Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-01-01
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-04-05
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
Sahan, Muhammet Ikbal; Verguts, Tom; Boehler, Carsten Nicolas; Pourtois, Gilles; Fias, Wim
2016-08-01
Selective attention is not limited to information that is physically present in the external world, but can also operate on mental representations in the internal world. However, it is not known whether the mechanisms of attentional selection operate in similar fashions in physical and mental space. We studied the spatial distributions of attention for items in physical and mental space by comparing how successfully distractors were rejected at varying distances from the attended location. The results indicated very similar distribution characteristics of spatial attention in physical and mental space. Specifically, we found that performance monotonically improved with increasing distractor distance relative to the attended location, suggesting that distractor confusability is particularly pronounced for nearby distractors, relative to distractors farther away. The present findings suggest that mental representations preserve their spatial configuration in working memory, and that similar mechanistic principles underlie selective attention in physical and in mental space.
Pattern detection in stream networks: Quantifying spatialvariability in fish distribution
Torgersen, Christian E.; Gresswell, Robert E.; Bateman, Douglas S.
2004-01-01
Biological and physical properties of rivers and streams are inherently difficult to sample and visualize at the resolution and extent necessary to detect fine-scale distributional patterns over large areas. Satellite imagery and broad-scale fish survey methods are effective for quantifying spatial variability in biological and physical variables over a range of scales in marine environments but are often too coarse in resolution to address conservation needs in inland fisheries management. We present methods for sampling and analyzing multiscale, spatially continuous patterns of stream fishes and physical habitat in small- to medium-size watersheds (500–1000 hectares). Geospatial tools, including geographic information system (GIS) software such as ArcInfo dynamic segmentation and ArcScene 3D analyst modules, were used to display complex biological and physical datasets. These tools also provided spatial referencing information (e.g. Cartesian and route-measure coordinates) necessary for conducting geostatistical analyses of spatial patterns (empirical semivariograms and wavelet analysis) in linear stream networks. Graphical depiction of fish distribution along a one-dimensional longitudinal profile and throughout the stream network (superimposed on a 10-metre digital elevation model) provided the spatial context necessary for describing and interpreting the relationship between landscape pattern and the distribution of coastal cutthroat trout (Oncorhynchus clarki clarki) in western Oregon, U.S.A. The distribution of coastal cutthroat trout was highly autocorrelated and exhibited a spherical semivariogram with a defined nugget, sill, and range. Wavelet analysis of the main-stem longitudinal profile revealed periodicity in trout distribution at three nested spatial scales corresponding ostensibly to landscape disturbances and the spacing of tributary junctions.
Geostatistics as a tool to study mite dispersion in physic nut plantations.
Rosado, J F; Picanço, M C; Sarmento, R A; Pereira, R M; Pedro-Neto, M; Galdino, T V S; de Sousa Saraiva, A; Erasmo, E A L
2015-08-01
Spatial distribution studies in pest management identify the locations where pest attacks on crops are most severe, enabling us to understand and predict the movement of such pests. Studies on the spatial distribution of two mite species, however, are rather scarce. The mites Polyphagotarsonemus latus and Tetranychus bastosi are the major pests affecting physic nut plantations (Jatropha curcas). Therefore, the objective of this study was to measure the spatial distributions of P. latus and T. bastosi in the physic nut plantations. Mite densities were monitored over 2 years in two different plantations. Sample locations were georeferenced. The experimental data were analyzed using geostatistical analyses. The total mite density was found to be higher when only one species was present (T. bastosi). When both the mite species were found in the same plantation, their peak densities occurred at different times. These mites, however, exhibited uniform spatial distribution when found at extreme densities (low or high). However, the mites showed an aggregated distribution in intermediate densities. Mite spatial distribution models were isotropic. Mite colonization commenced at the periphery of the areas under study, whereas the high-density patches extended until they reached 30 m in diameter. This has not been reported for J. curcas plants before.
NASA Astrophysics Data System (ADS)
Le Pichon, C.; Belliard, J.; Talès, E.; Gorges, G.; Clément, F.
2009-12-01
Most of the rivers of the Ile de France region, intimately linked with the megalopolis of Paris, are severely altered and freshwater fishes are exposed to habitat alteration, reduced connectivity and pollution. Several species thus present fragmented distributions and decreasing densities. In this context, the European Water Framework Directive (2000) has goals of hydrosystems rehabilitation and no further damage. In particular, the preservation and restoration of ecological connectivity of river networks is a key element for fish populations. These goals require the identification of natural and anthropological factors which influence the spatial distribution of species. We have proposed a riverscape approach, based on landscape ecology concepts, combined with a set of spatial analysis methods to assess the multiscale relationships between the spatial pattern of fish habitats and processes depending on fish movements. In particular, we used this approach to test the relative roles of spatial arrangement of fish habitats and the presence of physical barriers in explaining fish spatial distributions in a small rural watershed (106 km2). We performed a spatially continuous analysis of fish-habitat relationships. Fish habitats and physical barriers were mapped along the river network (33 km) with a GPS and imported into a GIS. In parallel, a longitudinal electrofishing survey of the distribution and abundance of fishes was made using a point abundance sampling scheme. Longitudinal arrangement of fish habitats were evaluated using spatial analysis methods: patch/distance metrics and moving window analysis. Explanatory models were developed to test the relative contribution of local environmental variables and spatial context in explaining fish presence. We have recorded about 100 physical barriers, on average one every 330 meters; most artificial barriers were road pipe culverts, falls associated with ponds and sluice gates. Contrasted fish communities and densities were observed in the different areas of the watershed, related to various land use (riparian forest or agriculture). The first results of fish-habitat association analysis on a 5 km stream are that longitudinal distribution of fish species was mainly impacted by falls associated with ponds. The impact was both due to the barrier effect and to the modification of aquatic habitats. Abundance distribution of Salmo trutta and Cottus gobio was particularly affected. Spatially continuous analysis of fish-habitat relationships allowed us to identify the relative impacts of habitat alteration and presence of physical barriers to fish movements. These techniques could help prioritize preservation and restoration policies in human-impacted watersheds, in particular, identifying the key physical barriers to remove.
NASA Astrophysics Data System (ADS)
Baker, Matthew R.; Hollowed, Anne B.
2014-11-01
Characterizing spatial structure and delineating meaningful spatial boundaries have useful applications to understanding regional dynamics in marine systems, and are integral to ecosystem approaches to fisheries management. Physical structure and drivers combine with biological responses and interactions to organize marine systems in unique ways at multiple scales. We apply multivariate statistical methods to define spatially coherent ecological units or ecoregions in the eastern Bering Sea. We also illustrate a practical approach to integrate data on species distribution, habitat structure and physical forcing mechanisms to distinguish areas with distinct biogeography as one means to define management units in large marine ecosystems. We use random forests to quantify the relative importance of habitat and environmental variables to the distribution of individual species, and to quantify shifts in multispecies assemblages or community composition along environmental gradients. Threshold shifts in community composition are used to identify regions with distinct physical and biological attributes, and to evaluate the relative importance of predictor variables to determining regional boundaries. Depth, bottom temperature and frontal boundaries were dominant factors delineating distinct biological communities in this system, with a latitudinal divide at approximately 60°N. Our results indicate that distinct climatic periods will shift habitat gradients and that dynamic physical variables such as temperature and stratification are important to understanding temporal stability of ecoregion boundaries. We note distinct distribution patterns among functional guilds and also evidence for resource partitioning among individual species within each guild. By integrating physical and biological data to determine spatial patterns in community composition, we partition ecosystems along ecologically significant gradients. This may provide a basis for defining spatial management units or serve as a baseline index for analyses of structural shifts in the physical environment, species abundance and distribution, and community dynamics over time.
Spatial Inference for Distributed Remote Sensing Data
NASA Astrophysics Data System (ADS)
Braverman, A. J.; Katzfuss, M.; Nguyen, H.
2014-12-01
Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.
Preliminary surficial geologic map database of the Amboy 30 x 60 minute quadrangle, California
Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.
2006-01-01
The surficial geologic map database of the Amboy 30x60 minute quadrangle presents characteristics of surficial materials for an area approximately 5,000 km2 in the eastern Mojave Desert of California. This map consists of new surficial mapping conducted between 2000 and 2005, as well as compilations of previous surficial mapping. Surficial geology units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects occurring post-deposition, and, where appropriate, the lithologic nature of the material. The physical properties recorded in the database focus on those that drive hydrologic, biologic, and physical processes such as particle size distribution (PSD) and bulk density. This version of the database is distributed with point data representing locations of samples for both laboratory determined physical properties and semi-quantitative field-based information. Future publications will include the field and laboratory data as well as maps of distributed physical properties across the landscape tied to physical process models where appropriate. The database is distributed in three parts: documentation, spatial map-based data, and printable map graphics of the database. Documentation includes this file, which provides a discussion of the surficial geology and describes the format and content of the map data, a database 'readme' file, which describes the database contents, and FGDC metadata for the spatial map information. Spatial data are distributed as Arc/Info coverage in ESRI interchange (e00) format, or as tabular data in the form of DBF3-file (.DBF) file formats. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files, and are appropriate for representing a view of the spatial database at the mapped scale.
Study on temporal variation and spatial distribution for rural poverty in China based on GIS
NASA Astrophysics Data System (ADS)
Feng, Xianfeng; Xu, Xiuli; Wang, Yingjie; Cui, Jing; Mo, Hongyuan; Liu, Ling; Yan, Hong; Zhang, Yan; Han, Jiafu
2009-07-01
Poverty is one of the most serious challenges all over the world, is an obstacle to hinder economics and agriculture in poverty area. Research on poverty alleviation in China is very useful and important. In this paper, we will explore the comprehensive poverty characteristics in China, analyze the current poverty status, spatial distribution and temporal variations about rural poverty in China, and to category the different poverty types and their spatial distribution. First, we achieved the gathering and processing the relevant data. These data contain investigation data, research reports, statistical yearbook, censuses, social-economic data, physical and anthrop geographical data, etc. After deeply analysis of these data, we will get the distribution of poverty areas by spatial-temporal data model according to different poverty given standard in different stages in China to see the poverty variation and the regional difference in County-level. Then, the current poverty status, spatial pattern about poverty area in villages-level will be lucubrated; the relationship among poverty, environment (including physical and anthrop geographical factors) and economic development, etc. will be expanded. We hope our research will enhance the people knowledge of poverty in China and contribute to the poverty alleviation in China.
NASA Technical Reports Server (NTRS)
Betts, M.; Tsegaye, T.; Tadesse, W.; Coleman, T. L.; Fahsi, A.
1998-01-01
The spatial and temporal distribution of near surface soil moisture is of fundamental importance to many physical, biological, biogeochemical, and hydrological processes. However, knowledge of these space-time dynamics and the processes which control them remains unclear. The integration of geographic information systems (GIS) and geostatistics together promise a simple mechanism to evaluate and display the spatial and temporal distribution of this vital hydrologic and physical variable. Therefore, this research demonstrates the use of geostatistics and GIS to predict and display soil moisture distribution under vegetated and non-vegetated plots. The research was conducted at the Winfred Thomas Agricultural Experiment Station (WTAES), Hazel Green, Alabama. Soil moisture measurement were done on a 10 by 10 m grid from tall fescue grass (GR), alfalfa (AA), bare rough (BR), and bare smooth (BS) plots. Results indicated that variance associated with soil moisture was higher for vegetated plots than non-vegetated plots. The presence of vegetation in general contributed to the spatial variability of soil moisture. Integration of geostatistics and GIS can improve the productivity of farm lands and the precision of farming.
Attempting to physically explain space-time correlation of extremes
NASA Astrophysics Data System (ADS)
Bernardara, Pietro; Gailhard, Joel
2010-05-01
Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.
The Disciplinary and Pleasurable Spaces of Boys' PE--The Art of Distributions
ERIC Educational Resources Information Center
Gerdin, Göran
2016-01-01
In taking heed of the so-called "spatial turn" in social theory this paper explores how the spatial intersects with boys' performances of gender and (dis)pleasures in school physical education (PE). In particular, the paper aims to contribute to our understanding of how the organisation and implementation of physical and social spaces in…
Spatial Distribution of Phase Singularities in Optical Random Vector Waves.
De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L
2016-08-26
Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.
NASA Astrophysics Data System (ADS)
Haneda, K.
2016-04-01
The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.
Fishermen Follow Fine-scaled Physical Ocean Features For Finance
NASA Astrophysics Data System (ADS)
Fuller, E.; Watson, J. R.; Samhouri, J.; Castruccio, F. S.
2016-12-01
The seascapes on which many millions of people make their living and secure food have complex and dynamic spatial features - the figurative hills and valleys - that control where and how people work at sea. Here, we quantify the physical mosaic of the surface ocean by identifying Lagrangian Coherent Structures for a whole seascape - the California Current - and assess their impact on the spatial distribution of fishing. We show that there is a mixed response: some fisheries track these physical features, and others avoid them. This spatial behavior maps to economic impacts: we find that tuna fishermen can expect to make three times more revenue per trip if fishing occurs on strong coherent structures. These results highlight a connection between the physical state of the oceans, the spatial patterns of human activity and ultimately the economic prosperity of coastal communities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Song, Xuehang; Ye, Ming
A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less
NASA Astrophysics Data System (ADS)
Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami
2012-03-01
There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (<0.3 mm shell length, indicative of settlement patterns) in relation to physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.
NASA Astrophysics Data System (ADS)
Zhang, S.; Wang, Y.; Ju, H.
2017-12-01
The interprovincial terrestrial physical geographical entities are the key areas of regional integrated management. Based on toponomy dictionaries and different thematic maps, the attributes and the spatial extent of the interprovincial terrestrial physical geographical names (ITPGN, including terrain ITPGN and water ITPGN) were extracted. The coefficient of variation and Moran's I were combined together to measure the spatial variation and spatial association of ITPGN. The influencing factors of the distribution of ITPGN and the implications for the regional management were further discussed. The results showed that 11325 ITPGN were extracted, including 7082 terrain ITPGN and 4243 water ITPGN. Hunan Province had the largest number of ITPGN in China, and Shanghai had the smallest number. The spatial variance of the terrain ITPGN was larger than that of the water ITPGN, and the ITPGN showed a significant agglomeration phenomenon in the southern part of China. Further analysis showed that the number of ITPGN was positively related with the relative elevation and the population where the relative elevation was lower than 2000m and the population was less than 50 million. But the number of ITPGN showed a negative relationship with the two factors when their values became larger, indicating a large number of unnamed entities existed in complex terrain areas and a decreasing number of terrestrial physical geographical entities in densely populated area. Based on these analysis, we suggest the government take the ITPGN as management units to realize a balance development between different parts of the entities and strengthen the geographical names census and the nomination of unnamed interprovincial physical geographical entities. This study also demonstrated that the methods of literature survey, coefficient of variation and Moran's I can be combined to enhance the understanding of the spatial pattern of ITPGN.
Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai
2014-07-28
This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.
NASA Astrophysics Data System (ADS)
Gaona Garcia, J.; Lewandowski, J.; Bellin, A.
2017-12-01
Groundwater-stream water interactions in rivers determine water balances, but also chemical and biological processes in the streambed at different spatial and temporal scales. Due to the difficult identification and quantification of gaining, neutral and losing conditions, it is necessary to combine techniques with complementary capabilities and scale ranges. We applied this concept to a study site at the River Schlaube, East Brandenburg-Germany, a sand bed stream with intense sediment heterogeneity and complex environmental conditions. In our approach, point techniques such as temperature profiles of the streambed together with vertical hydraulic gradients provide data for the estimation of fluxes between groundwater and surface water with the numerical model 1DTempPro. On behalf of distributed techniques, fiber optic distributed temperature sensing identifies the spatial patterns of neutral, down- and up-welling areas by analysis of the changes in the thermal patterns at the streambed interface under certain flow. The study finally links point and surface temperatures to provide a method for upscaling of fluxes. Point techniques provide point flux estimates with essential depth detail to infer streambed structures while the results hardly represent the spatial distribution of fluxes caused by the heterogeneity of streambed properties. Fiber optics proved capable of providing spatial thermal patterns with enough resolution to observe distinct hyporheic thermal footprints at multiple scales. The relation of thermal footprint patterns and temporal behavior with flux results from point techniques enabled the use of methods for spatial flux estimates. The lack of detailed information of the physical driver's spatial distribution restricts the spatial flux estimation to the application of the T-proxy method, whose highly uncertain results mainly provide coarse spatial flux estimates. The study concludes that the upscaling of groundwater-stream water interactions using thermal measurements with combined point and distributed techniques requires the integration of physical drivers because of the heterogeneity of the flux patterns. Combined experimental and modeling approaches may help to obtain more reliable understanding of groundwater-surface water interactions at multiple scales.
Sandy beaches: state of the art of nematode ecology.
Maria, Tatiana F; Vanaverbeke, Jan; Vanreusel, Ann; Esteves, André M
2016-01-01
In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns (macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach nematode assemblages. This review will provide a substantial background on current knowledge of sandy-beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over decades, sandy beaches have been the scene of studies focusing on community and population ecology, both related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes. In other words, the physical factors are more important in structuring nematodes communities over large scale of distribution while biological interactions are largely important in finer-scale distributions. It has been accepted that biological interactions are assumed to be of minor importance because physical factors overshadow the biological interactions in sandy beach sediments; however, the most recent results from in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides nematodes are very promising organisms used to understand the effects of pollution and climate changes although these subjects are less studied in sandy beaches than distribution patterns.
Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.
Werner, J; Buse, M; Foegen, A
1989-01-01
In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.
NASA Astrophysics Data System (ADS)
Marrocco, Michele
2007-11-01
Fluorescence correlation spectroscopy is fundamental in many physical, chemical and biological studies of molecular diffusion. However, the concept of fluorescence correlation is founded on the assumption that the analytical description of the correlation decay of diffusion can be achieved if the spatial profile of the detected volume obeys a three-dimensional Gaussian distribution. In the present Letter, the analytical result is instead proven for the fundamental Gaussian-Lorentzian profile.
Kennedy, Christina G.; Mather, Martha E.; Smith, Joseph M.; Finn, John T.; Deegan, Linda A.
2016-01-01
Understanding environmental drivers of spatial patterns is an enduring ecological problem that is critical for effective biological conservation. Discontinuities (ecologically meaningful habitat breaks), both naturally occurring (e.g., river confluence, forest edge, drop-off) and anthropogenic (e.g., dams, roads), can influence the distribution of highly mobile organisms that have land- or seascape scale ranges. A geomorphic discontinuity framework, expanded to include ecological patterns, provides a way to incorporate important but irregularly distributed physical features into organism–environment relationships. Here, we test if migratory striped bass (Morone saxatilis) are consistently concentrated by spatial discontinuities and why. We quantified the distribution of 50 acoustically tagged striped bass at 40 sites within Plum Island Estuary, Massachusetts during four-monthly surveys relative to four physical discontinuities (sandbar, confluence, channel network, drop-off), one continuous physical feature (depth variation), and a geographic location variable (region). Despite moving throughout the estuary, striped bass were consistently clustered in the middle geographic region at sites with high sandbar area, close to channel networks, adjacent to complex confluences, with intermediate levels of bottom unevenness, and medium sized drop-offs. In addition, the highest striped bass concentrations occurred at sites with the greatest additive physical heterogeneity (i.e., where multiple discontinuities co-occurred). The need to incorporate irregularly distributed features in organism–environment relationships will increase as high-quality telemetry and GIS data accumulate for mobile organisms. The spatially explicit approach we used to address this challenge can aid both researchers who seek to understand the impact of predators on ecosystems and resource managers who require new approaches for biological conservation.
Neighborhood Sociodemographics and Change in Built Infrastructure.
Hirsch, Jana A; Green, Geoffrey F; Peterson, Marc; Rodriguez, Daniel A; Gordon-Larsen, Penny
2017-01-01
While increasing evidence suggests an association between physical infrastructure in neighbourhoods and health outcomes, relatively little research examines how neighbourhoods change physically over time and how these physical improvements are spatially distributed across populations. This paper describes the change over 25 years (1985-2010) in bicycle lanes, off-road trails, bus transit service, and parks, and spatial clusters of changes in these domains relative to neighbourhood sociodemographics in four U.S. cities that are diverse in terms of geography, size and population. Across all four cities, we identified increases in bicycle lanes, off-road trails, and bus transit service, with spatial clustering in these changes that related to neighbourhood sociodemographics. Overall, we found evidence of positive changes in physical infrastructure commonly identified as supportive of physical activity. However, the patterning of infrastructure change by sociodemographic change encourages attention to the equity in infrastructure improvements across neighbourhoods.
Neighborhood Sociodemographics and Change in Built Infrastructure
Hirsch, Jana A.; Green, Geoffrey F.; Peterson, Marc; Rodriguez, Daniel A.; Gordon-Larsen, Penny
2016-01-01
While increasing evidence suggests an association between physical infrastructure in neighbourhoods and health outcomes, relatively little research examines how neighbourhoods change physically over time and how these physical improvements are spatially distributed across populations. This paper describes the change over 25 years (1985–2010) in bicycle lanes, off-road trails, bus transit service, and parks, and spatial clusters of changes in these domains relative to neighbourhood sociodemographics in four U.S. cities that are diverse in terms of geography, size and population. Across all four cities, we identified increases in bicycle lanes, off-road trails, and bus transit service, with spatial clustering in these changes that related to neighbourhood sociodemographics. Overall, we found evidence of positive changes in physical infrastructure commonly identified as supportive of physical activity. However, the patterning of infrastructure change by sociodemographic change encourages attention to the equity in infrastructure improvements across neighbourhoods. PMID:28316645
Rijal, Jhalendra P; Wilson, Rob; Godfrey, Larry D
2016-02-01
Twospotted spider mite, Tetranychus urticae Koch, is an important pest of peppermint in California, USA. Spider mite feeding on peppermint leaves causes physiological changes in the plant, which coupling with the favorable environmental condition can lead to increased mite infestations. Significant yield loss can occur in absence of pest monitoring and timely management. Understating the within-field spatial distribution of T. urticae is critical for the development of reliable sampling plan. The study reported here aims to characterize the spatial distribution of mite infestation in four commercial peppermint fields in northern California using spatial techniques, variogram and Spatial Analysis by Distance IndicEs (SADIE). Variogram analysis revealed that there was a strong evidence for spatially dependent (aggregated) mite population in 13 of 17 sampling dates and the physical distance of the aggregation reached maximum to 7 m in peppermint fields. Using SADIE, 11 of 17 sampling dates showed aggregated distribution pattern of mite infestation. Combining results from variogram and SADIE analysis, the spatial aggregation of T. urticae was evident in all four fields for all 17 sampling dates evaluated. Comparing spatial association using SADIE, ca. 62% of the total sampling pairs showed a positive association of mite spatial distribution patterns between two consecutive sampling dates, which indicates a strong spatial and temporal stability of mite infestation in peppermint fields. These results are discussed in relation to behavior of spider mite distribution within field, and its implications for improving sampling guidelines that are essential for effective pest monitoring and management.
2017-01-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications. PMID:29104259
Miah, Khalid; Potter, David K
2017-11-01
Distributed sensing systems can transform an optical fiber cable into an array of sensors, allowing users to detect and monitor multiple physical parameters such as temperature, vibration and strain with fine spatial and temporal resolution over a long distance. Fiber-optic distributed acoustic sensing (DAS) and distributed temperature sensing (DTS) systems have been developed for various applications with varied spatial resolution, and spectral and sensing range. Rayleigh scattering-based phase optical time domain reflectometry (OTDR) for vibration and Raman/Brillouin scattering-based OTDR for temperature and strain measurements have been developed over the past two decades. The key challenge has been to find a methodology that would enable the physical parameters to be determined at any point along the sensing fiber with high sensitivity and spatial resolution, yet within acceptable frequency range for dynamic vibration, and temperature detection. There are many applications, especially in geophysical and mining engineering where simultaneous measurements of vibration and temperature are essential. In this article, recent developments of different hybrid systems for simultaneous vibration, temperature and strain measurements are analyzed based on their operation principles and performance. Then, challenges and limitations of the systems are highlighted for geophysical applications.
[Evaluation of ecosystem provisioning service and its economic value].
Wu, Nan; Gao, Ji-Xi; Sudebilige; Ricketts, Taylor H; Olwero, Nasser; Luo, Zun-Lan
2010-02-01
Aiming at the fact that the current approaches of evaluating the efficacy of ecosystem provisioning service were lack of spatial information and did not take the accessibility of products into account, this paper established an evaluation model to simulate the spatial distribution of ecosystem provisioning service and its economic value, based on ArcGIS 9. 2 and taking the supply and demand factors of ecosystem products into account. The provision of timber product in Laojunshan in 2000 was analyzed with the model. In 2000, the total physical quantity of the timber' s provisioning service in Laojunshan was 11.12 x 10(4) m3 x a(-1), occupying 3.2% of the total increment of timber stock volume. The total provisioning service value of timber was 6669.27 x 10(4) yuan, among which, coniferous forest contributed most (90.41%). Due to the denser distribution of populations and roads in the eastern area of Laojunshan, some parts of the area being located outside of conservancy district, and forests being in scattered distribution, the spatial distribution pattern of the physical quantity of timber's provisioning service was higher in the eastern than in the western area.
NASA Astrophysics Data System (ADS)
Huang, Dong; Liu, Yangang
2014-12-01
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.
Coupling fine-scale root and canopy structure using ground-based remote sensing
Brady Hardiman; Christopher Gough; John Butnor; Gil Bohrer; Matteo Detto; Peter Curtis
2017-01-01
Ecosystem physical structure, defined by the quantity and spatial distribution of biomass, influences a range of ecosystem functions. Remote sensing tools permit the non-destructive characterization of canopy and root features, potentially providing opportunities to link above- and belowground structure at fine spatial resolution in...
Surficial geologic map of the Amboy 30' x 60' quadrangle, San Bernardino County, California
Bedford, David R.; Miller, David M.; Phelps, Geoffrey A.
2010-01-01
The surficial geologic map of the Amboy 30' x 60' quadrangle presents characteristics of surficial materials for an area of approximately 5,000 km2 in the eastern Mojave Desert of southern California. This map consists of new surficial mapping conducted between 2000 and 2007, as well as compilations from previous surficial mapping. Surficial geologic units are mapped and described based on depositional process and age categories that reflect the mode of deposition, pedogenic effects following deposition, and, where appropriate, the lithologic nature of the material. Many physical properties were noted and measured during the geologic mapping. This information was used to classify surficial deposits and to understand their ecological importance. We focus on physical properties that drive hydrologic, biologic, and physical processes such as particle-size distribution (PSD) and bulk density. The database contains point data representing locations of samples for both laboratory determined physical properties and semiquantitative field-based information in the database. We include the locations of all field observations and note the type of information collected in the field to help assist in assessing the quality of the mapping. The publication is separated into three parts: documentation, spatial data, and printable map graphics of the database. Documentation includes this pamphlet, which provides a discussion of the surficial geology and units and the map. Spatial data are distributed as ArcGIS Geodatabase in Microsoft Access format and are accompanied by a readme file, which describes the database contents, and FGDC metadata for the spatial map information. Map graphics files are distributed as Postscript and Adobe Portable Document Format (PDF) files that provide a view of the spatial database at the mapped scale.
NASA Astrophysics Data System (ADS)
Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei
2017-06-01
In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.
Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale
NASA Astrophysics Data System (ADS)
Epelde, Ane Miren; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Garneau, Cyril; Sauvage, Sabine; Sánchez-Pérez, José Miguel
2016-08-01
This study presents the simulation of hydrological processes and nutrient transport and turnover processes using two integrated numerical models: Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), an empirical and semi-distributed numerical model; and Modelo Hidrodinâmico (MOHID) (Neves, 1985), a physics-based and fully distributed numerical model. This work shows that both models reproduce satisfactorily water and nitrate exportation at the watershed scale at annual and daily basis, MOHID providing slightly better results. At the watershed scale, both SWAT and MOHID simulated similarly and satisfactorily the denitrification amount. However, as MOHID numerical model was the only one able to reproduce adequately the spatial variation of the soil hydrological conditions and water table level fluctuation, it proved to be the only model able of reproducing the spatial variation of the nutrient cycling processes that are dependent to the soil hydrological conditions such as the denitrification process. This evidences the strength of the fully distributed and physics-based models to simulate the spatial variability of nutrient cycling processes that are dependent to the hydrological conditions of the soils.
The human footprint in Mexico: physical geography and historical legacies.
González-Abraham, Charlotte; Ezcurra, Exequiel; Garcillán, Pedro P; Ortega-Rubio, Alfredo; Kolb, Melanie; Bezaury Creel, Juan E
2015-01-01
Using publicly available data on land use and transportation corridors we calculated the human footprint index for the whole of Mexico to identify large-scale spatial patterns in the anthropogenic transformation of the land surface. We developed a map of the human footprint for the whole country and identified the ecological regions that have most transformed by human action. Additionally, we analyzed the extent to which (a) physical geography, expressed spatially in the form of biomes and ecoregions, compared to (b) historical geography, expressed as the spatial distribution of past human settlements, have driven the patterns of human modification of the land. Overall Mexico still has 56% of its land surface with low impact from human activities, but these areas are not evenly distributed. The lowest values are on the arid north and northwest, and the tropical southeast, while the highest values run along the coast of the Gulf of Mexico and from there inland along an east-to-west corridor that follows the Mexican transversal volcanic ranges and the associated upland plateau. The distribution of low- and high footprint areas within ecoregions forms a complex mosaic: the generally well-conserved Mexican deserts have some highly transformed agro-industrial areas, while many well-conserved, low footprint areas still persist in the highly-transformed ecoregions of central Mexico. We conclude that the spatial spread of the human footprint in Mexico is both the result of the limitations imposed by physical geography to human development at the biome level, and, within different biomes, of a complex history of past civilizations and technologies, including the 20th Century demographic explosion but also the spatial pattern of ancient settlements that were occupied by the Spanish Colony.
The Human Footprint in Mexico: Physical Geography and Historical Legacies
Ortega-Rubio, Alfredo; Kolb, Melanie; Bezaury Creel, Juan E.
2015-01-01
Using publicly available data on land use and transportation corridors we calculated the human footprint index for the whole of Mexico to identify large-scale spatial patterns in the anthropogenic transformation of the land surface. We developed a map of the human footprint for the whole country and identified the ecological regions that have most transformed by human action. Additionally, we analyzed the extent to which (a) physical geography, expressed spatially in the form of biomes and ecoregions, compared to (b) historical geography, expressed as the spatial distribution of past human settlements, have driven the patterns of human modification of the land. Overall Mexico still has 56% of its land surface with low impact from human activities, but these areas are not evenly distributed. The lowest values are on the arid north and northwest, and the tropical southeast, while the highest values run along the coast of the Gulf of Mexico and from there inland along an east-to-west corridor that follows the Mexican transversal volcanic ranges and the associated upland plateau. The distribution of low- and high footprint areas within ecoregions forms a complex mosaic: the generally well-conserved Mexican deserts have some highly transformed agro-industrial areas, while many well-conserved, low footprint areas still persist in the highly-transformed ecoregions of central Mexico. We conclude that the spatial spread of the human footprint in Mexico is both the result of the limitations imposed by physical geography to human development at the biome level, and, within different biomes, of a complex history of past civilizations and technologies, including the 20th Century demographic explosion but also the spatial pattern of ancient settlements that were occupied by the Spanish Colony. PMID:25803839
Spatial distribution of filament elasticity determines the migratory behaviors of a cell
Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer
2016-01-01
ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488
Modifying Student Behavior in an Open Classroom through Changes in the Physical Design
ERIC Educational Resources Information Center
Weinstein, Carol S.
1977-01-01
Spatial distribution of activity in a second-third grade open classroom was observed before and after a change in the physical design, to test the hypothesis that minor changes in the physical setting would produce predictable, desirable changes in student behavior. In most cases the desired behavior changes were produced. (Author/MV)
A Comparative Study of the Traditional Houses Kaili and Bugis-Makassar in Indonesia
NASA Astrophysics Data System (ADS)
Suharto, M. F.; Kawet, R. S. S. I.; Tumanduk, M. S. S. S.
2018-02-01
In this study, I compared the physical elements of two Indonesian traditional houses between a Kaili tribe (Central Sulawesi) and a Bugis-Makassar tribe (South Sulawesi). If we viewed of the name, meaning and function from both traditional houses have similarities, namely the Souraja/Saoraja house (House of the King), however, observed more detail the physical elements of architecture also show the differences. The spatial, physical and stylistic systems (N. John Habraken’s theory) were applied to analyze their differences and the similarities of the physical elements of architecture on those two traditional houses. The results of the analysis identified that the physical elements of architecture such as the orientation, the function and distribution of rooms (the spatial system), the constructions and materials of floor, wall and roof (the physical system) and the opening types of the door and window as well as ornaments used showed similarities. Meanwhile the physical elements of architecture such as the arrangement of columns, form and spatial pattern as well as the placement of the stairs (the spatial system), the constructions and materials of foundation, column and beam (the physical system) as well as the form of the roof and façade found differences of both traditional houses.
