Science.gov

Sample records for spatially distributed direct

  1. Directional spatial frequency analysis of lipid distribution in atherosclerotic plaque

    NASA Astrophysics Data System (ADS)

    Korn, Clyde; Reese, Eric; Shi, Lingyan; Alfano, Robert; Russell, Stewart

    2016-04-01

    Atherosclerosis is characterized by the growth of fibrous plaques due to the retention of cholesterol and lipids within the artery wall, which can lead to vessel occlusion and cardiac events. One way to evaluate arterial disease is to quantify the amount of lipid present in these plaques, since a higher disease burden is characterized by a higher concentration of lipid. Although therapeutic stimulation of reverse cholesterol transport to reduce cholesterol deposits in plaque has not produced significant results, this may be due to current image analysis methods which use averaging techniques to calculate the total amount of lipid in the plaque without regard to spatial distribution, thereby discarding information that may have significance in marking response to therapy. Here we use Directional Fourier Spatial Frequency (DFSF) analysis to generate a characteristic spatial frequency spectrum for atherosclerotic plaques from C57 Black 6 mice both treated and untreated with a cholesterol scavenging nanoparticle. We then use the Cauchy product of these spectra to classify the images with a support vector machine (SVM). Our results indicate that treated plaque can be distinguished from untreated plaque using this method, where no difference is seen using the spatial averaging method. This work has the potential to increase the effectiveness of current in-vivo methods of plaque detection that also use averaging methods, such as laser speckle imaging and Raman spectroscopy.

  2. Review and possible development direction of the methods for modeling of soil pollutants spatial distribution

    NASA Astrophysics Data System (ADS)

    Tarasov, D. A.; Medvedev, A. N.; Sergeev, A. P.; Buevich, A. G.

    2017-07-01

    Forecasting of environmental pollutants spatial distribution is a significant field of research in view of the current concerns regarding environment all over the world. Due to the danger to health and environment associated with an increase in pollution of air, soil, water and biosphere, it is very important to have the models that are capable to describe the modern distribution of contaminants and to forecast the dynamic of their spreading in future at different territories. This article addresses the methods, which applied the most often in this field, with an accent on soil pollution. The possible direction of such methods further development is suggested.

  3. Electric-field-direction dependent spatial distribution of electron emission along electrically biased carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wei, X. L.; Golberg, D.; Chen, Q.; Bando, Y.; Peng, L.-M.

    2011-11-01

    The spatial distribution of lateral electron emission from individual electrically biased carbon nanotubes (CNTs) along the tube axis is resolved for the first time by combining multiprobe simultaneous emission current collection and electron trajectory simulations. The spatial distribution is found to be asymmetric along the tube axis and depends on the direction of the electric field in CNTs. The average emission density of the half tube with a higher electric potential is higher than that of the other half with a lower electric potential. The electric-field-direction dependent asymmetric spatial distribution of the electron emission is absent in all pre-existing well-established mechanisms but is well explained in terms of the recently proposed phonon-assisted electron emission (PAEE). This, together with a quantitative description of experimentally measured emission currents, provides solid evidence for the validity of the PAEE mechanism. PAEE from CNTs is predicted to take place near room temperature; thus, it opens up a new and promising route for fabricating cold electron emitters with a high emission density and a low working voltage.

  4. Direct observation of the spatial distribution of charges on a polypropylene fiber via Electrostatic Force Microscopy.

    PubMed

    Bonilla, R; Avila, A; Montenegro, C; Hinestroza, J

    2012-12-01

    The spatial distribution of electrical charges along the longitudinal axes of a polypropylene electret fiber was determined using Electrostatic Force Microscopy (EFM). EFM mapping on highly curved surfaces, such as those of polymeric fibers, is a challenging endeavour and most work reported in the scientific literature has been limited to single line-scan analysis or flat specimens. Charged polymeric fibers, electrets, are extensively used in high performance filtration applications and methods to determine the amount and magnitude of the charges on these fibers remain elusive. Electrical charge maps of individual fibers were obtained by biasing the tip to -10 V and maintaining a constant tip-sample distance of 100 nm. Spatially dependant EFM phase and magnitude gradients were determined and the developed technique may provide a unique understanding into the heterogeneous charge distribution on electrets fibers. Direct mapping of the charge distribution in electrets fibers can offer new insights in the development of antistatic additives, new means to facilitate electrostatic self-assembly of nano-moieties on the surface of fibrous materials and a quantitative metrics capable of determining discharge dynamics and predicting the shelf-life of filtration media. © 2012 The Authors Journal of Microscopy © 2012 Royal Microscopical Society.

  5. Impact of wind direction and speed on the spatial distribution of soil loss on catchment scale

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; von Werner, M.

    2012-04-01

    This work reports on EROSION 3D simulations assessing the effects of wind speed and wind direction on soil erosion by water. These effects are based essentially on the fact that wind impact forces the rain drops to divert from their vertical fall direction. In order to simulate the effect of wind impact, an algorithm was implemented into the model, which describes the relation between wind speed and the diversion angle of the rain drops. This algorithm is based on measured data achieved by wind tunnel experiments performed by Gabriels et al. 1997. Referring to a small subcatchment located in the ore mountains of Saxony the impact of wind direction and wind speed was evaluated using the enhanced EROSION 3D model. As the simulated scenarios show erosion can be increased as well as decreased due to wind impact. The spatial distribution of soil loss and deposition obviously depends on the orientation of inclined field blocks towards wind direction with increased soil loss on blocks oriented windward and decreased soil loss on those oriented leeward. The effect of wind impact on soil erosion by water is substantial, and thus it should not be neglected in mathematical soil erosion models.

  6. Direct Imaging of the Spatial and Energy Distribution of Nucleation Centers in Ferroelectric Materials

    SciTech Connect

    Jesse, Stephen; Rodriguez, Brian J; Choudhury, S; Baddorf, Arthur P; Vrejoiu, I.; Hesse, D.; Alexe, M.; Eliseev, E. A.; Morozovska, A. N.; Zhang, J; Chen, L. Q.; Kalinin, Sergei V

    2008-01-01

    Macroscopic ferroelectric polarization switching, similar to other first order phase transitions, is controlled by nucleation centers. Despite 50 years of extensive theoretical and experimental effort, the microstructural origins of the Landauer paradox, i.e. the experimentally observed low values of coercive fields in ferroelectrics corresponding to implausibly large nucleation activation energies, are still a mystery. In this letter, we develop an approach to visualize the nucleation centers controlling polarization switching processes with nanometer resolution, determine their spatial and energy distribution, and correlate them to local microstructure. The random bond and random field components of the disorder potential are extracted from positive and negative nucleation biases. Observation of enhanced nucleation activity at the 90 domain wall boundaries and intersections combined with phase-field modeling identifies them as a class of nucleation centers that control switching in structural-defect free materials.

  7. Spatially resolved measurements of size and velocity distributions of aerosol droplets from a direct injection nebulizer

    SciTech Connect

    Shum, S.C.K.; Johnson, S.K.; Pang, H.M.; Houk, R.S. )

    1993-05-01

    Aerosol droplet sizes and velocities from a direct injection nebulizer (DIN) are measured with radial and axial spatial resolution by phase Doppler particle analysis (PDPA). The droplets on the central axis of the spray become finer and their size becomes more uniform when [approx]20% methanol is added to the usual aqueous solvent. This could explain why the analyte signal is a maximum at this solvent composition when the DIN is used for inductively coupled plasma-mass spectrometry (ICP-MS). Mean droplet velocities are 12 to 22 m s[sup [minus]1] with standard deviations of [plus minus]4 to [plus minus]7 m s[sup [minus]1]. The outer fringes of the aerosol plume tend to be enriched in large droplets. The Sauter mean diameter (D[sub 3,2]) and velocity of the droplets also vary substantially with axial position in the aerosol plume. 35 refs., 10 figs., 1 tab.

  8. Inferring Processes from Spatial Patterns: The Role of Directional and Non–Directional Forces in Shaping Fish Larvae Distribution in a Freshwater Lake System

    PubMed Central

    Bertolo, Andrea; Blanchet, F. Guillaume; Magnan, Pierre; Brodeur, Philippe; Mingelbier, Marc; Legendre, Pierre

    2012-01-01

    Larval dispersal is a crucial factor for fish recruitment. For fishes with relatively small-bodied larvae, drift has the potential to play a more important role than active habitat selection in determining larval dispersal; therefore, we expect small-bodied fish larvae to be poorly associated with habitat characteristics. To test this hypothesis, we used as model yellow perch (Perca flavescens), whose larvae are among the smallest among freshwater temperate fishes. Thus, we analysed the habitat association of yellow perch larvae at multiple spatial scales in a large shallow fluvial lake by explicitly modelling directional (e.g. due to water currents) and non-directional (e.g. due to aggregation) spatial patterns. This allowed us to indirectly assess the relative roles of drift (directional process) and potential habitat choice on larval dispersal. Our results give weak support to the drift hypothesis, whereas yellow perch show a strong habitat association at unexpectedly small sizes, when compared to other systems. We found consistent non-directional patterns in larvae distributions at both broad and medium spatial scales but only few significant directional components. The environmental variables alone (e.g. vegetation) generally explained a significant and biologically relevant fraction of the variation in fish larvae distribution data. These results suggest that (i) drift plays a minor role in this shallow system, (ii) larvae display spatial patterns that only partially covary with environmental variables, and (iii) larvae are associated to specific habitats. By suggesting that habitat association potentially includes an active choice component for yellow perch larvae, our results shed new light on the ecology of freshwater fish larvae and should help in building more realistic recruitment models. PMID:23185585

  9. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation.

    PubMed

    Murguía, Diego I; Bringezu, Stefan; Schaldach, Rüdiger

    2016-09-15

    Biodiversity loss is widely recognized as a serious global environmental change process. While large-scale metal mining activities do not belong to the top drivers of such change, these operations exert or may intensify pressures on biodiversity by adversely changing habitats, directly and indirectly, at local and regional scales. So far, analyses of global spatial dynamics of mining and its burden on biodiversity focused on the overlap between mines and protected areas or areas of high value for conservation. However, it is less clear how operating metal mines are globally exerting pressure on zones of different biodiversity richness; a similar gap exists for unmined but known mineral deposits. By using vascular plants' diversity as a proxy to quantify overall biodiversity, this study provides a first examination of the global spatial distribution of mines and deposits for five key metals across different biodiversity zones. The results indicate that mines and deposits are not randomly distributed, but concentrated within intermediate and high diversity zones, especially bauxite and silver. In contrast, iron, gold, and copper mines and deposits are closer to a more proportional distribution while showing a high concentration in the intermediate biodiversity zone. Considering the five metals together, 63% and 61% of available mines and deposits, respectively, are located in intermediate diversity zones, comprising 52% of the global land terrestrial surface. 23% of mines and 20% of ore deposits are located in areas of high plant diversity, covering 17% of the land. 13% of mines and 19% of deposits are in areas of low plant diversity, comprising 31% of the land surface. Thus, there seems to be potential for opening new mines in areas of low biodiversity in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Off-Grid Direction of Arrival Estimation Based on Joint Spatial Sparsity for Distributed Sparse Linear Arrays

    PubMed Central

    Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin

    2014-01-01

    In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach. PMID:25420150

  11. Off-grid direction of arrival estimation based on joint spatial sparsity for distributed sparse linear arrays.

    PubMed

    Liang, Yujie; Ying, Rendong; Lu, Zhenqi; Liu, Peilin

    2014-11-20

    In the design phase of sensor arrays during array signal processing, the estimation performance and system cost are largely determined by array aperture size. In this article, we address the problem of joint direction-of-arrival (DOA) estimation with distributed sparse linear arrays (SLAs) and propose an off-grid synchronous approach based on distributed compressed sensing to obtain larger array aperture. We focus on the complex source distribution in the practical applications and classify the sources into common and innovation parts according to whether a signal of source can impinge on all the SLAs or a specific one. For each SLA, we construct a corresponding virtual uniform linear array (ULA) to create the relationship of random linear map between the signals respectively observed by these two arrays. The signal ensembles including the common/innovation sources for different SLAs are abstracted as a joint spatial sparsity model. And we use the minimization of concatenated atomic norm via semidefinite programming to solve the problem of joint DOA estimation. Joint calculation of the signals observed by all the SLAs exploits their redundancy caused by the common sources and decreases the requirement of array size. The numerical results illustrate the advantages of the proposed approach.

  12. Numerical simulation of spatial-temporal distribution of dust aerosol and its direct radiative effects on East Asian climate

    NASA Astrophysics Data System (ADS)

    Sun, Hui; Pan, Zaitao; Liu, Xiaodong

    2012-07-01

    The latest regional climate model version 4 (RegCM4) coupled with a dust module developed at the International Center for Theoretical Physics (ICTP, Italy) is used to simulate the spatial-temporal distribution of dust aerosol and its climatic impact through direct radiative forcing over East Asia. Dust coupled and uncoupled experiments are carried out for the past decade (2000-2009). Comparison with satellite observed aerosol optical depth (AOD) shows that the coupled RegCM4 better reproduces spatial distribution of Asian dust loading that has been poorly resolved by general circulation models (GCM), capturing three surface dust concentration (SDC) centers in the Taklimakan desert, western Inner Mongolia, and northern Xinjiang respectively, with maximum values greater than 1000μg m-3 in spring. The negative surface shortwave (SW) irradiance is strongest in spring over East Asia. Its -20 W m-2 forcing near dust source centers results in surface temperature cooling by 0.8°C from spring through summer. SW irradiance at the top of the atmosphere (TOA) is also negative with a minimum value of up to -8 W m-2in North China. Dust aerosol induced cooling leads to the formation of a cyclonic circulation in the lower troposphere in Northwest China that further excites downstream an anticyclonic circulation (the Yellow River Loop) and a cyclonic circulation (East China Sea, ECS). The northeasterly flow in southern China straddled by the anticyclone and cyclone acts to weaken the southwest monsoon in southeastern China and the surrounding sea. Supported by the dust-induced circulations, precipitation increases in cyclonic regions in Northwest China and ECS and decreases in the anticyclonic north-central China.

  13. Temporal and spatial distributions of directional counterface motion at the acetabular bearing surface in total hip arthroplasty.

    PubMed Central

    Pedersen, D. R.; Brown, T. D.; Maxian, T. A.; Callaghan, J. J.

    1998-01-01

    The motions of counterface articulation against the bearing surface of the acetabular liner strongly influence polyethylene wear debris production in contemporary total hip arthroplasty. However, the available body of relevant articular force and motion information is largely confined to resultant load excursions measured relative to instrumented femoral components, and/or to global angular motions (flexion, adduction, endorotation) of the joint. Analytical frameworks are here developed to transform such information into temporal and spatial variations of the resultant load and of the local counterface sliding velocity relative to an ordered set of discrete locations (e.g., finite element nodes) on the acetabular bearing surface. Whole-duty-cycle time histories of acetabular resultant load and counterface velocity distributions are presented for two important practical situations: human level walking gait, and a 23 degrees biaxial rocking hip simulation machine. The local counterface motions occurring in the simulator are characterized by higher velocities, smoother motion patterns, and wider directional variation than those occurring in human gait. PMID:9807707

  14. Direct opto-acoustic in vitro measurement of the spatial distribution of laser radiation in biological media

    SciTech Connect

    Pelivanov, Ivan M; Belov, Sergej A; Solomatin, Vladimir S; Khokhlova, Tanya D; Karabutov, Aleksander A

    2006-12-31

    The problem of opto-acoustic (AO) diagnostics of light scattering and absorption in biological media is considered. The objects under study were milk, bovine and porcine liver, and bovine muscle tissue. The forward and backward schemes for recording acoustic signals were used in experiments. The spatial distribution of the light intensity was measured for each biological medium from the temporal profile of the excited OA pulse and the absorption coefficient and reduced scattering coefficient were determined. Opto-acoustic signals were excited by a 1064-nm pulsed Nd:YAG laser and a tunable Ti:sapphire laser at 779 nm. It is shown that the proposed method can be used for obtaining a priori information on a biological medium in problems of optical and AO tomography. (special issue devoted to multiple radiation scattering in random media)

  15. Comparing approaches for modeling spatially distributed direct recharge in a semi-arid region (Okanagan Basin, Canada)

    NASA Astrophysics Data System (ADS)

    Liggett, Jessica E.; Allen, Diana M.

    2010-03-01

    Spatially distributed recharge is compared at two different scales using three different modeling approaches within the semi-arid Okanagan Basin, British Columbia, Canada. Regional recharge was modeled by mapping results for one-dimensional soil columns from the water-balance code HELP (Hydrologic Evaluation of Landfill Performance, V3.80D). The regional model was then compared to two, independently derived, local-scale models to ensure local trends were captured in the regional model, and to compare modeling methods. Average annual recharge, predicted by the regional model, varied from no recharge to 186 mm/yr. For the north Okanagan (Vernon area), regional estimates were compared to Richards’ equation-based MIKE-SHE (V2007) estimates, which showed a significant difference in average annual recharge: 7 mm/yr (MIKE-SHE) and 109 mm/yr (HELP). In the south Okanagan (Oliver area), regional estimates were compared to high-resolution, local HELP estimates. Similar values of average annual recharge were obtained: 34 mm/yr (local) and 42 mm/yr (regional). A comparison with measured actual evapotranspiration data in the north Okanagan, showed HELP over-predicted recharge compared to MIKE-SHE by under-predicting evapotranspiration during summer months. Thus, the use of HELP in semi-arid areas may be limited if accurate estimates of recharge are needed. However, results may give satisfactory groundwater model calibrations results because of high uncertainty in hydraulic properties.

  16. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  17. Visualizing Spatially Varying Distribution Data

    NASA Technical Reports Server (NTRS)

    Kao, David; Luo, Alison; Dungan, Jennifer L.; Pang, Alex; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    Box plot is a compact representation that encodes the minimum, maximum, mean, median, and quarters information of a distribution. In practice, a single box plot is drawn for each variable of interest. With the advent of more accessible computing power, we are now facing the problem of visual icing data where there is a distribution at each 2D spatial location. Simply extending the box plot technique to distributions over 2D domain is not straightforward. One challenge is reducing the visual clutter if a box plot is drawn over each grid location in the 2D domain. This paper presents and discusses two general approaches, using parametric statistics and shape descriptors, to present 2D distribution data sets. Both approaches provide additional insights compared to the traditional box plot technique

  18. Semantics of directly manipulating spatializations.

    PubMed

    Hu, Xinran; Bradel, Lauren; Maiti, Dipayan; House, Leanna; North, Chris; Leman, Scotland

    2013-12-01

    When high-dimensional data is visualized in a 2D plane by using parametric projection algorithms, users may wish to manipulate the layout of the data points to better reflect their domain knowledge or to explore alternative structures. However, few users are well-versed in the algorithms behind the visualizations, making parameter tweaking more of a guessing game than a series of decisive interactions. Translating user interactions into algorithmic input is a key component of Visual to Parametric Interaction (V2PI) [13]. Instead of adjusting parameters, users directly move data points on the screen, which then updates the underlying statistical model. However, we have found that some data points that are not moved by the user are just as important in the interactions as the data points that are moved. Users frequently move some data points with respect to some other 'unmoved' data points that they consider as spatially contextual. However, in current V2PI interactions, these points are not explicitly identified when directly manipulating the moved points. We design a richer set of interactions that makes this context more explicit, and a new algorithm and sophisticated weighting scheme that incorporates the importance of these unmoved data points into V2PI.

  19. Spatial Distributions of Young Stars

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Hillenbrand, Lynne A.

    2008-10-01

    We analyze the spatial distribution of young stars in Taurus-Auriga and Upper Sco, as determined from the two-point correlation function (i.e., the mean surface density of neighbors). The corresponding power-law fits allow us to determine the fractal dimensions of each association's spatial distribution, measure the stellar velocity dispersions, and distinguish between the bound binary population and chance alignments of members. We find that the fractal dimension of Taurus is D ~ 1.05, consistent with its filamentary structure. The fractal dimension of Upper Sco may be even shallower (D ~ 0.7), but this fit is uncertain due to the limited area and possible spatially variable incompleteness. We also find that random stellar motions have erased all primordial structure on scales of lsim0.07° in Taurus and lsim1.7° in Upper Sco; given ages of ~1 and ~5 Myr, the corresponding internal velocity dispersions are ~0.2 and ~1.0 km s-1, respectively. Finally, we find that binaries can be distinguished from chance alignments at separations of lsim120'' (17,000 AU) in Taurus and lsim75'' (11,000 AU) in Upper Sco. The binary populations in these associations that we previously studied, spanning separations of 3''-30'', is dominated by binary systems. However, the few lowest mass pairs (Mprim <~ 0.3 M⊙) might be chance alignments.

  20. Spatial aftershock distribution: Effect of normal stress

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.; Jackson, David D.

    1998-10-01

    We study the spatial clustering of shallow aftershock hypocenters with respect to focal mechanisms of mainshocks. We use the Harvard centroid moment tensor (CMT) global catalog, the Preliminary Determination of Epicenters (PDE) earthquake list, the California Institute of Technology/U.S. Geological Survey catalog of earthquakes in southern California, and a catalog of focal mechanisms for all earthquakes since 1850 in southern California with magnitude larger than 6. We need to account for possible systematic bias in hypocenter distribution due to the geometry of seismogenic zones, especially that of subduction zones. We also select only strike-slip earthquakes from the catalogs to investigate aftershock clustering in circumstances more favorable for direct observation. We compare the spatial distribution of hypocenters before each strong earthquake with the distribution during the first 250 days after the earthquake and for the time interval extending beyond 250 days. If the friction coefficient in the Coulomb criterion is positive one expects that after a strong earthquake, aftershocks and other earthquakes would concentrate in the direction of the P axis (dilatational quadrant) rather than in the direction of the T axis (compression quadrant). Such correlations have been pointed out previously for selected earthquakes sequences, but is such correlation a general feature of earthquake occurrence? We study spatial earthquake distributions before and after each event for several choices of focal sphere partition, cutoff magnitude, focal mechanisms of large events, time periods, distance from a mainshock, etc. Although some earthquake distributions agree with a nonzero friction coefficient, others produce the opposite pattern, suggesting that the concentration of events along the P and T axes is due to random effects. This result implies that the friction coefficient in the Coulomb law is close to zero.

  1. Laser ablation inductively coupled plasma mass spectrometry for direct analysis of the spatial distribution of trace elements in metallurgical-grade silicon.

    PubMed

    Pisonero, Jorge; Kroslakova, Ivana; Günther, Detlef; Latkoczy, Christopher

    2006-09-01

    The spatial distribution and concentration of impurities in metallurgical-grade silicon (MG-Si) samples (97-99% w/w Si) were investigated by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The spatial resolution (120 mum) and low limits of detection (mg kg(-1)) for quality assurance of such materials were studied in detail. The volume-dependent precision and accuracy of non-matrix-matched calibration for quantification of minor elements, using NIST SRM 610 (silicate standard), indicates that LA-ICP-MS is well suited to rapid process control of such materials. Quantitative results from LA-ICP-MS were compared with previously reported literature data obtained by use of ICP-OES and rf-GD-OES. In particular, the distribution of element impurities and their relationship to their different segregation coefficients in silicon is demonstrated.

  2. On the spatial distribution of fingerprint singularities.

    PubMed

    Cappelli, Raffaele; Maltoni, Davide

    2009-04-01

    Fingerprint singularities play an important role in several fingerprint recognition and classification systems. Although some general relationships and constraints about the location of singularities in the different fingerprint classes are well known, to the best of our knowledge no statistical models have been developed until now. This paper studies the spatial distributions of singularity locations in nature and derives, from a representative dataset of labelled samples, the probability density functions of the four main fingerprint classes. The results obtained can be directly exploited to improve the accuracy of many techniques relying on the position of singularities, as confirmed by the results of two experiments on fingerprint classification and synthesis.

  3. Modeling Mental Spatial Reasoning about Cardinal Directions

    ERIC Educational Resources Information Center

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas

    2014-01-01

    This article presents research into human mental spatial reasoning with orientation knowledge. In particular, we look at reasoning problems about cardinal directions that possess multiple valid solutions (i.e., are spatially underdetermined), at human preferences for some of these solutions, and at representational and procedural factors that lead…

  4. Modeling Mental Spatial Reasoning about Cardinal Directions

    ERIC Educational Resources Information Center

    Schultheis, Holger; Bertel, Sven; Barkowsky, Thomas

    2014-01-01

    This article presents research into human mental spatial reasoning with orientation knowledge. In particular, we look at reasoning problems about cardinal directions that possess multiple valid solutions (i.e., are spatially underdetermined), at human preferences for some of these solutions, and at representational and procedural factors that lead…

  5. Vertical stratification in arthropod spatial distribution research.

    PubMed

    Marler, Thomas E

    2013-11-01

    Spatial heterogeneity within individual host trees is often overlooked in surveys of phytophagous arthropod abundance and distribution. The armored scale Aulacaspis yasumatsui is controlled by the predator Rhyzobius lophanthae to a greater degree on leaves at 75-cm height than on leaves at ground level within its host tree Cycas micronesica. The direct influence of elevation on the predator indirectly generates vertical heterogeneity of the scale insect. Arthropod sampling schemes that fail to include all strata within the vertical profile of the host tree species may generate misleading outcomes. Results indicate that sub-meter increments can reveal significant differences in vertical distribution of phytophagous insects, and that inclusion of observations on other organisms that interact with the target arthropod may illuminate determinants of vertical heterogeneity.

  6. Rapid thermal annealing effect on the spatial resistivity distribution of AZO thin films deposited by pulsed-direct-current sputtering for solar cells applications

    NASA Astrophysics Data System (ADS)

    Ayachi, Boubakeur; Aviles, Thomas; Vilcot, Jean-Pierre; Sion, Cathy

    2016-03-01

    Room temperature deposited aluminium-doped zinc oxide thin films on glass substrate, using pulsed-DC magnetron sputtering, have shown high optical transmittance and low electrical resistivity with high uniformity of its spatial distribution after they were exposed to a rapid thermal annealing process at 400 °C under N2H2 atmosphere. It is particularly interesting to note that such an annealing process of AZO thin films for only 30 s was sufficient, on one hand to improve their optical transmittance from 73% to 86%, on the other hand to both decrease their resistivity from 1.7 × 10-3 Ω cm to 5.1 × 10-4 Ω cm and achieve the highest uniformity spatial distribution. To understand the mechanisms behind such improvements of the optoelectronic properties, electrical, optical, structural and morphological changes as a function of annealing time have been investigated by using hall measurement, UV-visible spectrometry, X-ray diffraction and scanning electron microscope imaging, respectively.

  7. Spatial indoor radon distribution in Mexico City.

    PubMed

    Franco-Marina, Francisco; Villalba-Caloca, Jaime; Segovia, Nuria; Tavera, Leticia

    2003-12-30

    believe that the geo-statistical techniques, we have used, offer reasonably good estimates of the average spatial residential radon distribution in Mexico City under average ventilation in homes. The use of this indirect approach for radon exposure measurement in epidemiological studies is an inexpensive alternative to direct radon exposure measurement but may be subject to non-differential misclassification error. The effect of such error on the detection of a real increase in lung cancer risk from indoor radon remains to be determined.

  8. The spatial patterns of directional phenotypic selection.

    PubMed

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection.

  9. SPECIAL ISSUE DEVOTED TO MULTIPLE RADIATION SCATTERING IN RANDOM MEDIA: Direct opto-acoustic in vitro measurement of the spatial distribution of laser radiation in biological media

    NASA Astrophysics Data System (ADS)

    Pelivanov, Ivan M.; Belov, Sergej A.; Solomatin, Vladimir S.; Khokhlova, Tanya D.; Karabutov, Aleksander A.

    2006-12-01

    The problem of opto-acoustic (AO) diagnostics of light scattering and absorption in biological media is considered. The objects under study were milk, bovine and porcine liver, and bovine muscle tissue. The forward and backward schemes for recording acoustic signals were used in experiments. The spatial distribution of the light intensity was measured for each biological medium from the temporal profile of the excited OA pulse and the absorption coefficient and reduced scattering coefficient were determined. Opto-acoustic signals were excited by a 1064-nm pulsed Nd:YAG laser and a tunable Ti:sapphire laser at 779 nm. It is shown that the proposed method can be used for obtaining a priori information on a biological medium in problems of optical and AO tomography.

  10. Method for spatially distributing a population

    DOEpatents

    Bright, Edward A [Knoxville, TN; Bhaduri, Budhendra L [Knoxville, TN; Coleman, Phillip R [Knoxville, TN; Dobson, Jerome E [Lawrence, KS

    2007-07-24

    A process for spatially distributing a population count within a geographically defined area can include the steps of logically correlating land usages apparent from a geographically defined area to geospatial features in the geographically defined area and allocating portions of the population count to regions of the geographically defined area having the land usages, according to the logical correlation. The process can also include weighing the logical correlation for determining the allocation of portions of the population count and storing the allocated portions within a searchable data store. The logically correlating step can include the step of logically correlating time-based land usages to geospatial features of the geographically defined area. The process can also include obtaining a population count for the geographically defined area, organizing the geographically defined area into a plurality of sectors, and verifying the allocated portions according to direct observation.

  11. Spatial distribution of thermal energy in equilibrium.

    PubMed

    Bar-Sinai, Yohai; Bouchbinder, Eran

    2015-06-01

    The equipartition theorem states that in equilibrium, thermal energy is equally distributed among uncoupled degrees of freedom that appear quadratically in the system's Hamiltonian. However, for spatially coupled degrees of freedom, such as interacting particles, one may speculate that the spatial distribution of thermal energy may differ from the value predicted by equipartition, possibly quite substantially in strongly inhomogeneous or disordered systems. Here we show that for systems undergoing simple Gaussian fluctuations around an equilibrium state, the spatial distribution is universally bounded from above by 1/2k(B)T. We further show that in one-dimensional systems with short-range interactions, the thermal energy is equally partitioned even for coupled degrees of freedom in the thermodynamic limit and that in higher dimensions nontrivial spatial distributions emerge. Some implications are discussed.

  12. Development of "Laser Ablation Direct Analysis in Real Time Imaging" Mass Spectrometry: Application to Spatial Distribution Mapping of Metabolites Along the Biosynthetic Cascade Leading to Synthesis of Atropine and Scopolamine in Plant Tissue.

    PubMed

    Fowble, Kristen L; Teramoto, Kanae; Cody, Robert B; Edwards, David; Guarrera, Donna; Musah, Rabi A

    2017-03-21

    Methods for the accomplishment of small-molecule imaging by mass spectrometry are challenged by the need for sample pretreatment steps, such as cryo-sectioning, dehydration, chemical fixation, or application of a matrix or solvent, that must be performed to obtain interpretable spatial distribution data. Furthermore, these steps along with requirements of the mass analyzer such as high vacuum, can severely limit the range of sample types that can be analyzed by this powerful method. Here, we report the development of a laser ablation-direct analysis in real time imaging mass spectrometry approach which couples a 213 nm Nd:YAG solid state UV laser to a direct analysis in a real time ion source and high-resolution time-of-flight mass spectrometer. This platform enables facile determination of the spatial distribution of small-molecules spanning a range of polarities in a diversity of sample types and requires no matrix, vacuum, solvent, or complicated sample pretreatment steps. It furnishes high-resolution data, can be performed under ambient conditions on samples in their native form, and results in little to no fragmentation of analytes. We demonstrate its application through determination of the spatial distribution of molecules involved in the biosynthetic cascade leading to formation of the clinically relevant alkaloids atropine and scopolamine in Datura leichhardtii seed tissue.

  13. Spatial distribution of precipitation extremes in Norway

    NASA Astrophysics Data System (ADS)

    Verpe Dyrrdal, Anita; Skaugen, Thomas; Lenkoski, Alex; Thorarinsdottir, Thordis; Stordal, Frode; Førland, Eirik J.

    2015-04-01

    Estimates of extreme precipitation, in terms of return levels, are crucial in planning and design of important infrastructure. Through two separate studies, we have examined the levels and spatial distribution of daily extreme precipitation over catchments in Norway, and hourly extreme precipitation in a point. The analyses were carried out through the development of two new methods for estimating extreme precipitation in Norway. For daily precipitation we fit the Generalized Extreme Value (GEV) distribution to areal time series from a gridded dataset, consisting of daily precipitation during the period 1957-today with a resolution of 1x1 km². This grid-based method is more objective and less manual and time-consuming compared to the existing method at MET Norway. In addition, estimates in ungauged catchments are easier to obtain, and the GEV approach includes a measure of uncertainty, which is a requirement in climate studies today. Further, we go into depth on the debated GEV shape parameter, which plays an important role for longer return periods. We show that it varies according to dominating precipitation types, having positive values in the southeast and negative values in the southwest. We also find indications that the degree of orographic enhancement might affect the shape parameter. For hourly precipitation, we estimate return levels on a 1x1 km² grid, by linking GEV distributions with latent Gaussian fields in a Bayesian hierarchical model (BHM). Generalized linear models on the GEV parameters, estimated from observations, are able to incorporate location-specific geographic and meteorological information and thereby accommodate these effects on extreme precipitation. Gaussian fields capture additional unexplained spatial heterogeneity and overcome the sparse grid on which observations are collected, while a Bayesian model averaging component directly assesses model uncertainty. We find that mean summer precipitation, mean summer temperature, latitude

  14. The spatial distribution of coronae on Venus

    NASA Technical Reports Server (NTRS)

    Squyres, S. W.; Schubert, G.; Bindschadler, D. L.; Janes, D. M.; Moersch, J. E.; Moore, W.; Olson, P.; Ratcliff, J. T.; Stofan, E. R.; Turcotte, D. L.

    1992-01-01

    Coronae on Venus are large, generally circular surface features that have distinctive tectonic, volcanic, and topographic expressions. They range in diameter from less than 200 km to at least 1000 km. Data from the Magellan spacecraft have now allowed complete global mapping of the spatial distribution of coronae on the planet. Unlike impact craters, which show a random (i.e., Poisson) spatial distribution, the distribution of coronae appears to be nonrandom. We investigate the distribution here in detail, and explore its implications in terms of mantle convection and surface modification processes.

  15. Computing spatial information from Fourier coefficient distributions.

    PubMed

    Heinz, William F; Werbin, Jeffrey L; Lattman, Eaton; Hoh, Jan H

    2011-05-01

    The spatial relationships between molecules can be quantified in terms of information. In the case of membranes, the spatial organization of molecules in a bilayer is closely related to biophysically and biologically important properties. Here, we present an approach to computing spatial information based on Fourier coefficient distributions. The Fourier transform (FT) of an image contains a complete description of the image, and the values of the FT coefficients are uniquely associated with that image. For an image where the distribution of pixels is uncorrelated, the FT coefficients are normally distributed and uncorrelated. Further, the probability distribution for the FT coefficients of such an image can readily be obtained by Parseval's theorem. We take advantage of these properties to compute the spatial information in an image by determining the probability of each coefficient (both real and imaginary parts) in the FT, then using the Shannon formalism to calculate information. By using the probability distribution obtained from Parseval's theorem, an effective distance from the uncorrelated or most uncertain case is obtained. The resulting quantity is an information computed in k-space (kSI). This approach provides a robust, facile and highly flexible framework for quantifying spatial information in images and other types of data (of arbitrary dimensions). The kSI metric is tested on a 2D Ising model, frequently used as a model for lipid bilayer; and the temperature-dependent phase transition is accurately determined from the spatial information in configurations of the system.

  16. Spatially Distributed Social Complex Networks

    NASA Astrophysics Data System (ADS)

    Frasco, Gerald F.; Sun, Jie; Rozenfeld, Hernán D.; ben-Avraham, Daniel

    2014-01-01

    We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrat's law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008).]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.

  17. A Direct Estimate of the Spatial Curvature of the Universe

    NASA Astrophysics Data System (ADS)

    Rosquist, Kjell; Samuelsson, Lars

    The main idea of this contribution is to calculate the average spatial curvature directly from the observed mass distribution of the universe. In short, our philosophy is that the curvature of the universe is generated solely by the matter it contains. Although this may seem as self-evident in the context of general relativity, the usual practice in cosmology is rather to use a top-down approach in which the curvature is calculated indirectly using a prescribed matter distribution as a source of the Einstein equations. By contrast, our approach may be seen as part of a bottom-up approach. In practical terms, we first calculate the far field spatial curvature generated by an isolated matter distribution which is in arbitrary motion. At this stage we obtain the result that the sign of the spatial curvature is necessarily positive. For the spatial curvature generated by multiple sources we show that it is sufficient to use linearized theory to compute the leading contributions. In the matter dominated era the spatial curvature is then seen to be generated by local sources at small redshifts. This fact makes it possible to calculate the total spatial curvature just by summing up the contributions from the observed discrete mass distribution. A crude estimate gives a very small value for the curvature.

  18. Duplex Direct Data Distribution System

    NASA Technical Reports Server (NTRS)

    Greenfield, Israel (Technical Monitor)

    2001-01-01

    The NASA Glenn Research Center (GRC) is developing and demonstrating communications and network technologies that are helping to enable the near-Earth space Internet. GRC envisions several service categories. The first of these categories is direct data distribution or D3 (pronounced "D-cubed"). Commercially provided D3 will make it possible to download a data set from a spacecraft, like the International Space Station. as easily as one can extract a file from a remote server today, using a file transfer protocol. In a second category, NASA spacecraft will make use of commercial satellite communication (SATCOM) systems. Some of those services will come from purchasing time on unused transponders that cover landmasses. While it is likely there will be gaps in service coverage, Internet services should be available using these systems. This report addresses alternative methods of implementing a full duplex enhancement of the GRC developed experimental Ka-Band Direct Data Distribution (D3) space-to-ground communication link. The resulting duplex version is called the Duplex Direct Data Distribution (D4) system. The D4 system is intended to provide high-data-rate commercial direct or internet-based communications service between the NASA spacecraft in low earth orbit (LEO) and the respective principal investigators associated with these spacecraft. Candidate commercial services were assessed regarding their near-term potential to meet NASA requirements. Candidates included Ka-band and V-band geostationary orbit and non-geostationary orbit satellite relay services and direct downlink ("LEO teleport") services. End-to-end systems concepts were examined and characterized in terms of alternative link layer architectures. Alternatives included a Direct Link, a Relay Link, a Hybrid Link, and a Dual Mode Link. The direct link assessment examined sample ground terminal placements and antenna angle issues. The SATCOM-based alternatives examined existing or proposed commercial

  19. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  20. Multicriteria optimization of the spatial dose distribution

    SciTech Connect

    Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph

    2013-12-15

    Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.

  1. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10-14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  2. Spatial Inference for Distributed Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Katzfuss, M.; Nguyen, H.

    2014-12-01

    Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.

  3. Studying the spatial distribution of interstellar dust

    NASA Technical Reports Server (NTRS)

    Walker, Helen J.; Werner, Michael W.; Allen, C.; Henry, R. C.; Kimble, R.; Wofford, J.; Murthy, Jayant

    1989-01-01

    The spacial distribution of interstellar dust reflects both interstellar dynamics and the processes which form and destroy dust in the interstellar medium (ISM). The IRAS survey, because of its high sensitivity to thermal emission from dust in the IR, provides new approaches to determining the spatial distribution of dust. The initial results are reported of an attempt to use the IRAS data to probe the spatial distribution of dust - by searching for thermal emission from dust in the vicinity of bright stars. These results show that this technique (which relies on finding IR emission associated with randomly selected stars) can ultimately be used to study the distribution of dust in the ISM. The density of the cloud producing the IR emission may be derived by assuming that the dust is at its projected distance from the star and that the heating is due to the star's (known) radiation field. The heating radiation is folded into a grain model, and the number of emitting grains adjusted to reproduce the observed energy distribution. It is noted that this technique is capable in principle of detecting dust densities much lower than those typical of the cirrus clouds.

  4. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    NASA Technical Reports Server (NTRS)

    Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub

    2012-01-01

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.

  5. How to qualify and quantify directional dependencies in spatial random fields: Direction-dependent asymmetry

    NASA Astrophysics Data System (ADS)

    Hörning, Sebastian; Bárdossy, András

    2016-04-01

    Traditional geostatistical analysis is mainly based on variograms and/or covariance functions. A more advanced investigation of spatially distributed variables can be performed using rank order geostatistical methods. For example the rank correlation function in combination with the asymmetry function gives a more detailed insight in the spatial dependence structure of the data of interest. However, many physical processes, for example advection of solute in porous media, can lead to asymmetries that exhibit a certain direction, i.e. they lead to irreversibility in a spatial context. Reversibility is well known in time series analysis; however it is hardly utilized in geostatistics. Spatial reversibility or directional dependencies can neither be covered by the rank correlation function nor by the classical asymmetry function. Therefore, a statistical test based on a chi-squared test on empirical directional copulas will be introduced that enables testing for spatial reversibility. In order to quantify the strength of directional dependencies a new direction-dependent asymmetry function is introduced. Different examples, ranging from synthetical flow and transport experiments to real-world precipitation data, will be used to demonstrate the applicability of the test and the new measure. The difference to classical anisotropy will be shown and the chi-squared test will also be used to test for significance.

  6. Spatial distribution of impact craters on Deimos

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki

    2017-05-01

    Deimos, one of the Martian moons, has numerous impact craters. However, it is unclear whether crater saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the crater distribution of Deimos. When a planetary surface such as the Moon is saturated with impact craters, the spatial distribution of craters is generally changed from random to more ordered. We measured impact craters on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the craters is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of craters over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact craters. Although a crater size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing craters on Deimos and are therefore responsible for the shallow slope of this curve. The observed crater density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact craters despite the random distribution of craters on Deimos. Therefore, this work proposes that the age determined by the current craters on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because craters should be removed by later impacts. However, a few of the largest craters on Deimos may be indicative of the age of the south pole event.

  7. Spatial distribution of metabolites in the human lens.

    PubMed

    Tamara, Semen O; Yanshole, Lyudmila V; Yanshole, Vadim V; Fursova, Anjella Zh; Stepakov, Denis A; Novoselov, Vladimir P; Tsentalovich, Yuri P

    2016-02-01

    Spatial distribution of 34 metabolites along the optical and equatorial axes of the human lens has been determined. For the majority of metabolites, the homogeneous distribution has been observed. That suggests that the rate of the metabolite transformation in the lens is low due to the general metabolic passivity of the lens fiber cells. However, the redox processes are active in the lens; as a result, some metabolites, including antioxidants, demonstrate the "nucleus-depleted" type of distribution, whereas secondary UV filters show the "nucleus-enriched" type. The metabolite concentrations at the lens poles and equator are similar for all metabolites under study. The concentric pattern of the "nucleus-depleted" and "nucleus-enriched" distributions testifies that the metabolite distribution inside the lens is mostly governed by a passive diffusion, relatively free along the fiber cells and retarded in the radial direction across the cells. No significant difference in the metabolite distribution between the normal and cataractous human lenses was found.

  8. Revised spatially distributed global livestock emissions

    NASA Astrophysics Data System (ADS)

    Asrar, G.; Wolf, J.; West, T. O.

    2015-12-01

    Livestock play an important role in agricultural carbon cycling through consumption of biomass and emissions of methane. Quantification and spatial distribution of methane and carbon dioxide produced by livestock is needed to develop bottom-up estimates for carbon monitoring. These estimates serve as stand-alone international emissions estimates, as input to global emissions modeling, and as comparisons or constraints to flux estimates from atmospheric inversion models. Recent results for the US suggest that the 2006 IPCC default coefficients may underestimate livestock methane emissions. In this project, revised coefficients were calculated for cattle and swine in all global regions, based on reported changes in body mass, quality and quantity of feed, milk production, and management of living animals and manure for these regions. New estimates of livestock methane and carbon dioxide emissions were calculated using the revised coefficients and global livestock population data. Spatial distribution of population data and associated fluxes was conducted using the MODIS Land Cover Type 5, version 5.1 (i.e. MCD12Q1 data product), and a previously published downscaling algorithm for reconciling inventory and satellite-based land cover data at 0.05 degree resolution. Preliminary results for 2013 indicate greater emissions than those calculated using the IPCC 2006 coefficients. Global total enteric fermentation methane increased by 6%, while manure management methane increased by 38%, with variation among species and regions resulting in improved spatial distributions of livestock emissions. These new estimates of total livestock methane are comparable to other recently reported studies for the entire US and the State of California. These new regional/global estimates will improve the ability to reconcile top-down and bottom-up estimates of methane production as well as provide updated global estimates for use in development and evaluation of Earth system models.

  9. [Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].

    PubMed

    Yuan, Zheming; Fu, Wei; Li, Fangyi

    2004-04-01

    Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.

  10. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2013-10-01

    Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas. The groundwater

  11. Spatially patterned matrix elasticity directs stem cell fate

    PubMed Central

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-01-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness. PMID:27436901

  12. Spatially patterned matrix elasticity directs stem cell fate

    NASA Astrophysics Data System (ADS)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  13. Spatial distribution of enzyme activities in the rhizosphere

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    The rhizosphere, the tiny zone of soil surrounding roots, certainly represents one of the most dynamic habitat and interfaces on Earth. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. That is why there is an urgent need in spatially explicit methods for the determination of the rhizosphere extension and enzyme distribution. Recently, zymography as a new technique based on diffusion of enzymes through the 1 mm gel plate for analysis has been introduced (Spohn & Kuzyakov, 2013). We developed the zymography technique to visualize the enzyme activities with a higher spatial resolution. For the first time, we aimed at quantitative imaging of enzyme activities as a function of distance from the root tip and the root surface in the soil. We visualized the two dimensional distribution of the activity of three enzymes: β-glucosidase, phosphatase and leucine amino peptidase in the rhizosphere of maize using fluorogenically labelled substrates. Spatial-resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography visualized heterogeneity of enzyme activities along the roots. The activity of all enzymes was the highest at the apical parts of individual roots. Across the roots, the enzyme activities were higher at immediate vicinity of the roots (1.5 mm) and gradually decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify spatial distribution of enzyme activities in the rhizosphere hotspots. References Spohn, M., Kuzyakov, Y., 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biology & Biochemistry 61: 69-75

  14. [Spatial distribution of soil animals: a geostatistical approach].

    PubMed

    Gongal'skiĭ, K B; Zaĭtsev, A S; Savin, F A

    2009-01-01

    Spatial distribution is one of the main parameters of populations of soil animals. Spatial soil ecology having been developing during last decades bases animal distribution estimates on the geostatistic approach. A simple principle underlying the latter's methodology is that samples placed close to each other have more similarity than those distantly placed, it is usually called autocorrelation. The principles of basic statistics cannot be applied to autocorrelated data. Apiplying variograms, Mantel test, Moran index, and SADIE statistics enables to reveal the size of clusters of both soil parameters and soil animal aggregations. This direction of investigations quite popular in the western literature is just rarely employed by Russian soil ecologists. Statistically correct procedures allow developing field sampling methodology that is vital in applied studies of soil ecology, namely, in bioindication and ecotoxicology of soils, in the assessment of biological resources in terms of abundance and biomass of soil animals. This methodology has a decisive importance in the development of soil biogeography.

  15. Spatial distribution of disease: three case studies.

    PubMed

    Selvin, S; Shaw, G; Schulman, J; Merrill, D W

    1987-09-01

    Maps transformed so as to have constant density of residential population were used to analyze the spatial distribution of disease in three specific areas. Each area had received recent attention because of suspected environmental pollution. The area adjacent to the Rocky Flats Facility (CO) was examined to identify any association between possible plutonium releases and increases in lung cancer or leukemia incidence. The industrial area of northern Contra Costa County (CA) was studied to explore a relationship between petrochemical industrial emissions and histologic-specific lung cancers. Finally, a suspected increase in the risk of congenital cardiac defects possibly related to pollution of the Santa Clara County (CA) water supply was investigated. No evidence of elevated risk of disease was found to be associated with either the Rocky Flats Facility or the polluted water of Santa Clara County. An increase in lung cancer, found by other investigators in earlier years, was shown to persist in association with industrial emissions in Contra Costa County.

  16. Spatial distribution of disease: three case studies

    SciTech Connect

    Selvin, S.; Shaw, G.; Schulman, J.; Merrill, D.W.

    1987-09-01

    Maps transformed so as to have constant density of residential population were used to analyze the spatial distribution of disease in three specific areas. Each area had received recent attention because of suspected environmental pollution. The area adjacent to the Rocky Flats Facility (CO) was examined to identify any association between possible plutonium releases and increases in lung cancer or leukemia incidence. The industrial area of northern Contra Costa County (CA) was studied to explore a relationship between petrochemical industrial emissions and histologic-specific lung cancers. Finally, a suspected increase in the risk of congenital cardiac defects possibly related to pollution of the Santa Clara County (CA) water supply was investigated. No evidence of elevated risk of disease was found to be associated with either the Rocky Flats Facility or the polluted water of Santa Clara County. An increase in lung cancer, found by other investigators in earlier years, was shown to persist in association with industrial emissions in Contra Costa County.

  17. Optimal design of spatial distribution networks

    NASA Astrophysics Data System (ADS)

    Gastner, Michael T.; Newman, M. E. J.

    2006-07-01

    We consider the problem of constructing facilities such as hospitals, airports, or malls in a country with a nonuniform population density, such that the average distance from a person’s home to the nearest facility is minimized. We review some previous approximate treatments of this problem that indicate that the optimal distribution of facilities should have a density that increases with population density, but does so slower than linearly, as the two-thirds power. We confirm this result numerically for the particular case of the United States with recent population data using two independent methods, one a straightforward regression analysis, the other based on density-dependent map projections. We also consider strategies for linking the facilities to form a spatial network, such as a network of flights between airports, so that the combined cost of maintenance of and travel on the network is minimized. We show specific examples of such optimal networks for the case of the United States.

  18. Directional perception of distributed sound sources.

    PubMed

    Santala, Olli; Pulkki, Ville

    2011-03-01

    The perception of spatially distributed sound sources was investigated by conducting two listening experiments in anechoic conditions with 13 loudspeakers evenly distributed in the frontal horizontal plane emitting incoherent noise signals. In the first experiment, widely distributed sound sources with gaps in their distribution emitted pink noise. The results indicated that the exact loudspeaker distribution could not be perceived accurately and that the width of the distribution was perceived to be narrower than it was in reality. Up to three spatially distributed loudspeakers that were simultaneously emitting sound could be individually perceived. In addition, the number of loudspeakers that were indicated as emitting sound was smaller than the actual number. In the second experiment, a reference with 13 loudspeakers and test cases with fewer loudspeakers were presented and their perceived spatial difference was rated. The effect of the noise bandwidth was of particular interest. Noise with different bandwidths centered around 500 and 4000 Hz was used. The results indicated that when the number of loudspeakers was increased from four to seven, the perceived auditory event was very similar to that perceived with 13 loudspeakers at all bandwidths. The perceived differences were larger in wideband noise than in narrow-band noise. © 2011 Acoustical Society of America

  19. GIS characterization of spatially distributed lifeline damage

    USGS Publications Warehouse

    Toprak, Selcuk; O'Rourke, Thomas; Tutuncu, Ilker

    1999-01-01

    This paper describes the visualization of spatially distributed water pipeline damage following an earthquake using geographical information systems (GIS). Pipeline damage is expressed as a repair rate (RR). Repair rate contours are developed with GIS by dividing the study area into grid cells (n ?? n), determining the number of particular pipeline repairs in each grid cell, and dividing the number of repairs by the length of that pipeline in each cell area. The resulting contour plot is a two-dimensional visualization of point source damage. High damage zones are defined herein as areas with an RR value greater than the mean RR for the entire study area of interest. A hyperbolic relationship between visual display of high pipeline damage zones and grid size, n, was developed. The relationship is expressed in terms of two dimensionless parameters, threshold area coverage (TAC) and dimensionless grid size (DGS). The relationship is valid over a wide range of different map scales spanning approximately 1,200 km2 for the largest portion of the Los Angeles water distribution system to 1 km2 for the Marina in San Francisco. This relationship can aid GIS users to get sufficiently refined, but easily visualized, maps of damage patterns.

  20. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael; Wiscombe, Warren

    2004-01-01

    The analysis of aircraft measurements of individual drop sizes in clouds suggests that for sufficiently small volumes the mean number of cloud drops with a given radius is proportional to volume powered by a drop-size dependent exponent. For abundant small drops present, the exponent is 1 as assumed in conventional approach. However, for rarer large drops, the exponents fall below unity. We show striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast and also helps explain why remotely sensed cloud drop size is generally biased.

  1. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Larsen, M.; Wiscombe, W.

    2004-01-01

    By analyzing aircraft measurements of individual drop sizes in clouds, we have shown in a companion paper (Knyazikhin et al., 2004) that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)) where 0 less than or equal to D(r) less than or equal to 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast. It also helps explain why remotely sensed cloud drop size is generally biased and why clouds absorb more sunlight than conventional radiative transfer models predict.

  2. Earthquake spatial distribution: The correlation dimension

    NASA Astrophysics Data System (ADS)

    Kagan, Y. Y.

    2006-12-01

    We review methods for determining the fractal dimensions of earthquake epicenters and hypocenters, paying special attention to the problem of errors, biases and systematic effects. Among effects considered are earthquake location errors, boundary effects, inhomogeneity of depth distribution, and temporal dependence. In particular, the correlation dimension of earthquake spatial distribution is discussed, techniques for its evaluation presented, and results for several earthquake catalogs are analyzed. We show that practically any value for the correlation dimension can be obtained if many errors and inhomogeneities in observational data as well as deficiencies in data processing are not properly considered. It is likely that such technical difficulties are intensified when one attempts to evaluate multifractal measures of dimension. Taking into account possible errors and biases, we conclude that the fractal dimension for shallow seismicity asymptotically approaches 2.20 ± 0.05 for a catalog time span of decades and perhaps centuries. The value of the correlation dimension declines to 1.8-1.9 for intermediate events (depth interval 71-280 km) and to 1.5-1.6 for deeper ones. For plate tectonic deformation on the time scale of millions of years, it is possible that the correlation dimension for shallow earthquakes may increase to 2.6-2.7.

  3. Earthquake spatial distribution: the correlation dimension

    NASA Astrophysics Data System (ADS)

    Kagan, Yan Y.

    2007-03-01

    We review methods for determining the fractal dimensions of earthquake epicentres and hypocentres, paying special attention to the problem of errors, biases and systematic effects. Among effects considered are earthquake location errors, boundary effects, inhomogeneity of depth distribution and temporal dependence. In particular, the correlation dimension of earthquake spatial distribution is discussed, techniques for its evaluation presented, and results for several earthquake catalogues are analysed. We show that practically any value for the correlation dimension can be obtained if many errors and inhomogeneities in observational data as well as deficiencies in data processing are not properly considered. It is likely that such technical difficulties are intensified when one attempts to evaluate multifractal measures of dimension. Taking into account possible errors and biases, we conclude that the fractal dimension for shallow seismicity asymptotically approaches 2.20 +/- 0.05 for a catalogue time span of decades and perhaps centuries. The value of the correlation dimension declines to 1.8-1.9 for intermediate events (depth interval 71-280 km) and to 1.5-1.6 for deeper ones.

  4. Spatial Distribution of Large Cloud Drops

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri; Larsen, Michael; Wiscombe, Warren

    2004-01-01

    The analysis of aircraft measurements of individual drop sizes in clouds suggests that for sufficiently small volumes the mean number of cloud drops with a given radius is proportional to volume powered by a drop-size dependent exponent. For abundant small drops present, the exponent is 1 as assumed in conventional approach. However, for rarer large drops, the exponents fall below unity. We show striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents. The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast and also helps explain why remotely sensed cloud drop size is generally biased.

