; Wang, Guan-Yu; Zhang, Hao; Deng, Fu-Guo
2017-01-01
We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger-Horne-Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.
Synthetic Survey of the Kepler Field
NASA Astrophysics Data System (ADS)
Wells, Mark; Prša, Andrej
2018-01-01
In the era of large scale surveys, including LSST and Gaia, binary population studies will flourish due to the large influx of data. In addition to probing binary populations as a function of galactic latitude, under-sampled groups such as low mass binaries will be observed at an unprecedented rate. To prepare for these missions, binary population simulations need to be carried out at high fidelity. These simulations will enable the creation of simulated data and, through comparison with real data, will allow the underlying binary parameter distributions to be explored. In order for the simulations to be considered robust, they should reproduce observed distributions accurately. To this end we have developed a simulator which takes input models and creates a synthetic population of eclipsing binaries. Starting from a galactic single star model, implemented using Galaxia, a code by Sharma et al. (2011), and applying observed multiplicity, mass-ratio, period, and eccentricity distributions, as reported by Raghavan et al. (2010), Duchêne & Kraus (2013), and Moe & Di Stefano (2017), we are able to generate synthetic binary surveys that correspond to any survey cadences. In order to calibrate our input models we compare the results of our synthesized eclipsing binary survey to the Kepler Eclipsing Binary catalog.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, M.; Anderson, D.P.
1988-01-01
Marionette is a system for distributed parallel programming in an environment of networked heterogeneous computer systems. It is based on a master/slave model. The master process can invoke worker operations (asynchronous remote procedure calls to single slaves) and context operations (updates to the state of all slaves). The master and slaves also interact through shared data structures that can be modified only by the master. The master and slave processes are programmed in a sequential language. The Marionette runtime system manages slave process creation, propagates shared data structures to slaves as needed, queues and dispatches worker and context operations, andmore » manages recovery from slave processor failures. The Marionette system also includes tools for automated compilation of program binaries for multiple architectures, and for distributing binaries to remote fuel systems. A UNIX-based implementation of Marionette is described.« less
Glynn, P.D.
1991-01-01
The computer code MBSSAS uses two-parameter Margules-type excess-free-energy of mixing equations to calculate thermodynamic equilibrium, pure-phase saturation, and stoichiometric saturation states in binary solid-solution aqueous-solution (SSAS) systems. Lippmann phase diagrams, Roozeboom diagrams, and distribution-coefficient diagrams can be constructed from the output data files, and also can be displayed by MBSSAS (on IBM-PC compatible computers). MBSSAS also will calculate accessory information, such as the location of miscibility gaps, spinodal gaps, critical-mixing points, alyotropic extrema, Henry's law solid-phase activity coefficients, and limiting distribution coefficients. Alternatively, MBSSAS can use such information (instead of the Margules, Guggenheim, or Thompson and Waldbaum excess-free-energy parameters) to calculate the appropriate excess-free-energy of mixing equation for any given SSAS system. ?? 1991.
NASA Astrophysics Data System (ADS)
Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman
2018-05-01
Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.
Zonal wavefront sensing with enhanced spatial resolution.
Pathak, Biswajit; Boruah, Bosanta R
2016-12-01
In this Letter, we introduce a scheme to enhance the spatial resolution of a zonal wavefront sensor. The zonal wavefront sensor comprises an array of binary gratings implemented by a ferroelectric spatial light modulator (FLCSLM) followed by a lens, in lieu of the array of lenses in the Shack-Hartmann wavefront sensor. We show that the fast response of the FLCSLM device facilitates quick display of several laterally shifted binary grating patterns, and the programmability of the device enables simultaneous capturing of each focal spot array. This eventually leads to a wavefront estimation with an enhanced spatial resolution without much sacrifice on the sensor frame rate, thus making the scheme suitable for high spatial resolution measurement of transient wavefronts. We present experimental and numerical simulation results to demonstrate the importance of the proposed wavefront sensing scheme.
Near-Earth asteroid satellite spins under spin-orbit coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naidu, Shantanu P.; Margot, Jean-Luc
We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaoticmore » regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.« less
Primordial main equence binary stars in the globular cluster M71
NASA Technical Reports Server (NTRS)
Yan, Lin; Mateo, Mario
1994-01-01
We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the implications of this on our estimates of the binary frequency in M71 and on the formation of blue stragglers.
Scheduling policies of intelligent sensors and sensor/actuators in flexible structures
NASA Astrophysics Data System (ADS)
Demetriou, Michael A.; Potami, Raffaele
2006-03-01
In this note, we revisit the problem of actuator/sensor placement in large civil infrastructures and flexible space structures within the context of spatial robustness. The positioning of these devices becomes more important in systems employing wireless sensor and actuator networks (WSAN) for improved control performance and for rapid failure detection. The ability of the sensing and actuating devices to possess the property of spatial robustness results in reduced control energy and therefore the spatial distribution of disturbances is integrated into the location optimization measures. In our studies, the structure under consideration is a flexible plate clamped at all sides. First, we consider the case of sensor placement and the optimization scheme attempts to produce those locations that minimize the effects of the spatial distribution of disturbances on the state estimation error; thus the sensor locations produce state estimators with minimized disturbance-to-error transfer function norms. A two-stage optimization procedure is employed whereby one first considers the open loop system and the spatial distribution of disturbances is found that produces the maximal effects on the entire open loop state. Once this "worst" spatial distribution of disturbances is found, the optimization scheme subsequently finds the locations that produce state estimators with minimum transfer function norms. In the second part, we consider the collocated actuator/sensor pairs and the optimization scheme produces those locations that result in compensators with the smallest norms of the disturbance-to-state transfer functions. Going a step further, an intelligent control scheme is presented which, at each time interval, activates a subset of the actuator/sensor pairs in order provide robustness against spatiotemporally moving disturbances and minimize power consumption by keeping some sensor/actuators in sleep mode.
Leportier, Thibault; Park, Min Chul; Kim, You Seok; Kim, Taegeun
2015-02-09
In this paper, we present a three-dimensional holographic imaging system. The proposed approach records a complex hologram of a real object using optical scanning holography, converts the complex form to binary data, and then reconstructs the recorded hologram using a spatial light modulator (SLM). The conversion from the recorded hologram to a binary hologram is achieved using a direct binary search algorithm. We present experimental results that verify the efficacy of our approach. To the best of our knowledge, this is the first time that a hologram of a real object has been reconstructed using a binary SLM.
Spatial and Temporal Distribution of Tuberculosis in the State of Mexico, Mexico
Zaragoza Bastida, Adrian; Hernández Tellez, Marivel; Bustamante Montes, Lilia P.; Medina Torres, Imelda; Jaramillo Paniagua, Jaime Nicolás; Mendoza Martínez, Germán David; Ramírez Durán, Ninfa
2012-01-01
Tuberculosis (TB) is one of the oldest human diseases that still affects large population groups. According to the World Health Organization (WHO), there were approximately 9.4 million new cases worldwide in the year 2010. In Mexico, there were 18,848 new cases of TB of all clinical variants in 2010. The identification of clusters in space-time is of great interest in epidemiological studies. The objective of this research was to identify the spatial and temporal distribution of TB during the period 2006–2010 in the State of Mexico, using geographic information system (GIS) and SCAN statistics program. Nine significant clusters (P < 0.05) were identified using spatial and space-time analysis. The conclusion is that TB in the State of Mexico is not randomly distributed but is concentrated in areas close to Mexico City. PMID:22919337
Geospatial Analysis on the Distributions of Tobacco Smoking and Alcohol Drinking in India
Fu, Sze Hang; Jha, Prabhat; Gupta, Prakash C.; Kumar, Rajesh; Dikshit, Rajesh; Sinha, Dhirendra
2014-01-01
Background Tobacco smoking and binge alcohol drinking are two of the leading risk factors for premature mortality worldwide. In India, studies have examined the geographic distributions of tobacco smoking and alcohol drinking only at the state-level; sub-state variations and the spatial association between the two consumptions are poorly understood. Methodology We used data from the Special Fertility and Mortality Survey conducted in 1998 to examine the geographic distributions of tobacco smoking and alcohol drinking at the district and postal code levels. We used kriging interpolation to generate smoking and drinking distributions at the postal code level. We also examined spatial autocorrelations and identified spatial clusters of high and low prevalence of smoking and drinking. Finally, we used bivariate analyses to examine the spatial correlations between smoking and drinking, and between cigarette and bidi smoking. Results There was a high prevalence of any smoking in the central and northeastern states, and a high prevalence of any drinking in Himachal Pradesh, Arunachal Pradesh, and eastern Madhya Pradesh. Spatial clusters of early smoking (started smoking before age 20) were identified in the central states. Cigarette and bidi smoking showed distinctly different geographic patterns, with high levels of cigarette smoking in the northeastern states and high levels of bidi smoking in the central states. The geographic pattern of bidi smoking was similar to early smoking. Cigarette smoking was spatially associated with any drinking. Smoking prevalences in 1998 were correlated with prevalences in 2004 at the district level and 2010 at the state level. Conclusion These results along with earlier evidence on the complementarities between tobacco smoking and alcohol drinking suggest that local public health action on smoking might also help to reduce alcohol consumption, and vice versa. Surveys that properly represent tobacco and alcohol consumptions at the district level are recommended. PMID:25025379
History and distribution of lynx in the contiguous United States [Chapter 8
Kevin S. McKelvey
2000-01-01
Using written accounts, trapping records, and spatially referenced occurrence data, the authors reconstructed the history and distribution of lynx in the contiguous United States from the 1800s to the present. Records show lynx occurrence in 24 states. Data over broad scales of space and time show lynx distribution...
Truncation of the Binary Distribution Function in Globular Cluster Formation
NASA Astrophysics Data System (ADS)
Vesperini, E.; Chernoff, David F.
1996-02-01
We investigate a population of primordial binaries during the initial stage of evolution of a star cluster. For our calculations we assume that equal-mass stars form rapidly in a tidally truncated gas cloud, that ˜10% of the stars are in binaries, and that the resulting star cluster undergoes an epoch of violent relaxation. We study the collisional interaction of the binaries and single stars, in particular, the ionization of the binaries and the energy exchange between binaries and single stars. We find that for large N systems (N > 1000), even the most violent beginning leaves the binary distribution function largely intact. Hence, the binding energy originally tied up in the cloud's protostellar pairs is preserved during the relaxation process, and the binaries are available to interact at later times within the virialized cluster.
Spatial perspectives in state-and-transition models: A missing link to land management?
USDA-ARS?s Scientific Manuscript database
Conceptual models of alternative states and thresholds are based largely on observations of ecosystem processes at a few points in space. Because the distribution of alternative states in spatially-structured ecosystems is the result of variations in pattern-process interactions at different scales,...
Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States
NASA Astrophysics Data System (ADS)
Zhou, Yuyu; Gurney, Kevin Robert
2011-09-01
Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.
Behavior of Excited Argon Atoms in Inductively Driven Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
HEBNER,GREGORY A.; MILLER,PAUL A.
1999-12-07
Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s{sub 5} and 1s{sub 4}, in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s{sub 5} level is metastable and the 1s{sub 4} level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the datamore » suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the discharge while the density at the edge of the discharge was unaffected. The spatially resolved excited state density measurements were combined with previous line integrated measurements in the same discharge geometry to derive spatially resolved, absolute densities of the 1s{sub 5} and 1s{sub 4} argon excited states and gas temperature spatial distributions. Fluorescence lifetime was a strong fi.mction of the rf power, pressure, argon fraction and spatial location. Increasing the power or pressure resulted in a factor of two decrease in the fluorescence lifetime while adding Cl{sub 2} or BCl{sub 3} increased the fluorescence lifetime. Excited state quenching rates are derived from the data. When Cl{sub 2} or BCl{sub 3} was added to the plasma, the maximum argon metastable density depended on the gas and ratio. When chlorine was added to the argon plasma, the spatial density profiles were independent of chlorine fraction. While it is energetically possible for argon excited states to dissociate some of the molecular species present in this discharge, it does not appear to be a significant source of dissociation. The major source of interaction between the argon and the molecular species BCl{sub 3} and Cl{sub 2} appears to be through modification of the electron density.« less
Noise in Attractor Networks in the Brain Produced by Graded Firing Rate Representations
Webb, Tristan J.; Rolls, Edmund T.; Deco, Gustavo; Feng, Jianfeng
2011-01-01
Representations in the cortex are often distributed with graded firing rates in the neuronal populations. The firing rate probability distribution of each neuron to a set of stimuli is often exponential or gamma. In processes in the brain, such as decision-making, that are influenced by the noise produced by the close to random spike timings of each neuron for a given mean rate, the noise with this graded type of representation may be larger than with the binary firing rate distribution that is usually investigated. In integrate-and-fire simulations of an attractor decision-making network, we show that the noise is indeed greater for a given sparseness of the representation for graded, exponential, than for binary firing rate distributions. The greater noise was measured by faster escaping times from the spontaneous firing rate state when the decision cues are applied, and this corresponds to faster decision or reaction times. The greater noise was also evident as less stability of the spontaneous firing state before the decision cues are applied. The implication is that spiking-related noise will continue to be a factor that influences processes such as decision-making, signal detection, short-term memory, and memory recall even with the quite large networks found in the cerebral cortex. In these networks there are several thousand recurrent collateral synapses onto each neuron. The greater noise with graded firing rate distributions has the advantage that it can increase the speed of operation of cortical circuitry. PMID:21931607
Spatially coordinated dynamic gene transcription in living pituitary tissue
Featherstone, Karen; Hey, Kirsty; Momiji, Hiroshi; McNamara, Anne V; Patist, Amanda L; Woodburn, Joanna; Spiller, David G; Christian, Helen C; McNeilly, Alan S; Mullins, John J; Finkenstädt, Bärbel F; Rand, David A; White, Michael RH; Davis, Julian RE
2016-01-01
Transcription at individual genes in single cells is often pulsatile and stochastic. A key question emerges regarding how this behaviour contributes to tissue phenotype, but it has been a challenge to quantitatively analyse this in living cells over time, as opposed to studying snap-shots of gene expression state. We have used imaging of reporter gene expression to track transcription in living pituitary tissue. We integrated live-cell imaging data with statistical modelling for quantitative real-time estimation of the timing of switching between transcriptional states across a whole tissue. Multiple levels of transcription rate were identified, indicating that gene expression is not a simple binary ‘on-off’ process. Immature tissue displayed shorter durations of high-expressing states than the adult. In adult pituitary tissue, direct cell contacts involving gap junctions allowed local spatial coordination of prolactin gene expression. Our findings identify how heterogeneous transcriptional dynamics of single cells may contribute to overall tissue behaviour. DOI: http://dx.doi.org/10.7554/eLife.08494.001 PMID:26828110
Dorazio, Robert M.
2012-01-01
Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.
High Fidelity Simulation of Transcritical Liquid Jet in Crossflow
NASA Astrophysics Data System (ADS)
Li, Xiaoyi; Soteriou, Marios
2017-11-01
Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.
Double stars with wide separations in the AGK3 - II. The wide binaries and the multiple systems*
NASA Astrophysics Data System (ADS)
Halbwachs, J.-L.; Mayor, M.; Udry, S.
2017-02-01
A large observation programme was carried out to measure the radial velocities of the components of a selection of common proper motion (CPM) stars to select the physical binaries. 80 wide binaries (WBs) were detected, and 39 optical pairs were identified. By adding CPM stars with separations close enough to be almost certain that they are physical, a bias-controlled sample of 116 WBs was obtained, and used to derive the distribution of separations from 100 to 30 000 au. The distribution obtained does not match the log-constant distribution, but agrees with the log-normal distribution. The spectroscopic binaries detected among the WB components were used to derive statistical information about the multiple systems. The close binaries in WBs seem to be like those detected in other field stars. As for the WBs, they seem to obey the log-normal distribution of periods. The number of quadruple systems agrees with the no correlation hypothesis; this indicates that an environment conducive to the formation of WBs does not favour the formation of subsystems with periods shorter than 10 yr.
Geographic Distribution of Trauma Centers and Injury Related Mortality in the United States
Brown, Joshua B.; Rosengart, Matthew R.; Billiar, Timothy R.; Peitzman, Andrew B.; Sperry, Jason L.
2015-01-01
Background Regionalized trauma care improves outcomes; however access to care is not uniform across the US. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Methods Level I/II trauma centers in the contiguous US were mapped. State-level age-adjusted injury fatality rates/100,000people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNR) were generated for each state. A NNR<1 indicates clustering, while NNR>1 indicates dispersion. NNR were tested for difference from random geographic distribution. Fatality rates and NNR were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Results Fatality rates were spatially autocorrelated (Moran's I=0.35, p<0.01). Nine states had a clustered pattern (median NNR 0.55, IQR 0.48–0.60), 22 had a dispersed pattern (median NNR 2.00, IQR 1.68–3.99), and 10 had a random pattern (median NNR 0.90, IQR 0.85–1.00) of trauma center distribution. Fatality rate and NNR were correlated (ρ=0.34, p=0.03). Clustered states had a lower median injury fatality rate compared to dispersed states (56.9 [IQR 46.5–58.9] versus 64.9 [IQR 52.5–77.1], p=0.04). Dispersed compared to clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% versus 1.2%, p<0.01). Spatial-lag regression demonstrated fatality rates increased 0.02/100,000persons for each unit increase in NNR (p<0.01). Conclusions Geographic distribution of trauma centers correlates with injury mortality, with more clustered state trauma centers associated with lower fatality rates. This may be a result of access relative to population density. These results may have implications for trauma system planning and requires further study to investigate underlying mechanisms PMID:26517780
NASA Astrophysics Data System (ADS)
Park, Byeongjin; Sohn, Hoon
2018-04-01
The practicality of laser ultrasonic scanning is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated defect visualization technique is developed to visualize defect with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio of measured ultrasonic responses. The approximate defect boundary is identified by examining the interactions between ultrasonic waves and defect observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and defect can be better identified in the spatial ultrasonic domain. Then, the area inside the identified defect boundary is visualized as defect. The performance of the proposed defect visualization technique is validated through an experiment on a semiconductor chip. The proposed defect visualization technique accelerates the defect visualization process in three aspects: (1) The number of measurements that is necessary for defect visualization is dramatically reduced by a binary search algorithm; (2) The number of averaging that is necessary to achieve a high signal-to-noise ratio is reduced by maintaining the wave propagation distance short; and (3) With the proposed technique, defect can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.
Analysis of suicide mortality in Brazil: spatial distribution and socioeconomic context.
Dantas, Ana P; Azevedo, Ulicélia N de; Nunes, Aryelly D; Amador, Ana E; Marques, Marilane V; Barbosa, Isabelle R
2018-01-01
To perform a spatial analysis of suicide mortality and its correlation with socioeconomic indicators in Brazilian municipalities. This is an ecological study with Brazilian municipalities as a unit of analysis. Data on deaths from suicide and contextual variables were analyzed. The spatial distribution, intensity and significance of the clusters were analyzed with the global Moran index, MoranMap and local indicators of spatial association (LISA), seeking to identify patterns through geostatistical analysis. A total of 50,664 deaths from suicide were registered in Brazil between 2010 and 2014. The average suicide mortality rate in Brazil was 5.23/100,000 population. The Brazilian municipalities presenting the highest rates were Taipas do Tocantins, state of Tocantins (79.68 deaths per 100,000 population), Itaporã, state of Mato Grosso do Sul (75.15 deaths per 100,000 population), Mampituba, state of Rio Grande do Sul (52.98 deaths per 100,000 population), Paranhos, state of Mato Grosso do Sul (52.41 deaths per 100,000 population), and Monjolos, state of Minas Gerais (52.08 deaths per 100,000 population). Although weak spatial autocorrelation was observed for suicide mortality (I = 0.2608), there was a formation of clusters in the South. In the bivariate spatial and classical analysis, no correlation was observed between suicide mortality and contextual variables. Suicide mortality in Brazil presents a weak spatial correlation and low or no spatial relationship with socioeconomic factors.
Spatial modeling of households' knowledge about arsenic pollution in Bangladesh.
Sarker, M Mizanur Rahman
2012-04-01
Arsenic in drinking water is an important public health issue in Bangladesh, which is affected by households' knowledge about arsenic threats from their drinking water. In this study, spatial statistical models were used to investigate the determinants and spatial dependence of households' knowledge about arsenic risk. The binary join matrix/binary contiguity matrix and inverse distance spatial weight matrix techniques are used to capture spatial dependence in the data. This analysis extends the spatial model by allowing spatial dependence to vary across divisions and regions. A positive spatial correlation was found in households' knowledge across neighboring districts at district, divisional and regional levels, but the strength of this spatial correlation varies considerably by spatial weight. Literacy rate, daily wage rate of agricultural labor, arsenic status, and percentage of red mark tube well usage in districts were found to contribute positively and significantly to households' knowledge. These findings have policy implications both at regional and national levels in mitigating the present arsenic crisis and to ensure arsenic-free water in Bangladesh. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalogera, Vassiliki; Webbink, Ronald F.
1998-01-01
We study the formation of low-mass X-ray binaries (LMXBs) through helium star supernovae in binary systems that have each emerged from a common envelope phase. LMXB progenitors must satisfy a large number of evolutionary and structural constraints, including survival through common envelope evolution, through the post-common envelope phase, where the precursor of the neutron star becomes a Wolf-Rayet star, and survival through the supernova event. Furthermore, the binaries that survive the explosion must reach interaction within a Hubble time and must satisfy stability criteria for mass transfer. These constraints, imposed under the assumption of a symmetric supernova explosion, prohibit the formation of short-period LMXBs transferring mass at sub-Eddington rates through any channel in which the intermediate progenitor of the neutron star is not completely degenerate. Barring accretion-induced collapse, the existence of such systems therefore requires that natal kicks be imparted to neutron stars. We use an analytical method to synthesize the distribution of nascent LMXBs over donor masses and orbital periods and evaluate their birthrate and systemic velocity dispersion. Within the limitations imposed by observational incompleteness and selection effects, and our neglect of secular evolution in the LMXB state, we compare our results with observations. However, our principal objective is to evaluate how basic model parameters (common envelope ejection efficiency, rms kick velocity, primordial mass ratio distribution) influence these results. We conclude that the characteristics of newborn LMXBs are primarily determined by age and stability constraints and the efficiency of magnetic braking and are largely independent of the primordial binary population and the evolutionary history of LMXB progenitors (except for extreme values of the average kick magnitude or of the common envelope ejection efficiency). Theoretical estimates of total LMXB birthrates are not credible, since they strongly depend on the observationally indeterminate frequency of primordial binaries with extreme mass ratios in long-period orbits.
Constraining Binary Asteroid Mass Distributions Based On Mutual Motion
NASA Astrophysics Data System (ADS)
Davis, Alex B.; Scheeres, Daniel J.
2017-06-01
The mutual gravitational potential and torques of binary asteroid systems results in a complex coupling of attitude and orbital motion based on the mass distribution of each body. For a doubly-synchronous binary system observations of the mutual motion can be leveraged to identify and measure the unique mass distributions of each body. By implementing arbitrary shape and order computation of the full two-body problem (F2BP) equilibria we study the influence of asteroid asymmetries on separation and orientation of a doubly-synchronous system. Additionally, simulations of binary systems perturbed from doubly-synchronous behavior are studied to understand the effects of mass distribution perturbations on precession and nutation rates such that unique behaviors can be isolated and used to measure asteroid mass distributions. We apply our investigation to the Trojan binary asteroid system 617 Patroclus and Menoetius (1906 VY), which will be the final flyby target of the recently announced LUCY Discovery mission in March 2033. This binary asteroid system is of particular interest due to the results of a recent stellar occultation study (DPS 46, id.506.09) that suggests the system to be doubly-synchronous and consisting of two-similarly sized oblate ellipsoids, in addition to suggesting the presence mass asymmetries resulting from an impact crater on the southern limb of Menoetius.
High statistical heterogeneity is more frequent in meta-analysis of continuous than binary outcomes.
Alba, Ana C; Alexander, Paul E; Chang, Joanne; MacIsaac, John; DeFry, Samantha; Guyatt, Gordon H
2016-02-01
We compared the distribution of heterogeneity in meta-analyses of binary and continuous outcomes. We searched citations in MEDLINE and Cochrane databases for meta-analyses of randomized trials published in 2012 that reported a measure of heterogeneity of either binary or continuous outcomes. Two reviewers independently performed eligibility screening and data abstraction. We evaluated the distribution of I(2) in meta-analyses of binary and continuous outcomes and explored hypotheses explaining the difference in distributions. After full-text screening, we selected 671 meta-analyses evaluating 557 binary and 352 continuous outcomes. Heterogeneity as assessed by I(2) proved higher in continuous than in binary outcomes: the proportion of continuous and binary outcomes reporting an I(2) of 0% was 34% vs. 52%, respectively, and reporting an I(2) of 60-100% was 39% vs. 14%. In continuous but not binary outcomes, I(2) increased with larger number of studies included in a meta-analysis. Increased precision and sample size do not explain the larger I(2) found in meta-analyses of continuous outcomes with a larger number of studies. Meta-analyses evaluating continuous outcomes showed substantially higher I(2) than meta-analyses of binary outcomes. Results suggest differing standards for interpreting I(2) in continuous vs. binary outcomes may be appropriate. Copyright © 2016 Elsevier Inc. All rights reserved.
Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.
Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S
2017-10-10
The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.
On the frequency of close binary systems among very low-mass stars and brown dwarfs
NASA Astrophysics Data System (ADS)
Maxted, P. F. L.; Jeffries, R. D.
2005-09-01
We have used Monte Carlo simulation techniques and published radial velocity surveys to constrain the frequency of very low-mass star (VLMS) and brown dwarf (BD) binary systems and their separation (a) distribution. Gaussian models for the separation distribution with a peak at a= 4au and 0.6 <=σlog(a/au)<= 1.0, correctly predict the number of observed binaries, yielding a close (a < 2.6au) binary frequency of 17-30 per cent and an overall VLMS/BD binary frequency of 32-45 per cent. We find that the available N-body models of VLMS/BD formation from dynamically decaying protostellar multiple systems are excluded at >99 per cent confidence because they predict too few close binary VLMS/BDs. The large number of close binaries and high overall binary frequency are also very inconsistent with recent smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMS/BDs.
Close binary systems among very low-mass stars and brown dwarfs
NASA Astrophysics Data System (ADS)
Jeffries, R. D.; Maxted, P. F. L.
2005-12-01
Using Monte Carlo simulations and published radial velocity surveys we have constrained the frequency and separation (a) distribution of very low-mass star (VLM) and brown dwarf (BD) binary systems. We find that simple Gaussian extensions of the observed wide binary distribution, with a peak at 4 AU and 0.6<\\sigma_{\\log(a/AU)}<1.0, correctly reproduce the observed number of close binary systems, implying a close (a<2.6 AU) binary frequency of 17-30 % and overall frequency of 32-45 %. N-body models of the dynamical decay of unstable protostellar multiple systems are excluded with high confidence because they do not produce enough close binary VLMs/BDs. The large number of close binaries and high overall binary frequency are also completely inconsistent with published smoothed particle hydrodynamical modelling and argue against a dynamical origin for VLMs/BDs.
Quantifying evenly distributed states in exclusion and nonexclusion processes
NASA Astrophysics Data System (ADS)
Binder, Benjamin J.; Landman, Kerry A.
2011-04-01
Spatial-point data sets, generated from a wide range of physical systems and mathematical models, can be analyzed by counting the number of objects in equally sized bins. We find that the bin counts are related to the Pólya distribution. New measures are developed which indicate whether or not a spatial data set, generated from an exclusion process, is at its most evenly distributed state, the complete spatial randomness (CSR) state. To this end, we define an index in terms of the variance between the bin counts. Limiting values of the index are determined when objects have access to the entire domain and when there are subregions of the domain that are inaccessible to objects. Using three case studies (Lagrangian fluid particles in chaotic laminar flows, cellular automata agents in discrete models, and biological cells within colonies), we calculate the indexes and verify that our theoretical CSR limit accurately predicts the state of the system. These measures should prove useful in many biological applications.
Analysis of timescale to consensus in voting dynamics with more than two options
NASA Astrophysics Data System (ADS)
Wu, Degang; Szeto, Kwok Yip
2018-04-01
We generalize a binary majority-vote model on adaptive networks to its plurality-vote counterpart and analyze the timescale to consensus when voters are given more than two options. When opinions are uniformly distributed in the population of voters in the initial state, we find that the timescale to consensus is shorter than the binary vote model from both numerical simulations and mathematical analysis using the master equation for the three-state plurality-vote model. When intervention such as opinion conversion is allowed, as in the case of sudden change of mind of voter for any reason, the effort needed to push the fragmented three-opinion population in the thermodynamic limit to the consensus state, measured in minimal intervention cost, is less than that needed to push a polarized two-opinion population to the consensus state, when the degree (p ) of homophily is less than 0.8. For a finite system, the fragmented three-opinion population will spontaneously reach the consensus state, with faster time to consensus, compared to polarized two-opinion population, for a broad range of p .
NASA Astrophysics Data System (ADS)
Connelley, Michael S.; Reipurth, Bo; Tokunaga, Alan T.
2008-06-01
We present the Class I protostellar binary separation distribution based on the data tabulated in a companion paper. We verify the excess of Class I binary stars over solar-type main-sequence stars in the separation range from 500 AU to 4500 AU. Although our sources are in nearby star-forming regions distributed across the entire sky (including Orion), none of our objects are in a high stellar density environment. A log-normal function, used by previous authors to fit the main-sequence and T Tauri binary separation distributions, poorly fits our data, and we determine that a log-uniform function is a better fit. Our observations show that the binary separation distribution changes significantly during the Class I phase, and that the binary frequency at separations greater than 1000 AU declines steadily with respect to spectral index. Despite these changes, the binary frequency remains constant until the end of the Class I phase, when it drops sharply. We propose a scenario to account for the changes in the Class I binary separation distribution. This scenario postulates that a large number of companions with a separation greater than ~1000 AU were ejected during the Class 0 phase, but remain gravitationally bound due to the significant mass of the Class I envelope. As the envelope dissipates, these companions become unbound and the binary frequency at wide separations declines. Circumstellar and circumbinary disks are expected to play an important role in the orbital evolution at closer separations. This scenario predicts that a large number of Class 0 objects should be non-hierarchical multiple systems, and that many Class I young stellar objects (YSOs) with a widely separated companion should also have a very close companion. We also find that Class I protostars are not dynamically pristine, but have experienced dynamical evolution before they are visible as Class I objects. Our analysis shows that the Class I binary frequency and the binary separation distribution strongly depend on the star-forming environment. The Infrared Telescope Facility is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program. The United Kingdom Infrared Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the U.K. Based in part on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
NASA Astrophysics Data System (ADS)
Park, Jonghee; Yoon, Kuk-Jin
2015-02-01
We propose a real-time line matching method for stereo systems. To achieve real-time performance while retaining a high level of matching precision, we first propose a nonparametric transform to represent the spatial relations between neighboring lines and nearby textures as a binary stream. Since the length of a line can vary across images, the matching costs between lines are computed within an overlap area (OA) based on the binary stream. The OA is determined for each line pair by employing the properties of a rectified image pair. Finally, the line correspondence is determined using a winner-takes-all method with a left-right consistency check. To reduce the computational time requirements further, we filter out unreliable matching candidates in advance based on their rectification properties. The performance of the proposed method was compared with state-of-the-art methods in terms of the computational time, matching precision, and recall. The proposed method required 47 ms to match lines from an image pair in the KITTI dataset with an average precision of 95%. We also verified the proposed method under image blur, illumination variation, and viewpoint changes.
The black hole binary V404 Cygni: a highly accreting obscured AGN analogue
NASA Astrophysics Data System (ADS)
Motta, S. E.; Kajava, J. J. E.; Sánchez-Fernández, C.; Giustini, M.; Kuulkers, E.
2017-06-01
Typical black hole binaries in outburst show spectral states and transitions, characterized by a clear connection between the inflow on to the black hole and outflows from its vicinity. The transient stellar mass black hole binary V404 Cyg apparently does not fit in this picture. Its outbursts are characterized by intense flares and intermittent plateau and low-luminosity states, with a dynamical intensity range of several orders of magnitude on time-scales of hours. During the 2015 June-July X-ray outburst a joint Swift and INTEGRAL observing campaign captured V404 Cyg in one of these plateau states. The simultaneous Swift/XRT + INTRGRAL/JEM-X + INTEGRAL/IBIS-ISGRI spectrum is reminiscent of that of obscured/absorbed active galactic nuclei (AGN). It can be modelled as a Comptonization spectrum, heavily absorbed by a partial covering, high column density material (NH ≈ 1-3 × 1024 cm-2), and a dominant reprocessed component, including a narrow iron Kα line. Such spectral distribution can be produced by a geometrically thick accretion flow able to launch a clumpy outflow, likely responsible for both the high intrinsic absorption and the intense reprocessed emission observed. Similarly to what happens in certain obscured AGN, the low-flux states might not be (solely) related to a decrease in the intrinsic luminosity, but could instead be caused by an almost complete obscuration of the inner accretion flow.
Spatially distributed multipartite entanglement enables EPR steering of atomic clouds
NASA Astrophysics Data System (ADS)
Kunkel, Philipp; Prüfer, Maximilian; Strobel, Helmut; Linnemann, Daniel; Frölian, Anika; Gasenzer, Thomas; Gärttner, Martin; Oberthaler, Markus K.
2018-04-01
A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Grijs, Richard de; Li, Chengyuan
2015-05-20
The two Large Magellanic Cloud star clusters, NGC 1805 and NGC 1818, are approximately the same chronological age (∼30 Myr), but show different radial trends in binary frequency. The F-type stars (1.3–2.2 M{sub ⊙}) in NGC 1818 have a binary frequency that decreases toward the core, while the binary frequency for stars of similar mass in NGC 1805 is flat with radius, or perhaps bimodal (with a peak in the core). We show here, through detailed N-body modeling, that both clusters could have formed with the same primordial binary frequency and with binary orbital elements and masses drawn from themore » same distributions (defined from observations of open clusters and the field of our Galaxy). The observed radial trends in binary frequency for both clusters are best matched with models that have initial substructure. Furthermore, both clusters may be evolving along a very similar dynamical sequence, with the key difference that NGC 1805 is dynamically older than NGC 1818. The F-type binaries in NGC 1818 still show evidence of an initial period of rapid dynamical disruptions (which occur preferentially in the core), while NGC 1805 has already begun to recover a higher core binary frequency, owing to mass segregation (which will eventually produce a distribution in binary frequency that rises only toward the core, as is observed in old Milky Way star clusters). This recovery rate increases for higher-mass binaries, and therefore even at one age in one cluster, we predict a similar dynamical sequence in the radial distribution of the binary frequency as a function of binary primary mass.« less
Last, Isidore; Levy, Yaakov; Jortner, Joshua
2002-01-01
We address the stability of multicharged finite systems driven by Coulomb forces beyond the Rayleigh instability limit. Our exploration of the nuclear dynamics of heavily charged Morse clusters enabled us to vary the range of the pair potential and of the fissibility parameter, which results in distinct fragmentation patterns and in the angular distributions of the fragments. The Rayleigh instability limit separates between nearly binary (or tertiary) spatially unisotropic fission and spatially isotropic Coulomb explosion into a large number of small, ionic fragments. Implications are addressed for a broad spectrum of dynamics in chemical physics, radiation physics of ultracold gases, and biophysics, involving the fission of clusters and droplets, the realization of Coulomb explosion of molecular clusters, the isotropic expansion of optical molasses, and the Coulomb instability of “isolated” proteins. PMID:12093910
Subdwarf B Stars: Tracers Of Binary Evolution
NASA Astrophysics Data System (ADS)
Morales-Rueda, L.; Maxted, P. F. L.; Marsh, T. R.
2007-08-01
Subdwarf B stars are a superb stellar population to study binary evolution. In 2001, Maxted et al. (MNRAS, 326, 1391) found that 21 out of the 36 subdwarf B stars they studied were in short period binaries. These observations inspired new theoretical work that suggests that up to 90 per cent of subdwarf B stars are in binary systems with the remaining apparently single stars being the product of merging pairs. This high binary fraction added to the fact that they are detached binaries that have not changed significantly since they came out of the common envelope, make subdwarf B stars a perfect population to study binary evolution. By comparing the observed orbital period distribution of subdwarf B stars with that obtained from population synthesis calculations we can determine fundamental parameters of binary evolution such as the common envelope ejection efficiency. Here we give an overview of the fraction of short period binaries found from different surveys as well as the most up to date orbital period distribution determined observationally. We also present results from a recent search for subdwarf B stars in long period binaries.
NASA Technical Reports Server (NTRS)
Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Cote, R.; Quirico, E.; Protopappa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.;
2016-01-01
From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that may hide the N2-rich ice below. The strong CH4-rich - H2O mixing line witnesses the subsequent sublimation of the CH4-rich ice lag left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on the cold H2O ice (S autumn). The weak mixing line between CH4-containing ices and the dark red material and the very sharp spatial transitions between these ices and this non-volatile material are probably due to thermal incompatibility. Finally the occurrence of a H2O ice - red material mixing line advocates for a spatial mixing of the red material covering H2O ice, with possibly a small amount intimately mixed in water ice. From this analysis of the different materials distribution and their relative mixing lines, H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. N2-rich ices seem to evolve to CH4-dominated ices, possibly still containing traces of CO and N2, as N2 and CO sublimate away. The spatial distribution of these materials is very complex. The high spatial definition of all these composition maps, as well as those at even higher resolution that will be soon available, will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active frozen world.
NASA Astrophysics Data System (ADS)
Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Côte, R.; Quirico, E.; Protopapa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Jennings, D. E.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm.; Singer, K. N.; Spencer, J. R.; Stansberry, J. A.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; New Horizons Science Team
2017-05-01
From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that may hide the N2-rich ice below. The strong CH4-rich - H2O mixing line witnesses the subsequent sublimation of the CH4-rich ice lag left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on the cold H2O ice (S autumn). The weak mixing line between CH4-containing ices and the dark red material and the very sharp spatial transitions between these ices and this non-volatile material are probably due to thermal incompatibility. Finally the occurrence of a H2O ice - red material mixing line advocates for a spatial mixing of the red material covering H2O ice, with possibly a small amount intimately mixed in water ice. From this analysis of the different materials distribution and their relative mixing lines, H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. N2-rich ices seem to evolve to CH4-dominated ices, possibly still containing traces of CO and N2, as N2 and CO sublimate away. The spatial distribution of these materials is very complex. The high spatial definition of all these composition maps, as well as those at even higher resolution that will be soon available, will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active frozen world.
Binary Cepheids: Separations and Mass Ratios in 5 M ⊙ Binaries
NASA Astrophysics Data System (ADS)
Evans, Nancy Evans; Bond, Howard E.; Schaefer, Gail H.; Mason, Brian D.; Karovska, Margarita; Tingle, Evan
2013-10-01
Deriving the distribution of binary parameters for a particular class of stars over the full range of orbital separations usually requires the combination of results from many different observing techniques (radial velocities, interferometry, astrometry, photometry, direct imaging), each with selection biases. However, Cepheids—cool, evolved stars of ~5 M ⊙—are a special case because ultraviolet (UV) spectra will immediately reveal any companion star hotter than early type A, regardless of the orbital separation. We have used International Ultraviolet Explorer UV spectra of a complete sample of all 76 Cepheids brighter than V = 8 to create a list of all 18 Cepheids with companions more massive than 2.0 M ⊙. Orbital periods of many of these binaries are available from radial-velocity studies, or can be estimated for longer-period systems from detected velocity variability. In an imaging survey with the Hubble Space Telescope Wide Field Camera 3, we resolved three of the companions (those of η Aql, S Nor, and V659 Cen), allowing us to make estimates of the periods out to the long-period end of the distribution. Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations, orbital periods, and mass ratios. The distribution of orbital periods shows that the 5 M ⊙ binaries have systematically shorter periods than do 1 M ⊙ stars. Our data also suggest that the distribution of mass ratios depends on both binary separation and system multiplicity. The distribution of mass ratios as a function of orbital separation, however, does not depend on whether a system is a binary or a triple. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
Map of distribution of six forest ownership types in the conterminous United States
Jaketon H. Hewes; Brett J. Butler; Greg C. Liknes; Mark D. Nelson; Stephanie A. Snyder
2014-01-01
This map depicts the spatial distribution of ownership types across forest land in the conterminous United States circa 2009. The distribution is derived, in part, from Forest Inventory and Analysis (FIA) data that are collected at a sample intensity of approximately one plot per 2400 ha across the United States (U.S. Forest Service 2012). Ownership categories were...
NASA Astrophysics Data System (ADS)
Rakovec, O.; Weerts, A. H.; Hazenberg, P.; Torfs, P. J. J. F.; Uijlenhoet, R.
2012-09-01
This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model. The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty.
X-Raying the Coronae of HD 155555
NASA Technical Reports Server (NTRS)
Lalitha, S.; Singh, K.P.; Drake, S. A.; Kashyap, V.
2015-01-01
We present an analysis of the high-resolution Chandra observation of the multiple system, HD 155555 (an RS CVn type binary system, HD 155555 AB, and its spatially resolved low-mass companion HD 155555 C). This is an intriguing system which shows properties of both an active pre-main sequence star and a synchronised (main sequence) binary. We obtain the emission measure distribution, temperature structures, plasma densities, and abundances of this system and compare them with the coronal properties of other young/active stars. HD 155555 AB and HD 155555 C produce copious X-ray emission with log L(sub x) of 30.54 and 29.30, respectively, in the 0.3-6.0 kiloelectronvolt energy band. The light curves of individual stars show variability on timescales of few minutes to hours. We analyse the dispersed spectra and reconstruct the emission measure distribution using spectral line analysis. The resulting elemental abundances exhibit inverse first ionisation potential effect in both cases. An analysis of He-like triplets yields a range of coronal electron densities 1010 - 1013 per cubic centimeter. Since HD 155555 AB is classified both as an RS CVn and a PMS star, we compare our results with those of other slightly older active main-sequence stars and T Tauri stars, which indicates that the coronal properties of HD 155555 AB closely resemble that of an older RS CVn binary rather than a younger PMS star. Our results also suggests that the properties of HD 155555 C is very similar to those of other active M dwarfs.