Clay mineralogy in different geomorphic surfaces in sugarcane areas
NASA Astrophysics Data System (ADS)
Camargo, L.; Marques, J., Jr.
2012-04-01
The crystallization of the oxides and hydroxides of iron and aluminum and kaolinite of clay fraction is the result of pedogenetic processes controlled by the relief. These minerals have influence on the physical and chemical attributes of soil and exhibit spatial dependence. The pattern of spatial distribution is influenced by forms of relief as the geomorphic surfaces. In this sense, the studies aimed at understanding the relationship between relief and the distribution pattern of the clay fraction attributes contribute to the delineation of specific areas of management in the field. The objective of this study was to evaluate the spatial distribution of oxides and hydroxides of iron and aluminum and kaolinite of clay fraction and its relationship with the physical and chemical attributes in different geomorphic surfaces. Soil samples were collected in a transect each 25 m (100 samples) and in the sides of the same (200 samples) as well as an area of 500 ha (1 sample each six hectare). Geomorphic surfaces (GS) in the transect were mapped in detail to support mapping the entire area. The soil samples were taken to the laboratory for chemical, physical, and mineralogical analysis, and the pattern of spatial distribution of soil attributes was obtained by statistics and geostatistics. The GS I is considered the oldest surface of the study area, with depositional character, and a slope ranging from 0 to 4%. GS II and III are considered to be eroded, and the surface II plan a gentle slope that extends from the edge of the surface until the beginning of I and III. The crystallographic characteristics of the oxides and hydroxides of iron and aluminum and kaolinite showed spatial dependence and the distribution pattern corresponding to the limits present of the GS in the field. Surfaces I and II showed the best environments to the degree of crystallinity of hematite and the surface III to the greatest degree of crystallinity of goethite agreeing to the pedoenvironment conditions of each surface. The rate goethite/(goethite+hematite) decreases the surface I to III this result is the variation of the source material that has an increase of clay which is characteristic of sandstone rock (Adamantine Formation) in the surface III. The rate kaolinite/(kaolinite+gibbsite) also shows a decrease of the surface I to the surface III. The spatial distribution pattern of mineralogy influenced the pattern of physical and chemical properties. On the surface III (with higher iron and gibbsite) had the best physical condition (lower density, higher porosity and aggregates) and greater phosphorus sorption. In this sense, the identification and mapping of the GSs, allowed a better understanding of cause and effect of the distribution of soils in the area, and the recognition of areas of controlled variability of soil attributes. These areas can be considered specific areas of management, useful for planning and management practices in the culture of sugarcane. Besides, suggesting criteria for the recognition of map units that would be equivalent to the future series of soils of the Brazilian System of Soil Classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Dong; Liu, Yangang
2014-12-18
Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,more » allowing for more realistic representation of cloud radiation interactions in large-scale models.« less
Robustness of spatial micronetworks
NASA Astrophysics Data System (ADS)
McAndrew, Thomas C.; Danforth, Christopher M.; Bagrow, James P.
2015-04-01
Power lines, roadways, pipelines, and other physical infrastructure are critical to modern society. These structures may be viewed as spatial networks where geographic distances play a role in the functionality and construction cost of links. Traditionally, studies of network robustness have primarily considered the connectedness of large, random networks. Yet for spatial infrastructure, physical distances must also play a role in network robustness. Understanding the robustness of small spatial networks is particularly important with the increasing interest in microgrids, i.e., small-area distributed power grids that are well suited to using renewable energy resources. We study the random failures of links in small networks where functionality depends on both spatial distance and topological connectedness. By introducing a percolation model where the failure of each link is proportional to its spatial length, we find that when failures depend on spatial distances, networks are more fragile than expected. Accounting for spatial effects in both construction and robustness is important for designing efficient microgrids and other network infrastructure.
Seismicity and source spectra analysis in Salton Sea Geothermal Field
NASA Astrophysics Data System (ADS)
Cheng, Y.; Chen, X.
2016-12-01
The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid circulation, the fracture network, and tectonic faulting.
Determinants of pulmonary blood flow distribution.
Glenny, Robb W; Robertson, H Thomas
2011-01-01
The primary function of the pulmonary circulation is to deliver blood to the alveolar capillaries to exchange gases. Distributing blood over a vast surface area facilitates gas exchange, yet the pulmonary vascular tree must be constrained to fit within the thoracic cavity. In addition, pressures must remain low within the circulatory system to protect the thin alveolar capillary membranes that allow efficient gas exchange. The pulmonary circulation is engineered for these unique requirements and in turn these special attributes affect the spatial distribution of blood flow. As the largest organ in the body, the physical characteristics of the lung vary regionally, influencing the spatial distribution on large-, moderate-, and small-scale levels. © 2011 American Physiological Society.
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review
Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-01-01
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.
Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-04-03
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.
USDA-ARS?s Scientific Manuscript database
Timely reflectance data from cotton (Gossypium hirsutum L.) production fields provide a useful tool for crop health assessment and site-specific crop management decisions. This field study investigated the relationships among site-specific normalized difference vegetation index (NDVI), soil physical...
Liu, Jie; Gao, Meixiang; Liu, Jinwen; Guo, Yuxi; Liu, Dong; Zhu, Xinyu; Wu, Donghui
2018-01-01
Spatial distribution is an important topic in community ecology and a key to understanding the structure and dynamics of populations and communities. However, the available information related to the spatial patterns of soil mite communities in long-term tillage agroecosystems remains insufficient. In this study, we examined the spatial patterns of soil mite communities to explain the spatial relationships between soil mite communities and soil parameters. Soil fauna were sampled three times (August, September and October 2015) at 121 locations arranged regularly within a 400 m × 400 m monitoring plot. Additionally, we estimated the physical and chemical parameters of the same sampling locations. The distribution patterns of the soil mite community and the edaphic parameters were analyzed using a range of geostatistical tools. Moran's I coefficient showed that, during each sampling period, the total abundance of the soil mite communities and the abundance of the dominant mite populations were spatially autocorrelated. The soil mite communities demonstrated clear patchy distribution patterns within the study plot. These patterns were sampling period-specific. Cross-semivariograms showed both negative and positive cross-correlations between soil mite communities and environmental factors. Mantel tests showed a significant and positive relationship between soil mite community and soil organic matter and soil pH only in August. This study demonstrated that in the cornfield, the soil mite distribution exhibited strong or moderate spatial dependence, and the mites formed patches with sizes less than one hundred meters. In addition, in this long-term tillage agroecosystem, soil factors had less influence on the observed pattern of soil mite communities. Further experiments that take into account human activity and spatial factors should be performed to study the factors that drive the spatial distribution of soil microarthropods.
NASA Astrophysics Data System (ADS)
Li, J.
2017-12-01
Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.
NASA Astrophysics Data System (ADS)
Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier
2012-07-01
SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.
Susan E. Gresens; Kenneth T. Belt; Jamie A. Tang; Daniel C. Gwinn; Patricia A. Banks
2007-01-01
In a longitudinal study of two streams whose lower reaches received unattenuated urban stormwater runoff, physical disturbance by stormflow was less important than the persistant unidentified chemical impacts of urban stormwater in limiting the distribution of Chironomidae, and Ephemeroptera, Trichoptera and Plecoptera (EPT). A hierarchical spatial analysis showed that...
John M. Buffington; Daniele Tonina
2009-01-01
We propose that the mechanisms driving hyporheic exchange vary systematically with different channel morphologies and associated fluvial processes that occur in mountain basins, providing a framework for examining physical controls on hyporheic environments and their spatial variation across the landscape. Furthermore, the spatial distribution of hyporheic environments...
NASA Astrophysics Data System (ADS)
Vulcani, Benedetta
2015-08-01
What physical processes regulate star formation in dense environments? Understanding why galaxy evolution is environment dependent is one of the key questions of current astrophysics. I will present the first characterization of the spatial distribution of star formation in cluster galaxies at z~0.5, in order to quantify the role of different physical processes that are believed to be responsible for shutting down star formation. The analysis makes use of data from the Grism Lens-Amplified Survey from Space (GLASS), a large HST cycle-21 program targeting 10 massive galaxy clusters with extensive HST imaging from CLASH and the Frontier Field Initiative. The program consists of 140 primary and 140 parallel orbits of near-infrared WCF3 and optical ACS slitless grism observations, which result in 3D spectroscopy of hundreds of galaxies. The grism data are used to produce spatially resolved maps of the star formation density, while the stellar mass density and optical surface brightness are obtained from multiband imaging. I will describe quantitative measures of the spatial location and extend of the star formation rate, showing that about half of the cluster members with significant Halpha detection have diffused star formation, larger than the optical counterpart. This suggests that star formation occurs out to larger radii than the rest frame continuum. For some systems, nuclear star forming regions are found. I will also present a comparison between the Halpha distribution observed in cluster and field galaxies. The characterization of the spatial distribution of Halpha provides a new window, yet poorly exploited, on the mechanisms that regulate star formation and morphological transformation in dense environments.
NASA Astrophysics Data System (ADS)
Kim, Jongho; Dwelle, M. Chase; Kampf, Stephanie K.; Fatichi, Simone; Ivanov, Valeriy Y.
2016-06-01
This study advances mechanistic interpretation of predictability challenges in hydro-geomorphology related to the role of soil moisture spatial variability. Using model formulations describing the physics of overland flow, variably saturated subsurface flow, and erosion and sediment transport, this study explores (1) why a basin with the same mean soil moisture can exhibit distinctly different spatial moisture distributions, (2) whether these varying distributions lead to non-unique hydro-geomorphic responses, and (3) what controls non-uniqueness in relation to the response type. Two sets of numerical experiments are carried out with two physically-based models, HYDRUS and tRIBS+VEGGIE+FEaST, and their outputs are analyzed with respect to pre-storm moisture state. The results demonstrate that distinct spatial moisture distributions for the same mean wetness arise because near-surface soil moisture dynamics exhibit different degrees of coupling with deeper-soil moisture and the process of subsurface drainage. The consequences of such variations are different depending on the type of hydrological response. Specifically, if the predominant runoff response is of infiltration excess type, the degree of non-uniqueness is related to the spatial distribution of near-surface moisture. If runoff is governed by subsurface stormflow, the extent of deep moisture contributing area and its "readiness to drain" determine the response characteristics. Because the processes of erosion and sediment transport superimpose additional controls over factors governing runoff generation and overland flow, non-uniqueness of the geomorphic response can be highly dampened or enhanced. The explanation is sediment composed by multi-size particles can alternate states of mobilization or surface shielding and the transient behavior is inherently intertwined with the availability of mobile particles. We conclude that complex nonlinear dynamics of hydro-geomorphic processes are inherent expressions of physical interactions. As complete knowledge of watershed properties, states, or forcings will always present the ultimate, if ever resolvable, challenge, deterministic predictability will remain handicapped. Coupling of uncertainty quantification methods and space-time physics-based approaches will need to evolve to facilitate mechanistic interpretations and informed practical applications.
The biogeodynamics of microbial landscapes
NASA Astrophysics Data System (ADS)
Battin, T. J.; Hödl, I.; Bertuzzo, E.; Mari, L.; Suweis, S. S.; Rinaldo, A.
2011-12-01
Spatial configuration is fundamental in defining the structural and functional properties of biological systems. Biofilms, surface-attached and matrix-enclosed microorganisms, are a striking example of spatial organisation. Coupled biotic and abiotic processes shape the spatial organisation across scales of the landscapes formed by these benthic biofilms in streams and rivers. Experimenting with such biofilms in streams, we found that, depending on the streambed topography and the related hydrodynamic microenvironment, biofilm landscapes form increasingly diverging spatial patterns as they grow. Strikingly, however, cluster size distributions tend to converge even in contrasting hydrodynamic microenvironments. To reproduce the observed cluster size distributions we used a continuous, size-structured population model. The model accounts for the formation, growth, erosion and merging of biofilm clusters. Our results suggest not only that hydrodynamic forcing induce the diverging patterning of the microbial landscape, but also that microorganisms have developed strategies to equally exploit spatial resources independently of the physical structure of the microenvironment where they live.
L.M. Egerton-Warburton; R.C. Graham; K.R. Hubbert
2003-01-01
We documented the spatial distribution, abundance and molecular diversity of mycorrhizal hyphae and physical and chemical properties of soil-weathered bedrock in a chaparral community that experiences seasonal drought. Because plants in this community were known to rely on bedrock-stored water during the summer, the data were used to evaluate the potential role of...
A geometric theory for Lévy distributions
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2014-08-01
Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts of the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT.
A geometric theory for Lévy distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2014-08-15
Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts ofmore » the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT.« less
Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun
2015-06-01
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.
NASA Astrophysics Data System (ADS)
Kammel, L.; Pasternack, G. B.; Wyrick, J. R.; Massa, D.; Bratovich, P.; Johnson, T.
2012-12-01
Currently accepted perception assumes Oncorhynchus mykiss prefer different ranges of similar physical habitat elements for spawning than Chinook salmon (Oncorhynchus tshawytscha), taking into account their difference in size. While there is increasing research interest regarding O. mykiss habitat use and migratory behavior, research conducted to date distinguishing the physical habitat conditions utilized for O. mykiss spawning has not provided quantified understanding of their spawning habitat preferences. The purpose of this study was to use electivity indices and other measures to assess the physical habitat characteristics preferred for O. mykiss spawning in terms of both 1-m scale microhabitat attributes, and landforms at different spatial scales from 0.1-100 times channel width. The testbed for this study was the 37.5-km regulated gravel-cobble Lower Yuba River (LYR). Using spatially distributed 2D hydrodynamic model results, substrate mapping, and a census of O. mykiss redds from two years of observation, micro- and meso-scale representations of physical habitat were tested for their ability to predict spawning habitat preference and avoidance. Overall there was strong stratification of O. mykiss redd occurrence for all representation types of physical habitat. A strong preference of hydraulic conditions was shown for mean water column velocities of 1.18-2.25 ft/s, and water depths of 1.25-2.76 ft. There was a marked preference for the two most upstream alluvial reaches of the LYR (out of 8 total reaches), accounting for 92% of all redds observed. The preferred morphological units (MUs) for O. mykiss spawning were more variable than for Chinook salmon and changed with increasing discharge, demonstrating that O. mykiss shift spawning to different MUs in order to utilize their preferred hydraulic conditions. The substrate range preferred for O. mykiss spawning was within 32-90 mm. Overall, O. mykiss spawning behavior was highly predictable and required a holistic blend of hydraulic and geomorphic representations to explain.
Wang, Yujue; Liu, Dongyan; Dong, Zhijun; Di, Baoping; Shen, Xuhong
2012-12-01
The temporal and spatial distributions of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), soluble reactive phosphorus (SRP) and dissolved reactive silica (DRSi) together with chlorophyll-a, temperature and salinity were analyzed monthly from December 2008 to March 2010 at four zones in Sishili Bay located in the northern Yellow Sea. The nutrient distribution was impacted by seasonal factors (biotic factors, temperature and wet deposition), physical factors (water exchange) and anthropogenic loadings. The seasonal variations of nutrients were mainly determined by the seasonal factors and the spatial distribution of nutrients was mainly related to water exchange. Anthropogenic loadings for DIN, SRP and DRSi were mainly from point sources, but for DON, non-point sources were also important. Nutrient limitation has changed from DIN in 1997 to SRP and DRSi in 2010, and this has resulted in changes in the dominant red tide species from diatom to dinoflagellates. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gartner, Danielle R.; Taber, Daniel R.; Hirsch, Jana A.; Robinson, Whitney R.
2016-01-01
Purpose While obesity disparities between racial and socioeconomic groups have been well characterized, those based on gender and geography have not been as thoroughly documented. This study describes obesity prevalence by state, gender, and race/ethnicity to (1) characterize obesity gender inequality, (2) determine if the geographic distribution of inequality is spatially clustered and (3) contrast the spatial clustering patterns of obesity gender inequality with overall obesity prevalence. Methods Data from the Centers for Disease Control and Prevention’s 2013 Behavioral Risk Factor Surveillance System (BRFSS) were used to calculate state-specific obesity prevalence and gender inequality measures. Global and Local Moran’s Indices were calculated to determine spatial autocorrelation. Results Age-adjusted, state-specific obesity prevalence difference and ratio measures show spatial autocorrelation (z-score=4.89, p-value <0.001). Local Moran’s Indices indicate the spatial distributions of obesity prevalence and obesity gender inequalities are not the same. High and low values of obesity prevalence and gender inequalities cluster in different areas of the U.S. Conclusion Clustering of gender inequality suggests that spatial processes operating at the state level, such as occupational or physical activity policies or social norms, are involved in the etiology of the inequality and necessitate further attention to the determinates of obesity gender inequality. PMID:27039046
Derivation of mean dose tolerances for new fractionation schemes and treatment modalities
NASA Astrophysics Data System (ADS)
Perkó, Zoltán; Bortfeld, Thomas; Hong, Theodore; Wolfgang, John; Unkelbach, Jan
2018-02-01
Avoiding toxicities in radiotherapy requires the knowledge of tolerable organ doses. For new, experimental fractionation schemes (e.g. hypofractionation) these are typically derived from traditional schedules using the biologically effective dose (BED) model. In this report we investigate the difficulties of establishing mean dose tolerances that arise since the mean BED depends on the entire spatial dose distribution, rather than on the dose level alone. A formula has been derived to establish mean physical dose constraints such that they are mean BED equivalent to a reference treatment scheme. This formula constitutes a modified BED equation where the influence of the spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 24 liver cancer patients for whom both proton and photon IMRT treatment plans were available. The results show that the standard BED equation—neglecting the spatial dose distribution—can overestimate mean dose tolerances for hypofractionated treatments by up to 20%. The shape difference between photon and proton dose distributions can cause 30-40% differences in mean physical dose for plans having identical mean BEDs. Converting hypofractionated, 5/15-fraction proton doses to mean BED equivalent photon doses in traditional 35-fraction regimens resulted in up to 10 Gy higher doses than applying the standard BED formula. The dose shape effect should be accounted for to avoid overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. Additionally, tolerances established for one treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions, such as proton therapy. Last, protons may only allow marginal (5-10%) dose escalation if a fraction-size adjusted organ mean dose is constraining instead of a physical dose.
Spatial distribution on high-order-harmonic generation of an H2+ molecule in intense laser fields
NASA Astrophysics Data System (ADS)
Zhang, Jun; Ge, Xin-Lei; Wang, Tian; Xu, Tong-Tong; Guo, Jing; Liu, Xue-Shen
2015-07-01
High-order-harmonic generation (HHG) for the H2 + molecule in a 3-fs, 800-nm few-cycle Gaussian laser pulse combined with a static field is investigated by solving the one-dimensional electronic and one-dimensional nuclear time-dependent Schrödinger equation within the non-Born-Oppenheimer approximation. The spatial distribution in HHG is demonstrated and the results present the recombination process of the electron with the two nuclei, respectively. The spatial distribution of the HHG spectra shows that there is little possibility of the recombination of the electron with the nuclei around the origin z =0 a.u. and equilibrium internuclear positions z =±1.3 a.u. This characteristic is irrelevant to laser parameters and is only attributed to the molecular structure. Furthermore, we investigate the time-dependent electron-nuclear wave packet and ionization probability to further explain the underlying physical mechanism.
Secure and Resilient Functional Modeling for Navy Cyber-Physical Systems
2017-05-24
Functional Modeling Compiler (SCCT) FM Compiler and Key Performance Indicators (KPI) May 2018 Pending. Model Management Backbone (SCCT) MMB Demonstration...implement the agent- based distributed runtime. - KPIs for single/multicore controllers and temporal/spatial domains. - Integration of the model management ...Distributed Runtime (UCI) Not started. Model Management Backbone (SCCT) Not started. Siemens Corporation Corporate Technology Unrestricted
A meteorological distribution system for high-resolution terrestrial modeling (MicroMet)
Glen E. Liston; Kelly Elder
2006-01-01
An intermediate-complexity, quasi-physically based, meteorological model (MicroMet) has been developed to produce high-resolution (e.g., 30-m to 1-km horizontal grid increment) atmospheric forcings required to run spatially distributed terrestrial models over a wide variety of landscapes. The following eight variables, required to run most terrestrial models, are...
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.
2017-12-01
Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
Spatially explicit spectral analysis of point clouds and geospatial data
Buscombe, Daniel D.
2015-01-01
The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described, and its functionality illustrated with an example of a high-resolution bathymetric point cloud data collected with multibeam echosounder.
NASA Astrophysics Data System (ADS)
Hapca, Simona
2015-04-01
Many soil properties and functions emerge from interactions of physical, chemical and biological processes at microscopic scales, which can be understood only by integrating techniques that traditionally are developed within separate disciplines. While recent advances in imaging techniques, such as X-ray computed tomography (X-ray CT), offer the possibility to reconstruct the 3D physical structure at fine resolutions, for the distribution of chemicals in soil, existing methods, based on scanning electron microscope (SEM) and energy dispersive X-ray detection (EDX), allow for characterization of the chemical composition only on 2D surfaces. At present, direct 3D measurement techniques are still lacking, sequential sectioning of soils, followed by 2D mapping of chemical elements and interpolation to 3D, being an alternative which is explored in this study. Specifically, we develop an integrated experimental and theoretical framework which combines 3D X-ray CT imaging technique with 2D SEM-EDX and use spatial statistics methods to map the chemical composition of soil in 3D. The procedure involves three stages 1) scanning a resin impregnated soil cube by X-ray CT, followed by precision cutting to produce parallel thin slices, the surfaces of which are scanned by SEM-EDX, 2) alignment of the 2D chemical maps within the internal 3D structure of the soil cube, and 3) development, of spatial statistics methods to predict the chemical composition of 3D soil based on the observed 2D chemical and 3D physical data. Specifically, three statistical models consisting of a regression tree, a regression tree kriging and cokriging model were used to predict the 3D spatial distribution of carbon, silicon, iron and oxygen in soil, these chemical elements showing a good spatial agreement between the X-ray grayscale intensities and the corresponding 2D SEM-EDX data. Due to the spatial correlation between the physical and chemical data, the regression-tree model showed a great potential in predicting chemical composition in particular for iron, which is generally sparsely distributed in soil. For carbon, silicon and oxygen, which are more densely distributed, the additional kriging of the regression tree residuals improved significantly the prediction, whereas prediction based on co-kriging was less consistent across replicates, underperforming regression-tree kriging. The present study shows a great potential in integrating geo-statistical methods with imaging techniques to unveil the 3D chemical structure of soil at very fine scales, the framework being suitable to be further applied to other types of imaging data such as images of biological thin sections for characterization of microbial distribution. Key words: X-ray CT, SEM-EDX, segmentation techniques, spatial correlation, 3D soil images, 2D chemical maps.
NASA Astrophysics Data System (ADS)
Peck, Myron A.; Arvanitidis, Christos; Butenschön, Momme; Canu, Donata Melaku; Chatzinikolaou, Eva; Cucco, Andrea; Domenici, Paolo; Fernandes, Jose A.; Gasche, Loic; Huebert, Klaus B.; Hufnagl, Marc; Jones, Miranda C.; Kempf, Alexander; Keyl, Friedemann; Maar, Marie; Mahévas, Stéphanie; Marchal, Paul; Nicolas, Delphine; Pinnegar, John K.; Rivot, Etienne; Rochette, Sébastien; Sell, Anne F.; Sinerchia, Matteo; Solidoro, Cosimo; Somerfield, Paul J.; Teal, Lorna R.; Travers-Trolet, Morgan; van de Wolfshaar, Karen E.
2018-02-01
We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.
Numerical Simulation of Abandoned Gob Methane Drainage through Surface Vertical Wells
Hu, Guozhong
2015-01-01
The influence of the ventilation system on the abandoned gob weakens, so the gas seepage characteristics in the abandoned gob are significantly different from those in a normal mining gob. In connection with this, this study physically simulated the movement of overlying rock strata. A spatial distribution function for gob permeability was derived. A numerical model using FLUENT for abandoned gob methane drainage through surface wells was established, and the derived spatial distribution function for gob permeability was imported into the numerical model. The control range of surface wells, flow patterns and distribution rules for static pressure in the abandoned gob under different well locations were determined using the calculated results from the numerical model. PMID:25955438
S. Wang; Z. Zhang; G. Sun; P. Strauss; J. Guo; Y. Tang; A. Yao
2012-01-01
Model calibration is essential for hydrologic modeling of large watersheds in a heterogeneous mountain environment. Little guidance is available for model calibration protocols for distributed models that aim at capturing the spatial variability of hydrologic processes. This study used the physically-based distributed hydrologic model, MIKE SHE, to contrast a lumped...
NASA Astrophysics Data System (ADS)
Baeza, Andrés; Estrada-Barón, Alejandra; Serrano-Candela, Fidel; Bojórquez, Luis A.; Eakin, Hallie; Escalante, Ana E.
2018-06-01
Due to unplanned growth, large extension and limited resources, most megacities in the developing world are vulnerable to hydrological hazards and infectious diseases caused by waterborne pathogens. Here we aim to elucidate the extent of the relation between the spatial heterogeneity of physical and socio-economic factors associated with hydrological hazards (flooding and scarcity) and the spatial distribution of gastrointestinal disease in Mexico City, a megacity with more than 8 million people. We applied spatial statistics and multivariate regression analyses to high resolution records of gastrointestinal diseases during two time frames (2007–2009 and 2010–2014). Results show a pattern of significant association between water flooding events and disease incidence in the city center (lowlands). We also found that in the periphery (highlands), higher incidence is generally associated with household infrastructure deficiency. Our findings suggest the need for integrated and spatially tailored interventions by public works and public health agencies, aimed to manage socio-hydrological vulnerability in Mexico City.
Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegen, James C.; Konopka, Allan; McKinely, Jim
Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number ofmore » microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.« less
Sampling design for spatially distributed hydrogeologic and environmental processes
Christakos, G.; Olea, R.A.
1992-01-01
A methodology for the design of sampling networks over space is proposed. The methodology is based on spatial random field representations of nonhomogeneous natural processes, and on optimal spatial estimation techniques. One of the most important results of random field theory for physical sciences is its rationalization of correlations in spatial variability of natural processes. This correlation is extremely important both for interpreting spatially distributed observations and for predictive performance. The extent of site sampling and the types of data to be collected will depend on the relationship of subsurface variability to predictive uncertainty. While hypothesis formulation and initial identification of spatial variability characteristics are based on scientific understanding (such as knowledge of the physics of the underlying phenomena, geological interpretations, intuition and experience), the support offered by field data is statistically modelled. This model is not limited by the geometric nature of sampling and covers a wide range in subsurface uncertainties. A factorization scheme of the sampling error variance is derived, which possesses certain atttactive properties allowing significant savings in computations. By means of this scheme, a practical sampling design procedure providing suitable indices of the sampling error variance is established. These indices can be used by way of multiobjective decision criteria to obtain the best sampling strategy. Neither the actual implementation of the in-situ sampling nor the solution of the large spatial estimation systems of equations are necessary. The required values of the accuracy parameters involved in the network design are derived using reference charts (readily available for various combinations of data configurations and spatial variability parameters) and certain simple yet accurate analytical formulas. Insight is gained by applying the proposed sampling procedure to realistic examples related to sampling problems in two dimensions. ?? 1992.
Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model
NASA Astrophysics Data System (ADS)
Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel
2017-11-01
The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range ( 0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.
On validating remote sensing simulations using coincident real data
NASA Astrophysics Data System (ADS)
Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan
2016-05-01
The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.
Distribution ozone concentration in Klang Valley using GIS approaches
NASA Astrophysics Data System (ADS)
Sulaiman, A.; Rahman, A. A. Ab; Maulud, K. N. Abdul; Latif, M. T.; Ahmad, F.; Wahid, M. A. Abdul; Ibrahim, M. A.; Halim, N. D. Abdul
2017-05-01
Today, ozone has become one of the main air pollutants in Malaysia. The high ozone precursor concentrations have been encouraging the ozone production. The development of the Klang Valley, Malaysia has many types of physical activities such as urban commercial, industrial area, settlement area and others, which has increased the risk of atmospheric pollution. The purpose of this paper is to determine the spatial distribution between types of land use and ozone concentration that are occurred in the year 2014. The study areas for this paper include Shah Alam, Kajang, Petaling Jaya and Port Klang. Distribution of ozone concentration will be showed via spatial analysis tools in Geographic Information Systems (GIS) approached and the types of land use will be extracted using Remote Sensing technique. The result showed 97 ppb (parts-per-billion, 10-9) and 161 ppb recorded at Port Klang and Shah Alam respectively that are mainly represented by the settlement area. Therefore, the physical land use need to be monitor and controlled by the government in order to make sure the ozone production for daily per hour will not exceed the regulation allowed.
Gartner, Danielle R; Taber, Daniel R; Hirsch, Jana A; Robinson, Whitney R
2016-04-01
Although obesity disparities between racial and socioeconomic groups have been well characterized, those based on gender and geography have not been as thoroughly documented. This study describes obesity prevalence by state, gender, and race and/or ethnicity to (1) characterize obesity gender inequality, (2) determine if the geographic distribution of inequality is spatially clustered, and (3) contrast the spatial clustering patterns of obesity gender inequality with overall obesity prevalence. Data from the Centers for Disease Control and Prevention's 2013 Behavioral Risk Factor Surveillance System were used to calculate state-specific obesity prevalence and gender inequality measures. Global and local Moran's indices were calculated to determine spatial autocorrelation. Age-adjusted, state-specific obesity prevalence difference and ratio measures show spatial autocorrelation (z-score = 4.89, P-value < .001). Local Moran's indices indicate the spatial distributions of obesity prevalence and obesity gender inequalities are not the same. High and low values of obesity prevalence and gender inequalities cluster in different areas of the United States. Clustering of gender inequality suggests that spatial processes operating at the state level, such as occupational or physical activity policies or social norms, are involved in the etiology of the inequality and necessitate further attention to the determinates of obesity gender inequality. Copyright © 2016 Elsevier Inc. All rights reserved.
Unleashing spatially distributed ecohydrology modeling using Big Data tools
NASA Astrophysics Data System (ADS)
Miles, B.; Idaszak, R.
2015-12-01
Physically based spatially distributed ecohydrology models are useful for answering science and management questions related to the hydrology and biogeochemistry of prairie, savanna, forested, as well as urbanized ecosystems. However, these models can produce hundreds of gigabytes of spatial output for a single model run over decadal time scales when run at regional spatial scales and moderate spatial resolutions (~100-km2+ at 30-m spatial resolution) or when run for small watersheds at high spatial resolutions (~1-km2 at 3-m spatial resolution). Numerical data formats such as HDF5 can store arbitrarily large datasets. However even in HPC environments, there are practical limits on the size of single files that can be stored and reliably backed up. Even when such large datasets can be stored, querying and analyzing these data can suffer from poor performance due to memory limitations and I/O bottlenecks, for example on single workstations where memory and bandwidth are limited, or in HPC environments where data are stored separately from computational nodes. The difficulty of storing and analyzing spatial data from ecohydrology models limits our ability to harness these powerful tools. Big Data tools such as distributed databases have the potential to surmount the data storage and analysis challenges inherent to large spatial datasets. Distributed databases solve these problems by storing data close to computational nodes while enabling horizontal scalability and fault tolerance. Here we present the architecture of and preliminary results from PatchDB, a distributed datastore for managing spatial output from the Regional Hydro-Ecological Simulation System (RHESSys). The initial version of PatchDB uses message queueing to asynchronously write RHESSys model output to an Apache Cassandra cluster. Once stored in the cluster, these data can be efficiently queried to quickly produce both spatial visualizations for a particular variable (e.g. maps and animations), as well as point time series of arbitrary variables at arbitrary points in space within a watershed or river basin. By treating ecohydrology modeling as a Big Data problem, we hope to provide a platform for answering transformative science and management questions related to water quantity and quality in a world of non-stationary climate.
K.R. Hubbert; H.K. Preisler; P.M. Wohlgemuth; R.C. Graham; M.G. Narog
2006-01-01
Chaparral watersheds associated with Mediterranean-type climate are distributed over five regions of the world. Because brushland soils are often shallow with low water holding capacities, and are on slopes prone to erosion, disturbances such as fire can adversely affect their physical properties. Fire can also increase the spatial coverage of soil water repellency,...
Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs.