  5. Spatial distribution of flood risk and quality of spatial management: case study in Odra Valley, Poland.

    PubMed

    Rucinska, Dorota

    2015-02-01

    This article presents methodological solutions aimed at presenting the spatial distribution of flood risk and quality of spatial management (land use), indicating both those areas used reasonably and those requiring modification. The purpose was to identify key risk areas and risk-free areas from the point of view of human security and activity on the floodplains, based on the examples of the vicinities of Wroclaw and Raciborz in the Odra Valley, Poland. Due to recent climate change, Poland has suffered the effects of severe flooding (e.g., 1997, 2001, 2010). The analyses conducted were motivated by the European Parliament and Council's recently implemented Directive 2007/60/WE, as well as by the demand for studies for local spatial planning. The analysis indicates that reasonably developed areas do not account for the majority of those studied, making up 36% of the Wroclaw area and 15% of the Raciborz area.

  6. The spatial distribution of Mustelidae in France.

    PubMed

    Calenge, Clément; Chadoeuf, Joël; Giraud, Christophe; Huet, Sylvie; Julliard, Romain; Monestiez, Pascal; Piffady, Jérémy; Pinaud, David; Ruette, Sandrine

    2015-01-01

    We estimated the spatial distribution of 6 Mustelidae species in France using the data collected by the French national hunting and wildlife agency under the "small carnivorous species logbooks" program. The 1500 national wildlife protection officers working for this agency spend 80% of their working time traveling in the spatial area in which they have authority. During their travels, they occasionally detect dead or living small and medium size carnivorous animals. Between 2002 and 2005, each car operated by this agency was equipped with a logbook in which officers recorded information about the detected animals (species, location, dead or alive, date). Thus, more than 30000 dead or living animals were detected during the study period. Because a large number of detected animals in a region could have been the result of a high sampling pressure there, we modeled the number of detected animals as a function of the sampling effort to allow for unbiased estimation of the species density. For dead animals -- mostly roadkill -- we supposed that the effort in a given region was proportional to the distance traveled by the officers. For living animals, we had no way to measure the sampling effort. We demonstrated that it was possible to use the whole dataset (dead and living animals) to estimate the following: (i) the relative density -- i.e., the density multiplied by an unknown constant -- of each species of interest across the different French agricultural regions, (ii) the sampling effort for living animals for each region, and (iii) the relative detection probability for various species of interest.

  7. The Spatial Distribution of Mustelidae in France

    PubMed Central

    Calenge, Clément; Chadoeuf, Joël; Giraud, Christophe; Huet, Sylvie; Julliard, Romain; Monestiez, Pascal; Piffady, Jérémy; Pinaud, David; Ruette, Sandrine

    2015-01-01

    We estimated the spatial distribution of 6 Mustelidae species in France using the data collected by the French national hunting and wildlife agency under the “small carnivorous species logbooks” program. The 1500 national wildlife protection officers working for this agency spend 80% of their working time traveling in the spatial area in which they have authority. During their travels, they occasionally detect dead or living small and medium size carnivorous animals. Between 2002 and 2005, each car operated by this agency was equipped with a logbook in which officers recorded information about the detected animals (species, location, dead or alive, date). Thus, more than 30000 dead or living animals were detected during the study period. Because a large number of detected animals in a region could have been the result of a high sampling pressure there, we modeled the number of detected animals as a function of the sampling effort to allow for unbiased estimation of the species density. For dead animals -- mostly roadkill -- we supposed that the effort in a given region was proportional to the distance traveled by the officers. For living animals, we had no way to measure the sampling effort. We demonstrated that it was possible to use the whole dataset (dead and living animals) to estimate the following: (i) the relative density -- i.e., the density multiplied by an unknown constant -- of each species of interest across the different French agricultural regions, (ii) the sampling effort for living animals for each region, and (iii) the relative detection probability for various species of interest. PMID:25811456

  8. [Spatial distribution of macroinvertebrates in Xiangxi River].

    PubMed

    Jiang, Wan-xiang; Cai, Qing-hua; Tang, Tao; Wu, Nai-cheng; Fu, Xiao-cheng; Li, Feng-qing; Liu, Rui-qiu

    2008-11-01

    An investigation was made from July 2005 to June 2006 to understand the spatial distribution of macroinvertebrates in Xiangxi River, the largest tributary in Hubei portion of Three Gorges Reservoir. The results showed that Ephemeroptera baetis spp., Ephemeroptera epeorus spp., and Plecoptera nemoura spp. were the dominant taxa. There existed greater differences in the habitat characters and in the community structure of macroinvertebrates among the major tributaries of Xiangxi River, and the relative abundance of functional feeding groups could reflect the characters of different habitats. A comparison of the diversity of dominant taxa and their tolerance towards pollution among the major tributaries showed that Jiuchong River had the best habitat, followed by the main stream of Xiangxi River, and Gaolan River and Gufu River. Canonical correspondence analysis showed that the NH4+ -N concentration in the main stream of Xiangxi River, the pH, turbidity, water depth, SiO2, conductance, and alkalinity in Jiuchong River, the turbidity in Gaolan River, and the NH4+ -N and NO3- -N concentrations in Gufu River had significant impact on the community structure of macroinvertebrates.

  9. Spatially Refined Aerosol Direct Radiative Focusing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  10. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  11. Spatially Refined Aerosol Direct Radiative Focusing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  12. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  13. On The Spatial Distribution and the Origin of Hypervelocity Stars

    NASA Astrophysics Data System (ADS)

    Lu, Youjun; Zhang, Fupeng; Yu, Qingjuan

    2010-02-01

    Hypervelocity stars (HVSs) escaping away from the Galactic halo are dynamical products of interactions of stars with the massive black hole(s) (MBH) in the Galactic Center (GC). They are mainly B-type stars with their progenitors unknown. OB stars are also populated in the GC, with many being hosted in a clockwise-rotating young stellar (CWS) disk within half a parsec from the MBH and their formation remaining puzzles. In this paper, we demonstrate that HVSs can well memorize the injecting directions of their progenitors using both analytical arguments and numerical simulations, i.e., the ejecting direction of an HVS is almost anti-parallel to the injecting direction of its progenitor. Therefore, the spatial distribution of HVSs maps the spatial distribution of the parent population of their progenitors directly. We also find that almost all the discovered HVSs are spatially consistent with being located on two thin disk planes. The orientation of one plane is consistent with that of the (inner) CWS disk, which suggests that most of the HVSs originate from the CWS disk or a previously existed disk-like stellar structure with an orientation similar to it. The rest of HVSs may be correlated with the plane of the northern arm of the mini-spiral in the GC or the plane defined by the outer warped part of the CWS disk. Our results not only support the GC origin of HVSs but also imply that the central disk (or the disk structure with a similar orientation) should persist or be frequently rejuvenated over the past 200 Myr, which adds a new challenge to the stellar disk formation and provides insights to the longstanding problem of gas fueling into MBHs.

  14. Two Time Distribution in Brownian Directed Percolation

    NASA Astrophysics Data System (ADS)

    Johansson, Kurt

    2017-04-01

    In the zero temperature Brownian semi-discrete directed polymer we study the joint distribution of two last-passage times at positions ordered in the time-like direction. This is the situation when we have the slow de-correlation phenomenon. We compute the limiting joint distribution function in a scaling limit. This limiting distribution is given by an expansion in determinants that is not a Fredholm expansion. A somewhat similar looking formula was derived non-rigorously in a related model by Dotsenko.

  15. Asymmetric competition causes multimodal size distributions in spatially structured populations.

    PubMed

    Velázquez, Jorge; Allen, Robert B; Coomes, David A; Eichhorn, Markus P

    2016-01-27

    Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts. © 2016 The Author(s).

  16. Asymmetric competition causes multimodal size distributions in spatially structured populations

    PubMed Central

    Velázquez, Jorge; Allen, Robert B.; Coomes, David A.; Eichhorn, Markus P.

    2016-01-01

    Plant sizes within populations often exhibit multimodal distributions, even when all individuals are the same age and have experienced identical conditions. To establish the causes of this, we created an individual-based model simulating the growth of trees in a spatially explicit framework, which was parametrized using data from a long-term study of forest stands in New Zealand. First, we demonstrate that asymmetric resource competition is a necessary condition for the formation of multimodal size distributions within cohorts. By contrast, the legacy of small-scale clustering during recruitment is transient and quickly overwhelmed by density-dependent mortality. Complex multi-layered size distributions are generated when established individuals are restricted in the spatial domain within which they can capture resources. The number of modes reveals the effective number of direct competitors, while the separation and spread of modes are influenced by distances among established individuals. Asymmetric competition within local neighbourhoods can therefore generate a range of complex size distributions within even-aged cohorts. PMID:26817778

  17. Spatial distribution of pingos in Northern Asia

    USGS Publications Warehouse

    Grosse, G.; Jones, Benjamin M.

    2010-01-01

    Pingos are prominent periglacial landforms in vast regions of the Arctic and Subarctic. They are indicators of modern and past conditions of permafrost, surface geology, hydrology and climate. A first version of a detailed spatial geodatabase of more than 6000 pingo locations in a 3.5 ?? 106 km2 region of Northern Asia was assembled from topographic maps. A first order analysis was carried out with respect to permafrost, landscape characteristics, surface geology, hydrology, climate, and elevation datasets using a Geographic Information System (GIS). Pingo heights in the dataset vary between 2 and 37 m, with a mean height of 4.8 m. About 64% of the pingos occur in continuous permafrost with high ice content and thick sediments; another 19% in continuous permafrost with moderate ice content and thick sediments. The majority of these pingos likely formed through closed system freezing, typical of those located in drained thermokarst lake basins of northern lowlands with continuous permafrost. About 82% of the pingos are located in the tundra bioclimatic zone. Most pingos in the dataset are located in regions with mean annual ground temperatures between -3 and -11 ??C and mean annual air temperatures between -7 and -18 ??C. The dataset confirms that surface geology and hydrology are key factors for pingo formation and occurrence. Based on model predictions for near-future permafrost distribution, hundreds of pingos along the southern margins of permafrost will be located in regions with thawing permafrost by 2100, which ultimately may lead to increased occurrence of pingo collapse. Based on our dataset and previously published estimates of pingo numbers from other regions, we conclude that there are more than 11 000 pingos on Earth. ?? 2010 Author(s).

  18. Spatial distribution of pingos in Northern Asia

    NASA Astrophysics Data System (ADS)

    Grosse, G.; Jones, B. M.

    2010-09-01

    Pingos are prominent periglacial landforms in vast regions of the Arctic and Subarctic. They are indicators of modern and past conditions of permafrost, surface geology, hydrology and climate. A first version of a detailed spatial geodatabase of more than 6000 pingo locations in a 3.5 × 106 km2 region of Northern Asia was assembled from topographic maps. A first order analysis was carried out with respect to permafrost, landscape characteristics, surface geology, hydrology, climate, and elevation datasets using a Geographic Information System (GIS). Pingo heights in the dataset vary between 2 and 37 m, with a mean height of 4.8 m. About 64% of the pingos occur in continuous permafrost with high ice content and thick sediments; another 19% in continuous permafrost with moderate ice content and thick sediments. The majority of these pingos likely formed through closed system freezing, typical of those located in drained thermokarst lake basins of northern lowlands with continuous permafrost. About 82% of the pingos are located in the tundra bioclimatic zone. Most pingos in the dataset are located in regions with mean annual ground temperatures between -3 and -11 °C and mean annual air temperatures between -7 and -18 °C. The dataset confirms that surface geology and hydrology are key factors for pingo formation and occurrence. Based on model predictions for near-future permafrost distribution, hundreds of pingos along the southern margins of permafrost will be located in regions with thawing permafrost by 2100, which ultimately may lead to increased occurrence of pingo collapse. Based on our dataset and previously published estimates of pingo numbers from other regions, we conclude that there are more than 11 000 pingos on Earth.

  19. Spatial distribution of pingos in northern Asia

    NASA Astrophysics Data System (ADS)

    Grosse, G.; Jones, B. M.

    2011-01-01

    Pingos are prominent periglacial landforms in vast regions of the Arctic and Subarctic. They are indicators of modern and past conditions of permafrost, surface geology, hydrology and climate. A first version of a detailed spatial geodatabase of 6059 pingo locations in a 3.5×106 km2 region of northern Asia was assembled from topographic maps. A first order analysis was carried out with respect to permafrost, landscape characteristics, surface geology, hydrology, climate, and elevation datasets using a Geographic Information System (GIS). Pingo heights in the dataset vary between 2 and 37 m, with a mean height of 4.8 m. About 64% of the pingos occur in continuous permafrost with high ice content and thick sediments; another 19% in continuous permafrost with moderate ice content and thick sediments. The majority of these pingos are likely hydrostatic pingos, which are typical of those located in drained thermokarst lake basins of northern lowlands with continuous permafrost. About 82% of the pingos are located in the tundra bioclimatic zone. Most pingos in the dataset are located in regions with mean annual ground temperatures between -3 and -11 °C and mean annual air temperatures between -7 and -18 °C. The dataset confirms that surface geology and hydrology are key factors for pingo formation and occurrence. Based on model predictions for near-future permafrost distribution, about 2073 pingos (34%) along the southern margins of permafrost will be located in regions with thawing permafrost by 2100, which ultimately may lead to increased occurrence of pingo collapse. Based on our dataset and previously published estimates of pingo numbers from other regions, we conclude that there are more than 11 000 pingos on Earth.

  20. Modelling the effect of directional spatial ecological processes at different scales.

    PubMed

    Blanchet, F Guillaume; Legendre, Pierre; Maranger, Roxane; Monti, Dominique; Pepin, Pierre

    2011-06-01

    During the last 20 years, ecologists discovered the importance of including spatial relationships in models of species distributions. Among the latest developments in modelling how species are spatially structured are eigenfunction-based spatial filtering methods such as Moran's eigenvector maps (MEM) and principal coordinates of neighbour matrices (PCNM). Although these methods are very powerful and flexible, they are only suited to study distributions resulting from non-directional spatial processes. The asymmetric eigenvector map (AEM) framework, a new eigenfunction-based spatial filtering method, fills this theoretical gap. AEM was specifically designed to model spatial structures hypothesized to be produced by directional spatial processes. Water currents, prevailing wind on mountainsides, river networks, and glaciations at historical time scales are some of the situations where AEM can be used. This paper presents three applications of the method illustrating different combinations of: sampling schemes (regular and irregular), data types (univariate and multivariate), and spatial scales (metres, kilometres, and hundreds of kilometres). The applications include the distribution of a crustacean (Atya) in a river, bacterial production in a lake, and the distribution of the copepodite stages of a crustacean on the Atlantic oceanic shelf. In each application, a comparison is made between AEM, MEM, and PCNM. No environmental components were included in the comparisons. AEM was a strong predictor in all cases, explaining 59.8% for Atya distribution, 51.4% of the bacterial production variation, and 38.4% for the copepodite distributions. AEM outperformed MEM and PCNM in these applications, offering a powerful and more appropriate tool for spatial modelling of species distributions under directional forcing and leading to a better understanding of the processes at work in these systems.

  1. [Thoughts on the spatial distribution of population].

    PubMed

    Borisovna, L; Velez, F

    1991-12-01

    city in all age groups, especially in the 15-19 cohort. A large proportion of the migrants were more highly educated than the average city dweller. The average rate of growth of the working age population in the city was 6% from 1970-80, implying a need for 35,000 new jobs annually. But in 1980-90, only 10,000 new jobs were added each year. The relative importance of tertiary sector employment has increased significantly. A review of the population characteristics and spatial distribution of the city and state of Puebla strongly suggests that decentralization should be vigorously pursued as a means of improving the wellbeing of the population.

  2. Measuring directional urban spatial interaction in China: A migration perspective

    PubMed Central

    Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen

    2017-01-01

    The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China’s urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities. PMID:28141853

  3. Measuring directional urban spatial interaction in China: A migration perspective.

    PubMed

    Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen

    2017-01-01

    The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China's urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities.

  4. Directed polymers on a Cayley tree with spatially correlated disorder

    NASA Astrophysics Data System (ADS)

    Goldschmidt, Yadin Y.

    1998-11-01

    In this paper we consider directed walks on a tree with a fixed branching ratio K at a finite temperature T. We consider the case where each site (or link) is assigned a random energy uncorrelated in time, but correlated in the transverse direction, i.e. within the shell. In this paper we take the transverse distance to be the hierarchical ultrametric distance, but other possibilities are discussed. We compute the free energy for the case of quenched disorder and show that there is a fundamental difference between the case of short-range spatial correlations of the disorder which behave similarly to the non-correlated case considered previously by Derrida and Spohn and the case of long-range correlations which have a totally different overlap distribution (approaching a single delta function about q = 1 for large L, where L is the length of the walk). In the latter case the free energy is not extensive in L for the intermediate and also relevant range of L values, although in the true thermodynamic limit extensivity is restored. We identify a crossover temperature which grows with L, and whenever 0305-4470/31/46/007/img1 the system is always in the low-temperature phase. Thus, in the case of long-ranged correlation as opposed to the short-ranged case a phase transition is absent.

  5. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    PubMed

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage.

  6. Spatial distributions of dose enhancement around a gold nanoparticle at several depths of proton Bragg peak

    NASA Astrophysics Data System (ADS)

    Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki

    2016-10-01

    Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.

  7. Seismic directional beamforming using cosine amplitude distribution

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Xu, X.; Song, J.; Jia, H.; Ge, L.

    2013-12-01

    o improve the signal-to-noise ratio in seismic exploration, we studied the method of time domain seismic beam-forming based on receiver array (TSBBRA). TSBBRA is useful to extract reflected waves from some target layers and decrease noise from other direction. When noise is strong enough, the control parameter of the method of TSBBRA need to be increased. It means that we have to use more raw records to form a directional seismic record. Therefore, the signal energy in beam is much denser, and the beam becomes narrower accordingly. When the beam can not cover the receiver array, the signal-to-noise ratios in different traces are quite unbalanced and average quality of data probably is still quite low. Therefore, this paper proposes seismic directional beamforming using the cosine amplitude distribution (SDBCAD). SDBCAD can adjust seismic beam shape by introducing cosine amplitude distribution, an amplitude weighting method, in the procedure of beamforming. We studied cosine amplitude weighting function, analyzed the characteristics of uniform and cosine amplitude distribution in beamforming, and compared directivity of beams from the two kind of amplitude pattern. It shows that the main beam of cosine-weighted amplitude is different from uniform distribution. The coverage of main beam from SDBCAD is wider than uniform amplitude, and the width of beam is varied with different number of cosine order. So we simulated the seismic raw record, and used TSBBRA and SDBCAD to process simulated data at the receiving array. The results show that SDBCAD can broaden directional beam, and the main beam from SDBCAD can cover the entire traces instead of partial coverage in TSBBRA. The average signal-to-noise ratio increased 0.2~4.5dB. It concludes that SDBCAD is competent to stretch beam reasonable, and it is useful to boost signal-to-noise ratio when beam from TSBBRA is too narrow to illuminate receiver array properly. Updated results will be presented at the meeting.

  8. Distribution theory approach to implementing directional acoustic sensors.

    PubMed

    Schmidlin, Dean J

    2010-01-01

    The objective of directional acoustic sensors is to provide high directivity while occupying a small amount of space. An idealized point sensor achieves this objective from a knowledge of the spatial partial derivatives of acoustic pressure at a point in space. Direct measurement of these derivatives is difficult in practice. Consequently, it is expedient to come up with indirect methods. The use of pressure sensors to construct finite-difference approximations is an example of such a method. This paper utilizes the theory of distributions to derive another indirect method for estimating the various spatial partial derivatives of the pressure. This alternate method is then used to construct a multichannel filter which processes the acoustic pressure by mean of three-dimensional integral transforms throughout a 6epsilon-length cube centered at the origin. The output of the multichannel filter is a spatially and temporally filtered version of the pressure at the origin. The temporal filter is a lowpass Gaussian filter whose bandwidth is inversely proportional to epsilon. Finally, the lattice method for numerical multiple integration is utilized to develop a discrete-spatial version of the multichannel filter.

  9. A spatial query scheduler in a distributed environment

    NASA Astrophysics Data System (ADS)

    Zhou, Chunhui; Zhu, Xinyan; Xia, Yu; Su, Kehua

    2008-10-01

    Geographic Information System (GIS) is moving towards distribution and sharing. Distributed Spatial Database Systems (DSDBS) has attracted the attention of many scholars. This paper introduces the prospects of Distributed GIS (DGIS), and describes the definition of DSDBS and the existing problems. The researches in related fields are analyzed, including the research results in the traditional distributed relational database fields, the distributed spatial database fields and the spatial query optimization aspect. Grid technologies are developing forward, and grid will be turned into the standard distributed computing platform, therefore the application of DSDBS will be much broader than ever. The present studies on distributed spatial query focus on spatial join optimization. Researches on query scheduling are rare. In the process of constructing our test system for distributed spatial query, we find there are some replication nodes after the step of data localization. These nodes cause redundant computing of query processing. This paper gives a method to solve it based on the Query Scheduling Tree Model (QSTM). It also gives a detailed scheduling algorithm, and analyzes the effectiveness of the model and the algorithm.

  10. City size distributions and spatial economic change.

    PubMed

    Sheppard, E

    1982-10-01

    "The concept of the city size distribution is criticized for its lack of consideration of the effects of interurban interdependencies on the growth of cities. Theoretical justifications for the rank-size relationship have the same shortcomings, and an empirical study reveals that there is little correlation between deviations from rank-size distributions and national economic and social characteristics. Thus arguments suggesting a close correspondence between city size distributions and the level of development of a country, irrespective of intranational variations in city location and socioeconomic characteristics, seem to have little foundation." (summary in FRE, ITA, JPN, ) excerpt

  11. Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals

    NASA Technical Reports Server (NTRS)

    Combi, M. R.

    1985-01-01

    Progress on modeling the spatial distributions of cometary radicals is described. The Monte Carlo particle-trajectory model was generalized to include the full time dependencies of initial comet expansion velocities, nucleus vaporization rates, photochemical lifetimes and photon emission rates which enter the problem through the comet's changing heliocentric distance and velocity. The effect of multiple collisions in the transition zone from collisional coupling to true free flow were also included. Currently available observations of the spatial distributions of the neutral radicals, as well as the latest available photochemical data were re-evaluated. Preliminary exploratory model results testing the effects of various processes on observable spatial distributions are also discussed.

  12. Spatial Distribution of Cyanobacteria in Modern Stromatolites

    NASA Technical Reports Server (NTRS)

    Prufert-Bebout, Lee; Dacles-Mariani, Jennifer; Herbert, Alice; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Living stromatolites consist of complex microbial communities with distinct distribution patterns for different microbial groups. The cyanobacterial populations of Highborne Cay Bahamas exemplify this phenomenon. Field observations reveal distinct distribution patterns for several of these cyanobacterial species. To date 10 different cyanobacterial cultures, including both filamentous and endolithic species, have been isolated from these stromatolites. We will present data on the growth and motility characteristics as well as on the nutritional requirements of these isolates. These data will then be correlated with the field observed distributions for these species. Lastly laboratory simulations of stromatolites grown under various conditions of irradiance, flow and cyanobacterial community composition will be presented. These experiments allow us to evaluate our predictions regarding controls on cyanobacterial distribution.

  13. Clinical imaging of macular pigment optical density and spatial distribution.

    PubMed

    Putnam, Christopher M

    2017-07-01

    Clinical research continues to provide an increasing number of studies that reveal an association between macular pigment optical density (MPOD) and both visual function and ocular health. As a result, there is a growing need for repeatable, accurate measures of MPOD that can describe peak optical density as well as spatial distribution. Measurement of MPOD in a research setting has an established history encompassing a number of both objective and subjective techniques. Transition of these techniques to a clinical setting has produced an array of commercial devices using three primary methods: heterochromatic flicker photometry, fundus autofluorescence and fundus reflectometry. The inherent differences among the techniques create difficulty in making direct comparisons between MPOD measurement devices. Understanding the limitations of each technique is critical in the clinical interpretation of MPOD results. Here, both the objective and subjective methods of MPOD measurement are reviewed with emphasis on the commercially available devices used in clinical settings. © 2016 Optometry Australia.

  14. Spatial bedrock erosion distribution in a natural gorge

    NASA Astrophysics Data System (ADS)

    Beer, A. R.; Turowski, J. M.; Kirchner, J. W.

    2015-12-01

    Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half

  15. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    NASA Astrophysics Data System (ADS)

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution.

  16. Inner membrane fusion mediates spatial distribution of axonal mitochondria.

    PubMed

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-08

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution.

  17. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    PubMed Central

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  18. Directional distribution of chilling winds in Estonia.

    PubMed

    Saue, Triin

    2016-08-01

    Wind chill equivalent temperature (WCET) is used to define thermal discomfort in winter months. Directional distributions of winds, which are associated with uncomfortable weather, were composed of three climatologically different Estonian locations: Vilsandi, Kuusiku, and Jõhvi. Cases with wind chill equivalent temperature <-10 °C, which could be classified as "uncomfortable or worse," were investigated. Additional thresholds were used to measure weather risk. The 25th percentile of daily minimum WCET was tested to measure classical prevalent wind directions in Estonia: W, SW, and NW bring warm air in winter from the North Atlantic, while winds from the East-European plain (NE, E, and SE) are associated with cold air. The eastern prevalence was stronger when a lower threshold was used. A directional approach may find several applications, such as building, agricultural, landscape, or settlement planning.

  19. Directional distribution of chilling winds in Estonia

    NASA Astrophysics Data System (ADS)

    Saue, Triin

    2016-08-01

    Wind chill equivalent temperature (WCET) is used to define thermal discomfort in winter months. Directional distributions of winds, which are associated with uncomfortable weather, were composed of three climatologically different Estonian locations: Vilsandi, Kuusiku, and Jõhvi. Cases with wind chill equivalent temperature <-10 °C, which could be classified as "uncomfortable or worse," were investigated. Additional thresholds were used to measure weather risk. The 25th percentile of daily minimum WCET was tested to measure classical prevalent wind directions in Estonia: W, SW, and NW bring warm air in winter from the North Atlantic, while winds from the East-European plain (NE, E, and SE) are associated with cold air. The eastern prevalence was stronger when a lower threshold was used. A directional approach may find several applications, such as building, agricultural, landscape, or settlement planning.

  20. Spatial Distribution of Small Water Body Types across Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWB), such as ponds and wetlands, can have substantial cumulative effects on hydrologic, biogeochemical, and biological processes; yet the spatial distributions of various SWB types are often unknown. Usi...

  1. Spatial Distribution of Small Water Body Types across Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWB), such as ponds and wetlands, can have substantial cumulative effects on hydrologic, biogeochemical, and biological processes; yet the spatial distributions of various SWB types are often unknown. Usi...

  2. Spatial Distribution of Small Water Body Types in Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWBs), such as ponds and wetlands, can have substantial cumulative effects on hydrologic and biogeochemical processes. Using updated National Wetland Inventory data, we describe the spatial distribution o...

  3. Using Kriging to Interpolate Spatially Distributed Volumetric Medical Data

    DTIC Science & Technology

    1996-12-01

    Routine cases in diagnostic radiology require the interpolation of volumetric medical imaging data sets. Inaccurate renditions of interpolated...patient space. Kriging is investigated in this research to interpolate medical imaging volumes. Kriging requires data to be spatially distributed

  4. SPATIAL DISTRIBUTIONS OF BURROWING SHRIMP POPULATIONS IN TWO OREGON ESTUARIES

    EPA Science Inventory

    Thalassinid burrowing shrimp (Neotrypaea californiensis and Upogebia pugettensis) inhabit large expanses of Pacific estuarine tide flats, from British Columbia to Baja California. The spatial distribution of shrimp populations within estuaries has rarely been quantified because ...

  5. Spatial Distribution of Small Water Body Types in Indiana Ecoregions

    EPA Science Inventory

    Due to their large numbers and biogeochemical activity, small water bodies (SWBs), such as ponds and wetlands, can have substantial cumulative effects on hydrologic and biogeochemical processes. Using updated National Wetland Inventory data, we describe the spatial distribution o...

  6. The Spatial Distribution of Attention within and across Objects

    ERIC Educational Resources Information Center

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.; Vecera, Shaun P.

    2012-01-01

    Attention operates to select both spatial locations and perceptual objects. However, the specific mechanism by which attention is oriented to objects is not well understood. We examined the means by which object structure constrains the distribution of spatial attention (i.e., a "grouped array"). Using a modified version of the Egly et…

  7. Hurricane Directional Wave Spectrum Spatial Variation at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, Edward J.; Wright, C. Wayne; Vandemark, Douglas C.; Krabill, William B.; Garcia, Andrew W.; Houston, Samuel H.; Powell, Mark D.; Black, Peter G.; Marke, Frank D.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    On 26 August 1998, hurricane Bonnie was making landfall near Wilmington, NC. The NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 2.2 km height documented the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC. The aircraft ground track included both segments along the shoreline and Pamlico Sound as well as far offshore. An animation of the directional wave spectrum spatial variation at landfall will be presented and contrasted with the spatial variation when Bonnie was in the open ocean on 24 August 1998.

  8. Effect of Energetic Ion on Spatial Distribution of Recombining Plasma

    NASA Astrophysics Data System (ADS)

    Okamoto, A.; Daibo, A.; Kitajima, S.; Kumagai, T.; Takahashi, H.; Takahashi, T.; Tsubota, S.

    Spatial distribution of electron density is considered. By using a one-dimensional recombining plasma model, effects of transient energetic ion flux are investigated. The time response of the system against the transient flux is dominated by the recombination frequency. The magnitude of modification of the spatial distribution is determined by the ratio between the ionization due to the energetic ion and the recombination of the bulk plasma.

  9. Reconstructing Spatial Distributions from Anonymized Locations

    SciTech Connect

    Horey, James L; Forrest, Stephanie; Groat, Michael

    2012-01-01

    Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstruction algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.

  10. Spatial distribution of Dermacentor reticulatus in Romania.

    PubMed

    Chitimia-Dobler, Lidia

    2015-11-30

    Dermacentor reticulatus (Fabricius, 1794), also known as the marsh tick or ornate dog tick is the second most significant vector (next to Ixodes ricinus) of protozoan, rickettsial and viral pathogens in Europe. Until now, only limited information on the distribution of D. reticulatus in Romania is available. A study was conducted on the distribution of D. reticulatus in Romania during 2012-2014. In this study, D. reticulatus was detected in 17 counties, in 14 of which the species was recorded for the first time. Tick activity was evident throughout the year, except during July and August. Additionally, D. reticulatus was recorded for the first time in Romania from wild boar, foxes and humans. These data suggest that this tick species has a broader geographic range and may have more veterinary and medical importance than previously known.

  11. [Spatial structure analysis and distribution simulation of Therioaphis trifolii population based on geostatistics and GIS].

    PubMed

    Zhang, Rong; Leng, Yun-fa; Zhu, Meng-meng; Wang, Fang

    2007-11-01

    Based on geographic information system and geostatistics, the spatial structure of Therioaphis trifolii population of different periods in Yuanzhou district of Guyuan City, the southern Ningxia Province, was analyzed. The spatial distribution of Therioaphis trifolii population was also simulated by ordinary Kriging interpretation. The results showed that Therioaphis trifolii population of different periods was correlated spatially in the study area. The semivariograms of Therioaphis trifolii could be described by exponential model, indicating an aggregated spatial arrangement. The spatial variance varied from 34.13%-48.77%, and the range varied from 8.751-12.049 km. The degree and direction of aggregation showed that the trend was increased gradually from southwest to northeast. The dynamic change of Therioaphis trifolii population in different periods could be analyzed intuitively on the simulated maps of the spatial distribution from the two aspects of time and space, The occurrence position and degree of Therioaphis trifolii to a state of certain time could be determined easily.

  12. Wigner distribution measurement of the spatial coherence properties of FELs

    NASA Astrophysics Data System (ADS)

    Mey, Tobias; Schäfer, Bernd; Mann, Klaus; Keitel, Barbara; Plönjes, Elke; Kuhlmann, Marion

    2015-09-01

    Free-electron lasers deliver VUV and soft x-ray pulses with the best brilliance available and a high degree of spatial coherence. Users of such facilities have high demands on phase and coherence properties of the beam, for instance when working with coherent diffractive imaging. Thus, detailed knowledge of these parameters is of great importance and provides the possibility for advanced machine studies. The Wigner distribution function (WDF) describes the entire propagation properties of an electromagnetic beam including all information on its spatial coherence. It can be reconstructed from beam profiles taken at different positions along its propagation direction. Here, we present measurements of the WDF conducted at the Free-electron laser FLASH at DESY. As a result, we derive the entire four-dimensional mutual coherence function, the coherence lengths and the global degree of coherence. Additionally, we provide an estimation of the possible error that our algorithm might produce for the derived quantities. In comparison to existing studies that characterize the photon beam of FLASH, we find significantly lower values for the global degree of coherence. This difference cannot be explained by our error estimation. We explore the possible reasons for this discrepancy and their effect on the value of the global degree of coherence.

  13. [Spatial temporal distribution of mumps in Gansu, 2009-2013].

    PubMed

    Liu, Dongpeng; Meng, Lei; Gou, Faxiang; Wei, Kongfu; Yang, Xiaoting; Liu, Xinfeng

    2015-11-01

    To detect the spatial temporal distribution of mumps in Gansu by means of spatial statistics. The county-based incidence of mumps from 2009 to 2013 was used to calculate the global Moran's I and local G statistics, and analyze its spatial temporal distribution characteristics. The incidence of mumps in Gansu were spatial auto-correlated from 2009 to 2013 respectively (P<0.001), and the hot spots were mainly distributed in Hexi area, while the cold spots were distributed in Tianshui, Longnan and Qingyang. Spatial temporal analysis showed that the high incidence of mumps was most likely to be detect in Hexi area (RR=3.05, LLR=4 670.995, P<0.001), and the low incidence was most likely to be detect in Longdong area (RR=0.36, LLR=1 980.686, P<0.001). The spatial and spatial temporal clustering of mumps existed in Gansu from 2009 to 2013, the results can be used in the development of mumps prevention and control measure in Gansu.

  14. Spatial Latent Class Analysis Model for Spatially Distributed Multivariate Binary Data

    PubMed Central

    Wall, Melanie M.; Liu, Xuan

    2009-01-01

    A spatial latent class analysis model that extends the classic latent class analysis model by adding spatial structure to the latent class distribution through the use of the multinomial probit model is introduced. Linear combinations of independent Gaussian spatial processes are used to develop multivariate spatial processes that are underlying the categorical latent classes. This allows the latent class membership to be correlated across spatially distributed sites and it allows correlation between the probabilities of particular types of classes at any one site. The number of latent classes is assumed fixed but is chosen by model comparison via cross-validation. An application of the spatial latent class analysis model is shown using soil pollution samples where 8 heavy metals were measured to be above or below government pollution limits across a 25 square kilometer region. Estimation is performed within a Bayesian framework using MCMC and is implemented using the OpenBUGS software. PMID:20161235

  15. Accounting for Vegetation Effects in Spatially Distributed Snowmelt Modeling

    NASA Astrophysics Data System (ADS)

    Garen, D. C.; Marks, D.

    2004-05-01

    The effects of vegetation on snowpack energy dynamics can be highly significant and must be taken into account when simulating snowmelt. This becomes challenging, however, for spatially distributed models covering large areas such as river basins. In this case, processes occurring at the scale of individual trees or bushes must be parameterized and upscaled to the size of the model's grid cells, which could range from 10 up to a few hundred meters. An application of a spatially distributed energy balance snowmelt model to the Boise River basin in Idaho, USA has required the development of algorithms to account for the effects of vegetation (especially forest) on the climate input data to the model. This particularly affects the solar and thermal radiation input to the snowpack, including not only the direct effects of the vegetation but also the effect of vegetation debris on the snow albedo. Vegetation effects on vertical profiles of wind speed and temperature could not be considered due to limited measurements, and only a crude estimate of wind speed differences between forested and nonforested grid cells was used. The simulated snow fields were verified using point snow water equivalent and snow depth data as well as satellite images of snow covered area. Although good results were obtained in these comparisons, each of these methods has limitations, in that point measurements are not necessarily representative of a grid cell, and satellite images have a coarse resolution and cannot detect snow under trees. Another test was to use the simulated snowmelt fields as input to a spatially distributed water balance and streamflow simulation model, which indicated that the volume and timing of snowmelt input to the basin were accurately represented. A limitation of the modeling method used is that the models are run independently in sequence, the output of one being stored and becoming the input of the next. This means that there is no opportunity for feedbacks between

  16. Morphological classification and spatial distribution of Philippine volcanoes

    NASA Astrophysics Data System (ADS)

    Paguican, E. M. R.; Kervyn, M.; Grosse, P.

    2016-12-01

    The Philippines is an island arc composed of two major blocks: the aseismic Palawan microcontinental block and the Philippine mobile belt. It is bounded by opposing subduction zones, with the left-lateral Philippine Fault running north-south. This setting is ideal for volcano formation and growth, making it one of the best places to study the controls on island arc volcano morphometry and evolution. In this study, we created a database of volcanic edifices and structures identified on the SRTM 30 m digital elevation models (DEM). We computed the morphometry of each edifice using MORVOLC, an IDL code for generating quantitative parameters based on a defined volcano base and DEM. Morphometric results illustrate the large range of sizes and volumes of Philippine volcanoes. Heirarchical classification by principal component analysis distinguishes between large massifs, large cones/sub-cones, small shields/sub-cones, and small cones, based mainly on size (volume, basal width) and steepness (height/basal width ratio, average slopes). Poisson Nearest Neighbor analysis was used to examine the spatial distribution of volcano centroids. Spatial distribution of the different types of volcanoes suggests that large volcanic massifs formed on thickened crust. Although all the volcanic fields and arcs are a response to tectonic activity such as subduction or rifting, only West Luzon, North and South Mindanao, and Eastern Philippines volcanic arcs and Basilan, Macolod, and Maramag volcanic fields present a statistical clustering of volcanic centers. Spatial distribution and preferential alignment of edifices in all volcanic fields confirm that regional structures had some control on their formation. Volcanoes start either as steep cones or as less steep sub-cones and shields. They then grow into large cones, sub-cones and eventually into massifs as eruption focus shifts within the volcano and new eruptive material is deposited on the slopes. Examination of the directions of

  17. Spatial distribution visualization of PWM continuous variable-rate spray

    USDA-ARS?s Scientific Manuscript database

    Chemical application is a dynamic spatial distribution process, during which spray liquid covers the targets with certain thickness and uniformity. Therefore, it is important to study the 2-D and 3-D (dimensional) spray distribution to evaluate spraying quality. The curve-surface generation methods ...

  18. Spatial distribution of Lindane concentration in topsoil across France.

    PubMed

    Orton, T G; Saby, N P A; Arrouays, D; Jolivet, C C; Villanneau, E J; Marchant, B P; Caria, G; Barriuso, E; Bispo, A; Briand, O

    2013-01-15

    Lindane [γ-hexachlorocyclohexane (γ-HCH)] is an organochlorine pesticide with toxic effects on humans. It is bioaccumulative and can remain in soils for long periods, and although its use for crop spraying was banned in France in 1998, it is possible that residues from before this time remain in the soil. The RMQS soil monitoring network consists of soil samples from 2200 sites on a 16 km regular grid across France, collected between 2002 and 2009. We use 726 measurements of the Lindane concentration in these samples to (i) investigate the main explanatory factors for its spatial distribution across France, and (ii) map this distribution. Geostatistics provides an appropriate framework to analyze our spatial dataset, though two issues regarding the data are worth special consideration: first, the harmonization of two subsets of the data (which were analyzed using different measurement processes), and second, the large proportion of data from one of these subsets that fell below a limit of quantification. We deal with these issues using recent methodological developments in geostatistics. Results demonstrate the importance of land use and rainfall for explaining part of the variability of Lindane across France: land use due to the past direct input of Lindane on cropland and its subsequent persistence in the soil, and rainfall due to the re-deposition of volatilized Lindane. Maps show the concentrations to be generally largest in the north and northwest of France, areas of more intensive agricultural land. We also compare levels to some contamination thresholds taken from the literature, and present maps showing the probability of Lindane concentrations exceeding these thresholds across France. These maps could be used as guidelines for deciding which areas require further sampling before some possible remediation strategy could be applied.

  19. Temporal evolution and spatial distribution of maternal death

    PubMed Central

    Carreno, Ioná; Bonilha, Ana Lúcia de Lourenzi; da Costa, Juvenal Soares Dias

    2014-01-01

    OBJECTIVE To analyze the temporal evolution of maternal mortality and its spatial distribution. METHODS Ecological study with a sample made up of 845 maternal deaths in women between 10 and 49 years, registered from 1999 to 2008 in the state of Rio Grande do Sul, Southern Brazil. Data were obtained from Information System on Mortality of Ministry of Health. The maternal mortality ratio and the specific maternal mortality ratio were calculated from records, and analyzed by the Poisson regression model. In the spatial distribution, three maps of the state were built with the rates in the geographical macro-regions, in 1999, 2003, and 2008. RESULTS There was an increase of 2.0% in the period of ten years (95%CI 1.00;1.04; p = 0.01), with no significant change in the magnitude of the maternal mortality ratio. The Serra macro-region presented the highest maternal mortality ratio (1.15, 95%CI 1.08;1.21; p < 0.001). Most deaths in Rio Grande do Sul were of white women over 40 years, with a lower level of education. The time of delivery/abortion and postpartum are times of increased maternal risk, with a greater negative impact of direct causes such as hypertension and bleeding. CONCLUSIONS The lack of improvement in maternal mortality ratio indicates that public policies had no impact on women’s reproductive and maternal health. It is needed to qualify the attention to women’s health, especially in the prenatal period, seeking to identify and prevent risk factors, as a strategy of reducing maternal death. PMID:25210825

  20. Guaranteed spatial initialization of distributed spacecraft formations

    NASA Technical Reports Server (NTRS)

    Scharf, Daniel P.; Ploen, Scott R.; Hadaegh, Fred Y.; Sohl, Garett A.

    2004-01-01

    In a precious paper the authors developed a formation initialization (FI) algorithm for a deep space, N-spacecraft formation. It was demonstrated analytically that this FI contribution of this paper is to extend this planar guarantee to deep space formations with arbitrary initial conditions. As part of the guarantee of initialization, a bound on the time-to-initialize is obtained. The guaranteed FI algorithm is then demonstrated for a two-spacecraft formation with realistic deep space mission constraints (e.g. limited field-of-view relative sensors and attitude constraints). The two-spacecraft scenario is challenging in that it has the least relative sensor field-of-view overlap. Finally, for this scenario, the distribution of time-to-initialize is characterized through a 150,000-case Monte Carlo analysis.

  1. Spatial distribution of SOM parameters during paddy soil evolution

    NASA Astrophysics Data System (ADS)

    Kölbl, Angelika; Müller-Niggemann, Cornelia; Schwark, Lorenz; Cao, Zhihong; Fu, Jianrong; Kögel-Knabner, Ingrid

    2010-05-01

    During the past 2000 years new farmland was created through consecutive land reclamation by protective dikes in the Zhejiang province (Yangtze River Delta, PR China). The consecutive construction of dikes provides a unique chronosequence of soil formation under agricultural use. Parts of the land are used for paddy rice, other parts for a variety of non-irrigated crops (control sites). These soils document the effect of soil redox conditions on the evolution of soil organic matter (SOM) parameters and their spatial distribution during pedogenesis. We hypothesised that the spatial pattern of SOM parameters will change with increasing duration of paddy soil use, leading to a spatial homogenisation due to frequent puddling of topsoils. The subsoils are assumed to be characterised by a higher spatial heterogeneity due to an increased number of redox cycles and ongoing transport processes in the undisturbed subsoil layers. We sampled three plots within the chronosequence (50, 300 and 1000 years of paddy cultivation) to investigate the development of the spatial dependence of SOM parameters. A regular, orthogonal grid with a size of 25 x 25 m and consisting of 70 sampling positions was used at each plot. Three soil depths were sampled, including the puddled topsoil, the plough layer, and a mixed subsoil layer. The measurements included total C and N as well as organic C (OC) concentrations, soil colour and magnetic susceptibility. In each soil layer of the 50 and 300 y old paddy plots, no spatial dependencies of the SOM parameters were found, but a significant spatial dependence was found in each soil layer of the 1000y old paddy site. The spatial distribution of OC and N in the topsoil showed a higher range, a higher (semi-)variance and a stronger spatial dependence compared to the subsoil. Furthermore, the spatial pattern of OC and N is considerably different between top- and subsoil, indicating that OC distributions below the plough layer are controlled by different

  2. Cognitive Mechanisms Underlying Directional and Non-directional Spatial-Numerical Associations across the Lifespan.

    PubMed

    Ninaus, Manuel; Moeller, Korbinian; Kaufmann, Liane; Fischer, Martin H; Nuerk, Hans-Christoph; Wood, Guilherme

    2017-01-01

    There is accumulating evidence suggesting an association of numbers with physical space. However, the origin of such spatial-numerical associations (SNAs) is still debated. In the present study we investigated the development of two SNAs in a cross-sectional study involving children, young and middle-aged adults as well as the elderly: (1) the SNARC (spatial-numerical association of response codes) effect, reflecting a directional SNA; and (2) the numerical bisection bias in a line bisection task with numerical flankers. Results revealed a consistent SNARC effect in all age groups that continuously increased with age. In contrast, a numerical bisection bias was only observed for children and elderly participants, implying an U-shaped distribution of this bias across age groups. Additionally, individual SNARC effects and numerical bisection biases did not correlate significantly. We argue that the SNARC effect seems to be influenced by longer-lasting experiences of cultural constraints such as reading and writing direction and may thus reflect embodied representations. Contrarily, the numerical bisection bias may originate from insufficient inhibition of the semantic influence of irrelevant numerical flankers, which should be more pronounced in children and elderly people due to development and decline of cognitive control, respectively. As there is an ongoing debate on the origins of SNAs in general and the SNARC effect in particular, the present results are discussed in light of these differing accounts in an integrative approach. However, taken together, the present pattern of results suggests that different cognitive mechanisms underlie the SNARC effect and the numerical bisection bias.

  3. Soil nutrients influence spatial distributions of tropical tree species.

    PubMed

    John, Robert; Dalling, James W; Harms, Kyle E; Yavitt, Joseph B; Stallard, Robert F; Mirabello, Matthew; Hubbell, Stephen P; Valencia, Renato; Navarrete, Hugo; Vallejo, Martha; Foster, Robin B

    2007-01-16

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (<10(4) km(2)) and regional scales. At local scales (<1 km(2)), however, habitat factors and species distributions show comparable spatial aggregation, making it difficult to disentangle the importance of niche and dispersal processes. In this article, we test soil resource-based niche assembly at a local scale, using species and soil nutrient distributions obtained at high spatial resolution in three diverse neotropical forest plots in Colombia (La Planada), Ecuador (Yasuni), and Panama (Barro Colorado Island). Using spatial distribution maps of >0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species.

  4. Development of Spatial Distribution Patterns by Biofilm Cells

    PubMed Central

    Haagensen, Janus A. J.; Hansen, Susse K.; Christensen, Bjarke B.; Molin, Søren

    2015-01-01

    Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. strain C6, originally isolated from a creosote-polluted aquifer, has evolved a distinct spatial organization in the laboratory that is characterized by an increased fitness and productivity. In this consortium, P. putida is reliant on microcolonies formed by Acinetobacter sp. C6, to which it attaches. Here we describe the processes that lead to the microcolony pattern by Acinetobacter sp. C6. Ecological spatial pattern analyses revealed that the microcolonies were not entirely randomly distributed and instead were arranged in a uniform pattern. Detailed time-lapse confocal microscopy at the single-cell level demonstrated that the spatial pattern was the result of an intriguing self-organization: small multicellular clusters moved along the surface to fuse with one another to form microcolonies. This active distribution capability was dependent on environmental factors (carbon source and oxygen) and historical contingency (formation of phenotypic variants). The findings of this study are discussed in the context of species distribution patterns observed in macroecology, and we summarize observations about the processes involved in coadaptation between P. putida and Acinetobacter sp. C6. Our results contribute to an understanding of spatial species distribution patterns as they are observed in nature, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity. PMID:26116674

  5. Spatial heterogeneity in distribution and ecology of Western Palearctic birds.

    PubMed

    Møller, A P; Soler, J J; Vivaldi, M Martín

    2010-09-01

    Species vary in abundance and heterogeneity of spatial distribution, and the ecological and evolutionary consequences of such variability are poorly known. Evolutionary adaptation to heterogeneously distributed resources may arise from local adaptation with individuals of such locally adapted populations rarely dispersing long distances and hence having small populations and small overall ranges. We quantified mean population density and spatial heterogeneity in population density of 197 bird species across 12 similarly sized regions in the Western Palearctic. Variance in population density among regions differed significantly from a Poisson distribution, suggesting that random processes cannot explain the observed patterns. National estimates of means and variances in population density were positively correlated with continental estimates, suggesting that means and variances were maintained across spatial scales. We used Morisita's index of population abundance as an estimate of heterogeneity in distribution among regions to test a number of predictions. Heterogeneously distributed passerine bird species as reflected by Morisita's index had small populations, low population densities, and small breeding ranges. Their breeding populations had been consistently maintained at low levels for considerable periods of time, because the degree of genetic variation in a subsample of non-passerines and passerines was significantly negatively related to heterogeneity in distribution. Heterogeneously distributed passerine species were not more often habitat specialists than homogeneously distributed species. Furthermore, heterogeneously distributed passerine species had high annual adult survival rates but did not differ in annual fecundity from homogeneously distributed species. Heterogeneously distributed passerine species rarely colonized urban habitats. Finally, homogeneously distributed bird species were hosts to a greater diversity of blood parasite species than

  6. Modelling the spatial colour distribution of phosphor-white high power light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Keppens, A.; Denijs, S.; Wouters, S.; Ryckaert, W. R.; Deconinck, G.; Hanselaer, P.

    2010-05-01

    In contrast to the spatial (luminous) intensity distribution of high power light-emitting diodes (LEDs), little effort has been made to examine the spatial colour distribution of these light sources, i.e. the values of CIE colour coordinates as a function of direction in space. The spatial colour variation is negligible for single colour emitters, but this is not the case for bichromatic white LEDs using phosphor for wavelength conversion. As the latter diode types are most often used for high colour rendering applications, a quantitative description of their colour distribution is necessary. Therefore, photogoniometer measurements have been performed on a variety of white light-emitting diodes incorporating a planar (remote) phosphor. In this paper measurement results are used to discuss and model the spatial colour distribution of phosphor-white LEDs. Such LEDs appear to show an intrinsic and inevitable spatial colour variation. Furthermore, the measurement data and constructed model allow evaluating the visibility of spatial colour differences and the relevance of colour binning measurements at the end of LED package production lines. Using insights on spatial colour distribution gathered throughout this paper, a design proposal is made to vastly decrease the colour variation of phosphor-white LEDs.

  7. Verifying the Dependence of Fractal Coefficients on Different Spatial Distributions

    SciTech Connect

    Gospodinov, Dragomir; Marekova, Elisaveta; Marinov, Alexander

    2010-01-21

    A fractal distribution requires that the number of objects larger than a specific size r has a power-law dependence on the size N(r) = C/r{sup D}propor tor{sup -D} where D is the fractal dimension. Usually the correlation integral is calculated to estimate the correlation fractal dimension of epicentres. A 'box-counting' procedure could also be applied giving the 'capacity' fractal dimension. The fractal dimension can be an integer and then it is equivalent to a Euclidean dimension (it is zero of a point, one of a segment, of a square is two and of a cube is three). In general the fractal dimension is not an integer but a fractional dimension and there comes the origin of the term 'fractal'. The use of a power-law to statistically describe a set of events or phenomena reveals the lack of a characteristic length scale, that is fractal objects are scale invariant. Scaling invariance and chaotic behavior constitute the base of a lot of natural hazards phenomena. Many studies of earthquakes reveal that their occurrence exhibits scale-invariant properties, so the fractal dimension can characterize them. It has first been confirmed that both aftershock rate decay in time and earthquake size distribution follow a power law. Recently many other earthquake distributions have been found to be scale-invariant. The spatial distribution of both regional seismicity and aftershocks show some fractal features. Earthquake spatial distributions are considered fractal, but indirectly. There are two possible models, which result in fractal earthquake distributions. The first model considers that a fractal distribution of faults leads to a fractal distribution of earthquakes, because each earthquake is characteristic of the fault on which it occurs. The second assumes that each fault has a fractal distribution of earthquakes. Observations strongly favour the first hypothesis.The fractal coefficients analysis provides some important advantages in examining earthquake spatial

  8. Verifying the Dependence of Fractal Coefficients on Different Spatial Distributions

    NASA Astrophysics Data System (ADS)

    Gospodinov, Dragomir; Marekova, Elisaveta; Marinov, Alexander

    2010-01-01

    A fractal distribution requires that the number of objects larger than a specific size r has a power-law dependence on the size N(r) = C/rD∝r-D where D is the fractal dimension. Usually the correlation integral is calculated to estimate the correlation fractal dimension of epicentres. A `box-counting' procedure could also be applied giving the `capacity' fractal dimension. The fractal dimension can be an integer and then it is equivalent to a Euclidean dimension (it is zero of a point, one of a segment, of a square is two and of a cube is three). In general the fractal dimension is not an integer but a fractional dimension and there comes the origin of the term `fractal'. The use of a power-law to statistically describe a set of events or phenomena reveals the lack of a characteristic length scale, that is fractal objects are scale invariant. Scaling invariance and chaotic behavior constitute the base of a lot of natural hazards phenomena. Many studies of earthquakes reveal that their occurrence exhibits scale-invariant properties, so the fractal dimension can characterize them. It has first been confirmed that both aftershock rate decay in time and earthquake size distribution follow a power law. Recently many other earthquake distributions have been found to be scale-invariant. The spatial distribution of both regional seismicity and aftershocks show some fractal features. Earthquake spatial distributions are considered fractal, but indirectly. There are two possible models, which result in fractal earthquake distributions. The first model considers that a fractal distribution of faults leads to a fractal distribution of earthquakes, because each earthquake is characteristic of the fault on which it occurs. The second assumes that each fault has a fractal distribution of earthquakes. Observations strongly favour the first hypothesis. The fractal coefficients analysis provides some important advantages in examining earthquake spatial distribution, which are

  9. Estimating and Modeling Gene Flow for a Spatially Distributed Species

    DTIC Science & Technology

    1991-01-01

    AD-A238 221/I1 Estimating and modeling gene flow for a spatially distributed species JUL1 7 1961T. Burr 1 and T. V. Kurien 2 Department of Statistics...modeling gene flow for a spatially distributed species. By T. Burr and T. V. Kurien Departmeii Of Statistics Florida State University Abstract This...chromosome (referred to as a locus) is a meaningful string of several hundred symbols called a gene . Typ- ically there are many loci on a chromosome. The

  10. Airborne measurements of spatial NO2 distributions during AROMAT

    NASA Astrophysics Data System (ADS)

    Meier, Andreas Carlos; Seyler, André; Schönhardt, Anja; Richter, Andreas; Ruhtz, Thomas; Lindemann, Carsten; Burrows, John P.