Formation and spatial distribution of hypervelocity stars in AGN outflows
NASA Astrophysics Data System (ADS)
Wang, Xiawei; Loeb, Abraham
2018-05-01
We study star formation within outflows driven by active galactic nuclei (AGN) as a new source of hypervelocity stars (HVSs). Recent observations revealed active star formation inside a galactic outflow at a rate of ∼ 15M⊙yr-1 . We verify that the shells swept up by an AGN outflow are capable of cooling and fragmentation into cold clumps embedded in a hot tenuous gas via thermal instabilities. We show that cold clumps of ∼ 103 M⊙ are formed within ∼ 105 yrs. As a result, stars are produced along outflow's path, endowed with the outflow speed at their formation site. These HVSs travel through the galactic halo and eventually escape into the intergalactic medium. The expected instantaneous rate of star formation inside the outflow is ∼ 4 - 5 orders of magnitude greater than the average rate associated with previously proposed mechanisms for producing HVSs, such as the Hills mechanism and three-body interaction between a star and a black hole binary. We predict the spatial distribution of HVSs formed in AGN outflows for future observational probe.
Selection effects and binary galaxy velocity differences
NASA Technical Reports Server (NTRS)
Schneider, Stephen E.; Salpeter, Edwin E.
1990-01-01
Measurements of the velocity differences (delta v's) in pairs of galaxies from large statistical samples have often been used to estimate the average masses of binary galaxies. A basic prediction of these models is that the delta v distribution ought to decline monotonically. However, some peculiar aspects of the kinematics have been uncovered, with an anomalous preference for delta v approx. equal to 72 km s(sup-1) appearing to be present in the data. The authors examine a large sample of binary galaxies with accurate redshift measurements and confirm that the distribution of delta v's appears to be non-monotonic with peaks at 0 and approx. 72 km s (exp -1). The authors suggest that the non-zero peak results from the isolation criteria employed in defining samples of binaries and that it indicates there are two populations of binary orbits contributing to the observed delta v distribution.
Binary weight distributions of some Reed-Solomon codes
NASA Technical Reports Server (NTRS)
Pollara, F.; Arnold, S.
1992-01-01
The binary weight distributions of the (7,5) and (15,9) Reed-Solomon (RS) codes and their duals are computed using the MacWilliams identities. Several mappings of symbols to bits are considered and those offering the largest binary minimum distance are found. These results are then used to compute bounds on the soft-decoding performance of these codes in the presence of additive Gaussian noise. These bounds are useful for finding large binary block codes with good performance and for verifying the performance obtained by specific soft-coding algorithms presently under development.
Geographic distribution of trauma centers and injury-related mortality in the United States.
Brown, Joshua B; Rosengart, Matthew R; Billiar, Timothy R; Peitzman, Andrew B; Sperry, Jason L
2016-01-01
Regionalized trauma care improves outcomes; however, access to care is not uniform across the United States. The objective was to evaluate whether geographic distribution of trauma centers correlates with injury mortality across state trauma systems. Level I or II trauma centers in the contiguous United States were mapped. State-level age-adjusted injury fatality rates per 100,000 people were obtained and evaluated for spatial autocorrelation. Nearest neighbor ratios (NNRs) were generated for each state. A NNR less than 1 indicates clustering, while a NNR greater than 1 indicates dispersion. NNRs were tested for difference from random geographic distribution. Fatality rates and NNRs were examined for correlation. Fatality rates were compared between states with trauma center clustering versus dispersion. Trauma center distribution and population density were evaluated. Spatial-lag regression determined the association between fatality rate and NNR, controlling for state-level demographics, population density, injury severity, trauma system resources, and socioeconomic factors. Fatality rates were spatially autocorrelated (Moran's I = 0.35, p < 0.01). Nine states had a clustered pattern (median NNR, 0.55; interquartile range [IQR], 0.48-0.60), 22 had a dispersed pattern (median NNR, 2.00; IQR, 1.68-3.99), and 10 had a random pattern (median NNR, 0.90; IQR, 0.85-1.00) of trauma center distribution. Fatality rate and NNR were correlated (ρ = 0.34, p = 0.03). Clustered states had a lower median injury fatality rate compared with dispersed states (56.9 [IQR, 46.5-58.9] vs. 64.9 [IQR, 52.5-77.1]; p = 0.04). Dispersed compared with clustered states had more counties without a trauma center that had higher population density than counties with a trauma center (5.7% vs. 1.2%, p < 0.01). Spatial-lag regression demonstrated that fatality rates increased by 0.02 per 100,000 persons for each unit increase in NNR (p < 0.01). Geographic distribution of trauma centers correlates with injury mortality, with more clustered state trauma centers associated with lower fatality rates. This may be a result of access relative to population density. These results may have implications for trauma system planning and require further study to investigate underlying mechanisms. Therapeutic/care management study, level IV.
Mu, Guangyu; Liu, Ying; Wang, Limin
2015-01-01
The spatial pooling method such as spatial pyramid matching (SPM) is very crucial in the bag of features model used in image classification. SPM partitions the image into a set of regular grids and assumes that the spatial layout of all visual words obey the uniform distribution over these regular grids. However, in practice, we consider that different visual words should obey different spatial layout distributions. To improve SPM, we develop a novel spatial pooling method, namely spatial distribution pooling (SDP). The proposed SDP method uses an extension model of Gauss mixture model to estimate the spatial layout distributions of the visual vocabulary. For each visual word type, SDP can generate a set of flexible grids rather than the regular grids from the traditional SPM. Furthermore, we can compute the grid weights for visual word tokens according to their spatial coordinates. The experimental results demonstrate that SDP outperforms the traditional spatial pooling methods, and is competitive with the state-of-the-art classification accuracy on several challenging image datasets.
Optimally cloned binary coherent states
NASA Astrophysics Data System (ADS)
Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.
2017-10-01
Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.
EVOLUTION OF TRANSIENT LOW-MASS X-RAY BINARIES TO REDBACK MILLISECOND PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Kun; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn
2015-11-20
Redback millisecond pulsars (MSPs; hereafter redbacks) are a subpopulation of eclipsing MSPs in close binaries. The formation processes of these systems are not clear. The three pulsars showing transitions between rotation- and accretion-powered states belong to both redbacks and transient low-mass X-ray binaries (LMXBs), suggesting a possible evolutionary link between them. Through binary evolution calculations, we show that the accretion disks in almost all LMXBs are subject to the thermal-viscous instability during certain evolutionary stages, and the parameter space for the disk instability covers the distribution of known redbacks in the orbital period—companion mass plane. We accordingly suggest that themore » abrupt reduction of the mass accretion rate during quiescence of transient LMXBs provides a plausible way to switch on the pulsar activity, leading to the formation of redbacks, if the neutron star has been spun up to be an energetic MSP. We investigate the evolution of redbacks, taking into account the evaporation feedback, and discuss its possible influence on the formation of black widow MSPs.« less
Importance of spatial autocorrelation in modeling bird distributions at a continental scale
Bahn, V.; O'Connor, R.J.; Krohn, W.B.
2006-01-01
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.
Preserving Institutional Privacy in Distributed binary Logistic Regression.
Wu, Yuan; Jiang, Xiaoqian; Ohno-Machado, Lucila
2012-01-01
Privacy is becoming a major concern when sharing biomedical data across institutions. Although methods for protecting privacy of individual patients have been proposed, it is not clear how to protect the institutional privacy, which is many times a critical concern of data custodians. Built upon our previous work, Grid Binary LOgistic REgression (GLORE)1, we developed an Institutional Privacy-preserving Distributed binary Logistic Regression model (IPDLR) that considers both individual and institutional privacy for building a logistic regression model in a distributed manner. We tested our method using both simulated and clinical data, showing how it is possible to protect the privacy of individuals and of institutions using a distributed strategy.
Trotta-Moreu, Nuria; Lobo, Jorge M
2010-02-01
Predictions from individual distribution models for Mexican Geotrupinae species were overlaid to obtain a total species richness map for this group. A database (GEOMEX) that compiles available information from the literature and from several entomological collections was used. A Maximum Entropy method (MaxEnt) was applied to estimate the distribution of each species, taking into account 19 climatic variables as predictors. For each species, suitability values ranging from 0 to 100 were calculated for each grid cell on the map, and 21 different thresholds were used to convert these continuous suitability values into binary ones (presence-absence). By summing all of the individual binary maps, we generated a species richness prediction for each of the considered thresholds. The number of species and faunal composition thus predicted for each Mexican state were subsequently compared with those observed in a preselected set of well-surveyed states. Our results indicate that the sum of individual predictions tends to overestimate species richness but that the selection of an appropriate threshold can reduce this bias. Even under the most optimistic prediction threshold, the mean species richness error is 61% of the observed species richness, with commission errors being significantly more common than omission errors (71 +/- 29 versus 18 +/- 10%). The estimated distribution of Geotrupinae species richness in Mexico in discussed, although our conclusions are preliminary and contingent on the scarce and probably biased available data.
Angular distribution of binary encounter electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, C.; Richard, P.; Grabbe, S.
The double differential cross section, DDCS, of the binary encounter electrons (BEe) in 1 MeV/u F{sup q+} + H{sub 2} (q = 4, 6, 8, 9) is measured from 0 to 70 degrees with respect to the beam direction. At 0{degrees} the data confirm the decrease of the cross section with increasing projectile charge state. At larger observation angles, the data are in fair agreement with the prediction proposed by Shingal et al. where the ratio of the DDCS for 6+ ions to bare ions is less than 1 for {theta}{sub lab} > 30{degrees} and greater than 1 for {theta}{submore » lab} < 30{degrees} as recently observed for C{sup q+}. We also observed that the energies of the BEe peak are charge state, q, independent at 0{degrees} observation angle, but q dependent at larger observation angles.« less
Far-field phase contrast from orbiting objects: Characterizing progenitors of binary mergers
NASA Astrophysics Data System (ADS)
Matthias, P.; Hofmann, R.
2018-05-01
We propose an idea to determine the size of a binary, composed of two compact stars or black holes, its diffractive power, the distance between components, and the distance to an observer, in exploiting the emergence of intensity contrast by free-space propagation when the phase of coherent light from a very distant background source is affected by diffraction. We assume that this effect can be characterized by the projected real part of an effective refractive index n . Here we model the according two-dimensional exit phase-map by a superposition of two Gaussians. In the extreme far field, phase information is captured by scaling functions which are analyzed here. Both spatial and temporal scanning of the intensity contrast are discussed. While the former mode can be used, e.g., to determine the distance to the observer, the latter allows, e.g., one to measure the overall diffractive power of the binary in terms of the particular dependence of a scaling curve on the projected spatial separation between the binary's components. Both modes of observation may be of relevance in monitoring the progenitor dynamics of binary collapse using radio telescopes.
Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems
NASA Astrophysics Data System (ADS)
Duclut, Charlie; Backhaus, Scott; Chertkov, Michael
2013-06-01
The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a “normal” state where the motors’ mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a “stalled” state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors’ mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.
Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems.
Duclut, Charlie; Backhaus, Scott; Chertkov, Michael
2013-06-01
The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a "normal" state where the motors' mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a "stalled" state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors' mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.
NASA Astrophysics Data System (ADS)
Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe
2014-11-01
Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.
USDA-ARS?s Scientific Manuscript database
This paper reviews the literature and reports on the current state of knowledge regarding the potential for managers to use visual (VC), auditory (AC), and olfactory (OC) cues to manage foraging behavior and spatial distribution of rangeland livestock. We present evidence that free-ranging livestock...
ERIC Educational Resources Information Center
Rivizzigno, Victoria L.
This exercise teaches undergraduate geography students to use the Lorenz Curve and the Index of Dissimilarity to assess the spatial distributions of the White, Black, and American Indian populations of the United States in 1980. Specific procedures for implementing the exercise are provided; solutions to the exercise are also included. Students…
Christina L. Staudhammer; Francisco J. Escobedo; Nathan Holt; Linda J. Young; Thomas J. Brandeis; Wayne Zipperer; Other
2015-01-01
We examined the spatial distribution, occurrence, and socioecological predictors of woody invasive plants (WIP) in two subtropical, coastal urban ecosystems: San Juan, Puerto Rico and Miami-Dade, United States. These two cities have similar climates and ecosystems typical of subtropical regions but differ in socioeconomics, topography, and urbanization processes. Using...
Luan, Hui; Minaker, Leia M; Law, Jane
2016-08-22
Findings of whether marginalized neighbourhoods have less healthy retail food environments (RFE) are mixed across countries, in part because inconsistent approaches have been used to characterize RFE 'healthfulness' and marginalization, and researchers have used non-spatial statistical methods to respond to this ultimately spatial issue. This study uses in-store features to categorize healthy and less healthy food outlets. Bayesian spatial hierarchical models are applied to explore the association between marginalization dimensions and RFE healthfulness (i.e., relative healthy food access that modelled via a probability distribution) at various geographical scales. Marginalization dimensions are derived from a spatial latent factor model. Zero-inflation occurring at the walkable-distance scale is accounted for with a spatial hurdle model. Neighbourhoods with higher residential instability, material deprivation, and population density are more likely to have access to healthy food outlets within a walkable distance from a binary 'have' or 'not have' access perspective. At the walkable distance scale however, materially deprived neighbourhoods are found to have less healthy RFE (lower relative healthy food access). Food intervention programs should be developed for striking the balance between healthy and less healthy food access in the study region as well as improving opportunities for residents to buy and consume foods consistent with dietary recommendations.
NASA Astrophysics Data System (ADS)
Park, Byeongjin; Sohn, Hoon
2017-07-01
Laser ultrasonic scanning, especially full-field wave propagation imaging, is attractive for damage visualization thanks to its noncontact nature, sensitivity to local damage, and high spatial resolution. However, its practicality is limited because scanning at a high spatial resolution demands a prohibitively long scanning time. Inspired by binary search, an accelerated damage visualization technique is developed to visualize damage with a reduced scanning time. The pitch-catch distance between the excitation point and the sensing point is also fixed during scanning to maintain a high signal-to-noise ratio (SNR) of measured ultrasonic responses. The approximate damage boundary is identified by examining the interactions between ultrasonic waves and damage observed at the scanning points that are sparsely selected by a binary search algorithm. Here, a time-domain laser ultrasonic response is transformed into a spatial ultrasonic domain response using a basis pursuit approach so that the interactions between ultrasonic waves and damage, such as reflections and transmissions, can be better identified in the spatial ultrasonic domain. Then, the area inside the identified damage boundary is visualized as damage. The performance of the proposed damage visualization technique is validated excusing a numerical simulation performed on an aluminum plate with a notch and experiments performed on an aluminum plate with a crack and a wind turbine blade with delamination. The proposed damage visualization technique accelerates the damage visualization process in three aspects: (1) the number of measurements that is necessary for damage visualization is dramatically reduced by a binary search algorithm; (2) the number of averaging that is necessary to achieve a high SNR is reduced by maintaining the wave propagation distance short; and (3) with the proposed technique, the same damage can be identified with a lower spatial resolution than the spatial resolution required by full-field wave propagation imaging.
Security proof of continuous-variable quantum key distribution using three coherent states
NASA Astrophysics Data System (ADS)
Brádler, Kamil; Weedbrook, Christian
2018-02-01
We introduce a ternary quantum key distribution (QKD) protocol and asymptotic security proof based on three coherent states and homodyne detection. Previous work had considered the binary case of two coherent states and here we nontrivially extend this to three. Our motivation is to leverage the practical benefits of both discrete and continuous (Gaussian) encoding schemes creating a best-of-both-worlds approach; namely, the postprocessing of discrete encodings and the hardware benefits of continuous ones. We present a thorough and detailed security proof in the limit of infinite signal states which allows us to lower bound the secret key rate. We calculate this is in the context of collective eavesdropping attacks and reverse reconciliation postprocessing. Finally, we compare the ternary coherent state protocol to other well-known QKD schemes (and fundamental repeaterless limits) in terms of secret key rates and loss.
WIYN OPEN CLUSTER STUDY. XXXVI. SPECTROSCOPIC BINARY ORBITS IN NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geller, Aaron M.; Mathieu, Robert D.; Harris, Hugh C.
2009-04-15
We present 98 spectroscopic binary orbits resulting from our ongoing radial velocity survey of the old (7 Gyr) open cluster NGC 188. All but 13 are high-probability cluster members based on both radial velocity and proper motion membership analyses. Fifteen of these member binaries are double lined. Our stellar sample spans a magnitude range of 10.8 {<=}V{<=} 16.5 (1.14-0.92 M {sub sun}) and extends spatially to 17 pc ({approx}13 core radii). All of our binary orbits have periods ranging from a few days to on the order of 10{sup 3} days, and thus are hard binaries that dynamically power themore » cluster. For each binary, we present the orbital solutions and place constraints on the component masses. Additionally, we discuss a few binaries of note from our sample, identifying a likely blue straggler-blue straggler binary system (7782), a double-lined binary with a secondary star which is underluminous for its mass (5080), two potential eclipsing binaries (4705 and 5762), and two binaries which are likely members of a quadruple system (5015a and 5015b)« less
Mapping spatial patterns with morphological image processing
Peter Vogt; Kurt H. Riitters; Christine Estreguil; Jacek Kozak; Timothy G. Wade; James D. Wickham
2006-01-01
We use morphological image processing for classifying spatial patterns at the pixel level on binary land-cover maps. Land-cover pattern is classified as 'perforated,' 'edge,' 'patch,' and 'core' with higher spatial precision and thematic accuracy compared to a previous approach based on image convolution, while retaining the...
NASA Astrophysics Data System (ADS)
McKinnon, Darren; Gull, T. R.; Madura, T.
2014-01-01
A major puzzle in the studies of supernovae is the pseudo-supernova, or the near-supernovae state. It has been found to precede, in timespans ranging from months to years, a number of recently-detected distant supernovae. One explanation of these systems is that a member of a massive binary underwent a near-supernova event shortly before the actual supernova phenomenon. Luckily, we have a nearby massive binary, Eta Carinae, that provides an astrophysical laboratory of a near-analog. The massive, highly-eccentric, colliding-wind binary star system survived a non-terminal stellar explosion in the 1800's, leaving behind the incredible bipolar, 10"x20" Homunculus nebula. Today, the interaction of the binary stellar winds 1") is resolvable by the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST). Using HST/STIS, several three-dimensional (3D) data cubes (2D spatial, 1D velocity) have been obtained at selected phases during Eta Carinae's 5.54-year orbital cycle. The data cubes were collected by mapping the central 1-2" at 0.05" intervals with a 52"x0.1" aperture. Selected forbidden lines, that form in the colliding wind regions, provide information on electron density of the shocked regions, the ionization by the hot secondary companion of the primary wind and how these regions change with orbital phase. By applying various analysis techniques to these data cubes, we can compare and measure temporal changes due to the interactions between the two massive winds. The observations, when compared to current 3D hydrodynamic models, provide insight on Eta Carinae's recent mass-loss history, important for determining the current and future states of this likely nearby supernova progenitor.
Are Binary Separations related to their System Mass?
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.
2004-08-01
We compile most recent multiplicity fractions and binary separation distributions for different primary masses, including very low-mass and brown dwarf primaries, and compare them with dynamical decay models of small-N clusters. The model predictions are based on detailed numerical calculations of the internal cluster dynamics, as well as on Monte-Carlo methods. Both observations and models reflect the same trends: (1) The multiplicity fraction is an increasing function of the primary mass. (2) The mean binary separations are increasing with the system mass in the sense that very low-mass binaries have average separations around ≈ 4AU, while the binary separation distribution for solar-type primaries peaks at ≈ 40AU. M-type binary systems apparently preferentially populate intermediate separations. Similar specific energy at the time of cluster formation for all cluster masses can possibly explain this trend.
NASA Astrophysics Data System (ADS)
Rakovec, O.; Weerts, A.; Hazenberg, P.; Torfs, P.; Uijlenhoet, R.
2012-12-01
This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model (Rakovec et al., 2012a). The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. The uncertain precipitation model forcings were obtained using a time-dependent multivariate spatial conditional simulation method (Rakovec et al., 2012b), which is further made conditional on preceding simulations. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty. Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrol. Earth Syst. Sci. Discuss., 9, 3961-3999, doi:10.5194/hessd-9-3961-2012, 2012a. Rakovec, O., Hazenberg, P., Torfs, P. J. J. F., Weerts, A. H., and Uijlenhoet, R.: Generating spatial precipitation ensembles: impact of temporal correlation structure, Hydrol. Earth Syst. Sci. Discuss., 9, 3087-3127, doi:10.5194/hessd-9-3087-2012, 2012b.
Kuchlyan, Jagannath; Banik, Debasis; Roy, Arpita; Kundu, Niloy; Sarkar, Nilmoni
2014-12-04
In this article we have investigated intermolecular excited-state proton transfer (ESPT) of firefly's chromophore D-luciferin in DMSO-water binary mixtures using steady-state and time-resolved fluorescence spectroscopy. The unusual behavior of DMSO-water binary mixture as reported by Bagchi et al. (J. Phys. Chem. B 2010, 114, 12875-12882) was also found using D-luciferin as intermolecular ESPT probe. The binary mixture has given evidence of its anomalous nature at low mole fractions of DMSO (below XD = 0.4) in our systematic investigation. Upon excitation of neutral D-luciferin molecule, dual fluorescence emissions (protonated and deprotonated form) are observed in DMSO-water binary mixture. A clear isoemissive point in the time-resolved area normalized emission spectra further indicates two emissive species in the excited state of D-luciferin in DMSO-water binary mixture. DMSO-water binary mixtures of different compositions are fascinating hydrogen bonding systems. Therefore, we have observed unusual changes in the fluorescence emission intensity, fluorescence quantum yield, and fluorescence lifetime of more hydrogen bonding sensitive anionic form of D-luciferin in low DMSO content of DMSO-water binary mixture.
The initial value problem as it relates to numerical relativity.
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
The initial value problem as it relates to numerical relativity
NASA Astrophysics Data System (ADS)
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
Computer Generated Holography with Intensity-Graded Patterns
Conti, Rossella; Assayag, Osnath; de Sars, Vincent; Guillon, Marc; Emiliani, Valentina
2016-01-01
Computer Generated Holography achieves patterned illumination at the sample plane through phase modulation of the laser beam at the objective back aperture. This is obtained by using liquid crystal-based spatial light modulators (LC-SLMs), which modulate the spatial phase of the incident laser beam. A variety of algorithms is employed to calculate the phase modulation masks addressed to the LC-SLM. These algorithms range from simple gratings-and-lenses to generate multiple diffraction-limited spots, to iterative Fourier-transform algorithms capable of generating arbitrary illumination shapes perfectly tailored on the base of the target contour. Applications for holographic light patterning include multi-trap optical tweezers, patterned voltage imaging and optical control of neuronal excitation using uncaging or optogenetics. These past implementations of computer generated holography used binary input profile to generate binary light distribution at the sample plane. Here we demonstrate that using graded input sources, enables generating intensity graded light patterns and extend the range of application of holographic light illumination. At first, we use intensity-graded holograms to compensate for LC-SLM position dependent diffraction efficiency or sample fluorescence inhomogeneity. Finally we show that intensity-graded holography can be used to equalize photo evoked currents from cells expressing different levels of chanelrhodopsin2 (ChR2), one of the most commonly used optogenetics light gated channels, taking into account the non-linear dependence of channel opening on incident light. PMID:27799896
VizieR Online Data Catalog: Binary systems among nearby dwarfs searching (Khovritchev+, 2018)
NASA Astrophysics Data System (ADS)
Khovritchev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petjur, V. V.; Shumilov, A. A.; Oskina, K. I.; Maksimova, L. A.
2018-03-01
All results are collected in three tables: saturn1m-bc.dat, saturn1m-sdss-bc.dat and sdss-bc.dat. They have the same byte-by-byte description. The tables contain the estimates of spatial parameters of binaries (rho and d_m), relative ellipticity and asymmetry index. In addition, the positions, proper motions, photometric magnitudes, parallaxes and metallicities are presented. All stars listed in these tables are binary candidates. (3 data files).
Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Rose, Joshua R.; Rigge, Matthew; Walvoord, Michelle Ann
2014-01-01
The distribution of permafrost is important to understand because of permafrost's influence on high-latitude ecosystem structure and functions. Moreover, near-surface (defined here as within 1 m of the Earth's surface) permafrost is particularly susceptible to a warming climate and is generally poorly mapped at regional scales. Subsequently, our objectives were to (1) develop the first-known binary and probabilistic maps of near-surface permafrost distributions at a 30 m resolution in the Alaskan Yukon River Basin by employing decision tree models, field measurements, and remotely sensed and mapped biophysical data; (2) evaluate the relative contribution of 39 biophysical variables used in the models; and (3) assess the landscape-scale factors controlling spatial variations in permafrost extent. Areas estimated to be present and absent of near-surface permafrost occupy approximately 46% and 45% of the Alaskan Yukon River Basin, respectively; masked areas (e.g., water and developed) account for the remaining 9% of the landscape. Strong predictors of near-surface permafrost include climatic indices, land cover, topography, and Landsat 7 Enhanced Thematic Mapper Plus spectral information. Our quantitative modeling approach enabled us to generate regional near-surface permafrost maps and provide essential information for resource managers and modelers to better understand near-surface permafrost distribution and how it relates to environmental factors and conditions.
Quantitative evidence of an intrinsic luminosity spread in the Orion nebula cluster
NASA Astrophysics Data System (ADS)
Reggiani, M.; Robberto, M.; Da Rio, N.; Meyer, M. R.; Soderblom, D. R.; Ricci, L.
2011-10-01
Aims: We study the distribution of stellar ages in the Orion nebula cluster (ONC) using accurate HST photometry taken from HST Treasury Program observations of the ONC utilizing the cluster distance estimated by Menten and collaborators. We investigate whether there is an intrinsic age spread in the region and whether the age depends on the spatial distribution. Methods: We estimate the extinction and accretion luminosity towards each source by performing synthetic photometry on an empirical calibration of atmospheric models using the package Chorizos of Maiz-Apellaniz. The position of the sources in the HR-diagram is compared with different theoretical isochrones to estimate the mean cluster age and age dispersion. On the basis of Monte Carlo simulations, we quantify the amount of intrinsic age spread in the region, taking into account uncertainties in the distance, spectral type, extinction, unresolved binaries, accretion, and photometric variability. Results: According to the evolutionary models of Siess and collaborators, the mean age of the Cluster is 2.2 Myr with a scatter of few Myr. With Monte Carlo simulations, we find that the observed age spread is inconsistent with that of a coeval stellar population, but in agreement with a star formation activity between 1.5 and 3.5 Myr. We also observe some evidence that ages depends on the spatial distribution.
Effective electrodiffusion equation for non-uniform nanochannels.
Marini Bettolo Marconi, Umberto; Melchionna, Simone; Pagonabarraga, Ignacio
2013-06-28
We derive a one-dimensional formulation of the Planck-Nernst-Poisson equation to describe the dynamics of a symmetric binary electrolyte in channels whose section is nanometric and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs diffusion equation and leads to a system of coupled equations for the partial densities which depends on the charge sitting at the walls in a non-trivial fashion. We consider two kinds of non-uniformities, those due to the spatial variation of charge distribution and those due to the shape variation of the pore and report one- and three-dimensional solutions of the electrokinetic equations.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-09-05
A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Soumya D.; Nayak, Rajesh K.
The space based gravitational wave detector LISA (Laser Interferometer Space Antenna) is expected to observe a large population of Galactic white dwarf binaries whose collective signal is likely to dominate instrumental noise at observational frequencies in the range 10{sup -4} to 10{sup -3} Hz. The motion of LISA modulates the signal of each binary in both frequency and amplitude--the exact modulation depending on the source direction and frequency. Starting with the observed response of one LISA interferometer and assuming only Doppler modulation due to the orbital motion of LISA, we show how the distribution of the entire binary population inmore » frequency and sky position can be reconstructed using a tomographic approach. The method is linear and the reconstruction of a delta-function distribution, corresponding to an isolated binary, yields a point spread function (psf). An arbitrary distribution and its reconstruction are related via smoothing with this psf. Exploratory results are reported demonstrating the recovery of binary sources, in the presence of white Gaussian noise.« less
Resolving the Massive Binary Wind Interaction Of Eta Carinae with HST/STIS
NASA Technical Reports Server (NTRS)
Gull, Theodore; Nielsen, K.; Corcoran, M.; Hillier, J.; Madura, T.; Hamaguchi, K.; Kober, G.; Owocki, S.; Russell, C.; Okazaki, A.;
2009-01-01
We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.
Spatial distribution of cutaneous leishmaniasis in the state of Paraná, Brazil.
Melo, Helen Aline; Rossoni, Diogo Francisco; Teodoro, Ueslei
2017-01-01
The geographic distribution of cutaneous leishmaniasis (CL) makes it a disease of major clinical importance in Brazil, where it is endemic in the state of Paraná. The objective of this study was to analyze the spatial distribution of CL in Paraná between 2001 and 2015, based on data from the Sistema de Informação de Agravos de Notificação (Information System for Notifiable Diseases) regarding autochthonous CL cases. Spatial autocorrelation was performed using Moran's Global Index and the Local Indicator of Spatial Association (LISA). The construction of maps was based on categories of association (high-high, low-low, high-low, and low-high). A total of 4,557 autochthonous cases of CL were registered in the state of Paraná, with an annual average of 303.8 (± 135.2) and a detection coefficient of 2.91. No correlation was found between global indices and their respective significance in 2001 (I = -0.456, p = 0.676), but evidence of spatial autocorrelation was found in other years (p< 0.05). In the construction and analysis of the cluster maps, areas with a high-high positive association were found in the Ivaí-Pirapó, Tibagi, Cinzas-Laranjinha, and Ribeira areas. The state of Paraná should keep a constant surveillance over CL due to the prominent presence of socioeconomic and environmental factors such as the favorable circumstances for the vectors present in peri-urban and agriculture áreas.
Spatial distribution of cutaneous leishmaniasis in the state of Paraná, Brazil
2017-01-01
The geographic distribution of cutaneous leishmaniasis (CL) makes it a disease of major clinical importance in Brazil, where it is endemic in the state of Paraná. The objective of this study was to analyze the spatial distribution of CL in Paraná between 2001 and 2015, based on data from the Sistema de Informação de Agravos de Notificação (Information System for Notifiable Diseases) regarding autochthonous CL cases. Spatial autocorrelation was performed using Moran’s Global Index and the Local Indicator of Spatial Association (LISA). The construction of maps was based on categories of association (high-high, low-low, high-low, and low-high). A total of 4,557 autochthonous cases of CL were registered in the state of Paraná, with an annual average of 303.8 (± 135.2) and a detection coefficient of 2.91. No correlation was found between global indices and their respective significance in 2001 (I = -0.456, p = 0.676), but evidence of spatial autocorrelation was found in other years (p< 0.05). In the construction and analysis of the cluster maps, areas with a high-high positive association were found in the Ivaí-Pirapó, Tibagi, Cinzas-Laranjinha, and Ribeira areas. The state of Paraná should keep a constant surveillance over CL due to the prominent presence of socioeconomic and environmental factors such as the favorable circumstances for the vectors present in peri-urban and agriculture áreas. PMID:28938013
THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perets, Hagai B.; Subr, Ladislav
2012-06-01
Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less
VizieR Online Data Catalog: Statistical test on binary stars non-coevality (Valle+, 2016)
NASA Astrophysics Data System (ADS)
Valle, G.; Dell'Omodarme, M.; Valle, G.; Prada Moroni, P. G.; Degl'Innocenti, S.
2016-01-01
The table contains the W0.95 critical values, for the 1087 binary systems considered in the paper. Tha table also lists the parameters of the beta distributions approximating the empirical W distributions. (1 data file).
Black hole/pulsar binaries in the Galaxy
NASA Astrophysics Data System (ADS)
Shao, Yong; Li, Xiang-Dong
2018-06-01
We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.
ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems
Expósito, Roberto R.
2018-01-01
Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/. PMID:29608567
ParBiBit: Parallel tool for binary biclustering on modern distributed-memory systems.
González-Domínguez, Jorge; Expósito, Roberto R
2018-01-01
Biclustering techniques are gaining attention in the analysis of large-scale datasets as they identify two-dimensional submatrices where both rows and columns are correlated. In this work we present ParBiBit, a parallel tool to accelerate the search of interesting biclusters on binary datasets, which are very popular on different fields such as genetics, marketing or text mining. It is based on the state-of-the-art sequential Java tool BiBit, which has been proved accurate by several studies, especially on scenarios that result on many large biclusters. ParBiBit uses the same methodology as BiBit (grouping the binary information into patterns) and provides the same results. Nevertheless, our tool significantly improves performance thanks to an efficient implementation based on C++11 that includes support for threads and MPI processes in order to exploit the compute capabilities of modern distributed-memory systems, which provide several multicore CPU nodes interconnected through a network. Our performance evaluation with 18 representative input datasets on two different eight-node systems shows that our tool is significantly faster than the original BiBit. Source code in C++ and MPI running on Linux systems as well as a reference manual are available at https://sourceforge.net/projects/parbibit/.
Laboratory demonstration of Stellar Intensity Interferometry using a software correlator
NASA Astrophysics Data System (ADS)
Matthews, Nolan; Kieda, David
2017-06-01
In this talk I will present measurements of the spatial coherence function of laboratory thermal (black-body) sources using Hanbury-Brown and Twiss interferometry with a digital off-line correlator. Correlations in the intensity fluctuations of a thermal source, such as a star, allow retrieval of the second order coherence function which can be used to perform high resolution imaging and source geometry characterization. We also demonstrate that intensity fluctuations between orthogonal polarization states are uncorrelated but can be used to reduce systematic noise. The work performed here can readily be applied to existing and future Imaging Air-Cherenkov telescopes to measure spatial properties of stellar sources. Some possible candidates for astronomy applications include close binary star systems, fast rotators, Cepheid variables, and potentially even exoplanet characterization.
NASA Astrophysics Data System (ADS)
Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.
2016-10-01
We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.
Spatial study of homicide rates in the state of Bahia, Brazil, 1996-2010
de Souza, Tiago Oliveira; Pinto, Liana Wernersbach; de Souza, Edinilsa Ramos
2014-01-01
OBJECTIVE To analyze the spatial distribution of homicide mortality in the state of Bahia, Northeastern Brazil. METHODS Ecological study of the 15 to 39-year old male population in the state of Bahia in the period 1996-2010. Data from the Mortality Information System, relating to homicide (X85-Y09) and population estimates from the Brazilian Institute of Geography and Statistics were used. The existence of spatial correlation, the presence of clusters and critical areas of the event studied were analyzed using Moran’s I Global and Local indices. RESULTS A non-random spatial pattern was observed in the distribution of rates, as was the presence of three clusters, the first in the north health district, the second in the eastern region, and the third cluster included townships in the south and the far south of Bahia. CONCLUSIONS The homicide mortality in the three different critical areas requires further studies that consider the socioeconomic, cultural and environmental characteristics in order to guide specific preventive and interventionist practices. PMID:25119942
Spatially Distributed Characterization of Catchment Dynamics Using Travel-Time Distributions
NASA Astrophysics Data System (ADS)
Heße, F.; Zink, M.; Attinger, S.
2015-12-01
The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and temperature to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and therefore allow to infer, local properties of the catchment.
Probing Radiatively Inefficient Accretion Flow in the Neutron Star X-ray Binary System Aquila X-1
NASA Astrophysics Data System (ADS)
Maitra, Dipankar
2016-09-01
The nature of radiatively inefficient accretion flows (RIAF) near neutron stars and black holes remains largely enshrouded in mystery, primarily due to their low luminosity. Long term monitoring of Aql X-1 has revealed that during certain outbursts, the system goes into a relatively bright RIAF state for periods lasting several weeks. These low-intensity states offer a unique opportunity to probe radiatively inefficient flows. We request a 75 ksec Chandra/HETG ToO observation of Aql X-1 during a low-intensity state. Emission line diagnostics of the observed spectrum will be used to test different RIAF models and constrain flow properties such as the radial temperature and density profile, existence of an outflowing wind, spatial extent of the RIAF, and gas dynamics within the flow.
Probing Radiatively Inefficient Accretion Flow in the Neutron Star X-ray Binary System Aquila X-1
NASA Astrophysics Data System (ADS)
Maitra, Dipankar
2017-09-01
The nature of radiatively inefficient accretion flows (RIAF) near neutron stars and black holes remains largely enshrouded in mystery, primarily due to their low luminosity. Long term monitoring of Aql X-1 has revealed that during certain outbursts, the system goes into a relatively bright RIAF state for periods lasting several weeks. These low-intensity states offer a unique opportunity to probe radiatively inefficient flows. We request a 75 ksec Chandra/HETG ToO observation of Aql X-1 during a low-intensity state. Emission line diagnostics of the observed spectrum will be used to test different RIAF models and constrain flow properties such as the radial temperature and density profile, existence of an outflowing wind, spatial extent of the RIAF, and gas dynamics within the flow.
How I Learned to Stop Worrying and Love Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Moe, Maxwell Cassady
Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.
The binary millisecond pulsar PSR J1023+0038 during its accretion state - I. Optical variability
NASA Astrophysics Data System (ADS)
Shahbaz, T.; Linares, M.; Nevado, S. P.; Rodríguez-Gil, P.; Casares, J.; Dhillon, V. S.; Marsh, T. R.; Littlefair, S.; Leckngam, A.; Poshyachinda, S.
2015-11-01
We present time-resolved optical photometry of the binary millisecond `redback' pulsar PSR J1023+0038 (=AY Sex) during its low-mass X-ray binary phase. The light curves taken between 2014 January and April show an underlying sinusoidal modulation due to the irradiated secondary star and accretion disc. We also observe superimposed rapid flaring on time-scales as short as ˜20 s with amplitudes of ˜0.1-0.5 mag and additional large flare events on time-scales of ˜5-60 min with amplitudes of ˜0.5-1.0 mag. The power density spectrum of the optical flare light curves is dominated by a red-noise component, typical of aperiodic activity in X-ray binaries. Simultaneous X-ray and UV observations by the Swift satellite reveal strong correlations that are consistent with X-ray reprocessing of the UV light, most likely in the outer regions of the accretion disc. On some nights we also observe sharp-edged, rectangular, flat-bottomed dips randomly distributed in orbital phase, with a median duration of ˜250 s and a median ingress/egress time of ˜20 s. These rectangular dips are similar to the mode-switching behaviour between disc `active' and `passive' luminosity states, observed in the X-ray light curves of other redback millisecond pulsars. This is the first time that the optical analogue of the X-ray mode-switching has been observed. The properties of the passive- and active-state light curves can be explained in terms of clumpy accretion from a trapped inner accretion disc near the corotation radius, resulting in rectangular, flat-bottomed optical and X-ray light curves.
NASA Astrophysics Data System (ADS)
Bentley, Mace L.; Mote, Thomas L.
1998-11-01
In 1888, Iowa weather researcher Gustavus Hinrichs gave widespread convectively induced windstorms the name "derecho". Refinements to this definition have evolved after numerous investigations of these systems; however, to date, a derecho climatology has not been conducted.This investigation examines spatial and temporal aspects of derechos and their associated mesoscale convective systems that occurred from 1986 to 1995. The spatial distribution of derechos revealed four activity corridors during the summer, five during the spring, and two during the cool season. Evidence suggests that the primary warm season derecho corridor is located in the southern Great Plains. During the cool season, derecho activity was found to occur in the southeast states and along the Atlantic seaboard. Temporally, derechos are primarily late evening or overnight events during the warm season and are more evenly distributed throughout the day during the cool season.
Spatially distributed multipartite entanglement enables EPR steering of atomic clouds.
Kunkel, Philipp; Prüfer, Maximilian; Strobel, Helmut; Linnemann, Daniel; Frölian, Anika; Gasenzer, Thomas; Gärttner, Martin; Oberthaler, Markus K
2018-04-27
A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Adam S. Ward; Michael N. Gooseff; Michael Fitzgerald; Thomas J. Voltz; Kamini Singha
2014-01-01
The transport of solutes along hyporheic flowpaths is recognized as central to numerous biogeochemical cycles, yet our understanding of how this transport changes with baseflow recession, particularly in a spatially distributed manner, is limited. We conducted four steady-state solute tracer injections and collected electrical resistivity data to characterize hyporheic...
Alcohol beverage control, privatization and the geographic distribution of alcohol outlets
2012-01-01
Background With Pennsylvania currently considering a move away from an Alcohol Beverage Control state to a privatized alcohol distribution system, this study uses a spatial analytical approach to examine potential impacts of privatization on the number and spatial distribution of alcohol outlets in the city of Philadelphia over a long time horizon. Methods A suite of geospatial data were acquired for Philadelphia, including 1,964 alcohol outlet locations, 569,928 land parcels, and school, church, hospital, park and playground locations. These data were used as inputs for exploratory spatial analysis to estimate the expected number of outlets that would eventually operate in Philadelphia. Constraints included proximity restrictions (based on current ordinances regulating outlet distribution) of at least 200 feet between alcohol outlets and at least 300 feet between outlets and schools, churches, hospitals, parks and playgrounds. Results Findings suggest that current state policies on alcohol outlet distributions in Philadelphia are loosely enforced, with many areas exhibiting extremely high spatial densities of outlets that violate existing proximity restrictions. The spatial model indicates that an additional 1,115 outlets could open in Philadelphia if privatization was to occur and current proximity ordinances were maintained. Conclusions The study reveals that spatial analytical approaches can function as an excellent tool for contingency-based “what-if” analysis, providing an objective snapshot of potential policy outcomes prior to implementation. In this case, the likely outcome is a tremendous increase in alcohol outlets in Philadelphia, with concomitant negative health, crime and quality of life outcomes that accompany such an increase. PMID:23170899
Evolution of Binary Supermassive Black Holes in Rotating Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasskazov, Alexander; Merritt, David
The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less
THE MULTI-WAVELENGTH CHARACTERISTICS OF THE TeV BINARY LS I+61°303
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, L.; Chitnis, V. R.; Shukla, A.
2016-06-01
We study the characteristics of the TeV binary LS I+61°303 in radio, soft X-ray, hard X-ray, and gamma-ray (GeV and TeV) energies. The long-term variability characteristics are examined as a function of the phase of the binary period of 26.496 days as well as the phase of the superorbital period of 1626 days, dividing the observations into a matrix of 10 × 10 phases of these two periods. We find that the long-term variability can be described by a sine function of the superorbital period, with the phase and amplitude systematically varying with the binary period phase. We also findmore » a definite wavelength-dependent change in this variability description. To understand the radiation mechanism, we define three states in the orbital/superorbital phase matrix and examine the wideband spectral energy distribution. The derived source parameters indicate that the emission geometry is dominated by a jet structure showing a systematic variation with the orbital/superorbital period. We suggest that LS I+61°303 is likely a microquasar with a steady jet.« less
Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N
2003-08-15
We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high p(T)) in minimum bias and central d+Au collisions at sqrt[s(NN)]=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high p(T) previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.