Castaneda, Roman; Usuga-Castaneda, Mario; Herrera-Ramírez, Jorge
2007-08-01
Evidence of the physical existence of the spatial coherence moiré is obtained by confronting numerical results with experimental results of spatially partial interference. Although it was performed for two particular cases, the results reveal a general behavior of the optical fields in any state of spatial coherence. Moreover, the study of the spatial coherence moiré deals with a new type of filtering, named filtering of classes of radiator pairs, which allows changing the power spectrum at the observation plane by modulating the complex degree of spatial coherence, without altering the power distribution at the aperture plane or introducing conventional spatial filters. This new procedure can optimize some technological applications of actual interest, as the beam shaping for instance.
Malvisi, Lucio; Troisi, Catherine L; Selwyn, Beatrice J
2018-06-23
The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G * (d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G * (d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.
NASA Astrophysics Data System (ADS)
McMillan, Mitchell; Hu, Zhiyong
2017-10-01
Streambank erosion is a major source of fluvial sediment, but few large-scale, spatially distributed models exist to quantify streambank erosion rates. We introduce a spatially distributed model for streambank erosion applicable to sinuous, single-thread channels. We argue that such a model can adequately characterize streambank erosion rates, measured at the outsides of bends over a 2-year time period, throughout a large region. The model is based on the widely-used excess-velocity equation and comprised three components: a physics-based hydrodynamic model, a large-scale 1-dimensional model of average monthly discharge, and an empirical bank erodibility parameterization. The hydrodynamic submodel requires inputs of channel centerline, slope, width, depth, friction factor, and a scour factor A; the large-scale watershed submodel utilizes watershed-averaged monthly outputs of the Noah-2.8 land surface model; bank erodibility is based on tree cover and bank height as proxies for root density. The model was calibrated with erosion rates measured in sand-bed streams throughout the northern Gulf of Mexico coastal plain. The calibrated model outperforms a purely empirical model, as well as a model based only on excess velocity, illustrating the utility of combining a physics-based hydrodynamic model with an empirical bank erodibility relationship. The model could be improved by incorporating spatial variability in channel roughness and the hydrodynamic scour factor, which are here assumed constant. A reach-scale application of the model is illustrated on ∼1 km of a medium-sized, mixed forest-pasture stream, where the model identifies streambank erosion hotspots on forested and non-forested bends.
Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai
2015-02-01
Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.
Quantifying evenly distributed states in exclusion and nonexclusion processes
NASA Astrophysics Data System (ADS)
Binder, Benjamin J.; Landman, Kerry A.
2011-04-01
Spatial-point data sets, generated from a wide range of physical systems and mathematical models, can be analyzed by counting the number of objects in equally sized bins. We find that the bin counts are related to the Pólya distribution. New measures are developed which indicate whether or not a spatial data set, generated from an exclusion process, is at its most evenly distributed state, the complete spatial randomness (CSR) state. To this end, we define an index in terms of the variance between the bin counts. Limiting values of the index are determined when objects have access to the entire domain and when there are subregions of the domain that are inaccessible to objects. Using three case studies (Lagrangian fluid particles in chaotic laminar flows, cellular automata agents in discrete models, and biological cells within colonies), we calculate the indexes and verify that our theoretical CSR limit accurately predicts the state of the system. These measures should prove useful in many biological applications.
A mathematical method for the turbulent behavior of crowds using agent particles
NASA Astrophysics Data System (ADS)
Ohnishi, Teruaki
2016-08-01
Among the people moving as a group there appear social and psychological forces together with physical forces such as friction and resistance. With the definition that the field of the crowd is the region of those forces continuously extending with varying strength, and with the pre-requisite that the spatial distribution of the crowd, i.e., the distribution of the field, varies according to the hydrodynamic rule by the Navier-Stokes equation, a methodology was proposed to describe the behavior of the crowd composed of many agent particles as the movement of a compressible, turbulent fluid. A numerical calculation was exemplified for the dynamic behavior and spatial distribution of crowds during movements when there appears a conflict between groups with different characters, imaging for instance the medieval battle of Breitenfeld.
NASA Astrophysics Data System (ADS)
Hardiman, B. S.; Atkins, J.; Dahlin, K.; Fahey, R. T.; Gough, C. M.
2016-12-01
Canopy physical structure - leaf quantity and arrangement - strongly affects light interception and distribution. As such, canopy physical structure is a key driver of forest carbon (C) dynamics. Terrestrial lidar systems (TLS) provide spatially explicit, quantitative characterizations of canopy physical structure at scales commensurate with plot-scale C cycling processes. As an example, previous TLS-based studies established that light use efficiency is positively correlated with canopy physical structure, influencing the trajectory of net primary production throughout forest development. Linking TLS measurements of canopy structure to multispectral satellite observations of forest canopies may enable scaling of ecosystem C cycling processes from leaves to continents. We will report on our study relating a suite of canopy structural metrics to well-established remotely sensed measurements (NDVI, EVI, albedo, tasseled cap indices, etc.) which are indicative of important forest characteristics (leaf area, canopy nitrogen, light interception, etc.). We used Landsat data, which provides observations at 30m resolution, a scale comparable to that of TLS. TLS data were acquired during 2009-2016 from forest sites throughout Eastern North America, comprised primarily of NEON and Ameriflux sites. Canopy physical structure data were compared with contemporaneous growing-season Landsat data. Metrics of canopy physical structure are expected to covary with forest composition and dominant PFT, likely influencing interaction strength between TLS and Landsat canopy metrics. More structurally complex canopies (those with more heterogeneous distributions of leaf area) are expected to have lower albedo, suggesting greater canopy light absorption (higher fAPAR) than simpler canopies. We expect that vegetation indices (NDVI, EVI) will increase with TLS metrics of spatial heterogeneity, and not simply quantity, of leaves, supporting our hypothesis that canopy light absorption is dependent on both leaf quantity and arrangement. Relating satellite observations of canopy properties to TLS metrics of canopy physical structure represents an important advance for modelling canopy energy balance and forest C cycling processes at large spatial scales.
Contributions of solar wind and micrometeoroids to molecular hydrogen in the lunar exosphere
NASA Astrophysics Data System (ADS)
Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.; Pryor, Wayne; Stickle, Angela; Killen, Rosemary M.; Stern, S. Alan
2017-02-01
We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50% of the solar wind H+ inventory to be converted to H2 to account for the observations.
Contributions of Solar Wind and Micrometeoroids to Molecular Hydrogen in the Lunar Exosphere
NASA Technical Reports Server (NTRS)
Hurley, Dana M.; Cook, Jason C.; Retherford, Kurt D.; Greathouse, Thomas; Gladstone, G. Randall; Mandt, Kathleen; Grava, Cesare; Kaufmann, David; Hendrix, Amanda; Feldman, Paul D.;
2016-01-01
We investigate the density and spatial distribution of the H2 exosphere of the Moon assuming various source mechanisms. Owing to its low mass, escape is non-negligible for H2. For high-energy source mechanisms, a high percentage of the released molecules escape lunar gravity. Thus, the H2 spatial distribution for high-energy release processes reflects the spatial distribution of the source. For low energy release mechanisms, the escape rate decreases and the H2 redistributes itself predominantly to reflect a thermally accommodated exosphere. However, a small dependence on the spatial distribution of the source is superimposed on the thermally accommodated distribution in model simulations, where density is locally enhanced near regions of higher source rate. For an exosphere accommodated to the local surface temperature, a source rate of 2.2 g s-1 is required to produce a steady state density at high latitude of 1200 cm-3. Greater source rates are required to produce the same density for more energetic release mechanisms. Physical sputtering by solar wind and direct delivery of H2 through micrometeoroid bombardment can be ruled out as mechanisms for producing and liberating H2 into the lunar exosphere. Chemical sputtering by the solar wind is the most plausible as a source mechanism and would require 10-50 of the solar wind H+ inventory to be converted to H2 to account for the observations.
Physical process in the coma of comet 67P derived from narrowband imaging of fragment species
NASA Astrophysics Data System (ADS)
Perez Lopez, F.; Küppers, M.; Marín-Yaseli de la Parra, J.; Besse, S.; Moissl, R.
2017-09-01
During the rendezvous of the Rosetta spacecraft with comet 67P/Churyumov-Gerasimenko, the OSIRIS scientific cameras monitored the near-nucleus gas environment in various narrow-band filters, observing various fragment species. It turned out that the excitation processes in the innermost coma are significantly different from the overall coma, as observed from the ground [1]. In particular, some of the observed emissions of fragments (daughter molecules) are created by direct dissociation of parent molecules, and in those cases the spatial distribution of the emission directly maps the distribution of parent molecules. We investigate the evolution of the brightness and distribution of the emissions over time to improve our understanding of the underlying emission mechanisms and to derive the spatial distribution of H2O and CO2. The outcome will provide constraints on the homogeneity of the cometary nucleus.
A method to map errors in the deformable registration of 4DCT images1
Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.
2010-01-01
Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288
Monte Carlo simulations for angular and spatial distributions in therapeutic-energy proton beams
NASA Astrophysics Data System (ADS)
Lin, Yi-Chun; Pan, C. Y.; Chiang, K. J.; Yuan, M. C.; Chu, C. H.; Tsai, Y. W.; Teng, P. K.; Lin, C. H.; Chao, T. C.; Lee, C. C.; Tung, C. J.; Chen, A. E.
2017-11-01
The purpose of this study is to compare the angular and spatial distributions of therapeutic-energy proton beams obtained from the FLUKA, GEANT4 and MCNP6 Monte Carlo codes. The Monte Carlo simulations of proton beams passing through two thin targets and a water phantom were investigated to compare the primary and secondary proton fluence distributions and dosimetric differences among these codes. The angular fluence distributions, central axis depth-dose profiles, and lateral distributions of the Bragg peak cross-field were calculated to compare the proton angular and spatial distributions and energy deposition. Benchmark verifications from three different Monte Carlo simulations could be used to evaluate the residual proton fluence for the mean range and to estimate the depth and lateral dose distributions and the characteristic depths and lengths along the central axis as the physical indices corresponding to the evaluation of treatment effectiveness. The results showed a general agreement among codes, except that some deviations were found in the penumbra region. These calculated results are also particularly helpful for understanding primary and secondary proton components for stray radiation calculation and reference proton standard determination, as well as for determining lateral dose distribution performance in proton small-field dosimetry. By demonstrating these calculations, this work could serve as a guide to the recent field of Monte Carlo methods for therapeutic-energy protons.
Landscape patterns and soil organic carbon stocks in agricultural bocage landscapes
NASA Astrophysics Data System (ADS)
Viaud, Valérie; Lacoste, Marine; Michot, Didier; Walter, Christian
2014-05-01
Soil organic carbon (SOC) has a crucial impact on global carbon storage at world scale. SOC spatial variability is controlled by the landscape patterns resulting from the continuous interactions between the physical environment and the society. Natural and anthropogenic processes occurring and interplaying at the landscape scale, such as soil redistribution in the lateral and vertical dimensions by tillage and water erosion processes or spatial differentiation of land-use and land-management practices, strongly affect SOC dynamics. Inventories of SOC stocks, reflecting their spatial distribution, are thus key elements to develop relevant management strategies to improving carbon sequestration and mitigating climate change and soil degradation. This study aims to quantify SOC stocks and their spatial distribution in a 1,000-ha agricultural bocage landscape with dairy production as dominant farming system (Zone Atelier Armorique, LTER Europe, NW France). The site is characterized by high heterogeneity on short distance due to a high diversity of soils with varying waterlogging, soil parent material, topography, land-use and hedgerow density. SOC content and stocks were measured up to 105-cm depth in 200 sampling locations selected using conditioned Latin hypercube sampling. Additive sampling was designed to specifically explore SOC distribution near to hedges: 112 points were sampled at fixed distance on 14 transects perpendicular from hedges. We illustrate the heterogeneity of spatial and vertical distribution of SOC stocks at landscape scale, and quantify SOC stocks in the various landscape components. Using multivariate statistics, we discuss the variability and co-variability of existing spatial organization of cropping systems, environmental factors, and SOM stocks, over landscape. Ultimately, our results may contribute to improving regional or national digital soil mapping approaches, by considering the distribution of SOC stocks within each modeling unit and by accounting for the impact of sensitive ecosystems.
NASA Astrophysics Data System (ADS)
Yao, Bing; Yang, Hui
2016-12-01
This paper presents a novel physics-driven spatiotemporal regularization (STRE) method for high-dimensional predictive modeling in complex healthcare systems. This model not only captures the physics-based interrelationship between time-varying explanatory and response variables that are distributed in the space, but also addresses the spatial and temporal regularizations to improve the prediction performance. The STRE model is implemented to predict the time-varying distribution of electric potentials on the heart surface based on the electrocardiogram (ECG) data from the distributed sensor network placed on the body surface. The model performance is evaluated and validated in both a simulated two-sphere geometry and a realistic torso-heart geometry. Experimental results show that the STRE model significantly outperforms other regularization models that are widely used in current practice such as Tikhonov zero-order, Tikhonov first-order and L1 first-order regularization methods.
NASA Astrophysics Data System (ADS)
Bormann, K.; Hedrick, A. R.; Marks, D. G.; Painter, T. H.
2017-12-01
The spatial and temporal distribution of snow water resources (SWE) in the mountains has been examined extensively through the use of models, in-situ networks and remote sensing techniques. However, until the Airborne Snow Observatory (http://aso.jpl.nasa.gov), our understanding of SWE dynamics has been limited due to a lack of well-constrained spatial distributions of SWE in complex terrain, particularly at high elevations and at regional scales (100km+). ASO produces comprehensive snow depth measurements and well-constrained SWE products providing the opportunity to re-examine our current understanding of SWE distributions with a robust and rich data source. We collected spatially-distributed snow depth and SWE data from over 150 individual ASO acquisitions spanning seven basins in California during the five-year operational period of 2013 - 2017. For each of these acquisitions, we characterized the spatial distribution of snow depth and SWE and examined how these distributions changed with time during snowmelt. We compared these distribution patterns between each of the seven basins and finally, examined the predictability of the SWE distributions using statistical extrapolations through both space and time. We compare and contrast these observationally-based characteristics with those from a physically-based snow model to highlight the strengths and weaknesses of the implementation of our understanding of SWE processes in the model environment. In practice, these results may be used to support or challenge our current understanding of mountain SWE dynamics and provide techniques for enhanced evaluation of high-resolution snow models that go beyond in-situ point comparisons. In application, this work may provide guidance on the potential of ASO to guide backfilling of sparse spaceborne measurements of snow depth and snow water equivalent.
In Situ Mapping of the Organic Matter in Carbonaceous Chondrites and Mineral Relationships
NASA Technical Reports Server (NTRS)
Clemett, Simon J.; Messenger, S.; Thomas-Keprta, K. L.; Ross, D. K.
2012-01-01
Carbonaceous chondrite organic matter represents a fossil record of reactions that occurred in a range of physically, spatially and temporally distinct environments, from the interstellar medium to asteroid parent bodies. While bulk chemical analysis has provided a detailed view of the nature and diversity of this organic matter, almost nothing is known about its spatial distribution and mineralogical relationships. Such information is nevertheless critical to deciphering its formation processes and evolutionary history.
2017-01-09
2017 Distribution A – Approved for public release; Distribution Unlimited. PA Clearance 17030 Introduction • Filtering schemes offer a less...dissipative alternative to the standard artificial dissipation operators when applied to high- order spatial/temporal schemes • Limiting Fact: Filters impart...systems require a preconditioned dual-time framework to be solved efficiently • Limiting Fact: Filtering cannot be applied only at the physical- time
2012-09-01
Feasibility (MT Modeling ) a. Continuum of mixture distributions interpolated b. Mixture infeasibilities calculated for each pixel c. Valid detections...Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CASI Compact Airborne Spectrographic Imager CCD...filtering (MTMF), and was designed by Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for a target that will be
NASA Astrophysics Data System (ADS)
Meenu, S.; Rajeev, K.; Parameswaran, K.
2011-08-01
Monthly mean spatial and vertical distributions of the frequency of occurrence (FSTC) of semitransparent cirrus (STC) and their physical and optical properties over the Indian region are investigated using multiyear CALIPSO data. Over the Bay of Bengal (BoB), FSTC above the lapse-rate tropopause is >30% during the summer monsoon season, most of which has optical depth <0.03. Based on spatial variations of the observed STC properties away from deep convective regions, we propose that the presence of high-altitude clouds below STCs over the BoB and Indian regions during summer monsoon reduces dissipation of STCs, resulting in their longer lifetime (˜1-2 days).
NASA Technical Reports Server (NTRS)
Feinstein, S. P.; Girard, M. A.
1979-01-01
An automated technique for measuring particle diameters and their spatial coordinates from holographic reconstructions is being developed. Preliminary tests on actual cold-flow holograms of impinging jets indicate that a suitable discriminant algorithm consists of a Fourier-Gaussian noise filter and a contour thresholding technique. This process identifies circular as well as noncircular objects. The desired objects (in this case, circular or possibly ellipsoidal) are then selected automatically from the above set and stored with their parametric representations. From this data, dropsize distributions as a function of spatial coordinates can be generated and combustion effects due to hardware and/or physical variables studied.
Spatial distribution of enzyme driven reactions at micro-scales
NASA Astrophysics Data System (ADS)
Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian
2017-04-01
Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).
NASA Astrophysics Data System (ADS)
Peng, Chi; Wang, Meie; Chen, Weiping
2016-11-01
Spatial statistical methods including Cokriging interpolation, Morans I analysis, and geographically weighted regression (GWR) were used for studying the spatial characteristics of polycyclic aromatic hydrocarbon (PAH) accumulation in urban, suburban, and rural soils of Beijing. The concentrations of PAHs decreased spatially as the level of urbanization decreased. Generally, PAHs in soil showed two spatial patterns on the regional scale: (1) regional baseline depositions with a radius of 16.5 km related to the level of urbanization and (2) isolated pockets of soil contaminated with PAHs were found up to around 3.5 km from industrial point sources. In the urban areas, soil PAHs showed high spatial heterogeneity on the block scale, which was probably related to vegetation cover, land use, and physical soil disturbance. The distribution of total PAHs in urban blocks was unrelated to the indicators of the intensity of anthropogenic activity, namely population density, light intensity at night, and road density, but was significantly related to the same indicators in the suburban and rural areas. The moving averages of molecular ratios suggested that PAHs in the suburban and rural soils were a mix of local emissions and diffusion from urban areas.
Spatial variations in mortality in pelagic early life stages of a marine fish (Gadus morhua)
NASA Astrophysics Data System (ADS)
Langangen, Øystein; Stige, Leif C.; Yaragina, Natalia A.; Ottersen, Geir; Vikebø, Frode B.; Stenseth, Nils Chr.
2014-09-01
Mortality of pelagic eggs and larvae of marine fish is often assumed to be constant both in space and time due to lacking information. This may, however, be a gross oversimplification, as early life stages are likely to experience large variations in mortality both in time and space. In this paper we develop a method for estimating the spatial variability in mortality of eggs and larvae. The method relies on survey data and physical-biological particle-drift models to predict the drift of ichthyoplankton. Furthermore, the method was used to estimate the spatially resolved mortality field in the egg and larval stages of Barents Sea cod (Gadus morhua). We analyzed data from the Barents Sea for the period between 1959 and 1993 when there are two surveys available: a spring and a summer survey. An individual-based physical-biological particle-drift model, tailored to the egg and larval stages of Barents Sea cod, was used to predict the drift trajectories from the observed stage-specific distributions in spring to the time of observation in the summer, a drift time of approximately 45 days. We interpreted the spatial patterns in the differences between the predicted and observed abundance distributions in summer as reflecting the spatial patterns in mortality over the drift period. Using the estimated mortality fields, we show that the spatial variations in mortality might have a significant impact on survival to later life stages and we suggest that there may be trade-offs between increased early survival in off shore regions and reduced probability of ending up in the favorable nursing grounds in the Barents Sea. In addition, we show that accounting for the estimated mortality field, improves the correlation between a simulated recruitment index and observation-based indices of juvenile abundance.
Shi, Yuning; Eissenstat, David M.; He, Yuting; ...
2018-05-12
Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yuning; Eissenstat, David M.; He, Yuting
Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less
NASA Astrophysics Data System (ADS)
Wei, Qin-Sheng; Yu, Zhi-Gang; Wang, Bao-Dong; Fu, Ming-Zhu; Xia, Chang-Shui; Liu, Lu; Ge, Ren-Feng; Wang, Hui-Wu; Zhan, Run
2016-04-01
This study investigated the coupling of the spatial-temporal variations in nutrient distributions and physical conditions in the southern Yellow Sea (SYS) using data compiled from annual-cycle surveys conducted in 2006-2007 as well as satellite-derived sea-surface temperature (SST) images. The influence of physical dynamics on the distribution and transport of nutrients varied spatially and seasonally in the SYS. The Changjiang Diluted Water (CDW) plume (in summertime), the Subei Coastal Water (SCW) (year-round), and the Lubei Coastal Current (LCC) (in wintertime) served as important sources of nutrients in the inshore area in a dynamic environment. The saline Taiwan Warm Current (TWC) might transport nutrients to the northeast region of the Changjiang Estuary in the summer, and this nutrient source began to increase from spring to summer and decrease when autumn arrived. Three types of nutrient fronts, i.e., estuarine, offshore, and coastal, were identified. A circular nutrient front caused by cross-shelf transport of SCW in the southeast shelf bank area in the winter and spring was observed. The southeastward flow of western coastal cold water in the SYS might be an important conduit for cross-shelf nutrient exchange between the SYS and the East China Sea (ECS). The tongue-shaped low-nutrient region in the western study area in the wintertime was driven by the interaction of the southward Yellow Sea Western Coastal Current (YSWCC) and the biological activity. The vertically variable SCM (subsurface Chl-a maximum) in the central SYS was controlled by coupled physical-chemical processes that involved stratification and associated nutricline. The average nutrient fluxes into the euphotic zone due to upwelling near the frontal zone of the Yellow Sea Cold Water Mass (YSCWM) in the summer are estimated here for the first time: 1.4 ± 0.9 × 103 μmol/m2/d, 0.1 ± 0.1 × 103 μmol/m2/d, and 2.0 ± 1.3 × 103 μmol/m2/d for DIN, PO4-P, and SiO3-Si, respectively. The depletion of nutrients in the central SYS and the upwelled transport in the boundary of the YSCWM resulted in a spatial transfer of the high Chl-a zone, varying generally from the central SYS to the boundary of the YSCWM from spring to summer, and the nutrient flux associated with this upwelling could contribute significantly to local primary production. This study deepens our understanding of the mechanisms influencing the distribution and transport of nutrients in the SYS.
Carstens, Julienne L; Correa de Sampaio, Pedro; Yang, Dalu; Barua, Souptik; Wang, Huamin; Rao, Arvind; Allison, James P; LeBleu, Valerie S; Kalluri, Raghu
2017-04-27
The exact nature and dynamics of pancreatic ductal adenocarcinoma (PDAC) immune composition remains largely unknown. Desmoplasia is suggested to polarize PDAC immunity. Therefore, a comprehensive evaluation of the composition and distribution of desmoplastic elements and T-cell infiltration is necessary to delineate their roles. Here we develop a novel computational imaging technology for the simultaneous evaluation of eight distinct markers, allowing for spatial analysis of distinct populations within the same section. We report a heterogeneous population of infiltrating T lymphocytes. Spatial distribution of cytotoxic T cells in proximity to cancer cells correlates with increased overall patient survival. Collagen-I and αSMA + fibroblasts do not correlate with paucity in T-cell accumulation, suggesting that PDAC desmoplasia may not be a simple physical barrier. Further exploration of this technology may improve our understanding of how specific stromal composition could impact T-cell activity, with potential impact on the optimization of immune-modulatory therapies.
Ruhl, C.A.; Schoellhamer, D.H.; Stumpf, R.P.; Lindsay, C.L.
2001-01-01
Analysis of suspended-sediment concentration data in San Francisco Bay is complicated by spatial and temporal variability. In situ optical backscatterance sensors provide continuous suspended-sediment concentration data, but inaccessibility, vandalism, and cost limit the number of potential monitoring stations. Satellite imagery reveals the spatial distribution of surficial-suspended sediment concentrations in the Bay; however, temporal resolution is poor. Analysis of the in situ sensor data in conjunction with the satellite reflectance data shows the effects of physical processes on both the spatial and temporal distribution of suspended sediment in San Francisco Bay. Plumes can be created by large freshwater flows. Zones of high suspended-sediment concentrations in shallow subembayments are associated with wind-wave resuspension and the spring-neap cycle. Filaments of clear and turbid water are caused by different transport processes in deep channels, as opposed to adjacent shallow water.
Automatic enhancement of skin fluorescence localization due to refractive index matching
NASA Astrophysics Data System (ADS)
Churmakov, Dmitry Y.; Meglinski, Igor V.; Piletsky, Sergey A.; Greenhalgh, Douglas A.
2004-07-01
Fluorescence diagnostic techniques are notable amongst many other optical methods, as they offer high sensitivity and non-invasive measurements of tissue properties. However, a combination of multiple scattering and physical heterogeneity of biological tissues hampers the interpretation of the fluorescence measurements. The analyses of the spatial distribution of endogenous and exogenous fluorophores excitations within tissues and their contribution to the detected signal localization are essential for many applications. We have developed a novel Monte Carlo technique that gives a graphical perception of how the excitation and fluorescence detected signal are localized in tissues. Our model takes into account spatial distribution of fluorophores and their quantum yields. We demonstrate that matching of the refractive indices of ambient medium and topical skin layer improves spatial localization of the detected fluorescence signal within the tissue. This result is consistent with the recent conclusion that administering biocompatible agents results in higher image contrast.
Insights into a spatially embedded social network from a large-scale snowball sample
NASA Astrophysics Data System (ADS)
Illenberger, J.; Kowald, M.; Axhausen, K. W.; Nagel, K.
2011-12-01
Much research has been conducted to obtain insights into the basic laws governing human travel behaviour. While the traditional travel survey has been for a long time the main source of travel data, recent approaches to use GPS data, mobile phone data, or the circulation of bank notes as a proxy for human travel behaviour are promising. The present study proposes a further source of such proxy-data: the social network. We collect data using an innovative snowball sampling technique to obtain details on the structure of a leisure-contacts network. We analyse the network with respect to its topology, the individuals' characteristics, and its spatial structure. We further show that a multiplication of the functions describing the spatial distribution of leisure contacts and the frequency of physical contacts results in a trip distribution that is consistent with data from the Swiss travel survey.
NASA Astrophysics Data System (ADS)
Fauzi, A. F.; Aditianata, A.
2018-02-01
The existence of street as a place to perform various human activities becomes an important issue nowadays. In the last few decades, cars and motorcycles dominate streets in various cities in the world. On the other hand, human activity on the street is the determinant of the city livability. Previous research has pointed out that if there is lots of human activity in the street, then the city will be interesting. Otherwise, if the street has no activity, then the city will be boring. Learning from that statement, now various cities in the world are developing the concept of livable streets. Livable streets shown by diversity of human activities conducted in the streets’ pedestrian space. In Yogyakarta, one of the streets shown diversity of human activities is Jalan Kemasan. This study attempts to determine the physical factors of pedestrian space affecting the livability in Jalan Kemasan Yogyakarta through spatial analysis. Spatial analysis was performed by overlay technique between liveable point (activity diversity) distribution map and variable distribution map. Those physical pedestrian space research variable included element of shading, street vendors, building setback, seat location, divider between street and pedestrian way, and mixed use building function. More diverse the activity of one variable, then those variable are more affected then others. Overlay result then strengthened by field observation to qualitatively ensure the deduction. In the end, this research will provide valuable input for street and pedestrian space planning that is comfortable for human activities.
Multi-scale and multi-physics simulations using the multi-fluid plasma model
2017-04-25
small The simulation uses 512 second-order elements Bz = 1.0, Te = Ti = 0.01, ui = ue = 0 ne = ni = 1.0 + e−10(x−6) 2 Baboolal, Math . and Comp. Sim. 55...DISTRIBUTION Clearance No. 17211 23 / 31 SUMMARY The blended finite element method (BFEM) is presented DG spatial discretization with explicit Runge...Kutta (i+, n) CG spatial discretization with implicit Crank-Nicolson (e−, fileds) DG captures shocks and discontinuities CG is efficient and robust for
Wu, Jidong; Li, Ying; Li, Ning; Shi, Peijun
2018-01-01
The extent of economic losses due to a natural hazard and disaster depends largely on the spatial distribution of asset values in relation to the hazard intensity distribution within the affected area. Given that statistical data on asset value are collected by administrative units in China, generating spatially explicit asset exposure maps remains a key challenge for rapid postdisaster economic loss assessment. The goal of this study is to introduce a top-down (or downscaling) approach to disaggregate administrative-unit level asset value to grid-cell level. To do so, finding the highly correlated "surrogate" indicators is the key. A combination of three data sets-nighttime light grid, LandScan population grid, and road density grid, is used as ancillary asset density distribution information for spatializing the asset value. As a result, a high spatial resolution asset value map of China for 2015 is generated. The spatial data set contains aggregated economic value at risk at 30 arc-second spatial resolution. Accuracy of the spatial disaggregation reflects redistribution errors introduced by the disaggregation process as well as errors from the original ancillary data sets. The overall accuracy of the results proves to be promising. The example of using the developed disaggregated asset value map in exposure assessment of watersheds demonstrates that the data set offers immense analytical flexibility for overlay analysis according to the hazard extent. This product will help current efforts to analyze spatial characteristics of exposure and to uncover the contributions of both physical and social drivers of natural hazard and disaster across space and time. © 2017 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
Rakovec, O.; Weerts, A. H.; Hazenberg, P.; Torfs, P. J. J. F.; Uijlenhoet, R.
2012-09-01
This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model. The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty.
Parallel structure among environmental gradients and three trophic levels in a subarctic estuary
Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.
2005-01-01
We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.
Parallel structure among environmental gradients and three trophic levels in a subarctic estuary
NASA Astrophysics Data System (ADS)
Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.
2005-07-01
We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.
Spatial versus sequential correlations for random access coding
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Marques, Breno; Pawłowski, Marcin; Bourennane, Mohamed
2016-03-01
Random access codes are important for a wide range of applications in quantum information. However, their implementation with quantum theory can be made in two very different ways: (i) by distributing data with strong spatial correlations violating a Bell inequality or (ii) using quantum communication channels to create stronger-than-classical sequential correlations between state preparation and measurement outcome. Here we study this duality of the quantum realization. We present a family of Bell inequalities tailored to the task at hand and study their quantum violations. Remarkably, we show that the use of spatial and sequential quantum correlations imposes different limitations on the performance of quantum random access codes: Sequential correlations can outperform spatial correlations. We discuss the physics behind the observed discrepancy between spatial and sequential quantum correlations.
NASA Astrophysics Data System (ADS)
Havens, Scott; Marks, Danny; Kormos, Patrick; Hedrick, Andrew
2017-12-01
In the Western US and many mountainous regions of the world, critical water resources and climate conditions are difficult to monitor because the observation network is generally very sparse. The critical resource from the mountain snowpack is water flowing into streams and reservoirs that will provide for irrigation, flood control, power generation, and ecosystem services. Water supply forecasting in a rapidly changing climate has become increasingly difficult because of non-stationary conditions. In response, operational water supply managers have begun to move from statistical techniques towards the use of physically based models. As we begin to transition physically based models from research to operational use, we must address the most difficult and time-consuming aspect of model initiation: the need for robust methods to develop and distribute the input forcing data. In this paper, we present a new open source framework, the Spatial Modeling for Resources Framework (SMRF), which automates and simplifies the common forcing data distribution methods. It is computationally efficient and can be implemented for both research and operational applications. We present an example of how SMRF is able to generate all of the forcing data required to a run physically based snow model at 50-100 m resolution over regions of 1000-7000 km2. The approach has been successfully applied in real time and historical applications for both the Boise River Basin in Idaho, USA and the Tuolumne River Basin in California, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of a physically based snow model possible.
Inertial constraints on limb proprioception are independent of visual calibration.
Riley, M A; Turvey, M T
2001-04-01
When the coincidence of a limb's spatial axes and inertial eigenvectors is broken, haptic proprioception of the limb's position conforms to the eigenvectors. Additionally, when prisms break the coincidence between an arm's visual and actual positions, haptic proprioception is shifted toward the visual-spatial direction. In 3 experiments, variation of the arm's mass distribution was combined with prism adaptation to investigate the hypothesis that the proprioceptive effects of inertial and visual manipulations are additive. This hypothesis was supported across manipulations of plane of motion, body posture, proprioceptive target, and proprioceptive experience during prism adaptation. Haptic proprioception seems to depend on local, physical reference frames that are relative to the physical reference frames for the body's environmental position and orientation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liyin; Wang, Zhen-guo, E-mail: wangzhenguo-wzg@163.com; Li, Qinglian
2015-09-07
Phase Doppler anemometry was applied to investigate the atomization processes of a kerosene jet injected into Ma = 1.86 crossflow. Physical behaviors, such as breakup and coalescence, are reproduced through the analysis of the spatial distribution of kerosene droplets' size. It is concluded that Sauter mean diameter distribution shape transforms into “I” type from “C” type as the atomization development. Simultaneously, the breakup of large droplets and the coalescence of small droplets can be observed throughout the whole atomization process.