    2015-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In September 2014 several European research groups conducted the ESA funded Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign to test and intercompare newly developed airborne observation sytsems dedicated to air quality satellite validation studies. The IUP Bremen contributed to this campaign with its Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution (AirMAP) on board a Cessna 207 turbo, operated by the FU Berlin. AirMAP allows the retrieval of integrated NO2 column densities in a stripe below the aircraft at a fine spatial resolution of up to 30 x 80 m2, at a typical flight altitude. Measurements have been performed over the city of Bucharest, creating for the first time high spatial resolution maps of Bucharest's NO2 distribution in a time window of approx. 2 hours. The observations were synchronised with ground-based car MAX-DOAS measurements for comparison. In addition, measurements were taken over the city of Berlin, Germany and at the Rovinari power plant, Romania. In this work the results of the research flights will be presented and conclusions will be drawn on the quality of the measurements, their applicability for satellite data validation and possible improvements for future measurements.

  11. Spatial and temporal predictions of moose winter distribution.

    PubMed

    Månsson, J; Bunnefeld, N; Andrén, H; Ericsson, G

    2012-10-01

    Herbivores are usually distributed unevenly across the landscape often because of variation in resource availability. We used zero-inflated generalised additive models (to account for data with a high number of zeros) that include georeferences to predict winter distribution of a large herbivore (moose Alces alces). Moose distribution was analysed in relation to forage availability and distance to neighbouring sites. Our results showed that the ability to explain moose distribution indexed by pellet count data at a local scale increased when spatial information (longitude and latitude) was added to the model compared to the model only including food availability. By using the relationship between moose and forage distribution, and the spatial information, we predicted patch choice by moose reasonably well in 2 out of 4 years. However, the distribution of moose was also influenced by weather conditions, as it was most clumped in the year with most snow. In conclusion, our study lends support for a non-linear approach using georeferences for a comprehensive understanding of herbivore distribution at a small scale. This result also indicates that the use of a certain patch by moose not only depends on the selected patch itself but is also influenced by the neighbouring patch and factors at a larger spatial scale, such as moose management influencing the density above moose home range level. The relatively high proportion of unexplained variation suggests that the use of a certain patch is also influenced by other factors such as topography, predation, competition, weather conditions, and wildlife management strategies.

  12. Unleashing spatially distributed ecohydrology modeling using Big Data tools

    NASA Astrophysics Data System (ADS)

    Miles, B.; Idaszak, R.

    2015-12-01

    Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well

  13. BATSE analysis techniques for probing the GRB spatial and luminosity distributions

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Meegan, Charles A.

    1992-01-01

    The Burst And Transient Source Experiment (BATSE) has measured homogeneity and isotropy parameters from an increasingly large sample of observed gamma-ray bursts (GRBs), while also maintaining a summary of the way in which the sky has been sampled. Measurement of both of these are necessary for any study of the BATSE data statistically, as they take into account the most serious observational selection effects known in the study of GRBs: beam-smearing and inhomogeneous, anisotropic sky sampling. Knowledge of these effects is important to analysis of GRB angular and intensity distributions. In addition to determining that the bursts are local, it is hoped that analysis of such distributions will allow boundaries to be placed on the true GRB spatial distribution and luminosity function. The technique for studying GRB spatial and luminosity distributions is direct. Results of BATSE analyses are compared to Monte Carlo models parameterized by a variety of spatial and luminosity characteristics.

  14. BATSE analysis techniques for probing the GRB spatial and luminosity distributions

    NASA Technical Reports Server (NTRS)

    Hakkila, Jon; Meegan, Charles A.

    1992-01-01

    The Burst And Transient Source Experiment (BATSE) has measured homogeneity and isotropy parameters from an increasingly large sample of observed gamma-ray bursts (GRBs), while also maintaining a summary of the way in which the sky has been sampled. Measurement of both of these are necessary for any study of the BATSE data statistically, as they take into account the most serious observational selection effects known in the study of GRBs: beam-smearing and inhomogeneous, anisotropic sky sampling. Knowledge of these effects is important to analysis of GRB angular and intensity distributions. In addition to determining that the bursts are local, it is hoped that analysis of such distributions will allow boundaries to be placed on the true GRB spatial distribution and luminosity function. The technique for studying GRB spatial and luminosity distributions is direct. Results of BATSE analyses are compared to Monte Carlo models parameterized by a variety of spatial and luminosity characteristics.

  15. Spatial distribution of Cherenkov light from cascade showers in water

    SciTech Connect

    Khomyakov, V. A. Bogdanov, A. G.; Kindin, V. V.; Kokoulin, R. P.; Petrukhin, A. A.; Khokhlov, S. S.; Shutenko, V. V.; Yashin, I. I.

    2016-12-15

    The spatial distribution of the Cherenkov light generated by cascade showers is analyzed using the NEVOD Cherenkov water detector. The dependence of the Cherenkov light intensity on the depth of shower development at various distances from the shower axis is investigated for the first time. The experimental data are compared with the Cherenkov light distributions predicted by various models for the scattering of cascade particles.

  16. Unbiased estimators for spatial distribution functions of classical fluids.

    PubMed

    Adib, Artur B; Jarzynski, Christopher

    2005-01-01

    We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density rho(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.

  17. Spatial distribution of N-cycling microbial communities showed complex patterns in constructed wetland sediments.

    PubMed

    Correa-Galeote, David; Marco, Diana E; Tortosa, Germán; Bru, David; Philippot, Laurent; Bedmar, Eulogio J

    2013-02-01

    Constructed wetlands are used for biological treatment of wastewater from agricultural lands carrying pollutants such as nitrates. Nitrogen removal in wetlands occurs from direct assimilation by plants and through microbial nitrification and denitrification. We investigated the spatial distribution of N-cycling microbial communities and genes involved in nitrification and denitrification in constructed wetland sediments receiving irrigation water. We used quantitative real-time PCR (qPCR) to characterize microbial communities. Geostatistical variance analysis was used to relate them with vegetation cover and biogeochemical sediment properties. The spatial distribution of the N-cycling microbial communities of sediments was heterogeneous and complex. Total communities of bacteria and crenarchaea showed different spatial distributions. Analysis of autocorrelation patterns through semivariance indicated a tendency towards a patchy distribution over scales around 10 m for genes involved in the nitrification and denitrification processes. In contrast, biogeochemical sediment properties showed diverse spatial distributions. While almost no patchiness was found for pH and moisture, patchiness at scales between 8 and 10 m was detected for carbon, nitrate and ammonia. Denitrification variables showed spatial autocorrelation at scales comparable to genes. However, denitrifying enzyme activity and potential N(2)O production showed a common spatial pattern, different from that of the N(2)O/(N(2)O + N(2)).

  18. Mechanical Motion Induced by Spatially Distributed Limit-Cycle Oscillators

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Mukae, Yuuki

    2017-03-01

    Spatially distributed limited-cycle oscillators are seen in various physical and biological systems. In internal organs, mechanical motions are induced by the stimuli of spatially distributed limit-cycle oscillators. We study several mechanical motions by limit-cycle oscillators using simple model equations. One problem is deformation waves of radius oscillation induced by desynchronized limit-cycle oscillators, which is motivated by peristaltic motion of the small intestine. A resonance-like phenomenon is found in the deformation waves, and particles can be transported by the deformation waves. Another is the beating motion of the heart. The expansion and contraction motion is realized by a spatially synchronized limit-cycle oscillation; however, the strong beating disappears by spiral chaos, which is closely related to serious arrhythmia in the heart.

  19. Dynamics of strongly coupled spatially distributed logistic equations with delay

    NASA Astrophysics Data System (ADS)

    Kashchenko, I. S.; Kashchenko, S. A.

    2015-04-01

    The dynamics of a system of two logistic delay equations with spatially distributed coupling is studied. The coupling coefficient is assumed to be sufficiently large. Special nonlinear systems of parabolic equations are constructed such that the behavior of their solutions is determined in the first approximation by the dynamical properties of the original system.

  20. Recording the spatial distribution of coherent-radiation intensity

    SciTech Connect

    Zaslavskii, V.Y.; Przhevskii, S.S.; Shalomeeva, N.V.

    1986-01-01

    This paper discusses the feasibility of recording the spatial distribution of laser-radiation intensity, which is proven theoretically and confirmed by experiment. The authors consider the influence of the inhomogeneity and the wave front of radiation within the confines of a focusing optical element on the character of the diffracted image of the element.

  1. Spatial distribution read-out system for thermoluminescence sheets

    NASA Technical Reports Server (NTRS)

    Yamamoto, I.; Tomiyama, T.; Imaeda, K.; Ninagawa, K.; Wada, T.; Yamashita, Y.; Misaki, A.

    1985-01-01

    A spatial distribution read-out system of thermoluminescence (TL) sheets is developed. This system consists of high gain image intensifier, a CCD-TV camera, a video image processor and a host computer. This system has been applied to artificial TL sheets (BaSO4:Eu doped) for detecting high energy electromagnetic shower and heavy nuclei tracks.

  2. A crucial role for spatial distribution in bacterial quorum sensing

    PubMed Central

    Gao, Meng; Zheng, Huizhen; Ren, Ying; Lou, Ruyun; Wu, Fan; Yu, Weiting; Liu, Xiudong; Ma, Xiaojun

    2016-01-01

    Quorum sensing (QS) is a process that enables bacteria to communicate using secreted signaling molecules, and then makes a population of bacteria to regulate gene expression collectively and control behavior on a community-wide scale. Theoretical studies of efficiency sensing have suggested that both mass-transfer performance in the local environment and the spatial distribution of cells are key factors affecting QS. Here, an experimental model based on hydrogel microcapsules with a three-dimensional structure was established to investigate the influence of the spatial distribution of cells on bacterial QS. Vibrio harveyi cells formed different spatial distributions in the microcapsules, i.e., they formed cell aggregates with different structures and sizes. The cell aggregates displayed stronger QS than did unaggregated cells even when equal numbers of cells were present. Large aggregates (LA) of cells, with a size of approximately 25 μm, restricted many more autoinducers (AIs) than did small aggregates (SA), with a size of approximately 10 μm, thus demonstrating that aggregate size significantly affects QS. These findings provide a powerful demonstration of the fact that the spatial distribution of cells plays a crucial role in bacterial QS. PMID:27698391

  3. Spatial distribution of glycerophospholipids in the ocular lens.

    PubMed

    Pól, Jaroslav; Vidová, Veronika; Hyötyläinen, Tuulia; Volný, Michael; Novák, Petr; Strohalm, Martin; Kostiainen, Risto; Havlíček, Vladimír; Wiedmer, Susanne K; Holopainen, Juha M

    2011-04-29

    Knowledge of the spatial distribution of lipids in the intraocular lens is important for understanding the physiology and biochemistry of this unique tissue and for gaining a better insight into the mechanisms underlying diseases of the lens. Following our previous study showing the spatial distribution of sphingolipids in the porcine lens, the current study used ultra performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOFMS) to provide the whole lipidome of porcine lens and these studies were supplemented by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) of the lens using ultra-high resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) to determine the spatial distribution of glycerophospholipids. Altogether 172 lipid species were identified with high confidence and their concentration was determined. Sphingomyelins, phosphatidylcholines, and phosphatidylethanolamines were the most abundant lipid classes. We then determined the spatial and concentration-dependent distributions of 20 phosphatidylcholines, 6 phosphatidylethanolamines, and 4 phosphatidic acids. Based on the planar molecular images of the lipids, we report the organization of fiber cell membranes within the ocular lens and suggest roles for these lipids in normal and diseased lenses.

  4. Analysis of thrips distribution: application of spatial statistics and Kriging

    Treesearch

    John Aleong; Bruce L. Parker; Margaret Skinner; Diantha Howard

    1991-01-01

    Kriging is a statistical technique that provides predictions for spatially and temporally correlated data. Observations of thrips distribution and density in Vermont soils are made in both space and time. Traditional statistical analysis of such data assumes that the counts taken over space and time are independent, which is not necessarily true. Therefore, to analyze...

  5. Spatial distribution of pipe collapses in Goodwin Creek Watershed, Mississippi

    USDA-ARS?s Scientific Manuscript database

    Internal erosion of soil pipes can induce pipe collapses that affect soil erosion process and landform evolution. The objective of this study was to determine the spatial distribution of pipe collapses in agricultural fields of Goodwin Creek watershed. Ground survey was carried out to detect pipe co...

  6. Anterior hippocampus and goal-directed spatial decision making.

    PubMed

    Viard, Armelle; Doeller, Christian F; Hartley, Tom; Bird, Chris M; Burgess, Neil

    2011-03-23

    Planning spatial paths through our environment is an important part of everyday life and is supported by a neural system including the hippocampus and prefrontal cortex. Here we investigated the precise functional roles of the components of this system in humans by using fMRI as participants performed a simple goal-directed route-planning task. Participants had to choose the shorter of two routes to a goal in a visual scene that might contain a barrier blocking the most direct route, requiring a detour, or might be obscured by a curtain, requiring memory for the scene. The participant's start position was varied to parametrically manipulate their proximity to the goal and the difference in length of the two routes. Activity in medial prefrontal cortex, precuneus, and left posterior parietal cortex was associated with detour planning, regardless of difficulty, whereas activity in parahippocampal gyrus was associated with remembering the spatial layout of the visual scene. Activity in bilateral anterior hippocampal formation showed a strong increase the closer the start position was to the goal, together with medial prefrontal, medial and posterior parietal cortices. Our results are consistent with computational models in which goal proximity is used to guide subsequent navigation and with the association of anterior hippocampal areas with nonspatial functions such as arousal and reward expectancy. They illustrate how spatial and nonspatial functions combine within the anterior hippocampus, and how these functions interact with parahippocampal, parietal, and prefrontal areas in decision making and mnemonic function.

  7. Spatial distribution of filament elasticity determines the migratory behaviors of a cell

    PubMed Central

    Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer

    2016-01-01

    ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488

  8. Fractal nature of hydrocarbon deposits. 2. Spatial distribution

    SciTech Connect

    Barton, C.C.; Schutter, T.A; Herring, P.R.; Thomas, W.J. ); Scholz, C.H. )

    1991-03-01

    Hydrocarbons are unevenly distributed within reservoirs and are found in patches whose size distribution is a fractal over a wide range of scales. The spatial distribution of the patches is also fractal and this can be used to constrain the design of drilling strategies also defined by a fractal dimension. Fractal distributions are scale independent and are characterized by a power-law scaling exponent termed the fractal dimension. The authors have performed fractal analyses on the spatial distribution of producing and showing wells combined and of dry wells in 1,600-mi{sup 2} portions of the Denver and Powder River basins that were nearly completely drilled on quarter-mile square-grid spacings. They have limited their analyses to wells drilled to single stratigraphic intervals so that the map pattern revealed by drilling is representative of the spatial patchiness of hydrocarbons at depth. The fractal dimensions for the spatial patchiness of hydrocarbons in the two basins are 1.5 and 1.4, respectively. The fractal dimension for the pattern of all wells drilled is 1.8 for both basins, which suggests a drilling strategy with a fractal dimension significantly higher than the dimensions 1.5 and 1.4 sufficient to efficiently and economically explore these reservoirs. In fact, the fractal analysis reveals that the drilling strategy used in these basins approaches a fractal dimension of 2.0, which is equivalent to random drilling with no geologic input. Knowledge of the fractal dimension of a reservoir prior to drilling would provide a basis for selecting and a criterion for halting a drilling strategy for exploration whose fractal dimension closely matches that of the spatial fractal dimension of the reservoir, such a strategy should prove more efficient and economical than current practice.

  9. Direct numerical simulations of a spatially developing plane wake

    NASA Technical Reports Server (NTRS)

    Maekawa, Hiroshi; Mansour, Nagi N.

    1992-01-01

    In the present paper, direct numerical methods by which to simulate the spatially developing free shear flows in the transitional region are described and the numerical results of a spatially developing plane wake are presented. The incompressible time-dependent Navier-Stokes equations were solved using Pade finite difference approximations in the streamwise direction, a mapped pseudospectral Fourier method in the cross-stream direction, and a third-order compact Runge-Kutta scheme for time advancement. The unstable modes of the Orr-Sommerfeld equations were used to perturb the inlet of the wake. Statistical analyses were performed and some numerical results were compared with experimental measurements. When only the fundamental mode is forced, the energy spectra show amplification of the fundamental and its higher harmonics. In this case, unperturbed alternate vortices develop in the saturation region of the wake. The phase jitter around the fundamental frequency plays a critical role in generating vortices of random shape and spacing. Large- and small-scale distortions of the fundamental structure are observed. Pairing of vortices of the same sign is observed, as well as vortex coupling of vortices of the opposite sign.

  10. Impact of the spatial laser distribution on photocathode gun operation

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Brachmann, Axel; Emma, Paul; Gilevich, Sasha; Huang, Zhirong

    2012-09-01

    It is widely believed that a drive laser with uniform temporal and spatial laser profiles is required to generate the lowest emittance beam at the photoinjector. However, for a given 3 ps smooth-Gaussian laser temporal profile, our recent simulations indicate that a truncated-Gaussian laser spatial profile produces an electron beam with smaller emittance. The simulation results are qualitatively confirmed by later analytical calculation, and also confirmed by measurements: emittance reduction of ˜25% was observed at the linac coherent light source (LCLS) injector with a truncated-Gaussian laser spatial profile at the nominal operating bunch charge of 150 pC. There was a significant secondary benefit—laser transmission through the iris for the truncated-Gaussian profile was about twice that compared to the nearly uniform distribution, which significantly loosens the laser power and quantum efficiency requirements for drive laser system and photocathode. Since February 9, 2012, the drive laser with the truncated-Gaussian spatial distribution has been used for LCLS routine user operations and the corresponding free electron laser power is at least the same as the one when using the nearly uniform spatial profile.

  11. Directional thermal infrared exitance distributions of a deciduous forest in summer

    NASA Technical Reports Server (NTRS)

    Balick, Lee K.; Hutchison, B. A.; Smith, J. A.; Mcguire, M. J.

    1987-01-01

    Directional measurements of effective radiant temperatures (ERT) were made from a rotating mount suspended above an Oak-Hickory canopy. A directional ERT distribution is presented showing fairly weak trends with view angle. Additional data are presented to illustrate the character of spatial variations of ERT as a function of view and sun angle.

  12. On the spatial distribution of magnetic fields on the solar surface

    NASA Technical Reports Server (NTRS)

    Tao, L.; Du, Y.; Rosner, R.; Cattaneo, F.

    1995-01-01

    Recent measurements of solar surface magnetic fields suggest that the spatial distribution of these fields is fractal. In order to understand the physical basis for such geometric complexity, we study here the advection of magnetic flux tubes relatively simple random motions on the surface of a fluid and investigate the spatial statistics of the resulting surface field. While this study does not directly address the question of why solar surface fields have the observed spatial structure, it is designed to build our intuition about how surface flows lead to complex spatial structuring of magnetic fields. As part of our study, we discuss the various methods by which one can describe the spatial distribution of the surface magnetic flux and relate them mathematically; this turns out to be a crucial point of our work since, as we show, a number of previous analyses have misinterpreted the analysis procedures for determining fractal dimensions. Our principal result is the explicit demonstration that simple random flows lead to magnetic flux spatial distributions with a multifractal dimension spectrum. Furthermore, we demonstrate that this magnetic spatial structure is generic, i.e., is characteristic of a very large class of random flows.

  13. A new spatial snow distribution in hydrological models parameterized from observed spatial variability of precipitation.

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn

    2016-04-01

    The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.

  14. Spatial paradigms of lotic diatom distribution: A landscape ecology perspective

    USGS Publications Warehouse

    Passy, S.I.

    2001-01-01

    Spatial distributional patterns of benthic diatoms and their relation to current velocity were investigated in an unshaded cobble-bottom reach of White Creek (Washington County, NY). On 27 August 1999, diatoms were sampled and current velocity and depth were measured on a regular square sampling grid with a grain size of 0.01 m2, interval of 0.5 m, and extent of 16 m2. The relative abundance of the 18 common diatom species enumerated in the 81 samples was subjected to detrended correspondence analysis (DCA). The first axis (DCA1) explained 51% of the variance in diatom data and separated the samples according to current regimes. The spatial autocorrelation of DCA1 sample scores in deposition and erosion regions of White Creek was determined by Moran's I statistic to indicate patch size. In White Creek the patch length of all diatom communities was more than 3.1 m, whereas the patch width was 1 m in the deposition region and 0.5 m in the erosion region. There were 5 dominant diatom taxa, Achnanthes minutissima Ku??tz. et vars, Fragilaria capucina Dezmazie??res et vars, F. crotonensis Kitt., Diatoma vulgaris Bory, and Synedra ulna (Nitz.) Ehr. et vars. The patch length of the dominant species varied from 1 to more than 4.1 m, whereas the patch width, if defined, was 0.5 m. Achnanthes minutissima and F. capucina, the two diatom species with the highest relative abundance, displayed spatially structured patches of low abundance and comparatively random patches of high abundance, suggesting broad scale abiotic control of species performance in low abundance regions and finer scale biotic control of high abundance areas. Another objective of this study was to test the hypothesis that higher current velocities, which generally impede immigration, would increase randomness and complexity (i.e. homogeneity of diatom distributional patterns). The spatial complexity in low versus high velocity transects was determined by calculating the respective fractal dimension (D) of DCA

  15. Measurement of directivity index by three-dimensional spatial sampling

    NASA Astrophysics Data System (ADS)

    Julstrom, Stephen D.

    2005-09-01

    The traditional method for finding the directivity index (DI) of a microphone by extrapolation from its two-dimensional polar pattern may not be accurate when the microphone or its mounting surface is acoustically large. In situ hearing aid microphone DI determination requires knowledge of the full three-dimensional directional response. Microphone DI may be measured directly by comparison of the on-axis anechoic sensitivity to the sensitivity in a diffuse sound field, normalizing the comparison by reference to a perfect omnidirectional microphone. In practice, creating an accurately diffuse field is difficult, and is traditionally accomplished by averaging measurements taken at several locations in a reverberant room excited by multiple uncorrelated sound sources. Theoretically equivalent results can be obtained by three-dimensional spatial sampling in an anechoic environment, inferring the full spherical response from a finite number of directional measurements. The necessary density, positioning, and positioning accuracy of measurement directions is determined by sampling theory, tests employing mathematically defined polar patterns, and practical considerations, leading to a minimum specification of 48 measurement points arranged in five horizontal zones. Non-uniform spacing of these points necessitates employing a weighted average of the sensitivity measurements to obtain the best prediction of the actual diffuse field response.

  16. Spatial Distribution of Flower Color Induced by Interspecific Sexual Interaction

    PubMed Central

    Takahashi, Yuma; Takakura, Koh-ichi; Kawata, Masakado

    2016-01-01

    Understanding the mechanisms shaping the spatiotemporal distribution of species has long been a central concern of ecology and evolutionary biology. Contemporary patterns of plant assemblies suggest that sexual interactions among species, i.e., reproductive interference, lead to the exclusive distributions of closely related species that share pollinators. However, the fitness consequences and the initial ecological/evolutionary responses to reproductive interference remain unclear in nature, since reproductive isolation or allopatric distribution has already been achieved in the natural community. In Japan, three species of blue-eyed grasses (Sisyrinchium) with incomplete reproductive isolation have recently colonized and occur sympatrically. Two of them are monomorphic with white flowers, whereas the other exhibits heritable color polymorphism (white and purple morphs). Here we investigated the effects of the presence of two monomorphic species on the distribution and reproductive success of color morphs. The frequency and reproductive success of white morphs decreased in area where monomorphic species were abundant, while those of purple morphs did not. The rate of hybridization between species was higher in white morphs than in the purple ones. Resource competition and habitat preference seemed not to contribute to the spatial distribution and reproductive success of two morphs. Our results supported that color-dependent reproductive interference determines the distribution of flower color polymorphism in a habitat, implying ecological sorting promoted by pollinator-mediated reproductive interference. Our study helps us to understand the evolution and spatial structure of flower color in a community. PMID:27723785

  17. Spatial distribution of intracortical porosity varies across age and sex

    PubMed Central

    Nirody, Jasmine A.; Cheng, Karen P.; Parrish, Robin M.; Burghardt, Andrew J.; Majumdar, Sharmila; Link, Thomas M.; Kazakia, Galateia J.

    2015-01-01

    Cortical bone porosity is a major determinant of strength, stiffness, and fracture toughness of cortical tissue. The goal of this work was to investigate changes in spatial distribution and microstructure of cortical porosity associated with aging in men and women. The specific aims were to: 1) develop an automated technique for spatial analysis of cortical microstructure based on HR-pQCT data, and; 2) apply this technique to explore sex- and age-specific spatial distribution and microstructure of porosity within the cortex. We evaluated HR-pQCT images of the distal tibia from a cross-sectional cohort of 145 individuals, characterizing detectable pores as being in the endosteal, midcortical, or periosteal layers of the cortex. Metrics describing porosity, pore number, and pore size were quantifiedwithin each layer and compared across sexes, age groups, and cortical layers. The elderly cohort (65–78 years, n=22) displayed higher values than the young cohort (20–29 years, n=29) for all parameters both globally and within each layer. While all three layers displayed significant age-related porosity increases, the greatest difference in porosity between the young and elderly cohort was in the midcortical layer (+344%, p < 0.001). Similarly, the midcortical layer reflected the greatest differences between young and elderly cohorts in both pore number (+243%, p < 0.001) and size (+28%, p < 0.001). Females displayed greater age-related changes in porosity and pore number than males. Females and males displayed comparable small to non-significant changes with age in pore size. In summary, considerable variability exists in the spatial distribution of detectable cortical porosity at the distal tibia, and this variability is dependent on age and sex. Intracortical pore distribution analysis may ultimately provide insight into both mechanisms of pore network expansion and biomechanical consequences of pore distribution. PMID:25701139

  18. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  19. Crop yield response to climate change varies with crop spatial distribution pattern.

    PubMed

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40% by 2050 s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. This has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.

  20. Direct distribution model for regional aquatic acidification

    SciTech Connect

    Small, M.J.; Sutton, M.C.

    1986-12-01

    A model is developed to predict the regional distribution of lake acidification and its effect on fish survival. The model predicts the effect of changes in acid deposition rates on the mean and variance of the regional distribution of lake alkalinity using empirical weathering models with variable weathering factors. The regional distribution of lake alkalinity is represented by a three-parameters lognormal distribution. The regional pH distribution is derived using an explicit pH-alkalinity relationship. The predicted pH distribution is combined with a fish presence-absence relationship to predict the fraction of lakes in a region able to support fish. The model is illustrated with a set of 1014 lakes in the Adirondack Park region of New York State. Significant needs for future research for regional aggregation of aquatic acidification models are identified.

  1. Hurricane Directional Wave Spectrum Spatial Variation in the Open Ocean

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Walsh, E. J.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.

    1999-01-01

    The sea surface directional wave spectrum was measured for the first time in all quadrants of a hurricane in open water using the NASA airborne scanning radar altimeter (SRA) carried aboard one of the NOAA WP-3D hurricane hunter aircraft at 1.5 km height. The SRA measures the energetic portion of the directional wave spectrum by generating a topographic map of the sea surface. At 8 Hz, the SRA sweeps a radar beam of 1 deg half-power width (two-way) across the aircraft ground track over a swath equal to 0. 8 of the aircraft height, simultaneously measuring the backscattered power at its 36 GHz (8.3 mm) operating frequency and the range to the sea surface at 64 positions. These slant ranges are multiplied by the cosine of the incidence angles to determine the vertical distances from the aircraft to the sea surface. Subtracting these distances from the aircraft height produces the sea surface elevation map. The sea surface topography is interpolated to a uniform grid, transformed by a two-dimensional FFT, and Doppler corrected. The data presented were acquired on 24 August 1998 when hurricane Bonnie was east of the Bahamas and moving slowly to the north. Wave heights up to 18 m were observed and the spatial variation of the wave field was dramatic. The dominant waves generally propagated at significant angles to the downwind direction and at times there were wave fields traveling at right angles to each other. The NOAA aircraft spent over five hours within 180 km of the hurricane Bonnie eye, and made five eye penetrations. A 2-minute animation of the directional wave spectrum spatial variation over this period will be shown.

  2. Hair mercury levels in Amazonian populations: spatial distribution and trends

    PubMed Central

    2009-01-01

    Background Mercury is present in the Amazonian aquatic environments from both natural and anthropogenic sources. As a consequence, many riverside populations are exposed to methylmercury, a highly toxic organic form of mercury, because of their intense fish consumption. Many studies have analysed this exposure from different approaches since the early nineties. This review aims to systematize the information in spatial distribution, comparing hair mercury levels by studied population and Amazonian river basin, looking for exposure trends. Methods The reviewed papers were selected from scientific databases and online libraries. We included studies with a direct measure of hair mercury concentrations in a sample size larger than 10 people, without considering the objectives, approach of the study or mercury speciation. The results are presented in tables and maps by river basin, displaying hair mercury levels and specifying the studied population and health impact, if any. Results The majority of the studies have been carried out in communities from the central Amazonian regions, particularly on the Tapajós River basin. The results seem quite variable; hair mercury means range from 1.1 to 34.2 μg/g. Most studies did not show any significant difference in hair mercury levels by gender or age. Overall, authors emphasized fish consumption frequency as the main risk factor of exposure. The most studied adverse health effect is by far the neurological performance, especially motricity. However, it is not possible to conclude on the relation between hair mercury levels and health impact in the Amazonian situation because of the relatively small number of studies. Conclusions Hair mercury levels in the Amazonian regions seem to be very heterogenic, depending on several factors. There is no obvious spatial trend and there are many areas that have never been studied. Taking into account the low mercury levels currently handled as acceptable, the majority of the Amazonian

  3. Validating a spatially distributed hydrological model with soil morphology data

    NASA Astrophysics Data System (ADS)

    Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.

    2014-09-01

    Spatially distributed models are popular tools in hydrology claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for inputs of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography and artificial drainage. We translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to observed groundwater levels and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the the groundwater level predictions were not accurate enough to be used for the prediction of saturated areas. Groundwater level dynamics were not adequately reproduced and the predicted spatial saturation patterns did not correspond to those estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a model that

  4. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    USGS Publications Warehouse

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.

    2010-01-01

    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  5. Preserving spatial perception in rooms using direct-sound driven dynamic range compression.

    PubMed

    Hassager, Henrik Gert; May, Tobias; Wiinberg, Alan; Dau, Torsten

    2017-06-01

    Fast-acting hearing-aid compression systems typically distort the auditory cues involved in the spatial perception of sounds in rooms by enhancing low-level reverberant energy portions of the sound relative to the direct sound. The present study investigated the benefit of a direct-sound driven compression system that adaptively selects appropriate time constants to preserve the listener's spatial impression. Specifically, fast-acting compression was maintained for time-frequency units dominated by the direct sound while the processing of the compressor was linearized for time-frequency units dominated by reverberation. This compression scheme was evaluated with normal-hearing listeners who indicated their perceived location and distribution of sound images in the horizontal plane for virtualized speech. The experimental results confirmed that both independent compression at each ear and linked compression across ears resulted in broader, sometimes internalized, sound images as well as image splits. In contrast, the linked direct-sound driven compression system provided the listeners with a spatial perception similar to that obtained with linear processing that served as the reference condition. The independent direct-sound driven compressor created a sense of movement of the sound between the two ears, suggesting that preserving the interaural level differences via linked compression is advantageous with the proposed direct-sound driven compression scheme.

  6. Stellar bars and the spatial distribution of infrared luminosity

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas

    1987-01-01

    Ground-based 10 micron observations of the central region of over 100 infrared luminous galaxies are presented. A first order estimate of the spatial distribution of infrared emission in galaxies is obtained through a combination of ground-based and Infrared Astronomy Satellite (IRAS) data. The galaxies are nearby and primarily noninteracting, permitting an unbiased investigation of correlations with Hubble type. Approximately 40% of the early-type barred galaxies in this sample are associated with enhanced luminosity in the central (approximately 1 kpc diameter) region. The underlying luminosity source is attributed to both Seyfert and star formation activity. Late-type spirals are different in that the spatial distribution of infrared emission and the infrared luminoisty are not strongly dependent on barred morphology.

  7. Spread of pedigree versus genetic ancestry in spatially distributed populations.

    PubMed

    Kelleher, J; Etheridge, A M; Véber, A; Barton, N H

    2016-04-01

    Ancestral processes are fundamental to modern population genetics and spatial structure has been the subject of intense interest for many years. Despite this interest, almost nothing is known about the distribution of the locations of pedigree or genetic ancestors. Using both spatially continuous and stepping-stone models, we show that the distribution of pedigree ancestors approaches a travelling wave, for which we develop two alternative approximations. The speed and width of the wave are sensitive to the local details of the model. After a short time, genetic ancestors spread far more slowly than pedigree ancestors, ultimately diffusing out with radius ∼ t rather than spreading at constant speed. In contrast to the wave of pedigree ancestors, the spread of genetic ancestry is insensitive to the local details of the models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Spatially varying color distributions for interactive multilabel segmentation.

    PubMed

    Nieuwenhuis, Claudia; Cremers, Daniel

    2013-05-01

    We propose a method for interactive multilabel segmentation which explicitly takes into account the spatial variation of color distributions. To this end, we estimate a joint distribution over color and spatial location using a generalized Parzen density estimator applied to each user scribble. In this way, we obtain a likelihood for observing certain color values at a spatial coordinate. This likelihood is then incorporated in a Bayesian MAP estimation approach to multiregion segmentation which in turn is optimized using recently developed convex relaxation techniques. These guarantee global optimality for the two-region case (foreground/background) and solutions of bounded optimality for the multiregion case. We show results on the GrabCut benchmark, the recently published Graz benchmark, and on the Berkeley segmentation database which exceed previous approaches such as GrabCut, the Random Walker, Santner's approach, TV-Seg, and interactive graph cuts in accuracy. Our results demonstrate that taking into account the spatial variation of color models leads to drastic improvements for interactive image segmentation.

  9. The spatial distribution and population of novae in M31

    NASA Technical Reports Server (NTRS)

    Ciardullo, Robin; Ford, Holland C.; Neill, James D.; Jacoby, George H.; Shafter, Allen W.

    1987-01-01

    Results from an H-alpha survey for novae in the bulge of M31 are reported, and the spatial distribution of the nova population is analyzed. It is shown that in M31's central bulge the distribution of novae follows that of the light to within about 10 arcsec of the nucleus, refuting the notion that there is a nova 'hole' near the center of the galaxy. The Hubble-Arp nova sample is reanalyzed, concluding that the novae observed in the central 30 arcmin x 15 arcmin region belong almost exclusively to the bulge population. This result is compared to the observed cataclysmic variable distribution in the Galaxy, concluding that M31's spheroidal nova population is still compatible with the thin disk distribution of cataclysmic variables measured in the solar neighborhood. Possible explanations for the high specific nova rate of the bulge are discussed.

  10. Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution

    SciTech Connect

    Zhou, Yuyu; Smith, Steven J.

    2013-09-09

    Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high spatial and temporal resolution are often ultimately used for detailed planning, simpler assumptions are often used in analysis work. An accurate representation of the wind speed frequency distribution is needed in order to properly characterize wind energy potential. Using a power density method, this study estimated global variation in wind parameters as fitted to a Weibull density function using NCEP/CFSR reanalysis data. The estimated Weibull distribution performs well in fitting the time series wind speed data at the global level according to R2, root mean square error, and power density error. The spatial, decadal, and seasonal patterns of wind speed distribution were then evaluated. We also analyzed the potential error in wind power estimation when a commonly assumed Rayleigh distribution (Weibull k = 2) is used. We find that the assumption of the same Weibull parameter across large regions can result in substantial errors. While large-scale wind speed data is often presented in the form of average wind speeds, these results highlight the need to also provide information on the wind speed distribution.

  11. Spatial distribution of enzyme driven reactions at micro-scales

    NASA Astrophysics Data System (ADS)

    Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian

    2017-04-01

    Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).

  12. Spatial distribution of Serengeti wildebeest in relation to resources

    USGS Publications Warehouse

    Wilmshurst, J.F.; Fryxell, J.M.; Farm, Brian P.; Sinclair, A.R.E.; Henschel, C.P.

    1999-01-01

    We investigated the spatial distribution of radio-marked wildebeest (Connochaetes taurinus) in the Serengeti ecosystem in relation to the distribution of their food resources, comparing patterns in the wet and dry seasons and at local and landscape spatial scales. A mechanistic model of ruminant energy optimization predicted that wildebeest should maximize energy intake on swards 3 cm high and maintain energy balance on swards between 3 and 10 cm high. At the ecosystem scale, wildebeest preferred short and intermediate-height grass of moderate greenness during both the wet and dry seasons. This was consistent with the model prediction which suggests that large-scale movements by wildebeest are motivated, at least partially, by an energy-maximizing strategy. At the local scale, however, wildebeest showed spatial selectivity only on the basis of grass greenness, not on grass height. This differed from model expectations and may have resulted from wildebeest exploiting ephemeral green flushes of grass caused by localized rainfall in their movement radius. According to these results, the influence of other nutritional or behavioural factors on wildebeest distributions is not rejected, yet they suggest the potentially important role of an energy intake maximizing strategy on movement patterns. Our findings show that wildebeest movements are broadly similar to those of other large herbivores that migrate in response to resource gradients.

  13. Sampling design for spatially distributed hydrogeologic and environmental processes

    USGS Publications Warehouse

    Christakos, G.; Olea, R.A.

    1992-01-01

    A methodology for the design of sampling networks over space is proposed. The methodology is based on spatial random field representations of nonhomogeneous natural processes, and on optimal spatial estimation techniques. One of the most important results of random field theory for physical sciences is its rationalization of correlations in spatial variability of natural processes. This correlation is extremely important both for interpreting spatially distributed observations and for predictive performance. The extent of site sampling and the types of data to be collected will depend on the relationship of subsurface variability to predictive uncertainty. While hypothesis formulation and initial identification of spatial variability characteristics are based on scientific understanding (such as knowledge of the physics of the underlying phenomena, geological interpretations, intuition and experience), the support offered by field data is statistically modelled. This model is not limited by the geometric nature of sampling and covers a wide range in subsurface uncertainties. A factorization scheme of the sampling error variance is derived, which possesses certain atttactive properties allowing significant savings in computations. By means of this scheme, a practical sampling design procedure providing suitable indices of the sampling error variance is established. These indices can be used by way of multiobjective decision criteria to obtain the best sampling strategy. Neither the actual implementation of the in-situ sampling nor the solution of the large spatial estimation systems of equations are necessary. The required values of the accuracy parameters involved in the network design are derived using reference charts (readily available for various combinations of data configurations and spatial variability parameters) and certain simple yet accurate analytical formulas. Insight is gained by applying the proposed sampling procedure to realistic examples related

  14. Nuclear signature effect on spatial distribution of molecular harmonic in the presence of spatial inhomogeneous field

    NASA Astrophysics Data System (ADS)

    Feng, Liqiang; Li, Wenliang

    2017-01-01

    Spatial distribution of the molecular harmonic spectra from \\text{H}\\text{2}+ in the presence of inhomogeneous field has been theoretically investigated. It shows that (i) the harmonic intensities from the negative-H nucleus play the dominating role in harmonic emission spectra. (ii) Through the investigations of the nuclear signature effect on the spatial distribution of the molecular harmonic spectra, the differences of the harmonic intensities between the negative-H nucleus and the positive-H nucleus can be enhanced and reduced with the introduction of the higher vibrational state and the heavy nucleus (i.e. \\text{D}2+ ), respectively. The time-frequency analyses of the harmonic spectra, the time-dependent wave function and the electron localization have been shown to explain the harmonic spatial distribution and the electron motion. (iii) Due to the plasmon-resonance-enhancement near the metallic nanostructure, the harmonic cutoff can be remarkably enhanced as the spatial position of the inhomogeneous field moving away from the gap center. The ionization probabilities have been shown to explain the harmonic cutoff extension.

  15. Spatial Data Exploring by Satellite Image Distributed Processing

    NASA Astrophysics Data System (ADS)

    Mihon, V. D.; Colceriu, V.; Bektas, F.; Allenbach, K.; Gvilava, M.; Gorgan, D.

    2012-04-01

    Our society needs and environmental predictions encourage the applications development, oriented on supervising and analyzing different Earth Science related phenomena. Satellite images could be explored for discovering information concerning land cover, hydrology, air quality, and water and soil pollution. Spatial and environment related data could be acquired by imagery classification consisting of data mining throughout the multispectral bands. The process takes in account a large set of variables such as satellite image types (e.g. MODIS, Landsat), particular geographic area, soil composition, vegetation cover, and generally the context (e.g. clouds, snow, and season). All these specific and variable conditions require flexible tools and applications to support an optimal search for the appropriate solutions, and high power computation resources. The research concerns with experiments on solutions of using the flexible and visual descriptions of the satellite image processing over distributed infrastructures (e.g. Grid, Cloud, and GPU clusters). This presentation highlights the Grid based implementation of the GreenLand application. The GreenLand application development is based on simple, but powerful, notions of mathematical operators and workflows that are used in distributed and parallel executions over the Grid infrastructure. Currently it is used in three major case studies concerning with Istanbul geographical area, Rioni River in Georgia, and Black Sea catchment region. The GreenLand application offers a friendly user interface for viewing and editing workflows and operators. The description involves the basic operators provided by GRASS [1] library as well as many other image related operators supported by the ESIP platform [2]. The processing workflows are represented as directed graphs giving the user a fast and easy way to describe complex parallel algorithms, without having any prior knowledge of any programming language or application commands

  16. The Spatial Distribution of Spectroscopically Selected Satellite Galaxies

    NASA Astrophysics Data System (ADS)

    Brainerd, Tereasa G.; Agustsson, Ingolfur

    2015-01-01

    We use a mock redshift survey of the first Millennium Run simulation to investigate the spatial locations of spectroscopically selected satellite galaxies. The host-satellite systems were selected using typical redshift space proximity criteria and, therefore, the satellite sample includes a large number of "interlopers" (i.e., false satellites). Fifty percent of the satellites are located outside the virial radii of their host galaxies and 34% are located more than 500 kpc from their host galaxy. The host galaxies reside in relatively isolated regions of space and have stellar masses that span the range 10.3 < log10[M*/Ms] < 11.5. The 3D locations of the satellites are well-fitted by a combination of a Navarro, Frenk & White (NFW) density profile and a power law. At fixed stellar mass, the NFW scale parameter, rs, for the satellites of red hosts exceeds that for the satellites of blue hosts, and in both cases the dependence of rs on host stellar mass is well-fitted by a power law. For the satellites of red hosts, rs ~ (M*/Ms)0.71, while for satellites of blue hosts rs ~ (M*/Ms)0.48. For hosts with large stellar masses (log10[M*/Ms] > 10.8), the satellites of the red hosts are significantly (4σ) less concentrated than is the halo dark matter, while the satellites of blue hosts are marginally (2σ) more concentrated than is the halo dark matter. We perform model fits to the projected locations of the satellites and find that, with the exception of the satellites of the most massive red hosts, the 2D analysis accurately recovers the values of rs that were found using the 3D analysis. Therefore, even in the limit of a large population of "interlopers" in the satellite sample, the 3D distribution of the satellites can be recovered using 2D information alone. However, since the concentration of the satellite distribution differs from that of the dark matter in the case of high mass host galaxies, this calls into question whether spectroscopically selected satellites

  17. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in

  18. Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models

    USGS Publications Warehouse

    Phillips, D.L.; Marks, D.G.

    1996-01-01

    In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated

  19. Pickup Ion Velocity Distributions at Titan: Effects of Spatial Gradients

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.

    2004-01-01

    The principle source of pickup ions at Titan is its neutral exosphere, extending well above the ionopause into the magnetosphere of Saturn or the solar wind, depending on the moon's orbital position. Thermal and nonthermal processes in the thermosphere generate the distribution of neutral atoms and molecules in the exosphere. The combination of these processes and the range of mass numbers, 1 to over 28, contribute to an exospheric source structure that produces pickup ions with gyroradii that are much larger or smaller than the corresponding scale heights of their neutral sources. The resulting phase space distributions are dependent on the spatial structure of the exosphere as well as that of the magnetic field and background plasma. When the pickup ion gyroradius is less than the source gas scale height, the pickup ion velocity distribution is characterized by a sharp cutoff near the maximum speed, which is twice that of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. This was the case for pickup H(sup +) ions identified during the Voyager 1 flyby. In contrast, as the gyroradius becomes much larger than the scale height, the peak of the velocity distribution in the source region recedes from the maximum speed. Iri addition, the amplitude of the distribution near the maximum speed decreases. These more beam like distributions of heavy ions were not observed from Voyager 1 , but should be observable by more sensitive instruments on future spacecraft, including Cassini. The finite gyroradius effects in the pickup ion velocity distributions are studied by including in the analysis the possible range of spatial structures in the neutral exosphere and background plasma.

  20. Pickup Ion Velocity Distributions at Titan: Effects of Spatial Gradients

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.

    2004-01-01

    The principle source of pickup ions at Titan is its neutral exosphere, extending well above the ionopause into the magnetosphere of Saturn or the solar wind, depending on the moon's orbital position. Thermal and nonthermal processes in the thermosphere generate the distribution of neutral atoms and molecules in the exosphere. The combination of these processes and the range of mass numbers, 1 to over 28, contribute to an exospheric source structure that produces pickup ions with gyroradii that are much larger or smaller than the corresponding scale heights of their neutral sources. The resulting phase space distributions are dependent on the spatial structure of the exosphere as well as that of the magnetic field and background plasma. When the pickup ion gyroradius is less than the source gas scale height, the pickup ion velocity distribution is characterized by a sharp cutoff near the maximum speed, which is twice that of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. This was the case for pickup H(sup +) ions identified during the Voyager 1 flyby. In contrast, as the gyroradius becomes much larger than the scale height, the peak of the velocity distribution in the source region recedes from the maximum speed. Iri addition, the amplitude of the distribution near the maximum speed decreases. These more beam like distributions of heavy ions were not observed from Voyager 1 , but should be observable by more sensitive instruments on future spacecraft, including Cassini. The finite gyroradius effects in the pickup ion velocity distributions are studied by including in the analysis the possible range of spatial structures in the neutral exosphere and background plasma.

  1. Propagation and spatial distribution of drought in a groundwater catchment

    NASA Astrophysics Data System (ADS)

    Peters, E.; Bier, G.; van Lanen, H. A. J.; Torfs, P. J. J. F.

    2006-04-01

    Natural droughts are usually caused by a period of lower than average precipitation. The resulting shortage in precipitation propagates through the hydrological system causing drought in the different segments of the hydrological system (unsaturated zone, saturated groundwater, surface water). To analyse the propagation and spatial distribution of the drought in the groundwater system, drought is analysed simultaneously in simulated recharge, hydraulic heads and groundwater discharge for a groundwater catchment (Pang, UK). The recharge and hydraulic heads are simulated and analysed spatially. The groundwater discharge is analysed in four reaches along the stream. Comparison of droughts in the recharge and heads shows that the droughts are greatly attenuated and delayed in the groundwater system. Comparison of the droughts in the heads and the discharge shows the opposite effect, so that the droughts in the discharge resemble more the droughts in the recharge than those in the hydraulic heads. The faster response in the groundwater discharge compared to the hydraulic heads is probably caused by the non-linear relationship between groundwater storage and discharge. Thus in the recharge and in the discharge, there are many short droughts, whereas in the hydraulic head fewer, more severe droughts occur. It is likely that these results hold not only for the Pang catchment but also generally for catchments with a large groundwater system and a non-linear groundwater discharge relationship. The spatial distribution of the droughts in the hydraulic heads shows that short droughts are more severe near the streams, as they are attenuated further away. Long periods of below average recharge have relatively more effect near the groundwater divide. The spatial distribution of the droughts in the groundwater discharge is such that upstream the droughts are more attenuated than downstream.

  2. Spatial Distribution of Soil Fauna In Long Term No Tillage

    NASA Astrophysics Data System (ADS)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial

  3. Spatially distributed lateral nitrate transport at the catchment scale

    NASA Astrophysics Data System (ADS)

    Rode, M.; Franko, U.; Hesser, F.

    2010-12-01

    In river catchments, nitrogen transformation and storage processes during lateral transport are important in controlling nitrogen loads of surface waters. There is a lack of approaches which capture lateral flows and associated nitrogen transformation in a spatially distributed way. The aim of this paper is to develop a new conceptual nitrogen transport and transformation model which simulates the lateral nitrate transport in subsurface flow from the source area to the receiving water body. The developed tool is based on the Object Modelling System (OMS) framework and consists of the analytical spatially distributed hydrological model J2000, the nitrate recharge model Meta Candy and a new groundwater nitrogen routing component. The nitrogen subsurface transport component uses a variable number of sub storage layers for each hydrological response unit. Nitrate degradation in groundwater is calculated stoichiometrically according to a predefined amount on oxidizable substrate (pyrite and sedimentary organic matter) depending on the rock type. The decrease of subsurface nitrate reduction capacity can be simulated both spatially and over time. The new modelling approach was tested in a small agricultural lower mountain range catchment of Thuringia, Germany. The calibration of the nitrogen model using a four year period showed reasonable results for nitrate load calculations with a Nash and Sutcliff coefficient of 0.78. The three year validation period produced NS values of 0.75. There was a clear relationship of the goodness-of-fit between the hydrological simulations and the nitrate concentration calculations. Due to short residence times of the interflow nitrate degradation was restricted to slow base flow components. The new approach can be used to target nitrogen source areas within a catchment and assess the impact of these source areas on the nitrogen load of surface waters in a spatially distributed manner.

  4. [Spatial Distribution and Global Potential Suitability Regions of Artemisia annua].

    PubMed

    Wang, Huan; Li, Hui; Zeng, Fan-lin; Xie, Cai-xiang

    2015-03-01

    To study the spatial distribution and potential climatic suitability regions of Artemisia annua around the world. The spatial distribution and climatic characteristics were researched by factor analysis based on Global Biodiversity Information Facility Database and World Climate Database. The global potential suitability regions of Artemisia annua were analyzed by ArcGIS. Artemisia annua distributed in three longitude zones, including 90. 55 °W - 77. 14 °W, 2. 03 °E - 11. 75 °E and 98. 27 °E - 111. 05 °E,which were respectively in North America, Europe and Asia. The latitude range was mainly 29. 15 °N - 51. 36 ° N. 80% of Artemisia annua were in the regions which elevation range was 22. 00 - 491. 00 m, annual precipitation was 492. 30 ~ 1 366. 70 mm, annual average temperature was from 8. 10 to 17. 27 °C. The potential suitability regions of Artemisia annua with 95% ~ 100% climate similarity were mainly in 30 °S and 30 °N regions, centered around the equator axis. Conclusion: Latitude is closely related to the distribution of Artemisia annua, the key affecting climatic factors are annual precipitation, the wettest season precipitation, the warmest season precipitation and the highest temperature in the warmest month, the average temperature of the warmest season, as well as the average temperature of the wettest season. The potential suitability regions of Artemnisia annua are in eastern North America, western Europe and eastern Asia.

  5. Analysis of shifts in the spatial distribution of vegetation due to climate change

    NASA Astrophysics Data System (ADS)

    del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio

    2017-04-01

    Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.

  6. Spatial signature of electron distributions around the X line

    NASA Astrophysics Data System (ADS)

    Asano, Y.; Nakamura, R.; Fujimoto, M.; Shinohara, I.; Owen, C. J.; Fazakerley, A. N.; Takada, T.; Runov, A.; Baumjohann, W.; Nagai, T.; Luceck, E. A.; Reme, H.

    2006-12-01

    We present spatial signatures of the electron distribution functions around the X line obtained from the PEACE instrument onboard the Cluster satellites. Highly accelerated electron beams into the X line up to 5 keV with thermalized electrons are observed in the vicinity of the X line as well as < 1 keV electrons related to the field-aligned current which is considered to be connected to the Hall current system, and the flat-top distribution. They are mainly observed in the off-equatorial region with finite magnetic field intensity. In some cases they are rather stable and continuously observed for a few minutes. We discuss generation mechanisms of such distributions by examining their relation to the magnetic field and ion / proton data, and compare them with several theoretical ideas.

  7. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  8. Spatial structure of directional wave spectra in hurricanes

    NASA Astrophysics Data System (ADS)

    Esquivel-Trava, Bernardo; Ocampo-Torres, Francisco J.; Osuna, Pedro

    2015-01-01

    The spatial structure of the wave field during hurricane conditions is studied using the National Data Buoy Center directional wave buoy data set from the Caribbean Sea and the Gulf of Mexico. The buoy information, comprising the directional wave spectra during the passage of several hurricanes, was referenced to the center of the hurricane using the path of the hurricane, the propagation velocity, and the radius of the maximum winds. The directional wave spectra were partitioned into their main components to quantify the energy corresponding to the observed wave systems and to distinguish between wind-sea and swell. The findings are consistent with those found using remote sensing data (e.g., Scanning Radar Altimeter data). Based on the previous work, the highest waves are found in the right forward quadrant of the hurricane, where the spectral shape tends to become uni-modal, in the vicinity of the region of maximum winds. More complex spectral shapes are observed in distant regions at the front of and in the rear quadrants of the hurricane, where there is a tendency of the spectra to become bi- and tri-modal. The dominant waves generally propagate at significant angles to the wind direction, except in the regions next to the maximum winds of the right quadrants. Evidence of waves generated by concentric eyewalls associated with secondary maximum winds was also found. The frequency spectra display some of the characteristics of the JONSWAP spectrum adjusted by Young (J Geophys Res 111:8020, 2006); however, at the spectral peak, the similarity with the Pierson-Moskowitz spectrum is clear. These results establish the basis for the use in assessing the ability of numerical models to simulate the wave field in hurricanes.

  9. Abiotic and biotic controls on local spatial distribution and performance of Boechera stricta.

    PubMed

    Naithani, Kusum J; Ewers, Brent E; Adelman, Jonathan D; Siemens, David H

    2014-01-01

    This study investigates the relative influence of biotic and abiotic factors on community dynamics using an integrated approach and highlights the influence of space on genotypic and phenotypic traits in plant community structure. We examined the relative influence of topography, environment, spatial distance, and intra- and interspecific interactions on spatial distribution and performance of Boechera stricta (rockcress), a close perennial relative of model plant Arabidopsis. First, using Bayesian kriging, we mapped the topography and environmental gradients and explored the spatial distribution of naturally occurring rockcress plants and two neighbors, Taraxacum officinale (dandelion) and Solidago missouriensis (goldenrod) found in close proximity within a typical diverse meadow community across topographic and environmental gradients. We then evaluated direct and indirect relationships among variables using Mantel path analysis and developed a network displaying abiotic and biotic interactions in this community. We found significant spatial autocorrelation among rockcress individuals, either because of common microhabitats as displayed by high density of individuals at lower elevation and high soil moisture area, or limited dispersal as shown by significant spatial autocorrelation of naturally occurring inbred lines, or a combination of both. Goldenrod and dandelion density around rockcress does not show any direct relationship with rockcress fecundity, possibly due to spatial segregation of resources. However, dandelion density around rockcress shows an indirect negative influence on rockcress fecundity via herbivory, indicating interspecific competition. Overall, we suggest that common microhabitat preference and limited dispersal are the main drivers for spatial distribution. However, intra-specific interactions and insect herbivory are the main drivers of rockcress performance in the meadow community.