Method and apparatus for detecting a desired behavior in digital image data
Kegelmeyer, Jr., W. Philip
1997-01-01
A method for detecting stellate lesions in digitized mammographic image data includes the steps of prestoring a plurality of reference images, calculating a plurality of features for each of the pixels of the reference images, and creating a binary decision tree from features of randomly sampled pixels from each of the reference images. Once the binary decision tree has been created, a plurality of features, preferably including an ALOE feature (analysis of local oriented edges), are calculated for each of the pixels of the digitized mammographic data. Each of these plurality of features of each pixel are input into the binary decision tree and a probability is determined, for each of the pixels, corresponding to the likelihood of the presence of a stellate lesion, to create a probability image. Finally, the probability image is spatially filtered to enforce local consensus among neighboring pixels and the spatially filtered image is output.
Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device.
Hoffmann, Maximilian; Papadopoulos, Ioannis N; Judkewitz, Benjamin
2018-01-01
The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation, or patterned photostimulation. For most of these applications, it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.
Kilohertz binary phase modulator for pulsed laser sources using a digital micromirror device
NASA Astrophysics Data System (ADS)
Hoffmann, Maximilian; Papadopoulos, Ioannis N.; Judkewitz, Benjamin
2018-01-01
The controlled modulation of an optical wavefront is required for aberration correction, digital phase conjugation or patterned photostimulation. For most of these applications it is desirable to control the wavefront modulation at the highest rates possible. The digital micromirror device (DMD) presents a cost-effective solution to achieve high-speed modulation and often exceeds the speed of the more conventional liquid crystal spatial light modulator, but is inherently an amplitude modulator. Furthermore, spatial dispersion caused by DMD diffraction complicates its use with pulsed laser sources, such as those used in nonlinear microscopy. Here we introduce a DMD-based optical design that overcomes these limitations and achieves dispersion-free high-speed binary phase modulation. We show that this phase modulation can be used to switch through binary phase patterns at the rate of 20 kHz in two-photon excitation fluorescence applications.
The Spatially-resolved Interacting Winds of Eta Carinae: Implications on the Orbit Orientation
NASA Technical Reports Server (NTRS)
Gull, Theodore R.; Nielsen, K.E.; Corcoran, M.; Hamaguchi, K.; Madura, T.; Russell, C.; Hillier, D.J.; Owocki. S.; Okazaki, A.T.
2010-01-01
Medium-dispersion long slit spectra, recorded by HST/STIS (R=8000, Theta=0.l"), resolve the extended wind-wind interaction region of the massive binary, Eta Carinae. During the high state, extending for about five years of the 5.54-year binary period, lines of [N II], [Fe III], [S III], [Ar III] and [Ne III] extend outwards to 0.4" with a velocity range of -500 to +200 km/s. By comparison, lines of [Fe II] and [Ni II] extend to 0.7" with a velocity range of -500 to +500 km/s. During the high state, driven by the lesser wind of Eta Car B and photo-ionized by the FUV of Eta Car B, the high excitation lines originate in or near the outer ballistic portions of the wind-wind interaction region. The lower excitation lines ([Fe II] and [Ni II D originate from the boundary regions of the dominating wind of Eta Car A. As the binary system has an eccentricity exceeding 0.9, the two stars approach quite close across the periastron, estimated to be within 1 to 2 AU. As a result, Eta Car B moves into the primary wind structure, cutting off the FUV supporting the ionization of the high state lines. Forbidden emission lines of the doubly-ionized species disappear, He II 4686 drops along with the collapse of the X-ray flux. This behavior is understood through the 3-D models of A. Okazaki and of E. R. Parkin and Pittard. Discussion will address the orbit orientation relative to the geometry of the Homunculus, ejected by Eta Carinae in the 1840s.
The Spatially-resolved Interacting Winds of Eta Carinae: Implications on the Orbit Orientation
NASA Astrophysics Data System (ADS)
Gull, Theodore R.; Nielsen, K. E.; Corcoran, M.; Hamaguchi, K.; Madura, T.; Russell, C.; Hillier, D. J.; Owocki, S.; Okazaki, A. T.
2010-01-01
Medium-dispersion long slit spectra, recorded by HST/STIS (R=8000, Theta=0.1"), resolve the extended wind-wind interaction region of the massive binary, Eta Carinae. During the high state, extending for about five years of the 5.54-year binary period, lines of [N II], [Fe III], [S III], [Ar III] and [Ne III] extend outwards to 0.4" with a velocity range of -500 to +200 km/s. By comparison, lines of [Fe II] and [Ni II] extend to 0.7" with a velocity range of -500 to +500 km/s. During the high state, driven by the lesser wind of Eta Car B and photo-ionized by the FUV of Eta Car B, the high excitation lines originate in or near the outer ballistic portions of the wind-wind interaction region. The lower excitation lines ([Fe II] and [Ni II]) originate from the boundary regions of the dominating wind of Eta Car A. As the binary system has an eccentricity exceeding 0.9, the two stars approach quite close across the periastron, estimated to be within 1 to 2 AU. As a result, Eta Car B moves into the primary wind structure, cutting off the FUV supporting the ionization of the high state lines. Forbidden emission lines of the doubly-ionized species disappear, He II 4686 drops along with the collapse of the X-ray flux. This behavior is understood through the 3-D models of A. Okazaki and of E. R. Parkin and Pittard. Discussion will address the orbit orientation relative to the geometry of the Homunculus, ejected by Eta Carinae in the 1840s.
EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation
Amidi, Afshine; Megalooikonomou, Vasileios; Paragios, Nikos
2018-01-01
During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank (PDB) has increased more than 15-fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence, however, is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The two-layer architecture was investigated on a large dataset of 63,558 enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet. PMID:29740518
EnzyNet: enzyme classification using 3D convolutional neural networks on spatial representation.
Amidi, Afshine; Amidi, Shervine; Vlachakis, Dimitrios; Megalooikonomou, Vasileios; Paragios, Nikos; Zacharaki, Evangelia I
2018-01-01
During the past decade, with the significant progress of computational power as well as ever-rising data availability, deep learning techniques became increasingly popular due to their excellent performance on computer vision problems. The size of the Protein Data Bank (PDB) has increased more than 15-fold since 1999, which enabled the expansion of models that aim at predicting enzymatic function via their amino acid composition. Amino acid sequence, however, is less conserved in nature than protein structure and therefore considered a less reliable predictor of protein function. This paper presents EnzyNet, a novel 3D convolutional neural networks classifier that predicts the Enzyme Commission number of enzymes based only on their voxel-based spatial structure. The spatial distribution of biochemical properties was also examined as complementary information. The two-layer architecture was investigated on a large dataset of 63,558 enzymes from the PDB and achieved an accuracy of 78.4% by exploiting only the binary representation of the protein shape. Code and datasets are available at https://github.com/shervinea/enzynet.
Income Inequality across Micro and Meso Geographic Scales in the Midwestern United States, 1979-2009
ERIC Educational Resources Information Center
Peters, David J.
2012-01-01
This article examines the spatial distribution of income inequality and the socioeconomic factors affecting it using spatial analysis techniques across 16,285 block groups, 5,050 tracts, and 618 counties in the western part of the North Central Region of the United States. Different geographic aggregations result in different inequality outcomes,…
The Fate of Neutron Star Binary Mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piro, Anthony L.; Giacomazzo, Bruno; Perna, Rosalba, E-mail: piro@carnegiescience.edu
Following merger, a neutron star (NS) binary can produce roughly one of three different outcomes: (1) a stable NS, (2) a black hole (BH), or (3) a supramassive, rotationally supported NS, which then collapses to a BH following angular momentum losses. Which of these fates occur and in what proportion has important implications for the electromagnetic transient associated with the mergers and the expected gravitational wave (GW) signatures, which in turn depend on the high density equation of state (EOS). Here we combine relativistic calculations of NS masses using realistic EOSs with Monte Carlo population synthesis based on the massmore » distribution of NS binaries in our Galaxy to predict the distribution of fates expected. For many EOSs, a significant fraction of the remnants are NSs or supramassive NSs. This lends support to scenarios in which a quickly spinning, highly magnetized NS may be powering an electromagnetic transient. This also indicates that it will be important for future GW observatories to focus on high frequencies to study the post-merger GW emission. Even in cases where individual GW events are too low in signal to noise to study the post merger signature in detail, the statistics of how many mergers produce NSs versus BHs can be compared with our work to constrain the EOS. To match short gamma-ray-burst (SGRB) X-ray afterglow statistics, we find that the stiffest EOSs are ruled out. Furthermore, many popular EOSs require a significant fraction of ∼60%–70% of SGRBs to be from NS–BH mergers rather than just binary NSs.« less
The Nature of Double-peaked [O III] Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fu, Hai; Yan, Lin; Myers, Adam D.; Stockton, Alan; Djorgovski, S. G.; Aldering, G.; Rich, Jeffrey A.
2012-01-01
Active galactic nuclei (AGNs) with double-peaked [O III] lines are suspected to be sub-kpc or kpc-scale binary AGNs. However, pure gas kinematics can produce the same double-peaked line profile in spatially integrated spectra. Here we combine integral-field spectroscopy and high-resolution imaging of 42 double-peaked [O III] AGNs from the Sloan Digital Sky Survey to investigate the constituents of the population. We find two binary AGNs where the line splitting is driven by the orbital motion of the merging nuclei. Such objects account for only ~2% of the double-peaked AGNs. Almost all (~98%) of the double-peaked AGNs were selected because of gas kinematics; and half of those show spatially resolved narrow-line regions that extend 4-20 kpc from the nuclei. Serendipitously, we find two spectrally unresolved binary AGNs where gas kinematics produced the double-peaked [O III] lines. The relatively frequent serendipitous discoveries indicate that only ~1% of binary AGNs would appear double-peaked in Sloan spectra and 2.2+2.5 -0.8% of all Sloan AGNs are binary AGNs. Therefore, the double-peaked sample does not offer much advantage over any other AGN samples in finding binary AGNs. The binary AGN fraction implies an elevated AGN duty cycle (8+8 -3%), suggesting galaxy interactions enhance nuclear accretion. We illustrate that integral-field spectroscopy is crucial for identifying binary AGNs: several objects previously classified as "binary AGNs" with long-slit spectra are most likely single AGNs with extended narrow-line regions (ENLRs). The formation of ENLRs driven by radiation pressure is also discussed. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Determining on-fault earthquake magnitude distributions from integer programming
NASA Astrophysics Data System (ADS)
Geist, Eric L.; Parsons, Tom
2018-02-01
Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.
Distribution of compact object mergers around galaxies
NASA Astrophysics Data System (ADS)
Bulik, T.; Belczyński, K.; Zbijewski, W.
1999-09-01
Compact object mergers are one of the favoured models of gamma ray bursts (GRB). Using a binary population synthesis code we calculate properties of the population of compact object binaries; e.g. lifetimes and velocities. We then propagate them in galactic potentials and find their distribution in relation to the host.
Rapid Crop Cover Mapping for the Conterminous United States.
Dahal, Devendra; Wylie, Bruce; Howard, Danny
2018-06-05
Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a 'two model mapping' approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September. In this approach, we divided the CCM model into one 'crop type model' to handle the classification of nine specific crops and a second, binary model to classify the presence or absence of 'other' crops. Under the two model mapping approach, the training errors were 0.8% and 1.5% for the crop type and binary model, respectively, while test errors were 5.5% and 6.4%, respectively. With spatial mapping accuracies for annual maps reaching upwards of 70%, this approach demonstrated a strong potential for generating rapid crop cover maps by the 1 st of September.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei, E-mail: atokovinin@ctio.noao.edu
Radial velocity (RV) monitoring of solar-type visual binaries has been conducted at the CTIO/SMARTS 1.5 m telescope to study short-period systems. The data reduction is described, and mean and individual RVs of 163 observed objects are given. New spectroscopic binaries are discovered or suspected in 17 objects, and for some of them the orbital periods could be determined. Subsystems are efficiently detected even in a single observation by double lines and/or by the RV difference between the components of visual binaries. The potential of this detection technique is quantified by simulation and used for statistical assessment of 96 wide binariesmore » within 67 pc. It is found that 43 binaries contain at least one subsystem, and the occurrence of subsystems is equally probable in either primary or secondary components. The frequency of subsystems and their periods matches the simple prescription proposed by the author. The remaining 53 simple wide binaries with a median projected separation of 1300 AU have an RV difference distribution between their components that is not compatible with the thermal eccentricity distribution f (e) = 2e but rather matches the uniform eccentricity distribution.« less
Inferred Eccentricity and Period Distributions of Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Prsa, Andrej; Matijevic, G.
2014-01-01
Determining the underlying eccentricity and orbital period distributions from an observed sample of eclipsing binary stars is not a trivial task. Shen and Turner (2008) have shown that the commonly used maximum likelihood estimators are biased to larger eccentricities and they do not describe the underlying distribution correctly; orbital periods suffer from a similar bias. Hogg, Myers and Bovy (2010) proposed a hierarchical probabilistic method for inferring the true eccentricity distribution of exoplanet orbits that uses the likelihood functions for individual star eccentricities. The authors show that proper inference outperforms the simple histogramming of the best-fit eccentricity values. We apply this method to the complete sample of eclipsing binary stars observed by the Kepler mission (Prsa et al. 2011) to derive the unbiased underlying eccentricity and orbital period distributions. These distributions can be used for the studies of multiple star formation, dynamical evolution, and they can serve as a drop-in replacement to prior, ad-hoc distributions used in the exoplanet field for determining false positive occurrence rates.
NASA Astrophysics Data System (ADS)
Xiang, Jingen
X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N_{H,WD01} = (0.720±0.009) × N_{H,abs} + (0.051±0.013) and N_{H, MRN} = (1.156±0.016) × N_{H,abs} + (0.062±0.024) in the units 10^{22} cm^{-2}. Then the correlation between FHI and N_{H} is obtained. Both WD01 model and MRN model fits show that the scattering dust density very close to these sources is much higher than the normal interstellar medium and we consider it is the evidence of molecular clouds around these X-ray binaries. We also find that there is the linear correlation between the effective distance through the galactic dust layer and hydrogen scattering olumn density N_{H} excluding the one in x=0.99-1.0 but the correlation does not exist between he effective distance and the N_{H} in x=0.99-1.0. It shows that the dust nearby the X-ray sources is not the dust from galactic disk. Then we estimate the structure and density of the stellar wind around the special X-ray pulsars Vela X-1 and GX 301-2. Finally we discuss the possibility of probing the three dimensional structure of the interstellar using the X-ray halos of the transient sources, probing the spatial distributions of interstellar dust medium nearby the point sources, even the structure of the stellar winds using higher angular resolution X-ray dust scattering halos and testing the model that the black hole can be formed from the direct collapse of a massive star without supernova using the statistical distribution of the dust density nearby the X-ray binaries.
Spatial correlation analysis of urban traffic state under a perspective of community detection
NASA Astrophysics Data System (ADS)
Yang, Yanfang; Cao, Jiandong; Qin, Yong; Jia, Limin; Dong, Honghui; Zhang, Aomuhan
2018-05-01
Understanding the spatial correlation of urban traffic state is essential for identifying the evolution patterns of urban traffic state. However, the distribution of traffic state always has characteristics of large spatial span and heterogeneity. This paper adapts the concept of community detection to the correlation network of urban traffic state and proposes a new perspective to identify the spatial correlation patterns of traffic state. In the proposed urban traffic network, the nodes represent road segments, and an edge between a pair of nodes is added depending on the result of significance test for the corresponding correlation of traffic state. Further, the process of community detection in the urban traffic network (named GWPA-K-means) is applied to analyze the spatial dependency of traffic state. The proposed method extends the traditional K-means algorithm in two steps: (i) redefines the initial cluster centers by two properties of nodes (the GWPA value and the minimum shortest path length); (ii) utilizes the weight signal propagation process to transfer the topological information of the urban traffic network into a node similarity matrix. Finally, numerical experiments are conducted on a simple network and a real urban road network in Beijing. The results show that GWPA-K-means algorithm is valid in spatial correlation analysis of traffic state. The network science and community structure analysis perform well in describing the spatial heterogeneity of traffic state on a large spatial scale.
Zhang, Rong; Leng, Yun-fa; Zhu, Meng-meng; Wang, Fang
2007-11-01
Based on geographic information system and geostatistics, the spatial structure of Therioaphis trifolii population of different periods in Yuanzhou district of Guyuan City, the southern Ningxia Province, was analyzed. The spatial distribution of Therioaphis trifolii population was also simulated by ordinary Kriging interpretation. The results showed that Therioaphis trifolii population of different periods was correlated spatially in the study area. The semivariograms of Therioaphis trifolii could be described by exponential model, indicating an aggregated spatial arrangement. The spatial variance varied from 34.13%-48.77%, and the range varied from 8.751-12.049 km. The degree and direction of aggregation showed that the trend was increased gradually from southwest to northeast. The dynamic change of Therioaphis trifolii population in different periods could be analyzed intuitively on the simulated maps of the spatial distribution from the two aspects of time and space, The occurrence position and degree of Therioaphis trifolii to a state of certain time could be determined easily.
Fundamental finite key limits for one-way information reconciliation in quantum key distribution
NASA Astrophysics Data System (ADS)
Tomamichel, Marco; Martinez-Mateo, Jesus; Pacher, Christoph; Elkouss, David
2017-11-01
The security of quantum key distribution protocols is guaranteed by the laws of quantum mechanics. However, a precise analysis of the security properties requires tools from both classical cryptography and information theory. Here, we employ recent results in non-asymptotic classical information theory to show that one-way information reconciliation imposes fundamental limitations on the amount of secret key that can be extracted in the finite key regime. In particular, we find that an often used approximation for the information leakage during information reconciliation is not generally valid. We propose an improved approximation that takes into account finite key effects and numerically test it against codes for two probability distributions, that we call binary-binary and binary-Gaussian, that typically appear in quantum key distribution protocols.
Efficient Data Mining for Local Binary Pattern in Texture Image Analysis
Kwak, Jin Tae; Xu, Sheng; Wood, Bradford J.
2015-01-01
Local binary pattern (LBP) is a simple gray scale descriptor to characterize the local distribution of the grey levels in an image. Multi-resolution LBP and/or combinations of the LBPs have shown to be effective in texture image analysis. However, it is unclear what resolutions or combinations to choose for texture analysis. Examining all the possible cases is impractical and intractable due to the exponential growth in a feature space. This limits the accuracy and time- and space-efficiency of LBP. Here, we propose a data mining approach for LBP, which efficiently explores a high-dimensional feature space and finds a relatively smaller number of discriminative features. The features can be any combinations of LBPs. These may not be achievable with conventional approaches. Hence, our approach not only fully utilizes the capability of LBP but also maintains the low computational complexity. We incorporated three different descriptors (LBP, local contrast measure, and local directional derivative measure) with three spatial resolutions and evaluated our approach using two comprehensive texture databases. The results demonstrated the effectiveness and robustness of our approach to different experimental designs and texture images. PMID:25767332
Properties of the Closest Young Binaries. I. DF Tau’s Unequal Circumstellar Disk Evolution
NASA Astrophysics Data System (ADS)
Allen, T. S.; Prato, L.; Wright-Garba, N.; Schaefer, G.; Biddle, L. I.; Skiff, B.; Avilez, I.; Muzzio, R.; Simon, M.
2017-08-01
We present high-resolution, spatially resolved, near-infrared spectroscopy and imaging of the two components of DF Tau, a young, low-mass, visual binary in the Taurus star-forming region. With these data, we provide a more precise orbital solution for the system, determine component spectral types, radial velocity, veiling and v\\sin I values, and construct individual spectral energy distributions. We estimate the masses of both stars to be ˜ 0.6 {M}⊙ . We find markedly different circumstellar properties for DF Tau A and B: evidence for a disk, such as near-infrared excess and accretion signatures, is clearly present for the primary, while it is absent for the secondary. Additionally, the v\\sin I and rotation period measurements show that the secondary is rotating significantly more rapidly than the primary. We interpret these results in the framework of disk-locking and argue that DF Tau A is an example of disk-modulated rotation in a young system. The DF Tau system raises fundamental questions about our assumptions of universal disk formation and evolution.
Bedford, David R.; Ludington, Steve; Nutt, Constance M.; Stone, Paul A.; Miller, David M.; Miller, Robert J.; Wagner, David L.; Saucedo, George J.
2003-01-01
The USGS is creating an integrated national database for digital state geologic maps that includes stratigraphic, age, and lithologic information. The majority of the conterminous 48 states have digital geologic base maps available, often at scales of 1:500,000. This product is a prototype, and is intended to demonstrate the types of derivative maps that will be possible with the national integrated database. This database permits the creation of a number of types of maps via simple or sophisticated queries, maps that may be useful in a number of areas, including mineral-resource assessment, environmental assessment, and regional tectonic evolution. This database is distributed with three main parts: a Microsoft Access 2000 database containing geologic map attribute data, an Arc/Info (Environmental Systems Research Institute, Redlands, California) Export format file containing points representing designation of stratigraphic regions for the Geologic Map of Utah, and an ArcView 3.2 (Environmental Systems Research Institute, Redlands, California) project containing scripts and dialogs for performing a series of generalization and mineral resource queries. IMPORTANT NOTE: Spatial data for the respective stage geologic maps is not distributed with this report. The digital state geologic maps for the states involved in this report are separate products, and two of them are produced by individual state agencies, which may be legally and/or financially responsible for this data. However, the spatial datasets for maps discussed in this report are available to the public. Questions regarding the distribution, sale, and use of individual state geologic maps should be sent to the respective state agency. We do provide suggestions for obtaining and formatting the spatial data to make it compatible with data in this report. See section ‘Obtaining and Formatting Spatial Data’ in the PDF version of the report.
Massive binary stars as a probe of massive star formation
NASA Astrophysics Data System (ADS)
Kiminki, Daniel C.
2010-10-01
Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass-ratios, and eccentricities, are --0.2 +/- 0.3, 0.3 +/- 0.3, and --0.8 +/- 0.3 respectively (or not consistent with a simple power law distribution). The observed distributions indicate a preference for short period systems with nearly circular orbits and companions that are not likely drawn from a standard initial mass function, as would be expected from random pairing. An interesting and unexpected result is that the period distribution is inconsistent with a standard power-law slope stemming mainly from an excess of periods between 3 and 5 days and an absence of periods between 7 and 14 days. One possible explanation of this phenomenon is that the binary systems with periods from 7--14 days are migrating to periods of 3--5 days. In addition, the binary distribution here is not consistent with previous suggestions in the literature that 45% of OB binaries are members of twin systems (mass ratio near 1).
Spatio-temporal Analysis for New York State SPARCS Data
Chen, Xin; Wang, Yu; Schoenfeld, Elinor; Saltz, Mary; Saltz, Joel; Wang, Fusheng
2017-01-01
Increased accessibility of health data provides unique opportunities to discover spatio-temporal patterns of diseases. For example, New York State SPARCS (Statewide Planning and Research Cooperative System) data collects patient level detail on patient demographics, diagnoses, services, and charges for each hospital inpatient stay and outpatient visit. Such data also provides home addresses for each patient. This paper presents our preliminary work on spatial, temporal, and spatial-temporal analysis of disease patterns for New York State using SPARCS data. We analyzed spatial distribution patterns of typical diseases at ZIP code level. We performed temporal analysis of common diseases based on 12 years’ historical data. We then compared the spatial variations for diseases with different levels of clustering tendency, and studied the evolution history of such spatial patterns. Case studies based on asthma demonstrated that the discovered spatial clusters are consistent with prior studies. We visualized our spatial-temporal patterns as animations through videos. PMID:28815148
Dual-sensitivity profilometry with defocused projection of binary fringes.
Garnica, G; Padilla, M; Servin, M
2017-10-01
A dual-sensitivity profilometry technique based on defocused projection of binary fringes is presented. Here, two sets of fringe patterns with a sinusoidal profile are produced by applying the same analog low-pass filter (projector defocusing) to binary fringes with a high- and low-frequency spatial carrier. The high-frequency fringes have a binary square-wave profile, while the low-frequency binary fringes are produced with error-diffusion dithering. The binary nature of the binary fringes removes the need for calibration of the projector's nonlinear gamma. Working with high-frequency carrier fringes, we obtain a high-quality wrapped phase. On the other hand, working with low-frequency carrier fringes we found a lower-quality, nonwrapped phase map. The nonwrapped estimation is used as stepping stone for dual-sensitivity temporal phase unwrapping, extending the applicability of the technique to discontinuous (piecewise continuous) surfaces. We are proposing a single defocusing level for faster high- and low-frequency fringe data acquisition. The proposed technique is validated with experimental results.
Correcting Velocity Dispersions of Dwarf Spheroidal Galaxies for Binary Orbital Motion
NASA Astrophysics Data System (ADS)
Minor, Quinn E.; Martinez, Greg; Bullock, James; Kaplinghat, Manoj; Trainor, Ryan
2010-10-01
We show that the measured velocity dispersions of dwarf spheroidal galaxies from about 4 to 10 km s-1 are unlikely to be inflated by more than 30% due to the orbital motion of binary stars and demonstrate that the intrinsic velocity dispersions can be determined to within a few percent accuracy using two-epoch observations with 1-2 yr as the optimal time interval. The crucial observable is the threshold fraction—the fraction of stars that show velocity changes larger than a given threshold between measurements. The threshold fraction is tightly correlated with the dispersion introduced by binaries, independent of the underlying binary fraction and distribution of orbital parameters. We outline a simple procedure to correct the velocity dispersion to within a few percent accuracy by using the threshold fraction and provide fitting functions for this method. We also develop a methodology for constraining properties of binary populations from both single- and two-epoch velocity measurements by including the binary velocity distribution in a Bayesian analysis.
Su, Tiehui; Scott, Ryan P; Djordjevic, Stevan S; Fontaine, Nicolas K; Geisler, David J; Cai, Xinran; Yoo, S J B
2012-04-23
We propose and demonstrate silicon photonic integrated circuits (PICs) for free-space spatial-division-multiplexing (SDM) optical transmission with multiplexed orbital angular momentum (OAM) states over a topological charge range of -2 to +2. The silicon PIC fabricated using a CMOS-compatible process exploits tunable-phase arrayed waveguides with vertical grating couplers to achieve space division multiplexing and demultiplexing. The experimental results utilizing two silicon PICs achieve SDM mux/demux bit-error-rate performance for 1‑b/s/Hz, 10-Gb/s binary phase shifted keying (BPSK) data and 2-b/s/Hz, 20-Gb/s quadrature phase shifted keying (QPSK) data for individual and two simultaneous OAM states. © 2012 Optical Society of America
NASA Astrophysics Data System (ADS)
Wang, Zhizhang; Pei, Chunying; Xia, Meng; Yin, Yaling; Xia, Yong; Yin, Jianping
2018-01-01
We present an experimental approach to convert linearly polarized Gaussian beams into elliptical and circular vector hollow beams (VHBs) with different polarization states. The scheme employed is based on a Mach-Zehnder-type optical path combined with a reflective spatial light modulator (SLM) in each path. The resulting VHBs have radial, azimuthal, and other polarization states. Our studies also show that the size of the generated VHBs remains constant during the propagation in free space over a certain distance, and can be controlled by the axial ratio of the SLM’s binary phase plate. These studies deliver great optical parameters and hold promising applications in the fields of optical trapping and manipulation of particles.
Distributing Earthquakes Among California's Faults: A Binary Integer Programming Approach
NASA Astrophysics Data System (ADS)
Geist, E. L.; Parsons, T.
2016-12-01
Statement of the problem is simple: given regional seismicity specified by a Gutenber-Richter (G-R) relation, how are earthquakes distributed to match observed fault-slip rates? The objective is to determine the magnitude-frequency relation on individual faults. The California statewide G-R b-value and a-value are estimated from historical seismicity, with the a-value accounting for off-fault seismicity. UCERF3 consensus slip rates are used, based on geologic and geodetic data and include estimates of coupling coefficients. The binary integer programming (BIP) problem is set up such that each earthquake from a synthetic catalog spanning millennia can occur at any location along any fault. The decision vector, therefore, consists of binary variables, with values equal to one indicating the location of each earthquake that results in an optimal match of slip rates, in an L1-norm sense. Rupture area and slip associated with each earthquake are determined from a magnitude-area scaling relation. Uncertainty bounds on the UCERF3 slip rates provide explicit minimum and maximum constraints to the BIP model, with the former more important to feasibility of the problem. There is a maximum magnitude limit associated with each fault, based on fault length, providing an implicit constraint. Solution of integer programming problems with a large number of variables (>105 in this study) has been possible only since the late 1990s. In addition to the classic branch-and-bound technique used for these problems, several other algorithms have been recently developed, including pre-solving, sifting, cutting planes, heuristics, and parallelization. An optimal solution is obtained using a state-of-the-art BIP solver for M≥6 earthquakes and California's faults with slip-rates > 1 mm/yr. Preliminary results indicate a surprising diversity of on-fault magnitude-frequency relations throughout the state.
Amalian, Jean-Arthur; Trinh, Thanh Tam; Lutz, Jean-François; Charles, Laurence
2016-04-05
Tandem mass spectrometry was evaluated as a reliable sequencing methodology to read codes encrypted in monodisperse sequence-coded oligo(triazole amide)s. The studied oligomers were composed of monomers containing a triazole ring, a short ethylene oxide segment, and an amide group as well as a short alkyl chain (propyl or isobutyl) which defined the 0/1 molecular binary code. Using electrospray ionization, oligo(triazole amide)s were best ionized as protonated molecules and were observed to adopt a single charge state, suggesting that adducted protons were located on every other monomer unit. Upon collisional activation, cleavages of the amide bond and of one ether bond were observed to proceed in each monomer, yielding two sets of complementary product ions. Distribution of protons over the precursor structure was found to remain unchanged upon activation, allowing charge state to be anticipated for product ions in the four series and hence facilitating their assignment for a straightforward characterization of any encoded oligo(triazole amide)s.
The National Map seamless digital elevation model specifications
Archuleta, Christy-Ann M.; Constance, Eric W.; Arundel, Samantha T.; Lowe, Amanda J.; Mantey, Kimberly S.; Phillips, Lori A.
2017-08-02
This specification documents the requirements and standards used to produce the seamless elevation layers for The National Map of the United States. Seamless elevation data are available for the conterminous United States, Hawaii, Alaska, and the U.S. territories, in three different resolutions—1/3-arc-second, 1-arc-second, and 2-arc-second. These specifications include requirements and standards information about source data requirements, spatial reference system, distribution tiling schemes, horizontal resolution, vertical accuracy, digital elevation model surface treatment, georeferencing, data source and tile dates, distribution and supporting file formats, void areas, metadata, spatial metadata, and quality assurance and control.
Pedersen, Ulrik B; Stendel, Martin; Midzi, Nicholas; Mduluza, Takafira; Soko, White; Stensgaard, Anna-Sofie; Vennervald, Birgitte J; Mukaratirwa, Samson; Kristensen, Thomas K
2014-12-12
Freshwater snails are intermediate hosts for a number of trematodes of which some are of medical and veterinary importance. The trematodes rely on specific species of snails to complete their life cycle; hence the ecology of the snails is a key element in transmission of the parasites. More than 200 million people are infected with schistosomes of which 95% live in sub-Saharan Africa and many more are living in areas where transmission is on-going. Human infection with the Fasciola parasite, usually considered more of veterinary concern, has recently been recognised as a human health problem. Many countries have implemented health programmes to reduce morbidity and prevalence of schistosomiasis, and control programmes to mitigate food-borne fascioliasis. As these programmes are resource demanding, baseline information on disease prevalence and distribution becomes of great importance. Such information can be made available and put into practice through maps depicting spatial distribution of the intermediate snail hosts. A biology driven model for the freshwater snails Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis was used to make predictions of snail habitat suitability by including potential underlying environmental and climatic drivers. The snail observation data originated from a nationwide survey in Zimbabwe and the prediction model was parameterised with a high resolution Regional Climate Model. Georeferenced prevalence data on urinary and intestinal schistosomiasis and fascioliasis was used to calibrate the snail habitat suitability predictions to produce binary maps of snail presence and absence. Predicted snail habitat suitability across Zimbabwe, as well as the spatial distribution of snails, is reported for three time slices representative for present (1980-1999) and future climate (2046-2065 and 2080-2099). It is shown from the current study that snail habitat suitability is highly variable in Zimbabwe, with distinct high- and low- suitability areas and that temperature may be the main driving factor. It is concluded that future climate change in Zimbabwe may cause a reduced spatial distribution of suitable habitat of host snails with a probable exception of Bi. pfeifferi, the intermediate host for intestinal schistosomiasis that may increase around 2055 before declining towards 2100.
Dynamical Processes Near the Super Massive Black Hole at the Galactic Center
NASA Astrophysics Data System (ADS)
Antonini, Fabio
2011-01-01
Observations of the stellar environment near the Galactic center provide the strongest empirical evidence for the existence of massive black holes in the Universe. Theoretical models of the Milky Way nuclear star cluster fail to explain numerous properties of such environment, including the presence of very young stars close to the super massive black hole (SMBH) and the more recent discovery of a parsec-scale core in the central distribution of the bright late-type (old) stars. In this thesis we present a theoretical study of dynamical processes near the Galactic center, strongly related to these issues. Using different numerical techniques we explore the close environment of a SMBH as catalyst for stellar collisions and mergers. We study binary stars that remain bound for several revolutions around the SMBH, finding that in the case of highly inclined binaries the Kozai resonance can lead to large periodic oscillations in the internal binary eccentricity and inclination. Collisions and mergers of the binary elements are found to increase significantly for multiple orbits around the SMBH. In collisions involving a low-mass and a high-mass star, the merger product acquires a high core hydrogen abundance from the smaller star, effectively resetting the nuclear evolution clock to a younger age. This process could serve as an important source of young stars at the Galactic center. We then show that a core in the old stars can be naturally explained in a scenario in which the Milky Way nuclear star cluster (NSC) is formed via repeated inspiral of globular clusters into the Galactic center. We present results from a set of N -body simulations of this process, which show that the fundamental properties of the NSC, including its mass, outer density profile and velocity structure, are also reproduced. Chandrasekhar's dynamical friction formula predicts no frictional force on a test body in a low-density core, regardless of its density, due to the absence of stars moving more slowly than the local circular velocity. We have tested this prediction using large-scale N -body experiments. The rate of orbital decay never drops precisely to zero, because stars moving faster than the test body also contribute to the frictional force. When the contribution from the fast-moving stars is included in the expression for the dynamical friction force, and the changes induced by the massive body on the stellar distribution are taken into account, Chandrasekhar's theory is found to reproduce the rate of orbital decay remarkably well. However, this rate is still substantially smaller than the rate predicted by Chandrasekhar's formula in its most widely-used forms, implying longer time scales for inspiral. Motivated by recent observations that suggest a parsec-scale core around the Galactic center SMBH, we investigated the evolution of a population of stellar-mass black holes (BHs) as they spiral in to the center of the Galaxy. After ˜ 10 Gyr, we find that the density of BHs can remain substantially less than the density in stars at all radii; we conclude that it would be unjustified to assume that the spatial distribution of BHs at the Galactic center is well described by steady-state models.
Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr
NASA Astrophysics Data System (ADS)
Karovska, Margarita
2016-09-01
We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.
Coincident Detection Significance in Multimessenger Astronomy
NASA Astrophysics Data System (ADS)
Ashton, G.; Burns, E.; Dal Canton, T.; Dent, T.; Eggenstein, H.-B.; Nielsen, A. B.; Prix, R.; Was, M.; Zhu, S. J.
2018-06-01
We derive a Bayesian criterion for assessing whether signals observed in two separate data sets originate from a common source. The Bayes factor for a common versus unrelated origin of signals includes an overlap integral of the posterior distributions over the common-source parameters. Focusing on multimessenger gravitational-wave astronomy, we apply the method to the spatial and temporal association of independent gravitational-wave and electromagnetic (or neutrino) observations. As an example, we consider the coincidence between the recently discovered gravitational-wave signal GW170817 from a binary neutron star merger and the gamma-ray burst GRB 170817A: we find that the common-source model is enormously favored over a model describing them as unrelated signals.
BOREAS RSS-7 Regional LAI and FPAR Images From 10-Day AVHRR-LAC Composites
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Chen, Jing; Cihlar, Josef
2000-01-01
The BOReal Ecosystem-Atmosphere Study Remote Sensing Science (BOREAS RSS-7) team collected various data sets to develop and validate an algorithm to allow the retrieval of the spatial distribution of Leaf Area Index (LAI) from remotely sensed images. Advanced Very High Resolution Radiometer (AVHRR) level-4c 10-day composite Normalized Difference Vegetation Index (NDVI) images produced at CCRS were used to produce images of LAI and the Fraction of Photosynthetically Active Radiation (FPAR) absorbed by plant canopies for the three summer IFCs in 1994 across the BOREAS region. The algorithms were developed based on ground measurements and Landsat Thematic Mapper (TM) images. The data are stored in binary image format files.
Hydrodynamic Flow Fluctuations in √sNN = 5:02 TeV PbPbCollisions
NASA Astrophysics Data System (ADS)
Castle, James R.
The collective, anisotropic expansion of the medium created in ultrarelativistic heavy-ion collisions, known as flow, is characterized through a Fourier expansion of the final-state azimuthal particle density. In the Fourier expansion, flow harmonic coefficients vn correspond to shape components in the final-state particle density, which are a consequence of similar spatial anisotropies in the initial-state transverse energy density of a collision. Flow harmonic fluctuations are studied for PbPb collisions at √sNN = 5.02 TeV using the CMS detector at the CERN LHC. Flow harmonic probability distributions p( vn) are obtained using particles with 0.3 < pT < 3.0 GeV/c and ∥eta∥ < 1.0 by removing finite-multiplicity resolution effects from the observed azimuthal particle density through an unfolding procedure. Cumulant elliptic flow harmonics (n = 2) are determined from the moments of the unfolded p(v2) distributions and used to construct observables in 5% wide centrality bins up to 60% that relate to the initial-state spatial anisotropy. Hydrodynamic models predict that fluctuations in the initial-state transverse energy density will lead to a non-Gaussian component in the elliptic flow probability distributions that manifests as a negative skewness. A statistically significant negative skewness is observed for all centrality bins as evidenced by a splitting between the higher-order cumulant elliptic flow harmonics. The unfolded p (v2) distributions are transformed assuming a linear relationship between the initial-state spatial anisotropy and final-state flow and are fitted with elliptic power law and Bessel Gaussian parametrizations to infer information on the nature of initial-state fluctuations. The elliptic power law parametrization is found to provide a more accurate description of the fluctuations than the Bessel-Gaussian parametrization. In addition, the event-shape engineering technique, where events are further divided into classes based on an observed ellipticity, is used to study fluctuation-driven differences in the initial-state spatial anisotropy for a given collision centrality that would otherwise be destroyed by event-averaging techniques. Correlations between the first and second moments of p( vn) distributions and event ellipticity are measured for harmonic orders n = 2 - 4 by coupling event-shape engineering to the unfolding technique.
The Use of Binary Search Trees in External Distribution Sorting.
ERIC Educational Resources Information Center
Cooper, David; Lynch, Michael F.
1984-01-01
Suggests new method of external distribution called tree partitioning that involves use of binary tree to split incoming file into successively smaller partitions for internal sorting. Number of disc accesses during a tree-partitioning sort were calculated in simulation using files extracted from British National Bibliography catalog files. (19…
Predicting geogenic arsenic contamination in shallow groundwater of south Louisiana, United States.
Yang, Ningfang; Winkel, Lenny H E; Johannesson, Karen H
2014-05-20
Groundwater contaminated with arsenic (As) threatens the health of more than 140 million people worldwide. Previous studies indicate that geology and sedimentary depositional environments are important factors controlling groundwater As contamination. The Mississippi River delta has broadly similar geology and sedimentary depositional environments to the large deltas in South and Southeast Asia, which are severely affected by geogenic As contamination and therefore may also be vulnerable to groundwater As contamination. In this study, logistic regression is used to develop a probability model based on surface hydrology, soil properties, geology, and sedimentary depositional environments. The model is calibrated using 3286 aggregated and binary-coded groundwater As concentration measurements from Bangladesh and verified using 78 As measurements from south Louisiana. The model's predictions are in good agreement with the known spatial distribution of groundwater As contamination of Bangladesh, and the predictions also indicate high risk of As contamination in shallow groundwater from Holocene sediments of south Louisiana. Furthermore, the model correctly predicted 79% of the existing shallow groundwater As measurements in the study region, indicating good performance of the model in predicting groundwater As contamination in shallow aquifers of south Louisiana.
Role of five-fold symmetry in undercooled Al-Cu binary alloys
NASA Astrophysics Data System (ADS)
Pasturel, A.; Jakse, N.
2018-04-01
We investigate the role of five-fold symmetry (FFS) in undercooled Al1-xCux liquids (x = 0.3 and 0.4) using ab initio molecular dynamics simulations. We show that the structure factors and pair-correlation functions display characteristic features which are compatible with the occurrence of FFS and the emergence of a medium range order (MRO) below a temperature TX located close to the liquidus temperature. Then, we demonstrate that the formation of MRO is associated with a strong increase in local FFS-motifs which become more and more connected with decreasing temperature. From the temperature dependence of dynamic properties, we find that TX corresponds also to the onset of dynamic phenomena, like the non-Arrhenius temperature dependence of transport properties and the emergence of dynamical heterogeneities (DHs). Finally, we clearly identify a relationship between the fivefold topology at the medium-range scale (IMRO) and the spatial distribution of DHs using isoconfigurational ensemble simulations. This questions the direct role of the connectivity of five-fold-based motifs found in IMRO in nucleation of the parent crystalline ground states, namely, Al2Cu and Al3Cu2, which also display local ordering with a significant degree of FFS.