NASA Astrophysics Data System (ADS)
Rossani, A.; Scarfone, A. M.
2009-06-01
The linear Boltzmann equation for elastic and/or inelastic scattering is applied to derive the distribution function of a spatially homogeneous system of charged particles spreading in a host medium of two-level atoms and subjected to external electric and/or magnetic fields. We construct a Fokker-Planck approximation to the kinetic equations and derive the most general class of distributions for the given problem by discussing in detail some physically meaningful cases. The equivalence with the transport theory of electrons in a phonon background is also discussed.
Forest health monitoring and other environmental assessments require information on the spatial distribution of basic soil physical and chemical properties. Traditional soil surveys are not available for large areas of forestland in the western US but there are some soil resour...
Role of subsurface physics in the assimilation of surface soil moisture observations
USDA-ARS?s Scientific Manuscript database
Soil moisture controls the exchange of water and energy between the land surface and the atmosphere and exhibits memory that may be useful for climate prediction at monthly time scales. Though spatially distributed observations of soil moisture are increasingly becoming available from remotely sense...
Bayne, Jay S
2008-06-01
In support of a generalization of systems theory, this paper introduces a new approach in modeling complex distributed systems. It offers an analytic framework for describing the behavior of interactive cyberphysical systems (CPSs), which are networked stationary or mobile information systems responsible for the real-time governance of physical processes whose behaviors unfold in cyberspace. The framework is predicated on a cyberspace-time reference model comprising three spatial dimensions plus time. The spatial domains include geospatial, infospatial, and sociospatial references, the latter describing relationships among sovereign enterprises (rational agents) that choose voluntarily to organize and interoperate for individual and mutual benefit through geospatial (physical) and infospatial (logical) transactions. Of particular relevance to CPSs are notions of timeliness and value, particularly as they relate to the real-time governance of physical processes and engagements with other cooperating CPS. Our overarching interest, as with celestial mechanics, is in the formation and evolution of clusters of cyberspatial objects and the federated systems they form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Steven M.; Wirth, Gregory D.; Bershady, Matthew A., E-mail: crawford@saao.ac.za, E-mail: wirth@keck.hawaii.edu, E-mail: mab@astro.wisc.edu
2014-05-01
We analyze the spatial and velocity distributions of confirmed members in five massive clusters of galaxies at intermediate redshift (0.5 < z < 0.9) to investigate the physical processes driving galaxy evolution. Based on spectral classifications derived from broad- and narrow-band photometry, we define four distinct galaxy populations representing different evolutionary stages: red sequence (RS) galaxies, blue cloud (BC) galaxies, green valley (GV) galaxies, and luminous compact blue galaxies (LCBGs). For each galaxy class, we derive the projected spatial and velocity distribution and characterize the degree of subclustering. We find that RS, BC, and GV galaxies in these clusters havemore » similar velocity distributions, but that BC and GV galaxies tend to avoid the core of the two z ≈ 0.55 clusters. GV galaxies exhibit subclustering properties similar to RS galaxies, but their radial velocity distribution is significantly platykurtic compared to the RS galaxies. The absence of GV galaxies in the cluster cores may explain their somewhat prolonged star-formation history. The LCBGs appear to have recently fallen into the cluster based on their larger velocity dispersion, absence from the cores of the clusters, and different radial velocity distribution than the RS galaxies. Both LCBG and BC galaxies show a high degree of subclustering on the smallest scales, leading us to conclude that star formation is likely triggered by galaxy-galaxy interactions during infall into the cluster.« less
NASA Astrophysics Data System (ADS)
Wu, Zhengchao; Li, Qian P.
2016-09-01
This study reports the first comprehensive exploration of the spatial patterns of dissolved and particulate polyunsaturated aldehydes (PUAs), their physical and biological controlling factors, and their potential biogeochemical influences in the Pearl River Estuary (PRE) of the northern South China Sea (NSCS). High levels of total particulate PUAs (0-41 nM) and dissolved PUAs (0.10-0.37 nM) were observed with substantial spatial variation during an intense summer phytoplankton bloom outside the PRE mouth. We found the particulate PUAs strongly correlated with temperature within the high chlorophyll bloom, while showing a generally positive correlation with chlorophyll-a for the entire region. Additionally, the Si/N ratio significantly correlated with the particulate PUAs along the estuary suggesting the important role of silica on PUA production in this region. The dissolved PUAs counterparts exhibited a positive correlation with chlorophyll-a within the high chlorophyll bloom, but a negatively one with temperature outside, reflecting the essential bio-physical coupling effects on the dissolved PUAs distributions in the ocean. Biogeochemical implications of PUAs on the coastal ecosystem include not only the deleterious restriction of high PUAs-producing diatom bloom on copepod population, but also the profound influence of particulate PUAs on the microbial cycling of organic carbon in the NSCS.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2014-09-01
In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2015-01-01
Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.
Qin, Changbo; Jia, Yangwen; Su, Z; Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-07-29
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems.
Qin, Changbo; Jia, Yangwen; Su, Z.(Bob); Zhou, Zuhao; Qiu, Yaqin; Suhui, Shen
2008-01-01
This paper investigates whether remote sensing evapotranspiration estimates can be integrated by means of data assimilation into a distributed hydrological model for improving the predictions of spatial water distribution over a large river basin with an area of 317,800 km2. A series of available MODIS satellite images over the Haihe River basin in China are used for the year 2005. Evapotranspiration is retrieved from these 1×1 km resolution images using the SEBS (Surface Energy Balance System) algorithm. The physically-based distributed model WEP-L (Water and Energy transfer Process in Large river basins) is used to compute the water balance of the Haihe River basin in the same year. Comparison between model-derived and remote sensing retrieval basin-averaged evapotranspiration estimates shows a good piecewise linear relationship, but their spatial distribution within the Haihe basin is different. The remote sensing derived evapotranspiration shows variability at finer scales. An extended Kalman filter (EKF) data assimilation algorithm, suitable for non-linear problems, is used. Assimilation results indicate that remote sensing observations have a potentially important role in providing spatial information to the assimilation system for the spatially optical hydrological parameterization of the model. This is especially important for large basins, such as the Haihe River basin in this study. Combining and integrating the capabilities of and information from model simulation and remote sensing techniques may provide the best spatial and temporal characteristics for hydrological states/fluxes, and would be both appealing and necessary for improving our knowledge of fundamental hydrological processes and for addressing important water resource management problems. PMID:27879946
Modeling the Spatiotemporal Evolution of the Melanoma Tumor Microenvironment
NASA Astrophysics Data System (ADS)
Signoriello, Alexandra; Bosenberg, Marcus; Shattuck, Mark; O'Hern, Corey
The tumor microenvironment, which includes tumor cells, tumor-associated macrophages (TAM), cancer-associated fibroblasts, and endothelial cells, drives the formation and progression of melanoma tumors. Using quantitative analysis of in vivo confocal images of melanoma tumors in three spatial dimensions, we examine the physical properties of the melanoma tumor microenvironment, including the numbers of different cells types, cell size, and morphology. We also compute the nearest neighbor statistics and measure intermediate range spatial correlations between different cell types. We also calculate the step size distribution, mean-square displacement, and non-Gaussian parameter from the spatial trajectories of different cell types in the tumor microenvironment.
An Adaptive Mesh Algorithm: Mesh Structure and Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scannapieco, Anthony J.
2016-06-21
The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented bymore » a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally sparse.« less
The Shale Hills Critical Zone Observatory for Embedded Sensing and Simulation
NASA Astrophysics Data System (ADS)
Duffy, C.; Davis, K.; Kane, T.; Boyer, E.
2009-04-01
The future of environmental observing systems will utilize embedded sensor networks with continuous real-time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models deployed and coordinated at a testbed within the Penn State Experimental Forest. The NSF-funded CZO is designed to observe the detailed space and time complexities of the water and energy cycle for a watershed and ultimately the river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. (PIHM; http://sourceforge.net/projects/pihmmodel/; http://sourceforge.net/projects/pihmgis/ ) The CZO sensor and simulation system is being developed to have the following elements: 1) extensive, spatially-distributed smart sensor networks to gather intensive soil, geologic, hydrologic, geochemical and isotopic data; 2) spatially-explicit multiphysics models/solutions of the land-subsurface-vegetation-atmosphere system; and 3) parallel/distributed, adaptive algorithms for rapidly simulating the states of the watershed at high resolution, and 4) signal processing tools for data mining and parameter estimation. The prototype proposed sensor array and simulation system proposed is demonstrated with preliminary results from our first year.
NASA Astrophysics Data System (ADS)
Carlotti, F.; Espinasse, B.; Zhou, M.; Jean-Luc, D.
2016-02-01
Environmental conditions and zooplankton size structure and taxonomic diversity were investigated in the Gulf of Lion in May 2010 and January 2011. The integrated physical and biological measurements provided a 3D view with high spatial resolution of the physical and biological variables and their correlations over the whole gulf. The effects of physical processes such as freshwater input, coastal upwelling, and water column mixing by winds on phytoplankton and zooplankton distributions were analyzed using these data. Several analytic tests were performed in order to define several ecoregions representing different habitats of plankton communities. Three habitats were distinguished based on statistical analysis performed on biological and physical variables: (1) the coastal area characterized by shallow waters, high chl a concentrations, and a steep slope of the normalized biomass size spectrum (NBSS); (2) the area affected by the Rhône with high stratification and flat NBSS slope; and (3) the continental shelf with a deep mixed layer, relatively low particle concentrations, and moderate NBSS slope. The zooplankton diversity was characterized by spatial differences in community composition among the Rhône plume area, the coastal shelf, and shelf break waters. Defining habitat is a relevant approach to designing new zooplankton sampling strategies, validating distribution models and including the zooplankton compartment in trophodynamic studies.
NASA Astrophysics Data System (ADS)
Luo, W.; Zhang, J.; Wu, Q.; Chen, J.; Huo, X.; Zhang, J.; Zhang, Y.; Wang, T.
2017-08-01
In China historical and cultural heritage resources include historically and culturally famous cities, towns, villages, blocks, immovable cultural relics and the scenic spots with cultural connotation. The spatial distribution laws of these resources are always directly connected to the regional physical geography, historical development and historical traffic geography and have high research values. Meanwhile, the exhibition and use of these resources are greatly influenced by traffic and tourism and other plans at the provincial level, and it is of great realistic significance to offer proposals on traffic and so on that are beneficial to the exhibition of heritage resources based on the research of province distribution laws. This paper takes the spatial analysis of Geographic Information System (GIS) as the basic technological means and all historical and cultural resources in China's Zhejiang Province as research objects, and finds out in the space the accumulation areas and accumulation belts of Zhejiang Province's historic cities and cultural resources through overlay analysis and density analysis, etc. It then discusses the reasons of the formation of these accumulation areas and accumulation belts by combining with the analysis of physical geography and historical geography and so on, and in the end, linking the tourism planning and traffic planning at the provincial level, it provides suggestions on the exhibition and use of accumulation areas and accumulation belts of historic cities and cultural resources.
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Schena, Emiliano; Molardi, Carlo; Korganbayev, Sanzhar
2018-07-01
One of the current frontier of optical fiber sensors, and a unique asset of this sensing technology is the possibility to use a whole optical fiber, or optical fiber device, as a sensor. This solution allows shifting the whole sensing paradigm, from the measurement of a single physical parameter (such as temperature, strain, vibrations, pressure) to the measurement of a spatial distribution, or profiling, of a physical parameter along the fiber length. In the recent years, several technologies are achieving this task with unprecedentedly narrow spatial resolution, ranging from the sub-millimeter to the centimeter-level. In this work, we review the main fiber optic sensing technologies that achieve a narrow spatial resolution: Fiber Bragg Grating (FBG) dense arrays, chirped FBG (CFBG) sensors, optical frequency domain reflectometry (OFDR) based on either Rayleigh scattering or reflective elements, and microwave photonics (MWP). In the second part of the work, we present the impact of spatially dense fiber optic sensors in biomedical applications, where they find the main impact, presenting the key results obtained in thermo-therapies monitoring, high-resolution diagnostic, catheters monitoring, smart textiles, and other emerging applicative fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bily, T.
Thermoluminescent dosimeters represent very useful tool for gamma fields parameters measurements at nuclear research reactors, especially at zero power ones. {sup 7}LiF:Mg,Ti and {sup 7}LiF:Mg,Cu,P type TL dosimeters enable determination of only gamma component in mixed neutron - gamma field. At VR-1 reactor operated within the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague the integral characteristics of gamma rays field were investigated, especially its spatial distribution and time behaviour, i.e. the non-saturated delayed gamma ray emission influence. Measured spatial distributions were compared with monte carlo code MCNP5 calculations. Although MCNP cannot generate delayedmore » gamma rays from fission, the relative gamma dose rate distribution is within {+-} 15% with measured values. The experiments were carried out with core configuration C1 consisting of LEU fuel IRT-4M (19.7 %). (author)« less
Hacker, William C; Li, Shuxiang; Elcock, Adrian H
2017-07-27
We describe structural models of the Escherichia coli chromosome in which the positions of all 4.6 million nucleotides of each DNA strand are resolved. Models consistent with two basic chromosomal orientations, differing in their positioning of the origin of replication, have been constructed. In both types of model, the chromosome is partitioned into plectoneme-abundant and plectoneme-free regions, with plectoneme lengths and branching patterns matching experimental distributions, and with spatial distributions of highly-transcribed chromosomal regions matching recent experimental measurements of the distribution of RNA polymerases. Physical analysis of the models indicates that the effective persistence length of the DNA and relative contributions of twist and writhe to the chromosome's negative supercoiling are in good correspondence with experimental estimates. The models exhibit characteristics similar to those of 'fractal globules,' and even the most genomically-distant parts of the chromosome can be physically connected, through paths combining linear diffusion and inter-segmental transfer, by an average of only ∼10 000 bp. Finally, macrodomain structures and the spatial distributions of co-expressed genes are analyzed: the latter are shown to depend strongly on the overall orientation of the chromosome. We anticipate that the models will prove useful in exploring other static and dynamic features of the bacterial chromosome. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Procassini, R.J.
1997-12-31
The fine-scale, multi-space resolution that is envisioned for accurate simulations of complex weapons systems in three spatial dimensions implies flop-rate and memory-storage requirements that will only be obtained in the near future through the use of parallel computational techniques. Since the Monte Carlo transport models in these simulations usually stress both of these computational resources, they are prime candidates for parallelization. The MONACO Monte Carlo transport package, which is currently under development at LLNL, will utilize two types of parallelism within the context of a multi-physics design code: decomposition of the spatial domain across processors (spatial parallelism) and distribution ofmore » particles in a given spatial subdomain across additional processors (particle parallelism). This implementation of the package will utilize explicit data communication between domains (message passing). Such a parallel implementation of a Monte Carlo transport model will result in non-deterministic communication patterns. The communication of particles between subdomains during a Monte Carlo time step may require a significant level of effort to achieve a high parallel efficiency.« less
NASA Astrophysics Data System (ADS)
Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.
2014-12-01
The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrington, Stephen P.
Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less
Predator-guided sampling reveals biotic structure in the bathypelagic.
Benoit-Bird, Kelly J; Southall, Brandon L; Moline, Mark A
2016-02-24
We targeted a habitat used differentially by deep-diving, air-breathing predators to empirically sample their prey's distributions off southern California. Fine-scale measurements of the spatial variability of potential prey animals from the surface to 1,200 m were obtained using conventional fisheries echosounders aboard a surface ship and uniquely integrated into a deep-diving autonomous vehicle. Significant spatial variability in the size, composition, total biomass, and spatial organization of biota was evident over all spatial scales examined and was consistent with the general distribution patterns of foraging Cuvier's beaked whales (Ziphius cavirostris) observed in separate studies. Striking differences found in prey characteristics between regions at depth, however, did not reflect differences observed in surface layers. These differences in deep pelagic structure horizontally and relative to surface structure, absent clear physical differences, change our long-held views of this habitat as uniform. The revelation that animals deep in the water column are so spatially heterogeneous at scales from 10 m to 50 km critically affects our understanding of the processes driving predator-prey interactions, energy transfer, biogeochemical cycling, and other ecological processes in the deep sea, and the connections between the productive surface mixed layer and the deep-water column. © 2016 The Author(s).
Forest gradient response in Sierran landscapes: the physical template
Urban, Dean L.; Miller, Carol; Halpin, Patrick N.; Stephenson, Nathan L.
2000-01-01
Vegetation pattern on landscapes is the manifestation of physical gradients, biotic response to these gradients, and disturbances. Here we focus on the physical template as it governs the distribution of mixed-conifer forests in California's Sierra Nevada. We extended a forest simulation model to examine montane environmental gradients, emphasizing factors affecting the water balance in these summer-dry landscapes. The model simulates the soil moisture regime in terms of the interaction of water supply and demand: supply depends on precipitation and water storage, while evapotranspirational demand varies with solar radiation and temperature. The forest cover itself can affect the water balance via canopy interception and evapotranspiration. We simulated Sierran forests as slope facets, defined as gridded stands of homogeneous topographic exposure, and verified simulated gradient response against sample quadrats distributed across Sequoia National Park. We then performed a modified sensitivity analysis of abiotic factors governing the physical gradient. Importantly, the model's sensitivity to temperature, precipitation, and soil depth varies considerably over the physical template, particularly relative to elevation. The physical drivers of the water balance have characteristic spatial scales that differ by orders of magnitude. Across large spatial extents, temperature and precipitation as defined by elevation primarily govern the location of the mixed conifer zone. If the analysis is constrained to elevations within the mixed-conifer zone, local topography comes into play as it influences drainage. Soil depth varies considerably at all measured scales, and is especially dominant at fine (within-stand) scales. Physical site variables can influence soil moisture deficit either by affecting water supply or water demand; these effects have qualitatively different implications for forest response. These results have clear implications about purely inferential approaches to gradient analysis, and bear strongly on our ability to use correlative approaches in assessing the potential responses of montane forests to anthropogenic climatic change.
Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon
Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.
1999-01-01
We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may be viewed as an ecological warning sign, thermal patchiness in streams also should be recognized for its biological potential to provide habitat for species existing at the margin of their environmental tolerances.
Spatial patterns of erosion in a bedrock gorge
NASA Astrophysics Data System (ADS)
Beer, Alexander. R.; Turowski, Jens M.; Kirchner, James W.
2017-01-01
Understanding the physical processes driving bedrock channel formation is essential for interpreting and predicting the evolution of mountain landscapes. Here we analyze bedrock erosion patterns measured at unprecedented spatial resolution (mm) over 2 years in a natural bedrock gorge. These spatial patterns show that local bedrock erosion rates depend on position in the channel cross section, height above the streambed, and orientation relative to the main streamflow and sediment path. These observations are consistent with the expected spatial distribution of impacting particles (the tools effect) and shielding by sediment on the bed (the cover effect). Vertical incision by bedrock abrasion averaged 1.5 mm/a, lateral abrasion averaged 0.4 mm/a, and downstream directed abrasion of flow obstacles averaged 2.6 mm/a. However, a single plucking event locally exceeded these rates by orders of magnitude (˜100 mm/a), and accounted for one third of the eroded volume in the studied gorge section over the 2 year study period. Hence, if plucking is spatially more frequent than we observed in this study period, it may contribute substantially to long-term erosion rates, even in the relatively massive bedrock at our study site. Our observations demonstrate the importance of bedrock channel morphology and the spatial distribution of moving and static sediment in determining local erosion rates.
NASA Astrophysics Data System (ADS)
Steenhuis, T. S.; Mendoza, G.; Lyon, S. W.; Gerard Marchant, P.; Walter, M. T.; Schneiderman, E.
2003-04-01
Because the traditional Soil Conservation Service Curve Number (SCS-CN) approach continues to be ubiquitously used in GIS-BASED water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed within an integrated GIS modeling environment a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Spatial representation of hydrologic processes is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point source pollution. The methodology presented here uses the traditional SCS-CN method to predict runoff volume and spatial extent of saturated areas and uses a topographic index to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was incorporated in an existing GWLF water quality model and applied to sub-watersheds of the Delaware basin in the Catskill Mountains region of New York State. We found that the distributed CN-VSA approach provided a physically-based method that gives realistic results for watersheds with VSA hydrology.
Analysis of spatial thermal field in a magnetic bearing
NASA Astrophysics Data System (ADS)
Wajnert, Dawid; Tomczuk, Bronisław
2018-03-01
This paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.
Pesticides found in homes may result from indoor applications to control household pests or by translocation from outdoor sources. Pesticides disperse according to their physical properties and other factors such as human activity, air exchange, temperature and humidity. Insect...
Wolf Creek Research Basin Cold REgion Process Studies - 1992-2003
NASA Astrophysics Data System (ADS)
Janowicz, R.; Hedstrom, N.; Pomeroy, J.; Granger, R.; Carey, S.
2004-12-01
The development of hydrological models in northern regions are complicated by cold region processes. Sparse vegetation influences snowpack accumulation, redistribution and melt, frozen ground effects infiltration and runoff and cold soils in the summer effect evapotranspiration rates. Situated in the upper Yukon River watershed, the 195 km2 Wolf Creek Research Basin was instrumented in 1992 to calibrate hydrologic flow models, and has since evolved into a comprehensive study of cold region processes and linkages, contributing significantly to hydrological and climate change modelling. Studies include those of precipitation distribution, snowpack accumulation and redistribution, energy balance, snowmelt infiltration, and water balance. Studies of the spatial variability of hydrometeorological data demonstrate the importance of physical parameters on their distribution and control on runoff processes. Many studies have also identified the complex interaction of several of the physical parameters, including topography, vegetation and frozen ground (seasonal or permafrost) as important. They also show that there is a fundamental, underlying spatial structure to the watershed that must be adequately represented in parameterization schemes for scaling and watershed modelling. The specific results of numerous studies are presented.
The interplay between human population dynamics and flooding in Bangladesh: a spatial analysis
NASA Astrophysics Data System (ADS)
di Baldassarre, G.; Yan, K.; Ferdous, MD. R.; Brandimarte, L.
2014-09-01
In Bangladesh, socio-economic and hydrological processes are both extremely dynamic and inter-related. Human population patterns are often explained as a response, or adaptation strategy, to physical events, e.g. flooding, salt-water intrusion, and erosion. Meanwhile, these physical processes are exacerbated, or mitigated, by diverse human interventions, e.g. river diversion, levees and polders. In this context, this paper describes an attempt to explore the complex interplay between floods and societies in Bangladeshi floodplains. In particular, we performed a spatially-distributed analysis of the interactions between the dynamics of human settlements and flood inundation patterns. To this end, we used flooding simulation results from inundation modelling, LISFLOOD-FP, as well as global datasets of population distribution data, such as the Gridded Population of the World (20 years, from 1990 to 2010) and HYDE datasets (310 years, from 1700 to 2010). The outcomes of this work highlight the behaviour of Bangladeshi floodplains as complex human-water systems and indicate the need to go beyond the traditional narratives based on one-way cause-effects, e.g. climate change leading to migrations.
NASA Astrophysics Data System (ADS)
Zhu, Liang; Wang, Youguo
2018-07-01
In this paper, a rumor diffusion model with uncertainty of human behavior under spatio-temporal diffusion framework is established. Take physical significance of spatial diffusion into account, a diffusion threshold is set under which the rumor is not a trend topic and only spreads along determined physical connections. Heterogeneity of degree distribution and distance distribution has also been considered in theoretical model at the same time. The global existence and uniqueness of classical solution are proved with a Lyapunov function and an approximate classical solution in form of infinite series is constructed with a system of eigenfunction. Simulations and numerical solutions both on Watts-Strogatz (WS) network and Barabási-Albert (BA) network display the variation of density of infected connections from spatial and temporal dimensions. Relevant results show that the density of infected connections is dominated by network topology and uncertainty of human behavior at threshold time. With increase of social capability, rumor diffuses to the steady state in a higher speed. And the variation trends of diffusion size with uncertainty are diverse on different artificial networks.
NASA Astrophysics Data System (ADS)
Pino, Cristian; Herrera, Paulo; Therrien, René
2017-04-01
In many arid regions around the world groundwater recharge occurs during flash floods. This transient spatially and temporally concentrated flood-recharge process takes place through the variably saturated zone between surface and usually the deep groundwater table. These flood events are characterized by rapid and extreme changes in surface flow depth and velocity and soil moisture conditions. Infiltration rates change over time controlled by the hydraulic gradients and the unsaturated hydraulic conductivity at the surface-subsurface interface. Today is a challenge to assess the spatial and temporal distribution of groundwater recharge from flash flood events under real field conditions at different scales in arid areas. We apply an integrated surface-subsurface variably saturated physically-based flow model at the watershed scale to assess the recharge process during and after a flash flood event registered in an arid fluvial valley in Northern Chile. We are able to reproduce reasonably well observed groundwater levels and surface flow discharges during and after the flood with a calibrated model. We also investigate the magnitude and spatio-temporal distribution of recharge and the response of the system to variations of different surface and subsurface parameters, initial soil moisture content and groundwater table depths and surface flow conditions. We demonstrate how an integrated physically based model allows the exploration of different spatial and temporal system states, and that the analysis of the results of the simulations help us to improve our understanding of the recharge processes in similar type of systems that are common to many arid areas around the world.
Spatial variability of Chinook salmon spawning distribution and habitat preferences
Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.
2017-01-01
We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.
Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields
NASA Astrophysics Data System (ADS)
Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.
1994-07-01
To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.
Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems
NASA Astrophysics Data System (ADS)
Duclut, Charlie; Backhaus, Scott; Chertkov, Michael
2013-06-01
The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a “normal” state where the motors’ mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a “stalled” state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors’ mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.
Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields
NASA Technical Reports Server (NTRS)
Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.
1994-01-01
To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.
Hysteresis, phase transitions, and dangerous transients in electrical power distribution systems.
Duclut, Charlie; Backhaus, Scott; Chertkov, Michael
2013-06-01
The majority of dynamical studies in power systems focus on the high-voltage transmission grids where models consider large generators interacting with crude aggregations of individual small loads. However, new phenomena have been observed indicating that the spatial distribution of collective, nonlinear contribution of these small loads in the low-voltage distribution grid is crucial to the outcome of these dynamical transients. To elucidate the phenomenon, we study the dynamics of voltage and power flows in a spatially extended distribution feeder (circuit) connecting many asynchronous induction motors and discover that this relatively simple 1+1 (space+time) dimensional system exhibits a plethora of nontrivial spatiotemporal effects, some of which may be dangerous for power system stability. Long-range motor-motor interactions mediated by circuit voltage and electrical power flows result in coexistence and segregation of spatially extended phases defined by individual motor states, a "normal" state where the motors' mechanical (rotation) frequency is slightly smaller than the nominal frequency of the basic ac flows and a "stalled" state where the mechanical frequency is small. Transitions between the two states can be initiated by a perturbation of the voltage or base frequency at the head of the distribution feeder. Such behavior is typical of first-order phase transitions in physics, and this 1+1 dimensional model shows many other properties of a first-order phase transition with the spatial distribution of the motors' mechanical frequency playing the role of the order parameter. In particular, we observe (a) propagation of the phase-transition front with the constant speed (in very long feeders) and (b) hysteresis in transitions between the normal and stalled (or partially stalled) phases.
NASA Astrophysics Data System (ADS)
Ghasemi, A.; Borhani, S.; Viparelli, E.; Hill, K. M.
2017-12-01
The Exner equation provides a formal mathematical link between sediment transport and bed morphology. It is typically represented in a discrete formulation where there is a sharp geometric interface between the bedload layer and the bed, below which no particles are entrained. For high temporally and spatially resolved models, this is strictly correct, but typically this is applied in such a way that spatial and temporal fluctuations in the bed surface (bedforms and otherwise) are not captured. This limits the extent to which the exchange between particles in transport and the sediment bed are properly represented, particularly problematic for mixed grain size distributions that exhibit segregation. Nearly two decades ago, Parker (2000) provided a framework for a solution to this dilemma in the form of a probabilistic Exner equation, partially experimentally validated by Wong et al. (2007). We present a computational study designed to develop a physics-based framework for understanding the interplay between physical parameters of the bed and flow and parameters in the Parker (2000) probabilistic formulation. To do so we use Discrete Element Method simulations to relate local time-varying parameters to long-term macroscopic parameters. These include relating local grain size distribution and particle entrainment and deposition rates to long- average bed shear stress and the standard deviation of bed height variations. While relatively simple, these simulations reproduce long-accepted empirically determined transport behaviors such as the Meyer-Peter and Muller (1948) relationship. We also find that these simulations reproduce statistical relationships proposed by Wong et al. (2007) such as a Gaussian distribution of bed heights whose standard deviation increases with increasing bed shear stress. We demonstrate how the ensuing probabilistic formulations provide insight into the transport and deposition of both narrow and wide grain size distribution.
Keyword extraction by nonextensivity measure.
Mehri, Ali; Darooneh, Amir H
2011-05-01
The presence of a long-range correlation in the spatial distribution of a relevant word type, in spite of random occurrences of an irrelevant word type, is an important feature of human-written texts. We classify the correlation between the occurrences of words by nonextensive statistical mechanics for the word-ranking process. In particular, we look at the nonextensivity parameter as an alternative metric to measure the spatial correlation in the text, from which the words may be ranked in terms of this measure. Finally, we compare different methods for keyword extraction. © 2011 American Physical Society
Optimal Interpolation scheme to generate reference crop evapotranspiration
NASA Astrophysics Data System (ADS)
Tomas-Burguera, Miquel; Beguería, Santiago; Vicente-Serrano, Sergio; Maneta, Marco
2018-05-01
We used an Optimal Interpolation (OI) scheme to generate a reference crop evapotranspiration (ETo) grid, forcing meteorological variables, and their respective error variance in the Iberian Peninsula for the period 1989-2011. To perform the OI we used observational data from the Spanish Meteorological Agency (AEMET) and outputs from a physically-based climate model. To compute ETo we used five OI schemes to generate grids for the five observed climate variables necessary to compute ETo using the FAO-recommended form of the Penman-Monteith equation (FAO-PM). The granularity of the resulting grids are less sensitive to variations in the density and distribution of the observational network than those generated by other interpolation methods. This is because our implementation of the OI method uses a physically-based climate model as prior background information about the spatial distribution of the climatic variables, which is critical for under-observed regions. This provides temporal consistency in the spatial variability of the climatic fields. We also show that increases in the density and improvements in the distribution of the observational network reduces substantially the uncertainty of the climatic and ETo estimates. Finally, a sensitivity analysis of observational uncertainties and network densification suggests the existence of a trade-off between quantity and quality of observations.
Insight into nuclear body formation of phytochromes through stochastic modelling and experiment.
Grima, Ramon; Sonntag, Sebastian; Venezia, Filippo; Kircher, Stefan; Smith, Robert W; Fleck, Christian
2018-05-01
Spatial relocalization of proteins is crucial for the correct functioning of living cells. An interesting example of spatial ordering is the light-induced clustering of plant photoreceptor proteins. Upon irradiation by white or red light, the red light-active phytochrome, phytochrome B, enters the nucleus and accumulates in large nuclear bodies. The underlying physical process of nuclear body formation remains unclear, but phytochrome B is thought to coagulate via a simple protein-protein binding process. We measure, for the first time, the distribution of the number of phytochrome B-containing nuclear bodies as well as their volume distribution. We show that the experimental data cannot be explained by a stochastic model of nuclear body formation via simple protein-protein binding processes using physically meaningful parameter values. Rather modelling suggests that the data is consistent with a two step process: a fast nucleation step leading to macroparticles followed by a subsequent slow step in which the macroparticles bind to form the nuclear body. An alternative explanation for the observed nuclear body distribution is that the phytochromes bind to a so far unknown molecular structure. We believe it is likely this result holds more generally for other nuclear body-forming plant photoreceptors and proteins. Creative Commons Attribution license.
An Innovative Metric to Evaluate Satellite Precipitation's Spatial Distribution
NASA Astrophysics Data System (ADS)
Liu, H.; Chu, W.; Gao, X.; Sorooshian, S.