  10. Influence of spatial temperature distribution on high accuracy interferometric metrology

    NASA Astrophysics Data System (ADS)

    Gu, Yongqiang; Miao, Erlong; Yan, Feng; Zhang, Jian; Yang, Huaijiang

    2010-10-01

    We calculate the influence of temperature change on the refractive index of air, establish a model of air temperature distribution and analyze the effect of different temperature distribution on the high accuracy interferometric metrology. First, a revised Edlen formula is employed to acquire the relation between temperature and refractive index of air, followed by introducing the fixed temperature gradient distribution among the spatial grid within the optical cavity between the reference flat and the test flat of the Fizeau interferometer, accompanied by a temperature change random function within each grid. Finally, all the rays through the air layer with different incident angles are traced by Matlab program in order to obtain the final output position, angle and OPD for each ray. The influence of different temperature distribution and the length of the optical cavity in on the testing accuracy can be analyzed through the RMS value that results from repeatable rays tracing. As a result, the horizontal distribution (vertical to optical axis) has a large effect on the testing accuracy. Thus, to realize the high accuracy figure metrology, the horizontal distribution of temperature must be rigorously controlled as well as to shorten the length of the optical cavity to a large extent. The results from our simulation are of great significant for the accuracy analysis of interferometric testing and the research of manufacturing a interferometer.

  11. Spatial Distribution of Pair Production Over the Pulsar Polar Cap

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail A.; Parfrey, Kyle

    2016-10-01

    Using an analytic, axisymmetric approach that includes general relativity, coupled to a condition for pair production deduced from simulations, we derive general results about the spatial distribution of pair-producing field lines over the pulsar polar cap. In particular, we show that pair production on magnetic field lines operates over only a fraction of the polar cap for an aligned rotator for general magnetic field configurations, assuming the magnetic field varies spatially on a scale that is larger than the size of the polar cap. We compare our result to force-free simulations of a pulsar with a dipole surface field and find excellent agreement. Our work has implications for first-principles simulations of pulsar magnetospheres and for explaining observations of pulsed radio and high-energy emission.

  12. Landscape genetics and the spatial distribution of chronic wasting disease

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, M.D.; Scribner, K.T.; Weckworth, B.V.; Langenberg, J.A.; Filcek, K.B.

    2008-01-01

    Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic differentiation of study area deer from deer in the area of disease origin (core-area). Genetic differentiation was greatest, and CWD prevalence lowest, in areas separated from the core-area by the Wisconsin River, indicating that this river reduced deer gene flow and probably disease spread. Features of the landscape that influence host dispersal and spatial patterns of disease can be identified based on host spatial genetic structure. Landscape genetics may be used to predict high-risk populations based on their genetic connection to infected populations and to target disease surveillance, control and preventative activities. ?? 2007 The Royal Society.

  13. Probability distributions for directed polymers in random media with correlated noise

    NASA Astrophysics Data System (ADS)

    Chu, Sherry; Kardar, Mehran

    2016-07-01

    The probability distribution for the free energy of directed polymers in random media (DPRM) with uncorrelated noise in d =1 +1 dimensions satisfies the Tracy-Widom distribution. We inquire if and how this universal distribution is modified in the presence of spatially correlated noise. The width of the distribution scales as the DPRM length to an exponent β , in good (but not full) agreement with previous renormalization group and numerical results. The scaled probability is well described by the Tracy-Widom form for uncorrelated noise, but becomes symmetric with increasing correlation exponent. We thus find a class of distributions that continuously interpolates between Tracy-Widom and Gaussian forms.

  14. Spatially distributed characterization of soil-moisture dynamics using travel-time distributions

    NASA Astrophysics Data System (ADS)

    Heße, Falk; Zink, Matthias; Kumar, Rohini; Samaniego, Luis; Attinger, Sabine

    2017-01-01

    Travel-time distributions are a comprehensive tool for the characterization of hydrological system dynamics. Unlike the streamflow hydrograph, they describe the movement and storage of water within and throughout the hydrological system. Until recently, studies using such travel-time distributions have generally either been applied to lumped models or to real-world catchments using available time series, e.g., stable isotopes. Whereas the former are limited in their realism and lack information on the spatial arrangements of the relevant quantities, the latter are limited in their use of available data sets. In our study, we employ the spatially distributed mesoscale Hydrological Model (mHM) and apply it to a catchment in central Germany. Being able to draw on multiple large data sets for calibration and verification, we generate a large array of spatially distributed states and fluxes. These hydrological outputs are then used to compute the travel-time distributions for every grid cell in the modeling domain. A statistical analysis indicates the general soundness of the upscaling scheme employed in mHM and reveals precipitation, saturated soil moisture and potential evapotranspiration as important predictors for explaining the spatial heterogeneity of mean travel times. In addition, we demonstrate and discuss the high information content of mean travel times for characterization of internal hydrological processes.

  15. Functional topography of a distributed neural system for spatial and nonspatial information maintenance in working memory.

    PubMed

    Sala, Joseph B; Rämä, Pia; Courtney, Susan M

    2003-01-01

    We investigated the degree to which the distributed and overlapping patterns of activity for working memory (WM) maintenance of objects and spatial locations are functionally dissociable. Previous studies of the neural system responsible for maintenance of different types of information in WM have reported seemingly contradictory results concerning the degree to which spatial and nonspatial information maintenance leads to distinct patterns of activation in prefrontal cortex. These inconsistent results may be partly attributable to the fact that different types of objects were used for the "object WM task" across studies. In the current study, we directly compared the patterns of response during WM tasks for face identity, house identity, and spatial location using functional magnetic resonance imaging (fMRI). Furthermore, independence of the neural resources available for spatial and object WM was tested behaviorally using a dual-task paradigm. Together, these results suggest that the mechanisms for the maintenance of house identity information are distributed and overlapping with those that maintain spatial location information, while the mechanisms for maintenance of face identity information are relatively more independent. There is, however, a consistent functional topography that results in superior prefrontal cortex producing the greatest response during spatial WM tasks, and middle and inferior prefrontal cortices producing their greatest responses during object WM tasks, independent of the object type. These results argue for a dorsal-ventral functional organization for spatial and nonspatial information. However, objects may contain both spatial and nonspatial information and, thus, have a distributed but not equipotent representation across both dorsal and ventral prefrontal cortex.

  16. Spatial distribution of environmental DNA in a nearshore marine habitat

    PubMed Central

    Kelly, Ryan P.; Shelton, Andrew Olaf; Samhouri, Jameal F.; Lowell, Natalie C.; Williams, Gregory D.

    2017-01-01

    In the face of increasing threats to biodiversity, the advancement of methods for surveying biological communities is a major priority for ecologists. Recent advances in molecular biological technologies have made it possible to detect and sequence DNA from environmental samples (environmental DNA or eDNA); however, eDNA techniques have not yet seen widespread adoption as a routine method for biological surveillance primarily due to gaps in our understanding of the dynamics of eDNA in space and time. In order to identify the effective spatial scale of this approach in a dynamic marine environment, we collected marine surface water samples from transects ranging from the intertidal zone to four kilometers from shore. Using PCR primers that target a diverse assemblage of metazoans, we amplified a region of mitochondrial 16S rDNA from the samples and sequenced the products on an Illumina platform in order to detect communities and quantify their spatial patterns using a variety of statistical tools. We find evidence for multiple, discrete eDNA communities in this habitat, and show that these communities decrease in similarity as they become further apart. Offshore communities tend to be richer but less even than those inshore, though diversity was not spatially autocorrelated. Taxon-specific relative abundance coincided with our expectations of spatial distribution in taxa lacking a microscopic, pelagic life-history stage, though most of the taxa detected do not meet these criteria. Finally, we use carefully replicated laboratory procedures to show that laboratory treatments were remarkably similar in most cases, while allowing us to detect a faulty replicate, emphasizing the importance of replication to metabarcoding studies. While there is much work to be done before eDNA techniques can be confidently deployed as a standard method for ecological monitoring, this study serves as a first analysis of diversity at the fine spatial scales relevant to marine ecologists

  17. Spatial distribution of neurons innervated by chandelier cells.

    PubMed

    Blazquez-Llorca, Lidia; Woodruff, Alan; Inan, Melis; Anderson, Stewart A; Yuste, Rafael; DeFelipe, Javier; Merchan-Perez, Angel

    2015-09-01

    Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and are thus thought to have an important role in controlling the activity of cortical circuits. To examine the circuit connectivity of chandelier cells (ChCs), we made use of a genetic targeting strategy to label neocortical ChCs in upper layers of juvenile mouse neocortex. We filled individual ChCs with biocytin in living brain slices and reconstructed their axonal arbors from serial semi-thin sections. We also reconstructed the cell somata of pyramidal neurons that were located inside the ChC axonal trees and determined the percentage of pyramidal neurons whose axon initial segments were innervated by ChC terminals. We found that the total percentage of pyramidal neurons that were innervated by a single labeled ChC was 18-22 %. Sholl analysis showed that this percentage peaked at 22-35 % for distances between 30 and 60 µm from the ChC soma, decreasing to lower percentages with increasing distances. We also studied the three-dimensional spatial distribution of the innervated neurons inside the ChC axonal arbor using spatial statistical analysis tools. We found that innervated pyramidal neurons are not distributed at random, but show a clustered distribution, with pockets where almost all cells are innervated and other regions within the ChC axonal tree that receive little or no innervation. Thus, individual ChCs may exert a strong, widespread influence on their local pyramidal neighbors in a spatially heterogeneous fashion.

  18. FUTURE DIRECTIONS FOR THERMAL DISTRIBUTION STANDARDS

    SciTech Connect

    ANDREWS,J.W.

    2003-10-31

    This report details development paths for advanced versions of ASHRAE Standard 152, Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Efficiency. During the course of conversations within the ASHRAE committee responsible for developing the standard (SPC152P), three areas of development for Standard 152 were proposed: (1) extend the scope of the standard to include thermal comfort variables; (2) extend the scope of the standard to include small commercial buildings; and (3) improve the existing standard with respect to accuracy and economy of effort. Research needs associated with each of the three options are identified.

  19. Amyloplast Distribution Directs a Root Gravitropic Reaction

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth

    Immobile higher plants are oriented in the gravitational field due to gravitropim that is a physiological growth reaction and consists of three phases: reception of a gravitational signal by statocytes, its transduction to the elongation zone, and finally the organ bending. As it is known, roots are characterized with positive gravitropism, i. e. they grow in the direction of a gravitational vector, stems - with negative gravitropism, i. e. they grow in the direction opposite to a gravitational vector. According to the Nemec’s and Haberlandt’s starch-statolith hypothesis, amyloplasts in diameter of 1.5 - 3 μ in average, which appear to act as gravity sensors and fulfill a statolythic function in the specialized graviperceptive cells - statocytes, sediment in the direction of a gravitational vector in the distal part of a cell, while a nucleus is in the proximal one. There are reasonable data that confirm the amyloplasts-statoliths participation in gravity perception: 1) correlation between the statoliths localization and the site of gravity sensing, 2) significant redistribution (sedimentation) of amyloplasts in statocytes under gravistimulation in comparison with other cell organelles, 3) root decreased ability to react on gravity under starch removal from amyloplasts, 4) starchless Arabidopsis thaliana mutants are agravitropic, 5) amyloplasts-statoliths do not sediment in the absence of the gravitational vector and are in different parts or more concentrated in the center of statocytes. Plant tropisms have been intensively studied for many decades and continue to be investigated. Nevertheless, the mechanisms by which plants do so is still not clearly explained and many questions on gravisensing and graviresponse remain unanswered. Even accepted hypotheses are now being questioned and recent data are critically evaluated. Although the available data show the Ca2+ and cytoskeleton participation in graviperception and signal transduction, the clear evidence

  20. Polychlorinated biphenyls in the surrounding of an e-waste recycling facility in North-Rhine Westphalia: Levels in plants and dusts, spatial distribution, homologue pattern and source identification using the combination of plants and wind direction data.

    PubMed

    Klees, Marcel; Hombrecher, Katja; Gladtke, Dieter

    2017-12-15

    During this study the occurrence of polychlorinated biphenyls (PCBs) in the surrounding of an e-waste recycling facility in North-Rhine Westphalia was analysed. PCB levels were analysed in curly kale, spruce needles, street dusts and dusts. Conspicuously high PCB concentrations in curly kale and spruce needles were found directly northwards of the industrial premises. Furthermore a concentration gradient originating from the industrial premises to the residential areas in direction southwest to northeast was evident. Homologue patterns of highly PCB contaminated dusts and street dusts were comparable to the homologue patterns of PCB in curly kale and spruce needles. This corroborates the suspicion that the activities at the e-waste recycling facility were responsible for the elevated PCB levels in curly kale and spruce needles. The utilization of multiple linear regression of wind direction data and analysed PCB concentrations in spruce needles proved that the e-waste recycling facility caused the PCB emissions to the surrounding. Additionally, this evaluation enabled the calculation of source specific accumulation constants for certain parts of the facility. Consequently the different facility parts contribute with different impacts to the PCB levels in bioindicators. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Flow distributions and spatial correlations in human brain capillary networks

    NASA Astrophysics Data System (ADS)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  2. Spatial patterns of seaweed distribution in Malaysia using GIS

    NASA Astrophysics Data System (ADS)

    Lian, Du Hai; Sim, Jillian Ooi Lean; Fauzi, Rosmadi; Moi, Phang Siew

    2008-10-01

    The objective of this article is to represent spatial patterns of seaweed distribution in Malaysia. Seaweeds have been collected since 1984 along coastlines of 4675 km of peninsular Malaysia, Sabah, and Sarawak. However, there is no seaweed database and they cannot be displayed in a geographic view. Therefore, a database with 805 georeferenced observations was setup and GIS is used to analyze seaweed diversity based on this database. The highest number of observations is 94 which occur along east coastline of peninsular Malaysia. The highest number of species richness is 82 which are also along east coastline of peninsular Malaysia. Rhodophyta has the highest species richness while Chlorophyta has the least species richness.

  3. Diversity and spatial distribution of surname structure in South Korea

    NASA Astrophysics Data System (ADS)

    Kwon, Okyu; Son, Woo-Sik

    2015-11-01

    We studied the population structure of South Korea by using the distributions of surnames for all 246 administrative regions. Every 4,177 surnames are distinguished by their bon-gwan which indicates the place of their family clans. Using Fisher's Alpha, we found that the level of inbreeding increases as the distance from the capital Seoul increases. We introduced the Shannon index to measure the level of spatial diffusion for each surname population, and the geographical clusters based on similarities of the surname compositions among the regions show almost exact agreement with those at the administrative districts.

  4. Linking Spatial Distributions of Potential and Current in Viscous Electronics

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Levitov, Leonid

    2017-08-01

    Viscous electronics is an emerging field dealing with systems in which strongly interacting electrons behave as a fluid. Electron viscous flows are governed by a nonlocal current-field relation which renders the spatial patterns of the current and electric field strikingly dissimilar. Notably, driven by the viscous friction force from adjacent layers, current can flow against the electric field, generating negative resistance, vorticity, and vortices. Moreover, different current flows can result in identical potential distributions. This sets a new situation where inferring the electron flow pattern from the measured potentials presents a nontrivial problem. Using the inherent relation between these patterns through complex analysis, here we propose a method for extracting the current flows from potential distributions measured in the presence of a magnetic field.

  5. Spatial Distribution Balance Analysis of Hospitals in Wuhan

    PubMed Central

    Yang, Nai; Chen, Shiyi; Hu, Weilu; Wu, Zhongheng; Chao, Yi

    2016-01-01

    The spatial distribution pattern of hospitals in Wuhan indicates a core in the central urban areas and a sparse distribution in the suburbs, particularly at the center of suburbs. This study aims to improve the gravity and Huff models to analyze healthcare accessibility and resources. Results indicate that healthcare accessibility in central urban areas is better than in the suburbs, where it increasingly worsens for the suburbs. A shortage of healthcare resources is observed in large-scale and high-class hospitals in central urban areas, whereas the resources of some hospitals in the suburbs are redundant. This study proposes the multi-criteria evaluation (MCE) analysis model for the location assessment in constructing new hospitals, which can effectively ameliorate healthcare accessibility in suburban areas. This study presents implications for the planning of urban healthcare facilities. PMID:27706069

  6. Spatial distribution of female genital mutilation in Nigeria.

    PubMed

    Kandala, Ngianga-Bakwin; Nwakeze, Ngozi; Kandala, Shadrack Ngianga I I

    2009-11-01

    The harmful effects of female genital mutilation (FGM) on women are recognized worldwide. Although it is practiced by persons of all socioeconomic backgrounds, there are differences within countries and between communities. The aim of this study was to use the 2003 Nigeria Demographic and Health Survey data to determine the spatial distribution of the prevalence of FGM and associated risk factors. Data were available for 7,620 women; 1,673 (22.0%) interviewed had had FGM and 2,168 women had living children, of whom 485 (22.4%) daughters had undergone FGM. Unmarried women were more likely to report a lower prevalence of FGM. Modernization (education and high socioeconomic status) had minimal impact on the likelihood of FGM, but education plays an important role in the mother's decision not to circumcise her daughter. It follows from these findings that community factors have a large effect on FGM, with individual factors having little effect on the distribution of FGM.

  7. Bacteriophages affect evolution of bacterial communities in spatially distributed habitats: a simulation study.

    PubMed

    Klimenko, Alexandra Igorevna; Matushkin, Yury Georgievich; Kolchanov, Nikolay Alexandrovich; Lashin, Sergey Alexandrovich

    2016-01-27

    Bacteriophages are known to be one of the driving forces of bacterial evolution. Besides promoting horizontal transfer of genes between cells, they may induce directional selection of cells (for instance, according to more or less resistance to phage infection). Switching between lysogenic and lytic pathways results in various types of (co)evolution in host-phage systems. Spatial (more generally, ecological) organization of the living environment is another factor affecting evolution. In this study, we have simulated and analyzed a series of computer models of microbial communities evolving in spatially distributed environments under the pressure of phage infection. We modeled evolving microbial communities living in spatially distributed flowing environments. Non-specific nutrient supplied in the only spatial direction, resulting in its non-uniform distribution in environment. We varied the time and the location of initial phage infestation of cells as well as switched chemotaxis on and off. Simulations were performed with the Haploid evolutionary constructor software ( http://evol-constructor.bionet.nsc.ru/ ). Simulations have shown that the spatial location of initial phage invasion may lead to different evolutionary scenarios. Phage infection decreases the speciation rate by more than one order as far as intensified selection blocks the origin of novel viable populations/species, which could carve out potential ecological niches. The dependence of speciation rate on the invasion node location varied on the time of invasion. Speciation rate was found to be lower when the phage invaded fully formed community of sedentary cells (at middle and late times) at the species-rich regions. This is especially noticeable in the case of late-time invasion. Our simulation study has shown that phage infection affects evolution of microbial community slowing down speciation and stabilizing the system as a whole. This influencing varied in its efficiency depending on spatially

  8. Spatial Distribution of Solar Energetic Particles in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    Reames, Donald V.; Ng, Chee K.; Tylka, Allan J.

    2013-07-01

    We study the spatial distribution of solar energetic particles (SEPs) throughout the inner heliosphere during six large SEP events from the period 1977 through 1979, as deduced from observations on the Helios 1 and 2, IMP 7 and 8, ISEE 3, and Voyager 1 and 2 spacecraft. Evidence of intensity maxima associated with the expanding shock wave is commonly seen along its central and western flanks, although the region of peak acceleration or "nose" of the shock is sometimes highly localized in longitude. In one event (1 January 1978) a sharp peak in 20 - 30 MeV proton intensities is seen more strongly by Voyager at ˜ 2 AU than it is by spacecraft at nearby longitudes at ˜ 1 AU. Large spatial regions, or "reservoirs," often exist behind the shocks with spatially uniform SEP intensities and invariant spectra that decrease adiabatically with time as their containment volume expands. Reservoirs are seen to sweep past 0.3 AU and can extend out many AU. Boundaries of the reservoirs can vary with time and with particle velocity, rather than rigidity. In one case, a second shock wave from the Sun reaccelerates protons that retain the same hard spectrum as protons in the reservoir from the preceding SEP event. Thus reservoirs can provide not only seed particles but also a "seed spectrum" with a spectral shape that is unchanged by a weaker second shock.

  9. Does visual experience influence the spatial distribution of auditory attention?

    PubMed

    Lerens, Elodie; Renier, Laurent

    2014-02-01

    Sighted individuals are less accurate and slower to localize sounds coming from the peripheral space than sounds coming from the frontal space. This specific bias in favour of the frontal auditory space seems reduced in early blind individuals, who are particularly better than sighted individuals at localizing sounds coming from the peripheral space. Currently, it is not clear to what extent this bias in the auditory space is a general phenomenon or if it applies only to spatial processing (i.e. sound localization). In our approach we compared the performance of early blind participants with that of sighted subjects during a frequency discrimination task with sounds originating either from frontal or peripheral locations. Results showed that early blind participants discriminated faster than sighted subjects both peripheral and frontal sounds. In addition, sighted subjects were faster at discriminating frontal sounds than peripheral ones, whereas early blind participants showed equal discrimination speed for frontal and peripheral sounds. We conclude that the spatial bias observed in sighted subjects reflects an unbalance in the spatial distribution of auditory attention resources that is induced by visual experience. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  10. The spatial distribution of infrared radiation from visible reflection nebulae

    NASA Technical Reports Server (NTRS)

    Luan, Ling; Werner, Michael W.; Dwek, Eli; Sellgren, Kris

    1989-01-01

    The emission at IRAS 12 and 25 micron bands of reflection nebulae is far in excess of that expected from the longer wavelength equilibrium thermal emission. The excess emission in the IRAS 12 micron band is a general phenomenon, seen in various components of interstellar medium such as IR cirrus clouds, H II regions, atomic and molecular clouds, and also normal spiral galaxies. This excess emission has been attributed to UV excited fluorescence in polycyclic aromatic hydrocarbon (PAH) molecules or to the effect of temperature fluctuations in very small grains. Results are presented of studies of IRAS data on reflection nebulae selected from the van den Bergh reflection nebulae sample. Detailed scans of flux ratio and color temperature across the nebulae were obtained in order to study the spatial distribution of IR emission. A model was used to predict the spatial distribution of IR emission from dust grains illuminated by a B type star. The model was also used to explore the excitation of the IRAS 12 micron band emission as a function of stellar temperature. The model predictions are in good agreement with the analysis of reflection nebulae, illuminated by stars with stellar temperature ranging from 21,000 down to 3,000 K.

  11. A modal approach to modeling spatially distributed vibration energy dissipation.

    SciTech Connect

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  12. Limited spatial response to direct predation risk by African herbivores following predator reintroduction.

    PubMed

    Davies, Andrew B; Tambling, Craig J; Kerley, Graham I H; Asner, Gregory P

    2016-08-01

    Predators affect ecosystems not only through direct mortality of prey, but also through risk effects on prey behavior, which can exert strong influences on ecosystem function and prey fitness. However, how functionally different prey species respond to predation risk and how prey strategies vary across ecosystems and in response to predator reintroduction are poorly understood. We investigated the spatial distributions of six African herbivores varying in foraging strategy and body size in response to environmental factors and direct predation risk by recently reintroduced lions in the thicket biome of the Addo Elephant National Park, South Africa, using camera trap surveys, GPS telemetry, kill site locations and Light Detection and Ranging. Spatial distributions of all species, apart from buffalo, were driven primarily by environmental factors, with limited responses to direct predation risk. Responses to predation risk were instead indirect, with species distributions driven by environmental factors, and diel patterns being particularly pronounced. Grazers were more responsive to the measured variables than browsers, with more observations in open areas. Terrain ruggedness was a stronger predictor of browser distributions than was vegetation density. Buffalo was the only species to respond to predator encounter risk, avoiding areas with higher lion utilization. Buffalo therefore behaved in similar ways to when lions were absent from the study area. Our results suggest that direct predation risk effects are relatively weak when predator densities are low and the time since reintroduction is short and emphasize the need for robust, long-term monitoring of predator reintroductions to place such events in the broader context of predation risk effects.

  13. Spatial distributions of angular momenta in quantum and quasiclassical stereodynamics.

    PubMed

    de Miranda, Marcelo P; Aoiz, F Javier; Sáez-Rábanos, V; Brouard, Mark

    2004-11-22

    We have recently reported a derivation of the relationship between the quantum and classical descriptions of angular momentum polarization [M. P. de Miranda and F. Javier Aoiz, Phys. Rev. Lett. 93, 083201 (2004)]. This paper presents a detailed account of the derivation outlined in that paper, and discusses the implications of the new results. These include (i) a new expression of the role of the uncertainty principle in the broadening of angular momentum distributions, (ii) the attribution of azimuthal fluctuations of angular momentum distributions to spatial quantum beats, (iii) the definition of a new Fourier transform of the density matrix, distinct from those suggested in the past, that provides an alternative view of how the quantum description of angular momentum polarization approaches the classical one in the correspondence principle limit, (iv) a prescription for the determination of a quasiclassical angular momentum distribution function that does not suffer from problems encountered with its purely classical counterpart, and (v) a description of how angular momentum distributions commonly visualized with recourse to the classical vector model can be depicted with exact and well-defined quantum mechanics.

  14. Spatial distributions of angular momenta in quantum and quasiclassical stereodynamics

    NASA Astrophysics Data System (ADS)

    de Miranda, Marcelo P.; Aoiz, F. Javier; Sáez-Rábanos, V.; Brouard, Mark

    2004-11-01

    We have recently reported a derivation of the relationship between the quantum and classical descriptions of angular momentum polarization [M. P. de Miranda and F. Javier Aoiz, Phys. Rev. Lett. 93, 083201 (2004)]. This paper presents a detailed account of the derivation outlined in that paper, and discusses the implications of the new results. These include (i) a new expression of the role of the uncertainty principle in the broadening of angular momentum distributions, (ii) the attribution of azimuthal fluctuations of angular momentum distributions to spatial quantum beats, (iii) the definition of a new Fourier transform of the density matrix, distinct from those suggested in the past, that provides an alternative view of how the quantum description of angular momentum polarization approaches the classical one in the correspondence principle limit, (iv) a prescription for the determination of a quasiclassical angular momentum distribution function that does not suffer from problems encountered with its purely classical counterpart, and (v) a description of how angular momentum distributions commonly visualized with recourse to the classical vector model can be depicted with exact and well-defined quantum mechanics.

  15. Soil nutrients influence spatial distributions of tropical trees species

    USGS Publications Warehouse

    John, R.; Dalling, J.W.; Harms, K.E.; Yavitt, J.B.; Stallard, R.F.; Mirabello, M.; Hubbell, S.P.; Valencia, R.; Navarrete, H.; Vallejo, M.; Foster, R.B.

    2007-01-01

    The importance of niche vs. neutral assembly mechanisms in structuring tropical tree communities remains an important unsettled question in community ecology [Bell G (2005) Ecology 86:1757-1770]. There is ample evidence that species distributions are determined by soils and habitat factors at landscape (0.5 million individual trees of 1,400 species and 10 essential plant nutrients, we used Monte Carlo simulations of species distributions to test plant-soil associations against null expectations based on dispersal assembly. We found that the spatial distributions of 36-51% of tree species at these sites show strong associations to soil nutrient distributions. Neutral dispersal assembly cannot account for these plant-soil associations or the observed niche breadths of these species. These results indicate that belowground resource availability plays an important role in the assembly of tropical tree communities at local scales and provide the basis for future investigations on the mechanisms of resource competition among tropical tree species. ?? 2007 by The National Academy of Sciences of the USA.

  16. Influence of spatial distribution with blur on fluctuations in accommodation.

    PubMed

    Niwa, K; Tokoro, T

    1998-03-01

    We investigated the influence of spatial distribution of retinal image with blur on the waveform of microfluctuations in accommodation. We studied changes in accommodation in 8 young emmetropic subjects (21.88 +/- 2.36 years old), who viewed monocularly a target with the natural pupil. The spatial frequency of the target was varied from 0.85 to 15 cpd in 7 steps, and the blur intensity was increased in 7 steps to obtain a Gaussian distribution of retinal image. Continuous accommodation signals were recorded using an eye-tracking infrared optometer with a sampling frequency of 40.98 Hz, and analyzed with a fast Fourier transform (FFT) analyzer. The power spectra of the low frequency component (LFC, < 0.6 Hz) and the high frequency component (HFC) at approximately 1.9 Hz were calculated for each target with a frequency resolution of 0.02 Hz. Microfluctuations in accommodation increased as the blur was increased and decreased at further increases in blur intensity level. Microfluctuations peaked at a lower blur level as the spatial frequency was increased. Power spectral analysis revealed that these changes in the microfluctuations could be attributed mainly to increases of power in the LFC. Blurring of the edge and reduction in contrast provided accommodative cues, inducing microfluctuations in accommodation, and the LFC increased as the target sharpness was reduced, possibly in an attempt by the accommodation system to maintain the sharpness of the retinal image under poor stimulus conditions. However, when the blur level was increased, the amount of blur was indistinguishable and microfluctuations in accommodation decreased.

  17. Spatial patterns of distribution and abundance of Harrisia portoricensis, an endangered Caribbean cactus

    Treesearch

    J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE

    2013-01-01

    Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...

  18. Spatial and temporal distribution of onroad CO2 emissions at the Urban spatial scale

    NASA Astrophysics Data System (ADS)

    Song, Y.; Gurney, K. R.; Zhou, Y.; Mendoza, D. L.

    2011-12-01

    The Hestia Project is a multi-disciplinary effort to help better understand the spatial and temporal distribution of fossil fuel carbon dioxide (CO2) emission at urban scale. Onroad transportation is an essential source of CO2 emissions. This study examines two urban domains: Marion County (Indianapolis) and Los Angeles County and explores the methods and results associated with the spatial and temporal distribution of local urban onroad CO2 emissions. We utilize a bottom-up approach and spatially distribute county emissions based on the Annual Average Daily Traffic (AADT) counts provided by local Department of Transportation. The total amount of CO2 emissions is calculated by the National Mobile Inventory Model (NMIM) for Marion County and the EMission FACtors (EMFAC) model for Los Angeles County. The NMIM model provides CO2 emissions based on vehicle miles traveled (VMT) data at the county-level from the national county database (NCD). The EMFAC model provides CO2 emissions for California State based on vehicle activities, including VMT, vehicle population and fuel types. A GIS road atlas is retrieved from the US Census Bureau. Further spatial analysis and integration are performed by GIS software to distribute onroad CO2 emission according to the traffic volume. The temporal allocation of onroad CO2 emission is based on the hourly traffic data obtained from the Metropolitan Planning Orgnizations (MPO) for Marion County and Department of Transportation for Los Angeles County. The annual CO2 emissions are distributed according to each hourly fraction of traffic counts. Due to the fact that ATR stations are unevenly distributed in space, we create Thiessen polygons such that each road segment is linked to the nearest neighboring ATR station. The hourly profile for each individual station is then combined to create a "climatology" of CO2 emissions in time on each road segment. We find that for Marion County in the year 2002, urban interstate and arterial roads have

  19. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, Howard S.; Zhioua, Elyes; Mitra, Shaibal; Fischer, Jason L.; Buckley, P.A.; Verret, Frank; Underwood, H. Brian; Buckley, Francine G.

    2004-01-01

    Spatial distribution patterns of black-legged ticks, Ixodes scapularis, in deciduous and coniferous woodlands were studied by sampling ticks in different woodland types and at sites from which deer had been excluded and by quantifying movement patterns of tick host animals (mammals and birds) at the Lighthouse Tract, Fire Island, NY, from 1994 to 2000. Densities of nymphal ticks were greater in deciduous than coniferous woods in 3 of 7 yr. Only engorged ticks survived the winter, and overwintering survival of engorged larvae in experimental enclosures did not differ between deciduous and coniferous woods. Nymphs were not always most abundant in the same forest type as they had been as larvae, and the habitat shift between life stages differed in direction in different years. Therefore, forest type by itself did not account for tick distribution patterns. Nymphal densities were lower where deer had been excluded compared with areas with deer present for 3 yr after exclusion, suggesting that movement patterns of vertebrate hosts influenced tick distribution, but nymphal densities increased dramatically in one of the enclosures in the fourth year. Therefore, movements of ticks on animal hosts apparently contribute substantially to tick spatial distribution among woodland types, but the factor(s) that determine spatial distribution of nymphal I. scapularis shift from year to year.

  20. Hurricane Directional Wave Spectrum Spatial Variation at Landfall

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Wright, C. W.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    On 26 August 1998, the SRA at 2.2 km height documented the directional wave spectrum in the region between Charleston, SC, and Cape Hatteras, NC, as Hurricane Bonnie was making landfall near Wilmington, NC. The storm was similar in size during the two flights, but the maximum speed in the NOAA Hurricane Research Division surface wind analysis was 15% lower prior to landfall (39 m/s) than it had been in the open ocean (46 m/s). This was compensated for by its faster movement prior to landfall (9.5 m/s) than when it was encountered in the open ocean (5 m/s), significantly increasing the effective fetch and duration of waves near the peak of the spectrum which propagated in the direction of the storm track. The open ocean wave height variation indicated that Hurricane Bonnie would have produced waves of 11 m significant wave height on the shore northeast of Wilmington had it not been for the continental shelf. The bathymetry distributed the steepening and breaking process across the shelf so that the wavelength and wave height were reduced gradually as the shore was approached. The wave height 5 km from shore was about 4 in.

  1. Does foreign direct investment affect environmental pollution in China's cities? A spatial econometric perspective.

    PubMed

    Liu, Qianqian; Wang, Shaojian; Zhang, Wenzhong; Zhan, Dongsheng; Li, Jiaming

    2017-09-15

    Environmental pollution has aroused extensive concern worldwide. Existing literature on the relationship between foreign direct investment (FDI) and environmental pollution has, however, seldom taken into account spatial effects. Addressing this gap, this paper investigated the spatial agglomeration effects and dynamics at work in FDI and environmental pollution (namely, in waste soot and dust, sulfur dioxide, and wastewater) in 285 Chinese cities during the period 2003-2014, using global and local measures of spatial autocorrelation. Our results showed significant spatial autocorrelation in FDI and environmental pollution levels, both of which demonstrated obvious path dependence characteristics in their geographical distribution. A range of agglomeration regions were observed. The high-value and low-value agglomeration areas of FDI were not fully consistent with those of environmental pollution. This result indicates that higher inflows of FDI did not necessarily lead to greater environmental pollution from a geographic perspective, and vice versa. Spatial panel data models were further adopted to explore the impact of FDI on environmental pollution. The results of a spatial lag model (SLM) and a spatial error model (SEM) revealed that the inflow of FDI had distinct effects on different environmental pollutants, thereby confirming the Pollution Heaven Hypothesis and Pollution Halo Hypothesis. The inflow of FDI was found to have reduced waste soot and dust pollution to a certain extent, while it increased the degree of wastewater and sulfur dioxide pollution. The findings set out in this paper hold significant implications for Chinese environmental pollution protection. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Spatially Distributed Encoding of Covert Attentional Shifts in Human Thalamus

    PubMed Central

    Hulme, Oliver J.; Whiteley, Louise

    2010-01-01

    Spatial attention modulates signal processing within visual nuclei of the thalamus—but do other nuclei govern the locus of attention in top-down mode? We examined functional MRI (fMRI) data from three subjects performing a task requiring covert attention to 1 of 16 positions in a circular array. Target position was cued after stimulus offset, requiring subjects to perform target detection from iconic visual memory. We found positionally specific responses at multiple thalamic sites, with individual voxels activating at more than one direction of attentional shift. Voxel clusters at anatomically equivalent sites across subjects revealed a broad range of directional tuning at each site, with little sign of contralateral bias. By reference to a thalamic atlas, we identified the nuclear correspondence of the four most reliably activated sites across subjects: mediodorsal/central-intralaminar (oculomotor thalamus), caudal intralaminar/parafascicular, suprageniculate/limitans, and medial pulvinar/lateral posterior. Hence, the cortical network generating a top-down control signal for relocating attention acts in concert with a spatially selective thalamic apparatus—the set of active nuclei mirroring the thalamic territory of cortical “eye-field” areas, thus supporting theories which propose the visuomotor origins of covert attentional selection. PMID:20844113

  3. Environmental DNA reflects spatial and temporal jellyfish distribution.

    PubMed

    Minamoto, Toshifumi; Fukuda, Miho; Katsuhara, Koki R; Fujiwara, Ayaka; Hidaka, Shunsuke; Yamamoto, Satoshi; Takahashi, Kohji; Masuda, Reiji

    2017-01-01

    Recent development of environmental DNA (eDNA) analysis allows us to survey underwater macro-organisms easily and cost effectively; however, there have been no reports on eDNA detection or quantification for jellyfish. Here we present the first report on an eDNA analysis of marine jellyfish using Japanese sea nettle (Chrysaora pacifica) as a model species by combining a tank experiment with spatial and temporal distribution surveys. We performed a tank experiment monitoring eDNA concentrations over a range of time intervals after the introduction of jellyfish, and quantified the eDNA concentrations by quantitative real-time PCR. The eDNA concentrations peaked twice, at 1 and 8 h after the beginning of the experiment, and became stable within 48 h. The estimated release rates of the eDNA in jellyfish were higher than the rates previously reported in fishes. A spatial survey was conducted in June 2014 in Maizuru Bay, Kyoto, in which eDNA was collected from surface water and sea floor water samples at 47 sites while jellyfish near surface water were counted on board by eye. The distribution of eDNA in the bay corresponded with the distribution of jellyfish inferred by visual observation, and the eDNA concentration in the bay was ~13 times higher on the sea floor than on the surface. The temporal survey was conducted from March to November 2014, in which jellyfish were counted by eye every morning while eDNA was collected from surface and sea floor water at three sampling points along a pier once a month. The temporal fluctuation pattern of the eDNA concentrations and the numbers of observed individuals were well correlated. We conclude that an eDNA approach is applicable for jellyfish species in the ocean.

  4. Environmental DNA reflects spatial and temporal jellyfish distribution

    PubMed Central

    Fukuda, Miho; Katsuhara, Koki R.; Fujiwara, Ayaka; Hidaka, Shunsuke; Yamamoto, Satoshi; Takahashi, Kohji; Masuda, Reiji

    2017-01-01

    Recent development of environmental DNA (eDNA) analysis allows us to survey underwater macro-organisms easily and cost effectively; however, there have been no reports on eDNA detection or quantification for jellyfish. Here we present the first report on an eDNA analysis of marine jellyfish using Japanese sea nettle (Chrysaora pacifica) as a model species by combining a tank experiment with spatial and temporal distribution surveys. We performed a tank experiment monitoring eDNA concentrations over a range of time intervals after the introduction of jellyfish, and quantified the eDNA concentrations by quantitative real-time PCR. The eDNA concentrations peaked twice, at 1 and 8 h after the beginning of the experiment, and became stable within 48 h. The estimated release rates of the eDNA in jellyfish were higher than the rates previously reported in fishes. A spatial survey was conducted in June 2014 in Maizuru Bay, Kyoto, in which eDNA was collected from surface water and sea floor water samples at 47 sites while jellyfish near surface water were counted on board by eye. The distribution of eDNA in the bay corresponded with the distribution of jellyfish inferred by visual observation, and the eDNA concentration in the bay was ~13 times higher on the sea floor than on the surface. The temporal survey was conducted from March to November 2014, in which jellyfish were counted by eye every morning while eDNA was collected from surface and sea floor water at three sampling points along a pier once a month. The temporal fluctuation pattern of the eDNA concentrations and the numbers of observed individuals were well correlated. We conclude that an eDNA approach is applicable for jellyfish species in the ocean. PMID:28245277

  5. Mapping the distribution of malaria: current approaches and future directions

    USGS Publications Warehouse

    Johnson, Leah R.; Lafferty, Kevin D.; McNally, Amy; Mordecai, Erin A.; Paaijmans, Krijn P.; Pawar, Samraat; Ryan, Sadie J.; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    Mapping the distribution of malaria has received substantial attention because the disease is a major source of illness and mortality in humans, especially in developing countries. It also has a defined temporal and spatial distribution. The distribution of malaria is most influenced by its mosquito vector, which is sensitive to extrinsic environmental factors such as rainfall and temperature. Temperature also affects the development rate of the malaria parasite in the mosquito. Here, we review the range of approaches used to model the distribution of malaria, from spatially explicit to implicit, mechanistic to correlative. Although current methods have significantly improved our understanding of the factors influencing malaria transmission, significant gaps remain, particularly in incorporating nonlinear responses to temperature and temperature variability. We highlight new methods to tackle these gaps and to integrate new data with models.

  6. Model of shipping noise in the deep water: Directional density and spatial coherence functions

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Yang, Kun-de; Lei, Bo

    2016-07-01

    The shipping noise properties in the deep ocean are studied. Shipping noise exhibits the strong dual-horned directionality features in the flat-seabed ocean, and its directional density can be modeled by a Von Mises distribution. With the explicit expression for the directional density function, the spatial coherence functions of shipping noise are also derived, and the relative features are studied. The research result shows that the properties of shipping noise are different from the ambient noise of other sources, and it can be used for the sonar array design. The model is well matched with the experimental result, and it can be extended to the situations when the ambient noise exhibits the dual-horned structure.

  7. Patterns in the spatial distribution of Peruvian anchovy ( Engraulis ringens) revealed by spatially explicit fishing data

    NASA Astrophysics Data System (ADS)

    Bertrand, Sophie; Díaz, Erich; Lengaigne, Matthieu

    2008-10-01

    Peruvian anchovy ( Engraulis ringens) stock abundance is tightly driven by the high and unpredictable variability of the Humboldt Current Ecosystem. Management of the fishery therefore cannot rely on mid- or long-term management policy alone but needs to be adaptive at relatively short time scales. Regular acoustic surveys are performed on the stock at intervals of 2 to 4 times a year, but there is a need for more time continuous monitoring indicators to ensure that management can respond at suitable time scales. Existing literature suggests that spatially explicit data on the location of fishing activities could be used as a proxy for target stock distribution. Spatially explicit commercial fishing data could therefore guide adaptive management decisions at shorter time scales than is possible through scientific stock surveys. In this study we therefore aim to (1) estimate the position of fishing operations for the entire fleet of Peruvian anchovy purse-seiners using the Peruvian satellite vessel monitoring system (VMS), and (2) quantify the extent to which the distribution of purse-seine sets describes anchovy distribution. To estimate fishing set positions from vessel tracks derived from VMS data we developed a methodology based on artificial neural networks (ANN) trained on a sample of fishing trips with known fishing set positions (exact fishing positions are known for approximately 1.5% of the fleet from an at-sea observer program). The ANN correctly identified 83% of the real fishing sets and largely outperformed comparative linear models. This network is then used to forecast fishing operations for those trips where no observers were onboard. To quantify the extent to which fishing set distribution was correlated to stock distribution we compared three metrics describing features of the distributions (the mean distance to the coast, the total area of distribution, and a clustering index) for concomitant acoustic survey observations and fishing set positions

  8. Spatially Distributed Model of Permafrost Dynamics in Alaska

    NASA Astrophysics Data System (ADS)

    Tipenko, G.; Marchenko, S.; Romanovsky, V.; Groshev, V.; Sazonova, T.

    2004-12-01

    Given the possibility of climate warming in the near future, an evaluation of the magnitude of changes in the ground thermal regime becomes desirable for assessments of possible ecosystem responses and impacts on infrastructure in the Arctic and sub-Arctic regions. In the past, a soil model GIPL 1.0 developed at the Geophysical Institute Permafrost Lab was used to simulate the dynamics of the active layer thickness and mean annual ground temperature, both retrospectively and prognostically, using climate forcing from Global Climate Models. The GIPL 1.0 model is a quasi-transitional, spatially distributed, analytical model for the active layer thickness and mean annual ground temperature. This model is incorporated into GIS, which contains the information on geology, soils properties, vegetation, and snow distribution. GIS allows visualization of input and output parameters and their representation in the form of digital maps. As a further significant step in the GIPL model development, we replaced the analytical solution with a numerical model based on a finite difference method for the non-linear Heat Conduction Equation. In this model the process of soil freezing/thawing is occurring in accordance with the unfrozen water content curve, which is specific for each soil layer and for each geographical location. For each grid point on the map we used a one-dimensional multi-layer model of soil down to the depth of a constant geothermal heat flux (typically 500 to 1000 m). At the upper boundary, there are insulating layers of snow and vegetation that can change their properties with time. Special Enthalpy formulation of the energy conservation law makes it possible to use a coarse vertical resolution without loss of latent heat effects in phase transition zone even in case of fast temporally and spatially varying temperature fields. The new version of GIPL (GIPL 2.0) calculates soil temperature and liquid water content fields for the entire spatial domain with daily

  9. Diffusion-controlled alteration of inhomogeneous materials: tailoring of the spatial distribution of nanoparticles in nanocomposites.

    PubMed

    Sapogova, Natalia; Pikulin, Alexander; Smirnov, Anton A; Bityurin, Nikita

    2016-12-07

    Gaining control over the spatial distribution of nanoparticles in composite polymer materials is a relevant goal for a range of nanotechnology applications. Promising methods to produce nanoparticles directly in the polymer matrix rely on their self-assembly from the atoms that are generated due to the photodestruction of the precursor additive. Such materials are known as photoinduced nanocomposites. In this work, we theoretically study the possibility of producing tailored nanoparticle distributions in such materials by the local modification of their physical properties. For instance, laser irradiation may cause a permanent free-volume expansion (laser swelling), which results in a substantial change in the diffusivity of the aggregating atoms. The modeling shows that the nanoparticles tend to accumulate in the domains where the diffusivity is greater. Additionally, the variation of the matrix properties may result in spatial modulation of the atom-matrix interaction energy and thus modulation of the atom solubility in the matrix. This phenomenon can also affect the NP spatial distribution. This paper formulates the problem of the precipitation phase transition from the supersaturated solution in a polymer solvent which is "frozen" in the spatially nonuniform state. The basic traits of this phenomenon are studied by means of an analytical model. Then the NP growth is simulated using a lattice model.

  10. Spatial distribution of enzyme activities along the root and in the rhizosphere of different plants

    NASA Astrophysics Data System (ADS)

    Razavi, Bahar S.; Zarebanadkouki, Mohsen; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2015-04-01

    Extracellular enzymes are important for decomposition of many biological macromolecules abundant in soil such as cellulose, hemicelluloses and proteins. Activities of enzymes produced by both plant roots and microbes are the primary biological drivers of organic matter decomposition and nutrient cycling. So far acquisition of in situ data about local activity of different enzymes in soil has been challenged. That is why there is an urgent need in spatially explicit methods such as 2-D zymography to determine the variation of enzymes along the roots in different plants. Here, we developed further the zymography technique in order to quantitatively visualize the enzyme activities (Spohn and Kuzyakov, 2013), with a better spatial resolution We grew Maize (Zea mays L.) and Lentil (Lens culinaris) in rhizoboxes under optimum conditions for 21 days to study spatial distribution of enzyme activity in soil and along roots. We visualized the 2D distribution of the activity of three enzymes:β-glucosidase, leucine amino peptidase and phosphatase, using fluorogenically labelled substrates. Spatial resolution of fluorescent images was improved by direct application of a substrate saturated membrane to the soil-root system. The newly-developed direct zymography shows different pattern of spatial distribution of enzyme activity along roots and soil of different plants. We observed a uniform distribution of enzyme activities along the root system of Lentil. However, root system of Maize demonstrated inhomogeneity of enzyme activities. The apical part of an individual root (root tip) in maize showed the highest activity. The activity of all enzymes was the highest at vicinity of the roots and it decreased towards the bulk soil. Spatial patterns of enzyme activities as a function of distance from the root surface were enzyme specific, with highest extension for phosphatase. We conclude that improved zymography is promising in situ technique to analyze, visualize and quantify

  11. Spatial distribution of tropospheric ozone in western Washington, USA

    USGS Publications Warehouse

    Cooper, S.M.; Peterson, D.L.

    2000-01-01

    We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.

  12. Spatial distribution of metals in the constructed wetlands.

    PubMed

    Kongroy, Porntawee; Tantemsapya, Netnapid; Lin, Ying-Feng; Jing, Shuh Ren; Wirojanagud, Wanpen

    2012-02-01

    Investigation of the spatial distribution of metals was conducted for two constructed wetlands used as tertiary treatment in Chia Nan University of Pharmacy and Science (CNU) and Metal Processing Industries (MPI) located in Tainan, Taiwan. These two distinguished sites were selected to compare the distribution of metals for constructed wetlands treating different types of wastewater. Along the distance, samples of water, sediment, and macrophytes were analyzed for metals including Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn. Additionally, measurements of water quality including temperature, pH, EC, ORP, DO, TSS, BOD, COD, and turbidity were performed. Results show that, at CNU, wastewater contained higher organic consititute (BOD 29.3 +/- 11.7 mg/, COD 46.7 +/- 33.6 mg/L) with low metals content. Wastewater at MPI contained low level of organic consititute (BOD 7.1 +/- 3.3 mg/L, and COD 66.0 +/- 56.5 mg/L) and higher metals content. Metals distribution of both sites showed similar results where metals in the sediments in the inlet zone have greater concentrations than other areas. The constructed wetlands can remove Cd, Cu, Ni, Pb, and Zn. However, there was no removal of Al, Cr, Fe, and Mn. A distance along the constructed wetlands had no effect on metal concentrations in macrophyte and water.

  13. Spatial distribution of venous gas emboli in the lungs

    NASA Technical Reports Server (NTRS)

    Souders, J. E.; Doshier, J. B.; Polissar, N. L.; Hlastala, M. P.

    1999-01-01

    The distribution of gaseous pulmonary emboli is presumed to be determined by their buoyancy. We hypothesized that regional pulmonary blood flow may also influence their distribution. Therefore, pulmonary blood flow was measured in supine, anesthetized dogs with use of 15-microm fluorescent microspheres at baseline and during N(2) embolism. The animals were killed, and the lungs were excised, air-dried, and diced into approximately 2-cm(3) pieces with weights and spatial coordinates recorded. Embolism was defined as a >10% flow decrease relative to baseline. Vertically, the incidence of embolism increased substantially by 6 +/- 1% per additional centimeter in height compared with baseline (P = 0.0003). Embolism also increased radially by 3 +/- 1%/cm from the hilum (P = 0.002). There was a weaker but statistically significant increase in embolism to pieces with greater baseline flow, 9 +/- 2% for every 1. 0 increase in relative baseline flow (P = 0.008). We conclude that the distribution of gaseous emboli is influenced by buoyancy and flow dynamics within the pulmonary vasculature.

  14. Integrating water by plant roots over spatially distributed soil salinity

    NASA Astrophysics Data System (ADS)

    Homaee, Mehdi; Schmidhalter, Urs

    2010-05-01

    In numerical simulation models dealing with water movement and solute transport in vadose zone, the water budget largely depends on uptake patterns by plant roots. In real field conditions, the uptake pattern largely changes in time and space. When dealing with soil and water salinity, most saline soils demonstrate spatially distributed osmotic head over the root zone. In order to quantify such processes, the major difficulty stems from lacking a sink term function that adequately accounts for the extraction term especially under variable soil water osmotic heads. The question of how plants integrate such space variable over its rooting depth remains as interesting issue for investigators. To move one step forward towards countering this concern, a well equipped experiment was conducted under heterogeneously distributed salinity over the root zone with alfalfa. The extraction rates of soil increments were calculated with the one dimensional form of Richards equation. The results indicated that the plant uptake rate under different mean soil salinities preliminary reacts to soil salinity, whereas at given water content and salinity the "evaporative demand" and "root activity" become more important to control the uptake patterns. Further analysis revealed that root activity is inconstant when imposed to variable soil salinity. It can be concluded that under heterogeneously distributed salinity, most water is taken from the less saline increment while the extraction from other root zone increments with higher salinities never stops.

  15. Spatial distribution of venous gas emboli in the lungs

    NASA Technical Reports Server (NTRS)

    Souders, J. E.; Doshier, J. B.; Polissar, N. L.; Hlastala, M. P.

    1999-01-01

    The distribution of gaseous pulmonary emboli is presumed to be determined by their buoyancy. We hypothesized that regional pulmonary blood flow may also influence their distribution. Therefore, pulmonary blood flow was measured in supine, anesthetized dogs with use of 15-microm fluorescent microspheres at baseline and during N(2) embolism. The animals were killed, and the lungs were excised, air-dried, and diced into approximately 2-cm(3) pieces with weights and spatial coordinates recorded. Embolism was defined as a >10% flow decrease relative to baseline. Vertically, the incidence of embolism increased substantially by 6 +/- 1% per additional centimeter in height compared with baseline (P = 0.0003). Embolism also increased radially by 3 +/- 1%/cm from the hilum (P = 0.002). There was a weaker but statistically significant increase in embolism to pieces with greater baseline flow, 9 +/- 2% for every 1. 0 increase in relative baseline flow (P = 0.008). We conclude that the distribution of gaseous emboli is influenced by buoyancy and flow dynamics within the pulmonary vasculature.

  16. Phase retrieval of singular scalar light fields using a two-dimensional directional wavelet transform and a spatial carrier.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2008-10-01

    We evaluate a method based on the two-dimensional directional wavelet transform and the introduction of a spatial carrier to retrieve optical phase distributions in singular scalar light fields. The performance of the proposed phase-retrieval method is compared with an approach based on Fourier transform. The advantages and limitations of the proposed method are discussed.

  17. Direct mapping of Li distribution in electrochemically lithiated graphite anodes using scanning Auger electron microscopy

    NASA Astrophysics Data System (ADS)

    Ishida, Nobuyuki; Fukumitsu, Hitoshi; Kimura, Hiroshi; Fujita, Daisuke

    2014-02-01

    The spatial distribution of Li ions in electrochemically lithiated graphite anodes for Li-ion battery is characterized by scanning Auger electron microscopy. We show that direct mapping of Li KVV peak intensity reveal the spatial distribution of intercalated Li and its chemical state in a quantitative manner. Furthermore, we demonstrate that mapping using a C KVV peak also reflects the spatial distribution of Li due to the change in the electronic properties of C atoms induced by the electrode reaction (Li intercalation). Mapping measurements on three samples with different charging states (20%, 50%, and 100%) show that at the early stage of charging Li ions do not intercalate homogenously into all the graphite particles but selectively into some specific ones with higher rates. Our method provides the criteria to evaluate structure-correlated Li intercalation from nanometer- to micrometer-scale, such as conductivity network in the electrodes due to a non-uniform morphology of binder and conductive additives.

  18. Design & implementation of distributed spatial computing node based on WPS

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Li, Guoqing; Xie, Jibo

    2014-03-01

    Currently, the research work of SIG (Spatial Information Grid) technology mostly emphasizes on the spatial data sharing in grid environment, while the importance of spatial computing resources is ignored. In order to implement the sharing and cooperation of spatial computing resources in grid environment, this paper does a systematical research of the key technologies to construct Spatial Computing Node based on the WPS (Web Processing Service) specification by OGC (Open Geospatial Consortium). And a framework of Spatial Computing Node is designed according to the features of spatial computing resources. Finally, a prototype of Spatial Computing Node is implemented and the relevant verification work under the environment is completed.