NASA Astrophysics Data System (ADS)
Barada, Daisuke; Yatagai, Toyohiko
2016-09-01
Holographic memory is expected for cold storage because of the features of huge data capacity, high data transfer rate, and long life time. In holographic memory, a signal beam is modulated by a spatial light modulator according to data pages. The recording density is dependent on information amount per pixel in a data page. However, a binary spatial light modulator is used to realize high data transfer rate in general. In our previous study, an optical conversion method from binary data to multilevel data has been proposed. In this paper, the principle of the method is experimentally verified. In the proposed method, a data page consists of symbols with 2x2 pixels and a four-step phase mask is used. Then, the complex amplitudes of four pixels in a symbol become positive real, positive imaginary, negative real, and negative imaginary values, respectively. A square pixel pattern is spread by spatial frequency filtering with a square aperture in a Fourier plane. When the aperture size is too small, the complex amplitude of four pixels in a symbol is superposed and a symbol is regarded as a pixel with a complex number. In this work, a data page pattern with a four-step phase pattern was generated by using a computer-generated circular polarization hologram (CGCPH). The CGCPH was prepared by electron beam lithography. The page data pattern is Fourier transformed by a lens and spatially filtered by a variable rectangular aperture. The complex amplitude of the spatial filtered data page pattern was measured by digital holography and the principle was experimentally verified.
NASA Astrophysics Data System (ADS)
Hu, X.; Li, X.; Lu, L.
2017-12-01
Land use/cover change (LUCC) is an important subject in the research of global environmental change and sustainable development, while spatial simulation on land use/cover change is one of the key content of LUCC and is also difficult due to the complexity of the system. The cellular automata (CA) model had an irreplaceable role in simulating of land use/cover change process due to the powerful spatial computing power. However, the majority of current CA land use/cover models were binary-state model that could not provide more general information about the overall spatial pattern of land use/cover change. Here, a multi-state logistic-regression-based Markov cellular automata (MLRMCA) model and a multi-state artificial-neural-network-based Markov cellular automata (MANNMCA) model were developed and were used to simulate complex land use/cover evolutionary process in an arid region oasis city constrained by water resource and environmental policy change, the Zhangye city during the period of 1990-2010. The results indicated that the MANNMCA model was superior to MLRMCA model in simulated accuracy. These indicated that by combining the artificial neural network with CA could more effectively capture the complex relationships between the land use/cover change and a set of spatial variables. Although the MLRMCA model were also some advantages, the MANNMCA model was more appropriate for simulating complex land use/cover dynamics. The two proposed models were effective and reliable, and could reflect the spatial evolution of regional land use/cover changes. These have also potential implications for the impact assessment of water resources, ecological restoration, and the sustainable urban development in arid areas.
Managing focal fields of vector beams with multiple polarization singularities.
Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Gan, Xuetao; Zhao, Jianlin
2016-11-10
We explore the tight focusing behavior of vector beams with multiple polarization singularities, and analyze the influences of the number, position, and topological charge of the singularities on the focal fields. It is found that the ellipticity of the local polarization states at the focal plane could be determined by the spatial distribution of the polarization singularities of the vector beam. When the spatial location and topological charge of singularities have even-fold rotation symmetry, the transverse fields at the focal plane are locally linearly polarized. Otherwise, the polarization state becomes a locally hybrid one. By appropriately arranging the distribution of the polarization singularities in the vector beam, the polarization distributions of the focal fields could be altered while the intensity maintains unchanged.
Chernaki-Leffer, A M; Almeida, L M; Sosa-Gómez, D R; Anjos, A; Vogado, K M
2007-05-01
Knowledge of the population fluctuation and spatial distribution of pests is fundamental for establishing an appropriate control method. The population fluctuation and spatial distribution of the Alphitobius diaperinus in a poultry house in Cascavel, in the state of Parana, Brazil, was studied between October, 2001 and October 2002. Larvae and adults of the lesser mealworm were sampled weekly using Arends tube traps (n = 22) for six consecutive flock grow-outs. The temperature of the litter and of the poultry house was measured at the same locations of the tube traps. Beetle numbers increased continuously throughout all the sampling dates (average 5,137 in the first week and 18,494 insects on the sixth week). Significantly greater numbers of larvae were collected than adults (1 to 20 times in 95% of the sampling points). There was no correlation between temperature and the number of larvae and adults collected, therefore no fluctuation was observed during the sampling period. The population growth was correlated to litter re-use. The highest temperatures were observed in deep litter. The spatial distribution of larvae and adults in the poultry house was heterogeneous during the whole period of evaluation. Results suggest that monitoring in poultry houses is necessary prior to adopting and evaluating control measures due to the great variability of the insect distribution in the poultry house.
General simulation algorithm for autocorrelated binary processes.
Serinaldi, Francesco; Lombardo, Federico
2017-02-01
The apparent ubiquity of binary random processes in physics and many other fields has attracted considerable attention from the modeling community. However, generation of binary sequences with prescribed autocorrelation is a challenging task owing to the discrete nature of the marginal distributions, which makes the application of classical spectral techniques problematic. We show that such methods can effectively be used if we focus on the parent continuous process of beta distributed transition probabilities rather than on the target binary process. This change of paradigm results in a simulation procedure effectively embedding a spectrum-based iterative amplitude-adjusted Fourier transform method devised for continuous processes. The proposed algorithm is fully general, requires minimal assumptions, and can easily simulate binary signals with power-law and exponentially decaying autocorrelation functions corresponding, for instance, to Hurst-Kolmogorov and Markov processes. An application to rainfall intermittency shows that the proposed algorithm can also simulate surrogate data preserving the empirical autocorrelation.
NASA Astrophysics Data System (ADS)
Inb-Elhaj, M.; Guillon, D.; Skoulios, A.; Maldivi, P.; Giroud-Godquin, A. M.; Marchon, J.-C.
1992-12-01
EXAFS was used to investigate the local structure of the polar spines of rhodium (II) soaps in the columnar liquid crystalline state. It was also used to ascertain the degree of blending of the cores in binary mixtures of rhodium (II) and copper (II) soaps. For the pure rhodium soaps, the columns are shown to result from the stacking of binuclear metal-metal bonded dirhodium tetracarboxylate units bonded to one another by apical ligation of the metal atom of each complex with one of the oxygen atoms of the adjacent molecule. Mixtures of rhodium (II) and copper (II) soaps give a hexagonal columnar mesophase in which pure rhodium and pure copper columns are randomly distributed.
NASA Astrophysics Data System (ADS)
Hillen, M.; Verhoelst, T.; Van Winckel, H.; Chesneau, O.; Hummel, C. A.; Monnier, J. D.; Farrington, C.; Tycner, C.; Mourard, D.; ten Brummelaar, T.; Banerjee, D. P. K.; Zavala, R. T.
2013-11-01
Context. Binary post-asymptotic giant branch (post-AGB) stars are interesting laboratories to study both the evolution of binaries as well as the structure of circumstellar disks. Aims: A multiwavelength high angular resolution study of the prototypical object 89 Herculis is performed with the aim of identifying and locating the different emission components seen in the spectral energy distribution. Methods: A large interferometric data set, collected over the past decade and covering optical and near-infrared wavelengths, is analyzed in combination with the spectral energy distribution and flux-calibrated optical spectra. In this first paper only simple geometric models are applied to fit the interferometric data. Combining the interferometric constraints with the photometry and the optical spectra, we re-assess the energy budget of the post-AGB star and its circumstellar environment. Results: We report the first (direct) detection of a large (35-40%) optical circumstellar flux contribution and spatially resolve its emission region. Given this large amount of reprocessed and/or redistributed optical light, the fitted size of the emission region is rather compact and fits with(in) the inner rim of the circumbinary dust disk. This rim dominates our K band data through thermal emission and is rather compact, emitting significantly already at a radius of twice the orbital separation. We interpret the circumstellar optical flux as due to a scattering process, with the scatterers located in the extremely puffed-up inner rim of the disk and possibly also in a bipolar outflow seen pole-on. A non-local thermodynamic equilibrium gaseous origin in an inner disk cannot be excluded but is considered highly unlikely. Conclusions: This direct detection of a significant amount of circumbinary light at optical wavelengths poses several significant questions regarding our understanding of both post-AGB binaries and the physics in their circumbinary disks. Although the identification of the source of emission/scattering remains inconclusive without further study on this and similar objects, the implications are manifold. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 079.D-0013 and 089.D-0576.Figures 2, 4, 6, 7, 9, 10, and Table 5 are available in electronic form at http://www.aanda.orgFITS files of the calibrated visibilities are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A111
NASA Technical Reports Server (NTRS)
Maker, Paul D.; Muller, Richard E.
1994-01-01
Complex, computer-generated phase holograms written in thin films of poly(methyl methacrylate) (PMMA) by process of electron-beam exposure followed by chemical development. Spatial variations of phase delay in holograms quasi-continuous, as distinquished from stepwise as in binary phase holograms made by integrated-circuit fabrication. Holograms more precise than binary holograms. Greater continuity and precision results in decreased scattering loss and increased imaging efficiency.
Predicting the occurrence of wildfires with binary structured additive regression models.
Ríos-Pena, Laura; Kneib, Thomas; Cadarso-Suárez, Carmen; Marey-Pérez, Manuel
2017-02-01
Wildfires are one of the main environmental problems facing societies today, and in the case of Galicia (north-west Spain), they are the main cause of forest destruction. This paper used binary structured additive regression (STAR) for modelling the occurrence of wildfires in Galicia. Binary STAR models are a recent contribution to the classical logistic regression and binary generalized additive models. Their main advantage lies in their flexibility for modelling non-linear effects, while simultaneously incorporating spatial and temporal variables directly, thereby making it possible to reveal possible relationships among the variables considered. The results showed that the occurrence of wildfires depends on many covariates which display variable behaviour across space and time, and which largely determine the likelihood of ignition of a fire. The joint possibility of working on spatial scales with a resolution of 1 × 1 km cells and mapping predictions in a colour range makes STAR models a useful tool for plotting and predicting wildfire occurrence. Lastly, it will facilitate the development of fire behaviour models, which can be invaluable when it comes to drawing up fire-prevention and firefighting plans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chen, Yue; Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De
2015-09-20
Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.
On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazil, J.; Feingold, G.; Wang, Hailong
2014-01-02
The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. Itmore » is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases. This indicates that sub-grid scale spatial variability in the surface flux of sensible and latent heat and of sea salt aerosol may not be required in large scale and global models to describe marine boundary layer cellular cloudiness.« less
Physical Properties and Evolutionary States of EA-type Eclipsing Binaries Observed by LAMOST
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Zhang, J.; He, J.-J.; Zhu, L.-Y.; Zhao, E.-G.; Shi, X.-D.; Zhou, X.; Han, Z.-T.
2018-03-01
About 3196 EA-type binaries (EAs) were observed by LAMOST by 2017 June 16 and their spectral types were derived. Meanwhile, the stellar atmospheric parameters of 2020 EAs were determined. In this paper, those EAs are cataloged and their physical properties and evolutionary states are investigated. The period distribution of EAs suggests that the period limit of tidal locking for the close binaries is about 6 days. It is found that the metallicity of EAs is higher than that of EW-type binaries (EWs), indicating that EAs are generally younger than EWs and they are the progenitors of EWs. The metallicities of long-period EWs (0.4< P< 1 days) are the same as those of EAs with the same periods, while their values of Log (g) are usually smaller than those of EAs. These support the evolutionary process that EAs evolve into long-period EWs through the combination of angular momentum loss (AML) via magnetic braking and case A mass transfer. For short-period EWs, their metallicities are lower than those of EAs, while their gravitational accelerations are higher. These reveal that they may be formed from cool short-period EAs through AML via magnetic braking with little mass transfer. For some EWs with high metallicities, they may be contaminated by material from the evolution of unseen neutron stars and black holes or they have third bodies that may help them to form rapidly through a short timescale of pre-contact evolution. The present investigation suggests that the modern EW populations may have formed through a combination of these mechanisms.
State-change in the "transition" binary millisecond pulsar J1023+0038
NASA Astrophysics Data System (ADS)
Stappers, B. W.; Archibald, A.; Bassa, C.; Hessels, J.; Janssen, G.; Kaspi, V.; Lyne, A.; Patruno, A.; Hill, A. B.
2013-10-01
We report a change in the state of PSR J1023+0038, a source which is believed to be transitioning from an X-ray binary to an eclipsing binary radio millisecond pulsar (Archibald et al. 2009, Science, 324, 1411). The system was known to contain an accretion disk in 2001 but has shown no signs of it, or of accretion, since then, rather exhibiting all the properties of an eclipsing binary millisecond radio pulsar (MSP).
Patterns of Racial Diversity and Segregation in the United States: 1990–2010*
Wright, Richard; Ellis, Mark; Holloway, Steven R.; Wong, Sandy
2014-01-01
The growing ethnic and racial diversity of the United States is evident at all spatial scales. One of the striking features of this new mixture of peoples, however, is that this new diversity often occurs in tandem with racial concentration. This article surveys these new geographies from four points of view: the nation as a whole, states, large metropolitan areas, and neighborhoods. The analysis at each scale relies on a new taxonomy of racial composition that simultaneously appraises both diversity and the lack thereof (Holloway, Wright, and Ellis 2012). Urban analysis often posits neighborhood racial segregation and diversity as either endpoints on a continuum of racial dominance or mirror images of one another. We disturb that perspective and stress that segregation and diversity must be jointly understood—they are necessarily related, although not as inevitable binary opposites. Using census data from 1990, 2000, and 2010, the research points to how patterns of racial diversity and dominance interact across varying spatial scales. This investigation helps answer some basic questions about the changing geographies of racialized groups, setting the stage for the following articles that explore the relationship between geography and the participation of underrepresented groups in higher education. PMID:25083001
Seiter, Nicholas J; Reay-Jones, Francis P F; Greene, Jeremy K
2013-12-01
The recently introduced plataspid Megacopta cribraria (F.) can infest fields of soybean (Glycine max (L.) Merrill) in the southeastern United States. Grid sampling in four soybean fields was conducted in 2011 and 2012 to study the spatial distribution of M. cribraria adults, nymphs, and egg masses. Peak oviposition typically occurred in early August, while peak levels of adults occurred in mid-late September. The overall sex ratio was slightly biased at 53.1 ± 0.2% (SEM) male. Sweep samples of nymphs were biased toward late instars. All three life stages exhibited a generally aggregated spatial distribution based on Taylor's power law, Iwao's patchiness regression, and spatial analysis by distance indices (SADIE). Interpolation maps of local SADIE aggregation indices showed clusters of adults and nymphs located at field edges, and mean densities of adults were higher in samples taken from field edges than in those taken from field interiors. Adults and nymphs were often spatially associated based on SADIE, indicating spatial stability across life stages.
GLISSANDO: GLauber Initial-State Simulation AND mOre…
NASA Astrophysics Data System (ADS)
Broniowski, Wojciech; Rybczyński, Maciej; Bożek, Piotr
2009-01-01
We present a Monte Carlo generator for a variety of Glauber-like models (the wounded-nucleon model, binary collisions model, mixed model, model with hot spots). These models describe the early stages of relativistic heavy-ion collisions, in particular the spatial distribution of the transverse energy deposition which ultimately leads to production of particles from the interaction region. The original geometric distribution of sources in the transverse plane can be superimposed with a statistical distribution simulating the dispersion in the generated transverse energy in each individual collision. The program generates inter alia the fixed-axes (standard) and variable-axes (participant) two-dimensional profiles of the density of sources in the transverse plane and their azimuthal Fourier components. These profiles can be used in further analysis of physical phenomena, such as the jet quenching, event-by-event hydrodynamics, or analysis of the elliptic flow and its fluctuations. Characteristics of the event (multiplicities, eccentricities, Fourier coefficients, etc.) are stored in a ROOT file and can be analyzed off-line. In particular, event-by-event studies can be carried out in a simple way. A number of ROOT scripts is provided for that purpose. Supplied variants of the code can also be used for the proton-nucleus and deuteron-nucleus collisions. Program summaryProgram title: GLISSANDO Catalogue identifier: AEBS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBS_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 4452 No. of bytes in distributed program, including test data, etc.: 34 766 Distribution format: tar.gz Programming language: C++ Computer: any computer with a C++ compiler and the ROOT environment [R. Brun, et al., Root Users Guide 5.16, CERN, 2007, http://root.cern.ch[1
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-07-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin-up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90 per cent of mergers in massive galaxies and of 40-60 per cent in dwarfs (range mostly sensitive to the natal kicks) are expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broad-band luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲50°.
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-03-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90% of mergers in massive galaxies and of 40-60% in dwarfs (range mostly sensitive to the natal kicks) is expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broadband luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲ 50°.
Spatially distributed effects of mental exhaustion on resting-state FMRI networks.
Esposito, Fabrizio; Otto, Tobias; Zijlstra, Fred R H; Goebel, Rainer
2014-01-01
Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.
NASA Astrophysics Data System (ADS)
Wei, T. B.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.
2016-12-01
In the groundwater study, it estimated the heterogeneous spatial distribution of hydraulic Properties, there were many scholars use to hydraulic tomography (HT) from field site pumping tests to estimate inverse of heterogeneous spatial distribution of hydraulic Properties, to prove the most of most field site aquifer was heterogeneous hydrogeological parameters spatial distribution field. Many scholars had proposed a method of hydraulic tomography to estimate heterogeneous spatial distribution of hydraulic Properties of aquifer, the Huang et al. [2011] was used the non-redundant verification analysis of pumping wells changed, observation wells fixed on the inverse and the forward, to reflect the feasibility of the heterogeneous spatial distribution of hydraulic Properties of field site aquifer of the non-redundant verification analysis on steady-state model.From post literature, finding only in steady state, non-redundant verification analysis of pumping well changed location and observation wells fixed location for inverse and forward. But the studies had not yet pumping wells fixed or changed location, and observation wells fixed location for redundant verification or observation wells change location for non-redundant verification of the various combinations may to explore of influences of hydraulic tomography method. In this study, it carried out redundant verification method and non-redundant verification method for forward to influences of hydraulic tomography method in transient. And it discuss above mentioned in NYUST campus sites the actual case, to prove the effectiveness of hydraulic tomography methods, and confirmed the feasibility on inverse and forward analysis from analysis results.Keywords: Hydraulic Tomography, Redundant Verification, Heterogeneous, Inverse, Forward
Alves, André T J; Nobre, Flávio F
2014-05-01
Despite increased funding for research on the human immunodeficiency virus (HIV) and the acquired immunodeficiency syndrome (AIDS), neither vaccine nor cure is yet in sight. Surveillance and prevention are essential for disease intervention, and it is recognised that spatio-temporal analysis of AIDS cases can assist the decision-making process for control of the disease. This study investigated the dynamic, spatial distribution of notified AIDS cases in the State of Rio de Janeiro, Brazil, between 2001 and 2010, based on the annual incidence in each municipality. Sequential choropleth maps were developed and used to analyse the incidence distribution and Moran's I spatial autocorrelation statistics was applied for characterisation of the spatio-temporal distribution pattern. A significant, positive spatial autocorrelation of AIDS incidence was observed indicating that municipalities with high incidence are likely to be close to other municipalities with similarly high incidence and, conversely, municipalities with low incidence are likely to be surrounded by municipalities with low incidence. Two clusters were identified; one hotspot related to the State Capital and the other with low to intermediate AIDS incidence comprising municipalities in the north-eastern region of the State of Rio de Janeiro.
X. Li; S. Zhong; X. Bian; W.E. Heilman
2010-01-01
The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...
Induced Ellipticity for Inspiraling Binary Systems
NASA Astrophysics Data System (ADS)
Randall, Lisa; Xianyu, Zhong-Zhi
2018-01-01
Although gravitational waves tend to erase eccentricity of an inspiraling binary system, ellipticity can be generated in the presence of surrounding matter. We present a semianalytical method for understanding the eccentricity distribution of binary black holes (BHs) in the presence of a supermassive BH in a galactic center. Given a matter distribution, we show how to determine the resultant eccentricity analytically in the presence of both tidal forces and evaporation up to one cutoff and one matter-distribution-independent function, paving the way for understanding the environment of detected inspiraling BHs. We furthermore generalize Kozai–Lidov dynamics to situations where perturbation theory breaks down for short time intervals, allowing more general angular momentum exchange, such that eccentricity is generated even when all bodies orbit in the same plane.
Exploring stellar evolution with gravitational-wave observations
NASA Astrophysics Data System (ADS)
Dvorkin, Irina; Uzan, Jean-Philippe; Vangioni, Elisabeth; Silk, Joseph
2018-05-01
Recent detections of gravitational waves from merging binary black holes opened new possibilities to study the evolution of massive stars and black hole formation. In particular, stellar evolution models may be constrained on the basis of the differences in the predicted distribution of black hole masses and redshifts. In this work we propose a framework that combines galaxy and stellar evolution models and use it to predict the detection rates of merging binary black holes for various stellar evolution models. We discuss the prospects of constraining the shape of the time delay distribution of merging binaries using just the observed distribution of chirp masses. Finally, we consider a generic model of primordial black hole formation and discuss the possibility of distinguishing it from stellar-origin black holes.
How do binary separations depend on cloud initial conditions?
NASA Astrophysics Data System (ADS)
Sterzik, M. F.; Durisen, R. H.; Zinnecker, H.
2003-11-01
We explore the consequences of a star formation scenario in which the isothermal collapse of a rotating, star-forming core is followed by prompt fragmentation into a cluster containing a small number (N <~ 10) of protostars and/or substellar objects. The subsequent evolution of the cluster is assumed to be dominated by dynamical interactions among cluster members, and this establishes the final properties of the binary and multiple systems. The characteristic scale of the fragmenting core is determined by the cloud initial conditions (such as temperature, angular momentum and mass), and we are able to relate the separation distributions of the final binary population to the properties of the star-forming core. Because the fragmentation scale immediately after the isothermal collapse is typically a factor of 3-10 too large, we conjecture that fragmentation into small clusters followed by dynamical evolution is required to account for the observed binary separation distributions. Differences in the environmental properties of the cores are expected to imprint differences on the characteristic dimensions of the binary systems they form. Recent observations of hierarchical systems, differences in binary characteristics among star forming regions and systematic variations in binary properties with primary mass can be interpreted in the context of this scenario.
COLLISIONAL EVOLUTION OF ULTRA-WIDE TRANS-NEPTUNIAN BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Alex H.; Kavelaars, J. J., E-mail: alexhp@uvic.ca
2012-01-10
The widely separated, near-equal mass binaries hosted by the cold classical Kuiper Belt are delicately bound and subject to disruption by many perturbing processes. We use analytical arguments and numerical simulations to determine their collisional lifetimes given various impactor size distributions and include the effects of mass loss and multiple impacts over the lifetime of each system. These collisional lifetimes constrain the population of small (R {approx}> 1 km) objects currently residing in the Kuiper Belt and confirm that the size distribution slope at small size cannot be excessively steep-likely q {approx}< 3.5. We track mutual semimajor axis, inclination, andmore » eccentricity evolution through our simulations and show that it is unlikely that the wide binary population represents an evolved tail of the primordially tight binary population. We find that if the wide binaries are a collisionally eroded population, their primordial mutual orbit planes must have preferred to lie in the plane of the solar system. Finally, we find that current limits on the size distribution at small radii remain high enough that the prospect of detecting dust-producing collisions in real time in the Kuiper Belt with future optical surveys is feasible.« less
The Solar-Type Hard-Binary Frequency and Distributions of Orbital Parameters in the Open Cluster M37
NASA Astrophysics Data System (ADS)
Geller, Aaron M.; Meibom, Soren; Barnes, Sydney A.; Mathieu, Robert D.
2014-02-01
Binary stars, and particularly the short-period ``hard'' binaries, govern the dynamical evolution of star clusters and determine the formation rates and mechanisms for exotic stars like blue stragglers and X-ray sources. Understanding the near-primordial hard-binary population of star clusters is of primary importance for dynamical models of star clusters, which have the potential to greatly advance our understanding of star cluster evolution. Yet the binary frequencies and distributions of binary orbital parameters (period, eccentricity, etc.) for young coeval stellar populations are poorly known, due to a lack of necessary observations. The young (~540 Myr) open cluster M37 hosts a rich binary population that can be used to empirically define these initial conditions. Importantly, this cluster has been the target of a comprehensive WIYN/Hydra radial-velocity (RV) survey, from which we have already identified a nearly complete sample of 329 solar-type (1.5 <=M [M_⊙] <=1.0) members in M37. Of these stars, 82 show significant RV variability, indicative of a binary companion. We propose to build upon these data with a multi-epoch RV survey using WIYN/Hydra to derive kinematic orbital solutions for these 82 binaries in M37. This project was granted time in 2013B and scheduled for later this year. We anticipate that about half of the detected binaries in M37 will acquire enough RV measurements (>=10) in 2013B to begin searching for orbital solutions. With this proposal and perhaps one additional semester we should achieve >=10 RV measurements for the remaining binaries.
Spatial distribution of specialized cardiac care units in the state of Santa Catarina
Cirino, Silviana; Lima, Fabiana Santos; Gonçalves, Mirian Buss
2014-01-01
OBJECTIVE To analyze the methodology used for assessing the spatial distribution of specialized cardiac care units. METHODS A modeling and simulation method was adopted for the practical application of cardiac care service in the state of Santa Catarina, Southern Brazil, using the p-median model. As the state is divided into 21 health care regions, a methodology which suggests an arrangement of eight intermediate cardiac care units was analyzed, comparing the results obtained using data from 1996 and 2012. RESULTS Results obtained using data from 2012 indicated significant changes in the state, particularly in relation to the increased population density in the coastal regions. The current study provided a satisfactory response, indicated by the homogeneity of the results regarding the location of the intermediate cardiac care units and their respective regional administrations, thereby decreasing the average distance traveled by users to health care units, located in higher population density areas. The validity of the model was corroborated through the analysis of the allocation of the median vertices proposed in 1996 and 2012. CONCLUSIONS The current spatial distribution of specialized cardiac care units is more homogeneous and reflects the demographic changes that have occurred in the state over the last 17 years. The comparison between the two simulations and the current configuration showed the validity of the proposed model as an aid in decision making for system expansion. PMID:26039394
Spatial and temporal habitat-use patterns of wood turtles at the western edge of their distribution
Donald J. Brown; Mark D. Nelson; David J. Rugg; Richard R. Buech; Deahn M. Donner
2016-01-01
Wood Turtles (Glyptemys insculpta) are a state threatened species at the western edge of their geographic distribution in Minnesota, United States. There is currently little published information regarding habitat use of western populations to assist with conservation initiatives. The primary purpose of this study was to investigate habitat use of...
NASA Astrophysics Data System (ADS)
Noll, Keith S.
2015-08-01
The Pluto-Charon binary was the first trans-neptunian binary to be identified in 1978. Pluto-Charon is a true binary with both components orbiting a barycenter located between them. The Pluto system is also the first, and to date only, known binary with a satellite system consisting of four small satellites in near-resonant orbits around the common center of mass. Seven other Plutinos, objects in 3:2 mean motion resonance with Neptune, have orbital companions including 2004 KB19 reported here for the first time. Compared to the Cold Classical population, the Plutinos differ in the frequency of binaries, the relative sizes of the components, and their inclination distribution. These differences point to distinct dynamical histories and binary formation processes encountered by Plutinos.
NASA Astrophysics Data System (ADS)
Palombi, Filippo; Toti, Simona
2015-05-01
Approximate weak solutions of the Fokker-Planck equation represent a useful tool to analyze the equilibrium fluctuations of birth-death systems, as they provide a quantitative knowledge lying in between numerical simulations and exact analytic arguments. In this paper, we adapt the general mathematical formalism known as the Ritz-Galerkin method for partial differential equations to the Fokker-Planck equation with time-independent polynomial drift and diffusion coefficients on the simplex. Then, we show how the method works in two examples, namely the binary and multi-state voter models with zealots.
NASA Astrophysics Data System (ADS)
Kobulnicky, Henry A.; Kiminki, Daniel C.; Lundquist, Michael J.; Burke, Jamison; Chapman, James; Keller, Erica; Lester, Kathryn; Rolen, Emily K.; Topel, Eric; Bhattacharjee, Anirban; Smullen, Rachel A.; Vargas Álvarez, Carlos A.; Runnoe, Jessie C.; Dale, Daniel A.; Brotherton, Michael M.
2014-08-01
We analyze orbital solutions for 48 massive multiple-star systems in the Cygnus OB2 association, 23 of which are newly presented here, to find that the observed distribution of orbital periods is approximately uniform in log P for P < 45 days, but it is not scale-free. Inflections in the cumulative distribution near 6 days, 14 days, and 45 days suggest key physical scales of sime0.2, sime0.4, and sime1 A.U. where yet-to-be-identified phenomena create distinct features. No single power law provides a statistically compelling prescription, but if features are ignored, a power law with exponent β ~= -0.22 provides a crude approximation over P = 1.4-2000 days, as does a piece-wise linear function with a break near 45 days. The cumulative period distribution flattens at P > 45 days, even after correction for completeness, indicating either a lower binary fraction or a shift toward low-mass companions. A high degree of similarity (91% likelihood) between the Cyg OB2 period distribution and that of other surveys suggests that the binary properties at P <~ 25 days are determined by local physics of disk/clump fragmentation and are relatively insensitive to environmental and evolutionary factors. Fully 30% of the unbiased parent sample is a binary with period P < 45 days. Completeness corrections imply a binary fraction near 55% for P < 5000 days. The observed distribution of mass ratios 0.2 < q < 1 is consistent with uniform, while the observed distribution of eccentricities 0.1 < e < 0.6 is consistent with uniform plus an excess of e ~= 0 systems. We identify six stars, all supergiants, that exhibit aperiodic velocity variations of ~30 km s-1 attributed to atmospheric fluctuations.
Theoretical Models of Protostellar Binary and Multiple Systems with AMR Simulations
NASA Astrophysics Data System (ADS)
Matsumoto, Tomoaki; Tokuda, Kazuki; Onishi, Toshikazu; Inutsuka, Shu-ichiro; Saigo, Kazuya; Takakuwa, Shigehisa
2017-05-01
We present theoretical models for protostellar binary and multiple systems based on the high-resolution numerical simulation with an adaptive mesh refinement (AMR) code, SFUMATO. The recent ALMA observations have revealed early phases of the binary and multiple star formation with high spatial resolutions. These observations should be compared with theoretical models with high spatial resolutions. We present two theoretical models for (1) a high density molecular cloud core, MC27/L1521F, and (2) a protobinary system, L1551 NE. For the model for MC27, we performed numerical simulations for gravitational collapse of a turbulent cloud core. The cloud core exhibits fragmentation during the collapse, and dynamical interaction between the fragments produces an arc-like structure, which is one of the prominent structures observed by ALMA. For the model for L1551 NE, we performed numerical simulations of gas accretion onto protobinary. The simulations exhibit asymmetry of a circumbinary disk. Such asymmetry has been also observed by ALMA in the circumbinary disk of L1551 NE.
Spatially variant morphological restoration and skeleton representation.
Bouaynaya, Nidhal; Charif-Chefchaouni, Mohammed; Schonfeld, Dan
2006-11-01
The theory of spatially variant (SV) mathematical morphology is used to extend and analyze two important image processing applications: morphological image restoration and skeleton representation of binary images. For morphological image restoration, we propose the SV alternating sequential filters and SV median filters. We establish the relation of SV median filters to the basic SV morphological operators (i.e., SV erosions and SV dilations). For skeleton representation, we present a general framework for the SV morphological skeleton representation of binary images. We study the properties of the SV morphological skeleton representation and derive conditions for its invertibility. We also develop an algorithm for the implementation of the SV morphological skeleton representation of binary images. The latter algorithm is based on the optimal construction of the SV structuring element mapping designed to minimize the cardinality of the SV morphological skeleton representation. Experimental results show the dramatic improvement in the performance of the SV morphological restoration and SV morphological skeleton representation algorithms in comparison to their translation-invariant counterparts.
A study on the use of Gumbel approximation with the Bernoulli spatial scan statistic.
Read, S; Bath, P A; Willett, P; Maheswaran, R
2013-08-30
The Bernoulli version of the spatial scan statistic is a well established method of detecting localised spatial clusters in binary labelled point data, a typical application being the epidemiological case-control study. A recent study suggests the inferential accuracy of several versions of the spatial scan statistic (principally the Poisson version) can be improved, at little computational cost, by using the Gumbel distribution, a method now available in SaTScan(TM) (www.satscan.org). We study in detail the effect of this technique when applied to the Bernoulli version and demonstrate that it is highly effective, albeit with some increase in false alarm rates at certain significance thresholds. We explain how this increase is due to the discrete nature of the Bernoulli spatial scan statistic and demonstrate that it can affect even small p-values. Despite this, we argue that the Gumbel method is actually preferable for very small p-values. Furthermore, we extend previous research by running benchmark trials on 12 000 synthetic datasets, thus demonstrating that the overall detection capability of the Bernoulli version (i.e. ratio of power to false alarm rate) is not noticeably affected by the use of the Gumbel method. We also provide an example application of the Gumbel method using data on hospital admissions for chronic obstructive pulmonary disease. Copyright © 2013 John Wiley & Sons, Ltd.
Spatial mapping of electronic states in κ-(BEDT-TTF)2X using infrared reflectivity
Sasaki, Takahiko; Yoneyama, Naoki
2009-01-01
We review our recent work on spatial inhomogeneity of the electronic states in the strongly correlated molecular conductors κ-(BEDT-TTF)2X. Spatial mapping of infrared spectra (SMIS) is used for imaging the distribution of the local electronic states. In molecular materials, the infrared response of the specific molecular vibration mode with a strong electron–molecular vibration coupling can reflect the electronic states via the change in the vibration frequency. By spatially mapping the frequency shift of the molecular vibration mode, an electronic phase separation has been visualized near the first-order Mott transition in the bandwidth-controlled organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Br. In addition to reviewing SMIS of the phase separation, we briefly mention the electronic and optical properties of κ-(BEDT-TTF)2X. PMID:27877279
Quality issues in blue noise halftoning
NASA Astrophysics Data System (ADS)
Yu, Qing; Parker, Kevin J.
1998-01-01
The blue noise mask (BNM) is a halftone screen that produces unstructured visually pleasing dot patterns. The BNM combines the blue-noise characteristics of error diffusion and the simplicity of ordered dither. A BNM is constructed by designing a set of interdependent binary patterns for individual gray levels. In this paper, we investigate the quality issues in blue-noise binary pattern design and mask generation as well as in application to color reproduction. Using a global filtering technique and a local 'force' process for rearranging black and white pixels, we are able to generate a series of binary patterns, all representing a certain gray level, ranging from white-noise pattern to highly structured pattern. The quality of these individual patterns are studied in terms of low-frequency structure and graininess. Typically, the low-frequency structure (LF) is identified with a measurement of the energy around dc in the spatial frequency domain, while the graininess is quantified by a measurement of the average minimum distance (AMD) between minority dots as well as the kurtosis of the local kurtosis distribution (KLK) for minority pixels of the binary pattern. A set of partial BNMs are generated by using the different patterns as unique starting 'seeds.' In this way, we are able to study the quality of binary patterns over a range of gray levels. We observe that the optimality of a binary pattern for mask generation is related to its own quality mertirc values as well as the transition smoothness of those quality metric values over neighboring levels. Several schemes have been developed to apply blue-noise halftoning to color reproduction. Different schemes generate halftone patterns with different textures. In a previous paper, a human visual system (HVS) model was used to study the color halftone quality in terms of luminance and chrominance error in CIELAB color space. In this paper, a new series of psycho-visual experiments address the 'preferred' color rendering among four different blue noise halftoning schemes. The experimental results will be interpreted with respect to the proposed halftone quality metrics.
Interacting Social and Environmental Predictors for the Spatial Distribution of Conservation Lands
Baldwin, Robert F.; Leonard, Paul B.
2015-01-01
Conservation decisions should be evaluated for how they meet conservation goals at multiple spatial extents. Conservation easements are land use decisions resulting from a combination of social and environmental conditions. An emerging area of research is the evaluation of spatial distribution of easements and their spatial correlates. We tested the relative influence of interacting social and environmental variables on the spatial distribution of conservation easements by ownership category and conservation status. For the Appalachian region of the United States, an area with a long history of human occupation and complex land uses including public-private conservation, we found that settlement, economic, topographic, and environmental data associated with spatial distribution of easements (N = 4813). Compared to random locations, easements were more likely to be found in lower elevations, in areas of greater agricultural productivity, farther from public protected areas, and nearer other human features. Analysis of ownership and conservation status revealed sources of variation, with important differences between local and state government ownerships relative to non-governmental organizations (NGOs), and among U.S. Geological Survey (USGS) GAP program status levels. NGOs were more likely to have easements nearer protected areas, and higher conservation status, while local governments held easements closer to settlement, and on lands of greater agricultural potential. Logistic interactions revealed environmental variables having effects modified by social correlates, and the strongest predictors overall were social (distance to urban area, median household income, housing density, distance to land trust office). Spatial distribution of conservation lands may be affected by geographic area of influence of conservation groups, suggesting that multi-scale conservation planning strategies may be necessary to satisfy local and regional needs for reserve networks. Our results support previous findings and provide an ecoregion-scale view that conservation easements may provide, at local scales, conservation functions on productive, more developable lands. Conservation easements may complement functions of public protected areas but more research should examine relative landscape-level ecological functions of both forms of protection. PMID:26465155
Interacting Social and Environmental Predictors for the Spatial Distribution of Conservation Lands.
Baldwin, Robert F; Leonard, Paul B
2015-01-01
Conservation decisions should be evaluated for how they meet conservation goals at multiple spatial extents. Conservation easements are land use decisions resulting from a combination of social and environmental conditions. An emerging area of research is the evaluation of spatial distribution of easements and their spatial correlates. We tested the relative influence of interacting social and environmental variables on the spatial distribution of conservation easements by ownership category and conservation status. For the Appalachian region of the United States, an area with a long history of human occupation and complex land uses including public-private conservation, we found that settlement, economic, topographic, and environmental data associated with spatial distribution of easements (N = 4813). Compared to random locations, easements were more likely to be found in lower elevations, in areas of greater agricultural productivity, farther from public protected areas, and nearer other human features. Analysis of ownership and conservation status revealed sources of variation, with important differences between local and state government ownerships relative to non-governmental organizations (NGOs), and among U.S. Geological Survey (USGS) GAP program status levels. NGOs were more likely to have easements nearer protected areas, and higher conservation status, while local governments held easements closer to settlement, and on lands of greater agricultural potential. Logistic interactions revealed environmental variables having effects modified by social correlates, and the strongest predictors overall were social (distance to urban area, median household income, housing density, distance to land trust office). Spatial distribution of conservation lands may be affected by geographic area of influence of conservation groups, suggesting that multi-scale conservation planning strategies may be necessary to satisfy local and regional needs for reserve networks. Our results support previous findings and provide an ecoregion-scale view that conservation easements may provide, at local scales, conservation functions on productive, more developable lands. Conservation easements may complement functions of public protected areas but more research should examine relative landscape-level ecological functions of both forms of protection.
Gayawan, Ezra; Arogundade, Ekundayo D; Adebayo, Samson B
2014-03-01
Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health and socioeconomic development. This paper examines the possible relationship between Hb concentration and severity of anaemia with individual and household characteristics of children aged 6-59 months in Nigeria; and explores possible geographical variations of these outcome variables. Data on Hb concentration and severity of anaemia in children aged 6-59 months that participated in the 2010 Nigeria Malaria Indicator Survey were analysed. A semi-parametric model using a hierarchical Bayesian approach was adopted to examine the putative relationship of covariates of different types and possible spatial variation. Gaussian, binary and ordinal outcome variables were considered in modelling. Spatial analyses reveal a distinct North-South divide in Hb concentration of the children analysed and that states in Northern Nigeria possess a higher risk of anaemia. Other important risk factors include the household wealth index, sex of the child, whether or not the child had fever or malaria in the 2 weeks preceding the survey, and children under 24 months of age. There is a need for state level implementation of specific programmes that target vulnerable children as this can help in reversing the existing patterns.
NASA Astrophysics Data System (ADS)
Bonatto, C.; Lima, E. F.; Bica, E.
2012-04-01
Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the simulated Hess diagrams. Conclusions: Even for low-mass star clusters, ASAmin is sensitive to the values of cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and to a lesser degree, binary fraction. Compared with simpler approaches, including binaries, a decaying star-formation rate, and a normally distributed differential reddening appears to yield more constrained parameters, especially the mass, age, and distance from the Sun. A robust determination of cluster parameters may have a positive impact on many fields. For instance, age, mass, and binary fraction are important for establishing the dynamical state of a cluster or for deriving a more precise star-formation rate in the Galaxy.
Zhang, Jianfeng; Huang, Zirui; Chen, Yali; Zhang, Jun; Ghinda, Diana; Nikolova, Yuliya; Wu, Jinsong; Xu, Jianghui; Bai, Wenjie; Mao, Ying; Yang, Zhong; Duncan, Niall; Qin, Pengmin; Wang, Hao; Chen, Bing; Weng, Xuchu; Northoff, Georg
2018-05-01
Which temporal features that can characterize different brain states (i.e., consciousness or unconsciousness) is a fundamental question in the neuroscience of consciousness. Using resting-state functional magnetic resonance imaging (rs-fMRI), we investigated the spatial patterns of two temporal features: the long-range temporal correlations (LRTCs), measured by power-law exponent (PLE), and temporal variability, measured by standard deviation (SD) during wakefulness and anesthetic-induced unconsciousness. We found that both PLE and SD showed global reductions across the whole brain during anesthetic state comparing to wakefulness. Importantly, the relationship between PLE and SD was altered in anesthetic state, in terms of a spatial "decoupling." This decoupling was mainly driven by a spatial pattern alteration of the PLE, rather than the SD, in the anesthetic state. Our results suggest differential physiological grounds of PLE and SD and highlight the functional importance of the topographical organization of LRTCs in maintaining an optimal spatiotemporal configuration of the neural dynamics during normal level of consciousness. The central role of the spatial distribution of LRTCs, reflecting temporo-spatial nestedness, may support the recently introduced temporo-spatial theory of consciousness (TTC). © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Eggleton, Peter P.
The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.
Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction
NASA Astrophysics Data System (ADS)
Zhang, Guo-Mao; Wong, Ieong; Chou, Meng-Ta; Zhao, Xin
2012-04-01
It has been proposed that the spatial excitable media can perform a wide range of computational operations, from image processing, to path planning, to logical and arithmetic computations. The realizations in the field of chemical logical and arithmetic computations are mainly concerned with single simple logical functions in experiments. In this study, based on Belousov-Zhabotinsky reaction, we performed simulations toward the realization of a more complex operation, the binary adder. Combining with some of the existing functional structures that have been verified experimentally, we designed a planar geometrical binary adder chemical device. Through numerical simulations, we first demonstrated that the device can implement the function of a single-bit full binary adder. Then we show that the binary adder units can be further extended in plane, and coupled together to realize a two-bit, or even multi-bit binary adder. The realization of chemical adders can guide the constructions of other sophisticated arithmetic functions, ultimately leading to the implementation of chemical computer and other intelligent systems.
Mapping Agricultural Fields in Sub-Saharan Africa with a Computer Vision Approach
NASA Astrophysics Data System (ADS)
Debats, S. R.; Luo, D.; Estes, L. D.; Fuchs, T.; Caylor, K. K.
2014-12-01
Sub-Saharan Africa is an important focus for food security research, because it is experiencing unprecedented population growth, agricultural activities are largely dominated by smallholder production, and the region is already home to 25% of the world's undernourished. One of the greatest challenges to monitoring and improving food security in this region is obtaining an accurate accounting of the spatial distribution of agriculture. Households are the primary units of agricultural production in smallholder communities and typically rely on small fields of less than 2 hectares. Field sizes are directly related to household crop productivity, management choices, and adoption of new technologies. As population and agriculture expand, it becomes increasingly important to understand both the distribution of field sizes as well as how agricultural communities are spatially embedded in the landscape. In addition, household surveys, a common tool for tracking agricultural productivity in Sub-Saharan Africa, would greatly benefit from spatially explicit accounting of fields. Current gridded land cover data sets do not provide information on individual agricultural fields or the distribution of field sizes. Therefore, we employ cutting edge approaches from the field of computer vision to map fields across Sub-Saharan Africa, including semantic segmentation, discriminative classifiers, and automatic feature selection. Our approach aims to not only improve the binary classification accuracy of cropland, but also to isolate distinct fields, thereby capturing crucial information on size and geometry. Our research focuses on the development of descriptive features across scales to increase the accuracy and geographic range of our computer vision algorithm. Relevant data sets include high-resolution remote sensing imagery and Landsat (30-m) multi-spectral imagery. Training data for field boundaries is derived from hand-digitized data sets as well as crowdsourcing.
Determining on-fault earthquake magnitude distributions from integer programming
Geist, Eric L.; Parsons, Thomas E.
2018-01-01
Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.
Impact of Spatial Pumping Patterns on Groundwater Management
NASA Astrophysics Data System (ADS)
Yin, J.; Tsai, F. T. C.
2017-12-01
Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.
Cas A and the Crab were not stellar binaries at death
NASA Astrophysics Data System (ADS)
Kochanek, C. S.
2018-01-01
The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb < 44 per cent. In a passively evolving binary model (meaning no binary interactions), with a flat mass ratio distribution and a Salpeter IMF, the resulting 90 per cent confidence upper limit on the initial binary fraction of F < 63 per cent is in tension with observed massive binary statistics. Allowing a significant fraction fM ≃ 25 per cent of stellar binaries to merge reduces the tension, with F < 63({1-f}M)^{-1}{ per cent} ˜eq 81{ per cent}, but allowing for the significant fraction in higher order systems (triples, etc.) reintroduces the tension. That Cas A was not a stellar binary at death also shows that a surviving massive binary companion at the time of the explosion is not necessary for producing a Type IIb SNe. Much larger surveys for binary companions to Galactic SNe will become feasible with the release of the full Gaia proper motion and parallax catalogues providing a powerful probe of the statistics of such binaries and their role in massive star evolution, neutron star velocity distributions and runaway stars.
Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance
Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.
2010-01-01
Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.
NASA Astrophysics Data System (ADS)
Jacobson, S.; Scheeres, D.; Rossi, A.; Marzari, F.; Davis, D.
2014-07-01
From the results of a comprehensive asteroid-population-evolution model, we conclude that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution and is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. The foundation of this model is the asteroid-rotation model of Marzari et al. (2011) and Rossi et al. (2009), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; Scheeres 2007) and binary-asteroid evolution (Jacobson & Scheeres, 2011). The YORP-effect timescale for large asteroids with diameters D > ˜ 6 km is longer than the collision timescale in the main belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ˜ 6 km, the asteroid-population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size-frequency distribution. Using the outputs of the asteroid-population evolution model and a 1-D collision evolution model, we can generate this new size-frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated ''Asteroids were Born Big'' size-frequency distribution (Weidenschilling 2010, Morbidelli 2009). The binary-asteroid evolution model is highly constrained by the modeling done in Jacobson & Scheeres, and therefore the asteroid-population evolution model has only two significant free parameters: the ratio of low-to-high-mass-ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. Using this model, we successfully reproduce the observed small-asteroid sub-populations, which orthogonally constrain the two free parameters. We find the outcome of rotational fission most likely produces an initial mass-ratio fraction that is four to eight times as likely to produce high-mass-ratio systems as low-mass-ratio systems, which is consistent with rotational fission creating binary systems in a flat distribution with respect to mass ratio. We also find that the mean of the log-normal BYORP coefficient distribution B ≈ 10^{-2}.
NASA Astrophysics Data System (ADS)
Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.
2017-02-01
Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z 1 to 2 which are estimated to have Z 0.5 Z⊙. The log of observations and RV measurements for all targets are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A84
NASA Astrophysics Data System (ADS)
Moe, Maxwell; Di Stefano, Rosanne
2017-06-01
We compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, common proper motion, etc. Each observational technique is sensitive to companions across a narrow parameter space of orbital periods P and mass ratios q = {M}{comp}/M 1. After combining the samples from the various surveys and correcting for their respective selection effects, we find that the properties of companions to O-type and B-type main-sequence (MS) stars differ among three regimes. First, at short orbital periods P ≲ 20 days (separations a ≲ 0.4 au), the binaries have small eccentricities e ≲ 0.4, favor modest mass ratios < q> ≈ 0.5, and exhibit a small excess of twins q > 0.95. Second, the companion frequency peaks at intermediate periods log P (days) ≈ 3.5 (a ≈ 10 au), where the binaries have mass ratios weighted toward small values q ≈ 0.2-0.3 and follow a Maxwellian “thermal” eccentricity distribution. Finally, companions with long orbital periods log P (days) ≈ 5.5-7.5 (a ≈ 200-5000 au) are outer tertiary components in hierarchical triples and have a mass ratio distribution across q ≈ 0.1-1.0 that is nearly consistent with random pairings drawn from the initial mass function. We discuss these companion distributions and properties in the context of binary-star formation and evolution. We also reanalyze the binary statistics of solar-type MS primaries, taking into account that 30% ± 10% of single-lined spectroscopic binaries likely contain white dwarf companions instead of low-mass stellar secondaries. The mean frequency of stellar companions with q > 0.1 and log P (days) < 8.0 per primary increases from 0.50 ± 0.04 for solar-type MS primaries to 2.1 ± 0.3 for O-type MS primaries. We fit joint probability density functions f({M}1,q,P,e)\
Regular and Chaotic Spatial Distribution of Bose-Einstein Condensed Atoms in a Ratchet Potential
NASA Astrophysics Data System (ADS)
Li, Fei; Xu, Lan; Li, Wenwu
2018-02-01
We study the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction in a ratchet potential. There exists in the system a space-dependent atomic current that can be tuned via Feshbach resonance technique. In the presence of the space-dependent atomic current and a weak ratchet potential, the Smale-horseshoe chaos is studied and the Melnikov chaotic criterion is obtained. Numerical simulations show that the ratio between the intensities of optical potentials forming the ratchet potential, the wave vector of the laser producing the ratchet potential or the wave vector of the modulating laser can be chosen as the controlling parameters to result in or avoid chaotic spatial distributional states.
CHARACTERIZATION OF SEVEN ULTRA-WIDE TRANS-NEPTUNIAN BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Alex H.; Kavelaars, J. J.; Petit, Jean-Marc
2011-12-10
The low-inclination component of the Classical Kuiper Belt is host to a population of extremely widely separated binaries. These systems are similar to other trans-Neptunian binaries (TNBs) in that the primary and secondary components of each system are of roughly equal size. We have performed an astrometric monitoring campaign of a sample of seven wide-separation, long-period TNBs and present the first-ever well-characterized mutual orbits for each system. The sample contains the most eccentric (2006 CH{sub 69}, e{sub m} = 0.9) and the most widely separated, weakly bound (2001 QW{sub 322}, a/R{sub H} {approx_equal} 0.22) binary minor planets known, and alsomore » contains the system with lowest-measured mass of any TNB (2000 CF{sub 105}, M{sub sys} {approx_equal} 1.85 Multiplication-Sign 10{sup 17} kg). Four systems orbit in a prograde sense, and three in a retrograde sense. They have a different mutual inclination distribution compared to all other TNBs, preferring low mutual-inclination orbits. These systems have geometric r-band albedos in the range of 0.09-0.3, consistent with radiometric albedo estimates for larger solitary low-inclination Classical Kuiper Belt objects, and we limit the plausible distribution of albedos in this region of the Kuiper Belt. We find that gravitational collapse binary formation models produce an orbital distribution similar to that currently observed, which along with a confluence of other factors supports formation of the cold Classical Kuiper Belt in situ through relatively rapid gravitational collapse rather than slow hierarchical accretion. We show that these binary systems are sensitive to disruption via collisions, and their existence suggests that the size distribution of TNOs at small sizes remains relatively shallow.« less
United States Air Force Summer Faculty Research Program (1987). Program Technical Report. Volume 2.
1987-12-01
the area of statistical inference, distribution theory and stochastic * •processes. I have taught courses in random processes and sample % j .functions...controlled phase separation of isotropic, binary mixtures, the theory of spinodal decomposition has been developed by Cahn and Hilliard.5 ,6 This theory is...peak and its initial rate of growth at a given temperature are predicted by the spinodal theory . The angle of maximum intensity is then determined by
Eastwood, John G; Jalaludin, Bin B; Kemp, Lynn A; Phung, Hai N; Barnett, Bryanne E W
2013-09-01
The purpose is to explore the multilevel spatial distribution of depressive symptoms among migrant mothers in South Western Sydney and to identify any group level associations that could inform subsequent theory building and local public health interventions. Migrant mothers (n=7256) delivering in 2002 and 2003 were assessed at 2-3 weeks after delivery for risk factors for depressive symptoms. The binary outcome variables were Edinburgh Postnatal Depression Scale scores (EPDS) of >9 and >12. Individual level variables included were: financial income, self-reported maternal health, social support network, emotional support, practical support, baby trouble sleeping, baby demanding and baby not content. The group level variable reported here is aggregated social support networks. We used Bayesian hierarchical multilevel spatial modelling with conditional autoregression. Migrant mothers were at higher risk of having depressive symptoms if they lived in a community with predominantly Australian-born mothers and strong social capital as measured by aggregated social networks. These findings suggest that migrant mothers are socially isolated and current home visiting services should be strengthened for migrant mothers living in communities where they may have poor social networks. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
BINARY ASTROMETRIC MICROLENSING WITH GAIA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajadian, Sedighe, E-mail: sajadian@ipm.ir; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran
2015-04-15
We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth duemore » to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.« less
High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, Wako; Suda, Takuma; Beers, Timothy C.
2015-02-01
The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-massmore » stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumper, Peter H.; Fisher, Robert T., E-mail: robert.fisher@umassd.edu
2013-05-20
The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scalingmore » of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.« less
Rapid crop cover mapping for the conterminous United States
Dahal, Devendra; Wylie, Bruce K.; Howard, Daniel
2018-01-01
Timely crop cover maps with sufficient resolution are important components to various environmental planning and research applications. Through the modification and use of a previously developed crop classification model (CCM), which was originally developed to generate historical annual crop cover maps, we hypothesized that such crop cover maps could be generated rapidly during the growing season. Through a process of incrementally removing weekly and monthly independent variables from the CCM and implementing a ‘two model mapping’ approach, we found it viable to generate conterminous United States-wide rapid crop cover maps at a resolution of 250 m for the current year by the month of September. In this approach, we divided the CCM model into one ‘crop type model’ to handle the classification of nine specific crops and a second, binary model to classify the presence or absence of ‘other’ crops. Under the two model mapping approach, the training errors were 0.8% and 1.5% for the crop type and binary model, respectively, while test errors were 5.5% and 6.4%, respectively. With spatial mapping accuracies for annual maps reaching upwards of 70%, this approach demonstrated a strong potential for generating rapid crop cover maps by the 1st of September.
Constraining the equation of state of neutron stars from binary mergers.
Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca
2014-08-29
Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.
A Space Object Detection Algorithm using Fourier Domain Likelihood Ratio Test
NASA Astrophysics Data System (ADS)
Becker, D.; Cain, S.
Space object detection is of great importance in the highly dependent yet competitive and congested space domain. Detection algorithms employed play a crucial role in fulfilling the detection component in the situational awareness mission to detect, track, characterize and catalog unknown space objects. Many current space detection algorithms use a matched filter or a spatial correlator to make a detection decision at a single pixel point of a spatial image based on the assumption that the data follows a Gaussian distribution. This paper explores the potential for detection performance advantages when operating in the Fourier domain of long exposure images of small and/or dim space objects from ground based telescopes. A binary hypothesis test is developed based on the joint probability distribution function of the image under the hypothesis that an object is present and under the hypothesis that the image only contains background noise. The detection algorithm tests each pixel point of the Fourier transformed images to make the determination if an object is present based on the criteria threshold found in the likelihood ratio test. Using simulated data, the performance of the Fourier domain detection algorithm is compared to the current algorithm used in space situational awareness applications to evaluate its value.
Failure models for textile composites
NASA Technical Reports Server (NTRS)
Cox, Brian
1995-01-01
The goals of this investigation were to: (1) identify mechanisms of failure and determine how the architecture of reinforcing fibers in 3D woven composites controlled stiffness, strength, strain to failure, work of fracture, notch sensitivity, and fatigue life; and (2) to model composite stiffness, strength, and fatigue life. A total of 11 different angle and orthogonal interlock woven composites were examined. Composite properties depended on the weave architecture, the tow size, and the spatial distributions and strength of geometrical flaws. Simple models were developed for elastic properties, strength, and fatigue life. A more complicated stochastic model, called the 'Binary Model,' was developed for damage tolerance and ultimate failure. These 3D woven composites possessed an extraordinary combination of strength, damage tolerance, and notch insensitivity.
Mathematics of thermal diffusion in an exponential temperature field
NASA Astrophysics Data System (ADS)
Zhang, Yaqi; Bai, Wenyu; Diebold, Gerald J.
2018-04-01
The Ludwig-Soret effect, also known as thermal diffusion, refers to the separation of gas, liquid, or solid mixtures in a temperature gradient. The motion of the components of the mixture is governed by a nonlinear, partial differential equation for the density fractions. Here solutions to the nonlinear differential equation for a binary mixture are discussed for an externally imposed, exponential temperature field. The equation of motion for the separation without the effects of mass diffusion is reduced to a Hamiltonian pair from which spatial distributions of the components of the mixture are found. Analytical calculations with boundary effects included show shock formation. The results of numerical calculations of the equation of motion that include both thermal and mass diffusion are given.
NASA Astrophysics Data System (ADS)
Murphy, Simon J.; Moe, Maxwell; Kurtz, Donald W.; Bedding, Timothy R.; Shibahashi, Hiromoto; Boffin, Henri M. J.
2018-03-01
The orbital parameters of binaries at intermediate periods (102-103 d) are difficult to measure with conventional methods and are very incomplete. We have undertaken a new survey, applying our pulsation timing method to Kepler light curves of 2224 main-sequence A/F stars and found 341 non-eclipsing binaries. We calculate the orbital parameters for 317 PB1 systems (single-pulsator binaries) and 24 PB2s (double-pulsators), tripling the number of intermediate-mass binaries with full orbital solutions. The method reaches down to small mass ratios q ≈ 0.02 and yields a highly homogeneous sample. We parametrize the mass-ratio distribution using both inversion and Markov-Chain Monte Carlo forward-modelling techniques, and find it to be skewed towards low-mass companions, peaking at q ≈ 0.2. While solar-type primaries exhibit a brown dwarf desert across short and intermediate periods, we find a small but statistically significant (2.6σ) population of extreme-mass-ratio companions (q < 0.1) to our intermediate-mass primaries. Across periods of 100-1500 d and at q > 0.1, we measure the binary fraction of current A/F primaries to be 15.4 per cent ± 1.4 per cent, though we find that a large fraction of the companions (21 per cent ± 6 per cent) are white dwarfs in post-mass-transfer systems with primaries that are now blue stragglers, some of which are the progenitors of Type Ia supernovae, barium stars, symbiotics, and related phenomena. Excluding these white dwarfs, we determine the binary fraction of original A/F primaries to be 13.9 per cent ± 2.1 per cent over the same parameter space. Combining our measurements with those in the literature, we find the binary fraction across these periods is a constant 5 per cent for primaries M1 < 0.8 M⊙, but then increases linearly with log M1, demonstrating that natal discs around more massive protostars M1 ≳ 1 M⊙ become increasingly more prone to fragmentation. Finally, we find the eccentricity distribution of the main-sequence pairs to be much less eccentric than the thermal distribution.
Arithmetic operations in optical computations using a modified trinary number system.
Datta, A K; Basuray, A; Mukhopadhyay, S
1989-05-01
A modified trinary number (MTN) system is proposed in which any binary number can be expressed with the help of trinary digits (1, 0, 1 ). Arithmetic operations can be performed in parallel without the need for carry and borrow steps when binary digits are converted to the MTN system. An optical implementation of the proposed scheme that uses spatial light modulators and color-coded light signals is described.
Spatial study of mortality in motorcycle accidents in the State of Pernambuco, Northeastern Brazil.
Silva, Paul Hindenburg Nobre de Vasconcelos; Lima, Maria Luiza Carvalho de; Moreira, Rafael da Silveira; Souza, Wayner Vieira de; Cabral, Amanda Priscila de Santana
2011-04-01
To analyze the spatial distribution of mortality due to motorcycle accidents in the state of Pernambuco, Northeastern Brazil. A population-based ecological study using data on mortality in motorcycle accidents from 01/01/2000 to 31/12/2005. The analysis units were the municipalities. For the spatial distribution analysis, an average mortality rate was calculated, using deaths from motorcycle accidents recorded in the Mortality Information System as the numerator, and as the denominator the population of the mid-period. Spatial analysis techniques, mortality smoothing coefficient estimate by the local empirical Bayesian method and Moran scatterplot, applied to the digital cartographic base of Pernambuco were used. The average mortality rate for motorcycle accidents in Pernambuco was 3.47 per 100 thousand inhabitants. Of the 185 municipalities, 16 were part of five clusters identified with average mortality rates ranging from 5.66 to 11.66 per 100 thousand inhabitants, and were considered critical areas. Three clusters are located in the area known as sertão and two in the agreste of the state. The risk of dying from a motorcycle accident is greater in conglomerate areas outside the metropolitan axis, and intervention measures should consider the economic, social and cultural contexts.
NASA Astrophysics Data System (ADS)
Xing, Lei; Hou, Di; Wang, Xinchen; Li, Li; Zhao, Meixun
2016-07-01
To evaluate the applicability of source proxies and to assess the sources of sedimentary organic matter in the Bohai Sea (BS) and the northern Yellow Sea (NYS), we analyzed total organic carbon (TOC), total nitrogen (TN), δ13C of TOC, n-alkanes, phytoplankton biomarkers, and glycerol dialkyl glycerol tetraethers (GDGTs) including branched GDGTs (brGDGTs) in 60 surface sediment samples covering the BS and the NYS. Spatial distribution comparison and principal component analysis indicate that with the exception of brGDGTs, terrestrial biomarkers have different spatial distribution pattern from marine biomarkers, suggesting that the sources control the distributions of these biomarkers in spite of hydrodynamic forcing. Significantly positive correlation (R2 = 0.5) between TOC normalized brGDGTs content and TOC normalized crenarchaeol content suggested in situ production of brGDGTs in the BS and the NYS. The δ13C values, TMBR [terrestrial and marine biomarker ratio: (C27 + C29 + C31n-alkanes)/[(C27 + C29 + C31n-alkanes) + (brassicasterol + dinosterol + alkenones)] ] and BIT (branched isoprenoid tetratether index) proxy indicated high terrestrial organic matter (TOM) input near the Huanghe River Estuary, while TOC/TON did not reveal similar distribution pattern. Quantitative estimates of TOM using a binary model revealed much higher TOM percentage from δ13C (avg. 58%) and TMBR (avg. 31%) than from BIT (avg. 7.4%). Our results suggest that, owing to significant in situ production of brGDGTs, the BIT is not a good proxy for indicating soil OM contribution in marine sediments from the BS and the NYS.
Runoff sensitivity to snowmelt process representation for the conterminous United States
NASA Astrophysics Data System (ADS)
Driscoll, J. M.; Sexstone, G. A.
2017-12-01
Watershed-scale hydrologic models that operate at a continental extent must balance detailed descriptions of spatiotemporal variability against simplified process representations across a diverse range of physiographic and climatic regimes. Some of these models describe the sub-grid variability of snow-cover extent and snowmelt processes using snow depletion curves (SDCs), which relate the snow covered area to the snow water equivalent (SWE). The U.S. Geological Survey's National Hydrologic Modeling (NHM) system run with the daily-timestep Precipitation Runoff Modeling System (PRMS), or NHM-PRMS, originally used two default SDCs to describe snowmelt processes: one for hydrologic response units with elevations above treeline and one for hydrologic response units with elevations below treeline. Seeking to improve upon this approach, spatially-distributed SWE, derived from Snow Data Assimilation System (SNODAS) over eleven years, was used to develop new, site-specific SDCs for each hydrologic response unit in the NHM-PRMS. This study investigates the sensitivity of NHM-PRMS to changes in SDCs for a 30-year historical period by first running the NHM-PRMS with the default binary SDCs and then with the site-specific SDCs. Comparison of simulated snowmelt and streamflow response during the snowmelt season allows for spatial analysis and grouping of the sensitivity of streamflow to changes in snowmelt dynamics. Site-specific SDCs allow for the identification and categorization of areas where faster or slower snowmelt could have a greater impact to water resources. These new SDCs can be used to identify locations where increased SWE observation density would be most useful for seasonal water availability assessments.
Radial Velocities of 41 Kepler Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.
2017-12-01
Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.
Hailstorm forecast from stability indexes in Southwestern France
NASA Astrophysics Data System (ADS)
Melcón, Pablo; Merino, Andrés; Sánchez, José Luis; Dessens, Jean; Gascón, Estíbaliz; Berthet, Claude; López, Laura; García-Ortega, Eduardo
2016-04-01
Forecasting hailstorms is a difficult task because of their small spatial and temporal scales. Over recent decades, stability indexes have been commonly used in operational forecasting to provide a simplified representation of different thermodynamic characteristics of the atmosphere, regarding the onset of convective events. However, they are estimated from vertical profiles obtained by radiosondes, which are usually available only twice a day and have limited spatial representativeness. Numerical models predictions can be used to overcome these drawbacks, providing vertical profiles with higher spatiotemporal resolution. The main objective of this study is to create a tool for hail prediction in the southwest of France, one of the European regions where hailstorms have a higher incidence. The Association Nationale d'Etude et de Lutte contre les Fleáux Atmosphériques (ANELFA) maintains there a dense hailpad network in continuous operation, which has created an extensive database of hail events, used in this study as ground truth. The new technique is aimed to classify the spatial distribution of different stability indexes on hail days. These indexes were calculated from vertical profiles at 1200 UTC provided by WRF numerical model, validated with radiosonde data from Bordeaux. Binary logistic regression is used to select those indexes that best represent thermodynamic conditions related to occurrence of hail in the zone. Then, they are combined in a single algorithm that surpassed the predictive power they have when used independently. Regression equation results in hail days are used in cluster analysis to identify different spatial patterns given by the probability algorithm. This new tool can be used in operational forecasting, in combination with synoptic and mesoscale techniques, to properly define hail probability and distribution. Acknowledgements The authors would like to thank the CEPA González Díez Foundation and the University of Leon for its financial support.
Implementation of continuous-variable quantum key distribution with discrete modulation
NASA Astrophysics Data System (ADS)
Hirano, Takuya; Ichikawa, Tsubasa; Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Namiki, Ryo; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro
2017-06-01
We have developed a continuous-variable quantum key distribution (CV-QKD) system that employs discrete quadrature-amplitude modulation and homodyne detection of coherent states of light. We experimentally demonstrated automated secure key generation with a rate of 50 kbps when a quantum channel is a 10 km optical fibre. The CV-QKD system utilises a four-state and post-selection protocol and generates a secure key against the entangling cloner attack. We used a pulsed light source of 1550 nm wavelength with a repetition rate of 10 MHz. A commercially available balanced receiver is used to realise shot-noise-limited pulsed homodyne detection. We used a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification. A graphical processing unit card is used to accelerate the software-based post-processing.
BINARY CORRELATIONS IN IONIZED GASES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.; Taylor, H.S.
1961-01-01
An equation of evolution for the binary distribution function in a classical homogeneous, nonequilibrium plasma was derived. It is shown that the asymptotic (long-time) solution of this equation is the Debye distribution, thus providing a rigorous dynamical derivation of the equilibrium distribution. This proof is free from the fundamental conceptual difficulties of conventional equilibrium derivations. Out of equilibrium, a closed formula was obtained for the long living correlations, in terms of the momentum distribution function. These results should form an appropriate starting point for a rigorous theory of transport phenomena in plasmas, including the effect of molecular correlations. (auth)
Distinguishing spin-aligned and isotropic black hole populations with gravitational waves.
Farr, Will M; Stevenson, Simon; Miller, M Coleman; Mandel, Ilya; Farr, Ben; Vecchio, Alberto
2017-08-23
The direct detection of gravitational waves from merging binary black holes opens up a window into the environments in which binary black holes form. One signature of such environments is the angular distribution of the black hole spins. Binary systems that formed through dynamical interactions between already-compact objects are expected to have isotropic spin orientations (that is, the spins of the black holes are randomly oriented with respect to the orbit of the binary system), whereas those that formed from pairs of stars born together are more likely to have spins that are preferentially aligned with the orbit. The best-measured combination of spin parameters for each of the four likely binary black hole detections GW150914, LVT151012, GW151226 and GW170104 is the 'effective' spin. Here we report that, if the magnitudes of the black hole spins are allowed to extend to high values, the effective spins for these systems indicate a 0.015 odds ratio against an aligned angular distribution compared to an isotropic one. When considering the effect of ten additional detections, this odds ratio decreases to 2.9 × 10 -7 against alignment. The existing preference for either an isotropic spin distribution or low spin magnitudes for the observed systems will be confirmed (or overturned) confidently in the near future.
Chhetri, Bimal K; Berke, Olaf; Pearl, David L; Bienzle, Dorothee
2013-01-05
Although feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) have similar risk factors and control measures, infection rates have been speculated to vary in geographic distribution over North America. Since both infections are endemic in North America, it was assumed as a working hypothesis that their geographic distributions were similar. Hence, the purpose of this exploratory analysis was to investigate the comparative geographical distribution of both viral infections. Counts of FIV (n=17,108) and FeLV (n=30,017) positive serology results (FIV antibody and FeLV ELISA) were obtained for 48 contiguous states and District of Columbia of the United States of America (US) from the IDEXX Laboratories website. The proportional morbidity ratio of FIV to FeLV infection was estimated for each administrative region and its geographic distribution pattern was visualized by a choropleth map. Statistical evidence of an excess in the proportional morbidity ratio from unity was assessed using the spatial scan test under the normal probability model. This study revealed distinct spatial distribution patterns in the proportional morbidity ratio suggesting the presence of one or more relevant and geographically varying risk factors. The disease map indicates that there is a higher prevalence of FIV infections in the southern and eastern US compared to FeLV. In contrast, FeLV infections were observed to be more frequent in the western US compared to FIV. The respective excess in proportional morbidity ratio was significant with respect to the spatial scan test (p < 0.05). The observed variability in the geographical distribution of the proportional morbidity ratio of FIV to FeLV may be related to the presence of an additional or unique, but yet unknown, spatial risk factor. Putative factors may be geographic variations in specific virus strains and rate of vaccination. Knowledge of these factors and the geographical distributions of these infections can inform recommendations for testing, management and prevention. However, further studies are required to investigate the potential association of these factors with FIV and FeLV.
NASA Astrophysics Data System (ADS)
Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Maurel, Clara; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Benner, Lance A. M.; Naidu, Shantanu P.; Li, Junfeng
2017-09-01
As the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, the near-Earth binary asteroid 65803 Didymos represents a special class of binary asteroids, those whose primaries are at risk of rotational disruption. To gain a better understanding of these binary systems and to support the AIDA mission, this paper investigates the creep stability of the Didymos primary by representing it as a cohesionless self-gravitating granular aggregate subject to rotational acceleration. To achieve this goal, a soft-sphere discrete element model (SSDEM) capable of simulating granular systems in quasi-static states is implemented and a quasi-static spin-up procedure is carried out. We devise three critical spin limits for the simulated aggregates to indicate their critical states triggered by reshaping and surface shedding, internal structural deformation, and shear failure, respectively. The failure condition and mode, and shear strength of an aggregate can all be inferred from the three critical spin limits. The effects of arrangement and size distribution of constituent particles, bulk density, spin-up path, and interparticle friction are numerically explored. The results show that the shear strength of a spinning self-gravitating aggregate depends strongly on both its internal configuration and material parameters, while its failure mode and mechanism are mainly affected by its internal configuration. Additionally, this study provides some constraints on the possible physical properties of the Didymos primary based on observational data and proposes a plausible formation mechanism for this binary system. With a bulk density consistent with observational uncertainty and close to the maximum density allowed for the asteroid, the Didymos primary in certain configurations can remain geo-statically stable without requiring cohesion.
Inferences about binary stellar populations using gravitational wave observations
NASA Astrophysics Data System (ADS)
Wysocki, Daniel; Gerosa, Davide; O'Shaughnessy, Richard; Belczynski, Krzysztof; Gladysz, Wojciech; Berti, Emanuele; Kesden, Michael; Holz, Daniel
2018-01-01
With the dawn of gravitational wave astronomy, enabled by the LIGO and Virgo interferometers, we now have a new window into the Universe. In the short time these detectors have been in use, multiple confirmed detections of gravitational waves from compact binary coalescences have been made. Stellar binary systems are one of the likely progenitors of the observed compact binary sources. If this is indeed the case, then we can use measured properties of these binary systems to learn about their progenitors. We will discuss the Bayesian framework in which we make these inferences, and results which include mass and spin distributions.
Using ICESat/GLAS Data Produced in a Self-Describing Format
NASA Astrophysics Data System (ADS)
Fowler, D. K.; Webster, D.; Fowler, C.; McAllister, M.; Haran, T. M.
2015-12-01
For the life of the ICESat mission and beyond, GLAS data have been distributed in binary format by NASA's National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) at the University of Colorado in Boulder. These data have been extremely useful but, depending on the users, not always the easiest to use. Recently, with release 33 and 34, GLAS data have been produced in an HDF5 format. The NSIDC User Services Office has found that most users find this HDF5 format to be more user friendly than the original binary format. Some of the advantages include being able to view the actual data using HDFView or any of a number of open source tools freely available for users to view and work with the data. Also with this format NSIDC DAAC has been able to provide more selective and specific services which include spatial subsetting, file stitching, and the much sought after parameter subsetting through the use of Reverb, the next generation Earth science discovery tool. The final release of GLAS data in 2014 and the ongoing user questions not just about the data, but about the mission, satellite platform, and instrument have also spurred NSIDC DAAC efforts to make all of the mission documents and information available to the public in one location. Thus was born the ICESat/GLAS Long Term Archive now available online. The data and specifics from this mission are archived and made available to the public at NASA's NSIDC DAAC.
Ali, Syed Shujait; Yu, Yan; Pfosser, Martin; Wetschnig, Wolfgang
2012-01-01
Background and Aims Subfamily Hyacinthoideae (Hyacinthaceae) comprises more than 400 species. Members are distributed in sub-Saharan Africa, Madagascar, India, eastern Asia, the Mediterranean region and Eurasia. Hyacinthoideae, like many other plant lineages, show disjunct distribution patterns. The aim of this study was to reconstruct the biogeographical history of Hyacinthoideae based on phylogenetic analyses, to find the possible ancestral range of Hyacinthoideae and to identify factors responsible for the current disjunct distribution pattern. Methods Parsimony and Bayesian approaches were applied to obtain phylogenetic trees, based on sequences of the trnL-F region. Biogeographical inferences were obtained by applying statistical dispersal-vicariance analysis (S-DIVA) and Bayesian binary MCMC (BBM) analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Key Results S-DIVA and BBM analyses suggest that the Hyacinthoideae clade seem to have originated in sub-Saharan Africa. Dispersal and vicariance played vital roles in creating the disjunct distribution pattern. Results also suggest an early dispersal to the Mediterranean region, and thus the northward route (from sub-Saharan Africa to Mediterranean) of dispersal is plausible for members of subfamily Hyacinthoideae. Conclusions Biogeographical analyses reveal that subfamily Hyacinthoideae has originated in sub-Saharan Africa. S-DIVA indicates an early dispersal event to the Mediterranean region followed by a vicariance event, which resulted in Hyacintheae and Massonieae tribes. By contrast, BBM analysis favours dispersal to the Mediterranean region, eastern Asia and Europe. Biogeographical analysis suggests that sub-Saharan Africa and the Mediterranean region have played vital roles as centres of diversification and radiation within subfamily Hyacinthoideae. In this bimodal distribution pattern, sub-Saharan Africa is the primary centre of diversity and the Mediterranean region is the secondary centre of diversity. Sub-Saharan Africa was the source area for radiation toward Madagascar, the Mediterranean region and India. Radiations occurred from the Mediterranean region to eastern Asia, Europe, western Asia and India. PMID:22039008
Population rate dynamics and multineuron firing patterns in sensory cortex
Okun, Michael; Yger, Pierre; Marguet, Stephan; Gerard-Mercier, Florian; Benucci, Andrea; Katzner, Steffen; Busse, Laura; Carandini, Matteo; Harris, Kenneth D.
2012-01-01
Cortical circuits encode sensory stimuli through the firing of neuronal ensembles, and also produce spontaneous population patterns in the absence of sensory drive. This population activity is often characterized experimentally by the distribution of multineuron “words” (binary firing vectors), and a match between spontaneous and evoked word distributions has been suggested to reflect learning of a probabilistic model of the sensory world. We analyzed multineuron word distributions in sensory cortex of anesthetized rats and cats, and found that they are dominated by fluctuations in population firing rate rather than precise interactions between individual units. Furthermore, cortical word distributions change when brain state shifts, and similar behavior is seen in simulated networks with fixed, random connectivity. Our results suggest that similarity or dissimilarity in multineuron word distributions could primarily reflect similarity or dissimilarity in population firing rate dynamics, and not necessarily the precise interactions between neurons that would indicate learning of sensory features. PMID:23197704
Binary Lenses in OGLE-III EWS Database. Seasons 2002-2003
NASA Astrophysics Data System (ADS)
Jaroszynski, M.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Soszynski, I.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.
2004-06-01
We present 15 binary lens candidates from OGLE-III Early Warning System database for seasons 2002-2003. We also found 15 events interpreted as single mass lensing of double sources. The candidates were selected by visual light curves inspection. Examining the models of binary lenses of this and our previous study (10 caustic crossing events of OGLE-II seasons 1997--1999) we find one case of extreme mass ratio binary (q approx 0.005) and the rest in the range 0.1
Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong
2013-01-01
As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.
Subjective randomness as statistical inference.
Griffiths, Thomas L; Daniels, Dylan; Austerweil, Joseph L; Tenenbaum, Joshua B
2018-06-01
Some events seem more random than others. For example, when tossing a coin, a sequence of eight heads in a row does not seem very random. Where do these intuitions about randomness come from? We argue that subjective randomness can be understood as the result of a statistical inference assessing the evidence that an event provides for having been produced by a random generating process. We show how this account provides a link to previous work relating randomness to algorithmic complexity, in which random events are those that cannot be described by short computer programs. Algorithmic complexity is both incomputable and too general to capture the regularities that people can recognize, but viewing randomness as statistical inference provides two paths to addressing these problems: considering regularities generated by simpler computing machines, and restricting the set of probability distributions that characterize regularity. Building on previous work exploring these different routes to a more restricted notion of randomness, we define strong quantitative models of human randomness judgments that apply not just to binary sequences - which have been the focus of much of the previous work on subjective randomness - but also to binary matrices and spatial clustering. Copyright © 2018 Elsevier Inc. All rights reserved.
Probing the tides in interacting galaxy pairs
NASA Technical Reports Server (NTRS)
Borne, Kirk D.
1990-01-01
Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.
A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification
Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong
2016-01-01
Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs). PMID:26985826
A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.
Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong
2016-01-01
Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs).
Self-assembly of Nano-rods in Photosensitive Phase Separation
NASA Astrophysics Data System (ADS)
Liu, Ya; Kuksenok, Olga; Maresov, Egor; Balazs, Anna
2012-02-01
Computer simulations reveal how photo-induced chemical reactions in polymeric mixtures can be exploited to create long-range order in materials whose features range from the sub-micron to the nanoscale. The process is initiated by shining a spatially uniform light on a photosensitive AB binary blend, which thereby undergoes both a reversible chemical reaction and phase separation. When a well-collimated, higher intensity light is rastered over the sample, the system forms defect-free, spatially periodic structures. We now build on this approach by introducing nanorods that have a preferential affinity for one the phases in a binary mixture. By rastering over the sample with the higher intensity light, we can create ordered arrays of rods within periodically ordered materials in essentially one processing step.
The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population
NASA Astrophysics Data System (ADS)
Sana, H.; de Koter, A.; de Mink, S. E.; Dunstall, P. R.; Evans, C. J.; Hénault-Brunet, V.; Maíz Apellániz, J.; Ramírez-Agudelo, O. H.; Taylor, W. D.; Walborn, N. R.; Clark, J. S.; Crowther, P. A.; Herrero, A.; Gieles, M.; Langer, N.; Lennon, D. J.; Vink, J. S.
2013-02-01
Context. The Tarantula Nebula in the Large Magellanic Cloud is our closest view of a starburst region and is the ideal environment to investigate important questions regarding the formation, evolution and final fate of the most massive stars. Aims: We analyze the multiplicity properties of the massive O-type star population observed through multi-epoch spectroscopy in the framework of the VLT-FLAMES Tarantula Survey. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. Methods: We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. By modeling simultaneously the observed binary fraction, the distributions of the amplitudes of the radial velocity variations and the distribution of the time scales of these variations, we constrain the intrinsic current binary fraction and period and mass-ratio distributions. Results: We observe a spectroscopic binary fraction of 0.35 ± 0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20 km s-1. We compute the intrinsic binary fraction to be 0.51 ± 0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f(log 10P/d) ~ (log 10P/d)π (with log 10P/d in the range 0.15-3.5) and f(q) ~ qκ with 0.1 ≤ q = M2/M1 ≤ 1.0. The power-law indexes that best reproduce the observed quantities are π = -0.45 ± 0.30 and κ = -1.0 ± 0.4. The period distribution that we obtain thus favours shorter period systems compared to an Öpik law (π = 0). The mass ratio distribution is slightly skewed towards low mass ratio systems but remains incompatible with a random sampling of a classical mass function (κ = -2.35). The binary fraction seems mostly uniform across the field of view and independent of the spectral types and luminosity classes. The binary fraction in the outer region of the field of view (r > 7.8', i.e. ≈117 pc) and among the O9.7 I/II objects are however significantly lower than expected from statistical fluctuations. The observed and intrinsic binary fractions are also lower for the faintest objects in our sample (Ks > 15.5 mag), which results from observational effects and the fact that our O star sample is not magnitude-limited but is defined by a spectral-type cutoff. We also conclude that magnitude-limited investigations are biased towards larger binary fractions. Conclusions: Using the multiplicity properties of the O stars in the Tarantula region and simple evolutionary considerations, we estimate that over 50% of the current O star population will exchange mass with its companion within a binary system. This shows that binary interaction is greatly affecting the evolution and fate of massive stars, and must be taken into account to correctly interpret unresolved populations of massive stars. Based on observations collected at the European Southern Observatory under program ID 182.D-0222.Full Tables 1-3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A107Appendices are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Rossi, A.; Marzari, F.; Scheeres, D.; Jacobson, S.; Davis, D.
In the last several years a comprehensive asteroid-population-evolution model was developed incorporating both the YORP effect and collisional evolution \\citep{rossi_2009}, \\citep{marz_2011}, \\citep{jac_mnras}. From the results of this model we were able to match the observed main belt rotation rate distribution and to give a first plausible explanation of the observed excess of slow rotators, through a random walk-like evolution of the spin, induced by repeated collisions with small projectiles. Moreover, adding to the model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; \\citealt{sch_2007}) and binary-asteroid evolution \\citep{jac_sch}, we first showed that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution. We also concluded that this hypothesis is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. An overview of the results obtained, the modelling uncertainties and the ongoing work will be given.
NASA Astrophysics Data System (ADS)
Tomita, Toshihiro; Miyaji, Kousuke
2015-04-01
The dependence of spatial and statistical distribution of random telegraph noise (RTN) in a 30 nm NAND flash memory on channel doping concentration NA and cell program state Vth is comprehensively investigated using three-dimensional Monte Carlo device simulation considering random dopant fluctuation (RDF). It is found that single trap RTN amplitude ΔVth is larger at the center of the channel region in the NAND flash memory, which is closer to the jellium (uniform) doping results since NA is relatively low to suppress junction leakage current. In addition, ΔVth peak at the center of the channel decreases in the higher Vth state due to the current concentration at the shallow trench isolation (STI) edges induced by the high vertical electrical field through the fringing capacitance between the channel and control gate. In such cases, ΔVth distribution slope λ cannot be determined by only considering RDF and single trap.