2011-12-01
Thanks to its capability to cover the mountains, where ground measurement instruments cannot reach, satellites provide a good means of estimating precipitation over mountainous regions. In regions with complex terrains, accurate information on high-resolution spatial distribution of precipitation is critical for many important issues, such as flood/landslide warning, reservoir operation, water system planning, etc. Therefore, in order to be useful in many practical applications, satellite precipitation products should possess high quality in characterizing spatial distribution. However, most existing validation metrics, which are based on point/grid comparison using simple statistics, cannot effectively measure satellite's skill of capturing the spatial patterns of precipitation fields. This deficiency results from the fact that point/grid-wised comparison does not take into account of the spatial coherence of precipitation fields. Furth more, another weakness of many metrics is that they can barely provide information on why satellite products perform well or poor. Motivated by our recent findings of the consistent spatial patterns of the precipitation field over the western U.S., we developed a new metric utilizing EOF analysis and Shannon entropy. The metric can be derived through two steps: 1) capture the dominant spatial patterns of precipitation fields from both satellite products and reference data through EOF analysis, and 2) compute the similarities between the corresponding dominant patterns using mutual information measurement defined with Shannon entropy. Instead of individual point/grid, the new metric treat the entire precipitation field simultaneously, naturally taking advantage of spatial dependence. Since the dominant spatial patterns are shaped by physical processes, the new metric can shed light on why satellite product can or cannot capture the spatial patterns. For demonstration, a experiment was carried out to evaluate a satellite precipitation product, CMORPH, against the U.S. daily precipitation analysis of Climate Prediction Center (CPC) at a daily and .25o scale over the Western U.S.
Balk, Benjamin; Elder, Kelly
2000-01-01
We model the spatial distribution of snow across a mountain basin using an approach that combines binary decision tree and geostatistical techniques. In April 1997 and 1998, intensive snow surveys were conducted in the 6.9‐km2 Loch Vale watershed (LVWS), Rocky Mountain National Park, Colorado. Binary decision trees were used to model the large‐scale variations in snow depth, while the small‐scale variations were modeled through kriging interpolation methods. Binary decision trees related depth to the physically based independent variables of net solar radiation, elevation, slope, and vegetation cover type. These decision tree models explained 54–65% of the observed variance in the depth measurements. The tree‐based modeled depths were then subtracted from the measured depths, and the resulting residuals were spatially distributed across LVWS through kriging techniques. The kriged estimates of the residuals were added to the tree‐based modeled depths to produce a combined depth model. The combined depth estimates explained 60–85% of the variance in the measured depths. Snow densities were mapped across LVWS using regression analysis. Snow‐covered area was determined from high‐resolution aerial photographs. Combining the modeled depths and densities with a snow cover map produced estimates of the spatial distribution of snow water equivalence (SWE). This modeling approach offers improvement over previous methods of estimating SWE distribution in mountain basins.
The Spatial Distribution of Resolved Young Stars in Blue Compact Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Murphy, K.; Crone, M. M.
2002-12-01
We present the first results from a survey of the distribution of resolved young stars in Blue Compact Dwarf Galaxies. In order to identify the dominant physical processes driving star formation in these puzzling galaxies, we use a multi-scale cluster-finding algorithm to quantify the characteristic scales and properties of star-forming regions, from sizes smaller than 10 pc up to the size of each entire galaxy. This project was partially funded by the Lubin Chair at Skidmore College.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.
2013-10-01
A multiphysics computational model has been developed for the conventional Gas Metal Arc Welding (GMAW) joining process and used to analyze butt-welding of MIL A46100, a prototypical high-hardness armor martensitic steel. The model consists of five distinct modules, each covering a specific aspect of the GMAW process, i.e., (a) dynamics of welding-gun behavior; (b) heat transfer from the electric arc and mass transfer from the electrode to the weld; (c) development of thermal and mechanical fields during the GMAW process; (d) the associated evolution and spatial distribution of the material microstructure throughout the weld region; and (e) the final spatial distribution of the as-welded material properties. To make the newly developed GMAW process model applicable to MIL A46100, the basic physical-metallurgy concepts and principles for this material have to be investigated and properly accounted for/modeled. The newly developed GMAW process model enables establishment of the relationship between the GMAW process parameters (e.g., open circuit voltage, welding current, electrode diameter, electrode-tip/weld distance, filler-metal feed speed, and gun travel speed), workpiece material chemistry, and the spatial distribution of as-welded material microstructure and properties. The predictions of the present GMAW model pertaining to the spatial distribution of the material microstructure and properties within the MIL A46100 weld region are found to be consistent with general expectations and prior observations.
Material removal and surface figure during pad polishing of fused silica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suratwala, T I; Feit, M D; Steele, W A
2009-05-04
The material removal and surface figure after ceria pad polishing of fused silica glass have been measured and analyzed as a function of kinematics, loading conditions, and polishing time. Also, the friction at the workpiece/lap interface, the slope of the workpiece relative to the lap plane, and lap viscoelastic properties have been measured and correlated to material removal. The results show that the relative velocity between the workpiece & lap (determined by the kinematics) and the pressure distribution determine the spatial and temporal material removal and hence the final surface figure of the workpiece. In the case where the appliedmore » loading and relative velocity distribution over the workpiece are spatially uniform, a significant non-uniform spatial material removal from the workpiece surface is observed. This is due to a non-uniform pressure distribution resulting from: (1) a moment caused by a pivot point and interface friction forces; (2) viscoelastic relaxation of the polyurethane lap; and (3) a physical workpiece/lap interface mismatch. Both the kinematics and these contributions to the pressure distribution are quantitatively described, and then combined to form a spatial and temporal Preston model & code for material removal (called Surface Figure or SurF{copyright}). The surface figure simulations are consistent with the experiment for a wide variety of polishing conditions. This study is an important step towards deterministic full-aperture polishing, which would allow optical glass fabrication to be performed in a more repeatable, less iterative, and hence more economical manner.« less
Assessing spatial and temporal snowpack evolution and melt with time-lapse photography
NASA Astrophysics Data System (ADS)
Bush, C. E.; Ewers, B. E.; Beverly, D.; Speckman, H. N.; Hyde, K.; Ohara, N.
2015-12-01
Snowpack supplies and stores water for many ecosystems of the greater Rocky Mountain region. In Wyoming the snowpack supplies water to 18 states east and west of the Continental Divide. The spatial variability in physical and biological processes creates a heterogeneous pattern of snow evolution. Understanding these processes within individual plots and throughout the entire watershed increases the predictive power of snow distribution, melt rates and contribution to streamflow. However, on site sampling of snow can be an expensive and arduous process. The objective of this experiment was to quantify spatial and temporal patterns of snowpack evolution and melt rates while minimizing perturbations to snowpack through the use of time-lapse photography via trail cameras. Field cameras were assessed as a method to quantify snow depths throughout the 120 ha No Name watershed at approximately 3000 m elevation in central Wyoming. RGB trail cameras were installed at three systematically chosen sites within the watershed to correlate physical and biological drivers of snow distribution. Five stakes were placed in each site in heterogeneous spots that remained in the frame of the camera. Stakes were divided into five centimeter increments, alternating black and white bars, with red bars denoting each half meter. Images were then taken at two-hour intervals over a period of three-months and analyzed with the ImageJ program. Snowpack distributions, as well as melt rates, were variable at both the plot and watershed scales. Meteorological and physical drivers, primarily topography and radiation, accounted for the greatest variability when comparing among plot across the watershed; however, LAI and soil and air temperature were the most significant drivers within plots. Snow-melt rate increased as soils and course woody debris became exposed increasing ground and soil temperature. These data will improve process model predictions of streamflow from the watershed.
Fractal analysis of the spatial distribution of earthquakes along the Hellenic Subduction Zone
NASA Astrophysics Data System (ADS)
Papadakis, Giorgos; Vallianatos, Filippos; Sammonds, Peter
2014-05-01
The Hellenic Subduction Zone (HSZ) is the most seismically active region in Europe. Many destructive earthquakes have taken place along the HSZ in the past. The evolution of such active regions is expressed through seismicity and is characterized by complex phenomenology. The understanding of the tectonic evolution process and the physical state of subducting regimes is crucial in earthquake prediction. In recent years, there is a growing interest concerning an approach to seismicity based on the science of complex systems (Papadakis et al., 2013; Vallianatos et al., 2012). In this study we calculate the fractal dimension of the spatial distribution of earthquakes along the HSZ and we aim to understand the significance of the obtained values to the tectonic and geodynamic evolution of this area. We use the external seismic sources provided by Papaioannou and Papazachos (2000) to create a dataset regarding the subduction zone. According to the aforementioned authors, we define five seismic zones. Then, we structure an earthquake dataset which is based on the updated and extended earthquake catalogue for Greece and the adjacent areas by Makropoulos et al. (2012), covering the period 1976-2009. The fractal dimension of the spatial distribution of earthquakes is calculated for each seismic zone and for the HSZ as a unified system using the box-counting method (Turcotte, 1997; Robertson et al., 1995; Caneva and Smirnov, 2004). Moreover, the variation of the fractal dimension is demonstrated in different time windows. These spatiotemporal variations could be used as an additional index to inform us about the physical state of each seismic zone. As a precursor in earthquake forecasting, the use of the fractal dimension appears to be a very interesting future work. Acknowledgements Giorgos Papadakis wish to acknowledge the Greek State Scholarships Foundation (IKY). References Caneva, A., Smirnov, V., 2004. Using the fractal dimension of earthquake distributions and the slope of the recurrence curve to forecast earthquakes in Colombia. Earth Sci. Res. J., 8, 3-9. Makropoulos, K., Kaviris, G., Kouskouna, V., 2012. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst. Sci., 12, 1425-1430. Papadakis, G., Vallianatos, F., Sammonds, P., 2013. Evidence of non extensive statistical physics behavior of the Hellenic Subduction Zone seismicity. Tectonophysics, 608, 1037-1048. Papaioannou, C.A., Papazachos, B.C., 2000. Time-independent and time-dependent seismic hazard in Greece based on seismogenic sources. Bull. Seismol. Soc. Am., 90, 22-33. Robertson, M.C., Sammis, C.G., Sahimi, M., Martin, A.J., 1995. Fractal analysis of three-dimensional spatial distributions of earthquakes with a percolation interpretation. J. Geophys. Res., 100, 609-620. Turcotte, D.L., 1997. Fractals and chaos in geology and geophysics. Second Edition, Cambridge University Press. Vallianatos, F., Michas, G., Papadakis, G., Sammonds, P., 2012. A non-extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece). Acta Geophys., 60, 758-768.
Optimal control of first order distributed systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Johnson, T. L.
1972-01-01
The problem of characterizing optimal controls for a class of distributed-parameter systems is considered. The system dynamics are characterized mathematically by a finite number of coupled partial differential equations involving first-order time and space derivatives of the state variables, which are constrained at the boundary by a finite number of algebraic relations. Multiple control inputs, extending over the entire spatial region occupied by the system ("distributed controls') are to be designed so that the response of the system is optimal. A major example involving boundary control of an unstable low-density plasma is developed from physical laws.
Billaudeau, Nathalie; Oppert, Jean-Michel; Simon, Chantal; Charreire, Hélène; Casey, Romain; Salze, Paul; Badariotti, Dominique; Banos, Arnaud; Weber, Christiane; Chaix, Basile
2011-01-01
We conducted an environmental justice study of the spatial distribution of sport facilities, a major resource for physical activity, in the Paris Region in France. Comprehensive data of the French Census of Sport Facilities allowed us to investigate disparities not only in the spatial accessibility to facilities, but also in the characteristics of these facilities. We found that the associations between area income and the presence of facilities or favorable characteristics of these facilities varied from positive to negative depending on the facilities and on the characteristics examined. Sensitivity analyses defining area income in circular areas of different radii permitted a refined identification of areas underserved in sport facilities. Copyright © 2010 Elsevier Ltd. All rights reserved.
Scale Invariance in Lateral Head Scans During Spatial Exploration.
Yadav, Chetan K; Doreswamy, Yoganarasimha
2017-04-14
Universality connects various natural phenomena through physical principles governing their dynamics, and has provided broadly accepted answers to many complex questions, including information processing in neuronal systems. However, its significance in behavioral systems is still elusive. Lateral head scanning (LHS) behavior in rodents might contribute to spatial navigation by actively managing (optimizing) the available sensory information. Our findings of scale invariant distributions in LHS lifetimes, interevent intervals and event magnitudes, provide evidence for the first time that the optimization takes place at a critical point in LHS dynamics. We propose that the LHS behavior is responsible for preprocessing of the spatial information content, critical for subsequent foolproof encoding by the respective downstream neural networks.
Scale Invariance in Lateral Head Scans During Spatial Exploration
NASA Astrophysics Data System (ADS)
Yadav, Chetan K.; Doreswamy, Yoganarasimha
2017-04-01
Universality connects various natural phenomena through physical principles governing their dynamics, and has provided broadly accepted answers to many complex questions, including information processing in neuronal systems. However, its significance in behavioral systems is still elusive. Lateral head scanning (LHS) behavior in rodents might contribute to spatial navigation by actively managing (optimizing) the available sensory information. Our findings of scale invariant distributions in LHS lifetimes, interevent intervals and event magnitudes, provide evidence for the first time that the optimization takes place at a critical point in LHS dynamics. We propose that the LHS behavior is responsible for preprocessing of the spatial information content, critical for subsequent foolproof encoding by the respective downstream neural networks.
Modelling of Space-Time Soil Moisture in Savannas and its Relation to Vegetation Patterns
NASA Astrophysics Data System (ADS)
Rodriguez-Iturbe, I.; Mohanty, B.; Chen, Z.
2017-12-01
A physically derived space-time representation of the soil moisture field is presented. It includes the incorporation of a "jitter" process acting over the space-time soil moisture field and accounting for the short distance heterogeneities in topography, soil, and vegetation characteristics. The modelling scheme allows for the representation of spatial random fluctuations of soil moisture at small spatial scales and reproduces quite well the space-time correlation structure of soil moisture from a field study in Oklahoma. It is shown that the islands of soil moisture above different thresholds have sizes which follow power distributions over an extended range of scales. A discussion is provided about the possible links of this feature with the observed power law distributions of the clusters of trees in savannas.
Spatial patterns of native freshwater mussels in the Upper Mississippi River
Ries, Patricia R.; DeJager, Nathan R.; Zigler, Steven J.; Newton, Teresa
2016-01-01
Multiple physical and biological factors structure freshwater mussel communities in large rivers, and their distributions have been described as clumped or patchy. However, few surveys of mussel populations have been conducted over areas large enough and at resolutions fine enough to quantify spatial patterns in their distribution. We used global and local indicators of spatial autocorrelation (i.e., Moran’s I) to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on survey data from 4 reaches (navigation pools 3, 5, 6, and 18) of the Upper Mississippi River, USA. Native mussel densities were sampled at a resolution of ∼300 m and across distances ranging from 21 to 37 km, making these some of the most spatially extensive surveys conducted in a large river. Patch density and the degree and scale of patchiness varied by river reach, age group, and the scale of analysis. In all 4 pools, some patches of adults overlapped patches of juveniles, suggesting spatial and temporal persistence of adequate habitat. In pools 3 and 5, patches of juveniles were found where there were few adults, suggesting recent emergence of positive structuring mechanisms. Last, in pools 3, 5, and 6, some patches of adults were found where there were few juveniles, suggesting that negative structuring mechanisms may have replaced positive ones, leading to a lack of localized recruitment. Our results suggest that: 1) the detection of patches of freshwater mussels requires a multiscaled approach, 2) insights into the spatial and temporal dynamics of structuring mechanisms can be gained by conducting independent analyses of adults and juveniles, and 3) maps of patch distributions can be used to guide restoration and management actions and identify areas where mussels are most likely to influence ecosystem function.
High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry
NASA Astrophysics Data System (ADS)
Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.
2017-12-01
Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.
Spatial Patterns of Snow Cover in North Carolina: Surface and Satellite Perspectives
NASA Technical Reports Server (NTRS)
Fuhrmann, Christopher M.; Hall, Dorothy K.; Perry, L. Baker; Riggs, George A.
2010-01-01
Snow mapping is a common practice in regions that receive large amounts of snowfall annually, have seasonally-continuous snow cover, and where snowmelt contributes significantly to the hydrologic cycle. Although higher elevations in the southern Appalachian Mountains average upwards of 100 inches of snow annually, much of the remainder of the Southeast U.S. receives comparatively little snowfall (< 10 inches). Recent snowy winters in the region have provided an opportunity to assess the fine-grained spatial distribution of snow cover and the physical processes that act to limit or improve its detection across the Southeast. In the present work, both in situ and remote sensing data are utilized to assess the spatial distribution of snow cover for a sample of recent snowfall events in North Carolina. Specifically, this work seeks to determine how well ground measurements characterize the fine-grained patterns of snow cover in relation to Moderate- Resolution Imaging Spectroradiometer (MODIS) snow cover products (in this case, the MODIS Fractional Snow Cover product).
Zipf's law from scale-free geometry.
Lin, Henry W; Loeb, Abraham
2016-03-01
The spatial distribution of people exhibits clustering across a wide range of scales, from household (∼10(-2) km) to continental (∼10(4) km) scales. Empirical data indicate simple power-law scalings for the size distribution of cities (known as Zipf's law) and the population density fluctuations as a function of scale. Using techniques from random field theory and statistical physics, we show that these power laws are fundamentally a consequence of the scale-free spatial clustering of human populations and the fact that humans inhabit a two-dimensional surface. In this sense, the symmetries of scale invariance in two spatial dimensions are intimately connected to urban sociology. We test our theory by empirically measuring the power spectrum of population density fluctuations and show that the logarithmic slope α=2.04 ± 0.09, in excellent agreement with our theoretical prediction α=2. The model enables the analytic computation of many new predictions by importing the mathematical formalism of random fields.
Frey, Jennifer K.; Lewis, Jeremy C.; Guy, Rachel K.; Stuart, James N.
2013-01-01
Simple Summary We evaluated the influence of occurrence records with different reliability on predicted distribution of a unique, rare mammal in the American Southwest, the white-nosed coati (Nasua narica). We concluded that occurrence datasets that include anecdotal records can be used to infer species distributions, providing such data are used only for easily-identifiable species and based on robust modeling methods such as maximum entropy. Use of a reliability rating system is critical for using anecdotal data. Abstract Species distributions are usually inferred from occurrence records. However, these records are prone to errors in spatial precision and reliability. Although influence of spatial errors has been fairly well studied, there is little information on impacts of poor reliability. Reliability of an occurrence record can be influenced by characteristics of the species, conditions during the observation, and observer’s knowledge. Some studies have advocated use of anecdotal data, while others have advocated more stringent evidentiary standards such as only accepting records verified by physical evidence, at least for rare or elusive species. Our goal was to evaluate the influence of occurrence records with different reliability on species distribution models (SDMs) of a unique mammal, the white-nosed coati (Nasua narica) in the American Southwest. We compared SDMs developed using maximum entropy analysis of combined bioclimatic and biophysical variables and based on seven subsets of occurrence records that varied in reliability and spatial precision. We found that the predicted distribution of the coati based on datasets that included anecdotal occurrence records were similar to those based on datasets that only included physical evidence. Coati distribution in the American Southwest was predicted to occur in southwestern New Mexico and southeastern Arizona and was defined primarily by evenness of climate and Madrean woodland and chaparral land-cover types. Coati distribution patterns in this region suggest a good model for understanding the biogeographic structure of range margins. We concluded that occurrence datasets that include anecdotal records can be used to infer species distributions, providing such data are used only for easily-identifiable species and based on robust modeling methods such as maximum entropy. Use of a reliability rating system is critical for using anecdotal data. PMID:26487405
NASA Astrophysics Data System (ADS)
Carlotti, F.; Eisenhauer, L.; Campbell, R.; Diaz, F.
2014-07-01
The spatio-temporal dynamics of a simulated Centropages typicus (Kröyer) population during the year 2001 at the regional scale of the northwestern Mediterranean Sea are addressed using a 3D coupled physical-biogeochemical model. The setup of the coupled biological model comprises a pelagic plankton ecosystem model and a stage-structured population model forced by the 3D velocity and temperature fields provided by an eddy-resolving regional circulation model. The population model for C. typicus (C. t. below) represents demographic processes through five groups of developmental stages, which depend on underlying individual growth and development processes and are forced by both biotic (prey and predator fields) and abiotic (temperature, advection) factors from the coupled physical-biogeochemical model. The objective is to characterize C. t. ontogenic habitats driven by physical and trophic processes. The annual dynamics are presented for two of the main oceanographic stations in the Gulf of Lions, which are representative of shelf and open sea conditions, while the spatial distributions over the whole area are presented for three dates during the year, in early and late spring and in winter. The simulated spatial patterns of C. t. developmental stages are closely related to mesoscale hydrodynamic features and circulation patterns. The seasonal and spatial distributions on the Gulf of Lions shelf depend on the seasonal interplay between the Rhône river plume, the mesoscale eddies on the shelf and the Northern Current acting as either as a dynamic barrier between the shelf and the open sea or allowing cross-shelf exchanges. In the central gyre of the northwestern Mediterranean Sea, the patchiness of plankton is tightly linked to mesoscale frontal systems, surface eddies and filaments and deep gradients. Due to its flexibility in terms of its diet, C. t. succeeds in maintaining its population in both coastal and offshore areas year round. The simulations suggest that the winte-spring food conditions are more favorable on the shelf for C. t., whereas in late summer and fall, the offshore depth-integrated food biomasses represent a larger resource for C. t., particularly when mesoscale structures and vertical discontinuities increase food patchiness. The development and reproduction of C. t. depend on the prey field within the mesoscale structures that induce a contrasting spatial distribution of successive developmental stages on a given observation date. In late fall and winter, the results of the model suggest the existence of three refuge areas where the population maintains winter generations near the coast and within the Rhone River plume, or offshore within canyons within the shelf break, or in the frontal system related to the Northern Current. The simulated spatial and temporal distributions as well as the life cycle and physiological features of C. t. are discussed in light of recent reviews on the dynamics of C. t. in the northwestern Mediterranean Sea.
Physics-based distributed snow models in the operational arena: Current and future challenges
NASA Astrophysics Data System (ADS)
Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.
2017-12-01
The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.
Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example
Andres, Robert J.; Boden, Thomas A.; Higdon, David M.
2016-12-05
Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less
Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andres, Robert J.; Boden, Thomas A.; Higdon, David M.
Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less
Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example
NASA Astrophysics Data System (ADS)
Andres, Robert J.; Boden, Thomas A.; Higdon, David M.
2016-12-01
Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4-190 %, with an average of 120 % (2σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.
A 20-year catalog comparing smooth and sharp estimates of slow slip events in Cascadia
NASA Astrophysics Data System (ADS)
Molitors Bergman, E. G.; Evans, E. L.; Loveless, J. P.
2017-12-01
Slow slip events (SSEs) are a form of aseismic strain release at subduction zones resulting in a temporary reversal in interseismic upper plate motion over a period of weeks, frequently accompanied in time and space by seismic tremor at the Cascadia subduction zone. Locating SSEs spatially along the subduction zone interface is essential to understanding the relationship between SSEs, earthquakes, and tremor and assessing megathrust earthquake hazard. We apply an automated slope comparison-based detection algorithm to single continuously recording GPS stations to determine dates and surface displacement vectors of SSEs, then apply network-based filters to eliminate false detections. The main benefits of this algorithm are its ability to detect SSEs while they are occurring and track the spatial migration of each event. We invert geodetic displacement fields for slip distributions on the subduction zone interface for SSEs between 1997 and 2017 using two estimation techniques: spatial smoothing and total variation regularization (TVR). Smoothing has been frequently used in determining the location of interseismic coupling, earthquake rupture, and SSE slip and yields spatially coherent but inherently blurred solutions. TVR yields compact, sharply bordered slip estimates of similar magnitude and along-strike extent to previously presented studied events, while fitting the constraining geodetic data as well as corresponding smoothing-based solutions. Slip distributions estimated using TVR have up-dip limits that align well with down-dip limits of interseismic coupling on the plate interface and spatial extents that approximately correspond to the distribution of tremor concurrent with each event. TVR gives a unique view of slow slip distributions that can contribute to understanding of the physical properties that govern megathrust slip processes.
Buehrens, T.W.; Glasgow, J.; Ostberg, Carl O.; Quinn, T.P.
2013-01-01
Native Coastal Cutthroat Trout Oncorhynchus clarkii clarkii and Coastal Steelhead O. mykiss irideus hybridize naturally in watersheds of the Pacific Northwest yet maintain species integrity. Partial reproductive isolation due to differences in spawning habitat may limit hybridization between these species, but this process is poorly understood. We used a riverscape approach to determine the spatial distribution of spawning habitats used by native Coastal Cutthroat Trout and Steelhead as evidenced by the distribution of recently emerged fry. Molecular genetic markers were used to classify individuals as pure species or hybrids, and individuals were assigned to age-classes based on length. Fish and physical habitat data were collected in a spatially continuous framework to assess the relationship between habitat and watershed features and the spatial distribution of parental species and hybrids. Sampling occurred in 35 reaches from tidewaters to headwaters in a small (20 km2) coastal watershed in Washington State. Cutthroat, Steelhead, and hybrid trout accounted for 35%, 42%, and 23% of the fish collected, respectively. Strong segregation of spawning areas between Coastal Cutthroat Trout and Steelhead was evidenced by the distribution of age-0 trout. Cutthroat Trout were located farther upstream and in smaller tributaries than Steelhead were. The best predictor of species occurrence at a site was the drainage area of the watershed that contributed to the site. This area was positively correlated with the occurrence of age-0 Steelhead and negatively with the presence of Cutthroat Trout, whereas hybrids were found in areas occupied by both parental species. A similar pattern was observed in older juveniles of both species but overlap was greater, suggesting substantial dispersal of trout after emergence. Our results offer support for spatial reproductive segregation as a factor limiting hybridization between Steelhead and Coastal Cutthroat Trout.
Area-based tests for association between spatial patterns
NASA Astrophysics Data System (ADS)
Maruca, Susan L.; Jacquez, Geoffrey M.
Edge effects pervade natural systems, and the processes that determine spatial heterogeneity (e.g. physical, geochemical, biological, ecological factors) occur on diverse spatial scales. Hence, tests for association between spatial patterns should be unbiased by edge effects and be based on null spatial models that incorporate the spatial heterogeneity characteristic of real-world systems. This paper develops probabilistic pattern association tests that are appropriate when edge effects are present, polygon size is heterogeneous, and the number of polygons varies from one classification to another. The tests are based on the amount of overlap between polygons in each of two partitions. Unweighted and area-weighted versions of the statistics are developed and verified using scenarios representing both polygon overlap and avoidance at different spatial scales and for different distributions of polygon sizes. These statistics were applied to Soda Butte Creek, Wyoming, to determine whether stream microhabitats, such as riffles, pools and glides, can be identified remotely using high spatial resolution hyperspectral imagery. These new ``spatially explicit'' techniques provide information and insights that cannot be obtained from the spectral information alone.
Spatial uncertainty analysis: Propagation of interpolation errors in spatially distributed models
Phillips, D.L.; Marks, D.G.
1996-01-01
In simulation modelling, it is desirable to quantify model uncertainties and provide not only point estimates for output variables but confidence intervals as well. Spatially distributed physical and ecological process models are becoming widely used, with runs being made over a grid of points that represent the landscape. This requires input values at each grid point, which often have to be interpolated from irregularly scattered measurement sites, e.g., weather stations. Interpolation introduces spatially varying errors which propagate through the model We extended established uncertainty analysis methods to a spatial domain for quantifying spatial patterns of input variable interpolation errors and how they propagate through a model to affect the uncertainty of the model output. We applied this to a model of potential evapotranspiration (PET) as a demonstration. We modelled PET for three time periods in 1990 as a function of temperature, humidity, and wind on a 10-km grid across the U.S. portion of the Columbia River Basin. Temperature, humidity, and wind speed were interpolated using kriging from 700- 1000 supporting data points. Kriging standard deviations (SD) were used to quantify the spatially varying interpolation uncertainties. For each of 5693 grid points, 100 Monte Carlo simulations were done, using the kriged values of temperature, humidity, and wind, plus random error terms determined by the kriging SDs and the correlations of interpolation errors among the three variables. For the spring season example, kriging SDs averaged 2.6??C for temperature, 8.7% for relative humidity, and 0.38 m s-1 for wind. The resultant PET estimates had coefficients of variation (CVs) ranging from 14% to 27% for the 10-km grid cells. Maps of PET means and CVs showed the spatial patterns of PET with a measure of its uncertainty due to interpolation of the input variables. This methodology should be applicable to a variety of spatially distributed models using interpolated inputs.
NASA Technical Reports Server (NTRS)
Samir, U.; Widjaja, D.
1981-01-01
A comparative investigation concerning the spatial distribution of ions in the wake of small bodies was conducted using the theoretical wake models of Call (1969) and Parker (1976). Results for bodies with radius/ambient Debye length ratios of 2 and 5, with an electron temperature equal to the ambient electron temperature, and for the ionic Mach numbers S = 2, 4, 6, 8 are presented. Since the main physical difference between the models is in the consideration of the thermal motion of ions (Parker) versus ignoring this component (Call), a comparison between the models yields the quantitative significance of this component in determining the distribution of ions in the wake of artificial satellites. The application of this result to future experiments to be conducted on board the Spacelab and for any other large space platform in the area of space plasma physics is mentioned.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; Or, Dani
2015-04-01
Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.
Atuo, Fidelis Akunke; O'Connell, Timothy John
2017-07-01
The likelihood of encountering a predator influences prey behavior and spatial distribution such that non-consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red-tailed Hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyaneus ), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite ( Colinus virginianus ). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation-specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine-scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.
Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.
2017-01-01
The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.
NASA Astrophysics Data System (ADS)
Vulcani, B.; Treu, T.; Schmidt, K. B.; Poggianti, B. M.; Dressler, A.; Fontana, A.; Bradač, M.; Brammer, G. B.; Hoag, A.; Huang, K.; Malkan, M.; Pentericci, L.; Trenti, M.; von der Linden, A.; Abramson, L.; He, J.; Morris, G.
2016-06-01
What physical processes regulate star formation in dense environments? Understanding why galaxy evolution is environment dependent is one of the key questions of current astrophysics. I will present the first characterization of the spatial distribution of star formation in cluster galaxies at z~0.5, and compare to a field control sample, in order to quantify the role of different physical processes that are believed to be responsible for shutting down star formation (Vulcani et al. 2015, Vulcani et al. in prep). The analysis makes use of data from the Grism Lens-Amplified Survey from Space (GLASS), a large HST cycle-21 program targeting 10 massive galaxy clusters with extensive HST imaging from CLASH and the Frontier Field Initiative. The program consists of 140 primary and 140 parallel orbits of near-infrared WCF3 and optical ACS slitless grism observations, which result in 3D spectroscopy of hundreds of galaxies. The grism data are used to produce spatially resolved maps of the star formation density, while the stellar mass density and optical surface brightness are obtained from multiband imaging. I will describe quantitative measures of the spatial location and extent of the star formation rate. I will show that both in clusters and in the field, Hα is more extended than the rest-frame UV continuum in 60% of the cases, consistent with diffuse star formation and inside out growth. The Hα emission appears more extended in cluster galaxies than in the field, pointing perhaps to ionized gas being stripped and/or star formation being enhanced at large radii. The peak of the Hα emission and that of the continuum are offset by less than 1 kpc. I will also correlate the properties of the Hα maps to the cluster global properties, such as the hot gas density, and the surface mass density. The characterization of the spatial distribution of Halpha provides a new window, yet poorly exploited, on the mechanisms that regulate star formation and morphological transformation in dense environments.
NASA Astrophysics Data System (ADS)
Agnes, Debrina; Nandatama, Akbar; Isdyantoko, Bagus Andi; Aditya Nugraha, Fajri; Ghivarry, Giusti; Putra Aghni, Perwira; ChandraWijaya, Renaldi; Widayani, Prima
2016-11-01
Gili Indah area, located in Jerowaru, East Lombok Regency is a region that classified as farm area in spatial layout planning map of West Nusa Tenggara province. Gili Indah area has a potential as a new tourism attraction within its gilis (local term for ‘small island’). Assessment should be done to prevent ecological disturbance and infringement towards spatial layout planning map caused by incorrect landuse. Land suitability assessment will be done using remote sensing approach whilst satellite imagery being used to get information about ocean ecology and land physical spatial distribution that will be the parameter of tourism land suitability, such as water clarity, ocean current, type of beaches’ substrate, and beach typology. Field observation then will evaluate the accuracy of data extraction also as a material to do reinterpretation. The actual physical condition will be pictured after the spatial model built with GIS by tiered qualitative analysis approach. The result of assessment and mapping of tourism land suitability is that parts of Gili Indah Area (GiliMaringkik, Greater GiliBembeq, and Small GiliBembeq) are suitable for archipelago tourism while the others is not.