  19. Macular pigment spatial distribution effects on glare disability.

    PubMed

    Putnam, Christopher M; Bassi, Carl J

    2015-01-01

    This project explored the relationship of the macular pigment optical density (MPOD) spatial profile with measures of glare disability (GD) across the macula. A novel device was used to measure MPOD across the central 16° of retina along four radii using customized heterochromatic flicker photometry (cHFP)at eccentricities of 0°, 2°, 4°, 6° and 8°. MPOD was measured as discrete and integrated values at all measured retinal loci. GD was calculated as a difference in contrast sensitivity (CS) between no glare and glare conditions using identical stimuli presented at the same eccentricities. GD was defined as [(CSNo Glare-CSGlare)/CSNo Glare] in order to isolate the glare attenuation effects of MPOD by controlling for CS variability among the subject sample. Correlations of the discrete and integrated MPOD with GD were compared. The cHFP identified reliable MPOD spatial distribution maps demonstrating a 1st-order exponential decay as a function of increasing eccentricity. There was a significant negative correlation between both measures of foveal MPOD and GD using 6 cycles per degree (cpd) and 9 cpd stimuli. Significant correlations were found between corresponding parafoveal MPOD measures and GD at 2 and 4° of eccentricity using 9 cpd stimuli with greater MPOD associated with less glare disability. These results are consistent with the glare attenuation effects of MP at higher spatial frequencies and support the hypothesis that discrete and integrated measures of MPOD have similar correlations with glare attenuation effects across the macula. Additionally, peak foveal MPOD appears to influence GD across the macula. Copyright © 2014 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  20. Macular pigment spatial distribution effects on glare disability

    PubMed Central

    Putnam, Christopher M.; Bassi, Carl J.

    2015-01-01

    Purpose This project explored the relationship of the macular pigment optical density (MPOD) spatial profile with measures of glare disability (GD) across the macula. Methods A novel device was used to measure MPOD across the central 16° of retina along four radii using customized heterochromatic flicker photometry (cHFP)at eccentricities of 0°, 2°, 4°, 6° and 8°. MPOD was measured as discrete and integrated values at all measured retinal loci. GD was calculated as a difference in contrast sensitivity (CS) between no glare and glare conditions using identical stimuli presented at the same eccentricities. GD was defined as [(CSNo Glare − CSGlare)/CSNo Glare] in order to isolate the glare attenuation effects of MPOD by controlling for CS variability among the subject sample. Correlations of the discrete and integrated MPOD with GD were compared. Results The cHFP identified reliable MPOD spatial distribution maps demonstrating a 1st-order exponential decay as a function of increasing eccentricity. There was a significant negative correlation between both measures of foveal MPOD and GD using 6 cycles per degree (cpd) and 9 cpd stimuli. Significant correlations were found between corresponding parafoveal MPOD measures and GD at 2 and 4° of eccentricity using 9 cpd stimuli with greater MPOD associated with less glare disability. Conclusions These results are consistent with the glare attenuation effects of MP at higher spatial frequencies and support the hypothesis that discrete and integrated measures of MPOD have similar correlations with glare attenuation effects across the macula. Additionally, peak foveal MPOD appears to influence GD across the macula. PMID:25697374

  1. Determination and optimization of spatial samples for distributed measurements.

    SciTech Connect

    Huo, Xiaoming; Tran, Hy D.; Shilling, Katherine Meghan; Kim, Heeyong

    2010-10-01

    There are no accepted standards for determining how many measurements to take during part inspection or where to take them, or for assessing confidence in the evaluation of acceptance based on these measurements. The goal of this work was to develop a standard method for determining the number of measurements, together with the spatial distribution of measurements and the associated risks for false acceptance and false rejection. Two paths have been taken to create a standard method for selecting sampling points. A wavelet-based model has been developed to select measurement points and to determine confidence in the measurement after the points are taken. An adaptive sampling strategy has been studied to determine implementation feasibility on commercial measurement equipment. Results using both real and simulated data are presented for each of the paths.

  2. Quantifying spatial distribution of spurious mixing in ocean models.

    PubMed

    Ilıcak, Mehmet

    2016-12-01

    Numerical mixing is inevitable for ocean models due to tracer advection schemes. Until now, there is no robust way to identify the regions of spurious mixing in ocean models. We propose a new method to compute the spatial distribution of the spurious diapycnic mixing in an ocean model. This new method is an extension of available potential energy density method proposed by Winters and Barkan (2013). We test the new method in lock-exchange and baroclinic eddies test cases. We can quantify the amount and the location of numerical mixing. We find high-shear areas are the main regions which are susceptible to numerical truncation errors. We also test the new method to quantify the numerical mixing in different horizontal momentum closures. We conclude that Smagorinsky viscosity has less numerical mixing than the Leith viscosity using the same non-dimensional constant.

  3. Spatial Distribution of Dopant Incorporation in CdTe

    SciTech Connect

    Guthrey, Harvey; Moseley, John; Colegrove, Eric; Burst, James; Albin, David; Metzger, Wyatt; Al-Jassim, Mowafak

    2016-11-21

    In this work we use state-of-the-art cathodoluminescence (CL) spectrum imaging that provides spectrum-per-pixel mapping of the CL emission to examine how dopant elements are incorporated into CdTe. Emission spectra and intensity are used to monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on theoretical modeling. Our results show that grain boundaries play a role in the incorporation of dopants in CdTe, whether intrinsic or extrinsic. This type of analysis is crucial for providing feedback to design different processing schedules that optimize dopant incorporation in CdTe photovoltaic material, which has struggled to reach high carrier concentration values. Here, we present results on CdTe films exposed to copper, phosphorus, and intrinsic doping treatments.

  4. The Spatial Distribution and Spectrum of Radiation Produced by Sparks

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.; Kochkin, P.; Hansen, R. S.; Grondahl, O.

    2012-12-01

    Energetic x-rays are produced by lab sparks, though the exact mechanism is the subject of some debate. We report the results of experiments with a scintillating optical fiber detector at various positions around nearly 1000 sparks. The statistical properties of the spatial distributions and correlations between different positions within a single spark will be described. In addition to the scintillating fiber detector, data from a pair of conventional scintillation detectors are also presented and the resulting energy spectra and statistical properties are given. These data are very useful for evaluation of mechanisms of runaway electron and x-ray production in sparks and may have implications for larger-scale processes in lightning and terrestrial gamma-ray flashes.

  5. Spatial and temporal distribution of urban heat islands.

    PubMed

    Dos Santos, Alexandre Rosa; de Oliveira, Felício Santos; da Silva, Aderbal Gomes; Gleriani, José Marinaldo; Gonçalves, Wantuelfer; Moreira, Giselle Lemos; Silva, Felipe Gimenes; Branco, Elvis Ricardo Figueira; Moura, Marks Melo; da Silva, Rosane Gomes; Juvanhol, Ronie Silva; de Souza, Kaíse Barbosa; Ribeiro, Carlos Antonio Alvares Soares; de Queiroz, Vagner Tebaldi; Costa, Adilson Vidal; Lorenzon, Alexandre Simões; Domingues, Getulio Fonseca; Marcatti, Gustavo Eduardo; de Castro, Nero Lemos Martins; Resende, Rafael Tassinari; Gonzales, Duberli Elera; de Almeida Telles, Lucas Arthur; Teixeira, Thaisa Ribeiro; Dos Santos, Gleissy Mary Amaral Dino Alves; Mota, Pedro Henrique Santos

    2017-12-15

    The formation of an urban heat island (UHI) is one of the most common impacts of the urbanization process. To mitigate the effects of UHI, the planning of urban forests (e.g., creation of parks, forests and afforestation streets) has been the major tool applied in this context. Thus, the aim of this study is to evaluate the spatial and temporal distribution of heat islands in Vila Velha, ES, Brazil using the mono-window algorithm. The study followed these methodological steps: 1) mapping of urban green areas through a photointerpretation screen; 2) application of the mono-window algorithm to obtain the spatial and temporal patterns of land surface temperature (LST); 3) correlation between LST and the normalized difference vegetation index (NDVI) and normalized difference build-up index (NDBI); 4) application of ecological evaluation index. The results showed that the mean values of LST in urban areas were at least 2.34 to 7.19°C higher than undeveloped areas. Moreover, the positive correlation between LST and NDBI showed an amplifying effect of the developed areas for UHI, while areas with a predominance of vegetation attenuated the effect of UHI. Urban centers, clustered in some parts of the city, received the worst ecological assessment index. Finally, the adoption of measures to guide the urban forest planning within urban centers is necessary to mitigate the effect of heat islands and provide thermal comfort in urban areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Spatial distribution of Zika virus infection in Northeastern Colombia.

    PubMed

    Rodriguez-Morales, Alfonso J; Haque, Ubydul; Ball, Jacob; García-Loaiza, Carlos Julian; Galindo-Marquez, Maria Leonor; Sabogal-Roman, Juan Alejandro; Marin-Loaiza, Santiago; Ayala, Andrés Felipe; Lozada-Riascos, Carlos O; Diaz-Quijano, Fredi A; Alvarado-Socarras, Jorge L

    2017-09-01

    In this study, we investigated the weekly reported spatio-temporal distribution and topographic risk factors for Zika virus (ZIKV) infection in northeastern Colombia. Weekly reported surveillance data, including clinical, suspected and confirmed cases from the ongoing ZIKV epidemic in the Santander and Norte de Santander departments (Santanderes) in Colombia were used to estimate cumulative incidence rates. Spatial analysis was performed to develop hot spot maps and to identify spatial topographic risk factors for infection. From January 1, 2016 to March 19, 2016, 11,515 cases of ZIKV were reported in Santanderes, with cumulative rates of 316.07 cases/100,000 population for the region (representing 18.5% of the cases of the country). Five municipalities (four in Norte de Santander) reported high incidence of ZIKV infection (>1,000 cases/100,000 pop); these municipalities are close to the border with Venezuela. Most of the cases reported occurred mainly in low altitude areas, and persistent hot spots were observed. Higher infection rates were reported in the Northeastern part of the study area. Use of risk maps can help guide decisions for the prevention and control of ZIKV. Hotspots on the Colombia-Venezuela border can have implications for international spread.

  7. Spatial distribution of light fields in a silicon conical waveguide

    SciTech Connect

    Kuznetsova, Tatiana I; Lebedev, Vladimir S

    2004-04-30

    The spatial distribution of monochromatic light fields is studied in a tapered silicon fibre with the subwavelength aperture. The lowest-order electric TM{sub 01} mode is analysed theoretically in a cone with perfectly reflecting metal walls filled with a light absorbing medium. Exact formulas and approximate expressions are obtained for a medium with the complex permittivity, which describe the spatial dependences of the electric and magnetic energy densities inside the cone. The behaviour of the field at the waveguide exit is analysed for the aperture diameter as small as {approx}1/30 of the wavelength. The main attention is devoted to the transmission coefficients of the probe, which were calculated for a wide range of its geometrical parameters in the wavelength region from 400 to 830 nm. It is found that silicon provides a substantial increase in the output light energy density at the optical probe end both in the IR and visible spectral regions compared to glass. (optical waveguides)

  8. Spatial Distribution of Black Bear Incident Reports in Michigan.

    PubMed

    McFadden-Hiller, Jamie E; Beyer, Dean E; Belant, Jerrold L

    2016-01-01

    Interactions between humans and carnivores have existed for centuries due to competition for food and space. American black bears are increasing in abundance and populations are expanding geographically in many portions of its range, including areas that are also increasing in human density, often resulting in associated increases in human-bear conflict (hereafter, bear incidents). We used public reports of bear incidents in Michigan, USA, from 2003-2011 to assess the relative contributions of ecological and anthropogenic variables in explaining the spatial distribution of bear incidents and estimated the potential risk of bear incidents. We used weighted Normalized Difference Vegetation Index mean as an index of primary productivity, region (i.e., Upper Peninsula or Lower Peninsula), primary and secondary road densities, and percentage land cover type within 6.5-km2 circular buffers around bear incidents and random points. We developed 22 a priori models and used generalized linear models and Akaike's Information Criterion (AIC) to rank models. The global model was the best compromise between model complexity and model fit (w = 0.99), with a ΔAIC 8.99 units from the second best performing model. We found that as deciduous forest cover increased, the probability of bear incident occurrence increased. Among the measured anthropogenic variables, cultivated crops and primary roads were the most important in our AIC-best model and were both positively related to the probability of bear incident occurrence. The spatial distribution of relative bear incident risk varied markedly throughout Michigan. Forest cover fragmented with agriculture and other anthropogenic activities presents an environment that likely facilitates bear incidents. Our map can help wildlife managers identify areas of bear incident occurrence, which in turn can be used to help develop strategies aimed at reducing incidents. Researchers and wildlife managers can use similar mapping techniques to

  9. Spatial distribution of dissolved constituents in Icelandic river waters

    NASA Astrophysics Data System (ADS)

    Oskarsdottir, Sigrídur Magnea; Gislason, Sigurdur Reynir; Snorrason, Arni; Halldorsdottir, Stefanía Gudrún; Gisladottir, Gudrún

    2011-02-01

    SummaryIn this study we map the spatial distribution of selected dissolved constituents in Icelandic river waters using GIS methods to study and interpret the connection between river chemistry, bedrock, hydrology, vegetation and aquatic ecology. Five parameters were selected: alkalinity, SiO 2, Mo, F and the dissolved inorganic nitrogen and dissolved inorganic phosphorus mole ratio (DIN/DIP). The highest concentrations were found in rivers draining young rocks within the volcanic rift zone and especially those draining active central volcanoes. However, several catchments on the margins of the rift zone also had high values for these parameters, due to geothermal influence or wetlands within their catchment area. The DIN/DIP mole ratio was higher than 16 in rivers draining old rocks, but lowest in rivers within the volcanic rift zone. Thus primary production in the rivers is limited by fixed dissolved nitrogen within the rift zone, but dissolved phosphorus in the old Tertiary catchments. Nitrogen fixation within the rift zone can be enhanced by high dissolved molybdenum concentrations in the vicinity of volcanoes. The river catchments in this study were subdivided into several hydrological categories. Importantly, the variation in the hydrology of the catchments cannot alone explain the variation in dissolved constituents. The presence or absence of central volcanoes, young reactive rocks, geothermal systems and wetlands is important for the chemistry of the river waters. We used too many categories within several of the river catchments to be able to determine a statistically significant connection between the chemistry of the river waters and the hydrological categories. More data are needed from rivers draining one single hydrological category. The spatial dissolved constituent distribution clearly revealed the difference between the two extremes, the young rocks of the volcanic rift zone and the old Tertiary terrain.

  10. The Spatial Distribution and Kinematics of the Circumgalactic Medium

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.; Nielsen, Nikole M.; Kacprzak, Glenn; Charlton, Jane C.; Muzahid, Sowgat

    2017-01-01

    We have examined the spatial distribution and kinematics of the circumgalactic medium (CGM) within 200 kpc of galaxies in the redshift range 0.1 to 1.0. The galaxies are resolved in HST images and are selected to have background quasars with sightlines that probe their CGM. We measured the cool/warm CGM in MgII absorption and the warm/hot CGM in OVI absorption using Keck/HIRES, VLT/UVES, and HST/COS. We have found that the CGM gas is highly organized such that: (1) gas is concentrated along the galaxy polar axes with high velocity dispersion, and (2) gas is concentrated along the galaxy major axes with smaller velocity dispersion. We constrain the geometry of the gas to reside between 20-40 degrees of the projected major axis and within 60 degrees of the projected minor axis, with little-to-no gas found in between. Furthermore, strongest absorption and largest velocity spreads are found for highly inclined (face on) galaxies with the bluest colors, suggesting outflows along the minor axes of star-forming galaxies. The major axis of bluer galaxies have similar velocity spreads to those of the gas surrouncding redder galaxies, which show little spatial preference in the distribution of the gas dynamics. Our results are consistent with the current view of the CGM originating from major axis (co-planer) inflows/recycled gas and from minor axis wind-driven outflows. We address how our results place strong contraints on the baryon cycle.

  11. Spatial Distribution of Black Bear Incident Reports in Michigan

    PubMed Central

    McFadden-Hiller, Jamie E.; Beyer, Dean E.; Belant, Jerrold L.

    2016-01-01

    Interactions between humans and carnivores have existed for centuries due to competition for food and space. American black bears are increasing in abundance and populations are expanding geographically in many portions of its range, including areas that are also increasing in human density, often resulting in associated increases in human-bear conflict (hereafter, bear incidents). We used public reports of bear incidents in Michigan, USA, from 2003–2011 to assess the relative contributions of ecological and anthropogenic variables in explaining the spatial distribution of bear incidents and estimated the potential risk of bear incidents. We used weighted Normalized Difference Vegetation Index mean as an index of primary productivity, region (i.e., Upper Peninsula or Lower Peninsula), primary and secondary road densities, and percentage land cover type within 6.5-km2 circular buffers around bear incidents and random points. We developed 22 a priori models and used generalized linear models and Akaike’s Information Criterion (AIC) to rank models. The global model was the best compromise between model complexity and model fit (w = 0.99), with a ΔAIC 8.99 units from the second best performing model. We found that as deciduous forest cover increased, the probability of bear incident occurrence increased. Among the measured anthropogenic variables, cultivated crops and primary roads were the most important in our AIC-best model and were both positively related to the probability of bear incident occurrence. The spatial distribution of relative bear incident risk varied markedly throughout Michigan. Forest cover fragmented with agriculture and other anthropogenic activities presents an environment that likely facilitates bear incidents. Our map can help wildlife managers identify areas of bear incident occurrence, which in turn can be used to help develop strategies aimed at reducing incidents. Researchers and wildlife managers can use similar mapping techniques to

  12. Generating Distributed Forcing Fields for Spatial Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Nayak, A.; Marks, D.; Chandler, D.; Winstral, A.

    2006-12-01

    Spatial hydrologic modeling requires the development of distributed forcing fields of weather and precipitation. This is particularly difficult in mountainous regions of the western US, where measurement sites are limited and the landscape is dominated by complex terrain and variations in vegetation cover. The Reynolds Creek Experimental Watershed (RCEW), in southwestern Idaho offers a unique opportunity to evaluate the sensitivity of interpolation techniques to the number and location of measurement sites. The RCEW, a 239 km2 hydro-climatic observatory operated by the USDA Agricultural Research Service since the early 1960's, contains 36 hydro-climatic measurement sites for monitoring the range of weather, snow and precipitation conditions across this complex mountain watershed. The MicroMet weather distribution utility, a process and topographically based weather interpolation tool (Liston and Elder, 2006), is used to generate surfaces of temperature, humidity, wind and precipitation over the snow-dominated 55 km2 (elevation range1398-2244m) Tollgate sub-catchment of RCEW. Nineteen meteorological stations were used to simulate the distribution of weather and precipitation for a series of storms during the 2004 water year. Measured and simulated values were compared to evaluate the accuracy of the model, and a jackknife approach was used to evaluate its sensitivity to data from particular stations. To evaluate the effect of elevation and storm track, different combinations of stations were selected, and to evaluate topographic exposure and vegetation shelter stations were divided into groups based on wind exposure. Results show that, even using a sophisticated weather distribution utility like MicroMet, the interpolation is very sensitive to station location and wind exposure. A certain amount of smoothing occurs even when using all 19 stations, but significant differences occur if only protected sites (similar to NRCS Snotel sites), or only wind-exposed sites are

  13. Spatial distribution of single-nucleotide polymorphisms related to fungicide resistance and implications for sampling.

    PubMed

    Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O

    2014-06-01

    Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0

  14. Spatial concentration distribution analysis of cells in electrode-multilayered microchannel by dielectric property measurement.

    PubMed

    Yao, Jiafeng; Kodera, Tatsuya; Obara, Hiromichi; Sugawara, Michiko; Takei, Masahiro

    2015-07-01

    The spatial concentration distribution of cells in a microchannel is measured by combining the dielectric properties of cells with the specific structure of the electrode-multilayered microchannel. The dielectric properties of cells obtained with the impedance spectroscopy method includes the cell permittivity and dielectric relaxation, which corresponds to the cell concentration and structure. The electrode-multilayered microchannel is constructed by 5 cross-sections, and each cross-section contains 5 electrode-layers embedded with 16 micro electrodes. In the experiment, the dielectric properties of cell suspensions with different volume concentrations are measured with different electrode-combinations corresponding to different electric field distributions. The dielectric relaxations of different cell concentrations are compared and discussed with the Maxwell-Wagner dispersion theory, and the relaxation frequencies are analysed by a cell polarization model established based on the Hanai cell model. Moreover, a significant linear relationship with AC frequency dependency between relative permittivity and cell concentration was found, which provides a promising way to on-line estimate cell concentration in microchannel. Finally, cell distribution in 1 cross-section of the microchannel (X and Y directions) was measured with different electrode-combinations using the dielectric properties of cell suspensions, and cell concentration distribution along the microchannel (Z direction) was visualized at flowing state. The present cell spatial sensing study provides a new approach for 3 dimensional non-invasive online cell sensing for biological industry.

  15. Apparatus for direct-to-digital spatially-heterodyned holography

    DOEpatents

    Thomas, Clarence E.; Hanson, Gregory R.

    2006-12-12

    An apparatus operable to record a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis includes: a laser; a beamsplitter optically coupled to the laser; an object optically coupled to the beamsplitter; a focusing lens optically coupled to both the beamsplitter and the object; a digital recorder optically coupled to the focusing lens; and a computer that performs a Fourier transform, applies a digital filter, and performs an inverse Fourier transform. A reference beam and an object beam are focused by the focusing lens at a focal plane of the digital recorder to form a spatially low-frequency heterodyne hologram including spatially heterodyne fringes for Fourier analysis which is recorded by the digital recorder, and the computer transforms the recorded spatially low-frequency heterodyne hologram including spatially heterodyne fringes and shifts axes in Fourier space to sit on top of a heterodyne carrier frequency defined by an angle between the reference beam and the object beam and cuts off signals around an original origin before performing the inverse Fourier transform.

  16. Occurrence and spatial distribution of microplastics in sediments from Norderney.

    PubMed

    Dekiff, Jens H; Remy, Dominique; Klasmeier, Jörg; Fries, Elke

    2014-03-01

    The spatial distribution of small potential microplastics (SPM) (<1 mm) in beach sediments was studied on a 500 m stretch of the North Sea island of Norderney. Their correlation with visible plastic debris (VPD) (>1 mm) was also examined. Small microparticles were extracted from 36 one kg sediment samples and analysed by visual microscopic inspection and partly by thermal desorption pyrolysis gas chromatography/mass spectrometry. The smallest particle size that could be analysed with this method was estimated to be 100 μm. The mean number of SPM at the three sampling sites (n = 12) was 1.7, 1.3 and 2.3 particles per kg dry sediment, respectively. SPM were identified as polypropylene, polyethylene, polyethylene terephthalate, polyvinylchloride, polystyrene and polyamide. The organic plastic additives found were benzophenone, 1,2-benzenedicarboxylic acid, dimethyl phthalate, diethylhexyl phthalate, dibutyl phthalate, diethyl phthalate, phenol and 2,4-di-tert-butylphenol. Particles were distributed rather homogenously and the occurrence of SPM did not correlate with that of VPD.

  17. On spatial pattern of concentration distribution for Taylor dispersion process

    NASA Astrophysics Data System (ADS)

    Wu, Zi; Fu, Xudong; Wang, Guangqian

    2016-02-01

    Taylor dispersion is a key concept in many fields. In the present paper, we characterize the pattern of the complete spatial concentration distribution for laminar tube flow; the obtained simple description is shown to represent the nature of Taylor dispersion. Importantly, we find that during the approach to the longitudinal normality of the transverse mean concentration at the time scale of R2/D (R is the tube radius and D is the molecular diffusivity), the solute concentration becomes uniformly distributed across a family of invariant curved transverse surfaces instead of the flat cross-sections in the traditional view. The family of curved surfaces is analytically determined, and a transformation is devised for the previously obtained analytical solution to discuss the decay of the concentration difference across the curved surfaces. The approach to a uniform concentration across the flat cross-sections to the same degree (~3% by concentration difference percentage), achieved at a time-scale of 100 R2/D, is shown to be the natural consequence of the longitudinal separation of the concentration contours on the curved surfaces.

  18. Typical features of pedestrian spatial distribution in the inflow process

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Song, Weiguo; Fu, Libi; Lv, Wei; Fang, Zhiming

    2016-04-01

    Pedestrian inflow is frequently observed in various pedestrian facilities. In this work, we first proposed four hypotheses concerning the inflow process. Then, we performed a series of experiments to test the hypotheses. With several analytical methods, e.g., the proxemics theory and Voronoi diagram method, the features of pedestrian inflow are analyzed in detail. Results demonstrate that the distribution of pedestrians in the room is not uniform. Boundaries are attractive for these pedestrians. The impact of two factors of the inflow are analyzed, i.e., movement rule, and first-out reward. It is found pedestrians can enter the room more effectively under the random rule or two queues. Under some hurry circumstances, pedestrians may prefer to gather around the door, and the spatial distribution is not uniform, leading to the imbalance use of the room. Practical suggestions are given for pedestrians to improve the travel efficiency in the inflow process. This experimental study is meaningful to reveal some fundamental phenomena of inflow process, which can provide the realistic basis for building the theory and mathematical-physical models.

  19. Spatial distribution of the Sm antigen in Drosophila early embryos.

    PubMed

    Ségalat, L; Lepesant, J A

    1992-01-01

    Anti-Sm antibodies recognize the major small nuclear RNA-protein particles (snRNPs) involved in pre-mRNA processing. The spatial distribution of the snRNPs has been investigated in Drosophila embryos up to the cellularization stage (cycle 14), using the Y12 anti-Sm antibody. Our results show that: 1) all or most of the Sm antigen is localized in the cytoplasm of the syncytial blastoderm until the 12th cycle of division, in both the nuclear and cytoplasmic compartments at cycle 13, and then in the nuclei at cycle 14 and later. This relocalization takes place when zygotic transcriptional activation occurs; 2) at the subcellular level, the Sm antigen localizes in a speckled pattern and in foci-like structures within the nucleus of Drosophila blastoderm embryos; 3) strikingly, some nuclei of embryos at the 14th cycle appear to contain more snRNPs than others. The position of these nuclei differs from one embryo to another, and their distribution does not resemble any known developmental pattern of Drosophila embryogenesis. We propose that random differences in snRNP concentration may serve as an epigenetic signal for stochastic events occurring during development.

  20. Spatial and temporal distribution of tropical biomass burning

    SciTech Connect

    Hao, W.M.; Liu, Mei-Huey

    1994-12-01

    A database for the spatial and temporal distribution of the amount of biomass burned in tropical America, Africa, and Asia during the late 1970s is presented with a resolution of 5{degrees} latitude x 5{degrees} longitude. The sources of burning in each grid cell have been quantified. Savanna fires, shifting cultivation, deforestation, fuel wood use, and burning of agricultural residues contribute about 50, 24, 10, 11, and 5%, respectively, of total biomass burned in the tropics. Savanna fires dominate in tropical Africa, and forest fires dominant in tropical Asia. A similar amount of biomass is burned from forest and savanna fires in tropical America. The distribution of biomass burned monthly during the dry season has been derived for each grid cell using the seasonal cycles of surface ozone concentrations. Land use changes during the last decade could have a profound impact on the amount of biomass burned and the amount of trace gases and aerosol particles emitted. 32 refs., 3 figs., 3 tabs.

  1. Spatial distribution and galactic model parameters of cataclysmic variables

    NASA Astrophysics Data System (ADS)

    Ak, T.; Bilir, S.; Ak, S.; Eker, Z.

    2008-04-01

    The spatial distribution, galactic model parameters and luminosity function of cataclysmic variables (CVs) in the solar neighbourhood have been determined from a carefully established sample of 459 CVs. The sample contains all of the CVs with distances computed from the period-luminosity-colours (PLCs) relation of CVs which has been recently derived and calibrated with 2MASS photometric data. It has been found that an exponential function fits best to the observational z-distributions of all of the CVs in the sample, non-magnetic CVs and dwarf novae, while the sech 2 function is more appropriate for nova-like stars and polars. The vertical scaleheight of CVs is 158 ± 14 pc for the 2MASS J-band limiting apparent magnitude of 15.8. On the other hand, the vertical scaleheights are 128 ± 20 and 160 ± 5 pc for dwarf novae and nova-like stars, respectively. The local space density of CVs is found to be ˜3 × 10 -5 pc -3 which is in agreement with the lower limit of the theoretical predictions. The luminosity function of CVs shows an increasing trend toward higher space densities at low luminosities, implying that the number of short-period systems should be high. The discrepancies between the theoretical and observational population studies of CVs will almost disappear if for the z-dependence of the space density the sech 2 density function is used.

  2. On spatial pattern of concentration distribution for Taylor dispersion process

    PubMed Central

    Wu, Zi; Fu, Xudong; Wang, Guangqian

    2016-01-01

    Taylor dispersion is a key concept in many fields. In the present paper, we characterize the pattern of the complete spatial concentration distribution for laminar tube flow; the obtained simple description is shown to represent the nature of Taylor dispersion. Importantly, we find that during the approach to the longitudinal normality of the transverse mean concentration at the time scale of R2/D (R is the tube radius and D is the molecular diffusivity), the solute concentration becomes uniformly distributed across a family of invariant curved transverse surfaces instead of the flat cross-sections in the traditional view. The family of curved surfaces is analytically determined, and a transformation is devised for the previously obtained analytical solution to discuss the decay of the concentration difference across the curved surfaces. The approach to a uniform concentration across the flat cross-sections to the same degree (~3% by concentration difference percentage), achieved at a time-scale of 100 R2/D, is shown to be the natural consequence of the longitudinal separation of the concentration contours on the curved surfaces. PMID:26867803

  3. Temporal and spatial distribution of semicarbazide in western Laizhou Bay.

    PubMed

    Tian, Xiuhui; Xu, Yingjiang; Song, Xiukai; Gong, Xianghong; Liu, Yihao; Zhou, Quanli; Wang, Zhongquan; Xia, Chuanhai

    2016-11-15

    Semicarbazide (SEM), an industrial raw material and the marker residue of nitrofurazone as a veterinary drug, has become a new type of marine pollutant. A standard method (ultra-performance liquid chromatography-tandem mass spectrometry, UPLC-MS/MS) was used to analyze SEM in seawater, sediment, and shellfish. A series of sections and stations were set up in radical distribution in western Laizhou Bay, with six voyages and 150 monitoring samples. The concentrations of SEM in seawater and shellfish were 10(-11) and 10(-10)kg/L, respectively, and no SEM was detected in the sediment. Distribution characteristics at each state, temporal and spatial trends, multivariate analyses, and the causes were analyzed to assess the pollution level, which aimed to offer a database for drafting the national baseline values of SEM in seawater and sediment in future. The data obtained could be used for integrated watershed management of marine environment and economic activities for constructing a blue economic zone of Shandong Peninsula in China. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Spatial Distribution of Small Organics in Prestellar and Protostellar Cores

    NASA Astrophysics Data System (ADS)

    Waalkes, William; Guzman, Viviana; Oberg, Karin I.

    2016-01-01

    In the interstellar medium, formaldehyde (H2CO) has efficient formation pathways in both the gas-phase and on the surfaces of dust grains. Methanol (CH3OH), on the other hand, is believed to form exclusively on grains as there are no efficient gas-phase reactions leading to CH3OH. We present observations taken with the IRAM 30m telescope of several H2CO and CH3OH lines in a prestellar and protostellar core. We investigated the formation pathways of H2CO and CH3OH by comparing their spatial distributions. We find that in the prestellar core, the two species are anti-correlated in the densest region, while their emission is correlated in the low-density region. In contrast, for the protostellar core we find a correlation in the distribution of both species. We conclude that in the protostellar source, H2CO and CH3OH form together on grains and have been thermally desorbed due to the central newly formed star. In the prestellar core, however, CH3OH forms on the ices and remains depleted in the coldest regions, while H2CO can form efficiently in the gas-phase. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  5. Pickup ion phase space distributions: Effects of atmospheric spatial gradients

    NASA Astrophysics Data System (ADS)

    Hartle, R. E.; Sittler, E. C.

    2007-07-01

    Spatial variations of the neutral source gases of pickup ions are known to affect the velocity distributions of the ions. An expression for the phase space density of pickup ions is derived from the Vlasov equation with a delta function ion source in velocity space that explicitly accounts for the spatial variation of the neutral gas. The background plasma velocity is uniform and perpendicular to a constant ambient magnetic field, which together produce a uniform motional electric field. The neutral source density is one dimensional, varying exponentially along the flow axis with a fixed scale height. The solutions apply to the limiting case of a weak interaction with negligible mass loading. The resulting ring distribution is applied to two examples approximating these criteria; i.e., pickup ions formed in the solar wind interaction with the Earth's Moon and the interaction of Saturn's rotating magnetosphere with Titan. A fundamental parameter appears in the resulting phase space density expression; namely, α = rg/H, the ratio of the gyroradius to the scale height. When α ≪ 1, the interaction is fluid-like with all orbit phases of pickup ion cycloidal motion present at an observation point. If α ≫ 1, the pickup ions appear as ion beams, where the phase space distribution peaks over a small velocity range at an observation site in the source region and the ions will have only executed the beginning phases of their cycloidal motion. The principal contribution to the ions in the velocity peak derives from ions born over a neutral scale height upstream from the observation site. The pickup ion phase space density expression, constrained by spacecraft plasma ion spectrometer and magnetometer measurements, can be used to estimate the neutral source densities of a planetary body's exosphere and its composition. Potential applications are the lunar surface composition, Venus' atmospheric interaction with the solar wind, the interaction of the Galilean moons with

  6. Spatial distribution of erosion and deposition on an agricultural watershed

    NASA Astrophysics Data System (ADS)

    Pineux, Nathalie; Gilles, Colinet; Degré, Aurore

    2013-04-01

    To better understand the agricultural landscapes evolution becomes an essential preoccupation and, for this, it is needed to take into account the sediments deposition, in a distributed way. As it is not possible in practice to study all terrestrial surfaces in detail by instrumenting sectors to obtain data, models of prediction are valuable tools to control the current problems, to predict the future tendencies and to provide a scientific base to the political decisions. In our case, a landscape evolution model is needed, which aims at representing both erosion and sedimentation and dynamically adjusts the landscape to erosion and deposition by modifying the initial digital elevation model. The Landsoil model (Landscape design for Soil conservation under soil use and climate change), among others, could fulfil this objective. It has the advantage to take the soil variability into account. This model, designed for the analysis of agricultural landscape, is suitable for simulations from parcel to catchment scale, is spatially distributed and event-based. Observed quantitative data are essential (notably to calibrate the model) but still limited. Particularly, we lack observations spatially distributed on the watershed. For this purpose, we choose a watershed in Belgium (Wallonia) which is a 124 ha agricultural zone in the loamy region. Its slopes range from 0% to 9%. To test the predictions of the model, comparisons will be done with: - sediment measurements which are done with water samplings in four points on the site to compare the net erosion results; - sediment selective measurements (depth variation observed along graduated bares placed on site) to compare the erosion and deposition results; - very accurate DSM's (6,76 cm pixel resolution X-Y) obtained by the drone (Gatewing X100) each winter. Besides planning what the landscape evolution should be, a revision of the soil map (drew in 1958) is organized to compare with the past situation and establish how the

  7. Direct measurement of quasiprobability distributions in cavity QED

    SciTech Connect

    Juarez-Amaro, Raul; Moya-Cessa, Hector

    2003-08-01

    We show that the set of s-parametrized quasiprobability distribution functions corresponding to an electromagnetic field in a cavity subject to dissipation can be directly measured. Such distributions contain whole information of the quantum state, therefore making it possible to recover information after losses have occurred.

  8. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2011-05-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Changes in soil organic carbon (SOC) stocks are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOC stocks is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing around 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOC stocks as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOC stocks for mainland France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on SOC for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOC stocks and pedo-climatic variables (plus their interactions) over the French territory. These relationships strongly depended on the land use, and more specifically, differed between forest soils and cultivated soil. The total estimate of SOC stocks in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOC stock distributions of France, and consequently that the previously published approach at the

  9. Spatial distribution of soil organic carbon stocks in France

    NASA Astrophysics Data System (ADS)

    Martin, M. P.; Wattenbach, M.; Smith, P.; Meersmans, J.; Jolivet, C.; Boulonne, L.; Arrouays, D.

    2010-11-01

    Soil organic carbon plays a major role in the global carbon budget, and can act as a source or a sink of atmospheric carbon, whereby it can influence the course of climate change. Changes in soil organic soil stocks (SOCS) are now taken into account in international negotiations regarding climate change. Consequently, developing sampling schemes and models for estimating the spatial distribution of SOCS is a priority. The French soil monitoring network has been established on a 16 km × 16 km grid and the first sampling campaign has recently been completed, providing circa 2200 measurements of stocks of soil organic carbon, obtained through an in situ composite sampling, uniformly distributed over the French territory. We calibrated a boosted regression tree model on the observed stocks, modelling SOCS as a function of other variables such as climatic parameters, vegetation net primary productivity, soil properties and land use. The calibrated model was evaluated through cross-validation and eventually used for estimating SOCS for the whole of metropolitan France. Two other models were calibrated on forest and agricultural soils separately, in order to assess more precisely the influence of pedo-climatic variables on soil organic carbon for such soils. The boosted regression tree model showed good predictive ability, and enabled quantification of relationships between SOCS and pedo-climatic variables (plus their interactions) over the French territory. These relationship strongly depended on the land use, and more specifically differed between forest soils and cultivated soil. The total estimate of SOCS in France was 3.260 ± 0.872 PgC for the first 30 cm. It was compared to another estimate, based on the previously published European soil organic carbon and bulk density maps, of 5.303 PgC. We demonstrate that the present estimate might better represent the actual SOCS distributions of France, and consequently that the previously published approach at the European

  10. Slowness and Sparseness Lead to Place, Head-Direction, and Spatial-View Cells

    PubMed Central

    Franzius, Mathias; Sprekeler, Henning; Wiskott, Laurenz

    2007-01-01

    We present a model for the self-organized formation of place cells, head-direction cells, and spatial-view cells in the hippocampal formation based on unsupervised learning on quasi-natural visual stimuli. The model comprises a hierarchy of Slow Feature Analysis (SFA) nodes, which were recently shown to reproduce many properties of complex cells in the early visual system [1]. The system extracts a distributed grid-like representation of position and orientation, which is transcoded into a localized place-field, head-direction, or view representation, by sparse coding. The type of cells that develops depends solely on the relevant input statistics, i.e., the movement pattern of the simulated animal. The numerical simulations are complemented by a mathematical analysis that allows us to accurately predict the output of the top SFA layer. PMID:17784780

  11. The Spatial Distribution of HII Regions in Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Roye, E. W.; Hunter, D. A.

    1999-12-01

    CCD Hα and V-band images were used to examine the distributions of star-forming regions in 34 irregular galaxies, 29 of which are normal Ims and 6 of which are Blue Compact Dwarf (BCD)/starburst irregulars. The V-band images were used to determine the center, position angle, and inclination of the galaxies. The Hα images were used to trace the star-formation through the HII regions. HII region distributions in the planes of the galaxies were compared to turnovers in the rotation curves, the sizes of the galaxies, and locations relative to stellar bars. The overall symmetry and concentration of the HII distributions were also determined. In general, the HII regions are concentrated towards the centers of the galaxies, with the giant HII regions and complexes being even more centrally concentrated. Furthermore, most of the HII regions and complexes are located within R25, the radius at a B surface brightness of 25 magnitudes per arcsec2, as well as within the radius at which the rotation curve turns over. The locations of HII regions, giant HII regions, and complexes are not otherwise correlated with these particular radii. There are no obvious differences in the distribution of HII regions in BCDs and starburst galaxies relative to that of typical irregulars. However, in the two BCD/starburst galaxies for which rotation curves are available, both had HII complexes located well beyond the turnover in the rotation curve. There appears to be no preferential location of giant HII regions or complexes relative to stellar bars. Finally, the overall distribution of HII regions tends to be symmetric. I would like to thank the National Science Foundation for providing funding for the Research Experiences for Undergraduates program at Northern Arizona University, and Kathy Eastwood for directing the program.

  12. Spatially Distributed Characterization of Soil Dynamics Using Travel-Time Distributions

    NASA Astrophysics Data System (ADS)

    Hesse, Falk; Zink, Matthias; Attinger, Sabine

    2016-04-01

    The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and potential evapotranspiration to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and

  13. Spatially Distributed Characterization of Catchment Dynamics Using Travel-Time Distributions

    NASA Astrophysics Data System (ADS)

    Heße, F.; Zink, M.; Attinger, S.

    2015-12-01

    The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and temperature to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and therefore allow to infer

  14. Parallel spatial direct numerical simulations on the Intel iPSC/860 hypercube

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.; Zubair, Mohammad

    1993-01-01

    The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube is documented. The direct numerical simulation approach is used to compute spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows. The feasibility of using the PSDNS on the hypercube to perform transition studies is examined. The results indicate that the direct numerical simulation approach can effectively be parallelized on a distributed-memory parallel machine. By increasing the number of processors nearly ideal linear speedups are achieved with nonoptimized routines; slower than linear speedups are achieved with optimized (machine dependent library) routines. This slower than linear speedup results because the Fast Fourier Transform (FFT) routine dominates the computational cost and because the routine indicates less than ideal speedups. However with the machine-dependent routines the total computational cost decreases by a factor of 4 to 5 compared with standard FORTRAN routines. The computational cost increases linearly with spanwise wall-normal and streamwise grid refinements. The hypercube with 32 processors was estimated to require approximately twice the amount of Cray supercomputer single processor time to complete a comparable simulation; however it is estimated that a subgrid-scale model which reduces the required number of grid points and becomes a large-eddy simulation (PSLES) would reduce the computational cost and memory requirements by a factor of 10 over the PSDNS. This PSLES implementation would enable transition simulations on the hypercube at a reasonable computational cost.

  15. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in central China.

    PubMed

    Li, Xin; Yang, Hong; Zhang, Chang; Zeng, Guangming; Liu, Yunguo; Xu, Weihua; Wu, Youe; Lan, Shiming

    2017-03-01

    The spatial distribution and transport characteristics of heavy metals in an antimony mine area (Xikuangshan, China) were systematically studied using a field survey and geostatistical analytical methods. In the study area, 52 soil and sediment samples were collected from bare land, grassland, woodland and river sediments covering a surface area of 20 km(2). The soil properties and heavy metal concentrations were measured by wavelength dispersive X-ray fluorescence spectrometry and inductively coupled plasma-mass spectrometry, respectively. Correlation analysis and principal component analysis suggest that Cu, Zn, Cd, As, Pb and Sb can be attributed to anthropogenic inputs, whereas Cr, Mn and Ni are of natural origin. Distribution maps of heavy metals were generated using the Kriging interpolation method to identify their distribution trends. The results show the influence of wind, river, distance and vegetation on the spatial distribution. The results also revealed that windborne transport may play a significant role in the spreading of contaminants. In addition, the environmental risk of heavy metal pollution was evaluated using their geoaccumulation indexes in the whole region. All of the results indicate that the heavy metal distributions in the soils were consistent with the local prevailing wind direction. In addition, the environmental quality could be seriously threatened by heavy metal contaminants from the smelter and tailings.

  16. Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon

    2016-04-01

    Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model

  17. Habitat modeling for cetacean management: Spatial distribution in the southern Pelagos Sanctuary (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Pennino, Maria Grazia; Mérigot, Bastien; Fonseca, Vinícius Prado; Monni, Virginia; Rotta, Andrea

    2017-07-01

    Effective management and conservation of wild populations requires knowledge of their habitats, especially by mean of quantitative analyses of their spatial distributions. The Pelagos Sanctuary is a dedicated marine protected area for Mediterranean marine mammals covering an area of 90,000 km2 in the north-western Mediterranean Sea between Italy, France and the Principate of Monaco. In the south of the Sanctuary, i.e. along the Sardinian coast, a range of diverse human activities (cities, industry, fishery, tourism) exerts several current ad potential threats to cetacean populations. In addition, marine mammals are recognized by the EU Marine Strategy Framework Directive as essential components of sustainable ecosystems. Yet, knowledge on the spatial distribution and ecology of cetaceans in this area is quite scarce. Here we modeled occurrence of the three most abundant species known in the Sanctuary, i.e. the striped dolphin (Stenella coeruleoalba), the bottlenose dolphin (Tursiops truncatus) and the fin whales (Balaenoptera physalus), using sighting data from scientific surveys collected from 2012 to 2014 during summer time. Bayesian site-occupancy models were used to model their spatial distribution in relation to habitat taking into account oceanographic (sea surface temperature, primary production, photosynthetically active radiation, chlorophyll-a concentration) and topographic (depth, slope, distance of the land) variables. Cetaceans responded differently to the habitat features, with higher occurrence predicted in the more productive areas on submarine canyons. These results provide ecological information useful to enhance management plans and establish baseline for future population trend studies.

  18. Which spatial discretization for which distributed hydrological model?

    NASA Astrophysics Data System (ADS)

    Dehotin, J.; Braud, I.

    2007-04-01

    Distributed hydrological models are valuable tools to derive distributed estimation of water balance components or to study the impact of land-use or climate change on water resources and water quality. In these models, the choice of an appropriate spatial scale for the modelling units is a crucial issue. It is obviously linked to the available data and their scale, but not only. For a given catchment and a given data set, the "optimal" spatial discretization should be different according to the problem to be solved and the objectives of the modelling. Thus a flexible methodology is needed, especially for large catchments, to derive modelling units by performing suitable trade-off between available data, the dominant hydrological processes, their representation scale and the modelling objectives. In order to represent catchment heterogeneity efficiently according to the modelling goals, and the availability of the input data, we propose to use nested discretization, starting from a hierarchy of sub-catchments, linked by the river network topology. If consistent with the modelling objectives, the active hydrological processes and data availability, sub-catchment variability can be described using a finer nested discretization. The latter takes into account different geophysical factors such as topography, land-use, pedology, but also suitable hydrological discontinuities such as ditches, hedges, dams, etc. For small catchments, the landscape features such as agricultural fields, buildings, hedges, river reaches can be represented explicitly, as well as the water pathways between them. For larger catchments, such a representation is not feasible and simplification is necessary. For the sub-catchments discretization in these large catchments, we propose a flexible methodology based on the principles of landscape classification, using reference zones. These principles are independent from the catchment size. They allow to keep suitable features which are required in

  19. Improvement of spatial resolution in the longitudinal direction for isotropic imaging in helical CT

    NASA Astrophysics Data System (ADS)

    Tsukagoshi, Shinsuke; Ota, Takamasa; Fujii, Misako; Kazama, Masahiro; Okumura, Miwa; Johkoh, Takeshi

    2007-02-01

    Experiments were conducted to confirm the isotropic spatial resolution of multislice CT with a 0.5 mm slice thickness. Isotropic spatial resolution means that the spatial resolution in the transaxial plane (X-Y plane) and that in the longitudinal direction (Z direction) are equivalent. To obtain point spread function (PSF) values in the X-Y-Z directions, three-dimensional voxel data were obtained by helical scanning of a bead phantom. The modulation transfer function (MTF) values were then obtained by three-dimensional Fourier transform of the PSF. Evaluation of the spatial resolution in the X-Y-Z directions by the MTF values showed that the spatial resolution in the Z direction does not depend on the reconstruction kernel used. It was also found that the spatial resolution in the Z direction, as compared with that in the X-Y plane, is superior with the standard kernel for the abdomen and is inferior with the high-definition kernel for the ears/bones. By performing sharpening filter processing in the Z direction with a high-definition kernel, comparable spatial resolution could be obtained in the X-Y-Z directions. It was confirmed that adjusting the spatial resolution in the Z direction with the reconstruction kernel used is an effective method for isotropic imaging.

  20. Optimal exploitation of spatially distributed trophic resources and population stability

    USGS Publications Warehouse

    Basset, A.; Fedele, M.; DeAngelis, D.L.

    2002-01-01

    The relationships between optimal foraging of individuals and population stability are addressed by testing, with a spatially explicit model, the effect of patch departure behaviour on individual energetics and population stability. A factorial experimental design was used to analyse the relevance of the behavioural factor in relation to three factors that are known to affect individual energetics; i.e. resource growth rate (RGR), assimilation efficiency (AE), and body size of individuals. The factorial combination of these factors produced 432 cases, and 1000 replicate simulations were run for each case. Net energy intake rates of the modelled consumers increased with increasing RGR, consumer AE, and consumer body size, as expected. Moreover, through their patch departure behaviour, by selecting the resource level at which they departed from the patch, individuals managed to substantially increase their net energy intake rates. Population stability was also affected by the behavioural factors and by the other factors, but with highly non-linear responses. Whenever resources were limiting for the consumers because of low RGR, large individual body size or low AE, population density at the equilibrium was directly related to the patch departure behaviour; on the other hand, optimal patch departure behaviour, which maximised the net energy intake at the individual level, had a negative influence on population stability whenever resource availability was high for the consumers. The consumer growth rate (r) and numerical dynamics, as well as the spatial and temporal fluctuations of resource density, which were the proximate causes of population stability or instability, were affected by the behavioural factor as strongly or even more strongly than by the others factors considered here. Therefore, patch departure behaviour can act as a feedback control of individual energetics, allowing consumers to optimise a potential trade-off between short-term individual fitness

  1. Mapping Craters Depths in Terra Cimmeria, Mars: Implications for Spatial Distribution of Ground Ice

    NASA Astrophysics Data System (ADS)

    Stepinski, T. F.; Urbach, E. R.

    2007-07-01

    Spatial distribution of ground ice is derived from maps of depth/diameter ratio obtained using 7845 craters in the T. Cimmeria region. The result supports models predictions, and indicates spatial variability of depth to ice in the equatorial zone.

  2. Effects of DEM scale on the spatial distribution of the TOPMODEL topographic wetness index and its correlations to watershed characteristics

    NASA Astrophysics Data System (ADS)

    Drover, D. R.; Jackson, C. R.; Bitew, M.; Du, E.

    2015-11-01

    Topographic wetness indices (TWIs) calculated from digital elevation models (DEMs) are meant to predict relative landscape wetness and should have predictive power for soil and vegetation attributes. While previous researchers have shown cumulative TWI distributions shift to larger values as DEM resolution decreases, there has been little work assessing how DEM scales affect TWI spatial distributions and correlations with soil and vegetation properties. We explored how various DEM resolutions (2, 5, 10, 20, 30, and 50 m) subsampled from high definition LiDAR altered the spatial distribution of TWI values and the correlations of these values with soil characteristics determined from point samples, Natural Resources Conservation Service (NRCS) soil units, depths to groundwater, and managed vegetation distributions within a first order basin in the Upper Southeastern Coastal Plain with moderate slopes, flat valleys, and several wetlands. Point-scale soil characteristics were determined by laboratory analysis of point samples collected from riparian transects and hillslope grids. DEM scale affected the spatial distribution of TWI values in ways that affect our interpretation of landscape processes. At the finest DEM resolutions, valleys disappeared as TWI values were driven by local microtopography and not basin position. Spatial distribution of TWI values most closely matched the spatial distribution of soils, depth to groundwater, and vegetation stands for the 10, 20, and 30 m resolutions. DEM resolution affected the shape and direction of relationships between soil nitrogen and carbon contents and TWI values, but TWI values provided poor prediction of soil chemistry at all resolutions.

  3. Stochastic analysis to assess the spatial distribution of groundwater nitrate concentrations in the Po catchment (Italy).

    PubMed

    Cinnirella, Sergio; Buttafuoco, Gabriele; Pirrone, Nicola

    2005-02-01

    A large database including temporal trends of physical, ecological and socio-economic data was developed within the EUROCAT project. The aim was to estimate the nutrient fluxes for different socio-economic scenarios at catchment and coastal zone level of the Po catchment (Northern Italy) with reference to the Water Quality Objectives reported in the Water Framework Directive (WFD 2000/60/CE) and also in Italian legislation. Emission data derived from different sources at national, regional and local levels are referred to point and non-point sources. While non-point (diffuse) sources are simply integrated into the nutrient flux model, point sources are irregularly distributed. Intensive farming activity in the Po valley is one of the main Pressure factors Driving groundwater pollution in the catchment, therefore understanding the spatial variability of groundwater nitrate concentrations is a critical issue to be considered in developing a Water Quality Management Plan. In order to use the scattered point source data as input in our biogeochemical and transport models, it was necessary to predict their values and associated uncertainty at unsampled locations. This study reports the spatial distribution and uncertainty of groundwater nitrate concentration at a test site of the Po watershed using a probabilistic approach. Our approach was based on geostatistical sequential Gaussian simulation used to yield a series of stochastic images characterized by equally probable spatial distributions of the nitrate concentration across the area. Post-processing of many simulations allowed the mapping of contaminated and uncontaminated areas and provided a model for the uncertainty in the spatial distribution of nitrate concentrations.

  4. COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS

    EPA Science Inventory

    One indication of model performance is the comparison of spatial patterns of pollutants, either as concentration or deposition, predicted by the model with spatial patterns derived from measurements. If the spatial patterns produced by the model are similar to the observations i...

  5. Mapping spatial distribution of forest age in China

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Yao, Yitong; Wang, Xuhui; Liu, Yongwen; Piao, Shilong

    2017-03-01

    Forest stand age is a meaningful metric, which reflects the past disturbance legacy, provides guidelines for forest management practices, and is an important factor in qualifying forest carbon cycles and carbon sequestration potential. Reliable large-scale forest stand age information with high spatial resolutions, however, is difficult to obtain. In this study, we developed a top-down method to downscale the provincial statistics of national forest inventory data into 1 km stand age map using climate data and light detection and ranging-derived forest height. We find that the distribution of forest stand age in China is highly heterogeneous across the country, with a mean value of 42.6 years old. The relatively young stand age for Chinese forests is mostly due to the large proportion of newly planted forests (0-40 years old), which are more prevailing in south China. Older forests (stand age > 60 years old) are more frequently found in east Qinghai-Tibetan Plateau and the central mountain areas of west and northeast China, where human activities are less intensive. Among the 15 forest types, forests dominated by species of Taxodiaceae, with the exception of Cunninghamia lanceolata stands, have the oldest mean stand age (136 years), whereas Pinus massoniana forests are the youngest (18 years). We further identified uncertainties associated with our forest age map, which are high in west and northeast China. Our work documents the distribution of forest stand age in China at a high resolution which is useful for carbon cycle modeling and the sustainable use of China's forest resources.

  6. The fine-scale spatial distribution of surface moisture content in Canadian and Irish peatlands

    NASA Astrophysics Data System (ADS)

    Prat, Nuria; Thompson, Daniel; Turetsky, Merritt; Rein, Guillermo; Hadden, Rory; Belcher, Claire; Yearsley, Jon

    2014-05-01

    Natural peatlands are characterised for having a water-table close to the surface, saturating all the layers of the peat profile. In contrast, in drained peatlands there is a decrease of the water-table position and a subsequent drop of moisture content of the superficial layers. When the peat reaches levels of moisture content below 125% (in a dry weight basis) it becomes more vulnerable to burn in a smouldering fire. While the moisture distribution through the vertical peat profile has been well studied, there is little research looking at how the moisture content is spatially distributed horizontally. There are even less studies analysing the variability of physical properties of the peat in a fine scale. In this study, we investigated the spatial distribution of moisture content, bulk density and vegetation in the superficial layers of two peatlands. Samples from a Canadian old undisturbed peatland (Burned Crow Century, AB, Canada) were taken during the summer 2013 and from a drained Irish peatland (Wicklow Mountains National Park, Ireland) were taken during the autumn 2013. We estimate spatial distribution and scale of variability of vegetation and peat physical properties such as moisture content and bulk density. In the Canadian samples we found a significant association between vegetation types and moisture content and bulk density of the peat. While for the Irish peatland there is only association between vegetation and bulk density of the peat, as the moisture content is more homogeneous through all the vegetation types. For both datasets, the scale of spatial autocorrelation is up to 50cm in peat physical properties, which is consistent with the spatial scale of the hummock-hollow microtopography. The variables in our analysis have a direct effect on the propagation of the smouldering fire in peatlands, for that reason a better knowledge of the scale and spatial variability of the peat properties can help regulating water-table levels in certain local

  7. Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data

    NASA Astrophysics Data System (ADS)

    Hermans, Thomas; Oware, Erasmus; Caers, Jef

    2016-09-01

    Time-lapse applications of electrical methods have grown significantly over the last decade. However, the quantitative interpretation of tomograms in terms of physical properties, such as salinity, temperature or saturation, remains difficult. In many applications, geophysical models are transformed into hydrological models, but this transformation suffers from spatially and temporally varying resolution resulting from the regularization used by the deterministic inversion. In this study, we investigate a prediction-focused approach (PFA) to directly estimate subsurface physical properties with electrical resistance data, circumventing the need for classic tomographic inversions. First, we generate a prior set of resistance data and physical property forecast through hydrogeological and geophysical simulations mimicking the field experiment. We reduce the dimension of both the data and the forecast through principal component analysis in order to keep the most informative part of both sets in a reduced dimension space. Then, we apply canonical correlation analysis to explore the relationship between the data and the forecast in their reduced dimension space. If a linear relationship can be established, the posterior distribution of the forecast can be directly sampled using a Gaussian process regression where the field data scores are the conditioning data. In this paper, we demonstrate PFA for various physical property distributions. We also develop a framework to propagate the estimated noise level in the reduced dimension space. We validate the results by a Monte Carlo study on the posterior distribution and demonstrate that PFA yields accurate uncertainty for the cases studied.