Habitat influences distribution of chronic wasting disease in white-tailed deer
Evans, Tyler S.; Kirchgessner, Megan S.; Eyler, B.; Ryan, Christopher W.; Walter, W. David
2015-01-01
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy that was first detected in 1967 in a captive research facility in Colorado. In the northeastern United States, CWD was first confirmed in white-tailed deer (Odocoileus virginianus) in 2005. Because CWD is a new and emerging disease with a spatial distribution that had yet to be assessed in the Northeast, we examined demographic, environmental, and spatial effects to determine how each related to this spatial distribution. The objectives of our study were to identify environmental and spatial effects that best described the spatial distribution of CWD in free-ranging white-tailed deer and identify areas that support deer that are at risk for CWD infection in the Northeast. We used Bayesian hierarchical modeling that incorporated demographic covariates, such as sex and age, along with environmental covariates, which included elevation, slope, riparian corridor, percent clay, and 3 landscapes (i.e., developed, forested, open). The model with the most support contained landscape covariates and spatial effects that represented clustering of CWD in adjacent grid cells. Forested landscapes had the strongest relationship with the distribution of CWD, with increased risk of CWD occurring in areas that had lesser amounts of forest. Our results will assist resource managers in understanding the spatial distribution of CWD within the study area, and in surrounding areas where CWD has yet to be found. Efficiency of disease surveillance and containment efforts can be improved by allocating resources used for surveillance in areas with deer populations that are at greatest risk for infection.
Alternancia entre el estado de emisión de Rayos-X y Pulsar en Sistemas Binarios Interactuantes
NASA Astrophysics Data System (ADS)
De Vito, M. A.; Benvenuto, O. G.; Horvath, J. E.
2015-08-01
Redbacks belong to the family of binary systems in which one of the components is a pulsar. Recent observations show redbacks that have switched their state from pulsar - low mass companion (where the accretion of material over the pulsar has ceased) to low mass X-ray binary system (where emission is produced by the mass accretion on the pulsar), or inversely. The irradiation effect included in our models leads to cyclic mass transfer episodes, which allow close binary systems to switch between one state to other. We apply our results to the case of PSR J1723-2837, and discuss the need to include new ingredients in our code of binary evolution to describe the observed state transitions.
Spatial distribution of deaths due to Alzheimer's disease in the state of São Paulo, Brazil.
Almeida, Milena Cristina da Silva; Gomes, Camila de Moraes Santos; Nascimento, Luiz Fernando Costa
2014-01-01
Alzheimer's disease is a common cause of dementia and identifying possible spatial patterns of mortality due to this disease may enable preventive actions. The objective of this study was to identify spatial distribution patterns of mortality due to Alzheimer's disease in the state of São Paulo. Ecological and exploratory study conducted in all municipalities in the state of São Paulo. Data on Alzheimer's disease mortality in the state of São Paulo between 2004 and 2009 were obtained from DATASUS (the Department of Informatics in the Brazilian Ministry of Health). Death rates per 100,000 inhabitants were then calculated and spatial analysis was performed by constructing a death rate map, global Moran index and local Moran index, which were used to obtain the Moran map. The kernel technique was also applied. The Terra View 4.0.0 software was used. 13,030 deaths due to Alzheimer were reported in the state of São Paulo (rate of 5.33 deaths/100,000 inhabitants). São José do Rio Preto, Ribeirão Preto, Bauru and Araçatuba had higher rates. The Moran index was I = 0.085 (P < 0.002). The Moran map identified 42 municipalities that merit intervention and the kernel estimator identified a high density of deaths in the northwestern region of the state. Higher densities of deaths due to Alzheimer were concentrated more to the north and northwest of the state of São Paulo. It was possible to identify municipalities that have priority for interventions to reduce the death rates due to this disease.
The problem of assessing risk from mercury across the nation is extremely complex involving integration of 1) our understanding of the methylation process in ecosystems, 2) the identification and spatial distribution of sensitive populations, and 3) the spatial pattern of mercury...
Temporal and spatial behavior of pharmaceuticals in Narragansett Bay, Rhode Island, United States.
The behavior and fate of pharmaceutical ingredients in coastal marine ecosystems are not well understood. To address this, the spatial and temporal distribution of 15 high-volume pharmaceuticals were measured over a 1-yr period in Narragansett Bay (RI, USA) to elucidate factors a...
The distribution of mercury in a forest floor transect across the central United States
Charles H. (Hobie) Perry; Michael C. Amacher; William Cannon; Randall K. Kolka; Laurel Woodruff
2009-01-01
Mercury (Hg) stored in soil organic matter may be released when the forest floor is consumed by fire. Our objective is to document the spatial distribution of forest floor Hg for a transect crossing the central United States. Samples collected by the Forest Service, U.S. Department of Agriculture's Forest Inventory and Analysis Soil Quality Indicator were tested...
Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.
Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl
2016-01-01
The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858
NASA Technical Reports Server (NTRS)
Sukharev, S. I.; Sigurdson, W. J.; Kung, C.; Sachs, F.
1999-01-01
MscL is multimeric protein that forms a large conductance mechanosensitive channel in the inner membrane of Escherichia coli. Since MscL is gated by tension transmitted through the lipid bilayer, we have been able to measure its gating parameters as a function of absolute tension. Using purified MscL reconstituted in liposomes, we recorded single channel currents and varied the pressure gradient (P) to vary the tension (T). The tension was calculated from P and the radius of curvature was obtained using video microscopy of the patch. The probability of being open (Po) has a steep sigmoidal dependence on T, with a midpoint (T1/2) of 11.8 dyn/cm. The maximal slope sensitivity of Po/Pc was 0.63 dyn/cm per e-fold. Assuming a Boltzmann distribution, the energy difference between the closed and fully open states in the unstressed membrane was DeltaE = 18.6 kBT. If the mechanosensitivity arises from tension acting on a change of in-plane area (DeltaA), the free energy, TDeltaA, would correspond to DeltaA = 6.5 nm2. MscL is not a binary channel, but has four conducting states and a closed state. Most transition rates are independent of tension, but the rate-limiting step to opening is the transition between the closed state and the lowest conductance substate. This transition thus involves the greatest DeltaA. When summed over all transitions, the in-plane area change from closed to fully open was 6 nm2, agreeing with the value obtained in the two-state analysis. Assuming a cylindrical channel, the dimensions of the (fully open) pore were comparable to DeltaA. Thus, the tension dependence of channel gating is primarily one of increasing the external channel area to accommodate the pore of the smallest conducting state. The higher conducting states appear to involve conformational changes internal to the channel that don't involve changes in area.
Atkinson, Samuel F; Sarkar, Sahotra; Aviña, Aldo; Schuermann, Jim A; Williamson, Phillip
2012-11-01
The spatial distribution of Dermacentor variabilis, the most commonly identified vector of the bacterium Rickettsia rickettsii which causes Rocky Mountain spotted fever (RMSF) in humans, and the spatial distribution of RMSF, have not been previously studied in the south central United States of America, particularly in Texas. From an epidemiological perspective, one would tend to hypothesise that there would be a high degree of spatial concordance between the habitat suitability for the tick and the incidence of the disease. Both maximum-entropy modelling of the tick's habitat suitability and spatially adaptive filters modelling of the human incidence of RMSF disease provide reliable portrayals of the spatial distributions of these phenomenons. Even though rates of human cases of RMSF in Texas and rates of Dermacentor ticks infected with Rickettsia bacteria are both relatively low in Texas, the best data currently available allows a preliminary indication that the assumption of high levels of spatial concordance would not be correct in Texas (Kappa coefficient of agreement = 0.17). It will take substantially more data to provide conclusive findings, and to understand the results reported here, but this study provides an approach to begin understanding the discrepancy.
Matejic, Marko
2017-04-01
In the context of healthcare reforms in post-socialist Serbia, this research analyses the reconfiguration of acute care hospitals from the aspect of the spatial distribution of hospital beds among and within state-owned hospitals. The research builds a relationship between the macro or national level and the micro or hospital level of the spatial distribution of hospital beds. The aim of the study is to point out that a high level of efficiency in hospital functionality is difficult to achieve within the current hospital network and architectural-urban patterns of hospitals, and to draw attention to the necessity of a strategically planned hospital spatial reconfiguration, conducted simultaneously with other segments of the healthcare system reform. The research analyses published and unpublished data presented in tables and diagrams. The theoretical platform of the research covers earlier discussions of the Yugoslav healthcare system, its post-socialist reforms and the experiences of developed countries. The results show that the hospital bed distribution has not undergone significant changes, while the hospital spatial reconfiguration has either not been carried out at all or, if it has, only on a small scale. All this has contributed to overall inadequate, inflexible, inefficient, defragmented and unequal bed distribution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kluge, T., E-mail: t.kluge@hzdr.de; Bussmann, M.; Huang, L. G., E-mail: lingen.huang@hzdr.de
Here, we propose to exploit the low energy bandwidth, small wavelength, and penetration power of ultrashort pulses from XFELs for resonant Small Angle Scattering (SAXS) on plasma structures in laser excited plasmas. Small angle scattering allows to detect nanoscale density fluctuations in forward scattering direction. Typically, the SAXS signal from laser excited plasmas is expected to be dominated by the free electron distribution. We propose that the ionic scattering signal becomes visible when the X-ray energy is in resonance with an electron transition between two bound states (resonant coherent X-ray diffraction). In this case, the scattering cross-section dramatically increases somore » that the signal of X-ray scattering from ions silhouettes against the free electron scattering background which allows to measure the opacity and derived quantities with high spatial and temporal resolution, being fundamentally limited only by the X-ray wavelength and timing. Deriving quantities such as ion spatial distribution, charge state distribution, and plasma temperature with such high spatial and temporal resolution will make a vast number of processes in shortpulse laser-solid interaction accessible for direct experimental observation, e.g., hole-boring and shock propagation, filamentation and instability dynamics, electron transport, heating, and ultrafast ionization dynamics.« less
Santos, Allan Dantas Dos; Lima, Ana Caroline Rodrigues; Santos, Márcio Bezerra; Alves, José Antônio Barreto; Góes, Marco Aurélio de Oliveira; Nunes, Marco Antônio Prado; Sá, Sidney Lourdes César Souza; Araújo, Karina Conceição Gomes Machado de
2016-01-01
Schistosomiasis is a parasitic infectious disease with a worldwide prevalence. The objective of this work is to identify risk areas for schistosomiasis mansoni transmission in the State of Sergipe, Brazil, during the period from 2005 to 2014. We conducted an epidemiological study with secondary data from the Information System Control Program of Schistosomiasis [Sistema de Informação do Programa de Controle da Esquistossomose (SISPCE)]. Temporal trends were analyzed to obtain the annual percentage change (APC) in the rates of annual prevalence. In addition to the description of general indicators of the disease, the spatial analysis was descriptive, by means of the estimator of intensity kernel, and showed spatial dependence by indicators of global Moran (I) and Local Index of Spatial Association (LISA). Thematic maps of spatial distribution were made, identifying priority intervention areas in need of healthcare. There were 78,663 cases of schistosomiasis, with an average of 8.7% positivity recorded; 79.8% of the cases were treated, and Sergipe showed a decreasing positive trend (APC: -2.78). There was the presence of spatial autocorrelation and a significant global Moran index (I = 0.19; p-value = 0.03). We identified clusters of high-risk areas, mainly located in the northeast and southcentral of the state, which each had equally high infection rates. There was a decreasing positive trend of schistosomiasis in Sergipe. Spatial analysis identified the geographic distribution of risk and allowed the definition of priority areas for the maintenance and intensification of control interventions.
Dark jets in the soft X-ray state of black hole binaries?
NASA Astrophysics Data System (ADS)
Drappeau, S.; Malzac, J.; Coriat, M.; Rodriguez, J.; Belloni, T. M.; Belmont, R.; Clavel, M.; Chakravorty, S.; Corbel, S.; Ferreira, J.; Gandhi, P.; Henri, G.; Petrucci, P.-O.
2017-04-01
X-ray binary observations led to the interpretation that powerful compact jets, produced in the hard state, are quenched when the source transitions to its soft state. The aim of this paper is to discuss the possibility that a powerful dark jet is still present in the soft state. Using the black hole X-ray binaries GX339-4 and H1743-322 as test cases, we feed observed X-ray power density spectra in the soft state of these two sources to an internal shock jet model. Remarkably, the predicted radio emission is consistent with current upper limits. Our results show that for these two sources, a compact dark jet could persist in the soft state with no major modification of its kinetic power compared to the hard state.
1991-12-01
9 2.6.1 Multi-Shape Detection. .. .. .. .. .. .. ...... 9 Page 2.6.2 Line Segment Extraction and Re-Combination.. 9 2.6.3 Planimetric Feature... Extraction ............... 10 2.6.4 Line Segment Extraction From Statistical Texture Analysis .............................. 11 2.6.5 Edge Following as Graph...image after image, could benefit clue to the fact that major spatial characteristics of subregions could be extracted , and minor spatial changes could be
Binary Microlensing Events from the MACHO Project
NASA Astrophysics Data System (ADS)
Alcock, C.; Allsman, R. A.; Alves, D.; Axelrod, T. S.; Baines, D.; Becker, A. C.; Bennett, D. P.; Bourke, A.; Brakel, A.; Cook, K. H.; Crook, B.; Crouch, A.; Dan, J.; Drake, A. J.; Fragile, P. C.; Freeman, K. C.; Gal-Yam, A.; Geha, M.; Gray, J.; Griest, K.; Gurtierrez, A.; Heller, A.; Howard, J.; Johnson, B. R.; Kaspi, S.; Keane, M.; Kovo, O.; Leach, C.; Leach, T.; Leibowitz, E. M.; Lehner, M. J.; Lipkin, Y.; Maoz, D.; Marshall, S. L.; McDowell, D.; McKeown, S.; Mendelson, H.; Messenger, B.; Minniti, D.; Nelson, C.; Peterson, B. A.; Popowski, P.; Pozza, E.; Purcell, P.; Pratt, M. R.; Quinn, J.; Quinn, P. J.; Rhie, S. H.; Rodgers, A. W.; Salmon, A.; Shemmer, O.; Stetson, P.; Stubbs, C. W.; Sutherland, W.; Thomson, S.; Tomaney, A.; Vandehei, T.; Walker, A.; Ward, K.; Wyper, G.
2000-09-01
We present the light curves of 21 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey that are likely examples of lensing by binary systems. These events were manually selected from a total sample of ~350 candidate microlensing events that were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. At least 14 of these 21 events exhibit strong (caustic) features, and four of the events are well fit with lensing by large mass ratio (brown dwarf or planetary) systems, although these fits are not necessarily unique. The total binary event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars, but a precise comparison cannot be made without a determination of our binary lens event detection efficiency. Toward the Galactic bulge, we find a ratio of caustic crossing to noncaustic crossing binary lensing events of 12:4, excluding one event for which we present two fits. This suggests significant incompleteness in our ability to detect and characterize noncaustic crossing binary lensing. The distribution of mass ratios, N(q), for these binary lenses appears relatively flat. We are also able to reliably measure source-face crossing times in four of the bulge caustic crossing events, and recover from them a distribution of lens proper motions, masses, and distances consistent with a population of Galactic bulge lenses at a distance of 7+/-1 kpc. This analysis yields two systems with companions of ~0.05 Msolar.
Korsgaard, Inge Riis; Lund, Mogens Sandø; Sorensen, Daniel; Gianola, Daniel; Madsen, Per; Jensen, Just
2003-01-01
A fully Bayesian analysis using Gibbs sampling and data augmentation in a multivariate model of Gaussian, right censored, and grouped Gaussian traits is described. The grouped Gaussian traits are either ordered categorical traits (with more than two categories) or binary traits, where the grouping is determined via thresholds on the underlying Gaussian scale, the liability scale. Allowances are made for unequal models, unknown covariance matrices and missing data. Having outlined the theory, strategies for implementation are reviewed. These include joint sampling of location parameters; efficient sampling from the fully conditional posterior distribution of augmented data, a multivariate truncated normal distribution; and sampling from the conditional inverse Wishart distribution, the fully conditional posterior distribution of the residual covariance matrix. Finally, a simulated dataset was analysed to illustrate the methodology. This paper concentrates on a model where residuals associated with liabilities of the binary traits are assumed to be independent. A Bayesian analysis using Gibbs sampling is outlined for the model where this assumption is relaxed. PMID:12633531
Pestana, Luis Ruiz; Minnetian, Natalie; Lammers, Laura Nielsen; ...
2018-01-02
When driven out of equilibrium, many diverse systems can form complex spatial and dynamical patterns, even in the absence of attractive interactions. Using kinetic Monte Carlo simulations, we investigate the phase behavior of a binary system of particles of dissimilar size confined between semiflexible planar surfaces, in which the nanoconfinement introduces a non-local coupling between particles, which we model as an activation energy barrier to diffusion that decreases with the local fraction of the larger particle. The system autonomously reaches a cyclical non-equilibrium state characterized by the formation and dissolution of metastable micelle-like clusters with the small particles in themore » core and the large ones in the surrounding corona. The power spectrum of the fluctuations in the aggregation number exhibits 1/f noise reminiscent of self-organized critical systems. Finally, we suggest that the dynamical metastability of the micellar structures arises from an inversion of the energy landscape, in which the relaxation dynamics of one of the species induces a metastable phase for the other species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pestana, Luis Ruiz; Minnetian, Natalie; Lammers, Laura Nielsen
When driven out of equilibrium, many diverse systems can form complex spatial and dynamical patterns, even in the absence of attractive interactions. Using kinetic Monte Carlo simulations, we investigate the phase behavior of a binary system of particles of dissimilar size confined between semiflexible planar surfaces, in which the nanoconfinement introduces a non-local coupling between particles, which we model as an activation energy barrier to diffusion that decreases with the local fraction of the larger particle. The system autonomously reaches a cyclical non-equilibrium state characterized by the formation and dissolution of metastable micelle-like clusters with the small particles in themore » core and the large ones in the surrounding corona. The power spectrum of the fluctuations in the aggregation number exhibits 1/f noise reminiscent of self-organized critical systems. Finally, we suggest that the dynamical metastability of the micellar structures arises from an inversion of the energy landscape, in which the relaxation dynamics of one of the species induces a metastable phase for the other species.« less
Modeling of debris disks in Single and Binary stars
NASA Astrophysics Data System (ADS)
García, L.; Gómez, M.
2016-10-01
Infrared space observatories such as Spitzer and Herschel have allowed the detection of likely analogs to the Kuiper Belt in single as well as binary systems. The aim of this work is to characterize debris disks in single and binary stars and to identify features shared by the disks in both types of systems, as well as possible differences. We compiled a sample of 25 single and 14 binary stars (ages > 100 Myr) with flux measurements at λ >100 μm and evidence of infrared excesses attributed to the presence of debris disks. Then, we constructed and modeled the observed spectral energy distributions (SEDs), and compared the parameters of the disks of both samples. Both types of disks are relatively free of dust in the inner region (< 3-5 AU) and extend beyond 100 AU. No significant differences in the mass and dust size distributions of both samples are found.
Topology of black hole binary-single interactions
NASA Astrophysics Data System (ADS)
Samsing, Johan; Ilan, Teva
2018-05-01
We present a study on how the outcomes of binary-single interactions involving three black holes (BHs) distribute as a function of the initial conditions; a distribution we refer to as the topology. Using a N-body code that includes BH finite sizes and gravitational wave (GW) emission in the equation of motion (EOM), we perform more than a million binary-single interactions to explore the topology of both the Newtonian limit and the limit at which general relativistic (GR) effects start to become important. From these interactions, we are able to describe exactly under which conditions BH collisions and eccentric GW capture mergers form, as well as how GR in general modifies the Newtonian topology. This study is performed on both large- and microtopological scales. We further describe how the inclusion of GW emission in the EOM naturally leads to scenarios where the binary-single system undergoes two successive GW mergers.
Imaging the cool stars in the interacting binaries AE Aqr, BV Cen and V426 Oph
NASA Astrophysics Data System (ADS)
Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Shahbaz, T.
2007-10-01
It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.
Temporal-spatial distribution of American bison (Bison bison) in a tallgrass prairie fire mosaic
Schuler, K.L.; Leslie, David M.; Shaw, J.H.; Maichak, E.J.
2006-01-01
Fire and bison (Bison bison) are thought to be historically responsible for shaping prairie vegetation in North America. Interactions between temporal-spatial distributions of bison and prescribed burning protocols are important in current restoration of tallgrass prairies. We examined dynamics of bison distribution in a patch-burned tallgrass prairie in the south-central United States relative to bison group size and composition, and burn age and temporal distribution. Bison formed larger mixed groups during summer and smaller sexually segregated groups the rest of the year, and bison selected dormant-season burn patches in the 1st posture growing season most often during spring and summer. Large bison herds selecting recently burned areas resulted in seasonally variable and concentrated grazing pressure that may substantially alter site-specific vegetation. These dynamics must be considered when reintroducing bison and fire into tallgrass prairie because variable outcomes of floral richness and structural complexity are likely depending on temporal-spatial distribution of bison. ?? 2006 American Society of Mammalogists.
Control of broadband optically generated ultrasound pulses using binary amplitude holograms.
Brown, Michael D; Jaros, Jiri; Cox, Ben T; Treeby, Bradley E
2016-04-01
In this work, the use of binary amplitude holography is investigated as a mechanism to focus broadband acoustic pulses generated by high peak-power pulsed lasers. Two algorithms are described for the calculation of the binary holograms; one using ray-tracing, and one using an optimization based on direct binary search. It is shown using numerical simulations that when a binary amplitude hologram is excited by a train of laser pulses at its design frequency, the acoustic field can be focused at a pre-determined distribution of points, including single and multiple focal points, and line and square foci. The numerical results are validated by acoustic field measurements from binary amplitude holograms, excited by a high peak-power laser.
Spectral properties of binary asteroids
NASA Astrophysics Data System (ADS)
Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme
2018-04-01
We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15% of all small asteroids). For that, an analysis of 0.8-2.5{μ m} near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF is presented. Taxonomic class and meteorite analog is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21%. Most binary systems are bound in the S-, X-, and C- classes, followed by Q and V-types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C-types which are under-represented among binaries.
Accretion dynamics in pre-main sequence binaries
NASA Astrophysics Data System (ADS)
Tofflemire, B.; Mathieu, R.; Herczeg, G.; Ardila, D.; Akeson, R.; Ciardi, D.; Johns-Krull, C.
Binary stars are a common outcome of star formation. Orbital resonances, especially in short-period systems, are capable of reshaping the distribution and flows of circumstellar material. Simulations of the binary-disk interaction predict a dynamically cleared gap around the central binary, accompanied by periodic ``pulsed'' accretion events that are driven by orbital motion. To place observational constraints on the binary-disk interaction, we have conducted a long-term monitoring program tracing the time-variable accretion behavior of 9 short-period binaries. In this proceeding we present two results from our campaign: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system.
The complexity of translationally invariant low-dimensional spin lattices in 3D
NASA Astrophysics Data System (ADS)
Bausch, Johannes; Piddock, Stephen
2017-11-01
In this theoretical paper, we consider spin systems in three spatial dimensions and consider the computational complexity of estimating the ground state energy, known as the local Hamiltonian problem, for translationally invariant Hamiltonians. We prove that the local Hamiltonian problem for 3D lattices with face-centered cubic unit cells and 4-local translationally invariant interactions between spin-3/2 particles and open boundary conditions is QMAEXP-complete, where QMAEXP is the class of problems which can be verified in exponential time on a quantum computer. We go beyond a mere embedding of past hard 1D history state constructions, for which the local spin dimension is enormous: even state-of-the-art constructions have local dimension 42. We avoid such a large local dimension by combining some different techniques in a novel way. For the verifier circuit which we embed into the ground space of the local Hamiltonian, we utilize a recently developed computational model, called a quantum ring machine, which is especially well suited for translationally invariant history state constructions. This is encoded with a new and particularly simple universal gate set, which consists of a single 2-qubit gate applied only to nearest-neighbour qubits. The Hamiltonian construction involves a classical Wang tiling problem as a binary counter which translates one cube side length into a binary description for the encoded verifier input and a carefully engineered history state construction that implements the ring machine on the cubic lattice faces. These novel techniques allow us to significantly lower the local spin dimension, surpassing the best translationally invariant result to date by two orders of magnitude (in the number of degrees of freedom per coupling). This brings our models on par with the best non-translationally invariant construction.
Manier, Daniel J.; Rover, Jennifer R.
2018-02-15
To improve understanding of the distribution of ecologically important, ephemeral wetland habitats across the Great Plains, the occurrence and distribution of surface water in playa wetland complexes were documented for four different years across the Great Plains Landscape Conservation Cooperative (GPLCC) region. This information is important because it informs land and wildlife managers about the timing and location of habitat availability. Data with an accurate timestamp that indicate the presence of water, the percent of the area inundated with water, and the spatial distribution of playa wetlands with water are needed for a host of resource inventory, monitoring, and research applications. For example, the distribution of inundated wetlands forms the spatial pattern of available habitat for resident shorebirds and water birds, stop-over habitats for migratory birds, connectivity and clustering of wetland habitats, and surface waters that recharge the Ogallala aquifer; there is considerable variability in the distribution of playa wetlands holding water through time. Documentation of these spatially and temporally intricate processes, here, provides data required to assess connections between inundation and multiple environmental drivers, such as climate, land use, soil, and topography. Climate drivers are understood to interact with land cover, land use and soil attributes in determining the amount of water that flows overland into playa wetlands. Results indicated significant spatial variability represented by differences in the percent of playas inundated among States within the GPLCC. Further, analysis-of-variance comparison of differences in inundation between years showed significant differences in all cases. Although some connections with seasonal moisture patterns may be observed, the complex spatial-temporal gradients of precipitation, temperature, soils, and land use need to be combined as covariates in multivariate models to effectively account for these patterns. We demonstrate the feasibility of using classification of Landsat satellite imagery to describe playa-wetland inundation across years and seasons. Evaluating classifications representing only 4 years of imagery, we found significant year-to-year and state-to-state differences in inundation rates.
VizieR Online Data Catalog: Double stars with wide separations in the AGK3 (Halbwachs+, 2016)
NASA Astrophysics Data System (ADS)
Halbwachs, J. L.; Mayor, M.; Udry, S.
2016-10-01
A large list of common proper motion stars selected from the third Astronomischen Gesellschaft Katalog (AGK3) was monitored with the CORAVEL (for COrrelation RAdial VELocities) spectrovelocimeter, in order to prepare a sample of physical binaries with very wide separations. In paper I,66 stars received special attention, since their radial velocities (RV) seemed to be variable. These stars were monitored over several years in order to derive the elements of their spectroscopic orbits. In addition, 10 of them received accurate RV measurements from the SOPHIE spectrograph of the T193 telescope at the Observatory of Haute-Provence. For deriving the orbital elements of double-lined spectroscopic binaries (SB2s), a new method was applied, which assumed that the RV of blended measurements are linear combinations of the RV of the components. 13 SB2 orbits were thus calculated. The orbital elements were eventually obtained for 52 spectroscopic binaries (SBs), two of them making a triple system. 40 SBs received their first orbit and the orbital elements were improved for 10 others. In addition, 11 SBs were discovered with very long periods for which the orbital parameters were not found. It appeared that HD 153252 has a close companion, which is a candidate brown dwarf with a minimum mass of 50 Jupiter masses. In paper II, 80 wide binaries (WBs) were detected, and 39 optical pairs were identified. Adding CPM stars with separations close enough to be almost certain they are physical, a "bias-controlled" sample of 116 wide binaries was obtained, and used to derive the distribution of separations from 100 to 30,000 au. The distribution obtained doesn't match the log-constant distribution, but is in agreement with the log-normal distribution. The spectroscopic binaries detected among the WB components were used to derive statistical informations about the multiple systems. The close binaries in WBs seem to be similar to those detected in other field stars. As for the WBs, they seem to obey the log-normal distribution of periods. The number of quadruple systems is in agreement with the "no correlation" hypothesis; this indicates that an environment conducive to the formation of WBs doesn't favor the formation of subsystems with periods shorter than 10 years. (9 data files).
Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems
NASA Astrophysics Data System (ADS)
Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.
2018-03-01
We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.
Indanedione based binary chromophore supramolecular systems as a NLO active polymer composites
NASA Astrophysics Data System (ADS)
Rutkis, M.; Tokmakovs, A.; Jecs, E.; Kreicberga, J.; Kampars, V.; Kokars, V.
2010-06-01
Novel route to obtain EO material is proposed by supramolecular assembly of neutral-ground-state (NGS) and zwitterionic (ZWI) NLO chromophores in binary chromophore organic glass (BCOG) host-guest system. On a basis of our Langeven Dynamics (LD) molecular modeling combined with quantum chemical calculations, we have shown that anticipated enhancement NLO efficiency of BCOG material is possible via electrostatic supramolecular assembly of NGS with ZWI chromophore in antiparallel manner. Binding energy of such complex could be more dependent on molecular compatibility of components and local (atomic) charge distribution, then overall molecular dipole moments. According to our LD simulations these supramolecular bind structures of NGS and ZWI chromophores can sustain thermally assisted electrical field poling. For the one of experimentally investigated systems, build from dimethylaminobenzylidene 1,3-indanedione containing host and zwitterionic indanedione-1,3 pyridinium betaine as a guest, almost twofold enhancement of NLO efficiency was observed.
Van Der Straaten, N.; Jacobson, A.; Halos, D.; Hershberger, P.; Kocan, A.A.; Kocan, R.
2005-01-01
Two morphologically distinct forms of an intraerythrocytic parasite(s) were detected by microscopic observation of Giemsa-stained blood films in 45.7% of 119 rockfish (Sebastes emphaeus) from the San Juan Archipelago (Washington State, U.S.A.). Infection prevalence for both forms was 53% in males, 44% in females, and 33% in fish of undetermined gender. A binucleate "ring-stage" was present at all 4 geographic sites, with a mean prevalence of 45.7%, while mean prevalence of a larger gamont-like form from the same sites was 5.1%. The relationship of the 2 forms to each other could not be determined. Neither schizogony nor binary fission was evident in any of the infected erythrocytes and the parasites contained no obvious pigment. The possibility of the 2 morphologic forms being 2 distinct species is supported by the observation that no difference in parasitemia was seen in the binucleate form among sites (1.6-1.9%), while parasitemia of the gamont-like form varied significantly among sites, ranging from a high of 4% to a low of 0.1%. Taxonomic status of either form could not be determined at this time based on limited existing morphologic data. ?? American Society of Parasitologists 2005.
Kraft, Timothy W.
2016-01-01
Purpose To examine the predictions of alternative models for the stochastic shut-off of activated rhodopsin (R*) and their implications for the interpretation of experimentally recorded single-photon responses (SPRs) in mammalian rods. Theory We analyze the transitions that an activated R* molecule undergoes as a result of successive phosphorylation steps and arrestin binding. We consider certain simplifying cases for the relative magnitudes of the reaction rate constants and derive the probability distributions for the time to arrestin binding. In addition to the conventional model in which R* catalytic activity declines in a graded manner with successive phosphorylations, we analyze two cases in which the activity is assumed to occur not via multiple small steps upon each phosphorylation but via a single large step. We refer to these latter two cases as the binary R* shut-off and three-state R* shut-off models. Methods We simulate R*’s stochastic reactions numerically for the three models. In the simplifying cases for the ratio of rate constants in the binary and three-state models, we show that the probability distribution of the time to arrestin binding is accurately predicted. To simulate SPRs, we then integrate the differential equations for the downstream reactions using a standard model of the rod outer segment that includes longitudinal diffusion of cGMP and Ca2+. Results Our simulations of SPRs in the conventional model of graded shut-off of R* conform closely to the simulations in a recent study. However, the gain factor required to account for the observed mean SPR amplitude is higher than can be accounted for from biochemical experiments. In addition, a substantial minority of the simulated SPRs exhibit features that have not been reported in published experiments. Our simulations of SPRs using the model of binary R* shut-off appear to conform closely to experimental results for wild type (WT) mouse rods, and the required gain factor conforms to biochemical expectations. However, for the arrestin knockout (Arr−/−) phenotype, the predictions deviated from experimental findings and led us to invoke a low-activity state that R* enters before arrestin binding. Our simulations of this three-state R* shut-off model are very similar to those of the binary model in the WT case but are preferred because they appear to accurately predict the mean SPRs for four mutant phenotypes, Arr+/−, Arr−/−, GRK1+/−, and GRK1−/−, in addition to the WT phenotype. When we additionally treated the formation and shut-off of activated phosphodiesterase (E*) as stochastic, the simulated SPRs appeared even more similar to real SPRs, and there was very little change in the ensemble mean and standard deviation or in the amplitude distribution. Conclusions We conclude that the conventional model of graded reduction in R* activity through successive phosphorylation steps appears to be inconsistent with experimental results. Instead, we find that two variants of a model in which R* activity initially remains high and then declines abruptly after several phosphorylation steps appears capable of providing a better description of experimentally measured SPRs. PMID:27375353
Spatial analysis of binary health indicators with local smoothing techniques The Viadana study.
Girardi, Paolo; Marcon, Alessandro; Rava, Marta; Pironi, Vanda; Ricci, Paolo; de Marco, Roberto
2012-01-01
When pollution data from a monitoring network is not available, mapping the spatial distribution of disease can be useful to identify populations at risk and to suggest a potential role for suspected emission sources. We aimed at obtaining a continuous spatial representation of the prevalence of symptoms that are potentially associated with the exposure to the pollutants emitted from the wood factories in the children who live in the district of Viadana (Northern Italy). In 2006, all the parents of the children aged 3-14 years residing in the Viadana district (n = 3854), filled in a questionnaire on respiratory symptoms, irritation symptoms of the eyes and skin, use of health services. The children's residential addresses were also collected and geocoded. Generalized additive models and local weighted regression (LOWESS) were used to estimate the distribution of the symptoms, to test for spatial trends of the symptoms' prevalence and to control for potential confounders. Permutation tests were used to identify the areas of significantly increased risk ("hot spots"). The prevalence of respiratory symptoms, eye symptoms and the use of health services showed a statistically significant spatial variation (p < 0.05), but skin symptoms did not. Symptoms' prevalence was lower in the northern part of the district, where no wood factories were present, and it was higher in the southern part, where the two big chipboard industries were located. Hot spots were identified fairly near to one of the two chipboard industries in the district. The north-to-south trend in the prevalence of respiratory and eye symptoms, but not of skin symptoms, as well as the location of hot spots, are consistent with the potential exposure to air pollutants both emitted by the wood factories and related to traffic. In these "high risk areas" monitoring of pollution and preventive actions are clearly needed. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br
We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in amore » Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.« less
Period distribution of pulsars in the Magellanic Clouds: Propeller line versus Equilibrium period
NASA Astrophysics Data System (ADS)
Tanashkin, A. S.; Ikhsanov, N. R.
2017-12-01
A majority of accretion-powered X-ray pulsars in wind-fed High Mass X-ray Binaries (HMXBs) located in the Magellanic Clouds are observed to be transient X-ray sources. They are characterized by short luminous outbursts, while spending most of the time in quiescence. The quiescent states of the pulsars in the diagram “Pulsar Period vs. X-ray Luminosity” fall on a line with the slope -0.43. The same slope is expected for the propeller line which separates stars in the accretor state from stars in the propeller state. We show, however, that a line with the same slope would also be expected if rotation of the pulsars is close to equilibrium.
NASA Astrophysics Data System (ADS)
Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.
2014-06-01
We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.
Retrieving and Indexing Spatial Data in the Cloud Computing Environment
NASA Astrophysics Data System (ADS)
Wang, Yonggang; Wang, Sheng; Zhou, Daliang
In order to solve the drawbacks of spatial data storage in common Cloud Computing platform, we design and present a framework for retrieving, indexing, accessing and managing spatial data in the Cloud environment. An interoperable spatial data object model is provided based on the Simple Feature Coding Rules from the OGC such as Well Known Binary (WKB) and Well Known Text (WKT). And the classic spatial indexing algorithms like Quad-Tree and R-Tree are re-designed in the Cloud Computing environment. In the last we develop a prototype software based on Google App Engine to implement the proposed model.
Detecting binary neutron star systems with spin in advanced gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Brown, Duncan A.; Harry, Ian; Lundgren, Andrew; Nitz, Alexander H.
2012-10-01
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars’ angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational-wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with nonzero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.
Spatial Generalization in Operant Learning: Lessons from Professional Basketball
Neiman, Tal; Loewenstein, Yonatan
2014-01-01
In operant learning, behaviors are reinforced or inhibited in response to the consequences of similar actions taken in the past. However, because in natural environments the “same” situation never recurs, it is essential for the learner to decide what “similar” is so that he can generalize from experience in one state of the world to future actions in different states of the world. The computational principles underlying this generalization are poorly understood, in particular because natural environments are typically too complex to study quantitatively. In this paper we study the principles underlying generalization in operant learning of professional basketball players. In particular, we utilize detailed information about the spatial organization of shot locations to study how players adapt their attacking strategy in real time according to recent events in the game. To quantify this learning, we study how a make \\ miss from one location in the court affects the probabilities of shooting from different locations. We show that generalization is not a spatially-local process, nor is governed by the difficulty of the shot. Rather, to a first approximation, players use a simplified binary representation of the court into 2 pt and 3 pt zones. This result indicates that rather than using low-level features, generalization is determined by high-level cognitive processes that incorporate the abstract rules of the game. PMID:24853373
Element distributions after binary fission of /sup 44/Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pl-dash-baraneta, R.; Belery, P.; Brzychczyk, J.
1986-08-01
Inclusive and coincidence measurements have been performed to study symmetric fragmentation of /sup 44/Ti binary decay from the /sup 32/S+/sup 12/C reaction at 280 MeV incident energy. Element distributions after binary decay were measured. Angular distributions and fragment correlations are presented. Total c.m. kinetic energy for the symmetric products is extracted from our data and from Monte-Carlo model calculations including Q-italic-value fluctuations. This result was compared to liquid drop model calculations and standard fission systematics. Comparison between the experimental value of the total kinetic energy and the rotating liquid-drop model predictions locates the angular momentum window for symmetric splitting ofmore » /sup 44/Ti between 33h-dash-bar and 38h-dash-bar. It also showed that 50% of the corresponding rotational energy contributes to the total kinetic energy values. The dominant reaction mechanism was found to be symmetric splitting followed by evaporation.« less
Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1994-01-01
The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.
Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division
NASA Astrophysics Data System (ADS)
Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.
2011-10-01
Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.
Bartlein, P.J.; Hostetler, S.W.; Shafer, S.L.; Holman, J.O.; Solomon, A.M.
2008-01-01
The temporal and spatial structure of 332 404 daily fire-start records from the western United States for the period 1986 through 1996 is illustrated using several complimentary visualisation techniques. We supplement maps and time series plots with Hovmo??ller diagrams that reduce the spatial dimensionality of the daily data in order to reveal the underlying space?time structure. The mapped distributions of all lightning- and human-started fires during the 11-year interval show similar first-order patterns that reflect the broad-scale distribution of vegetation across the West and the annual cycle of climate. Lightning-started fires are concentrated in the summer half-year and occur in widespread outbreaks that last a few days and reflect coherent weather-related controls. In contrast, fires started by humans occur throughout the year and tend to be concentrated in regions surrounding large-population centres or intensive-agricultural areas. Although the primary controls of human-started fires are their location relative to burnable fuel and the level of human activity, spatially coherent, weather-related variations in their incidence can also be noted. ?? IAWF 2008.
Using Historical Atlas Data to Develop High-Resolution Distribution Models of Freshwater Fishes
Huang, Jian; Frimpong, Emmanuel A.
2015-01-01
Understanding the spatial pattern of species distributions is fundamental in biogeography, and conservation and resource management applications. Most species distribution models (SDMs) require or prefer species presence and absence data for adequate estimation of model parameters. However, observations with unreliable or unreported species absences dominate and limit the implementation of SDMs. Presence-only models generally yield less accurate predictions of species distribution, and make it difficult to incorporate spatial autocorrelation. The availability of large amounts of historical presence records for freshwater fishes of the United States provides an opportunity for deriving reliable absences from data reported as presence-only, when sampling was predominantly community-based. In this study, we used boosted regression trees (BRT), logistic regression, and MaxEnt models to assess the performance of a historical metacommunity database with inferred absences, for modeling fish distributions, investigating the effect of model choice and data properties thereby. With models of the distribution of 76 native, non-game fish species of varied traits and rarity attributes in four river basins across the United States, we show that model accuracy depends on data quality (e.g., sample size, location precision), species’ rarity, statistical modeling technique, and consideration of spatial autocorrelation. The cross-validation area under the receiver-operating-characteristic curve (AUC) tended to be high in the spatial presence-absence models at the highest level of resolution for species with large geographic ranges and small local populations. Prevalence affected training but not validation AUC. The key habitat predictors identified and the fish-habitat relationships evaluated through partial dependence plots corroborated most previous studies. The community-based SDM framework broadens our capability to model species distributions by innovatively removing the constraint of lack of species absence data, thus providing a robust prediction of distribution for stream fishes in other regions where historical data exist, and for other taxa (e.g., benthic macroinvertebrates, birds) usually observed by community-based sampling designs. PMID:26075902
Shang, Qing; Huang, Sijin; Zhang, Aixin; Feng, Jia; Yang, Song
2017-11-01
To improve the bioavailability of ibuprofen (IBU), we developed a novel binary complex of poly(PEGMA-co-MAA) hydrogel and IBU-loaded PLGA nanoparticles (IBU-PLGA NPs@hydrogels) as an oral intestinal targeting drug delivery system (OIDDS). The IBU-loaded PLGA NPs and pH-sensitive hydrogels were obtained via the solvent evaporation method and radical polymerization, respectively. The final OIDDS was obtained by immersing the hydrogel chips in the IBU-loaded PLGA NPs solutions (pH 7.4) for 3 d. The size distribution and morphology of cargo-free NPs were studied by laser granularity analyzer and transmission electron microscope (TEM). The inner structures of the pH-sensitive hydrogel chips were observed with an S-4800 scanning electron microscope (SEM). The distribution states of IBU in the OIDDS were also studied with X-ray diffraction (XRD) and differential scanning calorimetry (DSC). TEM photographs illustrated that the PLGA NPs had a round shape with an average diameter about 100 nm. Fourier transform infrared spectrum (FTIR) confirmed the synthesis of poly(PEGMA-co-MAA) hydrogel. The SEM picture showed that the final hydrogel had 3D net-work structures. Moreover, the poly(PEGMA-co-MAA) hydrogel showed an excellent pH-sensitivity. The XRD and DSC curves suggested that IBU distributed in the OIDDS with an amorphous state. The cumulated release profiles indicated that the final OIDDS could release IBU in alkaline environment (e.g. intestinal tract) at a sustained manner. Therefore, the novel OIDDS could improve the oral bioavailability of IBU, and had a potential application in drug delivery.