Last, Isidore; Levy, Yaakov; Jortner, Joshua
2002-01-01
We address the stability of multicharged finite systems driven by Coulomb forces beyond the Rayleigh instability limit. Our exploration of the nuclear dynamics of heavily charged Morse clusters enabled us to vary the range of the pair potential and of the fissibility parameter, which results in distinct fragmentation patterns and in the angular distributions of the fragments. The Rayleigh instability limit separates between nearly binary (or tertiary) spatially unisotropic fission and spatially isotropic Coulomb explosion into a large number of small, ionic fragments. Implications are addressed for a broad spectrum of dynamics in chemical physics, radiation physics of ultracold gases, and biophysics, involving the fission of clusters and droplets, the realization of Coulomb explosion of molecular clusters, the isotropic expansion of optical molasses, and the Coulomb instability of “isolated” proteins. PMID:12093910
Geotechnical sensing using electromagnetic attenuation between radio transceivers
NASA Astrophysics Data System (ADS)
Ghazanfari, Ehsan; Pamukcu, Sibel; Yoon, Suk-Un; Suleiman, Muhannad T.; Cheng, Liang
2012-12-01
Monitoring the onset of a geo-event such as the intrusion of a chemical plume or a slow progressive mass slide that results in marked changes in the physical properties of the host soil could be potentially accomplished using a distributed network of embedded radio transceivers. This paper introduces a new concept of subsurface geo-event monitoring, which takes advantage of the spatial and temporal variations in signal strength of electromagnetic (EM) waves transmitted within the net of distributed radios within a sensing area. Results of experiments in the laboratory and the field demonstrated that variations in EM signal strength could be used to detect physical changes in the subsurface. Changes in selected physical properties of host soil including water content, density, and formation of discontinuities could be discerned from the changes in the signal strength of the transmitted wave between embedded radio transceivers. Good agreement was observed between a theoretical model and the experimental results for inter-transceiver distances less than 55 cm. These results demonstrated a viable new approach for distributed sensing and monitoring of subsurface hazards for civil infrastructure within a networked domain of radio transceivers.
Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus
2015-01-01
Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; Davis, K. J.; He, Y.
2016-12-01
Forest carbon processes are affected by, among other factors, soil moisture, soil temperature, soil nutrients and solar radiation. Most of the current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve the topographically driven hill-slope land surface heterogeneity or the spatial pattern of nutrient availability. A spatially distributed forest ecosystem model, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while soil nitrogen is transported among model grids via subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation information, while BBGC provides Flux-PIHM with leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). Model results suggest that the vegetation and soil carbon distribution is primarily constrained by nitorgen availability (affected by nitorgen transport via topographically driven subsurface flow), and also constrained by solar radiation and root zone soil moisture. The predicted vegetation and soil carbon distribution generally agrees with the macro pattern observed within the watershed. The coupled ecosystem-hydrologic model provides an important tool to study the impact of topography on watershed carbon processes, as well as the impact of climate change on water resources.
Non-Gaussian limit fluctuations in active swimmer suspensions
NASA Astrophysics Data System (ADS)
Kurihara, Takashi; Aridome, Msato; Ayade, Heev; Zaid, Irwin; Mizuno, Daisuke
2017-03-01
We investigate the hydrodynamic fluctuations in suspensions of swimming microorganisms (Chlamydomonas) by observing the probe particles dispersed in the media. Short-term fluctuations of probe particles were superdiffusive and displayed heavily tailed non-Gaussian distributions. The analytical theory that explains the observed distribution was derived by summing the power-law-decaying hydrodynamic interactions from spatially distributed field sources (here, swimming microorganisms). The summing procedure, which we refer to as the physical limit operation, is applicable to a variety of physical fluctuations to which the classical central limiting theory does not apply. Extending the analytical formula to compare to experiments in active swimmer suspensions, we show that the non-Gaussian shape of the observed distribution obeys the analytic theory concomitantly with independently determined parameters such as the strength of force generations and the concentration of Chlamydomonas. Time evolution of the distributions collapsed to a single master curve, except for their extreme tails, for which our theory presents a qualitative explanation. Investigations thereof and the complete agreement with theoretical predictions revealed broad applicability of the formula to dispersions of active sources of fluctuations.
Spatial Distribution of Large Cloud Drops
NASA Technical Reports Server (NTRS)
Marshak, A.; Knyazikhin, Y.; Larsen, M.; Wiscombe, W.
2004-01-01
By analyzing aircraft measurements of individual drop sizes in clouds, we have shown in a companion paper (Knyazikhin et al., 2004) that the probability of finding a drop of radius r at a linear scale l decreases as l(sup D(r)) where 0 less than or equal to D(r) less than or equal to 1. This paper shows striking examples of the spatial distribution of large cloud drops using models that simulate the observed power laws. In contrast to currently used models that assume homogeneity and therefore a Poisson distribution of cloud drops, these models show strong drop clustering, the more so the larger the drops. The degree of clustering is determined by the observed exponents D(r). The strong clustering of large drops arises naturally from the observed power-law statistics. This clustering has vital consequences for rain physics explaining how rain can form so fast. It also helps explain why remotely sensed cloud drop size is generally biased and why clouds absorb more sunlight than conventional radiative transfer models predict.
The emergence of spatial cyberinfrastructure.
Wright, Dawn J; Wang, Shaowen
2011-04-05
Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.
The emergence of spatial cyberinfrastructure
Wright, Dawn J.; Wang, Shaowen
2011-01-01
Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227
A non extensive statistical physics analysis of the Hellenic subduction zone seismicity
NASA Astrophysics Data System (ADS)
Vallianatos, F.; Papadakis, G.; Michas, G.; Sammonds, P.
2012-04-01
The Hellenic subduction zone is the most seismically active region in Europe [Becker & Meier, 2010]. The spatial and temporal distribution of seismicity as well as the analysis of the magnitude distribution of earthquakes concerning the Hellenic subduction zone, has been studied using the concept of Non-Extensive Statistical Physics (NESP) [Tsallis, 1988 ; Tsallis, 2009]. Non-Extensive Statistical Physics, which is a generalization of Boltzmann-Gibbs statistical physics, seems a suitable framework for studying complex systems (Vallianatos, 2011). Using this concept, Abe & Suzuki (2003;2005) investigated the spatial and temporal properties of the seismicity in California and Japan and recently Darooneh & Dadashinia (2008) in Iran. Furthermore, Telesca (2011) calculated the thermodynamic parameter q of the magnitude distribution of earthquakes of the southern California earthquake catalogue. Using the external seismic zones of 36 seismic sources of shallow earthquakes in the Aegean and the surrounding area [Papazachos, 1990], we formed a dataset concerning the seismicity of shallow earthquakes (focal depth ≤ 60km) of the subduction zone, which is based on the instrumental data of the Geodynamic Institute of the National Observatory of Athens (http://www.gein.noa.gr/, period 1990-2011). The catalogue consists of 12800 seismic events which correspond to 15 polygons of the aforementioned external seismic zones. These polygons define the subduction zone, as they are associated with the compressional stress field which characterizes a subducting regime. For each event, moment magnitude was calculated from ML according to the suggestions of Papazachos et al. (1997). The cumulative distribution functions of the inter-event times and the inter-event distances as well as the magnitude distribution for each seismic zone have been estimated, presenting a variation in the q-triplet along the Hellenic subduction zone. The models used, fit rather well to the observed distributions, implying the complexity of the spatiotemporal properties of seismicity and the usefulness of NESP in investigating such phenomena, exhibiting scale-free nature and long range memory effects. Acknowledgments. This work was supported in part by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC". GM and GP wish to acknowledge the partial support of the Greek State Scholarships Foundation (ΙΚΥ).
Mulware, Stephen Juma
2015-01-01
The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.
NASA Technical Reports Server (NTRS)
Genzel, R.; Harris, A. I.; Geis, N.; Stacey, G. J.; Townes, C. H.
1990-01-01
Results are presented from FIR, sub-mm, and mm spectroscopic observations of the radio arc and the +20/+50 km/s molecular clouds in the Galactic center. The results for the radio arc are analyzed, including the spatial distribution of C II forbidden line emission, the spatial distribution of CO emission, the luminosity and mass of C(+) regions, and the CO 7 - 6 emission and line profiles. Model calculations are used to study molecular gas in the radio arc. In addition, forbidden C II, CO 7 - 6, and C(O-18) mapping is presented for the +20/+50 km/x clouds. Consideration is given to the impact of the results on the interpretation of the physical conditions, excitation, and heating of the gas clouds in the arc and near the center.
Spatial analysis of crime incidence and adolescent physical activity.
Robinson, Alyssa I; Carnes, Fei; Oreskovic, Nicolas M
2016-04-01
Adolescents do not achieve recommended levels of physical activity. Crime is believed to be a barrier to physical activity among youth, but findings are inconsistent. This study compares the spatial distribution of crime incidences and moderate-to-vigorous physical activity (MVPA) among adolescents in Massachusetts between 2011 and 2012, and examines the correlation between crime and MVPA. Eighty adolescents provided objective physical activity (accelerometer) and location (Global Positioning Systems) data. Crime report data were obtained from the city police department. Data were mapped using geographic information systems, and crime and MVPA densities were calculated using kernel density estimations. Spearman's correlation tested for associations between crime and MVPA. Overall, 1694 reported crimes and 16,702min of MVPA were included in analyses. A strong positive correlation was present between crime and adolescent MVPA (ρ=0.72, p<0.0001). Crime remained positively associated with MVPA in locations falling within the lowest quartile (ρ=0.43, p<0.0001) and highest quartile (ρ=0.32, p<0.0001) of crime density. This study found a strong positive association between crime and adolescent MVPA, despite research suggesting the opposite relationship. This counterintuitive finding may be explained by the logic of a common destination: neighborhood spaces which are desirable destinations and promote physical activity may likewise attract crime. Copyright © 2016 Elsevier Inc. All rights reserved.
Spatial Analysis of Crime Incidence and Adolescent Physical Activity
Robinson, Alyssa I.; Carnes, Fei
2016-01-01
Adolescents do not achieve recommended levels of physical activity. Crime is believed to be a barrier to physical activity among youth, but findings are inconsistent. This study compares the spatial distribution of crime incidences and moderate-to-vigorous physical activity (MVPA) among adolescents in Massachusetts between 2011 and 2012, and examines the correlation between crime and MVPA. Eighty adolescents provided objective physical activity (accelerometer) and location (Global Positioning Systems) data. Crime report data were obtained from the city police department. Data were mapped using geographic information systems, and crime and MVPA densities were calculated using kernel density estimations. Spearman’s correlation tested for associations between crime and MVPA. Overall, 1,694 reported crimes and 16,702 minutes of MVPA were included in analyses. A strong positive correlation was present between crime and adolescent MVPA (ρ=0.72, p<0.0001). Crime remained positively associated with MVPA in locations falling within the lowest quartile (ρ=0.43, p<0.0001) and highest quartile (ρ=0.32, p<0.0001) of crime density. This study found a strong positive association between crime and adolescent MVPA, despite research suggesting the opposite relationship. This counterintuitive finding may be explained by the logic of a common destination: neighborhood spaces which are desirable destinations and promote physical activity may likewise attract crime. PMID:26820115
Carbonate system at Iheya North in Okinawa Trough~IODP drilling and post drilling environment~
NASA Astrophysics Data System (ADS)
Noguchi, T.; Hatta, M.; Sunamura, M.; Fukuba, T.; Suzue, T.; Kimoto, H.; Okamura, K.
2012-12-01
The Iheya North hydrothermal field in middle Okinawa Trough is covered with thick hemipelagic and volcanic sediment. Geochemical characteristics of Okinawa Trough is to provide abundant of CO2, CH4, NH4, H2, and H2S which originated from magmatic gases, sedimentary organic matters. On this hydrothermal field, a scientific drilling by Integrated Ocean Drilling Program (IODP) Expedition 331 was conducted to investigate metabolically diverse subseafloor microbial ecosystem and their physical and chemical settings. To clarify the spatial distribution of physical condition beneath seafloor around the hydrothermal filed, we focus on the carbonate species analysis to reconstruct in-situ pH, which regulate the diversities of microbial community and mineral composition. We developed the small sample volume dissolved total inorganic carbon (DIC) analyzer and conducted the onboard analysis for the interstitial water during IODP Exp.331. Total alkalinity, boron, phosphate, and ammonium also analyzed for thermodynamic calculation. In this presentation, we represent the spatial distribution of pH beneath the Iheya North hydrothermal field. In addition, we developed a 128 bottles multiple water sampler (ANEMONE) for post drilling environmental monitoring. ANEMONE sampler was deployed on the manned submersible Shinkai 6500 with other chemical sensors (CTD, turbidity, pH, ORP, and H2S), and collected the hydrothermal plume samples every 5 minutes during YK12-05 cruise by R/V Yokosuka (Japan Agency for Marine-Earth Science and Technology, JAMSTEC). DIC concentration of plume samples collected by ANEMONE sampler were analyzed just after submersible retrieve, and nutrients, manganese, density, and total cell counts determination were conducted onshore analysis. Based on these results, we describe the spatial distribution of DIC and carbonate system on Iheya North hydrothermal field (interstitial water, hydrothermal fluid, and hydrothermal plume).
Autonomous perception and decision making in cyber-physical systems
NASA Astrophysics Data System (ADS)
Sarkar, Soumik
2011-07-01
The cyber-physical system (CPS) is a relatively new interdisciplinary technology area that includes the general class of embedded and hybrid systems. CPSs require integration of computation and physical processes that involves the aspects of physical quantities such as time, energy and space during information processing and control. The physical space is the source of information and the cyber space makes use of the generated information to make decisions. This dissertation proposes an overall architecture of autonomous perception-based decision & control of complex cyber-physical systems. Perception involves the recently developed framework of Symbolic Dynamic Filtering for abstraction of physical world in the cyber space. For example, under this framework, sensor observations from a physical entity are discretized temporally and spatially to generate blocks of symbols, also called words that form a language. A grammar of a language is the set of rules that determine the relationships among words to build sentences. Subsequently, a physical system is conjectured to be a linguistic source that is capable of generating a specific language. The proposed technology is validated on various (experimental and simulated) case studies that include health monitoring of aircraft gas turbine engines, detection and estimation of fatigue damage in polycrystalline alloys, and parameter identification. Control of complex cyber-physical systems involve distributed sensing, computation, control as well as complexity analysis. A novel statistical mechanics-inspired complexity analysis approach is proposed in this dissertation. In such a scenario of networked physical systems, the distribution of physical entities determines the underlying network topology and the interaction among the entities forms the abstract cyber space. It is envisioned that the general contributions, made in this dissertation, will be useful for potential application areas such as smart power grids and buildings, distributed energy systems, advanced health care procedures and future ground and air transportation systems.
Information hidden in the velocity distribution of ions and the exact kinetic Bohm criterion
NASA Astrophysics Data System (ADS)
Tsankov, Tsanko V.; Czarnetzki, Uwe
2017-05-01
Non-equilibrium distribution functions of electrons and ions play an important role in plasma physics. A prominent example is the kinetic Bohm criterion. Since its first introduction it has been controversial for theoretical reasons and due to the lack of experimental data, in particular on the ion distribution function. Here we resolve the theoretical as well as the experimental difficulties by an exact solution of the kinetic Boltzmann equation including charge exchange collisions and ionization. This also allows for the first time non-invasive measurement of spatially resolved ion velocity distributions, absolute values of the ion and electron densities, temperatures, and mean energies as well as the electric field and the plasma potential in the entire plasma. The non-invasive access to the spatially resolved distribution functions of electrons and ions is applied to the problem of the kinetic Bohm criterion. Theoretically a so far missing term in the criterion is derived and shown to be of key importance. With the new term the validity of the kinetic criterion at high collisionality and its agreement with the fluid picture are restored. All findings are supported by experimental data, theory and a numerical model with excellent agreement throughout.
NASA Astrophysics Data System (ADS)
Guan, Fada
Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.
Lehmann, Sara; Gajek, Grzegorz; Chmiel, Stanisław; Polkowska, Żaneta
2016-12-01
The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.
NASA Astrophysics Data System (ADS)
Beisiegel, Kolja; Darr, Alexander; Zettler, Michael L.; Friedland, René; Gräwe, Ulf; Gogina, Mayya
2018-07-01
Quantitative sampling of sessile assemblages on temperate subtidal rocky reefs is expensive and severely time-limited by logistics. However, knowledge about distribution patterns of critical and endangered species and habitats at different spatial scales is needed for effective marine management strategies. To gain information of sessile community distribution on broader spatial scales (>1 km), visual imaging was employed for the first time on a reef complex in the south-western Baltic Sea. Analysis of 3000 images along 6 transects (in total 18 km long) from 10 to 40 m depth revealed high natural variation in reef physical structure, with well-defined changes in sessile species richness, cover and composition. Overall 14 morphological groups could be distinguished by imaging and 4 distinct community groups associated with specific habitat requirements were identified. Depth remained the best descriptor. However, data indicate that light intensity, concentration of organic carbon and suspended particulate matter have an effect on reef community distribution. Compared to fully marine conditions, the study revealed a unique zonation pattern in the circalittoral zone of the Fehmarnbelt brackish transition area, with an unexpected reef habitat in the trench. We conclude that towed camera platform imagery might help to close the information gap regarding rocky reefs in the temperate subtidal. It provides a valuable tool to assess the main distribution patterns of sessile assemblages on rough terrain, potentially applicable for management and conservation planning.
Spatial Distribution of Io's Neutral Oxygen Cloud Observed by Hisaki
NASA Astrophysics Data System (ADS)
Koga, Ryoichi; Tsuchiya, Fuminori; Kagitani, Masato; Sakanoi, Takeshi; Yoneda, Mizuki; Yoshioka, Kazuo; Yoshikawa, Ichiro; Kimura, Tomoki; Murakami, Go; Yamazaki, Atsushi; Smith, H. Todd; Bagenal, Fran
2018-05-01
We report on the spatial distribution of a neutral oxygen cloud surrounding Jupiter's moon Io and along Io's orbit observed by the Hisaki satellite. Atomic oxygen and sulfur in Io's atmosphere escape from the exosphere mainly through atmospheric sputtering. Some of the neutral atoms escape from Io's gravitational sphere and form neutral clouds around Jupiter. The extreme ultraviolet spectrograph called EXCEED (Extreme Ultraviolet Spectroscope for Exospheric Dynamics) installed on the Japan Aerospace Exploration Agency's Hisaki satellite observed the Io plasma torus continuously in 2014-2015, and we derived the spatial distribution of atomic oxygen emissions at 130.4 nm. The results show that Io's oxygen cloud is composed of two regions, namely, a dense region near Io and a diffuse region with a longitudinally homogeneous distribution along Io's orbit. The dense region mainly extends on the leading side of Io and inside of Io's orbit. The emissions spread out to 7.6 Jupiter radii (RJ). Based on Hisaki observations, we estimated the radial distribution of the atomic oxygen number density and oxygen ion source rate. The peak atomic oxygen number density is 80 cm-3, which is spread 1.2 RJ in the north-south direction. We found more oxygen atoms inside Io's orbit than a previous study. We estimated the total oxygen ion source rate to be 410 kg/s, which is consistent with the value derived from a previous study that used a physical chemistry model based on Hisaki observations of ultraviolet emission ions in the Io plasma torus.
Neutron skyshine measurements at Fermilab.
Cossairt, J D; Coulson, L V
1985-02-01
Neutron skyshine has been a significant source of environmental radiation exposure at many high-energy proton accelerators. A particularly troublesome source of skyshine neutrons has existed at Fermilab during operation of the 400-GeV high-energy physics program. This paper reports on several measurements of this source made with a DePangher precision long counter at large distances. The spatial distribution of the neutron skyshine can approximately be described as an inverse square law dependence multiplied by an exponential with an approximate attenuation length of 1200 +/- 300 m. The absolute magnitude of the distributions can be matched directly to the conventionally measured absorbed dose distribution near the source.
Hydrate morphology: Physical properties of sands with patchy hydrate saturation
Dai, S.; Santamarina, J.C.; Waite, William F.; Kneafsey, T.J.
2012-01-01
The physical properties of gas hydrate-bearing sediments depend on the volume fraction and spatial distribution of the hydrate phase. The host sediment grain size and the state of effective stress determine the hydrate morphology in sediments; this information can be used to significantly constrain estimates of the physical properties of hydrate-bearing sediments, including the coarse-grained sands subjected to high effective stress that are of interest as potential energy resources. Reported data and physical analyses suggest hydrate-bearing sands contain a heterogeneous, patchy hydrate distribution, whereby zones with 100% pore-space hydrate saturation are embedded in hydrate-free sand. Accounting for patchy rather than homogeneous hydrate distribution yields more tightly constrained estimates of physical properties in hydrate-bearing sands and captures observed physical-property dependencies on hydrate saturation. For example, numerical modeling results of sands with patchy saturation agree with experimental observation, showing a transition in stiffness starting near the series bound at low hydrate saturations but moving toward the parallel bound at high hydrate saturations. The hydrate-patch size itself impacts the physical properties of hydrate-bearing sediments; for example, at constant hydrate saturation, we find that conductivity (electrical, hydraulic and thermal) increases as the number of hydrate-saturated patches increases. This increase reflects the larger number of conductive flow paths that exist in specimens with many small hydrate-saturated patches in comparison to specimens in which a few large hydrate saturated patches can block flow over a significant cross-section of the specimen.
Rodrigo J. Mercader; Nathan W. Siegert; Andrew M. Liebhold; Deborah G. McCullough
2011-01-01
Management programs for invasive species are often developed at a regional or national level, but physical intervention generally takes place over relatively small areas occupied by newly founded, isolated populations. The ability to predict how local habitat variation affects the expansion of such newly founded populations is essential for efficiently targeting...
An overview of mesoscales distribution of ocean color in the North Atlantic
NASA Technical Reports Server (NTRS)
Yentsch, C. S.
1989-01-01
The spatial changes in phytoplankton abundance is the result of regional differences in the amount of nutrient fluxed into the euphotic zone. The energy contributing to this flux is derived from ocean currents. A close coupling between physics and biology of the system accounts for mesoscale features associated with fluid dynamics being reflected by changes in ocean color.
Grosse, Guido; Robinson, Joel E.; Bryant, Robin; Taylor, Maxwell D.; Harper, William; DeMasi, Amy; Kyker-Snowman, Emily; Veremeeva, Alexandra; Schirrmeister, Lutz; Harden, Jennifer
2013-01-01
This digital database is the product of collaboration between the U.S. Geological Survey, the Geophysical Institute at the University of Alaska, Fairbanks; the Los Altos Hills Foothill College GeoSpatial Technology Certificate Program; the Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany; and the Institute of Physical Chemical and Biological Problems in Soil Science of the Russian Academy of Sciences. The primary goal for creating this digital database is to enhance current estimates of soil organic carbon stored in deep permafrost, in particular the late Pleistocene syngenetic ice-rich permafrost deposits of the Yedoma Suite. Previous studies estimated that Yedoma deposits cover about 1 million square kilometers of a large region in central and eastern Siberia, but these estimates generally are based on maps with scales smaller than 1:10,000,000. Taking into account this large area, it was estimated that Yedoma may store as much as 500 petagrams of soil organic carbon, a large part of which is vulnerable to thaw and mobilization from thermokarst and erosion. To refine assessments of the spatial distribution of Yedoma deposits, we digitized 11 Russian Quaternary geologic maps. Our study focused on extracting geologic units interpreted by us as late Pleistocene ice-rich syngenetic Yedoma deposits based on lithology, ground ice conditions, stratigraphy, and geomorphological and spatial association. These Yedoma units then were merged into a single data layer across map tiles. The spatial database provides a useful update of the spatial distribution of this deposit for an approximately 2.32 million square kilometers land area in Siberia that will (1) serve as a core database for future refinements of Yedoma distribution in additional regions, and (2) provide a starting point to revise the size of deep but thaw-vulnerable permafrost carbon pools in the Arctic based on surface geology and the distribution of cryolithofacies types at high spatial resolution. However, we recognize that the extent of Yedoma deposits presented in this database is not complete for a global assessment, because Yedoma deposits also occur in the Taymyr lowlands and Chukotka, and in parts of Alaska and northwestern Canada.
NASA Astrophysics Data System (ADS)
Merkens, Jan-Ludolf; Reimann, Lena; Hinkel, Jochen; Vafeidis, Athanasios T.
2016-04-01
This work extends the Shared Socioeconomic Pathways (SSPs) by developing spatial projections of global coastal population distribution for the five basic SSPs. Based on a series of coastal migration drivers, which were identified from existing literature, we develop coastal narratives for the five basic SSPs (SSP1-5). These narratives account for differences in coastal versus inland population development in urban and rural areas. To spatially distribute population we use the International Institute for Applied Systems Analysis (IIASA) national population and urbanisation projections and employ country-specific growth rates which differ for coastal and inland as well as for urban and rural regions. These rates are derived from spatial analysis of historical population data. We then adjust these rates for each SSP based on the coastal narratives. The resulting global population grids depict the projected distribution of coastal population for each SSP, until the end of the 21st century, at a spatial resolution of 30 arc seconds. These grids exhibit a three- to four-fold increase in coastal population compared to the basic SSPs. Across all SSPs, except for SSP3, coastal population peaks by the middle of the 21st century and declines afterwards. In SSP3 the coastal population grows continuously until 2100. Compared to the base year 2000 the coastal population increases considerably in all SSPs. The extended SSPs are intended to be utilised in Impact, Adaptation and Vulnerability (IAV) assessments as they allow for improved analysis of exposure to sea-level rise and coastal flooding under different physical and socioeconomic scenarios.
NASA Astrophysics Data System (ADS)
Takodjou Wambo, Jonas Didero; Ganno, Sylvestre; Djonthu Lahe, Yannick Sthopira; Kouankap Nono, Gus Djibril; Fossi, Donald Hermann; Tchouatcha, Milan Stafford; Nzenti, Jean Paul
2018-06-01
Linear and nonlinear geostatistic is commonly used in ore grade estimation and seldom used in Geographical Information System (GIS) technology. In this study, we suggest an approach based on geostatistic linear ordinary kriging (OK) and Geographical Information System (GIS) techniques to investigate the spatial distribution of alluvial gold content, mineralized and gangue layers thicknesses from 73 pits at the Ngoura-Colomines area with the aim to determine controlling factors for the spatial distribution of mineralization and delineate the most prospective area for primary gold mineralization. Gold content varies between 0.1 and 4.6 g/m3 and has been broadly grouped into three statistical classes. These classes have been spatially subdivided into nine zones using ordinary kriging model based on physical and topographical characteristics. Both mineralized and barren layer thicknesses show randomly spatial distribution, and there is no correlation between these parameters and the gold content. This approach has shown that the Ngoura-Colomines area is located in a large shear zone compatible with the Riedel fault system composed of P and P‧ fractures oriented NE-SW and NNE-SSW respectively; E-W trending R fractures and R‧ fractures with NW-SE trends that could have contributed significantly to the establishment of this gold mineralization. The combined OK model and GIS analysis have led to the delineation of Colomines, Tissongo, Madubal and Boutou villages as the most prospective areas for the exploration of primary gold deposit in the study area.
Climate refugia: The physical, hydrologic and disturbance basis
NASA Astrophysics Data System (ADS)
Holden, Z. A.; Maneta, M. P.; Forthofer, J.
2015-12-01
Projected changes in global climate and associated shifts in vegetation have increased interest in understanding species persistence at local scales. We examine the climatic and physical factors that could mediate changes in the distribution of vegetation in regions of complex topography. Using massive networks of low-cost temperature and humidity sensors, we developed topographically-resolved daily historical gridded temperature data for the US Northern Rockies. We used the WindNinja model to create daily historical wind speed maps across the same domain. Using a spatially distributed ecohydrology model (ECH2O) we examine separately the sensitivity of modeled evapotranspiration and soil moisture to wind, radiation, soil properties, minimum temperature and humidity. A suite of physical factors including lower wind speeds, cold air drainage, solar shading and increased soil depth reduce evapotranspiration and increase late season moisture availability in valley bottoms. Evapotranspiration shows strong sensitivity to spatial variability in surface wind speed, suggesting that sheltering effects from winds may be an important factor contributing to mountain refugia. Fundamental to our understanding of patterns of vegetation change is the role of stand-replacing wildfires, which modify the physical environment and subsequent patterns of species persistence and recruitment. Using satellite-derived maps of burn severity for recent fires in the US Northern Rockies we examined relationships between wind speed, cold air drainage potential and soil depth and the occurrence of unburned and low severity fire. Severe fire is less likely to occur in areas with high cold air drainage potential and low wind speeds, suggesting that sheltered valley bottoms have mediated the severity of recent wildfires. Our finding highlight the complex physical mechanisms by which mountain weather and climate mediate fire-induced vegetation changes in the US Northern Rocky Mountains.
Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks
NASA Astrophysics Data System (ADS)
Deeks, J.; Lumley, D. E.
2011-12-01
Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the smoothness of the fluid patches are a critical factor in determining the velocity-saturation response; this is a result that we have not seen discussed in the literature. Most importantly, we can reproduce all of these effects using full elastic wavefield scattering, without the need to resort to more complicated squirt-flow or poroelastic models. This is important because the physical properties and parameters we need to model full elastic wave scattering, and predict a velocity-saturation curve, are often readily available for projects we undertake; this is not the case for poroelastic or squirt-flow models. We can predict this velocity saturation curve for a specific rock type, fluid mixture distribution and wavefield spectrum.
Pure random search for ambient sensor distribution optimisation in a smart home environment.
Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming
2011-01-01
Smart homes are living spaces facilitated with technology to allow individuals to remain in their own homes for longer, rather than be institutionalised. Sensors are the fundamental physical layer with any smart home, as the data they generate is used to inform decision support systems, facilitating appropriate actuator actions. Positioning of sensors is therefore a fundamental characteristic of a smart home. Contemporary smart home sensor distribution is aligned to either a) a total coverage approach; b) a human assessment approach. These methods for sensor arrangement are not data driven strategies, are unempirical and frequently irrational. This Study hypothesised that sensor deployment directed by an optimisation method that utilises inhabitants' spatial frequency data as the search space, would produce more optimal sensor distributions vs. the current method of sensor deployment by engineers. Seven human engineers were tasked to create sensor distributions based on perceived utility for 9 deployment scenarios. A Pure Random Search (PRS) algorithm was then tasked to create matched sensor distributions. The PRS method produced superior distributions in 98.4% of test cases (n=64) against human engineer instructed deployments when the engineers had no access to the spatial frequency data, and in 92.0% of test cases (n=64) when engineers had full access to these data. These results thus confirmed the hypothesis.
Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum
NASA Astrophysics Data System (ADS)
Weitzel, Nils; Hense, Andreas; Ohlwein, Christian
2017-04-01
Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were performed in the PMIP3 project. The proxy data syntheses consist either of raw pollen data or of normally distributed climate data from preprocessed proxy records. Future extensions of our method contain the inclusion of other proxy types (transfer functions), the implementation of other spatial interpolation techniques, the use of age uncertainties, and the extension to spatio-temporal reconstructions of the last deglaciation. Our work is part of the PalMod project funded by the German Federal Ministry of Education and Science (BMBF).
NASA Astrophysics Data System (ADS)
Moore, J. K.
2016-02-01
The efficiency of the biological pump is influenced by complex interactions between chemical, biological, and physical processes. The efficiency of export out of surface waters and down through the water column to the deep ocean has been linked to a number of factors including biota community composition, production of mineral ballast components, physical aggregation and disaggregation processes, and ocean oxygen concentrations. I will examine spatial patterns in the export ratio and the efficiency of the biological pump at the global scale using the Community Earth System Model (CESM). There are strong spatial variations in the export efficiency as simulated by the CESM, which are strongly correlated with new nutrient inputs to the euphotic zone and their impacts on phytoplankton community structure. I will compare CESM simulations that include dynamic, variable export ratios driven by the phytoplankton community structure, with simulations that impose a near-constant export ratio to examine the effects of export efficiency on nutrient and surface chlorophyll distributions. The model predicted export ratios will also be compared with recent satellite-based estimates.
TEMPLATES: Targeting Extremely Magnified Panchromatic Lensed Arcs and Their Extended Star Formation
NASA Astrophysics Data System (ADS)
Rigby, Jane; Vieira, Joaquin; Bayliss, M.; Fischer, T.; Florian, M.; Gladders, M.; Gonzalez, A.; Law, D.; Marrone, D.; Phadke, K.; Sharon, K.; Spilker, J.