  8. Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals

    NASA Technical Reports Server (NTRS)

    Combi, Michael R.

    1986-01-01

    Progress during the second year of a program of research on the modeling of the spatial distributions of cometary radicals is discussed herein in several major areas. New scale length laws for cometary C2 and CN were determined which explain that the previously-held apparent drop of the C2/CN ratio for large heliocentric distances does not exist and that there is no systematic variation. Monte Carlo particle trajectory model (MCPTM) analysis of sunward and anti-sunward brightness profiles of cometary C2 was completed. This analysis implies a lifetime of 31,000 seconds for the C2 parent and an ejection speed for C2 of approximately 0.5 km/sec upon dissociation from the parent. A systematic reanalysis of published C3 and OH data was begun. Preliminary results find a heliocentric distance dependence for C3 scale lengths with a much larger variation than for C2 and CN. Scale lengths for OH are generally somewhat larger than currently accepted values. The MCPTM was updated to include the coma temperature. Finally, the collaborative effort with the University of Arizona programs has yielded some preliminary CCD images of Comet P/Halley.

  9. Spatially distributed fiber sensor with dual processed outputs

    NASA Astrophysics Data System (ADS)

    Xu, X.; Spillman, William B., Jr.; Claus, Richard O.; Meissner, K. E.; Chen, K.

    2005-05-01

    Given the rapid aging of the world"s population, improvements in technology for automation of patient care and documentation are badly needed. We have previously demonstrated a 'smart bed' that can non-intrusively monitor a patient in bed and determine a patient's respiration, heart rate and movement without intrusive or restrictive medical measurements. This is an application of spatially distributed integrating fiber optic sensors. The basic concept is that any patient movement that also moves an optical fiber within a specified area will produce a change in the optical signal. Two modal modulation approaches were considered, a statistical mode (STM) sensor and a high order mode excitation (HOME) sensor. The present design includes an STM sensor combined with a HOME sensor, using both modal modulation approaches. A special lens system allows only the high order modes of the optical fiber to be excited and coupled into the sensor. For handling output from the dual STM-HOME sensor, computer processing methods are discussed that offer comprehensive perturbation analysis for more reliable patient monitoring.

  10. Spatial Distribution of Fungal Communities in an Arable Soil.

    PubMed

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0-10 cm, b) rooted soil in 40-50 cm, c) root-free soil in 60-70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment.

  11. Controls on spatial and temporal distribution of Precambrian eolianites

    NASA Astrophysics Data System (ADS)

    Eriksson, Kenneth A.; Simpson, Edward L.

    1998-09-01

    Inversely graded stratification, generated by the migration of wind ripples, and adhesion structures permit unequivocal identification of Precambrian eolianites. These criteria, in combination with scale of cross-beds, angle of inclination of foresets, geometry of depositional units, and associated non-eolian facies, are used to discriminate between Precambrian dune/draa, dune-plinth, sand-sheet, and interdune deposits that formed in inland and coastal settings. Based on an analysis of published literature, fundamental conclusions can be drawn on the spatial and temporal distribution of Precambrian eolianites. The oldest reported eolianites are from the ca. 2.1 Ga Deweras Group in Zimbabwe and Hurwitz Group in Canada and numerous examples of eolianites are reported from the 1.8 Ga and younger rock record. Lack of Archean and early Paleoproterozoic eolianites and their widespread development after 1.8 Ga are examined with respect to: absence of vegetation, crustal growth and tectonic setting, relative sea-level fluctuations, unfavorable atmospheric and/or climatic change, and non-recognition. The lack of pre-2.2 Ga eolianites may be related to reworking by braided rivers combing across non-vegetated floodplains, reworking of coastal eolianites during transgression or their non-recognition in the Early Precambrian record. The temporal concentration of eolianites at 1.8 Ga may best be related to the early stages of breakup and the assembly phases of supercontinents.

  12. Atmospheric PAHs in North China: Spatial distribution and sources.

    PubMed

    Zhang, Yanjun; Lin, Yan; Cai, Jing; Liu, Yue; Hong, Linan; Qin, Momei; Zhao, Yifan; Ma, Jin; Wang, Xuesong; Zhu, Tong; Qiu, Xinghua; Zheng, Mei

    2016-09-15

    Polycyclic aromatic hydrocarbons (PAHs), formed through incomplete combustion process, have adverse health effects. To investigate spatial distribution and sources of PAHs in North China, PAHs with passive sampling in 90 gridded sites during June to September in 2011 were analyzed. The average concentration of the sum of fifteen PAHs in North China is 220±14ng/m(3), with the highest in Shanxi, followed by Shandong and Hebei, and then the Beijing-Tianjin area. Major sources of PAHs are identified for each region of North China, coke process for Shanxi, biomass burning for Hebei and Shandong, and coal combustion for Beijing-Tianjin area, respectively. Emission inventory is combined with back trajectory analysis to study the influence of emissions from surrounding areas at receptor sites. Shanxi and Beijing-Tianjin areas are more influenced by sources nearby while regional sources have more impact on Hebei and Shandong areas. Results from this study suggest the areas where local emission should be the major target for control and areas where both local and regional sources should be considered for PAH abatement in North China. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Spatial Distribution of Sucrose Synthase Isozymes in Barley.

    PubMed Central

    Guerin, J.; Carbonero, P.

    1997-01-01

    The sucrose (Suc) synthase enzyme purified from barley (Hordeum vulgare L.) roots is a homotetramer that is composed of 90-kD type 1 Suc synthase (SS1) subunits. Km values for Suc and UDP were 30 mM and 5 [mu]M, respectively. This enzyme can also utilize ADP at 25% of the UDP rate. Anti-SS1 polyclonal antibodies, which recognized both SS1 and type 2 Suc synthase (SS2) (88-kD) subunits, and antibodies raised against a synthetic peptide, LANGSTDNNFV, which were specific for SS2, were used to study the spatial distribution of these subunits by immunoblot analysis and immunolocalization. Both SS1 and SS2 were abundantly expressed in endosperm, where they polymerize to form the five possible homo- and heterotetramers. Only SS1 homotetramers were detected in young leaves, where they appeared exclusively in phloem cells, and in roots, where expression was associated with cap cells and the vascular bundle. In the seed both SS1 and SS2 were present in endosperm, but only SS1 was apparent in the chalazal region, the nucellar projection, and the vascular bundle. The physiological implications for the difference in expression patterns observed are discussed with respect to the maize (Zea mays L.) model. PMID:12223688

  14. Spatial Distribution of Fungal Communities in an Arable Soil

    PubMed Central

    Moll, Julia; Hoppe, Björn; König, Stephan; Wubet, Tesfaye; Buscot, François; Krüger, Dirk

    2016-01-01

    Fungi are prominent drivers of ecological processes in soils, so that fungal communities across different soil ecosystems have been well investigated. However, for arable soils taxonomically resolved fine-scale studies including vertical itemization of fungal communities are still missing. Here, we combined a cloning/Sanger sequencing approach of the ITS/LSU region as marker for general fungi and of the partial SSU region for arbuscular mycorrhizal fungi (AMF) to characterize the microbiome in different maize soil habitats. Four compartments were analyzed over two annual cycles 2009 and 2010: a) ploughed soil in 0–10 cm, b) rooted soil in 40–50 cm, c) root-free soil in 60–70 cm soil depth and d) maize roots. Ascomycota was the most dominant phylum across all compartments. Fungal communities including yeasts and AMF differed strongly between compartments. Inter alia, Tetracladium, the overall largest MOTU (molecular operational taxonomic unit), occurred in all compartments, whereas Trichosporon dominated all soil compartments. Sequences belonging to unclassified Helotiales were forming the most abundant MOTUs exclusively present in roots. This study gives new insights on spatial distribution of fungi and helps to link fungal communities to specific ecological properties such as varying resources, which characterize particular niches of the heterogeneous soil environment. PMID:26840453

  15. Spatial distribution of pollution in an urban stormwater infiltration basin.

    PubMed

    Dechesne, Magali; Barraud, Sylvie; Bardin, Jean-Pascal

    2004-08-01

    Infiltration basins are frequently used for stormwater drainage. Because stormwater is polluted in highly toxic compounds, assessment of pollution retention by infiltration basins is necessary. Indeed, if basins are not effective in trapping pollution, deep soil and groundwater may be contaminated. This study's objective is to investigate soil pollution in infiltration basins: spatial distribution of soil pollution, optimisation of the number of soil samples and a contamination indicator are presented. It is part of a global project on long-term impact of stormwater infiltration on groundwater. Soil sampling was done on a basin in suburban Lyon (France). Samples were collected at different depths and analysed for nutrients, heavy metals, hydrocarbons and grain size. Pollutant concentrations decrease rapidly with depth while pH, mineralisation and grain size increase. Sustainable metal concentrations are reached at a 30-cm depth, even after 14 years of operation; hydrocarbon pollution is deeper. Principal component analysis shows how pollutants affect each level. The topsoil is different from other levels. Three specifically located points are enough to estimate the mass of pollution trapped by the basin with a 26% error. The proposed contamination indicator is calculated using either average level concentrations or maximum level concentrations. In both cases, the topsoil layer appears polluted but evaluation of lower levels is dependent on the choice of input concentrations.

  16. Spatial Distribution of Lead in Sacramento, California, USA

    PubMed Central

    Solt, Michael J.; Deocampo, Daniel M.; Norris, Michelle

    2015-01-01

    Chronic exposure to lead remains a health concern in many urban areas; Sacramento, California is one example, with state surveillance data showing nearly 3% of screened children reported with blood lead levels over 4.5 μg/dL in 2009. To investigate the environmental exposure, 91 soil samples were collected and analyzed by ICP-AES and ICP-MS for 14 elements. An additional 28 samples were collected from areas of focus and analyzed by hand-held X-ray fluorescence spectrometry for Pb and Zn. Analysis of the metals data revealed non-normal distributions and positive skewness, consistent with anthropogenic input. In addition, high correlation coefficients (≥0.75) of metal concentrations in Cd-Pb, Cd-Zn, Pb-Zn, and Sb-Sn pairs suggest similarities in the input mechanisms. Semivariograms generated from Pb and associated metals reveal these metals to exhibit spatial correlation. A prediction map of lead concentrations in soil was generated by ordinary kriging, showing elevated concentrations in soil located in the central, older area of Sacramento where historic traffic density and industrial activity have been historically concentrated. XRF analysis of Pb and Zn from additional samples verifies elevated concentrations in the central areas of Sacramento as predicted. PMID:25789455

  17. The Crucial Records Number to Retrieve Offshore Directional Wind Distribution

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Li, Z.; Yang, X.

    2017-02-01

    The wind energy production estimates are very important to a wind power project. And, the remote sensing technique has been widely used to obtain the offshore wind speed and direction which could be used to calculate the wind energy of potential wind farm. However, the directional wind energy distributions are rarely studied, which also play important roles in analysis of wind farms’ potential power. In this article, the minimum number of records to obtain offshore directional wind distribution is stated by simulation experiment on In-situ dataset. The NDBC buoy dataset is randomly and multiply sampled to build new dataset under different numbers of observation records, which vary from 21 to 800. The resample under the same number of observation is repeated for 100 times to build dataset group. The directional wind distribution of new dataset is compared with the one of original buoy dataset, and errors made by dataset with fewer records are calculated. Besides, the 10th largest error in the sampled dataset group, which have the same number of observation records, is regarded as the error bound for those dataset. The change rule of the error bound is shown by fitted curves. Based on the fitted curves, minimum number of records is calculated. By this simulation experiment, the minimum number of records to represent wind direction frequency is 350, and 800 for annual direction distributions of wind energy density. To reduce the number of records needed in retrieval, some methods are discussed and tested.

  18. Geometry and spatial distribution of lenticulae on Europa

    NASA Astrophysics Data System (ADS)

    Culha, C.; Manga, M.

    2015-12-01

    Title: Geometry and spatial distribution of lenticulae on Europa Order of Authors: Cansu Culha (Stanford University); Michael Manga (University of California, Berkeley) The surface of Europa contains several types of elliptical features, collectively called lenticulae. These features may have positive relief (domes) or negative relief (pits), may disrupt the crust (chaos), or discolor the surface (spots); some lenticulae have attributes of both domes and chaos (dome/chaos). We map the location, dimensions and shapes of all these features and their interactions with other surface features. We find (1) pits and domes have similar sizes; (2) pits are clustered in certain regions of the surface whereas domes, dome/chaos, and chaos terrains are more uniformly distributed; (3) chaos are larger than the other lenticulae; (4) lineaments do not divert their paths around lenticulae. Taken together, these observations are consistent with conceptual models in which lenticulae are created by convection or intrusion of liquid water bodies within the ice shell. Additionally, the observations are consistent with the notion that each type of lenticulae is a surface expression of dynamics within the ice shell at a different stage of the lenticulae evolution. The similar size and shape of pits and domes suggests that one may evolve into the other. Because domes are more numerous and more uniformly distributed than pits, they are more likely to represent the end stage of this evolution assuming the end-stage leaves a longer-lasting surface expression. We find no examples of lineaments crossing pits but lineaments do cross some chaos, implying that pits are younger than chaos and consistent with pits being the earliest stage in the evolution of lenticulae. Models also predict that larger features are more likely to disrupt the crust, which is consistent with dome/chaos and chaos being larger than pits and domes. The absence of lineaments deflected by lenticulae implies either that the

  19. Spatial and temporal distribution of falciparum malaria in China

    PubMed Central

    Lin, Hualiang; Lu, Liang; Tian, Linwei; Zhou, Shuisen; Wu, Haixia; Bi, Yan; Ho, Suzanne C; Liu, Qiyong

    2009-01-01

    Background Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. Methods The annual numbers of falciparum malaria cases during 1992–2003 and the individual case reports of each clinical falciparum malaria during 2004–2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Results Falciparum malaria was endemic in two provinces of China during 2004–05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female) for the number of cases in Yunnan was 1.6 in the children of 0–15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. Conclusion The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is characterized by the predominance

  20. Paleomagnetic Evidence for Spatially Distributed Post-Miocene Rotation of Western Washington and Oregon

    NASA Astrophysics Data System (ADS)

    Sheriff, Steven D.

    1984-06-01

    Anomalous paleomagnetic directions have been determined for 17 sites in the Frenchmans Springs member of the Wanapum basalt formation, Columbia River basalt group. These sites are located in the Ginkgo flows from near Vantage, Washington, to Portland, Oregon, a distance of approximately 300 km. The average paleomagnetic direction for six of these sites, centered around Vantage is D = 147°, I = 41°, α95 = 4.5°. The expected Miocene field direction is D = 355°, I = 65°. At some localities there are two distinct Ginkgo flows, in direct stratigraphic succession, with statistically identical anomalous directions. Their anomalous paleomagnetic direction makes these flows a valuable marker horizon in the Columbia River basalt group. The nondipole field direction of the Ginkgo flows correlates well with available results from the Miocene Cape Foulweather basalts of Oregon. This correlation strongly supports the hypothesis that these coastal basalts of Oregon are the distal ends of Columbia Plateau derived basalt flows. The spatial distribution of these anomalous field directions suggests about 14° of clockwise rotation between Vantage and Portland. Combining these data with data from the Oregon Coast basalts allows a maximum declination difference of about 35°. The increase in declination can be best explained by clockwise rotation, about nearby vertical axes, increasing to the southwest across the Columbia Plateau and Oregon coast.

  1. Spatial distribution of thermokarst landforms across Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Farquharson, L. M.; Grosse, G.; Romanovsky, V. E.; Jones, B. M.; Arp, C. D.; McGuire, A. D.

    2013-12-01

    Arctic Alaska is characterized by widespread past and present thaw of ice rich permafrost and subsequent thermokarst development. Variations in ice content and distribution, and topography across Arctic Alaska result in thermokarst landform diversity. Thermokarst causes a number of biogeochemical and ecological shifts that include changes in soil carbon dynamics, nutrient cycling, vegetation composition, wildlife habitat, and fresh water availability. Ongoing climate change may lead to an increase in thermokarst landscape features. Thus, a better understanding of the current temporal and spatial dynamics of thermokarst is needed in order to project its future dynamics. Understanding how vulnerable Arctic Alaska is to future thermokarst development is critical for resource management, industry development, and subsistence hunting. We focused on the distribution of thermokarst landforms among ten study sites aligned with the NSF CALON (Towards a Circum-Arctic Lakes Observation Network) project in Arctic Alaska. Sites represent diverse substrates including eolian silt, eolian sand, marine sand, deltaic, and marine silt. We conducted thermokarst landform mapping and spatial and morphometric analyses using high-resolution aerial photography, an interferometric synthetic aperture radar derived digital elevation model (IfSAR DEM), and hydrographic layers from the National Land Cover Database derived from Landsat-7. Non-lake thermokarst landforms were visually mapped and hand digitized using aerial photographs and the IfSAR DEM. Initial results show thermokarst forms are most prevalent in marine silt areas with up to 99% of study areas affected by thermokarst activity. Eolian sand areas are the least thermokarst affected (mean of 57%). Drained thermokarst lake basins, thermokarst lakes, and areas affected by thermokarst pit formation were the dominant thermokarst landforms, covering up to 70%, 54%, and 8% of the landscape. The number of overlapping lake and basin

  2. Enhanced spatial models for predicting the geographic distributions of tick-borne pathogens

    PubMed Central

    Wimberly, Michael C; Baer, Adam D; Yabsley, Michael J

    2008-01-01

    Background Disease maps are used increasingly in the health sciences, with applications ranging from the diagnosis of individual cases to regional and global assessments of public health. However, data on the distributions of emerging infectious diseases are often available from only a limited number of samples. We compared several spatial modelling approaches for predicting the geographic distributions of two tick-borne pathogens: Ehrlichia chaffeensis, the causative agent of human monocytotropic ehrlichiosis, and Anaplasma phagocytophilum, the causative agent of human granulocytotropic anaplasmosis. These approaches extended environmental modelling based on logistic regression by incorporating both spatial autocorrelation (the tendency for pathogen distributions to be clustered in space) and spatial heterogeneity (the potential for environmental relationships to vary spatially). Results Incorporating either spatial autocorrelation or spatial heterogeneity resulted in substantial improvements over the standard logistic regression model. For E. chaffeensis, which was common within the boundaries of its geographic range and had a highly clustered distribution, the model based only on spatial autocorrelation was most accurate. For A. phagocytophilum, which has a more complex zoonotic cycle and a comparatively weak spatial pattern, the model that incorporated both spatial autocorrelation and spatially heterogeneous relationships with environmental variables was most accurate. Conclusion Spatial autocorrelation can improve the accuracy of predictive disease risk models by incorporating spatial patterns as a proxy for unmeasured environmental variables and spatial processes. Spatial heterogeneity can also improve prediction accuracy by accounting for unique ecological conditions in different regions that affect the relative importance of environmental drivers on disease risk. PMID:18412972

  3. Gaze direction affects visuo-spatial short-term memory.

    PubMed

    Carlei, Christophe; Kerzel, Dirk

    2014-10-01

    Hemispheric asymmetries were investigated by changing the horizontal position of stimuli that had to be remembered in a visuo-spatial short-term memory task. Observers looked at matrices containing a variable number of filled squares on the left or right side of the screen center. At stimulus offset, participants reproduced the positions of the filled squares in an empty response matrix. Stimulus and response matrices were presented in the same quadrant. We observed that memory performance was better when the matrices were shown on the left side of the screen. We distinguished between recall strategies that relied on visual or non-visual (verbal) cues and found that the effect of gaze position occurred more reliably in participants using visual recall strategies. Overall, the results show that there is a solid enhancement of visuo-spatial short-term memory when observers look to the left. In contrast, vertical position had no influence on performance. We suggest that unilateral gaze to the left activates centers in the right hemisphere contributing to visuo-spatial memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Timing and Spatial Distribution of Loess in Xinjiang, NW China.

    PubMed

    Li, Yun; Song, Yougui; Yan, Libin; Chen, Tao; An, Zhisheng

    2015-01-01

    Central Asia is one of the most significant loess regions on Earth, with an important role in understanding Quaternary climate and environmental change. However, in contrast to the widely investigated loess deposits in the Chinese Loess Plateau, the Central Asian loess-paleosol sequences are still insufficiently known and poorly understood. Through field investigation and review of the previous literature, the authors have investigated the distribution, thickness and age of the Xinjiang loess, and analyzed factors that control these parameters in the Xinjiang in northwest China, Central Asia. The loess sediments cover river terraces, low uplands, the margins of deserts and the slopes of the Tianshan Mountains and Kunlun Mountains and are also present in the Ili Basin. The thickness of the Xinjiang loess deposits varies from several meters to 670 m. The variation trend of the sand fraction (>63 μm) grain-size contour can indicate the local major wind directions, so we conclude that the NW and NE winds are the main wind directions in the North and South Xinjiang, and the westerly wind mainly transport dust into the Ili basin. We consider persistent drying, adequate regional wind energy and well-developed river terraces to be the main factors controlling the distribution, thickness and formation age of the Xinjiang loess. The well-outcropped loess sections have mainly developed since the middle Pleistocene in Xinjiang, reflecting the appearance of the persistent drying and the present air circulation system. However, the oldest loess deposits are as old as the beginning of the Pliocene in the Tarim Basin, which suggests that earlier aridification occurred in the Tarim Basin rather than in the Ili Basin and the Junggar Basin.

  5. Timing and Spatial Distribution of Loess in Xinjiang, NW China

    PubMed Central

    Li, Yun; Song, Yougui; Yan, Libin; Chen, Tao; An, Zhisheng

    2015-01-01

    Central Asia is one of the most significant loess regions on Earth, with an important role in understanding Quaternary climate and environmental change. However, in contrast to the widely investigated loess deposits in the Chinese Loess Plateau, the Central Asian loess–paleosol sequences are still insufficiently known and poorly understood. Through field investigation and review of the previous literature, the authors have investigated the distribution, thickness and age of the Xinjiang loess, and analyzed factors that control these parameters in the Xinjiang in northwest China, Central Asia. The loess sediments cover river terraces, low uplands, the margins of deserts and the slopes of the Tianshan Mountains and Kunlun Mountains and are also present in the Ili Basin. The thickness of the Xinjiang loess deposits varies from several meters to 670 m. The variation trend of the sand fraction (>63 μm) grain-size contour can indicate the local major wind directions, so we conclude that the NW and NE winds are the main wind directions in the North and South Xinjiang, and the westerly wind mainly transport dust into the Ili basin. We consider persistent drying, adequate regional wind energy and well-developed river terraces to be the main factors controlling the distribution, thickness and formation age of the Xinjiang loess. The well-outcropped loess sections have mainly developed since the middle Pleistocene in Xinjiang, reflecting the appearance of the persistent drying and the present air circulation system. However, the oldest loess deposits are as old as the beginning of the Pliocene in the Tarim Basin, which suggests that earlier aridification occurred in the Tarim Basin rather than in the Ili Basin and the Junggar Basin. PMID:25970617

  6. A Random Forest Approach to Predict the Spatial Distribution ...

    EPA Pesticide Factsheets

    Modeling the magnitude and distribution of sediment-bound pollutants in estuaries is often limited by incomplete knowledge of the site and inadequate sample density. To address these modeling limitations, a decision-support tool framework was conceived that predicts sediment contamination from the sub-estuary to broader estuary extent. For this study, a Random Forest (RF) model was implemented to predict the distribution of a model contaminant, triclosan (5-chloro-2-(2,4-dichlorophenoxy)phenol) (TCS), in Narragansett Bay, Rhode Island, USA. TCS is an unregulated contaminant used in many personal care products. The RF explanatory variables were associated with TCS transport and fate (proxies) and direct and indirect environmental entry. The continuous RF TCS concentration predictions were discretized into three levels of contamination (low, medium, and high) for three different quantile thresholds. The RF model explained 63% of the variance with a minimum number of variables. Total organic carbon (TOC) (transport and fate proxy) was a strong predictor of TCS contamination causing a mean squared error increase of 59% when compared to permutations of randomized values of TOC. Additionally, combined sewer overflow discharge (environmental entry) and sand (transport and fate proxy) were strong predictors. The discretization models identified a TCS area of greatest concern in the northern reach of Narragansett Bay (Providence River sub-estuary), which was validated wi

  7. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-04-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary cyclones developing on the trailing fronts of

  8. The spatial distribution and evolution characteristics of North Atlantic cyclones

    NASA Astrophysics Data System (ADS)

    Dacre, H.; Gray, S.

    2009-09-01

    Mid-latitude cyclones play a large role in determining the day-to-day weather conditions in western Europe through their associated wind and precipitation patterns. Thus, their typical spatial and evolution characteristics are of great interest to meteorologists, insurance and risk management companies. In this study a feature tracking algorithm is applied to a cyclone database produced using the Hewson-method of cyclone identification, based on low-level gradients of wet-bulb potential temperature, to produce a climatology of mid-latitude cyclones. The aim of this work is to compare the cyclone track and density statistics found in this study with previous climatologies and to determine reasons for any differences. This method is found to compare well with other cyclone identification methods; the north Atlantic storm track is reproduced along with the major regions of genesis. Differences are attributed to cyclone lifetime and strength thresholds, dataset resolution and cyclone identification and tracking methods. Previous work on cyclone development has been largely limited to case studies as opposed to analysis of climatological data, and does not distinguish between the different stages of cyclone evolution. The cyclone database used in this study allows cyclone characteristics to be tracked throughout the cyclone lifecycle. This enables the evaluation of the characteristics of cyclone evolution for systems forming in different genesis regions and a calculation of the spatial distribution and evolution of these characteristics in composite cyclones. It was found that most of the cyclones that cross western Europe originate in the east Atlantic where the baroclinicity and sea surface temperature gradients are weak compared to the west Atlantic. East Atlantic cyclones also have higher low-level relative vorticity and lower mean sea level pressure at their genesis point than west Atlantic cyclones. This is consistent with the hypothesis that they are secondary

  9. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing.

    PubMed

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A Ping; Lu, Chao

    2016-12-16

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes.

  10. Bi-Directional Brillouin Optical Time Domain Analyzer System for Long Range Distributed Sensing

    PubMed Central

    Guo, Nan; Wang, Liang; Wang, Jie; Jin, Chao; Tam, Hwa-Yaw; Zhang, A. Ping; Lu, Chao

    2016-01-01

    We propose and experimentally demonstrate a novel scheme of bi-directional Brillouin time domain analyzer (BD-BOTDA) to extend the sensing range. By deploying two pump-probe pairs at two different wavelengths, the Brillouin frequency shift (BFS) distribution over each half of the whole fiber can be obtained with the simultaneous detection of Brillouin signals in both channels. Compared to the conventional unidirectional BOTDA system of the same sensing range, the proposed BD-BOTDA scheme enables distributed sensing with a performance level comparable to the conventional one with half of the sensing range and a spatial resolution of 2 m, while maintaining the Brillouin signal-to-noise ratio (SNR) and the BFS uncertainty. Based on this technique, we have achieved distributed temperature sensing with a measurement range of 81.9 km fiber at a spatial resolution of 2 m and BFS uncertainty of ~0.44 MHz without introducing any complicated components or schemes. PMID:27999250

  11. Strong Predictability Of Spatially Distributed Physical Habitat Preferences For O. Mykiss Spawning Across Three Spatial Scales

    NASA Astrophysics Data System (ADS)

    Kammel, L.; Pasternack, G. B.; Wyrick, J. R.; Massa, D.; Bratovich, P.; Johnson, T.

    2012-12-01

    Currently accepted perception assumes Oncorhynchus mykiss prefer different ranges of similar physical habitat elements for spawning than Chinook salmon (Oncorhynchus tshawytscha), taking into account their difference in size. While there is increasing research interest regarding O. mykiss habitat use and migratory behavior, research conducted to date distinguishing the physical habitat conditions utilized for O. mykiss spawning has not provided quantified understanding of their spawning habitat preferences. The purpose of this study was to use electivity indices and other measures to assess the physical habitat characteristics preferred for O. mykiss spawning in terms of both 1-m scale microhabitat attributes, and landforms at different spatial scales from 0.1-100 times channel width. The testbed for this study was the 37.5-km regulated gravel-cobble Lower Yuba River (LYR). Using spatially distributed 2D hydrodynamic model results, substrate mapping, and a census of O. mykiss redds from two years of observation, micro- and meso-scale representations of physical habitat were tested for their ability to predict spawning habitat preference and avoidance. Overall there was strong stratification of O. mykiss redd occurrence for all representation types of physical habitat. A strong preference of hydraulic conditions was shown for mean water column velocities of 1.18-2.25 ft/s, and water depths of 1.25-2.76 ft. There was a marked preference for the two most upstream alluvial reaches of the LYR (out of 8 total reaches), accounting for 92% of all redds observed. The preferred morphological units (MUs) for O. mykiss spawning were more variable than for Chinook salmon and changed with increasing discharge, demonstrating that O. mykiss shift spawning to different MUs in order to utilize their preferred hydraulic conditions. The substrate range preferred for O. mykiss spawning was within 32-90 mm. Overall, O. mykiss spawning behavior was highly predictable and required a

  12. Spatial characterization of the hydraulic conductivity using direct-push injection logging

    NASA Astrophysics Data System (ADS)

    Lessoff, Steven C.; Schneidewind, Uwe; Leven, Carsten; Blum, Philipp; Dietrich, Peter; Dagan, Gedeon

    2010-12-01

    Detailed information on the spatial structure of hydraulic conductivity (K) is important for understanding and predicting groundwater flow and transport. Direct-push injection logging (DPIL) is a promising technology for rapid measurement of K in unconsolidated formations. This technology was used to gain information on the highly heterogeneous aquifer at the Lauswiesen test site in Germany. Using a large body of DPIL and direct-push slug testing measurements, we characterize the structure of K on scales not previously possible. Two new applications of DPIL are put forward: (1) use of raw DPIL measurements of relative conductivity Kr to characterize the spatial distribution of K and (2) transformation of Kr measurements to K values based on their statistical moments. The DPIL results are compatible to those obtained using more conventional methodologies. The main achievement of the methodology is the possibility to delineate deterministic aquifer subunits as well as the identification of the statistical parameters of the log conductivity for each subunit. In particular, the horizontal integral scale I, a parameter affecting solute transport, is difficult and costly to identify using other approaches. Nevertheless, further studies are needed to clarify questions on low Kr measurements and the nature of the relationship between Kr and K.

  13. Estimating the spatial distribution of PM2.5 concentration by integrating geographic data and field measurements

    NASA Astrophysics Data System (ADS)

    Zhai, L.; Sang, H.; Zhang, J.; An, F.

    2015-06-01

    Air quality directly affects the health and living of human beings, and it receives wide concern of public and attaches great important of governments at all levels. The estimation of the concentration distribution of PM2.5 and the analysis of its impacting factors is significant for understanding the spatial distribution regularity and further for decision supporting of governments. In this study, multiple sources of remote sensing and GIS data are utilized to estimate the spatial distribution of PM2.5 concentration in Shijiazhuang, China, by utilizing multivariate linear regression modelling, and integrating year average values of PM2.5 collected from local environment observing stations. Two major sources of PM2.5 are collected, including dust surfaces and industrial polluting sources. The area attribute of dust surfaces and point attribute of industrial polluting enterprises are extracted from high resolution remote sensing images and GIS data in 2013. 30m land cover products, annual average PM2.5 concentration values from the 8 environment monitoring stations, annual mean MODIS AOD data, traffic and DEM data are utilized in the study for regression modeling analysis. The multivariate regression analysis model is applied to estimate the spatial distribution of PM2.5 concentration. There is an upward trend of the spatial distribution of PM2.5 concentration gradually from west to east, of which the highest concentration appears in the municipal district and its surrounding areas. The spatial distribution pattern relatively fit the reality.

  14. Directional reflectance factor distributions of a cotton row crop

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.; Newcomb, W. W.; Schutt, J. B.; Pinter, P. J., Jr.; Jackson, R. D.

    1984-01-01

    The directional reflectance factor distribution spanning the entire exitance hemisphere was measured for a cotton row crop (Gossypium barbadense L.) with 39 percent ground cover. Spectral directional radiances were taken in NOAA satellite 7 AVHRR bands 1 and 2 using a three-band radiometer with restricted 12 deg full angle field of view at half peak power points. Polar co-ordinate system plots of directional reflectance factor distributions and three-dimensional computer graphic plots of scattered flux were used to study the dynamics of the directional reflectance factor distribution as a function of spectral band, geometric structure of the scene, solar zenith and azimuth angles, and optical properties of the leaves and soil. The factor distribution of the incomplete row crops was highly polymodal relative to that for complete vegetation canopies. Besides the enhanced reflectance for the antisolar point, a reflectance minimum was observed towards the forwardscatter direction in the principle plane of the sun. Knowledge of the mechanics of the observed dynamics of the data may be used to provide rigorous validation for two- or three-dimensional radiative transfer models, and is important in interpreting aircraft and satellite data where the solar angle varies widely.

  15. Spherical statistics for characterizing the spatial distribution of deep brain stimulation effects on neuronal activity.

    PubMed

    Xiao, YiZi; Johnson, Matthew D

    2015-11-30

    Computational models of deep brain stimulation (DBS) have played a key role in understanding its physiological mechanisms. By estimating a volume of tissue directly modulated by DBS, one can relate the neuronal pathways within those volumes to the therapeutic efficacy of a particular DBS setting. A spherical statistical framework is described to quantify and determine salient features of such morphologies using visualization techniques, empirical shape analysis, and formal hypothesis testing. This framework is shown using a 3D model of thalamocortical neurons surrounding a radially-segmented DBS array. We show that neuronal population volumes modulated by various DBS electrode configurations can be characterized by parametric distribution models, such as Kent and Watson girdle models. Distribution parameters were found to change with stimulus settings, including amplitude and radial distance from the DBS array. Increasing stimulation amplitude through a single electrode resulted in more diffuse neuronal activation and increased rotational symmetry about the mean direction of the activated population. When stimulation amplitude was held constant, the activated neuronal population distribution was more concentrated with distance from the DBS array and was also more rotationally asymmetric. We also show how data representation (e.g. stimulus-entrained cell body vs. axon node) can significantly alter model distribution shape. This statistical framework provides a quantitative method to analyze the spatial morphologies of DBS-induced effects on neuronal activity. The application of spherical statistics to assess spatial distributions of neuronal activity has potential usefulness for numerous other recording, labeling, and stimulation modalities. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. p-value approximations for spatial scan statistics using extreme value distributions.

    PubMed

    Jung, Inkyung; Park, Goeun

    2015-02-10

    Spatial scan statistics are widely applied to identify spatial clusters in geographic disease surveillance. To evaluate the statistical significance of detected clusters, Monte Carlo hypothesis testing is often used because the null distribution of spatial scan statistics is not known. A drawback of the method is that we have to increase the number of replications to obtain accurate p-values. Gumbel-based p-value approximations for spatial scan statistics have recently been proposed and evaluated for Poisson and Bernoulli models. In this study, we examine the use of a generalized extreme value distribution to approximate the null distribution of spatial scan statistics as well as the Gumbel distribution. Through simulation, p-value approximations using extreme value distributions for spatial scan statistics are assessed for multinomial and ordinal models in addition to Poisson and Bernoulli models. Copyright © 2014 John Wiley & Sons, Ltd.

  17. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    NASA Astrophysics Data System (ADS)

    Hardebeck, Jeanne L.

    2017-05-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.[Figure not available: see fulltext.

  18. Characterization of nanoscale spatial distribution of small molecules in amorphous polymer matrices

    NASA Astrophysics Data System (ADS)

    Ricarte, Ralm; Hillmyer, Marc; Lodge, Timothy

    Hydroxypropyl methylcellulose acetate succinate (HPMCAS) can significantly enhance the efficacy of active pharmaceutical ingredients (APIs). Yet, the interactions between species in HPMCAS-API blends are not understood. Elucidating these interactions is difficult because the spatial distributions of HPMCAS and API in the blends are ambiguous; the polymer and drug may be molecularly mixed or the species may form phase separated domains. As these phase separated domains may be less than 100 nm in size, traditional characterization techniques may not accurately evaluate the spatial distribution. To address this challenge, we explore the use of electron energy-loss spectroscopy (EELS) for detecting the model API phenytoin in an HPMCAS-phenytoin blend. Using EELS, we directly measured with high accuracy and precision the phenytoin concentrations in several blends. We present evidence that suggests phase separation occurs in blends that have a phenytoin loading of approximately 50 wt percent. Finally, we demonstrate that this technique achieves a sub-100 nm spatial resolution and can detect several other APIs.

  19. Spatial distribution of hydrogen sulfide from two geothermal power plants in complex terrain

    NASA Astrophysics Data System (ADS)

    Olafsdottir, S.; Gardarsson, S. M.; Andradottir, H. O.

    2014-01-01

    Concerns have arisen about the health impact and odor annoyance of hydrogen sulfide (H2S) emissions associated with geothermal power production. Measurements have been made at stationary measuring stations in inhabited areas but little is known about the spatial behavior of the H2S plumes. This study presents field measurements of the spatial distribution of the ground concentration of H2S within a 30 km radius of two geothermal power plants during 20 distinct events spanning one year. The results showed that high H2S concentration was correlated with high air stability, low wind speed and absence of precipitation. The odor threshold (11 μg m-3) was exceeded in all events. The instantaneous measurements exceeded the 24-h average national health limit (50 μg m-3) up to 26 km from the power plants. The shape of the measured plumes at the same location was similar between events, indicating repeated patterns in plume distribution. Convergence of plumes was observed due to spatial variability in wind direction. Plumes were found to follow mountain passes and accumulate alongside a mountain range. AERMOD modeling demonstrated that narrower plumes with higher concentration can be expected for smoother terrain, such as lakes, consistent with measurements.

  20. Development of a Heterogenic Distributed Environment for Spatial Data Processing Using Cloud Technologies

    NASA Astrophysics Data System (ADS)

    Garov, A. S.; Karachevtseva, I. P.; Matveev, E. V.; Zubarev, A. E.; Florinsky, I. V.

    2016-06-01

    We are developing a unified distributed communication environment for processing of spatial data which integrates web-, desktop- and mobile platforms and combines volunteer computing model and public cloud possibilities. The main idea is to create a flexible working environment for research groups, which may be scaled according to required data volume and computing power, while keeping infrastructure costs at minimum. It is based upon the "single window" principle, which combines data access via geoportal functionality, processing possibilities and communication between researchers. Using an innovative software environment the recently developed planetary information system (http://cartsrv.mexlab.ru/geoportal) will be updated. The new system will provide spatial data processing, analysis and 3D-visualization and will be tested based on freely available Earth remote sensing data as well as Solar system planetary images from various missions. Based on this approach it will be possible to organize the research and representation of results on a new technology level, which provides more possibilities for immediate and direct reuse of research materials, including data, algorithms, methodology, and components. The new software environment is targeted at remote scientific teams, and will provide access to existing spatial distributed information for which we suggest implementation of a user interface as an advanced front-end, e.g., for virtual globe system.

  1. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2017-01-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.

  2. GEMAS: Molybdenum Spatial Distribution Patterns in European Soil

    NASA Astrophysics Data System (ADS)

    Cicchella, Domenico; Zuzolo, Daniela; Demetriades, Alecos; De Vivo, Benedetto; Eklund, Mikael; Ladenberger, Anna; Negrel, Philippe; O'Connor, Patrick

    2017-04-01

    Molybdenum is an essential trace element for both plants and animals as well as for human being. It is one such trace element for which potential health concerns have been raised but for which few data exist and little investigation or interpretation of distributions in soils has been made. The main goal of this study was to fill this gap. Molybdenum (Mo) concentrations are reported for the <2 mm fraction of soil samples from agricultural (Ap horizon, 0-20 cm; N=2218) and grazing land (Gr, 0-10 cm; N=2127). The survey covers 33 European countries and 5.6 million km2 at a sample density of 1 site/2500 km2. All samples were analysed by ICP-MS following an aqua regia extraction. The European median Mo concentration is 0.416 mg/kg in agricultural soil and 0.424 mg/kg in grazing land soil. Molybdenum geochemical maps for both land use types (Ap and Gr) show overall similar spatial distribution patterns mainly governed by geology (parent material and mineralisation), as well as weathering, soil formation and climate since the last glaciations period. The dominant feature is represented by low Mo concentrations over the coarse-grained sandy deposits of the last glaciations in central northern Europe while the most extensive anomalies occur in Scandinavian soils. The highest Mo concentration value occurs to the North of Oslo close to one of the largest porphyry Mo deposit of the World. Some interesting anomalous patterns occur also in Italy in correspondence with alkaline volcanics, in Spain and Greece associated with sulfides mineralizations and in Slovenia and Croatia where are probably related to the long weathering history of karstic residual soils. Anomalous concentrations in some areas of Ireland represent a clear example of how an excess of molybdenum has produced potentially toxic pastures. In fact, these give rise to problems particularly in young cattle when excess molybdenum in the herbage acts as an antagonist, which militates against efficient copper

  3. Spatial distribution of non volcanic tremors offshore eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Xie, X. S.; Lin, J. Y.; Hsu, S. K.; Lee, C. H.; Liang, C. W.

    2012-04-01

    Non-volcanic tremor (NVT), originally identified in the subduction zone of the southwest Japan, have been well studied in the circum-Pacific subduction zones and the transform plate boundary in California. Most studies related NVT to the release of fluids, while some others associated them with slow-slip events, and can be triggered instantaneously by the surface waves of teleseismic events. Taiwan is located at a complex intersection of the Philippines Sea Plate and the Eurasian Plate. East of Taiwan, the Philippine Sea plate subducts northward beneath the Ryukyu arc. The major part of the island results from the strong convergence between the two plates and the convergent boundary is along the Longitudinal Valley. Moreover, an active strike-slip fault along the Taitung Canyon was reported in the offshore eastern Taiwan. In such complicate tectonic environments, NVT behavior could probably bring us more information about the interaction of all the geological components in the area. In this study, we analyze the seismic signals recorded by the Ocean bottom Seismometer (OBS) deployed offshore eastern Taiwan in September 2009. TAMS (Tremor Active Monitor System) software was used to detect the presence of NVT. 200 tremor-like signals were obtained from the 3 weeks recording period. We use the SSA (Source-Scanning Algorithm) to map the possible distribution of the tremor. In total, 180 tremors were located around the eastern offshore Taiwan. The tremors are mainly distributed in two source areas: one is along the Taitung Canyon, and the other is sub-parallel to the Ryukyu Trench, probably along the plate interface. Many tremors are located at depth shallower than 5 km, which suggests a possible existence of a weak basal detachment along the sea bottom. Other tremors with larger depth may be related to the dehydration of the subducting sea plate as suggested by the former studies. Limited by the short recording period of the OBS experiment, we could not obtain any

  4. Spatial Distribution of Hydrologic Ecosystem Service Estimates: Comparing Two Models

    NASA Astrophysics Data System (ADS)

    Dennedy-Frank, P. J.; Ghile, Y.; Gorelick, S.; Logsdon, R. A.; Chaubey, I.; Ziv, G.

    2014-12-01

    We compare estimates of the spatial distribution of water quantity provided (annual water yield) from two ecohydrologic models: the widely-used Soil and Water Assessment Tool (SWAT) and the much simpler water models from the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) toolbox. These two models differ significantly in terms of complexity, timescale of operation, effort, and data required for calibration, and so are often used in different management contexts. We compare two study sites in the US: the Wildcat Creek Watershed (2083 km2) in Indiana, a largely agricultural watershed in a cold aseasonal climate, and the Upper Upatoi Creek Watershed (876 km2) in Georgia, a mostly forested watershed in a temperate aseasonal climate. We evaluate (1) quantitative estimates of water yield to explore how well each model represents this process, and (2) ranked estimates of water yield to indicate how useful the models are for management purposes where other social and financial factors may play significant roles. The SWAT and InVEST models provide very similar estimates of the water yield of individual subbasins in the Wildcat Creek Watershed (Pearson r = 0.92, slope = 0.89), and a similar ranking of the relative water yield of those subbasins (Spearman r = 0.86). However, the two models provide relatively different estimates of the water yield of individual subbasins in the Upper Upatoi Watershed (Pearson r = 0.25, slope = 0.14), and very different ranking of the relative water yield of those subbasins (Spearman r = -0.10). The Upper Upatoi watershed has a significant baseflow contribution due to its sandy, well-drained soils. InVEST's simple seasonality terms, which assume no change in storage over the time of the model run, may not accurately estimate water yield processes when baseflow provides such a strong contribution. Our results suggest that InVEST users take care in situations where storage changes are significant.

  5. Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda

    NASA Astrophysics Data System (ADS)

    Jacobs, Liesbet; Dewitte, Olivier; Poesen, Jean; Maes, Jan; Mertens, Kewan; Sekajugo, John; Kervyn, Matthieu

    2017-10-01

    In many landslide-prone regions, data on landslide characteristics remain poor or inexistent. This is also the case for the Rwenzori Mountains, located on the border of Uganda and the DR Congo. There, landslides frequently occur and cause fatalities and substantial damage to private property and infrastructure. In this paper, we present the results of a field inventory performed in three representative study areas covering 114 km2. A total of 371 landslides were mapped and analyzed for their geomorphological characteristics and their spatial distribution. The average landslide areas varied from less than 0.3 ha in the gneiss-dominated highlands to >1 ha in the rift alluvium of the lowlands. Large landslides (>1.5 ha) are well represented while smaller landslides (<1.5 ha) are underrepresented. The degrees of completeness of the field inventories are comparable to those of similar historical landslide inventories. The diversity of potential mass movements in the Rwenzori is large and depends on the dominant lithological and topographic conditions. A dominance of shallow translational soil slides in gneiss and of deep rotational soil slides in the rift alluvium is observed. Slope angle is the main controlling topographic factor for landslides with the highest landslide concentrations for slope angles above 25-30° in the highlands and 10-15° in the lowlands. The undercutting of slopes by rivers and excavations for construction are important preparatory factors. Rainfall-triggered landslides are the most common in the area, however in the zones of influence of the last two major earthquakes (1966: Mw = 6.6 and 1994: Mw = 6.2), 12 co-seismic landslides were also observed.

  6. Spatial distribution of soil lead pollution in Milwaukee County, Wisconsin

    SciTech Connect

    Brinkmann, R.

    1989-01-01

    The spatial distribution of lead pollution in soils of Milwaukee County, Wisconsin, was investigated to find the patterns and extent of health-threatening contamination. Samples were collected within three distinct land-use types: (i) lawns and gardens, (ii) major east-west arterials, and (iii) private properties at site-specific locations. Three-hundred and sixty-four soil samples were collected from lawns and gardens throughout the county; a total of 263 soil samples were collected along College Avenue, Oklahoma Avenue, Greenfield Avenue, Wisconsin Avenue, North Avenue, Capitol Drive, and Brown Deer Road, and a total of 55 soil samples were collected from three private properties. Several distinct patterns emerged from the mapped data. Broadly, soil lead pollution in lawns and gardens was highest in the central city and decreased north, south, and west toward the county lines and suburban fringe. Also, soil lead pollution along major arterials decreased away from busy intersections and was generally eliminated east of 42nd Street. At the three locations of intense sampling for site-specific examination, soil lead was concentrated within one meter of painted structures. Peripheral to the one meter zone, background levels of lead were found except in the central city where elevated soil lead levels were found in lawns. Health-threatening lead levels (>500 ppm) were found in soils collected using all three approaches: 24% of 11 soils collected from lawns and gardens; 43% of soils collected from major east-west arterials; and 27% of the soils collected from all three intensely examined properties. The sources of lead pollution in soil were more clearly suggested in intense sampling within small private properties. Lead-based paint caused contamination within one meter of painted structures and airborne lead from automobile exhaust outside that zone.

  7. SVR learning-based spatiotemporal fuzzy logic controller for nonlinear spatially distributed dynamic systems.

    PubMed

    Zhang, Xian-Xia; Jiang, Ye; Li, Han-Xiong; Li, Shao-Yuan

    2013-10-01

    A data-driven 3-D fuzzy-logic controller (3-D FLC) design methodology based on support vector regression (SVR) learning is developed for nonlinear spatially distributed dynamic systems. Initially, the spatial information expression and processing as well as the fuzzy linguistic expression and rule inference of a 3-D FLC are integrated into spatial fuzzy basis functions (SFBFs), and then the 3-D FLC can be depicted by a three-layer network structure. By relating SFBFs of the 3-D FLC directly to spatial kernel functions of an SVR, an equivalence relationship of the 3-D FLC and the SVR is established, which means that the 3-D FLC can be designed with the help of the SVR learning. Subsequently, for an easy implementation, a systematic SVR learning-based 3-D FLC design scheme is formulated. In addition, the universal approximation capability of the proposed 3-D FLC is presented. Finally, the control of a nonlinear catalytic packed-bed reactor is considered as an application to demonstrate the effectiveness of the proposed 3-D FLC.

  8. Directed networks' different link formation mechanisms causing degree distribution distinction

    NASA Astrophysics Data System (ADS)

    Behfar, Stefan Kambiz; Turkina, Ekaterina; Cohendet, Patrick; Burger-Helmchen, Thierry

    2016-11-01

    Within undirected networks, scientists have shown much interest in presenting power-law features. For instance, Barabási and Albert (1999) claimed that a common property of many large networks is that vertex connectivity follows scale-free power-law distribution, and in another study Barabási et al. (2002) showed power law evolution in the social network of scientific collaboration. At the same time, Jiang et al. (2011) discussed deviation from power-law distribution; others indicated that size effect (Bagrow et al., 2008), information filtering mechanism (Mossa et al., 2002), and birth and death process (Shi et al., 2005) could account for this deviation. Within directed networks, many authors have considered that outlinks follow a similar mechanism of creation as inlinks' (Faloutsos et al., 1999; Krapivsky et al., 2001; Tanimoto, 2009) with link creation rate being the linear function of node degree, resulting in a power-law shape for both indegree and outdegree distribution. Some other authors have made an assumption that directed networks, such as scientific collaboration or citation, behave as undirected, resulting in a power-law degree distribution accordingly (Barabási et al., 2002). At the same time, we claim (1) Outlinks feature different degree distributions than inlinks; where different link formation mechanisms cause the distribution distinctions, (2) in/outdegree distribution distinction holds for different levels of system decomposition; therefore this distribution distinction is a property of directed networks. First, we emphasize in/outlink formation mechanisms as causal factors for distinction between indegree and outdegree distributions (where this distinction has already been noticed in Barker et al. (2010) and Baxter et al. (2006)) within a sample network of OSS projects as well as Java software corpus as a network. Second, we analyze whether this distribution distinction holds for different levels of system decomposition: open

  9. COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS

    EPA Science Inventory

    To evaluate the Models-3/Community Multiscale Air Quality (CMAQ) modeling system in reproducing the spatial patterns of aerosol concentrations over the country on timescales of months and years, the spatial patterns of model output are compared with those derived from observation...

  10. FUEL3-D: A Spatially Explicit Fractal Fuel Distribution Model

    Treesearch

    Russell A. Parsons

    2006-01-01

    Efforts to quantitatively evaluate the effectiveness of fuels treatments are hampered by inconsistencies between the spatial scale at which fuel treatments are implemented and the spatial scale, and detail, with which we model fire and fuel interactions. Central to this scale inconsistency is the resolution at which variability within the fuel bed is considered. Crown...

  11. COMPARISON OF SPATIAL PATTERNS OF POLLUTANT DISTRIBUTION WITH CMAQ PREDICTIONS

    EPA Science Inventory

    To evaluate the Models-3/Community Multiscale Air Quality (CMAQ) modeling system in reproducing the spatial patterns of aerosol concentrations over the country on timescales of months and years, the spatial patterns of model output are compared with those derived from observation...

  12. Relationship between the discharge mode and the spatial oxygen plasma distribution in a large size ferrite inductively coupled plasmas

    SciTech Connect

    Kim, Hyun Jun; Hwang, Hye Ju; Cho, Jeong Hee; Chae, Hee Sun; Kim, Dong Hwan; Chung, Chin-Wook

    2015-04-15

    The electrical characteristics and the spatial distribution of oxygen plasma according to the number of turns in ferrite inductively coupled plasmas (ferrite ICPs) are investigated. Through a new ICP model, which includes the capacitive coupling and the power loss of the ferrite material with the conventional ICP model, the variation of the oxygen discharge characteristics depending on the number of turns is simply understood by the electrical measurement, such as the antenna voltages and the currents. As the number of the turns increases, the capacitive coupling dominantly affects the spatial plasma distribution. This capacitive coupling results in a center focused density profile along the radial direction. In spite of the same discharge conditions (discharge chamber, neutral gas, and pressure), the spatial plasma distribution over 450 mm has drastic changes by increasing number of the turns. In addition, the effect of the negative species to the density profile is compared with the argon discharge characteristics at the same discharge configuration.

  13. The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates

    NASA Technical Reports Server (NTRS)

    Houghton, R. A.; Lawrence, J. L.; Hackler, J. L.; Brown, S.

    2001-01-01

    The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land-use change. We compared several estimates of forest biomass for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. We asked three questions. First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? Amazonian forests (including dead and below-ground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modeling of forest recovery following observed stand-replacing disturbances (the approach used in this research), and estimation of aboveground biomass from airborne or satellite-based instruments sensitive to the vertical structure plant canopies.

  14. Discretising the velocity distribution for directional dark matter experiments

    SciTech Connect

    Kavanagh, Bradley J.

    2015-07-13

    Dark matter (DM) direct detection experiments which are directionally-sensitive may be the only method of probing the full velocity distribution function (VDF) of the Galactic DM halo. We present an angular basis for the DM VDF which can be used to parametrise the distribution in order to mitigate astrophysical uncertainties in future directional experiments and extract information about the DM halo. This basis consists of discretising the VDF in a series of angular bins, with the VDF being only a function of the DM speed v within each bin. In contrast to other methods, such as spherical harmonic expansions, the use of this basis allows us to guarantee that the resulting VDF is everywhere positive and therefore physical. We present a recipe for calculating the event rates corresponding to the discrete VDF for an arbitrary number of angular bins N and investigate the discretisation error which is introduced in this way. For smooth, Standard Halo Model-like distribution functions, only N=3 angular bins are required to achieve an accuracy of around 10–30% in the number of events in each bin. Shortly after confirmation of the DM origin of the signal with around 50 events, this accuracy should be sufficient to allow the discretised velocity distribution to be employed reliably. For more extreme VDFs (such as streams), the discretisation error is typically much larger, but can be improved with increasing N. This method paves the way towards an astrophysics-independent analysis framework for the directional detection of dark matter.