Equation of State Effects on Binary Neutron Star and Neutron Star-Black Hole Merger Ejecta
NASA Astrophysics Data System (ADS)
Rizzo, Monica; Pankow, Chris; Kalogera, Vassiliki; Coughlin, Scott; Chase, Eve; Imperato, Sam
2018-01-01
Binary neutron stars (BNSs) and neutron star-black hole (NSBH) binaries are not only potential sources of gravitational waves (GWs), but also are thought to generate phenomena such as kilonova, which have proven to be difficult to catch with electromagnetic (EM) instruments. Kilonovae are believed to arise from the radioactive decay of nuclear matter ejected from NSBH and BNS mergers. As they spiral toward each other, neutron stars (NSs), composed of highly dense nuclear matter, are torn apart by their companion's gravity and eject matter. The amount of matter they eject depends sensitively on the composition of NSs, which is described by a nuclear equation of state (EOS). Using fit formulas for ejected mass from Kawaguchi et. al. (2016) and T. Dietrich and M. Ujevic (2016), for NSBH and BNS respectively, we calculate the amount of mass ejected given the initial parameters (masses, black hole spin, etc.) of NSBH and BNS systems. We then predict the distribution of ejected matter for populations of NSBH and BNS mergers, assuming a different EOS for each population. Using formulas derived from The Kilonova Handbook (Metzger, 2016), we can use the calculated ejected mass to generate light curves which, along with GW detections, can be used to place constraints on an EOS for NSs when GW detections are made. We find that the amount of ejected matter observed is distinct for most EOSs, though to draw any solid conclusions about NS composition, joint GW wave and EM counterpart detections are necessary.
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.
2017-12-01
Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.
Balazs, Anna [University of Pittsburgh, Pittsburgh, Pennsylvania, United States
2017-12-09
Computer simulations reveal how photo-induced chemical reactions can be exploited to create long-range order in binary and ternary polymeric materials. The process is initiated by shining a spatially uniform light over a photosensitive AB binary blend, which undergoes both a reversible chemical reaction and phase separation. We then introduce a well-collimated, higher-intensity light source. Rastering this secondary light over the sample locally increases the reaction rate and causes formation of defect-free, spatially periodic structures. These binary structures resemble either the lamellar or hexagonal phases of microphase-separated di-block copolymers. We measure the regularity of the ordered structures as a function of the relative reaction rates for different values of the rastering speed and determine the optimal conditions for creating defect-free structures in the binary systems. We then add a non-reactive homo-polymer C, which is immiscible with both A and B. We show that this component migrates to regions that are illuminated by the secondary, higher-intensity light, allowing us to effectively write a pattern of C onto the AB film. Rastering over the ternary blend with this collimated light now leads to hierarchically ordered patterns of A, B, and C. The findings point to a facile, non-intrusive process for manufacturing high-quality polymeric devices in a low-cost, efficient manner.
NUCLEOSYNTHESIS CONSTRAINTS ON THE NEUTRON STAR-BLACK HOLE MERGER RATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauswein, A.; Ardevol Pulpillo, R.; Janka, H.-T.
2014-11-01
We derive constraints on the time-averaged event rate of neutron star-black hole (NS-BH) mergers by using estimates of the population-integrated production of heavy rapid neutron-capture (r-process) elements with nuclear mass numbers A > 140 by such events in comparison to the Galactic repository of these chemical species. Our estimates are based on relativistic hydrodynamical simulations convolved with theoretical predictions of the binary population. This allows us to determine a strict upper limit of the average NS-BH merger rate of ∼6× 10{sup –5} per year. We quantify the uncertainties of this estimate to be within factors of a few mostly becausemore » of the unknown BH spin distribution of such systems, the uncertain equation of state of NS matter, and possible errors in the Galactic content of r-process material. Our approach implies a correlation between the merger rates of NS-BH binaries and of double NS systems. Predictions of the detection rate of gravitational-wave signals from such compact object binaries by Advanced LIGO and Advanced Virgo on the optimistic side are incompatible with the constraints set by our analysis.« less
Continuous operation of four-state continuous-variable quantum key distribution system
NASA Astrophysics Data System (ADS)
Matsubara, Takuto; Ono, Motoharu; Oguri, Yusuke; Ichikawa, Tsubasa; Hirano, Takuya; Kasai, Kenta; Matsumoto, Ryutaroh; Tsurumaru, Toyohiro
2016-10-01
We report on the development of continuous-variable quantum key distribution (CV-QKD) system that are based on discrete quadrature amplitude modulation (QAM) and homodyne detection of coherent states of light. We use a pulsed light source whose wavelength is 1550 nm and repetition rate is 10 MHz. The CV-QKD system can continuously generate secret key which is secure against entangling cloner attack. Key generation rate is 50 kbps when the quantum channel is a 10 km optical fiber. The CV-QKD system we have developed utilizes the four-state and post-selection protocol [T. Hirano, et al., Phys. Rev. A 68, 042331 (2003).]; Alice randomly sends one of four states {|+/-α⟩,|+/-𝑖α⟩}, and Bob randomly performs x- or p- measurement by homodyne detection. A commercially available balanced receiver is used to realize shot-noise-limited pulsed homodyne detection. GPU cards are used to accelerate the software-based post-processing. We use a non-binary LDPC code for error correction (reverse reconciliation) and the Toeplitz matrix multiplication for privacy amplification.
Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb
Pooser, Raphael C.; Jing, Jietai
2014-10-20
One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less
Antoine, Sophie; Ranzini, Mariagrazia; Gebuis, Titia; van Dijck, Jean-Philippe; Gevers, Wim
2017-10-01
A largely substantiated view in the domain of working memory is that the maintenance of serial order is achieved by generating associations of each item with an independent representation of its position, so-called position markers. Recent studies reported that the ordinal position of an item in verbal working memory interacts with spatial processing. This suggests that position markers might be spatial in nature. However, these interactions were so far observed in tasks implying a clear binary categorization of space (i.e., with left and right responses or targets). Such binary categorizations leave room for alternative interpretations, such as congruency between non-spatial categorical codes for ordinal position (e.g., begin and end) and spatial categorical codes for response (e.g., left and right). Here we discard this interpretation by providing evidence that this interaction can also be observed in a task that draws upon a continuous processing of space, the line bisection task. Specifically, bisections are modulated by ordinal position in verbal working memory, with lines bisected more towards the right after retrieving items from the end compared to the beginning of the memorized sequence. This supports the idea that position markers are intrinsically spatial in nature.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES.
Wadiasingh, Zorawar; Harding, Alice K; Venter, Christo; Böttcher, Markus; Baring, Matthew G
2017-04-20
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R 0 . We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R 0 ~ 0.15-0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R 0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R 0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
CONSTRAINING RELATIVISTIC BOW SHOCK PROPERTIES IN ROTATION-POWERED MILLISECOND PULSAR BINARIES
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Böttcher, Markus; Baring, Matthew G.
2018-01-01
Multiwavelength followup of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R0. We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R0 ~ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R0 ≲ 0.4 while X-ray light curves suggest 0.1 ≲ R0 ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein. PMID:29651167
Constraining Relativistic Bow Shock Properties in Rotation-Powered Millisecond Pulsar Binaries
NASA Technical Reports Server (NTRS)
Wadiasingh, Zorawar; Harding, Alice K.; Venter, Christo; Bottcher, Markus; Baring, Matthew G.
2017-01-01
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field "black widow" and "redback" millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase-centering of the double-peaked X-ray orbital modulation originating from mildly-relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock stand-off R(sub 0). We develop synthetic X-ray synchrotron orbital light curves and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the stand-off is R(sub 0) approximately 0:15 - 0:3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R(sub 0) is approximately less than 0:4 while X-ray light curves suggest 0:1 is approximately less than R(sub 0) is approximately less than 0:3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy-dependence in the shape of light curves motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.
Constraining Relativistic Bow Shock Properties in Rotation-powered Millisecond Pulsar Binaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadiasingh, Zorawar; Venter, Christo; Böttcher, Markus
2017-04-20
Multiwavelength follow-up of unidentified Fermi sources has vastly expanded the number of known galactic-field “black widow” and “redback” millisecond pulsar binaries. Focusing on their rotation-powered state, we interpret the radio to X-ray phenomenology in a consistent framework. We advocate the existence of two distinct modes differing in their intrabinary shock orientation, distinguished by the phase centering of the double-peaked X-ray orbital modulation originating from mildly relativistic Doppler boosting. By constructing a geometric model for radio eclipses, we constrain the shock geometry as functions of binary inclination and shock standoff R {sub 0}. We develop synthetic X-ray synchrotron orbital light curvesmore » and explore the model parameter space allowed by radio eclipse constraints applied on archetypal systems B1957+20 and J1023+0038. For B1957+20, from radio eclipses the standoff is R {sub 0} ∼ 0.15–0.3 fraction of binary separation from the companion center, depending on the orbit inclination. Constructed X-ray light curves for B1957+20 using these values are qualitatively consistent with those observed, and we find occultation of the shock by the companion as a minor influence, demanding significant Doppler factors to yield double peaks. For J1023+0038, radio eclipses imply R {sub 0} ≲ 0.4, while X-ray light curves suggest 0.1 ≲ R {sub 0} ≲ 0.3 (from the pulsar). Degeneracies in the model parameter space encourage further development to include transport considerations. Generically, the spatial variation along the shock of the underlying electron power-law index should yield energy dependence in the shape of light curves, motivating future X-ray phase-resolved spectroscopic studies to probe the unknown physics of pulsar winds and relativistic shock acceleration therein.« less
SPRINGER, YURI P.; EISEN, LARS; BEATI, LORENZA; JAMES, ANGELA M.; EISEN, REBECCA J.
2015-01-01
In addition to being a major nuisance biter, the lone star tick, Amblyomma americanum (L.), is increasingly recognized as an important vector of pathogens affecting humans, domestic animals, and wildlife. Despite its notoriety, efforts have been lacking to define the spatial occurrence of A. americanum in the continental United States with precision beyond that conveyed in continental-scale distribution maps. Here we present a county-level distribution map for A. americanum generated by compiling collection records obtained from a search of the published literature and databases managed by the USDA, U.S. National Tick Collection, and Walter Reed Biosystematics Unit. Our decadal and cumulative maps, which visually summarize 18,121 collections made between 1898 and 2012, show that A. americanum is either established (≥six ticks or ≥two life stages) or reported (
High-mass X-ray binary populations. 1: Galactic modeling
NASA Technical Reports Server (NTRS)
Dalton, William W.; Sarazin, Craig L.
1995-01-01
Modern stellar evolutionary tracks are used to calculate the evolution of a very large number of massive binary star systems (M(sub tot) greater than or = 15 solar mass) which cover a wide range of total masses, mass ratios, and starting separations. Each binary is evolved accounting for mass and angular momentum loss through the supernova of the primary to the X-ray binary phase. Using the observed rate of star formation in our Galaxy and the properties of massive binaries, we calculate the expected high-mass X-ray binary (HMXRB) population in the Galaxy. We test various massive binary evolutionary scenarios by comparing the resulting HMXRB predictions with the X-ray observations. A major goal of this study is the determination of the fraction of matter lost from the system during the Roche lobe overflow phase. Curiously, we find that the total numbers of observable HMXRBs are nearly independent of this assumed mass-loss fraction, with any of the values tested here giving acceptable agreement between predicted and observed numbers. However, comparison of the period distribution of our HMXRB models with the observed period distribution does reveal a distinction among the various models. As a result of this comparison, we conclude that approximately 70% of the overflow matter is lost from a massive binary system during mass transfer in the Roche lobe overflow phase. We compare models constructed assuming that all X-ray emission is due to accretion onto the compact object from the donor star's wind with models that incorporate a simplified disk accretion scheme. By comparing the results of these models with observations, we conclude that the formation of disks in HMXRBs must be relatively common. We also calculate the rate of formation of double degenerate binaries, high velocity detached compact objects, and Thorne-Zytkow objects.
NASA Astrophysics Data System (ADS)
Leigh, Nathan W. C.; Wegsman, Shalma
2018-05-01
We present a formalism for constructing schematic diagrams to depict chaotic three-body interactions in Newtonian gravity. This is done by decomposing each interaction into a series of discrete transformations in energy- and angular momentum-space. Each time a transformation is applied, the system changes state as the particles re-distribute their energy and angular momenta. These diagrams have the virtue of containing all of the quantitative information needed to fully characterize most bound or unbound interactions through time and space, including the total duration of the interaction, the initial and final stable states in addition to every intervening temporary meta-stable state. As shown via an illustrative example for the bound case, prolonged excursions of one of the particles, which by far dominates the computational cost of the simulations, are reduced to a single discrete transformation in energy- and angular momentum-space, thereby potentially mitigating any computational expense. We further generalize our formalism to sequences of (unbound) three-body interactions, as occur in dense stellar environments during binary hardening. Finally, we provide a method for dynamically evolving entire populations of binaries via three-body scattering interactions, using a purely analytic formalism. In principle, the techniques presented here are adaptable to other three-body problems that conserve energy and angular momentum.
NASA Astrophysics Data System (ADS)
Sakata, Masahiro; Kurata, Masaki; Hijikata, Takatoshi; Inoue, Tadashi
1991-11-01
Distribution experiments for several rare earth elements (La, Ce, Pr, Nd and Y) between molten KCl-LiCl eutectic salt and liquid Cd were carried out at 450, 500 and 600°C. The material balance of rare earth elements after reaching the equilibrium and their distribution and chemical states in a Cd sample frozen after the experiment were examined. The results suggested the formation of solid intermetallic compounds at the lower concentrations of rare earth metals dissolved in liquid Cd than those solubilities measured in the binary alloy system. The distribution coefficients of rare earth elements between two phases (mole fraction in the Cd phase divided by mole fraction in the salt phase) were determined at each temperature. These distribution coefficients were explained satisfactorily by using the activity coefficients of chlorides and metals in salt and Cd. Both the activity coefficients of metal and chloride caused a much smaller distribution coefficient of Y relative to those of other elements.
Don't Fear Optimality: Sampling for Probabilistic-Logic Sequence Models
NASA Astrophysics Data System (ADS)
Thon, Ingo
One of the current challenges in artificial intelligence is modeling dynamic environments that change due to the actions or activities undertaken by people or agents. The task of inferring hidden states, e.g. the activities or intentions of people, based on observations is called filtering. Standard probabilistic models such as Dynamic Bayesian Networks are able to solve this task efficiently using approximative methods such as particle filters. However, these models do not support logical or relational representations. The key contribution of this paper is the upgrade of a particle filter algorithm for use with a probabilistic logical representation through the definition of a proposal distribution. The performance of the algorithm depends largely on how well this distribution fits the target distribution. We adopt the idea of logical compilation into Binary Decision Diagrams for sampling. This allows us to use the optimal proposal distribution which is normally prohibitively slow.
Smooth Scalar-on-Image Regression via Spatial Bayesian Variable Selection
Goldsmith, Jeff; Huang, Lei; Crainiceanu, Ciprian M.
2013-01-01
We develop scalar-on-image regression models when images are registered multidimensional manifolds. We propose a fast and scalable Bayes inferential procedure to estimate the image coefficient. The central idea is the combination of an Ising prior distribution, which controls a latent binary indicator map, and an intrinsic Gaussian Markov random field, which controls the smoothness of the nonzero coefficients. The model is fit using a single-site Gibbs sampler, which allows fitting within minutes for hundreds of subjects with predictor images containing thousands of locations. The code is simple and is provided in less than one page in the Appendix. We apply this method to a neuroimaging study where cognitive outcomes are regressed on measures of white matter microstructure at every voxel of the corpus callosum for hundreds of subjects. PMID:24729670
Persistence in a Random Bond Ising Model of Socio-Econo Dynamics
NASA Astrophysics Data System (ADS)
Jain, S.; Yamano, T.
We study the persistence phenomenon in a socio-econo dynamics model using computer simulations at a finite temperature on hypercubic lattices in dimensions up to five. The model includes a "social" local field which contains the magnetization at time t. The nearest neighbour quenched interactions are drawn from a binary distribution which is a function of the bond concentration, p. The decay of the persistence probability in the model depends on both the spatial dimension and p. We find no evidence of "blocking" in this model. We also discuss the implications of our results for possible applications in the social and economic fields. It is suggested that the absence, or otherwise, of blocking could be used as a criterion to decide on the validity of a given model in different scenarios.
Data regarding grazing utilization in the western United States are typically compiled within administrative boundaries(e.g. allotment,pasture). For large areas, an assumption of uniform distribution is seldom valid. Previous studies show that vegetation type, degree of slope, an...
Assessment of the Economic Potential of Distributed Wind in Colorado, Minnesota, and New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCabe, Kevin; Sigrin, Benjamin O.; Lantz, Eric J.
This work seeks to identify current and future spatial distributions of economic potential for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities in Colorado, Minnesota, and New York. These states were identified by technical experts based on their current favorability for distributed wind deployment. We use NREL's Distributed Wind Market Demand Model (dWind) (Lantz et al. 2017; Sigrin et al. 2016) to identify and rank counties in each of the states by their overall and per capita potential. From this baseline assessment, we also explore how and where improvements in cost, performance, and other marketmore » sensitivities affect distributed wind potential.« less
The COBAIN (COntact Binary Atmospheres with INterpolation) Code for Radiative Transfer
NASA Astrophysics Data System (ADS)
Kochoska, Angela; Prša, Andrej; Horvat, Martin
2018-01-01
Standard binary star modeling codes make use of pre-existing solutions of the radiative transfer equation in stellar atmospheres. The various model atmospheres available today are consistently computed for single stars, under different assumptions - plane-parallel or spherical atmosphere approximation, local thermodynamical equilibrium (LTE) or non-LTE (NLTE), etc. However, they are nonetheless being applied to contact binary atmospheres by populating the surface corresponding to each component separately and neglecting any mixing that would typically occur at the contact boundary. In addition, single stellar atmosphere models do not take into account irradiance from a companion star, which can pose a serious problem when modeling close binaries. 1D atmosphere models are also solved under the assumption of an atmosphere in hydrodynamical equilibrium, which is not necessarily the case for contact atmospheres, as the potentially different densities and temperatures can give rise to flows that play a key role in the heat and radiation transfer.To resolve the issue of erroneous modeling of contact binary atmospheres using single star atmosphere tables, we have developed a generalized radiative transfer code for computation of the normal emergent intensity of a stellar surface, given its geometry and internal structure. The code uses a regular mesh of equipotential surfaces in a discrete set of spherical coordinates, which are then used to interpolate the values of the structural quantites (density, temperature, opacity) in any given point inside the mesh. The radiaitive transfer equation is numerically integrated in a set of directions spanning the unit sphere around each point and iterated until the intensity values for all directions and all mesh points converge within a given tolerance. We have found that this approach, albeit computationally expensive, is the only one that can reproduce the intensity distribution of the non-symmetric contact binary atmosphere and can be used with any existing or new model of the structure of contact binaries. We present results on several test objects and future prospects of the implementation in state-of-the-art binary star modeling software.
Unsupervised classification of operator workload from brain signals.
Schultze-Kraft, Matthias; Dähne, Sven; Gugler, Manfred; Curio, Gabriel; Blankertz, Benjamin
2016-06-01
In this study we aimed for the classification of operator workload as it is expected in many real-life workplace environments. We explored brain-signal based workload predictors that differ with respect to the level of label information required for training, including entirely unsupervised approaches. Subjects executed a task on a touch screen that required continuous effort of visual and motor processing with alternating difficulty. We first employed classical approaches for workload state classification that operate on the sensor space of EEG and compared those to the performance of three state-of-the-art spatial filtering methods: common spatial patterns (CSPs) analysis, which requires binary label information; source power co-modulation (SPoC) analysis, which uses the subjects' error rate as a target function; and canonical SPoC (cSPoC) analysis, which solely makes use of cross-frequency power correlations induced by different states of workload and thus represents an unsupervised approach. Finally, we investigated the effects of fusing brain signals and peripheral physiological measures (PPMs) and examined the added value for improving classification performance. Mean classification accuracies of 94%, 92% and 82% were achieved with CSP, SPoC, cSPoC, respectively. These methods outperformed the approaches that did not use spatial filtering and they extracted physiologically plausible components. The performance of the unsupervised cSPoC is significantly increased by augmenting it with PPM features. Our analyses ensured that the signal sources used for classification were of cortical origin and not contaminated with artifacts. Our findings show that workload states can be successfully differentiated from brain signals, even when less and less information from the experimental paradigm is used, thus paving the way for real-world applications in which label information may be noisy or entirely unavailable.
Unsupervised classification of operator workload from brain signals
NASA Astrophysics Data System (ADS)
Schultze-Kraft, Matthias; Dähne, Sven; Gugler, Manfred; Curio, Gabriel; Blankertz, Benjamin
2016-06-01
Objective. In this study we aimed for the classification of operator workload as it is expected in many real-life workplace environments. We explored brain-signal based workload predictors that differ with respect to the level of label information required for training, including entirely unsupervised approaches. Approach. Subjects executed a task on a touch screen that required continuous effort of visual and motor processing with alternating difficulty. We first employed classical approaches for workload state classification that operate on the sensor space of EEG and compared those to the performance of three state-of-the-art spatial filtering methods: common spatial patterns (CSPs) analysis, which requires binary label information; source power co-modulation (SPoC) analysis, which uses the subjects’ error rate as a target function; and canonical SPoC (cSPoC) analysis, which solely makes use of cross-frequency power correlations induced by different states of workload and thus represents an unsupervised approach. Finally, we investigated the effects of fusing brain signals and peripheral physiological measures (PPMs) and examined the added value for improving classification performance. Main results. Mean classification accuracies of 94%, 92% and 82% were achieved with CSP, SPoC, cSPoC, respectively. These methods outperformed the approaches that did not use spatial filtering and they extracted physiologically plausible components. The performance of the unsupervised cSPoC is significantly increased by augmenting it with PPM features. Significance. Our analyses ensured that the signal sources used for classification were of cortical origin and not contaminated with artifacts. Our findings show that workload states can be successfully differentiated from brain signals, even when less and less information from the experimental paradigm is used, thus paving the way for real-world applications in which label information may be noisy or entirely unavailable.
Rijal, J P; Brewster, C C; Bergh, J C
2014-06-01
Grape root borer, Vitacea polistiformis (Harris) (Lepidoptera: Sesiidae) is a potentially destructive pest of grape vines, Vitis spp. in the eastern United States. After feeding on grape roots for ≍2 yr in Virginia, larvae pupate beneath the soil surface around the vine base. Adults emerge during July and August, leaving empty pupal exuviae on or protruding from the soil. Weekly collections of pupal exuviae from an ≍1-m-diameter weed-free zone around the base of a grid of sample vines in Virginia vineyards were conducted in July and August, 2008-2012, and their distribution was characterized using both nonspatial (dispersion) and spatial techniques. Taylor's power law showed a significant aggregation of pupal exuviae, based on data from 19 vineyard blocks. Combined use of geostatistical and Spatial Analysis by Distance IndicEs methods indicated evidence of an aggregated pupal exuviae distribution pattern in seven of the nine blocks used for those analyses. Grape root borer pupal exuviae exhibited spatial dependency within a mean distance of 8.8 m, based on the range values of best-fitted variograms. Interpolated and clustering index-based infestation distribution maps were developed to show the spatial pattern of the insect within the vineyard blocks. The temporal distribution of pupal exuviae showed that the majority of moths emerged during the 3-wk period spanning the third week of July and the first week of August. The spatial distribution of grape root borer pupal exuviae was used in combination with temporal moth emergence patterns to develop a quantitative and efficient sampling scheme to assess infestations.
Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.
2015-01-01
Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm. PMID:25379775
In search of a signature of binary Kuiper Belt Objects in the Pluto-Charon crater population
NASA Astrophysics Data System (ADS)
Zangari, Amanda Marie; Parker, Alex; Singer, Kelsi N.; Stern, S. Alan; Young, Leslie; Olkin, Catherine B.; Ennico, Kimberly; Weaver, Harold A.; New Horizons Geology, Geophysics and Imaging Science Theme Team
2016-10-01
In July 2015, New Horizons flew by Pluto and Charon, allowing mapping of the encounter hemisphere at high enough resolution to produce crater counts from the surfaces of the pair. We investigate the distribution of craters in search of a signature of binary impactors. The Kuiper Belt -- especially the cold classical region -- has a large fraction of binary objects, many of which are close-in, equal-mass binaries. We will present results on how the distribution of craters seen on Pluto and Charon compares to a random distribution of single body impactors on the surfaces of each. Examining the surfaces of Pluto and Charon proves challenging due to resurfacing, and the presence of tectonic and other geographic features. For example, the informally-named Cthulhu region is among the oldest on Pluto, yet it abuts a craterless region millions of years young. On Charon, chastmata divide the surface into regions informally named Vulcan Planum and Oz terra. In our statistics, we pay careful attention to the boundaries of where craters may appear, and the dependence of our results on crater size. This work was supported by NASA's New Horizons project.
Searching for Compact Binary Mergers with Advanced LIGO
NASA Astrophysics Data System (ADS)
Nitz, Alexander` Harvey
2017-06-01
Several binary black hole mergers were discovered during Advanced LIGOs first observing run, and LIGO is currently well into its second observing run. We will discuss the state of the art in searching for merger signals in LIGO data, and how this will aid in the detection of binary neutron star, neutron-star black hole, and binary black hole mergers.
Spectral properties of binary asteroids
NASA Astrophysics Data System (ADS)
Pajuelo, Myriam; Birlan, Mirel; Carry, Benoît; DeMeo, Francesca E.; Binzel, Richard P.; Berthier, Jérôme
2018-07-01
We present the first attempt to characterize the distribution of taxonomic class among the population of binary asteroids (15 per cent of all small asteroids). For that, an analysis of 0.8-2.5 µm near-infrared spectra obtained with the SpeX instrument on the NASA/IRTF (Infrared Telescope Facility) is presented. Taxonomic class and meteorite analogue is determined for each target, increasing the sample of binary asteroids with known taxonomy by 21 per cent. Most binary systems are bound in the S, X, and C classes, followed by Q and V types. The rate of binary systems in each taxonomic class agrees within uncertainty with the background population of small near-Earth objects and inner main belt asteroids, but for the C types which are under-represented among binaries.
Fitness Probability Distribution of Bit-Flip Mutation.
Chicano, Francisco; Sutton, Andrew M; Whitley, L Darrell; Alba, Enrique
2015-01-01
Bit-flip mutation is a common mutation operator for evolutionary algorithms applied to optimize functions over binary strings. In this paper, we develop results from the theory of landscapes and Krawtchouk polynomials to exactly compute the probability distribution of fitness values of a binary string undergoing uniform bit-flip mutation. We prove that this probability distribution can be expressed as a polynomial in p, the probability of flipping each bit. We analyze these polynomials and provide closed-form expressions for an easy linear problem (Onemax), and an NP-hard problem, MAX-SAT. We also discuss a connection of the results with runtime analysis.
Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.
2016-09-28
We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.
Dynamical evolution of young binaries and multiple systems
NASA Astrophysics Data System (ADS)
Reipurth, B.
Most stars, and perhaps all, are born in small multiple systems whose components interact, leading to chaotic dynamic behavior. Some components are ejected, either into distant orbits or into outright escapes, while the remaining components form temporary and eventually permanent binary systems. More than half of all such breakups of multiple systems occur during the protostellar phase, leading to the occasional ejection of protostars outside their nascent cloud cores. Such orphaned protostars are observed as wide companions to embedded protostars, and thus allow the direct study of protostellar objects. Dynamic interactions during early stellar evolution explain the shape and enormous width of the separation distribution function of binaries, from close spectroscopic binaries to the widest binaries.
NCI's Distributed Geospatial Data Server
NASA Astrophysics Data System (ADS)
Larraondo, P. R.; Evans, B. J. K.; Antony, J.
2016-12-01
Earth systems, environmental and geophysics datasets are an extremely valuable source of information about the state and evolution of the Earth. However, different disciplines and applications require this data to be post-processed in different ways before it can be used. For researchers experimenting with algorithms across large datasets or combining multiple data sets, the traditional approach to batch data processing and storing all the output for later analysis rapidly becomes unfeasible, and often requires additional work to publish for others to use. Recent developments on distributed computing using interactive access to significant cloud infrastructure opens the door for new ways of processing data on demand, hence alleviating the need for storage space for each individual copy of each product. The Australian National Computational Infrastructure (NCI) has developed a highly distributed geospatial data server which supports interactive processing of large geospatial data products, including satellite Earth Observation data and global model data, using flexible user-defined functions. This system dynamically and efficiently distributes the required computations among cloud nodes and thus provides a scalable analysis capability. In many cases this completely alleviates the need to preprocess and store the data as products. This system presents a standards-compliant interface, allowing ready accessibility for users of the data. Typical data wrangling problems such as handling different file formats and data types, or harmonising the coordinate projections or temporal and spatial resolutions, can now be handled automatically by this service. The geospatial data server exposes functionality for specifying how the data should be aggregated and transformed. The resulting products can be served using several standards such as the Open Geospatial Consortium's (OGC) Web Map Service (WMS) or Web Feature Service (WFS), Open Street Map tiles, or raw binary arrays under different conventions. We will show some cases where we have used this new capability to provide a significant improvement over previous approaches.
Constraining the mass and radius of neutron stars in globular clusters
NASA Astrophysics Data System (ADS)
Steiner, A. W.; Heinke, C. O.; Bogdanov, S.; Li, C. K.; Ho, W. C. G.; Bahramian, A.; Han, S.
2018-05-01
We analyse observations of eight quiescent low-mass X-ray binaries in globular clusters and combine them to determine the neutron star mass-radius curve and the equation of state of dense matter. We determine the effect that several uncertainties may have on our results, including uncertainties in the distance, the atmosphere composition, the neutron star maximum mass, the neutron star mass distribution, the possible presence of a hotspot on the neutron star surface, and the prior choice for the equation of state of dense matter. The distance uncertainty is implemented in a new Gaussian blurring method that can be directly applied to the probability distribution over mass and radius. We find that the radius of a 1.4 solar mass neutron star is most likely from 10 to 14 km and that tighter constraints are only possible with stronger assumptions about the nature of the neutron stars, the systematics of the observations, or the nature of dense matter. Strong phase transitions in the equation of state are preferred, and in this case, the radius is likely smaller than 12 km. However, radii larger than 12 km are preferred if the neutron stars have uneven temperature distributions.
Chieng, Norman; Trnka, Hjalte; Boetker, Johan; Pikal, Michael; Rantanen, Jukka; Grohganz, Holger
2013-09-15
The purpose of this study is to investigate the use of multivariate data analysis for powder X-ray diffraction-pair-wise distribution function (PXRD-PDF) data to detect phase separation in freeze-dried binary amorphous systems. Polymer-polymer and polymer-sugar binary systems at various ratios were freeze-dried. All samples were analyzed by PXRD, transformed to PDF and analyzed by principal component analysis (PCA). These results were validated by differential scanning calorimetry (DSC) through characterization of glass transition of the maximally freeze-concentrate solute (Tg'). Analysis of PXRD-PDF data using PCA provides a more clear 'miscible' or 'phase separated' interpretation through the distribution pattern of samples on a score plot presentation compared to residual plot method. In a phase separated system, samples were found to be evenly distributed around the theoretical PDF profile. For systems that were miscible, a clear deviation of samples away from the theoretical PDF profile was observed. Moreover, PCA analysis allows simultaneous analysis of replicate samples. Comparatively, the phase behavior analysis from PXRD-PDF-PCA method was in agreement with the DSC results. Overall, the combined PXRD-PDF-PCA approach improves the clarity of the PXRD-PDF results and can be used as an alternative explorative data analytical tool in detecting phase separation in freeze-dried binary amorphous systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Nadeau, Kyle P; Rice, Tyler B; Durkin, Anthony J; Tromberg, Bruce J
2015-11-01
We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI.
Nadeau, Kyle P.; Rice, Tyler B.; Durkin, Anthony J.; Tromberg, Bruce J.
2015-01-01
Abstract. We present a method for spatial frequency domain data acquisition utilizing a multifrequency synthesis and extraction (MSE) method and binary square wave projection patterns. By illuminating a sample with square wave patterns, multiple spatial frequency components are simultaneously attenuated and can be extracted to determine optical property and depth information. Additionally, binary patterns are projected faster than sinusoids typically used in spatial frequency domain imaging (SFDI), allowing for short (millisecond or less) camera exposure times, and data acquisition speeds an order of magnitude or more greater than conventional SFDI. In cases where sensitivity to superficial layers or scattering is important, the fundamental component from higher frequency square wave patterns can be used. When probing deeper layers, the fundamental and harmonic components from lower frequency square wave patterns can be used. We compared optical property and depth penetration results extracted using square waves to those obtained using sinusoidal patterns on an in vivo human forearm and absorbing tube phantom, respectively. Absorption and reduced scattering coefficient values agree with conventional SFDI to within 1% using both high frequency (fundamental) and low frequency (fundamental and harmonic) spatial frequencies. Depth penetration reflectance values also agree to within 1% of conventional SFDI. PMID:26524682
Land cover mapping at sub-pixel scales
NASA Astrophysics Data System (ADS)
Makido, Yasuyo Kato
One of the biggest drawbacks of land cover mapping from remotely sensed images relates to spatial resolution, which determines the level of spatial details depicted in an image. Fine spatial resolution images from satellite sensors such as IKONOS and QuickBird are now available. However, these images are not suitable for large-area studies, since a single image is very small and therefore it is costly for large area studies. Much research has focused on attempting to extract land cover types at sub-pixel scale, and little research has been conducted concerning the spatial allocation of land cover types within a pixel. This study is devoted to the development of new algorithms for predicting land cover distribution using remote sensory imagery at sub-pixel level. The "pixel-swapping" optimization algorithm, which was proposed by Atkinson for predicting sub-pixel land cover distribution, is investigated in this study. Two limitations of this method, the arbitrary spatial range value and the arbitrary exponential model of spatial autocorrelation, are assessed. Various weighting functions, as alternatives to the exponential model, are evaluated in order to derive the optimum weighting function. Two different simulation models were employed to develop spatially autocorrelated binary class maps. In all tested models, Gaussian, Exponential, and IDW, the pixel swapping method improved classification accuracy compared with the initial random allocation of sub-pixels. However the results suggested that equal weight could be used to increase accuracy and sub-pixel spatial autocorrelation instead of using these more complex models of spatial structure. New algorithms for modeling the spatial distribution of multiple land cover classes at sub-pixel scales are developed and evaluated. Three methods are examined: sequential categorical swapping, simultaneous categorical swapping, and simulated annealing. These three methods are applied to classified Landsat ETM+ data that has been resampled to 210 meters. The result suggested that the simultaneous method can be considered as the optimum method in terms of accuracy performance and computation time. The case study employs remote sensing imagery at the following sites: tropical forests in Brazil and temperate multiple land mosaic in East China. Sub-areas for both sites are used to examine how the characteristics of the landscape affect the ability of the optimum technique. Three types of measurement: Moran's I, mean patch size (MPS), and patch size standard deviation (STDEV), are used to characterize the landscape. All results suggested that this technique could increase the classification accuracy more than traditional hard classification. The methods developed in this study can benefit researchers who employ coarse remote sensing imagery but are interested in detailed landscape information. In many cases, the satellite sensor that provides large spatial coverage has insufficient spatial detail to identify landscape patterns. Application of the super-resolution technique described in this dissertation could potentially solve this problem by providing detailed land cover predictions from the coarse resolution satellite sensor imagery.
Steady state statistical correlations predict bistability in reaction motifs.
Chakravarty, Suchana; Barik, Debashis
2017-03-28
Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.
Gundogdu, Erhan; Ozkan, Huseyin; Alatan, A Aydin
2017-11-01
Correlation filters have been successfully used in visual tracking due to their modeling power and computational efficiency. However, the state-of-the-art correlation filter-based (CFB) tracking algorithms tend to quickly discard the previous poses of the target, since they consider only a single filter in their models. On the contrary, our approach is to register multiple CFB trackers for previous poses and exploit the registered knowledge when an appearance change occurs. To this end, we propose a novel tracking algorithm [of complexity O(D) ] based on a large ensemble of CFB trackers. The ensemble [of size O(2 D ) ] is organized over a binary tree (depth D ), and learns the target appearance subspaces such that each constituent tracker becomes an expert of a certain appearance. During tracking, the proposed algorithm combines only the appearance-aware relevant experts to produce boosted tracking decisions. Additionally, we propose a versatile spatial windowing technique to enhance the individual expert trackers. For this purpose, spatial windows are learned for target objects as well as the correlation filters and then the windowed regions are processed for more robust correlations. In our extensive experiments on benchmark datasets, we achieve a substantial performance increase by using the proposed tracking algorithm together with the spatial windowing.
Hadronic gamma-ray and neutrino emission from Cygnus X-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahakyan, N.; Piano, G.; Tavani, M., E-mail: narek@icra.it
2014-01-01
Cygnus X-3 (Cyg X-3) is a remarkable Galactic microquasar (X-ray binary) emitting from radio to γ-ray energies. In this paper, we consider the hadronic model of emission of γ-rays above 100 MeV and their implications. We focus on the joint γ-ray and neutrino production resulting from proton-proton interactions within the binary system. We find that the required proton injection kinetic power, necessary to explain the γ-ray flux observed by AGILE and Fermi-LAT, is L{sub p} ∼ 10{sup 38} erg s{sup –1}, a value in agreement with the average bolometric luminosity of the hypersoft state (when Cyg X-3 was repeatedly observedmore » to produce transient γ-ray activity). If we assume an increase of the wind density at the superior conjunction, the asymmetric production of γ-rays along the orbit can reproduce the observed modulation. According to observational constraints and our modeling, a maximal flux of high-energy neutrinos would be produced for an initial proton distribution with a power-law index α = 2.4. The predicted neutrino flux is almost two orders of magnitude less than the two-month IceCube sensitivity at ∼1 TeV. If the protons are accelerated up to PeV energies, the predicted neutrino flux for a prolonged 'soft X-ray state' would be a factor of about three lower than the one-year IceCube sensitivity at ∼10 TeV. This study shows that, for a prolonged soft state (as observed in 2006) possibly related to γ-ray activity and a hard distribution of injected protons, Cyg X-3 might be close to being detectable by cubic-kilometer neutrino telescopes such as IceCube.« less
Multi-Scale Distributed Representation for Deep Learning and its Application to b-Jet Tagging
NASA Astrophysics Data System (ADS)
Lee, Jason Sang Hun; Park, Inkyu; Park, Sangnam
2018-06-01
Recently machine learning algorithms based on deep layered artificial neural networks (DNNs) have been applied to a wide variety of high energy physics problems such as jet tagging or event classification. We explore a simple but effective preprocessing step which transforms each realvalued observational quantity or input feature into a binary number with a fixed number of digits. Each binary digit represents the quantity or magnitude in different scales. We have shown that this approach improves the performance of DNNs significantly for some specific tasks without any further complication in feature engineering. We apply this multi-scale distributed binary representation to deep learning on b-jet tagging using daughter particles' momenta and vertex information.
The Southwest Regional Gap Analysis project (SWReGAP) is a 5-state (Arizona, Colorado, Nevada, New Mexico, and Utah) inter-agency program that maps the distribution of plant communities and selected animal species and compares these distributions with land stewardship to identify...
Geospatial clustering in sugar-sweetened beverage consumption among Boston youth.
Tamura, Kosuke; Duncan, Dustin T; Athens, Jessica K; Bragg, Marie A; Rienti, Michael; Aldstadt, Jared; Scott, Marc A; Elbel, Brian
2017-09-01
The objective was to detect geospatial clustering of sugar-sweetened beverage (SSB) intake in Boston adolescents (age = 16.3 ± 1.3 years [range: 13-19]; female = 56.1%; White = 10.4%, Black = 42.6%, Hispanics = 32.4%, and others = 14.6%) using spatial scan statistics. We used data on self-reported SSB intake from the 2008 Boston Youth Survey Geospatial Dataset (n = 1292). Two binary variables were created: consumption of SSB (never versus any) on (1) soda and (2) other sugary drinks (e.g., lemonade). A Bernoulli spatial scan statistic was used to identify geospatial clusters of soda and other sugary drinks in unadjusted models and models adjusted for age, gender, and race/ethnicity. There was no statistically significant clustering of soda consumption in the unadjusted model. In contrast, a cluster of non-soda SSB consumption emerged in the middle of Boston (relative risk = 1.20, p = .005), indicating that adolescents within the cluster had a 20% higher probability of reporting non-soda SSB intake than outside the cluster. The cluster was no longer significant in the adjusted model, suggesting spatial variation in non-soda SSB drink intake correlates with the geographic distribution of students by race/ethnicity, age, and gender.
Rapid formation of supermassive black hole binaries in galaxy mergers with gas.
Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J
2007-06-29
Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.
NASA Astrophysics Data System (ADS)
Hillen, M.; Van Winckel, H.; Menu, J.; Manick, R.; Debosscher, J.; Min, M.; de Wit, W.-J.; Verhoelst, T.; Kamath, D.; Waters, L. B. F. M.