2017-11-01
We propose high signal-to-noise NIRSpec and MIRI IFU spectroscopy, with accompanying imaging, for 4 gravitationally lensed galaxies at 1
NASA Astrophysics Data System (ADS)
Rakovec, O.; Weerts, A.; Hazenberg, P.; Torfs, P.; Uijlenhoet, R.
2012-12-01
This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model (Rakovec et al., 2012a). The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. The uncertain precipitation model forcings were obtained using a time-dependent multivariate spatial conditional simulation method (Rakovec et al., 2012b), which is further made conditional on preceding simulations. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty. Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrol. Earth Syst. Sci. Discuss., 9, 3961-3999, doi:10.5194/hessd-9-3961-2012, 2012a. Rakovec, O., Hazenberg, P., Torfs, P. J. J. F., Weerts, A. H., and Uijlenhoet, R.: Generating spatial precipitation ensembles: impact of temporal correlation structure, Hydrol. Earth Syst. Sci. Discuss., 9, 3087-3127, doi:10.5194/hessd-9-3087-2012, 2012b.
Monte Carlo calculations of positron emitter yields in proton radiotherapy.
Seravalli, E; Robert, C; Bauer, J; Stichelbaut, F; Kurz, C; Smeets, J; Van Ngoc Ty, C; Schaart, D R; Buvat, I; Parodi, K; Verhaegen, F
2012-03-21
Positron emission tomography (PET) is a promising tool for monitoring the three-dimensional dose distribution in charged particle radiotherapy. PET imaging during or shortly after proton treatment is based on the detection of annihilation photons following the ß(+)-decay of radionuclides resulting from nuclear reactions in the irradiated tissue. Therapy monitoring is achieved by comparing the measured spatial distribution of irradiation-induced ß(+)-activity with the predicted distribution based on the treatment plan. The accuracy of the calculated distribution depends on the correctness of the computational models, implemented in the employed Monte Carlo (MC) codes that describe the interactions of the charged particle beam with matter and the production of radionuclides and secondary particles. However, no well-established theoretical models exist for predicting the nuclear interactions and so phenomenological models are typically used based on parameters derived from experimental data. Unfortunately, the experimental data presently available are insufficient to validate such phenomenological hadronic interaction models. Hence, a comparison among the models used by the different MC packages is desirable. In this work, starting from a common geometry, we compare the performances of MCNPX, GATE and PHITS MC codes in predicting the amount and spatial distribution of proton-induced activity, at therapeutic energies, to the already experimentally validated PET modelling based on the FLUKA MC code. In particular, we show how the amount of ß(+)-emitters produced in tissue-like media depends on the physics model and cross-sectional data used to describe the proton nuclear interactions, thus calling for future experimental campaigns aiming at supporting improvements of MC modelling for clinical application of PET monitoring. © 2012 Institute of Physics and Engineering in Medicine
NASA Astrophysics Data System (ADS)
Maltagliati, Luca; Montmessin, Franck; Fedorova, Anna; Bertaux, Jean-Loup; Korablev, Oleg
In pre-Mars Express era only very sparse measurements of the vertical profile of water vapor existed, with limited temporal and spatial coverage. Thus, knowledge of the H2 O distribution along the atmosphere relied almost exclusively on General Circulation Models. The vertical distribution of water vapor nonetheless allows to get otherwise unobtainable information on important characteristics of the Martian water cycle, such as the role of sources and sinks, phase changes, and the influence of clouds. Several other potentially significant phenomena, as the presence of supersaturation, the deposition of water vapor in the layer just below the saturation height, the formation of ice particles and water ice clouds, can be observed and studied in detail for the first time. The infrared channel of the SPICAM spectrometer onboard Mars Express, used in solar oc-cultation mode, allows to retrieve simultaneously the vertical profile of H2 O, CO2 , and aerosol properties. This dataset is thus perfectly suited to enhance our vertical knowledge of the at-mosphere of Mars, covering more than three full Martian years with good temporal and spatial distribution. We present the main results from the analysis of water vapor profiles, and their implication for the behavior of the water cycle on Mars. A comparison with the output from the state-of-the-art General Circulation Model developed at the Laboratoire de Météorologie Dynamique ee in Paris (LMD-GCM), is performed, in order to understand the consequences of this dataset on the current knowledge of physics and microphysics of water on Martian atmosphere. In particular, the currently accepted assumption that the distribution of water in the atmosphere is controlled by saturation physics is tested, and the consequences of the departure from this assumption are analysed in detail.
Learning from Massive Distributed Data Sets (Invited)
NASA Astrophysics Data System (ADS)
Kang, E. L.; Braverman, A. J.
2013-12-01
Technologies for remote sensing and ever-expanding computer experiments in climate science are generating massive data sets. Meanwhile, it has been common in all areas of large-scale science to have these 'big data' distributed over multiple different physical locations, and moving large amounts of data can be impractical. In this talk, we will discuss efficient ways for us to summarize and learn from distributed data. We formulate a graphical model to mimic the main characteristics of a distributed-data network, including the size of the data sets and speed of moving data. With this nominal model, we investigate the trade off between prediction accurate and cost of data movement, theoretically and through simulation experiments. We will also discuss new implementations of spatial and spatio-temporal statistical methods optimized for distributed data.
NASA Astrophysics Data System (ADS)
Duffy, C.
2008-12-01
The future of environmental observing systems will utilize embedded sensor networks with continuous real- time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models, and state-of-the-art visualization deployed and coordinated at a testbed within the Penn State Experimental Forest. The Shale Hills Hydro_Sensorium prototype proposed here is designed to observe land-atmosphere interactions in four-dimensional (space and time). The term Hydro_Sensorium implies the totality of physical sensors, models and visualization tools that allow us to perceive the detailed space and time complexities of the water and energy cycle for a watershed or river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). This research will ultimately catalyze the study of complex interactions between the land surface, subsurface, biological and atmospheric systems over a broad range of scales. The sensor array would be real-time and fully controllable by remote users for "computational steering" and data fusion. Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. The sensor and simulation system has the following elements: 1) extensive, spatially-distributed, non- invasive, smart sensor networks to gather massive geologic, hydrologic, and geochemical data; 2) stochastic information fusion methods; 3) spatially-explicit multiphysics models/solutions of the land-vegetation- atmosphere system; and 4) asynchronous, parallel/distributed, adaptive algorithms for rapidly simulating the states of a basin at high resolution, 5) signal processing tools for data mining and parameter estimation, and 6) visualization tools. The prototype proposed sensor array and simulation system proposed here will offer a coherent new approach to environmental predictions with a fully integrated observing system design. We expect that the Shale Hills Hydro_Sensorium may provide the needed synthesis of information and conceptualization necessary to advance predictive understanding in complex hydrologic systems.
Castro-Prieto, Jessica; Andrade-Núñez, Maria José
2018-06-01
The overpopulation of stray cats in urban areas represents a potential risk for humans, as stray cats may carry diseases, such as toxoplasmosis, and virus such as rabies, the feline immunodeficiency, and the feline leukemia. In Old San Juan, a historic neighborhood and one of the most touristic places in Puerto Rico, there is an overpopulation of stray cats. In this study, we generated baseline information fundamental to developing a successful control program by estimating the stray cat population size, density, and spatial distribution. Furthermore, we quantified the number of neutered cats and developed a spatial database to include information about the external physical condition of each individual. We estimated a population of 178 (±21) cats, with a density of 3.6 cats/ha. Overall, we observed 209 cats, from which 149 (71%) were identified as new and 60 (29%) were recaptured. We found stray cats had a significant non-random and clustered spatial distribution (z-score = -19.39 SD; ratio = 0.29; p<0.0001), with an observable larger abundance in residential zones where food was provided. A total of 105 (70%) cats were neutered, and 32 (21%) individuals exhibited very poor physical conditions, including skin problems, scars, underweight, and blindness. We concluded that the ecological and descriptive data generated in this study are essential for an effective control of stray cats and their potential impacts on humans living in this neighborhood.
EMAT enhanced dispersion of particles in liquid
Kisner, Roger A.; Rios, Orlando; Melin, Alexander M.; Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz; Wilgen, John B.
2016-11-29
Particulate matter is dispersed in a fluid material. A sample including a first material in a fluid state and second material comprising particulate matter are placed into a chamber. The second material is spatially dispersed in the first material utilizing EMAT force. The dispersion process continues until spatial distribution of the second material enables the sample to meet a specified criterion. The chamber and/or the sample is electrically conductive. The EMAT force is generated by placing the chamber coaxially within an induction coil driven by an applied alternating current and placing the chamber and induction coil coaxially within a high field magnetic. The EMAT force is coupled to the sample without physical contact to the sample or to the chamber, by another physical object. Batch and continuous processing are utilized. The chamber may be folded within the bore of the magnet. Acoustic force frequency and/or temperature may be controlled.
NASA Astrophysics Data System (ADS)
Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.
2017-12-01
Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.
The pattern of spatial flood disaster region in DKI Jakarta
NASA Astrophysics Data System (ADS)
Tambunan, M. P.
2017-02-01
The study of disaster flood area was conducted in DKI Jakarta Province, Indonesia. The aim of this research is: to study the spatial distribution of potential and actual of flood area The flood was studied from the geographic point of view using spatial approach, while the study of the location, the distribution, the depth and the duration of flooding was conducted using geomorphologic approach and emphasize on the detailed landform unit as analysis unit. In this study the landforms in DKI Jakarta have been a diversity, as well as spatial and temporal pattern of the actual and potential flood area. Landform at DKI Jakarta has been largely used as built up area for settlement and it facilities, thus affecting the distribution pattern of flooding area. The collection of the physical condition of landform in DKI Jakarta data prone were conducted through interpretation of the topographic map / RBI map and geological map. The flood data were obtained by survey and secondary data from Kimpraswil (Public Work) of DKI Jakarta Province for 3 years (1996, 2002, and 2007). Data of rainfall were obtained from BMKG and land use data were obtained from BPN DKI Jakarta. The analysis of the causal factors and distribution of flooding was made spatially and temporally using geographic information system. This study used survey method with a pragmatic approach. In this study landform as result from the analytical survey was settlement land use as result the synthetic survey. The primary data consist of landform, and the flood characteristic obtained by survey. The samples were using purposive sampling. Landform map was composed by relief, structure and material stone, and process data Landform map was overlay with flood map the flood prone area in DKI Jakarta Province in scale 1:50,000 to show. Descriptive analysis was used the spatial distribute of the flood prone area. The result of the study show that actual of flood prone area in the north, west and east of Jakarta lowland both in beach ridge, coastal alluvial plain, and alluvial plain; while the flood potential area on the slope is found flat and steep at alluvial fan, alluvial plain, beach ridge, and coastal alluvial plain in DKI Jakarta. Based on the result can be concluded that actual flood prone is not distributed on potential flood prone
NASA Astrophysics Data System (ADS)
Loague, Keith; Kyriakidis, Phaedon C.
1997-12-01
This paper is a continuation of the event-based rainfall-runoff model evaluation study reported by Loague and Freeze [1985[. Here we reevaluate the performance of a quasi-physically based rainfall-runoff model for three large events from the well-known R-5 catchment. Five different statistical criteria are used to quantitatively judge model performance. Temporal variability in the large R-5 infiltration data set [Loague and Gander, 1990] is filtered by working in terms of permeability. The transformed data set is reanalyzed via geostatistical methods to model the spatial distribution of permeability across the R-5 catchment. We present new estimates of the spatial distribution of infiltration that are in turn used in our rainfall-runoff simulations with the Horton rainfall-runoff model. The new rainfall-runoff simulations, complicated by reinfiltration impacts at the smaller scales of characterization, indicate that the near-surface hydrologic response of the R-5 catchment is most probably dominated by a combination of the Horton and Dunne overland flow mechanisms.
NASA Astrophysics Data System (ADS)
Pasi, Riccardo; Viavattene, Christophe; La Loggia, Goffredo
2016-04-01
Natural hazards damage assets and infrastructure inducing disruptions to urban functions and key daily services. These disruptions may be short or long with a variable spatial scale of impact. From an urban planning perspective, measuring these disruptions and their consequences at an urban scale is fundamental in order to develop more resilient cities. Whereas the assessment of physical vulnerabilities and direct damages is commonly addressed, new methodologies for assessing the systemic vulnerability at the urban scale are required to reveal these disruptions and their consequences. Physical and systemic vulnerability should be measured in order to reflect the multifaceted fragility of cities in the face of external stress, both in terms of the natural/built environment and socio-economic sphere. Additionally, a systemic approach allows the consideration of vulnerability across different spatial scales, as impacts may vary and be transmitted across local, regional or national levels. Urban systems are spatially distributed and the nature of this can have significant effects on flood impacts. The proposed approach identifies the vulnerabilities of flooding within urban contexts, including both in terms of single elementary units (buildings, infrastructures, people, etc.) and systemic functioning (urban functions and daily life networks). Direct losses are appraised initially using conventional methodologies (e.g. depth-damage functions). This aims to both understand the spatial distribution of physical vulnerability and associated losses and, secondly, to identify the most vulnerable building types and ways to improve the physical adaptation of our cities, proposing changes to building codes, design principles and other municipal regulation tools. The subsequent systemic approach recognises the city as a collection of sub-systems or functional units (such as neighbourhoods and suburbs) providing key daily services for inhabitants (e.g. healthcare facilities, schools, administration offices, food shops, leisure and cultural services etc.) and which are interconnected through transport networks. Moreover, each city is part of broader systems - which may or may not follow administrative boundaries - and, as such, need to be connected to its wider surroundings, in a multi-scalar perspective. The systemic analysis, herein limited to residential households, evaluates the presence, the distribution among functional units and the redundancy of key daily services. As such, systemic interdependences between neighbourhoods/suburbs and municipalities emerge, highlighting how systemic vulnerability spreads beyond the flooded areas. This aims to understand which planning patterns and existing mixed-use developments are more flood resilient (thereby informing future urban development/regeneration) and which infrastructure and assets have a key role within the urban system (and have therefore to be prioritised for protection). The methodology is currently developed through an extensive use of Geographic Information Systems (GIS) and applied to an Italian case study (Noale municipality, Venice). Current developments and on-going issues in its application and in the data collection (including the use of aerial survey data) will be discussed in the presentation.
NASA Astrophysics Data System (ADS)
Shokri, Ali
2017-04-01
The hydrological cycle contains a wide range of linked surface and subsurface flow processes. In spite of natural connections between surface water and groundwater, historically, these processes have been studied separately. The current trend in hydrological distributed physically based model development is to combine distributed surface water models with distributed subsurface flow models. This combination results in a better estimation of the temporal and spatial variability of the interaction between surface and subsurface flow. On the other hand, simple lumped models such as the Soil Conservation Service Curve Number (SCS-CN) are still quite common because of their simplicity. In spite of the popularity of the SCS-CN method, there have always been concerns about the ambiguity of the SCS-CN method in explaining physical mechanism of rainfall-runoff processes. The aim of this study is to minimize these ambiguity by establishing a method to find an equivalence of the SCS-CN solution to the DrainFlow model, which is a fully distributed physically based coupled surface-subsurface flow model. In this paper, two hypothetical v-catchment tests are designed and the direct runoff from a storm event are calculated by both SCS-CN and DrainFlow models. To find a comparable solution to runoff prediction through the SCS-CN and DrainFlow, the variance between runoff predictions by the two models are minimized by changing Curve Number (CN) and initial abstraction (Ia) values. Results of this study have led to a set of lumped model parameters (CN and Ia) for each catchment that is comparable to a set of physically based parameters including hydraulic conductivity, Manning roughness coefficient, ground surface slope, and specific storage. Considering the lack of physical interpretation in CN and Ia is often argued as a weakness of SCS-CN method, the novel method in this paper gives a physical explanation to CN and Ia.
NASA Astrophysics Data System (ADS)
Musyawaroh, M.; Pitana, T. S.; Masykuri, M.; Nandariyah
2018-02-01
Revitalization is a much-needed for a historic kampong as a settlement, place of business, and as tourist destinations. The research was conducted in Kauman as one of the cultural heritage kampong which was formerly as a residence of abdidalemulamaKeraton who also work as batik entrepreneurs. This study aims to formulate a sustainable revitalization step based on the character of the area and the building. Aspects of sustainable revitalization that analyzed are the physical and non-physical condition of the environment. This research is an applied research with qualitative rationalistic approach supported with spatial distribution analysis through satellite imagery and Arch-GIS. The results revealed that sustainable revitalization for Kaumancan be done through: 1) Physical condition of the environment consists of land and building use, green open space, recreational park and sport activities, streets, drainage network, sewer network, the garbage disposal network; 2) Non-physical of the environment consists of economy, heritage socio-cultural, and the engagement of relevant stakeholders. The difference of this study with others is, this study is a continuation of the Kauman revitalization assistance program which involves community participation to produce a more appropriate solution for the problem of kampong.
Spatial and Temporal Variation of Land Surface Temperature in Fujian Province from 2001 TO 2015
NASA Astrophysics Data System (ADS)
Li, Y.; Wang, X.; Ding, Z.
2018-04-01
Land surface temperature (LST) is an essential parameter in the physics of land surface processes. The spatiotemporal variations of LST on the Fujian province were studied using AQUA Moderate Resolution Imaging Spectroradiometer LST data. Considering the data gaps in remotely sensed LST products caused by cloud contamination, the Savitzky-Golay (S-G) filter method was used to eliminate the influence of cloud cover and to describe the periodical signals of LST. Observed air temperature data from 27 weather stations were employed to evaluate the fitting performance of the S-G filter method. Results indicate that S-G can effectively fit the LST time series and remove the influence of cloud cover. Based on the S-G-derived result, Spatial and temporal Variations of LST in Fujian province from 2001 to 2015 are analysed through slope analysis. The results show that: 1) the spatial distribution of annual mean LST generally exhibits consistency with altitude in the study area and the average of LST was much higher in the east than in the west. 2) The annual mean temperature of LST declines slightly among 15 years in Fujian. 3) Slope analysis reflects the spatial distribution characteristics of LST changing trend in Fujian.Improvement areas of LST are mainly concentrated in the urban areas of Fujian, especially in the eastern urban areas. Apparent descent areas are mainly distributed in the area of Zhangzhou and eastern mountain area.
Benjankar, Rohan; Burke, Michael; Yager, Elowyn; Tonina, Daniele; Egger, Gregory; Rood, Stewart B; Merz, Norm
2014-12-01
Dam operations have altered flood and flow patterns and prevented successful cottonwood seedling recruitment along many rivers. To guide reservoir flow releases to meet cottonwood recruitment needs, we developed a spatially-distributed, GIS-based model that analyzes the hydrophysical requirements for cottonwood recruitment. These requirements are indicated by five physical parameters: (1) annual peak flow timing relative to the interval of seed dispersal, (2) shear stress, which characterizes disturbance, (3) local stage recession after seedling recruitment, (4) recruitment elevation above base flow stage, and (5) duration of winter flooding, which may contribute to seedling mortality. The model categorizes the potential for cottonwood recruitment in four classes and attributes a suitability value at each individual spatial location. The model accuracy was estimated with an error matrix analysis by comparing simulated and field-observed recruitment success. The overall accuracies of this Spatially-Distributed Cottonwood Recruitment model were 47% for a braided reach and 68% for a meander reach along the Kootenai River in Idaho, USA. Model accuracies increased to 64% and 72%, respectively, when fewer favorability classes were considered. The model predicted areas of similarly favorable recruitment potential for 1997 and 2006, two recent years with successful cottonwood recruitment. This model should provide a useful tool to quantify impacts of human activities and climatic variability on cottonwood recruitment, and to prescribe instream flow regimes for the conservation and restoration of riparian woodlands. Copyright © 2014 Elsevier Ltd. All rights reserved.
The number comb for a soil physical properties dynamic measurement
NASA Astrophysics Data System (ADS)
Olechko, K.; Patiño, P.; Tarquis, A. M.
2012-04-01
We propose the prime numbers distribution extracted from the soil digital multiscale images and some physical properties time series as the precise indicator of the spatial and temporal dynamics under soil management changes. With this new indicator the soil dynamics can be studied as a critical phenomenon where each phase transition is estimated and modeled by the graph partitioning induced phase transition. The critical point of prime numbers distribution was correlated with the beginning of Andosols, Vertisols and saline soils physical degradation under the unsustainable soil management in Michoacan, Guanajuato and Veracruz States of Mexico. The data banks corresponding to the long time periods (between 10 and 28 years) were statistically compared by RISK 5.0 software and our own algorithms. Our approach makes us able to distill free-form natural laws of soils physical properties dynamics directly from the experimental data. The Richter (1987) and Schmidt and Lipson (2009) original approaches were very useful to design the algorithms to identify Hamiltonians, Lagrangians and other laws of geometric and momentum conservation especially for erosion case.
Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond
NASA Astrophysics Data System (ADS)
Casola, Francesco; van der Sar, Toeno; Yacoby, Amir
2018-01-01
The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.
Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1997-01-01
Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.
Time-dependent landslide probability mapping
Campbell, Russell H.; Bernknopf, Richard L.; ,
1993-01-01
Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.
Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework.
Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana
2014-06-01
Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd.
Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework†
Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana
2014-01-01
Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd. PMID:25505370
Asynchronous spatial evolutionary games.
Newth, David; Cornforth, David
2009-02-01
Over the past 50 years, much attention has been given to the Prisoner's Dilemma as a metaphor for problems surrounding the evolution and maintenance of cooperative and altruistic behavior. The bulk of this work has dealt with the successfulness and robustness of various strategies. Nowak and May (1992) considered an alternative approach to studying evolutionary games. They assumed that players were distributed across a two-dimensional (2D) lattice, interactions between players occurred locally, rather than at long range as in the well mixed situation. The resulting spatial evolutionary games display dynamics not seen in their well-mixed counterparts. An assumption underlying much of the work on spatial evolutionary games is that the state of all players is updated in unison or in synchrony. Using the framework outlined in Nowak and May (1992), we examine the effect of various asynchronous updating schemes on the dynamics of spatial evolutionary games. There are potential implications for the dynamics of a wide variety of spatially extended systems in biology, physics and chemistry.
2008-02-01
97 3.3.2 Steady-state solutions ..... ........................ 100 3.4 Ecosystem dynamics ...... ............................. 102 3.4.1 Fast ...zooplankton motion is decoupled from biological ac- tivities, as calculated in Flier] et al. (1999). When the diffusion rate is fast compared to phytoplankton...homogenize the zooplankton distribution, which remains spatially more intermit - tent than a passive scalar field. The last panel shows the index for
Ge Sun; Jianbiao Lu; Steven G. McNulty; James M. Vose; Devendra M. Amayta
2006-01-01
A clear understanding of the basic hydrologic processes is needed to restore and manage watersheds across the diverse physiologic gradients in the Southeastern U.S. We evaluated a physically based, spatially distributed watershed hydrologic model called MIKE SHE/MIKE 11 to evaluate disturbance impacts on water use and yield across the region. Long-term forest...
Rapid variation in the circumstellar 10 micron emission of Alpha Orionis
NASA Technical Reports Server (NTRS)
Bloemhof, E. E.; Danchi, W. C.; Townes, C. H.
1985-01-01
The spatial distribution of 10 micron continuum flux around the supergiant star Alpha Orionis was measured on two occasions separated by an interval of 1 yr. A significant change in the infrared radiation pattern on the subarcsecond scale was observed. This change cannot be explained plausibly by macroscopic motion but may be due to a change in the physical properties of the circumstellar dust.
Predicting Trophic Interactions and Habitat Utilization in the California Current Ecosystem
2015-09-30
spatial and temporal distribution of key marine organisms over multiple trophic levels, and (2) natural and anthropogenic variability in ecosystem...areas of climate modeling in upwelling regions (E. Curchitser), physical-biological modeling in the CCLME (J. Fiechter and C. Edwards), data...optimal growth conditions). By comparing interannual changes in fat depot against EOF modes for environmental variability (i.e., SST) and prey
Gomez, Luis F; Sarmiento, Rodrigo; Ordoñez, Maria Fernanda; Pardo, Carlos Felipe; de Sá, Thiago Hérick; Mallarino, Christina H; Miranda, J Jaime; Mosquera, Janeth; Parra, Diana Celmira; Reis, Rodrigo; Quistberg, Alex
2015-01-01
This study summarizes the evidence from quantitative systematic reviews that assessed the association between urban environment attributes and physical activity. It also documents sociopolitical barriers and facilitators involved in urban interventions linked with active living in the ten most populated urban settings of Latin America. The synthesis of evidence indicates that several attributes of urban environments are associated with physical activity, including land-use mix and cycling infrastructure. The documentary analysis indicated that despite the benefits and opportunities provided by the programs and existing infrastructure in the examined cities, an overall concern is the rising inequality in the coverage and distribution of the initiatives in the region. If these programs and initiatives are to achieve a real population level effect that helps to reduce health disparities, they need to examine their social and spatial distribution within the cities so they can reach underserved populations and develop to their full potential. PMID:25748111
Gomez, Luis F; Sarmiento, Rodrigo; Ordoñez, Maria Fernanda; Pardo, Carlos Felipe; de Sá, Thiago Hérick; Mallarino, Christina H; Miranda, J Jaime; Mosquera, Janeth; Parra, Diana C; Reis, Rodrigo; Quistberg, D Alex
2015-04-01
This study summarizes the evidence from quantitative systematic reviews that assessed the association between urban environment attributes and physical activity. It also documents sociopolitical barriers and facilitators involved in urban interventions linked with active living in the ten most populated urban settings of Latin America. The synthesis of evidence indicates that several attributes of urban environments are associated with physical activity, including land-use mix and cycling infrastructure. The documentary analysis indicated that despite the benefits and opportunities provided by the programs and existing infrastructure in the examined cities, an overall concern is the rising inequality in the coverage and distribution of the initiatives in the region. If these programs and initiatives are to achieve a real population level effect that helps to reduce health disparities, they need to examine their social and spatial distribution within the cities so they can reach underserved populations and develop to their full potential. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ueta, T.; Ladjal, D.; Exter, K. M.; Otsuka, M.; Szczerba, R.; Siódmiak, N.; Aleman, I.; van Hoof, P. A. M.; Kastner, J. H.; Montez, R.; McDonald, I.; Wittkowski, M.; Sandin, C.; Ramstedt, S.; De Marco, O.; Villaver, E.; Chu, Y.-H.; Vlemmings, W.; Izumiura, H.; Sahai, R.; Lopez, J. A.; Balick, B.; Zijlstra, A.; Tielens, A. G. G. M.; Rattray, R. E.; Behar, E.; Blackman, E. G.; Hebden, K.; Hora, J. L.; Murakawa, K.; Nordhaus, J.; Nordon, R.; Yamamura, I.
2014-05-01
Context. This is the first of a series of investigations into far-IR characteristics of 11 planetary nebulae (PNe) under the Herschel Space Observatory open time 1 program, Herschel Planetary Nebula Survey (HerPlaNS). Aims: Using the HerPlaNS data set, we look into the PN energetics and variations of the physical conditions within the target nebulae. In the present work, we provide an overview of the survey, data acquisition and processing, and resulting data products. Methods: We performed (1) PACS/SPIRE broadband imaging to determine the spatial distribution of the cold dust component in the target PNe and (2) PACS/SPIRE spectral-energy-distribution and line spectroscopy to determine the spatial distribution of the gas component in the target PNe. Results: For the case of NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbon-rich dust shell and the surrounding halo having temperatures of 26-40 K. The PACS/SPIRE multiposition spectra show spatial variations of far-IR lines that reflect the physical stratification of the nebula. We demonstrate that spatially resolved far-IR line diagnostics yield the (Te, ne) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allows to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 ± 110. The present analysis yields estimates of the total mass of the shell to be 0.86 M⊙, consisting of 0.54 M⊙ of ionized gas, 0.12 M⊙ of atomic gas, 0.2 M⊙ of molecular gas, and 4 × 10-3 M⊙ of dust grains. These estimates also suggest that the central star of about 1.5 M⊙ initial mass is terminating its PN evolution onto the white dwarf cooling track. Conclusions: The HerPlaNS data provide various diagnostics for both the dust and gas components in a spatially resolved manner. In the forthcoming papers of the HerPlaNS series we will explore the HerPlaNS data set fully for the entire sample of 11 PNe. Herschel is an ESA Space Observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Table 2 and appendices are available in electronic form at http://www.aanda.org
Spatial heterogeneity study of vegetation coverage at Heihe River Basin
NASA Astrophysics Data System (ADS)
Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei
2014-11-01
Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.
Visell, Yon
2015-04-01
This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.
Distributed strain measurement in a rectangular plate using an array of optical fiber sensors
NASA Technical Reports Server (NTRS)
Claus, R. O.; Wade, J. C.
1984-01-01
Single mode optical fiber waveguide has been used to determine the two-dimensional strain distribution on a simply supported rectangular plate. Each of the fifty individual fibers in the rectangular grid array attached to one surface of the plate yields a measurement of the strain integrated along the length of that fiber on the specimen. By using similar sensor information from all of the fibers, both the functional form and the amplitude of the distribution may be determined. Limits on the dynamic range and spatial resolution are indicated. Applications in the measurement of internal strain and the monitoring of physically small critical-structural components are suggested.
Open star clusters and Galactic structure
NASA Astrophysics Data System (ADS)
Joshi, Yogesh C.
2018-04-01
In order to understand the Galactic structure, we perform a statistical analysis of the distribution of various cluster parameters based on an almost complete sample of Galactic open clusters yet available. The geometrical and physical characteristics of a large number of open clusters given in the MWSC catalogue are used to study the spatial distribution of clusters in the Galaxy and determine the scale height, solar offset, local mass density and distribution of reddening material in the solar neighbourhood. We also explored the mass-radius and mass-age relations in the Galactic open star clusters. We find that the estimated parameters of the Galactic disk are largely influenced by the choice of cluster sample.
On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter.
Ciarletta, P; Destrade, M; Gower, A L
2016-04-26
Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.
NASA Astrophysics Data System (ADS)
Karpushin, P. A.; Popov, Yu B.; Popova, A. I.; Popova, K. Yu; Krasnenko, N. P.; Lavrinenko, A. V.
2017-11-01
In this paper, the probabilities of faultless operation of aerologic stations are analyzed, the hypothesis of normality of the empirical data required for using the Kalman filter algorithms is tested, and the spatial correlation functions of distributions of meteorological parameters are determined. The results of a statistical analysis of two-term (0, 12 GMT) radiosonde observations of the temperature and wind velocity components at some preset altitude ranges in the troposphere in 2001-2016 are presented. These data can be used in mathematical modeling of physical processes in the atmosphere.
Physical parameters in long-decay coronal enhancements. [from Skylab X ray observations
NASA Technical Reports Server (NTRS)
Maccombie, W. J.; Rust, D. M.
1979-01-01
Four well-observed long-decay X-ray enhancements (LDEs) are examined which were associated with filament eruptions, white-light transients, and loop prominence systems. In each case the physical parameters of the X-ray-emitting plasma are determined, including the spatial distribution and temporal evolution of temperature and density. The results and recent analyses of other aspects of the four LDEs are compared with current models of loop prominence systems. It is concluded that only a magnetic-reconnection model, such as that proposed by Kopp and Pneuman (1976) is consistent with the observations.
NASA Technical Reports Server (NTRS)
Mattikalli, N. M.; Engman, E. T.; Jackson, T. J.; Ahuja, L. R.
1997-01-01
This paper demonstrates the use of multitemporal soil moisture derived from microwave remote sensing to estimate soil physical properties. The passive microwave ESTAR instrument was employed during June 10-18, 1992, to obtain brightness temperature (TB) and surface soil moisture data in the Little Washita watershed, Oklahoma. Analyses of spatial and temporal variations of TB and soil moisture during the dry-down period revealed a direct relationship between changes in T and soil moisture and soil physical (viz. texture) and hydraulic (viz. saturated hydraulic conductivity, K(sat)) properties. Statistically significant regression relationships were developed for the ratio of percent sand to percent clay (RSC) and K(sat), in terms of change components of TB and surface soil moisture. Validation of results using field measured values and soil texture map indicated that both RSC and K(sat) can be estimated with reasonable accuracy. These findings have potential applications of microwave remote sensing to obtain quick estimates of the spatial distributions of K(sat), over large areas for input parameterization of hydrologic models.
Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan
2015-01-01
Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.