  15. Discretising the velocity distribution for directional dark matter experiments

    SciTech Connect

    Kavanagh, Bradley J.

    2015-07-01

    Dark matter (DM) direct detection experiments which are directionally-sensitive may be the only method of probing the full velocity distribution function (VDF) of the Galactic DM halo. We present an angular basis for the DM VDF which can be used to parametrise the distribution in order to mitigate astrophysical uncertainties in future directional experiments and extract information about the DM halo. This basis consists of discretising the VDF in a series of angular bins, with the VDF being only a function of the DM speed v within each bin. In contrast to other methods, such as spherical harmonic expansions, the use of this basis allows us to guarantee that the resulting VDF is everywhere positive and therefore physical. We present a recipe for calculating the event rates corresponding to the discrete VDF for an arbitrary number of angular bins N and investigate the discretisation error which is introduced in this way. For smooth, Standard Halo Model-like distribution functions, only N=3 angular bins are required to achieve an accuracy of around 01–30% in the number of events in each bin. Shortly after confirmation of the DM origin of the signal with around 50 events, this accuracy should be sufficient to allow the discretised velocity distribution to be employed reliably. For more extreme VDFs (such as streams), the discretisation error is typically much larger, but can be improved with increasing N. This method paves the way towards an astrophysics-independent analysis framework for the directional detection of dark matter.

  16. Formation mechanisms of spatially-directed zincblende gallium nitride nanocrystals

    SciTech Connect

    Wood, A. W.; Collino, R. R.; Cardozo, B. L.; Naab, F.; Wang, Y. Q.; Goldman, R. S.

    2011-12-15

    We report on the spatially selective formation of GaN nanocrystals embedded in GaAs. Broad-area N{sup +} implantation followed by rapid thermal annealing leads to the formation of nanocrystals at the depth of maximum ion damage. With additional irradiation using a Ga{sup +} focused ion beam, selective lateral positioning of the nanocrystals within the GaAs matrix is observed in isolated regions of increased vacancy concentration. Following rapid thermal annealing, the formation of zincblende GaN is observed in the regions of highest vacancy concentration. The nucleation of zincblende nanocrystals over the wurtzite phase of bulk GaN is consistent with the predictions of a thermodynamic model for the nanoscale size-dependence of GaN nucleation.

  17. Characterising soil surface condition and carbon vulnerability using spatial statistics and directional reflectance

    NASA Astrophysics Data System (ADS)

    Croft, H.; Anderson, K.

    2008-12-01

    .350 (control); 0.274 (crusted soil)). Each was measured using an ASD FieldSpec Pro, fitted with an 8° foreoptic and attached to an A frame device which permitted measurement of directional reflectance factors at 5° sampling angles in the solar principal plane. The measurement angles (θr) used were in the range -60° to +60°, with illumination angles (θi) in the range 28° to 74°. Reflectance measurements were compared to geostatistically-derived indicators of surface roughness, derived from laser profile data. The results showed a strong relationship between directional measurements and surface roughness (R2 = 0.94; θr = -60°, θi = 67°-74°). The results provide an empirical and theoretical basis for the future retrieval of coarser spatial scale, distributed assessments of soil surface structure, and therefore, important information on carbon turnover and vulnerability in a landscape context.

  18. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  19. Faster processing of multiple spatially-heterodyned direct to digital holograms

    DOEpatents

    Hanson, Gregory R.; Bingham, Philip R.

    2006-10-03

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first, object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  20. Use of spatially distributed time-integrated sediment sampling networks and distributed fine sediment modelling to inform catchment management.

    PubMed

    Perks, M T; Warburton, J; Bracken, L J; Reaney, S M; Emery, S B; Hirst, S

    2017-02-06

    Under the EU Water Framework Directive, suspended sediment is omitted from environmental quality standards and compliance targets. This omission is partly explained by difficulties in assessing the complex dose-response of ecological communities. But equally, it is hindered by a lack of spatially distributed estimates of suspended sediment variability across catchments. In this paper, we demonstrate the inability of traditional, discrete sampling campaigns for assessing exposure to fine sediment. Sampling frequencies based on Environmental Quality Standard protocols, whilst reflecting typical manual sampling constraints, are unable to determine the magnitude of sediment exposure with an acceptable level of precision. Deviations from actual concentrations range between -35 and +20% based on the interquartile range of simulations. As an alternative, we assess the value of low-cost, suspended sediment sampling networks for quantifying suspended sediment transfer (SST). In this study of the 362 km(2) upland Esk catchment we observe that spatial patterns of sediment flux are consistent over the two year monitoring period across a network of 17 monitoring sites. This enables the key contributing sub-catchments of Butter Beck (SST: 1141 t km(2) yr(-1)) and Glaisdale Beck (SST: 841 t km(2) yr(-1)) to be identified. The time-integrated samplers offer a feasible alternative to traditional infrequent and discrete sampling approaches for assessing spatio-temporal changes in contamination. In conjunction with a spatially distributed diffuse pollution model (SCIMAP), time-integrated sediment sampling is an effective means of identifying critical sediment source areas in the catchment, which can better inform sediment management strategies for pollution prevention and control.

  1. Prediction of Glossosoma biomass spatial distribution in Valley Creek by field measurements and a three-dimensional turbulent open-channel flow model

    NASA Astrophysics Data System (ADS)

    Morris, M.; Mohammadi, M. Haji; Day, S.; Hondzo, M.; Sotiropoulos, F.

    2015-03-01

    The fluid flow environment associated with high Glossosoma abundance is predicted by large-eddy simulation of a natural turbulent open-channel flow. The spatial distribution of Glossosoma was depicted by high resolution physical variables described by fluid flow and streambed topography. Variogram analysis of the streambed topography revealed a characteristic length scale of the streambed of the order 0.2 m over which bed roughness height was correlated. Flow simulation output was spatially and temporally averaged over the streambed characteristic length scale and linked to Glossosoma spatial density. A dimensionless scaling relationship between Glossosoma spatial distribution and streamwise velocity averaged in the longitudinal and transverse direction, spatial velocity fluctuation, and spanwise vorticity from the computational fluid dynamics simulation output explained 79% of the variation in observed dimensionless Glossosoma spatial density. The analysis demonstrated that computational fluid mechanics and high resolution bed topography could be instrumental in predicting benthic macroinvertebrate spatial distribution in streams and rivers.

  2. Flux transfer events on the magnetopause - Spatial distribution and controlling factors

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Russell, C. T.

    1984-01-01

    The spatial distribution of flux transfer events (FTE) of magnetic flux tubes pulled from the earth's magnetopause is analyzed using ISEE 1 and 2 data from 1977-82. Attention is given to interplanetary conditions influencing different observed FTE polarities. FTEs were observed on nearly 25 percent of the passes near the dayside magnetopause. Direct FTEs were located mainly in the northern dawn sector and reverse FTEs appeared in the southern dusk sector. The distribution indicated an origin in the equatorial sector, and data correlate the appearance of FTEs only when the interplanetary magnetic field (IMF) had southward or nearly horizontal orientation. The presence of a southward component in the IMF was coincident with the appearance of an FTE 45 percent of the events. E-W components in the IMF exhibited no connections with the occurrence of an FTE.

  3. Integrating Ensemble Data Assimilation and Indicator Geostatistics to Delineate Hydrofacies Spatial Distribution

    NASA Astrophysics Data System (ADS)

    Song, X.; Chen, X.; Ye, M.; Dai, Z.; Hammond, G. E.

    2015-12-01

    We present a new framework for delineating spatial distributions of hydrofacies from indirect data by linking ensemble-based data assimilation method (e.g., Ensemble Kalman filter, EnKF) with indicator geostatistics based on transition probability. The nature of ensemble data assimilation makes the framework efficient and flexible to integrate various types of observation data. We leveraged the level set concept to establish transformations between discrete hydrofacies and continuous variables, which is a critical element to implement ensemble data assimilation methods for hydrofacies delineation. T-PROGS is used to generate realizations of hydrofacies fields given conditioning points. An additional quenching step of T-PROGS is taken to preserve spatial structure of updated hydrofacies after each data assimilation step. This new method is illustrated by a two-dimensional (2-D) synthetic study in which transient hydraulic head data resulting from pumping is assimilated to delineate hydrofacies distribution. Our results showed that the proposed framework was able to characterize hydrofacies distribution and their associated permeability with adequate accuracy even with limited direct hydrofacies data. This method may find broader applications in facies delineation using other types of indirect measurements, such as tracer tests and geophysical surveys.

  4. [Temporal-spatial distribution of algal cells during drought period in Daning River of Three Gorges].

    PubMed

    Zhang, Yong-Sheng; Zheng, Bing-Hui; Wang, Kun; Jiang, Xia; Zheng, Hao

    2013-06-01

    In order to provide basic data for algal bloom warning system, the study on temporal-spatial distribution of algal cells was carried out in Daning River of Three Gorges form April to September, 2011. The results of temporal distribution were as follows: the dominant algal species were blue algal, green algal and diatom. During the test, the density proportion of blue algae increased continuously, the density proportion of diatom decreased, while the density proportion of green algae did not change significantly. The results of spatial distribution were as follows: algal density was extremely significantly correlated with water temperature and chlorophyll a (Chl a), the correlation coefficient were 0.97 and 0.95, respectively; algal density was significantly correlated with light intensity (LI), dissolved oxygen (DO), pH and dissoluble total phosphorus (DTP), the correlation coefficient were 0.87, 0.83, 082 and 0.82, respectively; the algal density in 0 m of Caziba was higher than those in other water depths, and in Baishuihe the highest algal density occurred at 2.0 m water depth in June and July, in Shuanglong most algal cells were found in 0 m and 2.0 m in July, August and September, in Dachang algal density in different water depth did not change significantly during the test; the proportion of different algal species in vertical direction was different in the test, probably because different algal species fitted different environments.

  5. The Spatial Distribution of the Japanese Beetle, Popillia japonica, in Soybean Fields

    PubMed Central

    Sara, Stacey A.; McCallen, Emily B.; Switzer, Paul V.

    2013-01-01

    The Japanese beetle, Popillia japonica Newman (Coleoptera: Scarabaeidae), is a serious pest of many agricultural and horticultural plants. Relatively little research has investigated the distributions of Japanese beetles in agricultural fields, and this lack of information makes pest management more difficult. In the present study, the spatial distribution of Japanese beetles in soybean fields was examined. Specifically, how the distribution and abundance of beetles was affected by distance from an edge, edge direction, and edge type was examined. An edge effect for density was discovered; beetle numbers decreased significantly with increasing distance from the field edge. The east and south sides averaged higher numbers of beetles than the north and west. Downwind edges, in particular downwind edges adjacent to hedgerows, also had significantly higher beetle densities. In addition, females relatively far from the edge had larger egg loads than those closer to the edge. Differences in aggregation seeking behavior, in combination with movement in relation to wind and obstructions such as hedgerows, are possible explanations for these spatial patterns. PMID:23895634

  6. Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)

    NASA Astrophysics Data System (ADS)

    Antunes, I. M.; Ribeiro, A. F.

    2012-04-01

    The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr

  7. Spatial distribution pattern of vanadium in hydric landscapes

    NASA Astrophysics Data System (ADS)

    Fiedler, Sabine; Breuer, Jörn; Palmer, Iris; Berger, Jochen

    2010-05-01

    landscapes. Independent from the parent material, we found a distinct spatial pattern of V, which reflected that of the local redox environment: Horizons/pedons with oxic conditions revealed a positive correlation between V content and Fe content. In this case, iron oxides act as an important sink for dissolved V which originated from other locations of the catena. Poorly drained soils, such as Stagnosols for example, promote both Fe and V reduction, which is coupled to their removal from the pedons by leaching. It can be demonstrated that the element-specific Eh window for differential reduction is very narrow. The spatial distribution of both elements shows that high V contents are often associated with low Fe contents. It is therefore assumed that a reducing environment promotes Fe3+ reduction, while maintaining while maintaining V stable.

  8. Direct Access by Spatial Position in Visual Memory. 1. Synopsis of Principal Findings.

    DTIC Science & Technology

    1986-01-20

    AiQi 218 DIRECT ACCESS BY SPATIAL POSITION IN VISUAL MEMORY 1 1/1 SYNOPSIS OF PRINCIPAL FINDINGS(U) PENNSYLVANIA UNIV PPHILADELPHIA S STERNBERG ET...IRR04204 RR04206-01 11 TITLE (Include SecuriY Claw ficat,@n) Direct Access by Spatial Position in Visual Memory: 1. Synopsis of Principal Findings 12...034 -amJanuary 20. 1986 , ? ’ I~ Direct Access by Spatial Position In Visual Memory: 1. Synopsis of Principal gfdings 1. Introduction In recent years

  9. Spatial localization of electromyographic amplitude distributions associated to the activation of dorsal forearm muscles.

    PubMed

    Gallina, Alessio; Botter, Alberto

    2013-01-01

    In this study we investigated whether the spatial distribution of surface electromyographic (EMG) amplitude can be used to describe the activation of muscle portions with different biomechanical actions. Ten healthy subjects performed isometric contractions aimed to selectively activate a number of forearm muscles or muscle subportions. Monopolar electromyographic signals were collected with an electrode grid of 128 electrodes placed on the proximal, dorsal portion of the forearm. The monopolar EMG amplitude [root mean square (RMS) value] distribution was calculated for each contraction, and high-amplitude channels were identified through an automatic procedure; the position of the EMG source was estimated with the barycenter of these channels. Each of the contractions tested was associated to a specific EMG amplitude distribution, whose location in space was consistent with the expected anatomical position of the main agonist muscle (or subportion). The position of each source was significantly different from the others in at least one direction (ANOVA; transversally to the forearm: P < 0.01, F = 125.92; longitudinally: P < 0.01, F = 35.83). With such an approach, we could distinguish the spatial position of EMG distributions related to the activation of contiguous muscles [e.g., extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC)], different heads of the same muscle (i.e., extensor carpi radialis (ECR) brevis and longus) and different functional compartments (i.e., EDC, middle, and ring fingers). These findings are discussed in terms of how forces along a given direction can be produced by recruiting population of motor units clustered not only in specific muscles, but also in muscle sub-portions. In addition, this study supports the use of high-density EMG systems to characterize the activation of muscle subportions with different biomechanical actions.

  10. Spatial localization of electromyographic amplitude distributions associated to the activation of dorsal forearm muscles

    PubMed Central

    Gallina, Alessio; Botter, Alberto

    2013-01-01

    In this study we investigated whether the spatial distribution of surface electromyographic (EMG) amplitude can be used to describe the activation of muscle portions with different biomechanical actions. Ten healthy subjects performed isometric contractions aimed to selectively activate a number of forearm muscles or muscle subportions. Monopolar electromyographic signals were collected with an electrode grid of 128 electrodes placed on the proximal, dorsal portion of the forearm. The monopolar EMG amplitude [root mean square (RMS) value] distribution was calculated for each contraction, and high-amplitude channels were identified through an automatic procedure; the position of the EMG source was estimated with the barycenter of these channels. Each of the contractions tested was associated to a specific EMG amplitude distribution, whose location in space was consistent with the expected anatomical position of the main agonist muscle (or subportion). The position of each source was significantly different from the others in at least one direction (ANOVA; transversally to the forearm: P < 0.01, F = 125.92; longitudinally: P < 0.01, F = 35.83). With such an approach, we could distinguish the spatial position of EMG distributions related to the activation of contiguous muscles [e.g., extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC)], different heads of the same muscle (i.e., extensor carpi radialis (ECR) brevis and longus) and different functional compartments (i.e., EDC, middle, and ring fingers). These findings are discussed in terms of how forces along a given direction can be produced by recruiting population of motor units clustered not only in specific muscles, but also in muscle sub-portions. In addition, this study supports the use of high-density EMG systems to characterize the activation of muscle subportions with different biomechanical actions. PMID:24379788

  11. Effect of spatial distribution on the synchronization in rings of coupled oscillators

    NASA Astrophysics Data System (ADS)

    Ma, Hongjing; Liu, Weiqing; Wu, Ye; Yang, Yixian; Xiao, Jinghua

    2013-10-01

    In this paper, the effects of spatial distribution of coupling on the synchronizability are explored in a ring of diffusively coupled oscillators. We find that the inhomogeneity and spatial arrangements of coupling strength have great impacts on the synchronizability. When the inhomogeneous coupling constants are spatially rearranged, the eigenvalues λ2 (the second largest eigenvalue of the coupling matrixes) for all possible spatial arrangements, which may describe the synchronizability of coupled oscillators, obey a log-normal distribution. The spatial arrangement of period 1 achieves the best synchronizability while that of period 2 has the worst one. In addition, the regimes of the effects of spatial distribution on synchronizability are analyzed by a ring of coupled Rossler systems. The spatial rearrangement of coupling has meaningful applications in the manipulation of self- organization for coupled systems.

  12. Spatial tissue distribution of polyacetylenes in carrot root.

    PubMed

    Baranska, Malgorzata; Schulz, Hartwig

    2005-06-01

    The presented results show the usefulness of Raman spectroscopy in the investigation of polyacetylenes in carrot root. The components are measured directly in the plant tissue without any preliminary sample preparation. Compared with the strong polyacetylene signals the spectral impact of the surrounding biological matrix is weak, except for carotenoids, and therefore it does not contribute significantly to the obtained results. Three different Raman mapping techniques applied here have revealed essential information about the investigated compounds. Using point acquisition several spectra have been measured to demonstrate the complex composition of the polyacetylene fraction in carrot root. The molecular structures of falcarinol, falcarindiol and falcarindiol 3-acetate are similar but their Raman spectra exhibit differences demonstrated by the shift of their -C triple bond C- mode. Line mapping performed along the diameter of transversely cut carrot roots has been used to investigate the relative concentration of polyacetylenes and carotenoids. An area map provides detailed information regarding the distribution of both components. It has been found that high accumulation of polyacetylenes is located in the outer section of the root, namely the pericyclic parenchyma, and in the phloem part close to the secondary cambium. The highest concentration of carotenes is seen in the immediate vicinity to polyacetylene conglomerates.

  13. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  14. Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment

    EPA Science Inventory

    Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...

  15. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

    PubMed Central

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  16. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico).

    PubMed

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  17. Spatial distribution of protein molecules adsorbed at a polyelectrolyte multilayer

    NASA Astrophysics Data System (ADS)

    Jackler, Guido; Czeslik, Claus; Steitz, Roland; Royer, Catherine A.

    2005-04-01

    The spatial distribution of protein molecules interacting with a planar polyelectrolyte multilayer was determined using neutron reflectometry. Staphylococcal nuclease (SNase) was used as model protein that was adsorbed to the multilayer at 22°C and 42°C . At each temperature, the protein solution was adjusted to pD -values of 4.9 and 7.5 to vary the net charge of the protein molecules. The multilayer was built up on a silicon wafer by the deposition of poly(ethylene imine) (PEI), poly(styrene sulfonate) (PSS), and poly(allylamine hydrochloride) (PAH) in the order Si-PEI-PSS- (PAH-PSS)5 . Applying the contrast variation technique, two different neutron reflectivity curves were measured at each condition of temperature and pD -value. From the analysis of the curves, protein density profiles normal to the interface were recovered. Remarkably, it has been found that SNase is partially penetrating into the polyelectrolyte multilayer after adsorption at all conditions studied. The measured neutron reflectivities are consistent with a penetration depth of 50Å at pD=4.9 and 25Å at pD=7.5 . Since SNase has an isoelectric point of pH=9.5 , it carries a net positive charge at both pD -values and interacts with the PSS final layer under electrostatic attraction conditions. However, when increasing the temperature, the amount of adsorbed protein is increasing at both pD -values indicating the dominance of entropic driving forces for the protein adsorption. Interestingly, at pD=4.9 where the protein charge is relatively high, this temperature-induced mass increase of immobilized protein is more pronounced within the polyelectrolyte multilayer, whereas at pD=7.5 , closer to the isoelectric point of SNase, raising the temperature has mainly the effect to accumulate protein molecules outside the polyelectrolyte multilayer at the water interface. It is suggested that the penetration of SNase into the polyelectrolyte multilayer is related to a complexation mechanism. The

  18. Spatial distributions of biophysical conditions on the Ohio River

    EPA Science Inventory

    Conceptually, landscape and hydrogeomorphic features associated with large floodplain river ecosystems impose spatial organization on river biota, nutrients, and habitat. We examined whether resulting patchiness was evident in basin and riparian landcover, water chemistry, fish a...

  19. Spatial distributions of biophysical conditions on the Ohio River

    EPA Science Inventory

    Conceptually, landscape and hydrogeomorphic features associated with large floodplain river ecosystems impose spatial organization on river biota, nutrients, and habitat. We examined whether resulting patchiness was evident in basin and riparian landcover, water chemistry, fish a...

  20. Implementing direct, spatially isolated problems on transputer networks

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    Parametric studies were performed on transputer networks of up to 40 processors to determine how to implement and maximize the performance of the solution of problems where no processor-to-processor data transfer is required for the problem solution (spatially isolated). Two types of problems are investigated a computationally intensive problem where the solution required the transmission of 160 bytes of data through the parallel network, and a communication intensive example that required the transmission of 3 Mbytes of data through the network. This data consists of solutions being sent back to the host processor and not intermediate results for another processor to work on. Studies were performed on both integer and floating-point transputers. The latter features an on-chip floating-point math unit and offers approximately an order of magnitude performance increase over the integer transputer on real valued computations. The results indicate that a minimum amount of work is required on each node per communication to achieve high network speedups (efficiencies). The floating-point processor requires approximately an order of magnitude more work per communication than the integer processor because of the floating-point unit's increased computing capacity.

  1. Acacia trees pattern distribution as an indicator for changes in flow spatial distributions in a hyper-arid environment

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Ephrath, Jhonathan E.; Rachmilevitch, Shimon; Maman, Shimrit; Blumberg, Dan G.

    2017-04-01

    Arid regions are characterized by high spatial and temporal variability of precipitation, resulting in high spatial and temporal variation of vegetation cover. Because of low rainfall, the acacia trees in southern Israel are usually restricted to ephemeral stream (Wadi) beds, which possess higher soil moisture content than the surrounding landscape. Spatial analyses of tree distribution at the drainage basin scale contributes to a better understanding of the geo-hydrologic regime because water is the main limiting factor in such areas. That is, the spatial distribution of trees and their characteristics within the Wadi may reflect the spatial variance of water availability within different segments of the Wadi. The main objective of this study was to use the spatial distribution of different parameters of acacia trees as an indicator of past and present hydrological regimes within different segments of the Wadi. Tree size distribution was used as an indicator of long-term (decades) geo-hydrologic spatial processes affecting the acacia population. The tree health (NDVI) distribution was used as an indicator of short-term (months to a few years) geo-hydrologic spatial processes, such as the paths of recent flashfloods events. The distribution of the trees in the Wadi (ephemeral river) was divided into three distinct categories: (1) large trees with high NDVI values, (2) large trees with low NDVI values and (3) small trees with medium NDVI values. Using the resulting classification, we divided the Wadi into three sections, each representing a unique combination of long- and short-term geo-hydrologic processes affecting the acacia trees. We suggest that the lack of spatial correlation between tree size and health status is a result of spatio-temporal changes in the water supply. Our main conclusion is that past and current alterations of the runoff path can be detected by the spatial analysis of trees in hyper-arid regions

  2. Sleep directly following learning benefits consolidation of spatial associative memory.

    PubMed

    Talamini, Lucia M; Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Jensen, Ole

    2008-04-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face-location associations is significantly higher following a 12-h retention interval containing sleep than following an equally long period of waking. Furthermore, retention is significantly higher over a 24-h sleep-wake interval than over an equally long wake-sleep interval. This difference occurs because retention during sleep was significantly better when sleep followed learning directly, rather than after a day of waking. These data demonstrate a beneficial effect of sleep on memory that cannot be explained solely as a consequence of reduced interference. Rather, our findings suggest a competitive consolidation process, in which the fate of a memory depends, at least in part, on its relative stability at sleep onset: Strong memories tend to be preserved, while weaker memories erode still further. An important aspect of memory consolidation may thus result from the removal of irrelevant memory "debris."

  3. Scalability study of parallel spatial direct numerical simulation code on IBM SP1 parallel supercomputer

    NASA Technical Reports Server (NTRS)

    Hanebutte, Ulf R.; Joslin, Ronald D.; Zubair, Mohammad

    1994-01-01

    The implementation and the performance of a parallel spatial direct numerical simulation (PSDNS) code are reported for the IBM SP1 supercomputer. The spatially evolving disturbances that are associated with laminar-to-turbulent in three-dimensional boundary-layer flows are computed with the PS-DNS code. By remapping the distributed data structure during the course of the calculation, optimized serial library routines can be utilized that substantially increase the computational performance. Although the remapping incurs a high communication penalty, the parallel efficiency of the code remains above 40% for all performed calculations. By using appropriate compile options and optimized library routines, the serial code achieves 52-56 Mflops on a single node of the SP1 (45% of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a 'real world' simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP for the same simulation. The scalability information provides estimated computational costs that match the actual costs relative to changes in the number of grid points.

  4. Direct measurement of local dissolved oxygen concentration spatial profiles in a cell culture environment.

    PubMed

    Kagawa, Yuki; Matsuura, Katsuhisa; Shimizu, Tatsuya; Tsuneda, Satoshi

    2015-06-01

    Controlling local dissolved oxygen concentration (DO) in media is critical for cell or tissue cultures. Various biomaterials and culture methods have been developed to modulate DO. Direct measurement of local DO in cultures has not been validated as a method to test DO modulation. In the present study we developed a DO measurement system equipped with a Clark-type oxygen microelectrode manipulated with 1 μm precision in three-dimensional space to explore potential applications for tissue engineering. By determining the microelectrode tip position precisely against the bottom plane of culture dishes with rat or human cardiac cells in static monolayer culture, we successfully obtained spatial distributions of DO in the medium. Theoretical quantitative predictions fit the obtained data well. Based on analyses of the variance between samples, we found the data reflected "local" oxygen consumption in the vicinity of the microelectrode and the detection of temporal changes in oxygen consumption rates of cultured cells was limited by the diffusion rate of oxygen in the medium. This oxygen measuring system monitors local oxygen consumption and production with high spatial resolution, and can potentially be used with recently developed oxygen modulating biomaterials to design microenvironments and non-invasively monitor local DO dynamics during culture. © 2015 Wiley Periodicals, Inc.

  5. High Plains Aquifer as Megafans? - Perspective from Spatial Distribution of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Luo, W.; Pederson, D. T.

    2011-12-01

    High Plains Aquifer (HPA) is one on the largest fresh water aquifers in the world and accounts for 30% of the groundwater used for irrigation in the United States. It consists mainly of hydraulically connected geologic units of late Tertiary to Quaternary age, produced from weathering, erosion, and fluvial transportation and deposition processes associated with the post-Paleozoic uplift of the Rocky Mountains, and represents a mountain front megafan deposition environment. We use an innovative method to map the hydraulic conductivity (K) of the aquifer based on surface drainage patterns and a dynamic equilibrium assumption. Under dynamic equilibrium conditions developed over long time scales, the groundwater discharge and seepage induced weathering processes prepare and precondition the rocks for preferential erosion in areas weakened by weathering. The erosion further concentrates groundwater flow at the points of incision due to higher and directional groundwater gradients, guiding further valley development. The resulting drainage system thus reflects the underlying groundwater flow patterns. This linkage between valley development and the groundwater flow system develops a unique overall drainage dissection pattern over geologic time that is controlled by the interplay between surface water, topography, and subsurface aquifer properties. We can thus estimate K based on drainage dissection pattern derived from DEM data. Our K result is generally consistent with previous USGS data but shows much greater detail of its spatial distribution. As K is a function of grain size, its spatial distribution can also indirectly reflect the sediment size distribution. The spatial distribution of K reveals the following: (1) In general, the higher values of K were located closer to the Rocky Mountains, consistent with the large sediment grain sizes that would be expected in a mountain front environment. (2) The high K value near the Platte and Arkansas rivers are also

  6. Distributed Load Shedding over Directed Communication Networks with Time Delays

    SciTech Connect

    Yang, Tao; Wu, Di

    2016-07-25

    When generation is insufficient to support all loads under emergencies, effective and efficient load shedding needs to be deployed in order to maintain the supply-demand balance. This paper presents a distributed load shedding algorithm, which makes efficient decision based on the discovered global information. In the global information discovery process, each load only communicates with its neighboring load via directed communication links possibly with arbitrarily large but bounded time varying communication delays. We propose a novel distributed information discovery algorithm based on ratio consensus. Simulation results are used to validate the proposed method.

  7. Maximum Regional Emission Reduction Potential in Residential Sector Based on Spatial Distribution of Population and Resources

    NASA Astrophysics Data System (ADS)

    Winijkul, E.; Bond, T. C.

    2011-12-01

    In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with

  8. Importance of spatial autocorrelation in modeling bird distributions at a continental scale

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.

  9. Inverter power module with distributed support for direct substrate cooling

    DOEpatents

    Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  10. Nitric oxide spatial distribution in single cultured hippocampus neurons: investigation by projection of reconstructed 3-D image and visualization technique.

    PubMed

    Yang, Yong; Ning, Gang-Min; Kutor, John; Hong, Di-Hui; Zhang, Mu; Zheng, Xiao-Xiang

    2004-01-01

    Recent studies have revealed a non-homogeneous distribution of nitric oxide synthase (NOS) in neurons. However, it is not yet clear whether the intracellular distribution of NOS represents the intracellular nitric oxide (NO) distribution. In the present study, software developed in our laboratory was applied to the reconstructed image obtained from confocal slice images in order to project the 3-D reconstructed images in any direction and to cut the neuron in different sections. This enabled the spatial distribution of NO to be visualized in any direction and section. In single neurons, NO distribution was seen to be heterogeneous. After stimulation with glutamate, the spatial changes in different areas of the neuron were different. These findings are consistent with immunocytochemical data on the intracellular localization of nNOS in hippocampus neurons, and will help to elucidate the specificity of nitric oxide signaling. Finally, the administration of SNAP and L-NAME was used to examine DAF-2 distribution in the neurons. The results showed this distribution to be homogenous; therefore, it did not account for the NO distribution results.

  11. Relationship between the spatial distribution of SMS messages reporting needs and building damage in 2010 Haiti disaster

    NASA Astrophysics Data System (ADS)

    Corbane, C.; Lemoine, G.; Kauffmann, M.

    2012-02-01

    Just 4 days after the M = 7.1 earthquake on 12 January 2010, Haitians could send SMS messages about their location and urgent needs through the on-line mapping platform Ushahidi. This real-time crowdsourcing of crisis information provided direct support to key humanitarian resources on the ground, including Search and Rescue teams. In addition to its use as a knowledge base for rescue operations and aid provision, the spatial distribution of geolocated SMS messages may represent an early indicator on the spatial distribution and on the intensity of building damage. This work explores the relationship between the spatial patterns of SMS messages and building damage. The latter is derived from the detailed damage assessment of individual buildings interpreted in post-earthquake airborne photos. The interaction between SMS messages and building damage is studied by analyzing the spatial structure of the corresponding bivariate patterns. The analysis is performed through the implementation of cross Ripley's K-function which is suitable for characterizing the spatial structure of a bivariate pattern, and more precisely the spatial relationship between two types of point sets located in the same study area. The results show a strong attraction between the patterns exhibited by SMS messages and building damages. The interactions identified between the two patterns suggest that the geolocated SMS can be used as early indicators of the spatial distribution of building damage pattern. Accordingly, a statistical model has been developed to map the distribution of building damage from the geolocated SMS pattern. The study presented in this paper is the first attempt to derive quantitative estimates on the spatial patterns of novel crowdsourced information and correlate these to established methods in damage assessment using remote sensing data. The consequences of the study findings for rapid damage detection in post-emergency contexts are discussed.

  12. Optimized velocity distributions for direct dark matter detection

    NASA Astrophysics Data System (ADS)

    Ibarra, Alejandro; Rappelt, Andreas

    2017-08-01

    We present a method to calculate, without making assumptions about the local dark matter velocity distribution, the maximal and minimal number of signal events in a direct detection experiment given a set of constraints from other direct detection experiments and/or neutrino telescopes. The method also allows to determine the velocity distribution that optimizes the signal rates. We illustrate our method with three concrete applications: i) to derive a halo-independent upper limit on the cross section from a set of null results, ii) to confront in a halo-independent way a detection claim to a set of null results and iii) to assess, in a halo-independent manner, the prospects for detection in a future experiment given a set of current null results.

  13. Directional data analysis under the general projected normal distribution.

    PubMed

    Wang, Fangpo; Gelfand, Alan E

    2013-07-01

    The projected normal distribution is an under-utilized model for explaining directional data. In particular, the general version provides flexibility, e.g., asymmetry and possible bimodality along with convenient regression specification. Here, we clarify the properties of this general class. We also develop fully Bayesian hierarchical models for analyzing circular data using this class. We show how they can be fit using MCMC methods with suitable latent variables. We show how posterior inference for distributional features such as the angular mean direction and concentration can be implemented as well as how prediction within the regression setting can be handled. With regard to model comparison, we argue for an out-of-sample approach using both a predictive likelihood scoring loss criterion and a cumulative rank probability score criterion.

  14. Spatially Distributed, Coupled Modeling of Plant Growth, Nitrogen and Water Fluxes in an Alpine Catchment

    NASA Astrophysics Data System (ADS)

    Schneider, K.

    2001-12-01

    Carbon, water and nitrogen fluxes are closely coupled. They interact and have many feedbacks. Human interference, in particular through land use management and global change strongly modifies these fluxes. Increasing demands and conflicting interests result in an increasing need for regulation targeting different aspects of the system. Without being their main target, many of these measures directly affect water quantity, quality and availability. Improved management and planning of our water resources requires the development of integrated tools, in particular since interactions of the involved environmental and social systems often lead to unexpected or adverse results. To investigate the effect of plant growth, land use management and global change on water fluxes and quality, the PROcess oriented Modular EnvironmenT and Vegetation Model (PROMET-V) was developed. PROMET-V models the spatial patterns and temporal course of water, carbon and nitrogen fluxes using process oriented and mechanistic model components. The hydrological model is based on the Penman-Monteith approach, it uses a plant-physiological model to calculate the canopy conductance, and a multi-layer soil water model. Plant growth for different vegetation is modelled by calculating canopy photosynthesis, respiration, phenology and allocation. Plant growth and water fluxes are coupled directly through photosynthesis and transpiration. Many indirect feedbacks and interactions occur due to their mutual dependency upon leaf area, root distribution, water and nutrient availability for instance. PROMET-V calculates nitrogen fluxes and transformations. The time step used depends upon the modelled process and varies from 1 hour to 1 day. The kernel model is integrated in a raster GIS system for spatially distributed modelling. PROMET-V was tested in a pre-alpine landscape (Ammer river, 709 km**2, located in Southern Germany) which is characterized by small scale spatial heterogeneities of climate, soil and

  15. Examining reference frame interaction in spatial memory using a distribution analysis.

    PubMed

    Street, Whitney N; Wang, Ranxiao Frances

    2016-02-01

    Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use.

  16. On the spatial distribution of the reflection sources of different latency components of otoacoustic emissions

    PubMed Central

    Sisto, Renata; Moleti, Arturo; Shera, Christopher A.

    2015-01-01

    The experimental observation of long- and short-latency components in both stimulus-frequency and transient-evoked otoacoustic emissions admits a comprehensive explanation within the coherent reflection mechanism, in a linear active transmission-line cochlear model. A local complex reflectivity function associated with roughness was defined and analyzed by varying the tuning factor of the model, systematically showing, for each frequency, a multiple-peak spatial structure, compatible with the observed multiple-latency structure of otoacoustic emissions. Although this spatial pattern and the peak relative intensity changes with the chosen random roughness function, the multiple-peak structure is a reproducible feature of different “digital ears,” in good agreement with experimental data. If one computes the predicted transmission delays as a function of frequency and position for each source, one gets a good match to the latency-frequency patterns that are directly computed from synthesized otoacoustic spectra using time-frequency analysis. This result clarifies the role of the spatial distribution of the otoacoustic emission sources, further supporting the interpretation of different-latency otoacoustic components as due to reflection sources localized at different places along the basilar membrane. PMID:25698011

  17. Spatial distribution of spin polarization in a channel on the surface of a topological insulator.

    PubMed

    Zhou, Xiaoying; Shao, Huaihua; Liu, Yiman; Tang, Dongsheng; Zhou, Guanghui

    2012-05-09

    We study the spatial distribution of electron spin polarization for a gate-controlled T-shaped channel on the surface of a three-dimensional topological insulator (3D TI). We demonstrate that an energy gap depending on channel geometry parameters is definitely opened due to the spatial confinement. Spin surface locking in momentum space for a uniform wide channel with Hamiltonian linearity in the wavevector is still kept, but it is broken with Hamiltonian nonlinearity in the wavevector, like that for two-dimensional surface states widely studied in the literature. However, the spin surface locking for a T-shaped channel is broken even with Hamiltonian linearity in the wavevector. Interestingly, the magnitude and direction of the in-plane spin polarization are spatially dependent in all regions due to the breaking of translational symmetry of the T-shaped channel system. These interesting findings for an electrically controlled nanostructure based on the 3D TI surface may be testable with the present experimental technique, and may provide further understanding the nature of 3D TI surface states.

  18. Assessment of Rainfall-induced Landslide Potential and Spatial Distribution

    NASA Astrophysics Data System (ADS)

    Chen, Yie-Ruey; Tsai, Kuang-Jung; Chen, Jing-Wen; Chiang, Jie-Lun; Hsieh, Shun-Chieh; Chue, Yung-Sheng

    2016-04-01

    Recently, due to the global climate change, most of the time the rainfall in Taiwan is of short duration but with high intensity. Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assesses rainfall-induced (secondary) landslide potential and spatial distribution in watershed of Southern Taiwan under extreme climate change. The study areas in this research are Baolai and Jianshan villages in the watershed of the Laonongxi River Basin in the Southern Taiwan. This study focused on the 3 years after Typhoon Morakot (2009 to 2011). During this period, the study area experienced six heavy rainfall events including five typhoons and one heavy rainfall. The genetic adaptive neural network, texture analysis and GIS were implemented in the analysis techniques for the interpretation of satellite images and to obtain surface information and hazard log data and to analyze land use change. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various natural environmental and slope development hazard factors. Furthermore, this study established a slope landslide potential assessment model and depicted a slope landslide potential diagram by using the GIS platform. The interaction between (secondary) landslide mechanism, scale, and location was analyzed using association analysis of landslide historical data and regional environmental characteristics. The results of image classification before and after six heavy rainfall events show that the values of coefficient of agreement are at medium-high level. By multivariate hazards evaluation method, geology and the effective accumulative rainfall (EAR) are the most important factors. Slope, distance from fault, aspect, land disturbance

  19. Spatial Distribution and Characteristics of Graben on the Lunar Nearside

    NASA Astrophysics Data System (ADS)

    Nahm, Amanda

    2016-04-01

    Faults and fractures are visible records of the stresses operating on and in planetary bodies. On the Moon, tectonic structures are concentrated on the nearside and are spatially associated with the maria. Large-scale graben may be the oldest tectonic structures on the Moon, with current estimates suggesting cessation of normal faulting around 3.6 Ga [e.g., 1, 2]. However, recent work [3] has found that normal faulting at Rupes Recta is younger than 3.2 Ga, indicating that the timing of graben formation and extensional tectonics on the Moon may be less well constrained than previously thought. Mapping of graben on the lunar nearside (270° to 90° E, 70°N to 70°S) at a scale of 1:500,000 has been completed, a significant improvement over earlier maps produced using low resolution pre-Lunar Reconnaissance Orbiter (LRO) data at scales of 1:5 million and 1:1 million. Based on map view morphology, the mapped graben have been divided into 4 categories: arcuate graben, graben in floor fractured craters, lineaments, and linear graben. The general graben morphology is similar for 3 of the groups: steep walls, relatively flat floors, and resolvable (near constant) widths. However the map view morphology differs in detail; linear graben are roughly linear, while arcuate graben are highly curved along their length and often are concentric to basin margins. Floor fractured craters (FFC) are craters with floors cut by radial, concentric, and/or polygonal fractures and mapped graben that occur within these craters are classified here as graben in FFC. Lineaments are defined here as structures that may follow the trends of identified graben in the area, but are narrow, shallow, V-shaped depressions. These lineaments may not be graben, but are likely to have formed in a similar stress field. Generally, mapped graben are concentrated near the margins of the nearside maria as observed previously, but some structures have been mapped within the maria or in the highlands far from

  20. An Ultrasonic Circulation Measurement Technique for Spatial Lift Distributions

    NASA Astrophysics Data System (ADS)

    Yuan, Jiankun; Olinger, David J.

    1998-11-01

    An experimental investigation of the mean spanwise lift distribution for flow over inclined flat plates with sinusoidal trailing edges has been conducted. The stationary plates were vertically aligned in a low-speed wind tunnel with Reynolds number based on chord length of about 30,000. Three distinct flow patterns; streamlined flow, stalled flow and bluff body flow, were studied by varying plate angle of attack between 6 and 45 degrees. A novel ultrasonic technique based on determining the fluid circulation around a path enclosing the flat plate was utilized to measure the lift distribution. In order to correlate the measured lift distribution with wake structures, smoke-wire flow visualization was also performed. The lift distributions for the sinusoidal trailing edge case varied significantly from the nominal 2-D distributions based on local chord length. Preliminary extensions of the ultrasonic method to measure instantaneous lift distributions during an entire shedding cycle on vibrating plates and flexible cables are also discussed.

  1. The spatial distribution of H II regions in NGC 4321

    NASA Astrophysics Data System (ADS)

    Anderson, S.; Hodge, P.; Kennicutt, R. C., Jr.

    1983-02-01

    A catalog of 286 H II regions in the giant Sc Virgo Cluster spiral galaxy NGC 4321 is used to analyze some aspects of this galaxy's spiral structure. The H II region distribution is rectified to face-on by least-squares fitting to a logarithmic spiral, and the radial distribution, the across-arm distribution, and the along-arm distribution of H II regions are determined. Comparison of the circular distribution with a simple shock wave model of the density wave theory does not clearly support the model. Arm 1 shows no obvious structure, and arm 2, although it has a clear peak, does not show the expected asymmetrical distribution. Agreement is reasonably good, however, with the somewhat more elaborate density wave model of Bash. Tests for clumping of the H II regions were negative.

  2. New image processing software for analyzing object size-frequency distributions, geometry, orientation, and spatial distribution

    NASA Astrophysics Data System (ADS)

    Beggan, Ciarán; Hamilton, Christopher W.

    2010-04-01

    Geological Image Analysis Software (GIAS) combines basic tools for calculating object area, abundance, radius, perimeter, eccentricity, orientation, and centroid location, with the first automated method for characterizing the aerial distribution of objects using sample-size-dependent nearest neighbor (NN) statistics. The NN analyses include tests for (1) Poisson, (2) Normalized Poisson, (3) Scavenged k=1, and (4) Scavenged k=2 NN distributions. GIAS is implemented in MATLAB with a Graphical User Interface (GUI) that is available as pre-parsed pseudocode for use with MATLAB, or as a stand-alone application that runs on Windows and Unix systems. GIAS can process raster data (e.g., satellite imagery, photomicrographs, etc.) and tables of object coordinates to characterize the size, geometry, orientation, and spatial organization of a wide range of geological features. This information expedites quantitative measurements of 2D object properties, provides criteria for validating the use of stereology to transform 2D object sections into 3D models, and establishes a standardized NN methodology that can be used to compare the results of different geospatial studies and identify objects using non-morphological parameters.

  3. On the spatial distribution of main belt asteroids

    NASA Astrophysics Data System (ADS)

    Souami, D.; Lemaitre, A.; Souchay, J.

    2014-12-01

    We investigate here the distribution of main belt asteroids in the space with respect to the ecliptic-equinox J2000. We identify and confirm a sinusoidal behaviour of this distribution, which disappears when the inclination is given with respect to Jupiter's orbital plane, or with respect to the invariable plane (IP). This behaviour is explained by planetary secular effects, mainly due to Jupiter. Furthermore, we identify three different orbital behaviours that explain the density distribution in this space.

  4. Spatial distribution of nerve processes and β-adrenoreceptors in the rat atrioventricular node

    PubMed Central

    PETRECCA, KEVIN; SHRIER, ALVIN

    1998-01-01

    Atrioventricular (AV) nodal conduction time is known to be modulated by the autonomic nervous system. The presence of numerous parasympathetic and sympathetic nerve fibres in association with conduction tissue in the heart is well authenticated. In this study, confocal microscopy was used to image the distribution of antibodies directed against the general neuronal marker PGP 9.5, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and β1 and β2-adrenoreceptors. Serial 12 μm sections of fresh frozen tissue taken from the frontal plane of the rat atrioventricular node, His bundle and bundle branches were processed for histology, acetylcholinesterase (AChE) activity and immunohistochemistry. It was found that the AV and ventricular conduction systems were more densely innervated than the atrial and ventricular myocardium as revealed by PGP 9.5 immunoreactivity. Furthermore, the transitional cell region was more densely innervated than the midnodal cell region, while spatial distribution of total innervation was uniform throughout all AV nodal regions. AChE-reactive nerve processes were found throughout the AV and ventricular conduction systems, the spatial distribution of which was nonuniform exhibiting a paucity of AChE-reactive nerve processes in the central midnodal cell region and a preponderance in the circumferential transitional cell region. TH-immunoreactivity was uniformly distributed throughout the AV and ventricular conduction systems including the central midnodal and circumferential transitional cell regions. β1-adrenoreceptors were found throughout the AV and ventricular conduction systems with a preponderance in the circumferential transitional cell region. β2-adrenoreceptors were localised predominantly in AV and ventricular conduction systems with a paucity of expression in the circumferential transitional cell region. These results demonstrate that the overall uniform distribution of total

  5. [Spatial correlation of active mounds locative distribution of Solenopsis invicta Buren polygyne populations].

    PubMed

    Lu, Yong-yue; Li, Ning-dong; Liang, Guang-wen; Zeng, Ling

    2007-01-01

    By using geostatistic method, this paper studied the spatial distribution patterns of the active mounds of Solenopsis invicta Buren polygyne populations in Wuchuan and Shenzhen, and built up the spherical models of the interval distances and semivariances of the mounds. The semivariograms were described at the two directions of east-west and south-north, which were obviously positively correlated to the interval distances, revealing that the active mounds in locative area were space-dependent. The ranges of the 5 spherical models constructed for 5 sampling plots in Wuchuan were 9.1 m, 7.6 m, 23.5 m, 7.5 m and 14.5 m, respectively, with an average of 12.4 m. The mounds of any two plots in this range were significantly correlated. There was a randomicity in the spatial distribution of active mounds, and the randomicity index (Nugget/Sill) was 0.7034, 0.9247, 0.4398, 1.1196 and 0.4624, respectively. In Shenzhen, the relationships between the interval distances and semivariances were described by 7 spherical models, and the ranges were 14.5 m, 11.2 m, 10.8 m, 17.6 m, 11.3 m, 9.9 m and 12.8 m, respectively, with an average of 12.6 m.

  6. Large-Scale Spatial Distribution of Virioplankton in the Adriatic Sea: Testing the Trophic State Control Hypothesis

    PubMed Central

    Corinaldesi, C.; Crevatin, E.; Del Negro, P.; Marini, M.; Russo, A.; Fonda-Umani, S.; Danovaro, R.

    2003-01-01

    Little is known concerning environmental factors that may control the distribution of virioplankton on large spatial scales. In previous studies workers reported high viral levels in eutrophic systems and suggested that the trophic state is a possible driving force controlling the spatial distribution of viruses. In order to test this hypothesis, we determined the distribution of viral abundance and bacterial abundance and the virus-to-bacterium ratio in a wide area covering the entire Adriatic basin (Mediterranean Sea). To gather additional information on factors controlling viral distribution on a large scale, functional microbial parameters (exoenzymatic activities, bacterial production and turnover) were related to trophic gradients. At large spatial scales, viral distribution was independent of autotrophic biomass and all other environmental parameters. We concluded that in contrast to what was previously hypothesized, changing trophic conditions do not directly affect virioplankton distribution. Since virus distribution was coupled with bacterial turnover times, our results suggest that viral abundance depends on bacterial activity and on host cell abundance. PMID:12732535

  7. Large-scale spatial distribution of virioplankton in the Adriatic Sea: testing the trophic state control hypothesis.

    PubMed

    Corinaldesi, C; Crevatin, E; Del Negro, P; Marini, M; Russo, A; Fonda-Umani, S; Danovaro, R

    2003-05-01

    Little is known concerning environmental factors that may control the distribution of virioplankton on large spatial scales. In previous studies workers reported high viral levels in eutrophic systems and suggested that the trophic state is a possible driving force controlling the spatial distribution of viruses. In order to test this hypothesis, we determined the distribution of viral abundance and bacterial abundance and the virus-to-bacterium ratio in a wide area covering the entire Adriatic basin (Mediterranean Sea). To gather additional information on factors controlling viral distribution on a large scale, functional microbial parameters (exoenzymatic activities, bacterial production and turnover) were related to trophic gradients. At large spatial scales, viral distribution was independent of autotrophic biomass and all other environmental parameters. We concluded that in contrast to what was previously hypothesized, changing trophic conditions do not directly affect virioplankton distribution. Since virus distribution was coupled with bacterial turnover times, our results suggest that viral abundance depends on bacterial activity and on host cell abundance.

  8. Spatially Distributed Instructions Improve Learning Outcomes and Efficiency

    ERIC Educational Resources Information Center

    Jang, Jooyoung; Schunn, Christian D.; Nokes, Timothy J.

    2011-01-01

    Learning requires applying limited working memory and attentional resources to intrinsic, germane, and extraneous aspects of the learning task. To reduce the especially undesirable extraneous load aspects of learning environments, cognitive load theorists suggest that spatially integrated learning materials should be used instead of spatially…

  9. Spatially Distributed Instructions Improve Learning Outcomes and Efficiency

    ERIC Educational Resources Information Center

    Jang, Jooyoung; Schunn, Christian D.; Nokes, Timothy J.

    2011-01-01

    Learning requires applying limited working memory and attentional resources to intrinsic, germane, and extraneous aspects of the learning task. To reduce the especially undesirable extraneous load aspects of learning environments, cognitive load theorists suggest that spatially integrated learning materials should be used instead of spatially…

  10. The Not So Simple Globular Cluster ω Cen. I. Spatial Distribution of the Multiple Stellar Populations

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Strampelli, G.; Rest, A.; Bono, G.; Ferraro, I.; Saha, A.; Iannicola, G.; Scolnic, D.; James, D.; Smith, C.; Zenteno, A.

    2017-04-01

    We present a multi-band photometric catalog of ≈1.7 million cluster members for a field of view of ≈2° × 2° across ω Cen. Photometry is based on images collected with the Dark Energy Camera on the 4 m Blanco telescope and the Advanced Camera for Surveys on the Hubble Space Telescope. The unprecedented photometric accuracy and field coverage allowed us, for the first time, to investigate the spatial distribution of ω Cen multiple populations from the core to the tidal radius, confirming its very complex structure. We found that the frequency of blue main-sequence stars is increasing compared to red main-sequence stars starting from a distance of ≈25‧ from the cluster center. Blue main-sequence stars also show a clumpy spatial distribution, with an excess in the northeast quadrant of the cluster pointing toward the direction of the Galactic center. Stars belonging to the reddest and faintest red-giant branch also show a more extended spatial distribution in the outskirts of ω Cen, a region never explored before. Both these stellar sub-populations, according to spectroscopic measurements, are more metal-rich compared to the cluster main stellar population. These findings, once confirmed, make ω Cen the only stellar system currently known where metal-rich stars have a more extended spatial distribution compared to metal-poor stars. Kinematic and chemical abundance measurements are now needed for stars in the external regions of ω Cen to better characterize the properties of these sub-populations. Based on observations made with the Dark Energy Camera (DECam) on the 4 m Blanco telescope (NOAO) under programs 2014A-0327, 2015A-0151, 2016A-0189, PIs: A. Calamida, A. Rest, and on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  11. Distributed multi-criteria model evaluation and spatial association analysis

    NASA Astrophysics Data System (ADS)

    Scherer, Laura; Pfister, Stephan

    2015-04-01

    Model performance, if evaluated, is often communicated by a single indicator and at an aggregated level; however, it does not embrace the trade-offs between different indicators and the inherent spatial heterogeneity of model efficiency. In this study, we simulated the water balance of the Mississippi watershed using the Soil and Water Assessment Tool (SWAT). The model was calibrated against monthly river discharge at 131 measurement stations. Its time series were bisected to allow for subsequent validation at the same gauges. Furthermore, the model was validated against evapotranspiration which was available as a continuous raster based on remote sensing. The model performance was evaluated for each of the 451 sub-watersheds using four different criteria: 1) Nash-Sutcliffe efficiency (NSE), 2) percent bias (PBIAS), 3) root mean square error (RMSE) normalized to standard deviation (RSR), as well as 4) a combined indicator of the squared correlation coefficient and the linear regression slope (bR2). Conditions that might lead to a poor model performance include aridity, a very flat and steep relief, snowfall and dams, as indicated by previous research. In an attempt to explain spatial differences in model efficiency, the goodness of the model was spatially compared to these four phenomena by means of a bivariate spatial association measure which combines Pearson's correlation coefficient and Moran's index for spatial autocorrelation. In order to assess the model performance of the Mississippi watershed as a whole, three different averages of the sub-watershed results were computed by 1) applying equal weights, 2) weighting by the mean observed river discharge, 3) weighting by the upstream catchment area and the square root of the time series length. Ratings of model performance differed significantly in space and according to efficiency criterion. The model performed much better in the humid Eastern region than in the arid Western region which was confirmed by the

  12. Spatial Distribution of Plant-Parasitic Nematodes in Semi-Arid Vitis vinifera Vineyards in Washington.

    PubMed

    Howland, Amanda D; Schreiner, R Paul; Zasada, Inga A

    2014-12-01

    The most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards are Meloidogyne hapla, Mesocriconema xenoplax, Pratylenchus spp., Xiphinema americanum, and Paratylenchus sp.; however, little is known about their distribution in the soil profile. The vertical and horizontal spatial distribution of plant-parasitic nematodes was determined in two Washington V. vinifera vineyards. Others variables measured in these vineyards included soil moisture content, fine root biomass, and root colonization by arbuscular mycorhizal fungi (AMF). Meloidogyne hapla and M. xenoplax were aggregated under irrigation emitters within the vine row and decreased with soil depth. Conversely, Pratylenchus spp. populations were primarily concentrated in vineyard alleyways and decreased with depth. Paratylenchus sp. and X. americanum were randomly distributed within the vineyards. Soil water content played a dominant role in the distribution of fine roots and plant-parasitic nematodes. Colonization of fine roots by AMF decreased directly under irrigation emitters; in addition, galled roots had lower levels of AMF colonization compared with healthy roots. These findings will help facilitate sampling and management decisions for plant-parasitic nematodes in Washington semi-arid vineyards.

  13. Spatial Distribution of Plant-Parasitic Nematodes in Semi-Arid Vitis vinifera Vineyards in Washington

    PubMed Central

    Howland, Amanda D.; Schreiner, R. Paul; Zasada, Inga A.