2017-03-01
Aims: We present a mid-IR interferometric survey of the circumstellar environment of a specific class of post-asymptotic giant branch (post-AGB) binaries. For this class the presence of a compact dusty disk has been postulated on the basis of various spatially unresolved measurements. The aim is to determine the angular extent of the N-band emission directly and to resolve the compact circumstellar structures. Methods: Our interferometric survey was performed with the MIDI instrument on the VLTI. In total 19 different systems were observed using variable baseline configurations. Combining all the visibilities at a single wavelength at 10.7 μm, we fitted two parametric models to the data: a uniform disk and a ring model mimicking a temperature gradient. We compared our observables of the whole sample, with synthetic data computed from a grid of radiative transfer models of passively irradiated disks in hydrostatic equilibrium. These models are computed with a Monte Carlo code that has been widely applied to describe the structure of protoplanetary disks around young stellar objects (YSO). Results: The spatially resolved observations show that the majority of our targets cluster closely together in the distance-independent size-colour diagram, and have extremely compact N-band emission regions. The typical uniform disk diameter of the N-band emission region is 40 mas, which corresponds to a typical brightness temperature of 400-600 K. The resolved objects display very similar characteristics in the interferometric observables and in the spectral energy distributions. Therefore, the physical properties of the disks around our targets must be similar. Our results are discussed in the light of recently published sample studies of YSOs to compare quantitatively the secondary discs around post-AGB stars to the ones around YSOs. Conclusions: Our high-angular-resolution survey further confirms the disk nature of the circumstellar structures present around wide post-AGB binaries. The grid of protoplanetary disk models covers very well the observed objects. Much like for young stars, the spatially resolved N-band emission region is determined by the hot inner rim of the disk. Continued comparisons between post-AGB and protoplanetary disks will help to understand grain growth and disk evolution processes, and to constrain planet formation theories. These second-generation disks are an important missing ingredient in binary evolution theory of intermediate-mass stars. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes ID 073.A-9002, 073.A-9014, 073.D-0610, 075.D-0605, 077.D-0071, 078.D-0113, 079.D-0013, 080.D-0059, 081.D-0089, 082.D-0066, 083.D-0011, 083.D-0013, 084.D-0009, 093.D-0914, and 094.D-0778. Some observations were obtained in the framework of the Belgian Guaranteed Time allocation on VISA.
Spatial variability of soil moisture retrieved by SMOS satellite
NASA Astrophysics Data System (ADS)
Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy
2015-04-01
Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies ergodicity and quasi-stationarity assumptions, required for geostatistical analysis. The semivariograms examinations revealed that spatial dependences occurring in the surface soil moisture distributions for the selected area were more or less 200 km. The exception was the driest of the studied days, when the spatial correlations of soil moisture were not disturbed for a long time by any rainfall. Spatial correlation length on that day was about 400 km. Because of zonal character of frost, the spatial dependences in the examined surface soil moisture distributions during freezing/thawing found to be disturbed. Probably, the amount of water remains the same, but it is not detected by SMOS, hence analysing dielectric constant instead of soil moisture would be more appropriate. Some spatial relations of soil moisture and freezing distribution with existing maps of soil granulometric fractions and soil specific surface area for Poland have also been found. The work was partially funded under the ELBARA_PD (Penetration Depth) project No. 4000107897/13/NL/KML. ELBARA_PD project is funded by the Government of Poland through an ESA (European Space Agency) Contract under the PECS (Plan for European Cooperating States).
ERIC Educational Resources Information Center
Quark, Amy Adams
2008-01-01
Recent studies suggest that processes of capital and state rescaling are generating new socio-spatial inequalities within nation-states. I explore rescaling in the understudied context of a peripheral region through the case of a global apparel merchant, Lands' End, and its decision to relocate its call and distribution centers to Dodgeville,…
Legacies of Lead in Charm City's Soil: Lessons from the Baltimore Ecosystem Study
Kirsten Schwarz; Richard Pouyat; Ian Yesilonis
2016-01-01
Understanding the spatial distribution of soil lead has been a focus of the Baltimore Ecosystem Study since its inception in 1997. Through multiple research projects that span spatial scales and use different methodologies, three overarching patterns have been identified: (1) soil lead concentrations often exceed state and federal regulatory limits; (2) the variability...
RELATIVE ORIENTATION OF PAIRS OF SPIRAL GALAXIES IN THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buxton, Jesse; Ryden, Barbara S., E-mail: buxton.45@osu.edu, E-mail: ryden@astronomy.ohio-state.edu
2012-09-10
From our study of binary spiral galaxies in the Sloan Digital Sky Survey Data Release 6, we find that the relative orientation of disks in binary spiral galaxies is consistent with their being drawn from a random distribution of orientations. For 747 isolated pairs of luminous disk galaxies, the distribution of {phi}, the angle between the major axes of the galaxy images, is consistent with a uniform distribution on the interval [0 Degree-Sign , 90 Degree-Sign ]. With the assumption that the disk galaxies are oblate spheroids, we can compute cos {beta}, where {beta} is the angle between the rotationmore » axes of the disks. In the case that one galaxy in the binary is face-on or edge-on, the tilt ambiguity is resolved, and cos {beta} can be computed unambiguously. For 94 isolated pairs with at least one face-on member, and for 171 isolated pairs with at least one edge-on member, the distribution of cos {beta} is statistically consistent with the distribution of cos i for isolated disk galaxies. This result is consistent with random orientations of the disks within pairs.« less
NASA Astrophysics Data System (ADS)
Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico
2017-11-01
The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.
Serial binary interval ratios improve rhythm reproduction.
Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao
2013-01-01
Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception.
Serial binary interval ratios improve rhythm reproduction
Wu, Xiang; Westanmo, Anders; Zhou, Liang; Pan, Junhao
2013-01-01
Musical rhythm perception is a natural human ability that involves complex cognitive processes. Rhythm refers to the organization of events in time, and musical rhythms have an underlying hierarchical metrical structure. The metrical structure induces the feeling of a beat and the extent to which a rhythm induces the feeling of a beat is referred to as its metrical strength. Binary ratios are the most frequent interval ratio in musical rhythms. Rhythms with hierarchical binary ratios are better discriminated and reproduced than rhythms with hierarchical non-binary ratios. However, it remains unclear whether a superiority of serial binary over non-binary ratios in rhythm perception and reproduction exists. In addition, how different types of serial ratios influence the metrical strength of rhythms remains to be elucidated. The present study investigated serial binary vs. non-binary ratios in a reproduction task. Rhythms formed with exclusively binary (1:2:4:8), non-binary integer (1:3:5:6), and non-integer (1:2.3:5.3:6.4) ratios were examined within a constant meter. The results showed that the 1:2:4:8 rhythm type was more accurately reproduced than the 1:3:5:6 and 1:2.3:5.3:6.4 rhythm types, and the 1:2.3:5.3:6.4 rhythm type was more accurately reproduced than the 1:3:5:6 rhythm type. Further analyses showed that reproduction performance was better predicted by the distribution pattern of event occurrences within an inter-beat interval, than by the coincidence of events with beats, or the magnitude and complexity of interval ratios. Whereas rhythm theories and empirical data emphasize the role of the coincidence of events with beats in determining metrical strength and predicting rhythm performance, the present results suggest that rhythm processing may be better understood when the distribution pattern of event occurrences is taken into account. These results provide new insights into the mechanisms underlining musical rhythm perception. PMID:23964258
Characteristic electron variations across simple high-speed solar wind streams
NASA Technical Reports Server (NTRS)
Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.
1978-01-01
The paper deals with electron variations across simple high-speed streams. Comprehensive scans of the shapes of electron distributions measured at the highest bulk speeds confirm the results of Rosenbauer et al. (1976, 1977) and show that the electron velocity distributions can be broken down into a low-energy or core component and a high-energy strongly beamed component. The low-energy component displays many characteristics expected from a fluid: the internal particle coupling necessary to maintain this state must result from both binary Coulomb collisions and wave-particle interactions. The high-energy or halo component displays many characteristics expected to develop in the absence of collisions beyond a certain base radius. These electrons appear to evolve under the primary influence of static interplanetary magnetic and electric fields and, therefore, develop very anisotropic velocity distributions.
Six-State Quantum Key Distribution Using Photons with Orbital Angular Momentum
NASA Astrophysics Data System (ADS)
Li, Jun-Lin; Wang, Chuan
2010-11-01
A new implementation of high-dimensional quantum key distribution (QKD) protocol is discussed. Using three mutual unbiased bases, we present a d-level six-state QKD protocol that exploits the orbital angular momentum with the spatial mode of the light beam. The protocol shows that the feature of a high capacity since keys are encoded using photon modes in d-level Hilbert space. The devices for state preparation and measurement are also discussed. This protocol has high security and the alignment of shared reference frames is not needed between sender and receiver.
Local and Widely Distributed EEG Activity in Schizophrenia With Prevalence of Negative Symptoms.
Grin-Yatsenko, Vera A; Ponomarev, Valery A; Pronina, Marina V; Poliakov, Yury I; Plotnikova, Irina V; Kropotov, Juri D
2017-09-01
We evaluated EEG frequency abnormalities in resting state (eyes closed and eyes open) EEG in a group of chronic schizophrenia patients as compared with healthy subjects. The study included 3 methods of analysis of deviation of EEG characteristics: genuine EEG, current source density (CSD), and group independent component (gIC). All 3 methods have shown that the EEG in schizophrenia patients is characterized by enhanced low-frequency (delta and theta) and high-frequency (beta) activity in comparison with the control group. However, the spatial pattern of differences was dependent on the type of method used. Comparative analysis has shown that increased EEG power in schizophrenia patients apparently concerns both widely spatially distributed components and local components of signal. Furthermore, the observed differences in the delta and theta range can be described mainly by the local components, and those in the beta range mostly by spatially widely distributed ones. The possible nature of the widely distributed activity is discussed.
Electron temperature profiles in axial field 2.45 GHz ECR ion source with a ceramic chamber
NASA Astrophysics Data System (ADS)
Abe, K.; Tamura, R.; Kasuya, T.; Wada, M.
2017-08-01
An array of electrostatic probes was arranged on the plasma electrode of a 2.45 GHz microwave driven axial magnetic filter field type negative hydrogen (H-) ion source to clarify the spatial plasma distribution near the electrode. The measured spatial distribution of electron temperature indicated the lower temperature near the extraction hole of the plasma electrode corresponding to the effectiveness of the axial magnetic filter field geometry. When the ratio of electron saturation current to the ion saturation current was plotted as a function of position, the obtained distribution showed a higher ratio near the hydrogen gas inlet through which ground state hydrogen molecules are injected into the source. Though the efficiency in producing H- ions is smaller for a 2.45 GHz source than a source operated at 14 GHz, it gives more volume to measure spatial distributions of various plasma parameters to understand fundamental processes that are influential on H- production in this type of ion sources.
30+ New & Known SB2s in the SDSS-III/APOGEE M Dwarf Ancillary Science Project Sample
NASA Astrophysics Data System (ADS)
Skinner, Jacob; Covey, Kevin; Bender, Chad; De Lee, Nathan Michael; Chojnowski, Drew; Troup, Nicholas; Badenes, Carles; Mahadevan, Suvrath; Terrien, Ryan
2018-01-01
Close stellar binaries can drive dynamical interactions that affect the structure and evolution of planetary systems. Binary surveys indicate that the multiplicity fraction and typical orbital separation decrease with primary mass, but correlations with higher order architectural parameters such as the system's mass ratio are less well constrained. We seek to identify and characterize double-lined spectroscopic binaries (SB2s) among the 1350 M dwarf ancillary science targets with APOGEE spectra in the SDSS-III Data Release 13. We quantitatively measure the degree of asymmetry in the APOGEE pipeline cross-correlation functions (CCFs), and use those metrics to identify a sample of 44 high-likelihood candidate SB2s. Extracting radial velocities (RVs) for both binary components from the CCF, we then measure mass ratios for 31 SB2s; we also use Bayesian techniques to fit orbits for 4 systems with 8 or more distinct APOGEE observations. The (incomplete) mass ratio distribution of this sample rises quickly towards unity. Two-sided Kolmogorov-Smirnov (K-S) tests find probabilities of 13.8% and 14.2% that the M dwarf mass ratio distribution is consistent with those measured by Pourbaix et al. (2004) and Fernandez et al. (2017), respectively. The samples analyzed by Pourbaix et al. and Fernandez et al. are dominated by higher-mass solar type stars; this suggests that the mass ratio distribution of close binaries is not strongly dependent on primary mass.
Magnetic braking in Solar-type close binaries
NASA Astrophysics Data System (ADS)
Maceroni, C.; Rucinski, S. M.
In tidally locked binaries the angular momentum loss by magnetic braking affects the orbital period. While this effect is too small to be detected in individual systems, its signature can be seen in shape of the orbital period distribution of suitable samples. As a consequence information on the braking mechanisms can be obtained - at least in principle - from the analysis of the distributions, the main problems being the selection of a large and homogeneous sample of binaries and the appropriate treatment of the observational biases. New large databases of variable stars are becoming available as by-products of microlensing projects, which have the advantage of joining, for the first time, sample richness and homogeneity. We report the main results of the analysis of the eclipsing binaries in OGLE-I catalog, that contains several thousands variables detected in a pencil-beam search volume towards the Baade's Window. By means of an automatic filtering algorithm we extracted a sample of 74 detached, equal-mass, main-sequence binary stars with short orbital periods (i.e., in the range 0.19 < P < 8 days) and derived from the presently observed period distribution, after correction for selection effects, the expected slope of the braking law. The results suggest an AML braking law very close to the "saturated" one, with a very weak dependence on the period. However we are still far from constraining the precise value of the slope, because of the important role played by the observational bias.
Accretion states in X-ray binaries and their connection to GeV emission
NASA Astrophysics Data System (ADS)
Koerding, Elmar
Accretion onto compact objects is intrinsically a multi-wavelength phenomenon: it shows emis-sion components visible from the radio to GeV bands. In X-ray binaries one can well observe the evolution of a single source under changes of the accretion rate and thus study the interplay between the different emission components.I will introduce the phenomenology of X-ray bina-ries and their accretion states and present our current understanding of the interplay between the optically thin and optically thick part of the accretion flow and the jet.The recent detection of the Fermi Large Area Telescope of a variable high-energy source coinciding with the position of the x-ray binary Cygnus X-3 will be presented. Its identification with Cygnus X-3 has been secured by the detection of its orbital period in gamma rays, as well as the correlation of the LAT flux with radio emission from the relativistic jets of Cygnus X-3. This will be interpreted in the context of the accretion states of the X-ray binary.
High temperature structure in cool binary stars
NASA Technical Reports Server (NTRS)
Dupree, A. K.; Brickhouse, Nancy S.; Hanson, G. J.
1995-01-01
Strong high temperature emission lines in the EUVE spectra of binary stars containing cool components (Alpha Aur (Capella), 44 iota Boo, Lambda And, and VY Ari) provide the basis to define reliably the differential emission measure of hot plasma. The emission measure distributions for the short-period (P less than or equal to 13 d) binary systems show a high temperature enhancement over a relatively narrow temperature region similar to that originally found in Capella (Dupree et al. 1993). The emission measure distributions of rapidly rotating single stars 31 Com and AB Dor also contain a local enhancement of the emission measure although at different temperatures and width from Capella, suggesting that the enhancement in these objects may be characteristic of rapid rotation of a stellar corona. This feature might be identified with a (polar) active region, although its density and absolute size are unknown; in the binaries Capella and VY Ari, the feature is narrow and it may arise from an interaction region between the components.
Lunga, Dalton D.; Yang, Hsiuhan Lexie; Reith, Andrew E.; ...
2018-02-06
Satellite imagery often exhibits large spatial extent areas that encompass object classes with considerable variability. This often limits large-scale model generalization with machine learning algorithms. Notably, acquisition conditions, including dates, sensor position, lighting condition, and sensor types, often translate into class distribution shifts introducing complex nonlinear factors and hamper the potential impact of machine learning classifiers. Here, this article investigates the challenge of exploiting satellite images using convolutional neural networks (CNN) for settlement classification where the class distribution shifts are significant. We present a large-scale human settlement mapping workflow based-off multiple modules to adapt a pretrained CNN to address themore » negative impact of distribution shift on classification performance. To extend a locally trained classifier onto large spatial extents areas we introduce several submodules: First, a human-in-the-loop element for relabeling of misclassified target domain samples to generate representative examples for model adaptation; second, an efficient hashing module to minimize redundancy and noisy samples from the mass-selected examples; and third, a novel relevance ranking module to minimize the dominance of source example on the target domain. The workflow presents a novel and practical approach to achieve large-scale domain adaptation with binary classifiers that are based-off CNN features. Experimental evaluations are conducted on areas of interest that encompass various image characteristics, including multisensors, multitemporal, and multiangular conditions. Domain adaptation is assessed on source–target pairs through the transfer loss and transfer ratio metrics to illustrate the utility of the workflow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunga, Dalton D.; Yang, Hsiuhan Lexie; Reith, Andrew E.
Satellite imagery often exhibits large spatial extent areas that encompass object classes with considerable variability. This often limits large-scale model generalization with machine learning algorithms. Notably, acquisition conditions, including dates, sensor position, lighting condition, and sensor types, often translate into class distribution shifts introducing complex nonlinear factors and hamper the potential impact of machine learning classifiers. Here, this article investigates the challenge of exploiting satellite images using convolutional neural networks (CNN) for settlement classification where the class distribution shifts are significant. We present a large-scale human settlement mapping workflow based-off multiple modules to adapt a pretrained CNN to address themore » negative impact of distribution shift on classification performance. To extend a locally trained classifier onto large spatial extents areas we introduce several submodules: First, a human-in-the-loop element for relabeling of misclassified target domain samples to generate representative examples for model adaptation; second, an efficient hashing module to minimize redundancy and noisy samples from the mass-selected examples; and third, a novel relevance ranking module to minimize the dominance of source example on the target domain. The workflow presents a novel and practical approach to achieve large-scale domain adaptation with binary classifiers that are based-off CNN features. Experimental evaluations are conducted on areas of interest that encompass various image characteristics, including multisensors, multitemporal, and multiangular conditions. Domain adaptation is assessed on source–target pairs through the transfer loss and transfer ratio metrics to illustrate the utility of the workflow.« less
Long-term spatial heterogeneity in mallard distribution in the Prairie pothole region
Janke, Adam K.; Anteau, Michael J.; Stafford, Joshua D.
2017-01-01
The Prairie Pothole Region (PPR) of north-central United States and south-central Canada supports greater than half of all breeding mallards (Anas platyrhynchos) annually counted in North America and is the focus of widespread conservation and research efforts. Allocation of conservation resources for this socioeconomically important population would benefit from an understanding of the nature of spatiotemporal variation in distribution of breeding mallards throughout the 850,000 km2 landscape. We used mallard counts from the Waterfowl Breeding Population and Habitat Survey to test for spatial heterogeneity and identify high- and low-abundance regions of breeding mallards over a 50-year time series. We found strong annual spatial heterogeneity in all years: 90% of mallards counted annually were on an average of only 15% of surveyed segments. Using a local indicator of spatial autocorrelation, we found a relatively static distribution of low-count clusters in northern Montana, USA, and southern Alberta, Canada, and a dynamic distribution of high-count clusters throughout the study period. Distribution of high-count clusters shifted southeast from northwestern portions of the PPR in Alberta and western Saskatchewan, Canada, to North and South Dakota, USA, during the latter half of the study period. This spatial redistribution of core mallard breeding populations was likely driven by interactions between environmental variation that created favorable hydrological conditions for wetlands in the eastern PPR and dynamic land-use patterns related to upland cropping practices and government land-retirement programs. Our results highlight an opportunity for prioritizing relatively small regions within the PPR for allocation of wetland and grassland conservation for mallard populations. However, the extensive spatial heterogeneity in core distributions over our study period suggests such spatial prioritization will have to overcome challenges presented by dynamic land-use and climate patterns in the region, and thus merits additional monitoring and empirical research to anticipate future population distribution. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Promoting social welfare through oral health: New Jersey's fluoridation experience.
Mendoza, Roger Lee
2009-01-01
This study examines the contentious public health policy of treating community water with fluoride in the United States. The question for scholarly investigation is why water fluoridation has been unsuccessful in several parts of the United States relative to the rest. It addresses this question by looking into the processes of scientific discovery and information dissemination, benefits and risks of science-based health policy, related issues of provision and production, and spatial dimensions of policy development. The case method based on New Jersey's experience in public water fluoridation, was opted for this study. We find that policy debates, which are confined to single key issues, tend to breed binary choices and bipolar debates and result in policy stalemates. Consumer accessibility and desirability of merit goods thus become sharply conflicting social welfare values. They undermine the intent of science-based policies and often make alternative and second-best policies more practical to adopt.
SiGN-SSM: open source parallel software for estimating gene networks with state space models.
Tamada, Yoshinori; Yamaguchi, Rui; Imoto, Seiya; Hirose, Osamu; Yoshida, Ryo; Nagasaki, Masao; Miyano, Satoru
2011-04-15
SiGN-SSM is an open-source gene network estimation software able to run in parallel on PCs and massively parallel supercomputers. The software estimates a state space model (SSM), that is a statistical dynamic model suitable for analyzing short time and/or replicated time series gene expression profiles. SiGN-SSM implements a novel parameter constraint effective to stabilize the estimated models. Also, by using a supercomputer, it is able to determine the gene network structure by a statistical permutation test in a practical time. SiGN-SSM is applicable not only to analyzing temporal regulatory dependencies between genes, but also to extracting the differentially regulated genes from time series expression profiles. SiGN-SSM is distributed under GNU Affero General Public Licence (GNU AGPL) version 3 and can be downloaded at http://sign.hgc.jp/signssm/. The pre-compiled binaries for some architectures are available in addition to the source code. The pre-installed binaries are also available on the Human Genome Center supercomputer system. The online manual and the supplementary information of SiGN-SSM is available on our web site. tamada@ims.u-tokyo.ac.jp.
Three Investigations of Low Mass Stars in the Milky Way Using New Technology Surveys
NASA Astrophysics Data System (ADS)
Lurie, John C.
At least 80% of stars in the Milky Way have masses less than or equal to the Sun. These long lived stars are the most likely hosts of planets where complex life can develop. Although relatively stable on the timescale of billions of years, many low mass stars possess strong magnetic fields that are manifested in energetic surface activity, which may pose a hazard to both life and technology. Magnetic activity also influences the evolution of a low mass star through a feedback process that slows the rotation rate, which in turn tends to decrease the amount of activity. In this way, the rotation rate and activity level of a low mass star may provide an estimate of its age. Beyond their rotation-activity evolution as isolated objects, a small but important fraction of low mass stars have a close binary companion that influences the rotational and orbital properties of the system. Binary interaction can lead to phenomena such as supernovae, cataclysmic variables, and degenerate object mergers. From a larger perspective, low mass stars trace Galactic structure, and through their longevity serve as archives of the dynamical and chemical history of the Milky Way. Thus a full picture of low mass stars, and by extension the Milky Way, requires understanding their rotation and activity; their interaction in close binaries; and their spatial and kinematic distribution throughout the Galaxy. Historically, these topics have been approached from two separate but complementary modes of observation. Time series photometric surveys measure the stellar variability caused by rotation, activity, and binary interaction, while wide field surveys measure the brightnesses and colors of millions of stars to map their distribution in the Galaxy. The first generation of digital detectors and computing technology limited intensive time series surveys to a small number of stars, and limited wide field surveys to little if any variability information. Today those limitations are falling away. This thesis is composed of three investigations of low mass stars using two recent surveys at the cutting edge of detector technology. The Kepler space telescope carried the largest camera ever launched into space, and continuously monitored the brightnesses of hundreds of thousands of stars with unprecedented precision and cadence. The Pan-STARRS survey was equipped with the largest camera ever constructed, and imaged 75% percent of the sky to greater depth than any previous optical survey. The first investigation in this thesis used Kepler observations of a binary system containing two stars that are about one third the mass of the Sun. The convective motions in these stars extend to their centers, and so there is no interface with a radiative core to drive a solar-like dynamo that powers the magnetic activity of stars like the Sun. By virtue of being in a binary, the stars have the same age, providing a control for the interdependent effects of activity and rotation. The investigation found that the stars have nearly the same level of activity, despite one star rotating almost three times faster than the other. This suggests that in fully convective stars, there is a threshold rotation rate above which activity is no longer correlated with rotation. The second investigation also used Kepler observations, but in this case focused on low mass stars in close binaries, where tidal interactions are expected to circularize the orbit and synchronize the rotation rates to the orbital period. Prior to this investigation, there were few observational constraints on the tidal synchronization of stars with convective envelopes, and this investigation resulted in rotation period measurements for over 800 such stars. At orbital periods below approximately ten days, nearly all binaries are synchronized, while beyond ten days most binaries have eccentric orbits and rotation rates that are synchronized to the angular velocity at periastron. An unexpected result was that 15% of binaries with orbital periods below ten days are rotating about 13% slower than the synchronized rate. It was suggested that the equators of the stars are in fact synchronized, and that the subsynchronous signal originates from slower rotating high latitudes. The subsynchronous population presents a new test for theories of activity and differential rotation in tidally interacting binaries. The final investigation used Pan-STARRS observations to search for asymmetries in the disk of the Milky Way. In this case, low mass stars served as tracers of Galactic structure. Previous deep optical surveys avoided the Galactic plane, but Pan-STARRS enabled a comprehensive search. In particular, asymmetries in the stellar density distribution may be the result of interactions with satellite galaxies, and the frequency and nature of the interactions provide an observational test case for theories of galaxy formation. (Abstract shortened by ProQuest.).
A Statistical Study on Neutron Star Masses
NASA Astrophysics Data System (ADS)
Cheng, Z.; Zhang, C. M.; Zhao, Y. H.; Wang, D. H.; Pan, Y. Y.; Lei, Y. J.
2013-11-01
We investigate the measurement of neutron star masses in different population of binaries. Based on the collection of the orbital parameters of 40 systems (46 sources), we apply the boot-strap method together with the Monte Carlo method to reconstruct the likelihood curves for each source separately. The cumulative analysis of the simulation result shows that the neutron star masses in X-ray systems and radio systems obey different distributions, and no evidence for the bimodal distribution could be found. Employing the Bayesian statistical techniques, we find that the most likely distributions for the high mass X-ray binaries (HMXBs), low mass X-ray binaries (LMXBs), double neutron star (DNS) systems, and neutron star-white dwarf (NS-WD) binary systems are (1.340±0.230) M_{⊙}, (1.505±0.125) M_{⊙}, (1.335±0.055) M_{⊙}, and (1.495±0.225) M_{⊙}, respectively. The statistical distribution has no significant deviation from the standard neutron star formation mechanism. It is noticed that the statistical results of the center masses of LMXBs and NS-WD systems are significantly higher than the other groups by about 0.16 M_{⊙}, which could be regarded as the evidence of accretion episodes. And if we regard the HMXBs and LMXBs as the progenitors of DNS and NS-WD systems, then we can draw the conclusion that the accretion effect must be very week during the evolution trajectory from HMXBs to DNS systems, and this could be the reason why the masses of DNS systems have such a narrow distribution.
Kobayashi, Takeshi; Singappuli-Arachchige, Dilini; Wang, Zhuoran; ...
2016-12-23
Solid-state NMR spectroscopy, both conventional and dynamic nuclear polarization (DNP)-enhanced, was employed to study the spatial distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles via co-condensation and grafting. The most revealing information was provided by DNP-enhanced two-dimensional 29Si– 29Si correlation measurements, which unambiguously showed that post-synthesis grafting leads to a more homogeneous dispersion of propyl and mercaptopropyl functionalities than co-condensation. Furthermore, during the anhydrous grafting process, the organosilane precursors do not self-condense and are unlikely to bond to the silica surface in close proximity (less than 4 Å) due to the limited availability of suitablymore » arranged hydroxyl groups.« less
NASA Astrophysics Data System (ADS)
Shidiq, I. P. A.; Ismail, M. H.; Kamarudin, N.
2014-02-01
The preservation and sustainable management of forest and other land cover ecosystems such as rubber trees will help addressing two major recent issues: climate change and bio-resource energy. The rubber trees are dominantly distributed in the Negeri Sembilan and Kedah on the west coast side of Peninsular Malaysia. This study is aimed to analyse the spatial distribution and biomass of rubber trees in Peninsular Malaysia with special emphasis in Negeri Sembilan State. Geospatial data from remote sensors are used to tackle the time and labour consuming problem due to the large spatial coverage and the need of continuous temporal data. Remote sensing imagery used in this study is a Landsat 5 TM. The image from optical sensor was used to sense the rubber trees and further classified rubber tree by different age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
V Yashchuk; R Conley; E Anderson
Verification of the reliability of metrology data from high quality X-ray optics requires that adequate methods for test and calibration of the instruments be developed. For such verification for optical surface profilometers in the spatial frequency domain, a modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays has been suggested [1] and [2] and proven to be an effective calibration method for a number of interferometric microscopes, a phase shifting Fizeau interferometer, and a scatterometer [5]. Here we describe the details of development of binary pseudo-random multilayer (BPRML) test samples suitable for characterization of scanningmore » (SEM) and transmission (TEM) electron microscopes. We discuss the results of TEM measurements with the BPRML test samples fabricated from a WiSi2/Si multilayer coating with pseudo-randomly distributed layers. In particular, we demonstrate that significant information about the metrological reliability of the TEM measurements can be extracted even when the fundamental frequency of the BPRML sample is smaller than the Nyquist frequency of the measurements. The measurements demonstrate a number of problems related to the interpretation of the SEM and TEM data. Note that similar BPRML test samples can be used to characterize X-ray microscopes. Corresponding work with X-ray microscopes is in progress.« less
NASA Astrophysics Data System (ADS)
Iwakoshi, Takehisa; Hirota, Osamu
2014-10-01
This study will test an interpretation in quantum key distribution (QKD) that trace distance between the distributed quantum state and the ideal mixed state is a maximum failure probability of the protocol. Around 2004, this interpretation was proposed and standardized to satisfy both of the key uniformity in the context of universal composability and operational meaning of the failure probability of the key extraction. However, this proposal has not been verified concretely yet for many years while H. P. Yuen and O. Hirota have thrown doubt on this interpretation since 2009. To ascertain this interpretation, a physical random number generator was employed to evaluate key uniformity in QKD. In this way, we calculated statistical distance which correspond to trace distance in quantum theory after a quantum measurement is done, then we compared it with the failure probability whether universal composability was obtained. As a result, the degree of statistical distance of the probability distribution of the physical random numbers and the ideal uniformity was very large. It is also explained why trace distance is not suitable to guarantee the security in QKD from the view point of quantum binary decision theory.
Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries
NASA Astrophysics Data System (ADS)
Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou
2010-04-01
The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.
Bennema-Broos, M; Groenewegen, P P; Westert, G P
2001-06-01
In this paper, the hypothesis that the spatial distribution of hospital beds is more even in countries with socialist or social democratic governments than in countries with conservative or Christian democratic governments was tested. To avoid the confounding influences of historical and institutional differences between countries, we used the Federal Republic of Germany as a case study. The German federal states have their own governments who play an important role in creating structures for the planning of hospital facilities. The test of the hypothesis was largely quantitative. At the level of federal states the rank correlation was computed between the weighted number of years of left-wing government participation and the coefficient of variation in the number of hospital beds per 1000 inhabitants. In addition to this, the hospital plans of two federal states were studied. The hypothesis was supported by the data, showing a positive association between the number of years of left-wing government participation and regional variation in the number of hospital beds. A comparison of the hospital plans of two contrasting federal states showed less government interference in hospital planning in the state with a tradition of right-wing government. There seems to be a relation between left-wing government participation in West German states and a more equal distribution of the number of hospital beds per 1,000 inhabitants.
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.
Long-distance continuous-variable quantum key distribution with a Gaussian modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jouguet, Paul; SeQureNet, 23 avenue d'Italie, F-75013 Paris; Kunz-Jacques, Sebastien
2011-12-15
We designed high-efficiency error correcting codes allowing us to extract an errorless secret key in a continuous-variable quantum key distribution (CVQKD) protocol using a Gaussian modulation of coherent states and a homodyne detection. These codes are available for a wide range of signal-to-noise ratios on an additive white Gaussian noise channel with a binary modulation and can be combined with a multidimensional reconciliation method proven secure against arbitrary collective attacks. This improved reconciliation procedure considerably extends the secure range of a CVQKD with a Gaussian modulation, giving a secret key rate of about 10{sup -3} bit per pulse at amore » distance of 120 km for reasonable physical parameters.« less
Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey
NASA Astrophysics Data System (ADS)
Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.
2013-09-01
We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.
Binary stars in the Galactic thick disc
NASA Astrophysics Data System (ADS)
Izzard, Robert G.; Preece, Holly; Jofre, Paula; Halabi, Ghina M.; Masseron, Thomas; Tout, Christopher A.
2018-01-01
The combination of asteroseismologically measured masses with abundances from detailed analyses of stellar atmospheres challenges our fundamental knowledge of stars and our ability to model them. Ancient red-giant stars in the Galactic thick disc are proving to be most troublesome in this regard. They are older than 5 Gyr, a lifetime corresponding to an initial stellar mass of about 1.2 M⊙. So why do the masses of a sizeable fraction of thick-disc stars exceed 1.3 M⊙, with some as massive as 2.3 M⊙? We answer this question by considering duplicity in the thick-disc stellar population using a binary population-nucleosynthesis model. We examine how mass transfer and merging affect the stellar mass distribution and surface abundances of carbon and nitrogen. We show that a few per cent of thick-disc stars can interact in binary star systems and become more massive than 1.3 M⊙. Of these stars, most are single because they are merged binaries. Some stars more massive than 1.3 M⊙ form in binaries by wind mass transfer. We compare our results to a sample of the APOKASC data set and find reasonable agreement except in the number of these thick-disc stars more massive than 1.3 M⊙. This problem is resolved by the use of a logarithmically flat orbital-period distribution and a large binary fraction.
Spatial distribution of malaria in Peninsular Malaysia from 2000 to 2009.
Alias, Haridah; Surin, Johari; Mahmud, Rohela; Shafie, Aziz; Mohd Zin, Junaidden; Mohamad Nor, Mahadzir; Ibrahim, Ahmad Shah; Rundi, Christina
2014-04-15
Malaria is still an endemic disease of public health importance in Malaysia. Populations at risk of contracting malaria includes indigenous people, traditional villagers, mobile ethnic groups and land scheme settlers, immigrants from malaria endemic countries as well as jungle workers and loggers. The predominant species are Plasmodium falciparum and P. vivax. An increasing number of P. knowlesi infections have also been encountered. The principal vectors in Peninsular Malaysia are Anopheles maculatus and An. cracens. This study aims to determine the changes in spatial distribution of malaria in Peninsular Malaysia from year 2000-2009. Data for the study was collected from Ministry of Health, Malaysia and was analysed using Geographic Information System (GIS). Changes for a period of 10 years of malaria spatial distribution in 12 states of Peninsular Malaysia were documented and discussed. This is illustrated by digital mapping according to five variables; incidence rate (IR), fatality rate (FR), annual blood examination rate (ABER), annual parasite index (API) and slide positivity rate (SPR). There is a profound change in the spatial distribution of malaria within a 10-year period. This is evident from the digital mapping of the infection in Peninsular Malaysia.
Brown Dwarf Binaries from Disintegrating Triple Systems
NASA Astrophysics Data System (ADS)
Reipurth, Bo; Mikkola, Seppo
2015-04-01
Binaries in which both components are brown dwarfs (BDs) are being discovered at an increasing rate, and their properties may hold clues to their origin. We have carried out 200,000 N-body simulations of three identical stellar embryos with masses drawn from a Chabrier IMF and embedded in a molecular core. The bodies are initially non-hierarchical and undergo chaotic motions within the cloud core, while accreting using Bondi-Hoyle accretion. The coupling of dynamics and accretion often leads to one or two dominant bodies controlling the center of the cloud core, while banishing the other(s) to the lower-density outskirts, leading to stunted growth. Eventually each system transforms either to a bound hierarchical configuration or breaks apart into separate single and binary components. The orbital motion is followed for 100 Myr. In order to illustrate 200,000 end-states of such dynamical evolution with accretion, we introduce the “triple diagnostic diagram,” which plots two dimensionless numbers against each other, representing the binary mass ratio and the mass ratio of the third body to the total system mass. Numerous freefloating BD binaries are formed in these simulations, and statistical properties are derived. The separation distribution function is in good correspondence with observations, showing a steep rise at close separations, peaking around 13 AU and declining more gently, reaching zero at separations greater than 200 AU. Unresolved BD triple systems may appear as wider BD binaries. Mass ratios are strongly peaked toward unity, as observed, but this is partially due to the initial assumptions. Eccentricities gradually increase toward higher values, due to the lack of viscous interactions in the simulations, which would both shrink the orbits and decrease their eccentricities. Most newborn triple systems are unstable and while there are 9209 ejected BD binaries at 1 Myr, corresponding to about 4% of the 200,000 simulations, this number has grown to 15,894 at 100 Myr (˜8%). The total binary fraction among freefloating BDs is 0.43, higher than indicated by current observations, which, however, are still incomplete. Also, the gradual breakup of higher-order multiples leads to many more singles, thus lowering the binary fraction. The main threat to newly born triple systems is internal instabilities, not external perturbations. At 1 Myr there are 1325 BD binaries still bound to a star, corresponding to 0.66% of the simulations, but only 253 (0.13%) are stable on timescales >100 Myr. These simulations indicate that dynamical interactions in newborn triple systems of stellar embryos embedded in and accreting from a cloud core naturally form a population of freefloating BD binaries, and this mechanism may constitute a significant pathway for the formation of BD binaries.
Accretion disk dynamics in X-ray binaries
NASA Astrophysics Data System (ADS)
Peris, Charith Srian
Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.
Investigation of the electric field distribution in the human brain based on MRI and EEG data
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Borisov, A. V.; Knyazkova, A. I.; Shapovalova, A. V.; Ilyasova, E. E.; Sandykova, E. A.
2018-04-01
This work is devoted to the development of the approach to restoration of the spatial-temporal distribution of electric field in the human brain. This field was estimated from the model derived from the Maxwell's equations with boundary conditions corresponding to electric potentials at the EEG electrodes, which are located on the surface of the head according to the standard "10-20" scheme. The MRI data were used for calculation of the spatial distribution of the electrical conductivity of biotissues in the human brain. The study of the electric field distribution using our approach was carried out for the healthy child and the child with autism. The research was carried out using the equipment of the Tomsk Regional Common Use Center of Tomsk State University.
Spectral energy distributions and colours of hot subluminous stars
NASA Astrophysics Data System (ADS)
Heber, Ulrich; Irrgang, Andreas; Schaffenroth, Johannes
2018-02-01
Photometric surveys at optical, ultraviolet, and infrared wavelengths provide ever-growing datasets as major surveys proceed. Colour-colour diagrams are useful tools to identify classes of star and provide large samples. However, combining all photometric measurements of a star into a spectral energy distribution will allow quantitative analyses to be carried out. We demonstrate how to construct and exploit spectral energy distributions and colours for sublumious B (sdB) stars. The aim is to identify cool companions to hot subdwarfs and to determine atmospheric parameters of apparently single sdB stars as well as composite spectrum sdB binaries.We analyse two sdB stars with high-quality photometric data which serve as our benchmarks, the apparently single sdB HD205805 and the sdB + K5 binary PG 0749+658, briefly present preliminary results for the sample of 142 sdB binaries with known orbits, and discuss future prospects from ongoing all-sky optical space- (Gaia) and ground-based (e.g. SkyMapper) as well as NIR surveys.
NASA Astrophysics Data System (ADS)
Matsui, Hiroyuki; Mishchenko, Andrei S.; Hasegawa, Tatsuo
2010-02-01
We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.
Matsui, Hiroyuki; Mishchenko, Andrei S; Hasegawa, Tatsuo
2010-02-05
We developed a novel method for obtaining the distribution of trapped carriers over their degree of localization in organic transistors, based on the fine analysis of electron spin resonance spectra at low enough temperatures where all carriers are localized. To apply the method to pentacene thin-film transistors, we proved through continuous wave saturation experiments that all carriers are localized at below 50 K. We analyzed the spectra at 20 K and found that the major groups of traps comprise localized states having wave functions spanning around 1.5 and 5 molecules and a continuous distribution of states with spatial extent in the range between 6 and 20 molecules.
Anomalous dispersion in correlated porous media: a coupled continuous time random walk approach
NASA Astrophysics Data System (ADS)
Comolli, Alessandro; Dentz, Marco
2017-09-01
We study the causes of anomalous dispersion in Darcy-scale porous media characterized by spatially heterogeneous hydraulic properties. Spatial variability in hydraulic conductivity leads to spatial variability in the flow properties through Darcy's law and thus impacts on solute and particle transport. We consider purely advective transport in heterogeneity scenarios characterized by broad distributions of heterogeneity length scales and point values. Particle transport is characterized in terms of the stochastic properties of equidistantly sampled Lagrangian velocities, which are determined by the flow and conductivity statistics. The persistence length scales of flow and transport velocities are imprinted in the spatial disorder and reflect the distribution of heterogeneity length scales. Particle transitions over the velocity length scales are kinematically coupled with the transition time through velocity. We show that the average particle motion follows a coupled continuous time random walk (CTRW), which is fully parameterized by the distribution of flow velocities and the medium geometry in terms of the heterogeneity length scales. The coupled CTRW provides a systematic framework for the investigation of the origins of anomalous dispersion in terms of heterogeneity correlation and the distribution of conductivity point values. We derive analytical expressions for the asymptotic scaling of the moments of the spatial particle distribution and first arrival time distribution (FATD), and perform numerical particle tracking simulations of the coupled CTRW to capture the full average transport behavior. Broad distributions of heterogeneity point values and lengths scales may lead to very similar dispersion behaviors in terms of the spatial variance. Their mechanisms, however are very different, which manifests in the distributions of particle positions and arrival times, which plays a central role for the prediction of the fate of dissolved substances in heterogeneous natural and engineered porous materials. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.
This synthetic, multi-scale approach will generate a sequence of spatially explicit maps that will provide science guidance to support strategic decision-making regarding the spatially-distributed risk of, and possible adaptation to, the spread of invasive species at local to ...
Lang, T; Harth, A; Matyschok, J; Binhammer, T; Schultze, M; Morgner, U
2013-01-14
A 2 + 1 dimensional nonlinear pulse propagation model is presented, illustrating the weighting of different effects for the parametric amplification of ultra-broadband spectra in different regimes of energy scaling. Typical features in the distribution of intensity and phase of state-of-the-art OPA-systems can be understood by cascaded spatial and temporal effects.
A Classroom Exercise in Spatial Analysis Using an Imaginary Data Set.
ERIC Educational Resources Information Center
Kopaska-Merkel, David C.
One skill that elementary students need to acquire is the ability to analyze spatially distributed data. In this activity students are asked to complete the following tasks: (1) plot a set of data (related to "mud-sharks"--an imaginary fish) on a map of the state of Alabama, (2) identify trends in the data, (3) make graphs using the data…
: Identifying areas of similar hydrology within the United States and its regions (hydrologic landscapes - HLs) is an active area of research. HLs are being used to construct spatially distributed assessments of variability in streamflow and climatic response in Oregon, Alaska, a...