    2014-01-01

    The most commonly encountered plant-parasitic nematodes in eastern Washington Vitis vinifera vineyards are Meloidogyne hapla, Mesocriconema xenoplax, Pratylenchus spp., Xiphinema americanum, and Paratylenchus sp.; however, little is known about their distribution in the soil profile. The vertical and horizontal spatial distribution of plant-parasitic nematodes was determined in two Washington V. vinifera vineyards. Others variables measured in these vineyards included soil moisture content, fine root biomass, and root colonization by arbuscular mycorhizal fungi (AMF). Meloidogyne hapla and M. xenoplax were aggregated under irrigation emitters within the vine row and decreased with soil depth. Conversely, Pratylenchus spp. populations were primarily concentrated in vineyard alleyways and decreased with depth. Paratylenchus sp. and X. americanum were randomly distributed within the vineyards. Soil water content played a dominant role in the distribution of fine roots and plant-parasitic nematodes. Colonization of fine roots by AMF decreased directly under irrigation emitters; in addition, galled roots had lower levels of AMF colonization compared with healthy roots. These findings will help facilitate sampling and management decisions for plant-parasitic nematodes in Washington semi-arid vineyards. PMID:25580024

  14. Spatial Distribution of Stink Bugs (Hemiptera: Pentatomidae) in Wheat

    PubMed Central

    2014-01-01

    A two-year study was conducted in South Carolina wheat (Triticum aestivum L. (Poales: Poaceae)) fields to describe spatial and temporal dynamics of stink bugs (Hemiptera: Pentatomidae), which were sampled weekly with sweep nets. In 2010, the main phytophagous stink bugs caught in a grid sampling plan across two fields were the brown stink bug, Euschistus servus (Say), the rice stink bug, Oebalus pugnax (F.), the southern green stink bug, Nezara viridula (L.), and the red shouldered stink bug, Thyanta custator (F.), for both adults and nymphs. In 2011, the main phytophagous stink bugs were E. servus, O. pugnax, N. viridula, and T. custator across two fields. Adult stink bug counts adjacent to fallow fields were 2.1-fold greater for all species combined compared with counts adjacent to woods. Spatial Analysis by Distance IndicEs (SADIE) indicated significant aggregation for 35% of analyses for adults and nymph stink bugs at each sampling date. As a measure of spatial and temporal stability, positive SADIE association indices among sampling dates recorded 11, 36, 43, and 16% of analyses for adult E. servus and 7, 50, 50, and 14% for adult O. pugnax in fields A, B, C, and D, respectively. Adult and nymph stink bugs were spatially associated within wheat fields based on SADIE association indices. Seasonal counts of stink bugs were spatially associated with spike counts at least once for each species across the four fields. Future work may investigate practices to reduce stink bug buildup on wheat in the spring and movement to susceptible crops such as corn, Zea mays L. PMID:25205358

  15. The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass

    PubMed Central

    Reuchlin-Hugenholtz, Emilie

    2015-01-01

    The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. PMID:25789624

  16. The potential for spatial distribution indices to signal thresholds in marine fish biomass.

    PubMed

    Reuchlin-Hugenholtz, Emilie; Shackell, Nancy L; Hutchings, Jeffrey A

    2015-01-01

    The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management.

  17. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    NASA Technical Reports Server (NTRS)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  18. The Spatial Distribution of Dead Trees across Arkansas Timberlands

    Treesearch

    Martin A. Spetich; James M. Guldin

    1999-01-01

    Abstract -- Dead trees are an important part of the forest ecosystem and their attributes have been studied at the stand scale. However, their distribution over a large region has rarely been examined. In this study, the distribution and dynamics of sound wood in dead trees and the ratio of dead to live trees across the Arkansas landscape were...

  19. Effect of the corrected ionization potential and spatial distribution on the angular and energy distribution in tunnel ionization

    SciTech Connect

    Petrović, V. M.; Miladinović, T. B.

    2016-05-15

    Within the framework of the Ammosov–Delone–Krainov theory, we consider the angular and energy distribution of outgoing electrons due to ionization by a circularly polarized electromagnetic field. A correction of the ground ionization potential by the ponderomotive and Stark shift is incorporated in both distributions. Spatial dependence is analyzed.

  20. Using spatial principles to optimize distributed computing for enabling the physical science discoveries

    PubMed Central

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-01-01

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779

  1. Using spatial principles to optimize distributed computing for enabling the physical science discoveries.

    PubMed

    Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing

    2011-04-05

    Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.

  2. Capillary-driven, spatially-directed liquid transport on and through thin porous substrates

    NASA Astrophysics Data System (ADS)

    Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ibrahim, Ali; Ganguly, Ranjan; Megaridis, Constantine; Yu, Lisha; Dodge, Richard

    2016-11-01

    Thin porous substrates exhibit good wicking properties for liquid distribution. The low cost of such common substrates often makes them useful for point of care biomedical diagnostics. Isotropic and anisotropic liquid transport through porous media has been studied extensively in literature. Moreover, previous research has demonstrated spatially-directed liquid transport on textured surfaces featuring surface-tension confined track. Combining both these features, here we demonstrate and analyze capillary-driven, directional liquid transport both on the surface of, and through, a wettability-patterned, horizontal porous substrate. The vertical (through) penetration is governed by Darcy's law. The horizontal (on surface) transport is driven by the Laplace pressure gradient caused by the geometry of the meniscus on the wettability-confined track. The transport rate on the substrate is found to far exceed the liquid permeation rate through it. Consequently, the penetration resistance can be estimated using a quasi-static approach. Using a semi-analytical model, we analyze the effect of the liquid curvature on the penetration rate of a sessile drop placed on the substrate. The model accounts for the back pressure caused by the liquid on the opposing side. The transport model is validated against the experiments, and the geometry, wettability and substrate porosity parameters causing fastest transport are identified.

  3. Metabolic flexibility as a major predictor of spatial distribution in microbial communities.

    PubMed

    Carbonero, Franck; Oakley, Brian B; Purdy, Kevin J

    2014-01-01

    A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a

  4. Spatial distribution pattern of termite in Endau Rompin Plantation

    NASA Astrophysics Data System (ADS)

    Jalaludin, Nur-Atiqah; Rahim, Faszly

    2015-09-01

    We censused 18 field blocks approximately 190 ha with total of 28,604 palms in a grid of 2×4 palms from July 2011 to March 2013. The field blocks comprise of rows of palm trees, harvesting paths, field drains and stacking rows with maximum of 30 palms per row, planted about 9 m apart, alternately in maximum of 80 rows. SADIE analysis generating index of aggregation, Ia, local clustering value, Vi and local gap value, Vj is adopted to estimate spatial pattern. The patterns were then presented in contour map using Surfer 12 software. The patterns produced associated with factors i.e. habitat disturbance, habitat fragmentation and resources affecting nesting and foraging activities. Result shows that field blocks with great habitat disturbance recorded highest dead palms and termites hits. Blocks located far from the main access road recorded less than 2% palms with termite hits. This research may provide ecological data on termite spatial pattern in oil palm ecosystem.

  5. Demonstrating the Use of Spatial Optimising Techniques by Means of a Freight Distribution Game.

    ERIC Educational Resources Information Center

    McKinnon, Alan C.

    1984-01-01

    College seniors in a geography of marketing and distribution course learn about spatial optimizing techniques by participating in a freight distribution game. Students plan the distribution of confectionery from two factories in England to 20 wholesale and retail customers in Scotland. The team that designs the lowest cost system wins. (RM)

  6. Temporal and spatial distribution of human cryptosporidiosis in the west of Ireland 2004-2007

    PubMed Central

    2009-01-01

    Background Cryptosporidiosis is increasingly recognised as a cause of gastrointestinal infection in Ireland and has been implicated in several outbreaks. This study aimed to investigate the spatial and temporal distribution of human cryptosporidiosis in the west of Ireland in order to identify high risk seasons and areas and to compare Classically Calculated (CC) and Empirical Bayesian (EB) incidence rates. Two spatial scales of analysis were used with a view to identifying the best one in assessing geographical patterns of infection. Global Moran's I and Local Moran's I tests of autocorrelation were used to test for evidence of global and local spatial clustering. Results There were statistically significant seasonal patterns of cryptosporidiosis with peaks in spring and an increasing temporal trend. Significant (p < 0.05) global spatial clustering was observed in CC rates at the Electoral Division (ED) level but not in EB rates at the same level. Despite variations in disease, ED level was found to provide the most accurate account of distribution of cryptosporidiosis in the West of Ireland but required spatial EB smoothing of cases. There were a number of areas identified with significant local clustering of cryptosporidiosis rates. Conclusion This study identified spatial and temporal patterns in cryptosporidiosis distribution. The study also showed benefit in performing spatial analyses at more than one spatial scale to assess geographical patterns in disease distribution and that smoothing of disease rates for mapping in small areas enhances visualisation of spatial patterns. These findings are relevant in guiding policy decisions on disease control strategies. PMID:19930685

  7. Predicting future spatial distribution of SOC across entire France

    NASA Astrophysics Data System (ADS)

    Meersmans, Jeroen; Van Rompaey, Anton; Quine, Tim; Martin, Manuel; Pagé, Christian; Arrouays, Dominique

    2013-04-01

    Soil organic carbon (SOC) is widely recognized as a key factor controlling soil quality and as a crucial and active component of the global C-cycle. Hence, there exists a growing interest in monitoring and modeling the spatial and temporal behavior of this pool. So far, a large attempt has been made to map SOC at national scales for current and/or past situations. Despite some coarse predictions, detailed spatial SOC predictions for the future are still lacking. In this study we aim to predict future spatial evolution of SOC driven by climate and land use change for France up to the year 2100. Therefore, we combined 1) an existing model, predicting SOC as a function of soil type, climate, land use and management (Meersmans et al 2012), with 2) eight different IPCC spatial explicit climate change predictions (conducted by CERFACS) and 3) Land use change scenario predictions. We created business-as-usual land use change scenarios by extrapolating observed trends and calibrating logistic regression models, incorporating a large set of physical and socio-economic factors, at the regional level in combination with a multi-objective land allocation (MOLA) procedure. The resultant detailed projections of future SOC evolution across all regions of France, allow us to identify regions that are most likely to be characterized by a significant gain or loss of SOC and the degree to which land use decisions/outcomes control the scale of loss and gain. Therefore, this methodology and resulting maps can be considered as powerful tools to aid decision making concerning appropriate soil management, in order to enlarge SOC storage possibilities and reduce soil related CO2 fluxes.

  8. Assessment of spatial distribution of fallout radionuclides through geostatistics concept.

    PubMed

    Mabit, L; Bernard, C

    2007-01-01

    After introducing geostatistics concept and its utility in environmental science and especially in Fallout Radionuclide (FRN) spatialisation, a case study for cesium-137 ((137)Cs) redistribution at the field scale using geostatistics is presented. On a Canadian agricultural field, geostatistics coupled with a Geographic Information System (GIS) was used to test three different techniques of interpolation [Ordinary Kriging (OK), Inverse Distance Weighting power one (IDW1) and two (IDW2)] to create a (137)Cs map and to establish a radioisotope budget. Following the optimization of variographic parameters, an experimental semivariogram was developed to determine the spatial dependence of (137)Cs. It was adjusted to a spherical isotropic model with a range of 30 m and a very small nugget effect. This (137)Cs semivariogram showed a good autocorrelation (R(2)=0.91) and was well structured ('nugget-to-sill' ratio of 4%). It also revealed that the sampling strategy was adequate to reveal the spatial correlation of (137)Cs. The spatial redistribution of (137)Cs was estimated by Ordinary Kriging and IDW to produce contour maps. A radioisotope budget was established for the 2.16 ha agricultural field under investigation. It was estimated that around 2 x 10(7)Bq of (137)Cs were missing (around 30% of the total initial fallout) and were exported by physical processes (runoff and erosion processes) from the area under investigation. The cross-validation analysis showed that in the case of spatially structured data, OK is a better interpolation method than IDW1 or IDW2 for the assessment of potential radioactive contamination and/or pollution.

  9. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    PubMed

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  10. Spatial distributions of local illumination color in natural scenes.

    PubMed

    Nascimento, Sérgio M C; Amano, Kinjiro; Foster, David H

    2016-03-01

    In natural complex environments, the elevation of the sun and the presence of occluding objects and mutual reflections cause variations in the spectral composition of the local illumination across time and location. Unlike the changes in time and their consequences for color appearance and constancy, the spatial variations of local illumination color in natural scenes have received relatively little attention. The aim of the present work was to characterize these spatial variations by spectral imaging. Hyperspectral radiance images were obtained from 30 rural and urban scenes in which neutral probe spheres were embedded. The spectra of the local illumination at 17 sample points on each sphere in each scene were extracted and a total of 1904 chromaticity coordinates and correlated color temperatures (CCTs) derived. Maximum differences in chromaticities over spheres and over scenes were similar. When data were pooled over scenes, CCTs ranged from 3000 K to 20,000 K, a variation of the same order of magnitude as that occurring over the day. Any mechanisms that underlie stable surface color perception in natural scenes need to accommodate these large spatial variations in local illumination color. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Spatial distribution of malaria problem in three regions of Ethiopia

    PubMed Central

    2013-01-01

    Background The transmission of malaria is the leading public health problem in Ethiopia. From the total area of Ethiopia, more than 75% is malarious. The aim of this study was to identify socio-economic, geographic and demographic risk factors of malaria based on the rapid diagnosis test (RDT) survey results and produce the prevalence map of the area illustrating variation in malaria risk. Methods This study accounts for spatial correlation in assessing the effects of socio- economic, demographic and geographic factors on the prevalence of malaria in Ethiopia. A total of 224 clusters of about 25 households each were selected from the Amhara, Oromiya and Southern Nation Nationalities and People’s (SNNP) regions of Ethiopia. A generalized linear mixed model with spatial covariance structure was used to analyse the data where the response variable was the presence or absence of malaria using the RDT. Results The results showed that households in the SNNP region were found to be at more risk than Amhara and Oromiya regions. Moreover, households which have toilet facilities clean drinking water, and a greater number of rooms and mosquito nets in the rooms, have less chance of having household members testing positive for RDT. Moreover, from this study, it can be suggested that incorporating spatial variability is necessary for understanding and devising the most appropriate strategies to reduce the risk of malaria. PMID:23773317

  12. Relations between Spatial Distribution, Social Affiliations and Dominance Hierarchy in a Semi-Free Mandrill Population

    PubMed Central

    Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric

    2016-01-01

    Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance

  13. Relations between Spatial Distribution, Social Affiliations and Dominance Hierarchy in a Semi-Free Mandrill Population.

    PubMed

    Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric

    2016-01-01

    Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance

  14. The Spatial Distribution of Star Formation in Galaxies: Observing the Emergence of Galactic Structure

    NASA Astrophysics Data System (ADS)

    Nelson, Erica June

    A high resolution measurement of the distribution of star formation within galaxies is key to understanding the emergence of galactic structure. The aim of this thesis is to understand how the structure of galaxies is built by developing a new method to spatially resolve their star formation. Using Ha maps for 2676 galaxies, this thesis shows where star formation is distributed in galaxies during the epoch 0.7 < z < 1.5 when a third of the total star formation in the history of the universe occurred. Across the star formation rate - stellar mass plane (the "main sequence"), star formation is `spatially coherent': in galaxies with higher than average star formation rates, Ha is enhanced throughout the disk; similarly, in galaxies with low star formation rates Ha is depressed throughout the disk. This places constraints both on the mechanisms for enhancing and quenching star formation as well as on how the structure of galaxies is built. The disk scale length of star formation in galaxies is larger than that of the stars, a direct demonstration that the disks of galaxies grow inside-out. While most star formation in most galaxies occurs in disks, not all of it does. With the first spatially resolved measurement of the Balmer decrement at z > 1, it can be seen that galaxies with M* > 1010M ⊙ have significant dust attenuation toward their centers. This means that we are witnessing the build-up of the dense stellar cores of massive galaxies through dust-obscured in-situ star formation. The most massive galaxies are thought to have formed their dense stellar cores at even earlier cosmic epochs. This thesis presents the first confirmed example of a massive galaxy core in the process of formation at z = 2.3. It has one of the highest velocity dispersions ever measured for a normal star forming galaxy and also appears to be building through very dense, dust-enshrouded star formation.

  15. Actively Heated Fiber Optics for Distributed Soil Moisture Measurements: Addressing Field Calibration and Spatial Variability

    NASA Astrophysics Data System (ADS)

    Sayde, C.; Moreno, D.; Benitez-buelga, J.; Dong, J.; Ochsner, T. E.; Steele-Dunne, S. C.; Rodriguez-Sinobas, L.; Selker, J. S.

    2015-12-01

    The Actively Heated Fiber Optics (AHFO) method has the potential to measure soil water content at high temporal (<1hr) and spatial (every 0.25 m) resolutions along buried fiber optics (FO) cables multiple kilometers in length. This game-changing method can capture soil water dynamics over four orders of magnitude in spatial scale (0.1-1000 m). However, many challenges remain to resolve for the practical applicability of the AHFO at the field scale. In particular, cost effective distributed calibration method that accounts for the spatial variability of the soil thermal properties is still lacking. In fact, AHFO infers soil water content from observing the thermal response of the soil to a heat pulse injected along the fiber optic cable. For a particular location, the temporal variation of the soil thermal response depends mainly on the soil moisture content. Across the field the variability of thermal response will also be a function of the soil thermal properties which change with the soil mineralogy and bulk density. Here we present various strategies for distributed calibration of the AHFO method based on numerical simulation, direct field observation, and/or laboratory experimentation. In particular we will present a novel approach for mapping the soil thermal behavior by conducting AHFO measurements at strategic soil water conditions such as near saturation and dry conditions. We will show results from a large scale deployment at the MOISST site in Stillwater, Oklahoma where 4900 m of fiber optic soil moisture sensing cables are providing daily soil moisture measurements at >39,000 locations in the field. The material is based upon work supported by NASA under award NNX12AP58G, with equipment and assistance also provided by CTEMPs.org with support from the National Science Foundation under Grant Number 1129003. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views

  16. Calculating bathymetric and spatial distributions of estuarine eelgrass

    EPA Science Inventory

    Distributions of native eelgrass Zostera marina L. within the intertidal and shallow subtidal zones of three Oregon estuaries (Tillamook, Yaquina, and Alsea) were classified from color infrared aerial orthophotography acquired at extreme low tide. Image processing software, Spati...

  17. Calculating bathymetric and spatial distributions of estuarine eelgrass

    EPA Science Inventory

    Distributions of native eelgrass Zostera marina L. within the intertidal and shallow subtidal zones of three Oregon estuaries (Tillamook, Yaquina, and Alsea) were classified from color infrared aerial orthophotography acquired at extreme low tide. Image processing software, Spati...

  18. Forecasting the Rupture Directivity of Large Earthquakes: Centroid Bias of the Conditional Hypocenter Distribution

    NASA Astrophysics Data System (ADS)

    Donovan, J.; Jordan, T. H.

    2012-12-01

    Forecasting the rupture directivity of large earthquakes is an important problem in probabilistic seismic hazard analysis (PSHA), because directivity is known to strongly influence ground motions. We describe how rupture directivity can be forecast in terms of the "conditional hypocenter distribution" or CHD, defined to be the probability distribution of a hypocenter given the spatial distribution of moment release (fault slip). The simplest CHD is a uniform distribution, in which the hypocenter probability density equals the moment-release probability density. For rupture models in which the rupture velocity and rise time depend only on the local slip, the CHD completely specifies the distribution of the directivity parameter D, defined in terms of the degree-two polynomial moments of the source space-time function. This parameter, which is zero for a bilateral rupture and unity for a unilateral rupture, can be estimated from finite-source models or by the direct inversion of seismograms (McGuire et al., 2002). We compile D-values from published studies of 65 large earthquakes and show that these data are statistically inconsistent with the uniform CHD advocated by McGuire et al. (2002). Instead, the data indicate a "centroid biased" CHD, in which the expected distance between the hypocenter and the hypocentroid is less than that of a uniform CHD. In other words, the observed directivities appear to be closer to bilateral than predicted by this simple model. We discuss the implications of these results for rupture dynamics and fault-zone heterogeneities. We also explore their PSHA implications by modifying the CyberShake simulation-based hazard model for the Los Angeles region, which assumed a uniform CHD (Graves et al., 2011).

  19. The spatial distribution of pollutants in pipe-scale of large-diameter pipelines in a drinking water distribution system.

    PubMed

    Liu, Jingqing; Chen, Huanyu; Yao, Lingdan; Wei, Zongyuan; Lou, Liping; Shan, Yonggui; Endalkachew, Sahle-Demessie; Mallikarjuna, Nadagouda; Hu, Baolan; Zhou, Xiaoyan

    2016-11-05

    In large-diameter drinking water pipelines, spatial differences in hydraulic and physiochemical conditions may also result in spatial variations in pipe corrosion, biofilm growth and pollutant accumulation. In this article, the spatial distributions of various metals and organic contaminants in two 19-year-old grey cast iron pipes which had an internal diameter of 600mm (DN600), were investigated and analyzed by Atomic Absorption Spectrometry, Gas Chromatography-Mass Spectrometry, Energy Dispersive Spectrometer, X-ray Diffraction, etc. The spatial distribution of heavy metals varied significantly across the pipe section, and iron, manganese, lead, copper, and chromium were highest in concentration in the upper portion pipe-scales. However, the highest aluminum and zinc content was detected in the lower portion pipe-scales. Apart from some common types of hydrocarbons formed by microbial metabolites, there were also some microalgae metabolites and exogenous contaminants accumulated in pipe-scale, which also exhibited high diversity between different spatial locations. The spatial distributions of the physical and chemical properties of pipe-scale and contaminants were quite different in large-diameter pipes. The finding put forward higher requirements on the research method about drinking water distribution system chemical safety. And the scientific community need understand trend and dynamics of drinking water pipe systems better.

  20. Accounting for Forest Harvest and Wildfire in a Spatially-distributed Carbon Cycle Process Model

    NASA Astrophysics Data System (ADS)

    Turner, D. P.; Ritts, W.; Kennedy, R. E.; Yang, Z.; Law, B. E.

    2009-12-01

    Forests are subject to natural disturbances in the form of wildfire, as well as management-related disturbances in the form of timber harvest. These disturbance events have strong impacts on local and regional carbon budgets, but quantifying the associated carbon fluxes remains challenging. The ORCA Project aims to quantify regional net ecosystem production (NEP) and net biome production (NBP) in Oregon, California, and Washington, and we have adopted an integrated approach based on Landsat imagery and ecosystem modeling. To account for stand-level carbon fluxes, the Biome-BGC model has been adapted to simulate multiple severities of fire and harvest. New variables include snags, direct fire emissions, and harvest removals. New parameters include fire-intensity-specific combustion factors for each carbon pool (based on field measurements) and proportional removal rates for harvest events. To quantify regional fluxes, the model is applied in a spatially-distributed mode over the domain of interest, with disturbance history derived from a time series of Landsat images. In stand-level simulations, the post disturbance transition from negative (source) to positive (sink) NEP is delayed approximately a decade in the case of high severity fire compared to harvest. Simulated direct pyrogenic emissions range from 11 to 25 % of total non-soil ecosystem carbon. In spatial mode application over Oregon and California, the sum of annual pyrogenic emissions and harvest removals was generally less that half of total NEP, resulting in significant carbon sequestration on the land base. Spatially and temporally explicit simulation of disturbance-related carbon fluxes will contribute to our ability to evaluate effects of management on regional carbon flux, and in our ability to assess potential biospheric feedbacks to climate change mediated by changing disturbance regimes.

  1. The spatial distribution of groundwater flooding in a chalk catchment in southern England

    NASA Astrophysics Data System (ADS)

    Finch, J. W.; Bradford, R. B.; Hudson, J. A.

    2004-04-01

    Groundwater flooding occurred in the upper parts of many chalk rivers in the UK during the exceptionally wet winter of 2000-01. This provided a rare opportunity to investigate the spatial distribution of groundwater discharge and flooding along the normally dry intermittent headwaters of a chalk catchment. The extent of flooding along the River Pang, upstream of the seasonal head, was mapped using aerial photography, and point measurements of flow and water temperature were used to identify the contributing reaches of the river. The results are discussed in the context of the geological and groundwater conditions. The occurrence of flooding can largely be explained by the regional groundwater flow directions, but increased flow in some locations may be as a result of preferential groundwater flow along lines of geological structure. Published by John Wiley & Sons, Ltd.

  2. Estimating the Spatial Distribution of Population without Power during Extreme Weather Events

    SciTech Connect

    Omitaomu, Olufemi A; Fernandez, Steven J; Bhaduri, Budhendra L

    2010-01-01

    One challenge in emergency preparedness and response during extreme weather events such as hurricanes and ice storms is estimating how many people may be without power and how long they could be without power. In this presentation, we will discuss a method for estimating the spatial distribution of people without power during extreme weather events. The method is based on a directional nearest-neighbor approach in which grid cells representing substation locations acquire other grid cells representing customers/population demand with respect to the capacity of each substation. We also present a method for estimating restoration time in case of an outage. The application of these methods during the 2008 hurricane season will also be discussed.

  3. Comet 73P Measurements of Solar Wind Interactions, Cometary Ion Pickup, and Spatial Distribution

    NASA Astrophysics Data System (ADS)

    Gilbert, J. A.; Lepri, S. T.; Rubin, M.; Combi, M. R.; Zurbuchen, T.

    2015-12-01

    Several fragments of Comet 73P/Schwassmann-Wachmann 3 passed near the Earth following a 2006 disintegration episode. Unique measurements regarding the charge state composition and the elemental abundances of both cometary and heliospheric plasma were made during this time by both the ACE/SWICS and Wind/STICS sensors. As the solar wind passed through the neutral cometary coma, it experienced charge exchange that was observed as an increase in the ratio of He+/He++. In addition, particles originating from fragments trailing the major cometary objects were ionized and picked up by the solar wind. The cometary material can be identified by the concentrations of water-group pickup ions having a mass-per-charge ratio of 16-18 amu/e, indicating that these are actively sublimating fragments. Here we present an analysis of cometary composition, spatial distribution, directionality, and heliospheric interactions with a focus on Helium, Carbon (C/O), and water-group ions.

  4. Dynamics of directional reflectance factor distributions for vegetation canopies

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1983-01-01

    Directional reflectance factors that span the entire exitance hemisphere are collected on the ground for a variety of homogeneous vegetation canopies and bare soils. NOAA 6/7 AVHRR bands 1 (0.58-0.68 micron) and 2 (0.73-1.1 microns) are used. When possible, geometric measurements of leaf orientation distributions are taken simultaneously with each spectral measurement. Other supporting structural and optical measurements are made. These data sets are taken at various times of the day for each cover type. These unique sets, together with pertinent data in the literature, are used to investigate the dynamics of the directional reflectance factor distribution as a function of the geometric structure of the scene, solar zenith angle, and optical properties of the scene components (leaves and soil). For complete homogeneous vegetation canopies, the principal trend observed at all sun angles and spectral bands is a minimum reflectance near nadir and increasing reflectance with increasing off-nadir view angle for all azimuth directions.

  5. Recording multiple spatially-heterodyned direct to digital holograms in one digital image

    DOEpatents

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-03-25

    Systems and methods are described for recording multiple spatially-heterodyned direct to digital holograms in one digital image. A method includes digitally recording, at a first reference beam-object beam angle, a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram to sit on top of a first spatial-heterodyne carrier frequency defined by the first reference beam-object beam angle; digitally recording, at a second reference beam-object beam angle, a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram to sit on top of a second spatial-heterodyne carrier frequency defined by the second reference beam-object beam angle; applying a first digital filter to cut off signals around the first original origin and define a first result; performing a first inverse Fourier transform on the first result; applying a second digital filter to cut off signals around the second original origin and define a second result; and performing a second inverse Fourier transform on the second result, wherein the first reference beam-object beam angle is not equal to the second reference beam-object beam angle and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  6. Spatial distribution of nematodes in soil cultivated with sugarcane under different uses

    NASA Astrophysics Data System (ADS)

    Cardoso, M. O.; Pedrosa, E. M. R.; Vicente, T. F. S.; Siqueira, G. M.; Montenegro, A. A. A.

    2012-04-01

    Sugarcane is a crop of major importance within the Brazilian economy, being an activity that generates energy and with high capacity to develop various economic sectors. Currently the greatest challenge is to maximize productivity and minimize environmental impacts. The plant-parasites nematodes have great expression, because influence directly the productive potential of sugarcane crops. Accordingly, little research has been devoted to the study of spatial variability of nematodes. Thus, the purpose of this work is to analyze the spatial distribution of nematodes in a soil cultivated with sugarcane in areas with and without irrigation, with distinct spacing of sampling to determine the differences between the sampling scales. The study area is located in the municipality of Goiana (Pernambuco State, Brazil). The experiment was conducted in two areas with 40 hectares each, being collected 90 samples at different spacing: 18 samples with spacing of 200.00 x 200.00 m, 36 samples with spacing of 20.00 m x 20.00 m and 36 samples with spacing of 2.00 m x 2.00 m. Soil samples were collected at deep of 0.00-0.20 m and nematodes were extracted per 300 cm3 of soil through centrifugal flotation in sucrose being quantified, classified according trophic habit (plant-parasites, fungivores, bacterivores, omnivores and predators) and identified in level of genus or family. In irrigated area the amount of water applied was determined considering the evapotranspiration of culture. The data were analyzed using classical statistics and geostatistics. The results demonstrated that the data showed high values of coefficient of variation in both study areas. All attributes studied showed log normal frequency distribution. The area B (irrigated) has a population of nematodes more stable than the area A (non-irrigated), a fact confirmed by its mean value of the total population of nematodes (282.45 individuals). The use of geostatistics not allowed to assess the spatial distribution of

  7. Comparing Spatial Distributions of Solar Prominence Mass Derived from Coronal Absorption

    NASA Technical Reports Server (NTRS)

    Gilbert, Holly; Kilper, Gary; Alexander, David; Kucera, Therese

    2010-01-01

    In the present work we extend the use of this mass-inference technique to a sample of prominences observed in at least two coronal lines. This approach, in theory, allows a direct calculation of prominence mass and helium abundance and how these properties vary spatially and temporally. Our motivation is two-fold: to obtain a He(exp 0)/H(exp 0) abundance ratio, and to determine how the relative spatial distribution of the two species varies in prominences. The first of these relies on the theoretical expectation that the amount of absorption at each EUV wavelength is well-characterized. However, in this work we show that due to a saturation of the continuum absorption in the 625 A and 368 A lines (which have much higher opacity compared to 195 A-) the uncertainties in obtaining the relative abundances are too high to give meaningful estimates. This is an important finding because of its impact on future studies in this area. The comparison of the spatial distribution of helium and hydrogen presented here augments previous observational work indicating that cross-field diffusion of neutrals is an important mechanism for mass loss. Significantly different loss timescales for neutral He and H (helium drains much more rapidly than hydrogen) can impact prominence structure, and both the present and past studies suggest this mechanism is playing a role in structure and possibly dynamics. Section 2 of this paper contains a description of the observations and Section 3 summarizes the method used to infer mass along with the criteria imposed in choosing prominences appropriate for this study. Section 3 also contains a discussion of the problems due to limitations of the available data and the implications for determining relative abundances. We present our results in Section 4, including plots of radial-like scans of prominence mass in different lines to show the spatial distribution of the different species. The last section contains a discussion summarizing the importance

  8. Spatial Distribution and Site-Specific Spraying of Main Sucking Pests of Elm Trees.

    PubMed

    Karimzadeh, R; Iranipour, S

    2016-11-09

    Elm trees are important landscape trees and sucking insects weaken the elm trees and produce large amounts of honeydew. The main objectives of this study were to identify main honeydew-producing pests of elm trees and do site-specific spraying against these pests. To map the spatial distribution of the sucking pests in the large scale, the study area was divided into 40 × 40 m grids and one tree was chosen randomly from each grid (a total of 55 trees). These trees were sampled twice a year in 2011 and 2012. Each sample was a 30-cm branch terminal. Eight samples were taken from each tree in four cardinal directions and two canopy levels. The number of sucking insects and leaves of each sample were counted and recorded. Spatial analysis of the data was carried out using geostatistics. Kriging was used for producing prediction maps. Insecticide application was restricted to the regions with populations higher than threshold. To identify within-tree distribution of the honeydew-producing pests, six and four elm trees were chosen in 2011 and 2012 respectively, and sampled weekly. These trees were sampled as described previously. European elm scale (EES), Gossyparia spuria (Modeer) and two species of aphids were the dominant honeydew-producing pests. The results revealed that the effects of direction, canopy level and their interactions on insect populations were not statistically significant (P < 0.05). Site-specific spraying decreased the amount of insecticides used by ca. 20%, while satisfactory control of the sucking pests and honeydew excretion was obtained. Considering the environmental and economic benefits of site-specific spraying, it is worth doing more complementary works in this area.

  9. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation.

    PubMed Central

    Neunlist, M; Tung, L

    1995-01-01

    Recent theoretical models of cardiac electrical stimulation or defibrillation predict a complex spatial pattern of transmembrane potential (Vm) around a stimulating electrode, resulting from the formation of virtual electrodes of reversed polarity. The pattern of membrane polarization has been attributed to the anisotropic structure of the tissue. To verify such model predictions experimentally, an optical technique using a fluorescent voltage-sensitive dye was used to map the spatial distribution of Vm around a 150-microns-radius extracellular unipolar electrode. An S1-S2 stimulation protocol was used, and vm was measured during an S2 pulse having an intensity equal to 10x the cathodal diastolic threshold of excitation. The recordings were obtained on the endocardial surface of bullfrog atrium in directions parallel and perpendicular to the cardiac fibers. In the longitudinal fiber direction, the membrane depolarized for cathodal pulses (and hyperpolarized for anodal pulses) but only in a region within 445 +/- 112 microns (and 616 +/- 78 microns for anodal pulses) from the center of the electrode (n = 9). Outside this region, vm reversed polarity and reached a local maximum at 922 +/- 136 microns (and 988 +/- 117 microns for anodal pulses) (n = 9). Beyond this point vm decayed to zero over a distance of 1.5-2 mm. In the transverse fiber direction, the membrane depolarized for cathodal pulses (and hyperpolarized for anodal pulses) at all distances from the electrode. The amplitude of the response decreased with distance from the electrode with an exponential decay constant of 343 +/- 110 microns for cathodal pulses and 253 +/- 91 microns for anodal pulses (n = 7). The results were qualitatively similar in both fiber directions when the atrium was bathed in a solution containing ionic channel blockers. A two-dimensional computer model was formulated for the case of highly anisotropic cardiac tissue and qualitatively accounts for nearly all the observed spatial and

  10. Spatial Distributions of Red Blood Cells Significantly Alter Local Haemodynamics

    PubMed Central

    Sherwood, Joseph M.; Holmes, David; Kaliviotis, Efstathios; Balabani, Stavroula

    2014-01-01

    Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics. PMID:24950214

  11. Intelligent estimation of spatially distributed soil physical properties

    USGS Publications Warehouse

    Iwashita, F.; Friedel, M.J.; Ribeiro, G.F.; Fraser, Stephen J.

    2012-01-01

    Spatial analysis of soil samples is often times not possible when measurements are limited in number or clustered. To obviate potential problems, we propose a new approach based on the self-organizing map (SOM) technique. This approach exploits underlying nonlinear relation of the steady-state geomorphic concave-convex nature of hillslopes (from hilltop to bottom of the valley) to spatially limited soil textural data. The topographic features are extracted from Shuttle Radar Topographic Mission elevation data; whereas soil textural (clay, silt, and sand) and hydraulic data were collected in 29 spatially random locations (50 to 75. cm depth). In contrast to traditional principal component analysis, the SOM identifies relations among relief features, such as, slope, horizontal curvature and vertical curvature. Stochastic cross-validation indicates that the SOM is unbiased and provides a way to measure the magnitude of prediction uncertainty for all variables. The SOM cross-component plots of the soil texture reveals higher clay proportions at concave areas with convergent hydrological flux and lower proportions for convex areas with divergent flux. The sand ratio has an opposite pattern with higher values near the ridge and lower values near the valley. Silt has a trend similar to sand, although less pronounced. The relation between soil texture and concave-convex hillslope features reveals that subsurface weathering and transport is an important process that changed from loss-to-gain at the rectilinear hillslope point. These results illustrate that the SOM can be used to capture and predict nonlinear hillslope relations among relief, soil texture, and hydraulic conductivity data. ?? 2011 Elsevier B.V.

  12. The spatial distribution of underage tobacco sales in Los Angeles.

    PubMed

    Lipton, Robert; Banerjee, Aniruddha; Levy, David; Manzanilla, Nora; Cochrane, Michelle

    2008-01-01

    Underage tobacco sales is considered a serious public health problem in Los Angeles. Anecdotally, rates have been thought to be quite high. In this paper, using spatial statistical techniques, we describe underage tobacco sales, identifying areas with high levels of sales and hot spots controlling for sociodemographic measures. Six hundred eighty-nine tobacco outlets were investigated throughout the city of Los Angeles in 2001. We consider the factors that explain vendor location of illegal sales of tobacco to underage youth and focus on those areas with especially high rates of illegal sales when controlling for other independent measures. Using data from the census, the LA City Attorney's Office, and public records on school locations in Los Angeles, we employ general least-squares (GLS) estimators in order to avoid biased estimates. vendor location of underage tobacco compliance checks, violators, and nonviolators. Underage tobacco sales in Los Angeles were very high (33.5%) for the entire city in 2001. In many zip codes this rate is considerably higher (60%-100%). When conducting spatial modeling, lower income and ethnicity were strongly associated with increases in underage tobacco sales. Hotspot areas of underage tobacco sales also had much lower mean family income and a much higher percentage of foreign born and greater population density. Spatial techniques were used to better identify areas where vendors sell tobacco to underage youth. Lower income areas were much more likely to both have higher rates of underage tobacco sales and to be a hot spot for such sales. Population density is also significantly associated with underage tobacco sales. The study's limitations are noted.

  13. Cetacean occurrence and spatial distribution: Habitat modelling for offshore waters in the Portuguese EEZ (NE Atlantic)

    NASA Astrophysics Data System (ADS)

    Correia, Ana M.; Tepsich, Paola; Rosso, Massimiliano; Caldeira, Rui; Sousa-Pinto, Isabel

    2015-03-01

    In the Portuguese Economic Exclusive Zone (EEZ) (NE Atlantic), little survey effort dedicated to cetacean species has been carried out in offshore waters. As a consequence, data on their occurrence, distribution and habitat preferences is scarce. In this area, 48 sea surveys along fixed transects within Continental Portugal and Madeira Island were performed in 2012 and 2013, from July to October, using platforms of opportunity. We used an environmental envelope approach and GAM habitat models to identify the role of oceanographic, topographic and geographical variables in shaping cetacean distribution. Results demonstrate the richness of offshore waters in this area as in 10,668 nmi sampled, we recorded 218 sightings from at least nine cetacean species, resulting in an overall ER of 2.04 sightings/100 nmi. The interaction of topographic and oceanographic features was shown to influence the distribution of the species/groups along the routes. Among the sighted species, only common dolphin showed a preference for coastal waters, while for all the other species high seas proved to be determinant. This result reinforces the need to address conservation issues in open ocean. This preliminary assessment showed the importance of the entire area for the distribution of different cetacean species and allowed the identification of several species/group specific potential suitable habitats. Considering the Habitats Directive resolutions, ACCOBAMS priorities, EEZ extension for the area and Maritime Spatial Planning Directive, and the urgent need for management plans, we suggest that the sampling strategy here presented is a cost-effective method to gather valuable data, to be used to improve cetacean habitat models in the area.

  14. The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks

    NASA Astrophysics Data System (ADS)

    Lakshmanan, Sriram; Sundaresan, Karthikeyan; Rangarajan, Sampath; Sivakumar, Raghupathy

    Interference among co-channel users is a fundamental problem in wireless networks, which prevents nearby links from operating concurrently. Directional antennas allow the radiation patterns of wireless transmitters to be shaped to form directed beams. Conventionally, such beams are assumed to improve the spatial reuse (i.e. concurrency) in indoor wireless networks. In this paper, we use experiments in an indoor office setting of Wifi Access points equipped with directional antennas, to study their potential for interference mitigation and spatial reuse. In contrast to conventional wisdom, we observe that the interference mitigation benefits of directional antennas are minimal. On analyzing our experimental traces we observe that directional links do not reduce interference to nearby links due to the lack of signal confinement due to indoor multipath fading. We then use the insights derived from our study to develop an alternative approach that provides better interference reduction in indoor networks compared to directional links.

  15. Interpretation of heavy rainfall spatial distribution in mountain watersheds by copula functions

    NASA Astrophysics Data System (ADS)

    Grossi, Giovanna; Balistrocchi, Matteo

    2016-04-01

    The spatial distribution of heavy rainfalls can strongly influence flood dynamics in mountain watersheds, depending on their geomorphologic features, namely orography, slope, land covers and soil types. Unfortunately, the direct observation of rainfall fields by meteorological radar is very difficult in this situation, so that interpolation of rain gauge observations or downscaling of meteorological predictions must be adopted to derive spatial rainfall distributions. To do so, various stochastic and physically based approaches are already available, even though the first one is the most familiar in hydrology. Indeed, Kriging interpolation procedures represent very popular techniques to face this problem by means of a stochastic approach. A certain number of restrictive assumptions and parameter uncertainties however affects Kriging. Many alternative formulations and additional procedures were therefore developed during the last decades. More recently, copula functions (Joe, 1997; Nelsen, 2006; Salvadori et al. 2007) were suggested to provide a more straightforward solution to carry out spatial interpolations of hydrologic variables (Bardossy & Pegram; 2009). Main advantages lie in the possibility of i) assessing the dependence structure relating to rainfall variables independently of marginal distributions, ii) expressing the association degree through rank correlation coefficients, iii) implementing marginal distributions and copula functions belonging to different models to develop complex joint distribution functions, iv) verifying the model reliability by effective statistical tests (Genest et al., 2009). A suitable case study to verify these potentialities is provided by the Taro River, a right-bank tributary of the Po River (northern Italy), whose contributing area amounts to about 2˙000 km2. The mountain catchment area is divided into two similar watersheds, so that spatial distribution is crucial in extreme flood event generation. A quite well diffused

  16. Compressive Feedback Control Design for Spatially Distributed Systems

    DTIC Science & Technology

    2017-01-03

    i.e., ρ ( N (LG) ) = ρ ( N (ULGUT ) ) , for all orthogonal matrices UUT = UTU = In. Hp–based Schur–convex systemic measures: For a given linear...G = Z and the state-space operators of system ψ̇(t) = Aψ(t) + Bu(t), (11) y(t) = Cψ(t) + Du(t) (12) are infinite-dimensional matrices . In order to...admissible coupling weight function w, the class of matrices Sq,w(Z) consists of all spatially decaying matrices A = ( aij ) i,j∈Z such that A is

  17. Applying different spatial distribution and modelling concepts in three nested mesoscale catchments of Germany

    NASA Astrophysics Data System (ADS)

    Bongartz, K.

    Distributed, physically based river basin models are receiving increasing importance in integrated water resources management (IWRM) in Germany and in Europe, especially after the release of the new European Water Framework Directive (WFD). Applications in mesoscale catchments require an appropriate approach to represent the spatial distribution of related catchment properties such as land use, soil physics and topography by utilizing techniques of remote sensing and GIS analyses. The challenge is to delineate scale independent homogeneous modelling entities which, on the one hand may represent the dynamics of the dominant hydrological processes and, on the other hand can be derived from spatially distributed physiographical catchment properties. This scaling problem is tackled in this regional modelling study by applying the concept of hydrological response units (HRUs). In a nested catchment approach three different modelling conceptualisations are used to describe the runoff processes: (i) the topographic stream-segment-based HRU delineation proposed by Leavesley et al. [Precipitation-Runoff-Modelling-System, User’s Manual, Water Resource Investigations Report 83-4238, US Geological Survey, 1983]; (ii) the process based physiographic HRU-concept introduced by Flügel [Hydrol. Process. 9 (1995) 423] and (iii) an advanced HRU-concept adapted from (ii), which included the topographic topology of HRU-areas and the river network developed by Staudenraush [Eco Regio 8 (2000) 121]. The influence of different boundary conditions associated with changing the landuse classes, the temporal data resolution and the landuse scenarios were investigated. The mesoscale catchment of the river Ilm ( A∼895 km 2) in Thuringia, Germany, and the Precipitation-Runoff-Modelling-System (PRMS) were selected for this study. Simulations show that the physiographic based concept is a reliable method for modelling basin dynamics in catchments up to 200 km 2 whereas in larger catchments

  18. Measurement of proton momentum distributions using a direct geometry instrument

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Kolesnikov, A. I.; Andreani, C.

    2014-12-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy Ei= 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO.

  19. MULTIMEDIA ENVIRONMENTAL DISTRIBUTION OF TOXICS (MEND-TOX): PART I, HYBRID COMPARTMENTAL-SPATIAL MODELING FRAMEWORK

    EPA Science Inventory

    An integrated hybrid spatial-compartmental modeling approach is presented for analyzing the dynamic distribution of chemicals in the multimedia environment. Information obtained from such analysis, which includes temporal chemical concentration profiles in various media, mass ...

  20. Impacts of Spatial Distribution of Impervious Areas on Runoff Response of Hillslope Catchments: Simulation Study

    EPA Science Inventory

    This study analyzes variations in the model-projected changes in catchment runoff response after urbanization that stem from variations in the spatial distribution of impervious areas, interevent differences in temporal rainfall structure, and antecedent soil moisture (ASM). In t...

  1. MULTIMEDIA ENVIRONMENTAL DISTRIBUTION OF TOXICS (MEND-TOX): PART I, HYBRID COMPARTMENTAL-SPATIAL MODELING FRAMEWORK

    EPA Science Inventory

    An integrated hybrid spatial-compartmental modeling approach is presented for analyzing the dynamic distribution of chemicals in the multimedia environment. Information obtained from such analysis, which includes temporal chemical concentration profiles in various media, mass ...

  2. Impacts of Spatial Distribution of Impervious Areas on Runoff Response of Hillslope Catchments: Simulation Study

    EPA Science Inventory

    This study analyzes variations in the model-projected changes in catchment runoff response after urbanization that stem from variations in the spatial distribution of impervious areas, interevent differences in temporal rainfall structure, and antecedent soil moisture (ASM). In t...

  3. Relative impacts of the fragmentation and spatial structure of habitats on freshwater fish distributions: application on French watersheds (Invited)

    NASA Astrophysics Data System (ADS)

    Le Pichon, C.; Belliard, J.; Talès, E.; Gorges, G.; Clément, F.

    2009-12-01

    Most of the rivers of the Ile de France region, intimately linked with the megalopolis of Paris, are severely altered and freshwater fishes are exposed to habitat alteration, reduced connectivity and pollution. Several species thus present fragmented distributions and decreasing densities. In this context, the European Water Framework Directive (2000) has goals of hydrosystems rehabilitation and no further damage. In particular, the preservation and restoration of ecological connectivity of river networks is a key element for fish populations. These goals require the identification of natural and anthropological factors which influence the spatial distribution of species. We have proposed a riverscape approach, based on landscape ecology concepts, combined with a set of spatial analysis methods to assess the multiscale relationships between the spatial pattern of fish habitats and processes depending on fish movements. In particular, we used this approach to test the relative roles of spatial arrangement of fish habitats and the presence of physical barriers in explaining fish spatial distributions in a small rural watershed (106 km2). We performed a spatially continuous analysis of fish-habitat relationships. Fish habitats and physical barriers were mapped along the river network (33 km) with a GPS and imported into a GIS. In parallel, a longitudinal electrofishing survey of the distribution and abundance of fishes was made using a point abundance sampling scheme. Longitudinal arrangement of fish habitats were evaluated using spatial analysis methods: patch/distance metrics and moving window analysis. Explanatory models were developed to test the relative contribution of local environmental variables and spatial context in explaining fish presence. We have recorded about 100 physical barriers, on average one every 330 meters; most artificial barriers were road pipe culverts, falls associated with ponds and sluice gates. Contrasted fish communities and densities

  4. [Analysis on spatial distribution of tuberculosis in China, 2012-2014].

    PubMed

    Fan, J; Rao, H X; Wu, P; Zhang, J; Wu, Y P; Pan, J H; Li, W H; Qiu, L X

    2017-07-10

    Objective: To analyze the spatial distribution of the incidence of tuberculosis (TB) in China from 2012 to 2014 and provide evidence for the prevention and control of TB. Methods: The database of TB in China from 2012 to 2014 was established by using geographical information system, the spatial distribution map was drawn, trend analysis and spatial autocorrelation analysis were conducted to explore the spatial distribution pattern of TB and identify hot areas. Results: The trend surface analysis showed that the incidence of TB decreased gradually from the west to the east in China, and the U type curve could reflect the TB distribution from the south to the north; Global spatial autocorrelation analysis showed the 2012-2014 global Moran's I were 0.366, 0.364 and 0.358 (P<0.01), suggesting that the incidence of TB had a spatial clustering in China; Local Getis-OrdG(i) spatial autocorrelation analysis by ArcGIS software showed that there was 11 cluster areas, 3 high incidence areas (Xinjiang, Tibet, Qinghai) and 8 low incidence areas (Beijing, Tianjin, Shanghai, Hebei, Inner Mongolia, Shanxi, Shandong, Jiangsu). Conclusion: The incidence of TB had obviously spatial clustering characteristic, the areas at high risk were mainly in the northwestern and plateau area in China.

  5. Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010

    Treesearch

    Wei Qin; Qiankun Guo; Changqing Zuo; Zhijie Shan; Liang Ma; Ge Sun

    2016-01-01

    Rainfall erosivity is an important factor for estimating soil erosion rates. Understanding the spatial distributionand temporal trends of rainfall erosivity is especially critical for soil erosion risk assessment and soil conservationplanning in mainland China. However, reports on the spatial distribution and temporal trends of rainfall...

  6. Spatial distribution of human-caused forest fires in Galicia (NW Spain)

    Treesearch

    M. L. Chas-Amil; J. Touza; P. Prestemon

    2010-01-01

    It is crucial for fire prevention policies to assess the spatial patterns of human-started fires and their relationship with geographical and socioeconomic aspects. This study uses fire reports for the period 1988-2006 in Galicia, Spain, to analyze the spatial distribution of human-induced fire risk attending to causes and underlying motivations associated with fire...

  7. Statistics of Lightning Distribution Over Central Europe on the Various Temporal and Spatial Scales.

    NASA Astrophysics Data System (ADS)

    Finke, U.

    2005-12-01

    A climatology of lightning and storm distribution for Central Europe is presented. It bases on lightning location data for the years 1992-2005. Besides the North-South gradient a strong dependency on meso-scale orography and on the land-sea temperature difference with its seasonal variation is found. For the most parts of the area the annual lightning density is dominated by only a few strongest storms. This results in a fractal structur of the lightning distribution characteristics. The analysis of propagation characteristics of storms such as speed and direction show that more than the half of all storms are closely connected with synoptic front systems. From the lightning data the frequency of 'thunderdays' and 'thunderhours' is derived for any location. These measures are more robust against inhomogeneities and changes in the lightning detection networks. The statistics of the temporal and spatial distribution of lightning over the whole scale range (from the clustering of lightning events up to to storm patterns) is analyzed in a unified way using data from local area and regional ground based networks and global satellite observations.

  8. Depletion models can predict shorebird distribution at different spatial scales.

    PubMed

    Gill, J A; Sutherland, W J; Norris, K

    2001-02-22

    Predicting the impact of habitat change on populations requires an understanding of the number of animals that a given area can support. Depletion models enable predictions of the numbers of individuals an area can support from prey density and predator searching efficiency and handling time. Depletion models have been successfully employed to predict patterns of abundance over small spatial scales, but most environmental change occurs over large spatial scales. We test the ability of depletion models to predict abundance at a range of scales with black-tailed godwits, Limosa limosa islandica. From the type II functional response of godwits to their prey, we calculated the handling time and searching efficiency associated with these prey. These were incorporated in a depletion model, together with the density of available prey determined from surveys, in order to predict godwit abundance. Tests of these predictions with Wetland Bird Survey data from the British Trust for Ornithology showed significant correlations between predicted and observed densities at three scales: within mudflats, within estuaries and between estuaries. Depletion models can thus be powerful tools for predicting the population size that can be supported on sites at a range of scales. This greatly enhances our confidence in predictions of the consequences of environmental change.

  9. Spatial Distribution and Effects of Sewage in Coastal Hawaiian Waters

    NASA Astrophysics Data System (ADS)

    Abaya, L.; Wiegner, T. N.; Colbert, S.; Lindsey, K.; Beets, J.

    2016-02-01

    Sewage pollution is a worldwide threat to marine ecosystems and human health through the release of pathogens and nutrients into nearshore waters. Goals of this study were to document hydrological connections between cesspools and nearshore waters, detect the presence of sewage through biological and chemical tracers, and determine the spatial extent of sewage offshore. Puakō, located on Hawaíi Island, was the focus of this study as most homes have cesspools. Fluorescein dye injected into cesspools was detected at the shoreline in as little as three days. Elevated δ 15N signatures in macroalgae and high Enterococcus counts further confirmed presence of sewage in nearshore waters. Offshore sampling revealed significant differences among distances from shore for fecal indicator bacteria and δ 15N signatures in macroalgae. Results indicated distance from shore and stations are important factors of variability. Additionally, nutrient concentrations and macroalgal cover were higher in areas with high groundwater discharge. Surprisingly, δ15N macroalgal signatures and Enterococcus were not correlated with salinity. These results suggest that possibly the location of cesspools, subsurface geology, and/or nearshore circulation may affect sewage transport to the coastline and offshore. Spatial analysis techniques helped visualize potential hot spots of sewage pollution using δ15N macroalgal and Enterococcus data. The combination of tools used here to document sewage pollution presence may be useful for communities facing similar environmental problems.

  10. Spatial distribution of Batrachochytrium dendrobatidis in South American caecilians.

    PubMed

    Lambertini, Carolina; Becker, C Guilherme; Bardier, Cecilia; da Silva Leite, Domingos; Toledo, Luís Felipe

    2017-04-20

    The amphibian-killing fungus Batrachochytrium dendrobatidis (Bd) is linked to population declines in anurans and salamanders globally. To date, however, few studies have attempted to screen Bd in live caecilians; Bd-positive caecilians have only been reported in Africa and French Guiana. Here, we performed a retrospective survey of museum preserved specimens to (1) describe spatial patterns of Bd infection in Gymnophiona across South America and (2) test whether areas of low climatic suitability for Bd in anurans predict Bd spatial epidemiology in caecilians. We used quantitative PCR to detect Bd in preserved caecilians collected over a 109 yr period, and performed autologistic regressions to test the effect of bioclimatic metrics of temperature and precipitation, vegetation density, and elevation on the likelihood of Bd occurrence. We detected an overall Bd prevalence of 12.4%, with positive samples spanning the Uruguayan savanna, Brazil's Atlantic Forest, and the Amazon basin. Our autologistic models detected a strong effect of macroclimate, a weaker effect of vegetation density, and no effect of elevation on the likelihood of Bd occurrence. Although most of our Bd-positive records overlapped with reported areas of high climatic suitability for the fungus in the Neotropics, many of our new Bd-positive samples extend far into areas of poor suitability for Bd in anurans. Our results highlight an important gap in the study of amphibian chytridiomycosis: the potential negative impact of Bd on Neotropical caecilians and