NASA Astrophysics Data System (ADS)
Dong, Yaxue; Fang, Xiaohua; Brain, D. A.; McFadden, James P.; Halekas, Jasper; Connerney, Jack
2015-04-01
The Mars-solar wind interaction accelerates and transports planetary ions away from the Martian atmosphere through a number of processes, including ‘pick-up’ by electromagnetic fields. The MAVEN spacecraft has made routine observations of escaping planetary ions since its arrival at Mars in September 2014. The SupraThermal And Thermal Ion Composition (STATIC) instrument measures the ion energy, mass, and angular spectra. It has detected energetic planetary ions during most of the spacecraft orbits, which are attributed to the pick-up process. We found significant variations in the escaping ion mass and velocity distributions from the STATIC data, which can be explained by factors such as varying solar wind conditions, contributions of particles from different source locations and different phases during the pick-up process. We also study the spatial distributions of different planetary ion species, which can provide insight into the physics of ion escaping process and enhance our understanding of atmospheric erosion by the solar wind. Our results will be further interpreted within the context of the upstream solar wind conditions measured by the MAVEN Solar Wind Ion Analyzer (SWIA) instrument and the magnetic field environment measured by the Magnetometer (MAG) instrument. Our study shows that the ion spatial distribution in the Mars-Sun-Electric-Field (MSE) coordinate system and the velocity space distribution with respect to the local magnetic field line can be used to distinguish the ions escaping through the polar plume and those through the tail region. The contribution of the polar plume ion escape to the total escape rate will also be discussed.
Estrellas asociadas con planetas extrasolares vs. estrellas de tipo β Pictoris
NASA Astrophysics Data System (ADS)
Chavero, C.; Gómez, M.
In this contribution we initially confront physical properties of two groups of stars: the Planet Host Stars and the Vega-like objects. The Planet Host Star group has one or more planet mass object associated and the Vega-like stars have circumstellar disks. We have compiled magnitudes, colors, parallaxes, spectral types, etc. for these objects from the literature and analyzed the distribution of both groups. We find that the samples are very similar in metallicities, ages, and spatial distributions. Our analysis suggests that the circumstellar environments are probably different while the central objects have similar physical properties. This difference may explain, at least in part, why the Planet Host Stars form extra-solar planetary objects such as those detected by the Doppler effect while the Vega-like objects are not commonly associated with these planet-mass bodies.
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers
NASA Astrophysics Data System (ADS)
Klevjer, T. A.; Irigoien, X.; Røstad, A.; Fraile-Nuez, E.; Benítez-Barrios, V. M.; Kaartvedt., S.
2016-01-01
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers.
Klevjer, T A; Irigoien, X; Røstad, A; Fraile-Nuez, E; Benítez-Barrios, V M; Kaartvedt, S
2016-01-27
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity.
NASA Astrophysics Data System (ADS)
Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.
2015-11-01
Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.
High-Mass X-ray Binaries in hard X- rays
NASA Astrophysics Data System (ADS)
Lutovinov, Alexander
We present a review of the latest results of the all-sky survey, performed with the INTEGRAL observatory. The deep exposure spent by INTEGRAL in the Galactic plane region, as well as for nearby galaxies allowed us to obtain a flux limited sample for High Mass X-ray Binaries in the Local Galactic Group and measure their physical properties, like a luminosity function, spatial density distribution, etc. Particularly, it was determined the most accurate up to date spatial density distribution of HMXBs in the Galaxy and its correlation with the star formation rate distribution. Based on the measured value of the vertical distribution of HMXBs (a scale-height h~85 pc) we also estimated a kinematical age of HMXBs. Properties of the population of HMXBs are explained in the framework of the population synthesis model. Based on this model we argue that a flaring activity of so-called supergiant fast X-ray transients (SFXTs), the recently recognized sub-sample of HMXBs, is likely related with the magnetic arrest of their accretion. The resulted global characteristics of the HMXB population are used for predictions of sources number counts in sky surveys of future X-ray missions.
Dynamics of the spatial electron density distribution of EUV-induced plasmas
NASA Astrophysics Data System (ADS)
van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.
2015-11-01
We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.
NASA Astrophysics Data System (ADS)
Ripamonti, Giancarlo; Lacaita, Andrea L.
1993-03-01
The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.
Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models
NASA Astrophysics Data System (ADS)
Rigler, E. J.; Wiltberger, M. J.; Love, J. J.
2017-12-01
Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.
Vescovi Rosa, Beatriz Figueiraujo Jabour; de Oliveira, Vívian Campos; Alves, Roberto da Gama
2011-01-01
The Chironomidae occupy different habitats along the lotic system with their distribution determined by different factors such as the substrate characteristics and water speed. The input of vegetable material from the riparian forest allows a higher habitat diversity and food to the benthic fauna. The main aim of this paper is to verify the structure and spatial distribution of the Chironomidae fauna in different mesohabitats in a first order stream located at a Biological Reserve in the southeast of Brazil. In the months of July, August, and September 2007, and in January, February, and March 2008, samples were collected with a hand net (250 µm) in the following mesohabitats: litter from riffles, litter from pools, and sediment from pools. The community structure of each mesohabitat was analyzed through the abundance of organisms, taxa richness, Pielou's evenness, Shannon's diversity, and taxa dominance. Similarity among the mesohabitats was obtained by Cluster analysis, and Chironomidae larvae distribution through the Correspondence analysis. Indicator species analysis was used to identify possible taxa preference for a determined mesohabitat. The analyzed mesohabitats showed high species richness and diversity favored by the large environmental heterogeneity. Some taxa were indicators of the type of mesohabitat. The substrate was the main factor that determined taxa distribution in relation to water flow differences (riffle and pool). Stream characteristics such as low water speed and the presence of natural mechanisms of retention may have provided a higher faunistic similarity between the areas with different flows. The results showed that the physical characteristics of each environment presented a close relationship with the structure and spatial distribution of the Chironomidae fauna in lotic systems. PMID:21529258
Spatial Distribution of Soil Fauna In Long Term No Tillage
NASA Astrophysics Data System (ADS)
Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.
2012-04-01
The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial variability for all groups of soil epigeal fauna found in this study.
NASA Astrophysics Data System (ADS)
Zeng, C.; Zhang, F.
2014-12-01
Alpine meadow is one of widespread vegetation types of the Qinghai-Tibetan Plateau. However, alpine meadow ecosystem is undergoing degradation in recent years. The degradation of alpine meadow can changes soil physical and chemical properties as well as it's spatial variability. However, little research has been done that address the spatial patterns of soil properties under different degradation degrees of alpine meadow of the Qinghai-Tibetan Plateau although these changes were important to water and heat study and modelling of land surface. 296 soil surface (0-10 cm) samples were collected using grid sampling design from three different degraded alpine meadow regions (1 km2). Then soil water content (SWC) and organic carbon content (OCC) were measured. Classical statistical and geostatistical methods were employed to study the spatial heterogeneities of SWC and OCC under different degradation degrees (Non-degraded ND, moderately degraded MD, extremely degraded ED) of alpine meadow. Results show that both SWC and OCC of alpine meadow were normally distributed with the exception of SWC under ED. On average, both SWC and OCC of alpine meadow decreased in the order that ND > MD > ED. For nugget ratios, SWC and OCC of alpine meadow showed increasing spatial dependence tendency from ND to ED. For the range of spatial variation, both SWC and OCC of alpine meadow showed increasing tendency in distance with the increasing degree of degradation. In all, the degradation of alpine meadow has significant impact on spatial heterogeneities of SWC and OCC of alpine meadow. With increasing of alpine meadow degradation, soil water condition and nutrient condition become worse, and their distributions in spatial become unevenly.
Distribution, abundance and habitat use of deep diving cetaceans in the North-East Atlantic
NASA Astrophysics Data System (ADS)
Rogan, Emer; Cañadas, Ana; Macleod, Kelly; Santos, M. Begoña; Mikkelsen, Bjarni; Uriarte, Ainhize; Van Canneyt, Olivier; Vázquez, José Antonio; Hammond, Philip S.
2017-07-01
In spite of their oceanic habitat, deep diving cetacean species have been found to be affected by anthropogenic activities, with potential population impacts of high intensity sounds generated by naval research and oil prospecting receiving the most attention. Improving the knowledge of the distribution and abundance of this poorly known group is an essential prerequisite to inform mitigation strategies seeking to minimize their spatial and temporal overlap with human activities. We provide for the first time abundance estimates for five deep diving cetacean species (sperm whale, long-finned pilot whale, northern bottlenose whale, Cuvier's beaked whale and Sowerby's beaked whale) using data from three dedicated cetacean sighting surveys that covered the oceanic and shelf waters of the North-East Atlantic. Density surface modelling was used to obtain model-based estimates of abundance and to explore the physical and biological characteristics of the habitat used by these species. Distribution of all species was found to be significantly related to depth, distance from the 2000m depth contour, the contour index (a measure of variability in the seabed) and sea surface temperature. Predicted distribution maps also suggest that there is little spatial overlap between these species. Our results represent the best abundance estimates for deep-diving whales in the North-East Atlantic, predict areas of high density during summer and constitute important baseline information to guide future risk assessments of human activities on these species, evaluate potential spatial and temporal trends and inform EU Directives and future conservation efforts.
NASA Astrophysics Data System (ADS)
Chamizo, Sonia; Rodríguez-Caballero, Emilio; Roncero, Beatriz; Raúl Román, José; Cantón, Yolanda
2016-04-01
Biocrusts are widespread soil components in drylands all over the world. They are known to play key roles in the functioning of these regions by fixing carbon and nitrogen, regulating hydrological processes, and preventing from water and wind erosion, thus reducing the loss of soil resources and increasing soil fertility. The rate and magnitude of services provided by biocrusts greatly depend on their composition and developmental stage. Late-successional biocrusts such as lichens and mosses have higher carbon and nitrogen fixation rates, and confer greater protection against erosion and the loss of sediments and nutrients than early-successional algae and cyanobacteria biocrusts. Knowledge of spatial distribution patterns of different biocrust types and the factors that control their distribution is important to assess ecosystem services provided by biocrusts at large spatial scales and to improve modelling of biogeochemical processes and water and carbon balance in drylands. Some of the factors that condition biocrust cover and composition are incoming solar radiation, terrain attributes, vegetation distribution patterns, microclimatic variables and soil properties such as soil pH, texture, soil organic matter, soil nutrients and gypsum and CaCO3 content. However, the factors that govern biocrust distribution may vary from one site to another depending on site characteristics. In this study, we examined the influence of abiotic attributes on the spatial distribution of biocrust types in a complex heterogeneous badland system (Tabernas, SE Spain) where biocrust cover up to 50% of the soil surface. From the analysis of relationships between terrain attributes and proportional abundance of biocrust types, it was found that topography exerted a main control on the spatial distribution of biocrust types in this area. SW-facing slopes were dominated by physical soil crusts and were practically devoid of vegetation and biocrusts. Biocrusts mainly occupied the pediments and NE-facing slopes. Cyanobacteria biocrusts were predominant in the pediments, probably because of their higher capacity to produce UV-protective pigments such as carotenoids and survive in zones of higher incident solar radiation. Lichen biocrusts showed preference for NE-facing slopes that, despite being less stable than the pediments, were exposed to less insolation and probably maintained moisture availability longer. Moreover, some differences were observed between lichen species. While Diploschistes diacapsis and Squamarina lentigera were widely distributed from gentle to steep NE-facing slopes, Lepraria sp. distribution was restricted to steep N-facing slopes, where shade predominance extended the periods of soil moisture availability.
Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.
Ellis, Paul A; Mackay, Rae; Rivett, Michael O
2007-04-01
Groundwater-river exchanges in an urban setting have been investigated through long term field monitoring and detailed modelling of a 7 km reach of the Tame river as it traverses the unconfined Triassic Sandstone aquifer that lies beneath the City of Birmingham, UK. Field investigations and numerical modelling have been completed at a range of spatial and temporal scales from the metre to the kilometre scale and from event (hourly) to multi-annual time scales. The objective has been to quantify the spatial and temporal flow distributions governing mixing processes at the aquifer-river interface that can affect the chemical activity in the hyporheic zone of this urbanised river. The hyporheic zone is defined to be the zone of physical mixing of river and aquifer water. The results highlight the multi-scale controls that govern the fluid exchange distributions that influence the thickness of the mixing zone between urban rivers and groundwater and the patterns of groundwater flow through the bed of the river. The morphologies of the urban river bed and the adjacent river bank sediments are found to be particularly influential in developing the mixing zone at the interface between river and groundwater. Pressure transients in the river are also found to exert an influence on velocity distribution in the bed material. Areas of significant mixing do not appear to be related to the areas of greatest groundwater discharge and therefore this relationship requires further investigation to quantify the actual remedial capacity of the physical hyporheic zone.
Ito, Akihiko; Wagai, Rota
2017-01-01
Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences. PMID:28829435
An integrated approch to the foraging ecology of marine birds and mammals
NASA Astrophysics Data System (ADS)
Croll, Donald A.; Tershy, Bernie R.; Hewitt, Roger P.; Demer, David A.; Fiedler, Paul C.; Smith, Susan E.; Armstrong, Wesley; Popp, Jacqueline M.; Kiekhefer, Thomas; Lopez, Vanesa R.; Urban, Jorge; Gendron, Diane
Birds and mammals are important components of pelagic marine ecosystems, but our knowledge of their foraging ecology is limited. We distinguish six distinct types of data that can be used in various combinations to understand their foraging behavior and ecology. We describe methods that combine concurrent dive recorder deployment, oceanographic sampling, and hydroacoustic surveys to generate hypotheses about interactions between the physical environment and the distribution, abundance, and behavior of pelagic predators and their prey. Our approach is to (1) map the distribution of whales in relation to the distribution of their prey and the physical features of the study area (bottom topography, temperature, and salinity); and (2) measure the foraging behavior and diet of instrumented whales in the context of the fine-scale distribution and composition of their prey and the physical environment. We use this approach to demonstrate a relationship between blue whale distribution, sea surface temperature, and concentrations of their euphausiid prey at different spatial scales offshore of the Channel Islands, California. Blue whale horizontal spatial distribution was correlated with regions of high acoustic backscatter. Blue whale dive depths closely tracked the depth distribution of krill. Net sampling and whale diet revealed that whales fed exclusively upon dense schools of Euphausia pacifica (between 100 and 200 m) and Thysanoessa spinifera (from the surface to 100 m). Whales concentrated foraging efforts upon those dense euphausiid schools that form downstream from an upwelling center in close proximity to regions of steep topographic relief. We propose that (1) the distribution of Balaenoptera whales in the coastal California Current region is defined by their attraction to areas of predictably high prey density; (2) the preferred prey of these whales are several species of euphausiids ( E. pacifica, T. spinifera, and N. simplex) that are abundant in the California Current region; (3) blue whales concentrate their foraging efforts on dense aggregations of euphausiids found at discrete depths in the water column; (4) these localized areas of high euphausiid densities are predictable and sustained by enhanced levels of primary productivity in regions which are located downstream from coastal upwelling centers (indicated by sea surface temperature); (5) topographic breaks in the continental shelf located downstream from these upwelling centers work in concert with euphausiid behavior to collect and maintain large concentrations of euphausiids swarms, and (6) despite seasonal and inter-annual variability, these processes are sufficiently consistent that the distribution of Balaenoptera whales can be predicted.
Janine Ruegg; Walter K. Dodds; Melinda D. Daniels; Ken R. Sheehan; Christina L. Baker; William B. Bowden; Kaitlin J. Farrell; Michael B. Flinn; Tamara K. Harms; Jeremy B. Jones; Lauren E. Koenig; John S. Kominoski; William H. McDowell; Samuel P. Parker; Amy D. Rosemond; Matt T. Trentman; Matt Whiles; Wilfred M. Wollheim
2016-01-01
ContextSpatial scaling of ecological processes is facilitated by quantifying underlying habitat attributes. Physical and ecological patterns are often measured at disparate spatial scales limiting our ability to quantify ecological processes at broader spatial scales using physical attributes.
'Fracking', Induced Seismicity and the Critical Earth
NASA Astrophysics Data System (ADS)
Leary, P.; Malin, P. E.
2012-12-01
Issues of 'fracking' and induced seismicity are reverse-analogous to the equally complex issues of well productivity in hydrocarbon, geothermal and ore reservoirs. In low hazard reservoir economics, poorly producing wells and low grade ore bodies are many while highly producing wells and high grade ores are rare but high pay. With induced seismicity factored in, however, the same distribution physics reverses the high/low pay economics: large fracture-connectivity systems are hazardous hence low pay, while high probability small fracture-connectivity systems are non-hazardous hence high pay. Put differently, an economic risk abatement tactic for well productivity and ore body pay is to encounter large-scale fracture systems, while an economic risk abatement tactic for 'fracking'-induced seismicity is to avoid large-scale fracture systems. Well productivity and ore body grade distributions arise from three empirical rules for fluid flow in crustal rock: (i) power-law scaling of grain-scale fracture density fluctuations; (ii) spatial correlation between spatial fluctuations in well-core porosity and the logarithm of well-core permeability; (iii) frequency distributions of permeability governed by a lognormality skewness parameter. The physical origin of rules (i)-(iii) is the universal existence of a critical-state-percolation grain-scale fracture-density threshold for crustal rock. Crustal fractures are effectively long-range spatially-correlated distributions of grain-scale defects permitting fluid percolation on mm to km scales. The rule is, the larger the fracture system the more intense the percolation throughput. As percolation pathways are spatially erratic and unpredictable on all scales, they are difficult to model with sparsely sampled well data. Phenomena such as well productivity, induced seismicity, and ore body fossil fracture distributions are collectively extremely difficult to predict. Risk associated with unpredictable reservoir well productivity and ore body distributions can be managed by operating in a context which affords many small failures for a few large successes. In reverse view, 'fracking' and induced seismicity could be rationally managed in a context in which many small successes can afford a few large failures. However, just as there is every incentive to acquire information leading to higher rates of productive well drilling and ore body exploration, there are equal incentives for acquiring information leading to lower rates of 'fracking'-induced seismicity. Current industry practice of using an effective medium approach to reservoir rock creates an uncritical sense that property distributions in rock are essentially uniform. Well-log data show that the reverse is true: the larger the length scale the greater the deviation from uniformity. Applying the effective medium approach to large-scale rock formations thus appears to be unnecessarily hazardous. It promotes the notion that large scale fluid pressurization acts against weakly cohesive but essentially uniform rock to produce large-scale quasi-uniform tensile discontinuities. Indiscriminate hydrofacturing appears to be vastly more problematic in reality than as pictured by the effective medium hypothesis. The spatial complexity of rock, especially at large scales, provides ample reason to find more controlled pressurization strategies for enhancing in situ flow.
NASA Astrophysics Data System (ADS)
Havens, S.; Marks, D. G.; Kormos, P.; Hedrick, A. R.; Johnson, M.; Robertson, M.; Sandusky, M.
2017-12-01
In the Western US, operational water supply managers rely on statistical techniques to forecast the volume of water left to enter the reservoirs. As the climate changes and the demand increases for stored water utilized for irrigation, flood control, power generation, and ecosystem services, water managers have begun to move from statistical techniques towards using physically based models. To assist with the transition, a new open source framework was developed, the Spatial Modeling for Resources Framework (SMRF), to automate and simplify the most common forcing data distribution methods. SMRF is computationally efficient and can be implemented for both research and operational applications. Currently, SMRF is able to generate all of the forcing data required to run physically based snow or hydrologic models at 50-100 m resolution over regions of 500-10,000 km2, and has been successfully applied in real time and historical applications for the Boise River Basin in Idaho, USA, the Tuolumne River Basin and San Joaquin in California, USA, and Reynolds Creek Experimental Watershed in Idaho, USA. These applications use meteorological station measurements and numerical weather prediction model outputs as input data. SMRF has significantly streamlined the modeling workflow, decreased model set up time from weeks to days, and made near real-time application of physics-based snow and hydrologic models possible.
The geomagnetically trapped radiation environment: A radiological point of view
NASA Technical Reports Server (NTRS)
Holly, F. E.
1972-01-01
The regions of naturally occurring, geomagnetically trapped radiation are briefly reviewed in terms of physical parameters such as; particle types, fluxes, spectrums, and spatial distributions. The major emphasis is placed upon a description of this environment in terms of the radiobiologically relevant parameters of absorbed dose and dose-rate and a discussion of the radiological implications in terms of the possible impact on space vehicle design and mission planning.
1980-05-01
65 Physical Impairment 66 Spatial disorientation. 67 Psychological condition. 71 Misused or failed to use flaps. 74 Left aircraft unattended, engine...ARTS III - (Software) (1975) 203 Weather Radar Display System (ASR - 57) 204 ATARS - Automated Terminal Area Radar Service (1974) 205 Instrument Landing...Generated Trauma, Pathological and Psychological Dysfunction accident causes. Collectively, the distribution of safety programs throughout the fault
Yerramilli, Anjaneyulu; Dodla, Venkata B; Desamsetti, Srinivas; Challa, Srinivas V; Young, John H; Patrick, Chuck; Baham, Julius M; Hughes, Robert L; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G; Swanier, Shelton J
2011-06-01
In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting-Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.
NASA Astrophysics Data System (ADS)
Lee, Youngju; Yang, Eun Jin; Park, Jisoo; Jung, Jinyoung; Kim, Tae Wan; Lee, SangHoon
2016-11-01
To understand the spatial distribution of phytoplankton communities in various habitats in the Amundsen Sea, western Antarctica, a field survey was conducted at 15 stations during the austral summer, from December 2013 to January 2014. Water samples were analyzed by microscopy. We found high phytoplankton abundance and biomass in the Amundsen Sea polynya (ASP). Their strong positive correlation with water temperature suggests that phytoplankton biomass accumulated in the surface layer of the stratified polynya. In the ASP, the predominant phytoplankton species was Phaeocystis antarctica, while diatoms formed a major group in the sea ice zone, especially Fragilariopsis spp., Chaetoceros spp., and Proboscia spp. Although this large diatom abundance sharply decreased just off the marginal sea ice zone, weakly silicified diatoms, due to their high buoyancy, were distributed at almost all stations on the continental shelf. Dictyocha speculum appeared to favor the area between the marginal sea ice zone and the ASP in contrast to cryptophytes and picophytoplankton, whose abundance was higher in the area between the continental shelf and the open ocean of Amundsen Sea. Several environmental factors were found to affect the spatial variation of phytoplankton species, but the community structure appeared to be controlled mainly by the seawater density related to sea-ice melting and water circulation in the Amundsen Sea.
Challenges and dreams: physics of weak interactions essential to life.
Chien, Peter; Gierasch, Lila M
2014-11-05
Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak "quinary" interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological "glue" that sustains life at a molecular and cellular level. © 2014 Chien and Gierasch. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel
2015-01-01
Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km2, by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships) according to phyla. Altogether, this study provided valuable clues about the ecological behavior of soil bacterial and archaeal taxa at an agricultural landscape scale and could be useful for developing sustainable strategies of land management. PMID:25922908
Soil moisture optimal sampling strategy for Sentinel 1 validation super-sites in Poland
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Lipiec, Jerzy; Usowicz, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan
2014-05-01
Soil moisture (SM) exhibits a high temporal and spatial variability that is dependent not only on the rainfall distribution, but also on the topography of the area, physical properties of soil and vegetation characteristics. Large variability does not allow on certain estimation of SM in the surface layer based on ground point measurements, especially in large spatial scales. Remote sensing measurements allow estimating the spatial distribution of SM in the surface layer on the Earth, better than point measurements, however they require validation. This study attempts to characterize the SM distribution by determining its spatial variability in relation to the number and location of ground point measurements. The strategy takes into account the gravimetric and TDR measurements with different sampling steps, abundance and distribution of measuring points on scales of arable field, wetland and commune (areas: 0.01, 1 and 140 km2 respectively), taking into account the different status of SM. Mean values of SM were lowly sensitive on changes in the number and arrangement of sampling, however parameters describing the dispersion responded in a more significant manner. Spatial analysis showed autocorrelations of the SM, which lengths depended on the number and the distribution of points within the adopted grids. Directional analysis revealed a differentiated anisotropy of SM for different grids and numbers of measuring points. It can therefore be concluded that both the number of samples, as well as their layout on the experimental area, were reflected in the parameters characterizing the SM distribution. This suggests the need of using at least two variants of sampling, differing in the number and positioning of the measurement points, wherein the number of them must be at least 20. This is due to the value of the standard error and range of spatial variability, which show little change with the increase in the number of samples above this figure. Gravimetric method gives a more varied distribution of SM than those derived from TDR measurements. It should be noted that reducing the number of samples in the measuring grid leads to flattening the distribution of SM from both methods and increasing the estimation error at the same time. Grid of sensors for permanent measurement points should include points that have similar distributions of SM in the vicinity. Results of the analysis including number, the maximum correlation ranges and the acceptable estimation error should be taken into account when choosing of the measurement points. Adoption or possible adjustment of the distribution of the measurement points should be verified by performing additional measuring campaigns during the dry and wet periods. Presented approach seems to be appropriate for creation of regional-scale test (super) sites, to validate products of satellites equipped with SAR (Synthetic Aperture Radar), operating in C-band, with spatial resolution suited to single field scale, as for example: ERS-1, ERS-2, Radarsat and Sentinel-1, which is going to be launched in next few months. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.
THE DEPENDENCE OF PRESTELLAR CORE MASS DISTRIBUTIONS ON THE STRUCTURE OF THE PARENTAL CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parravano, Antonio; Sanchez, Nestor; Alfaro, Emilio J.
2012-08-01
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle and Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloudmore » structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle and Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root N statistical fluctuations, increasing with H.« less
The Dependence of Prestellar Core Mass Distributions on the Structure of the Parental Cloud
NASA Astrophysics Data System (ADS)
Parravano, Antonio; Sánchez, Néstor; Alfaro, Emilio J.
2012-08-01
The mass distribution of prestellar cores is obtained for clouds with arbitrary internal mass distributions using a selection criterion based on the thermal and turbulent Jeans mass and applied hierarchically from small to large scales. We have checked this methodology by comparing our results for a log-normal density probability distribution function with the theoretical core mass function (CMF) derived by Hennebelle & Chabrier, namely a power law at large scales and a log-normal cutoff at low scales, but our method can be applied to any mass distributions representing a star-forming cloud. This methodology enables us to connect the parental cloud structure with the mass distribution of the cores and their spatial distribution, providing an efficient tool for investigating the physical properties of the molecular clouds that give rise to the prestellar core distributions observed. Simulated fractional Brownian motion (fBm) clouds with the Hurst exponent close to the value H = 1/3 give the best agreement with the theoretical CMF derived by Hennebelle & Chabrier and Chabrier's system initial mass function. Likewise, the spatial distribution of the cores derived from our methodology shows a surface density of companions compatible with those observed in Trapezium and Ophiucus star-forming regions. This method also allows us to analyze the properties of the mass distribution of cores for different realizations. We found that the variations in the number of cores formed in different realizations of fBm clouds (with the same Hurst exponent) are much larger than the expected root {\\cal N} statistical fluctuations, increasing with H.
Addressing spatial scales and new mechanisms in climate impact ecosystem modeling
NASA Astrophysics Data System (ADS)
Poulter, B.; Joetzjer, E.; Renwick, K.; Ogunkoya, G.; Emmett, K.
2015-12-01
Climate change impacts on vegetation distributions are typically addressed using either an empirical approach, such as a species distribution model (SDM), or with process-based methods, for example, dynamic global vegetation models (DGVMs). Each approach has its own benefits and disadvantages. For example, an SDM is constrained by data and few parameters, but does not include adaptation or acclimation processes or other ecosystem feedbacks that may act to mitigate or enhance climate effects. Alternatively, a DGVM model includes many mechanisms relating plant growth and disturbance to climate, but simulations are costly to perform at high-spatial resolution and there remains large uncertainty on a variety of fundamental physical processes. To address these issues, here, we present two DGVM-based case studies where i) high-resolution (1 km) simulations are being performed for vegetation in the Greater Yellowstone Ecosystem using a biogeochemical, forest gap model, LPJ-GUESS, and ii) where new mechanisms for simulating tropical tree-mortality are being introduced. High-resolution DGVM model simulations require not only computing and reorganizing code but also a consideration of scaling issues on vegetation dynamics and stochasticity and also on disturbance and migration. New mechanisms for simulating forest mortality must consider hydraulic limitations and carbon reserves and their interactions on source-sink dynamics and in controlling water potentials. Improving DGVM approaches by addressing spatial scale challenges and integrating new approaches for estimating forest mortality will provide new insights more relevant for land management and possibly reduce uncertainty by physical processes more directly comparable to experimental and observational evidence.
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates
NASA Astrophysics Data System (ADS)
Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp
2018-04-01
Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.
A physically based analytical spatial air temperature and humidity model
NASA Astrophysics Data System (ADS)
Yang, Yang; Endreny, Theodore A.; Nowak, David J.
2013-09-01
Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.
Oliveira, Eliana Faria; Martinez, Pablo Ariel; São-Pedro, Vinícius Avelar; Gehara, Marcelo; Burbrink, Frank Thomas; Mesquita, Daniel Oliveira; Garda, Adrian Antonio; Colli, Guarino Rinaldi; Costa, Gabriel Correa
2018-03-01
Spatial patterns of genetic variation can help understand how environmental factors either permit or restrict gene flow and create opportunities for regional adaptations. Organisms from harsh environments such as the Brazilian semiarid Caatinga biome may reveal how severe climate conditions may affect patterns of genetic variation. Herein we combine information from mitochondrial DNA with physical and environmental features to study the association between different aspects of the Caatinga landscape and spatial genetic variation in the whiptail lizard Ameivula ocellifera. We investigated which of the climatic, environmental, geographical and/or historical components best predict: (1) the spatial distribution of genetic diversity, and (2) the genetic differentiation among populations. We found that genetic variation in A. ocellifera has been influenced mainly by temperature variability, which modulates connectivity among populations. Past climate conditions were important for shaping current genetic diversity, suggesting a time lag in genetic responses. Population structure in A. ocellifera was best explained by both isolation by distance and isolation by resistance (main rivers). Our findings indicate that both physical and climatic features are important for explaining the observed patterns of genetic variation across the xeric Caatinga biome.
Robbins, Neil E.
2016-01-01
Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes. PMID:27503468
Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian
2016-10-27
To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads.
Bao, Xu; Li, Haijian; Qin, Lingqiao; Xu, Dongwei; Ran, Bin; Rong, Jian
2016-01-01
To obtain adequate traffic information, the density of traffic sensors should be sufficiently high to cover the entire transportation network. However, deploying sensors densely over the entire network may not be realistic for practical applications due to the budgetary constraints of traffic management agencies. This paper describes several possible spatial distributions of traffic information credibility and proposes corresponding different sensor information credibility functions to describe these spatial distribution properties. A maximum benefit model and its simplified model are proposed to solve the traffic sensor location problem. The relationships between the benefit and the number of sensors are formulated with different sensor information credibility functions. Next, expanding models and algorithms in analytic results are performed. For each case, the maximum benefit, the optimal number and spacing of sensors are obtained and the analytic formulations of the optimal sensor locations are derived as well. Finally, a numerical example is proposed to verify the validity and availability of the proposed models for solving a network sensor location problem. The results show that the optimal number of sensors of segments with different model parameters in an entire freeway network can be calculated. Besides, it can also be concluded that the optimal sensor spacing is independent of end restrictions but dependent on the values of model parameters that represent the physical conditions of sensors and roads. PMID:27801794
NASA Technical Reports Server (NTRS)
Burr, Devon M.; Bruno, Barbara C.; Lanagan, Peter D.; Glaze, Lori; Jaeger, Windy L.; Soare, Richard J.; Tseung, Jean-Michel Wan Bun; Skinner, James A. Jr.; Baloga, Stephen M.
2008-01-01
Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach.
Recruitment variation of eastern Bering Sea crabs: Climate-forcing or top-down effects?
NASA Astrophysics Data System (ADS)
Zheng, Jie; Kruse, Gordon H.
2006-02-01
During the last three decades, population abundances of eastern Bering Sea (EBS) crab stocks fluctuated greatly, driven by highly variable recruitment. In recent years, abundances of these stocks have been very low compared to historical levels. This study aims to understand recruitment variation of six stocks of red king ( Paralithodes camtschaticus), blue king ( P. platypus), Tanner ( Chionoecetes bairdi), and snow ( C. opilio) crabs in the EBS. Most crab recruitment time series are not significantly correlated with each other. Spatial distributions of three broadly distributed crab stocks (EBS snow and Tanner crabs and Bristol Bay red king crab) have changed considerably over time, possibly related in part to the regime shift in climate and physical oceanography in 1976-1977. Three climate-forcing hypotheses on larval survival have been proposed to explain crab recruitment variation of Bristol Bay red king crab and EBS Tanner and snow crabs. Some empirical evidence supports speculation that groundfish predation may play an important role in crab recruitment success in the EBS. However, spatial dynamics in the geographic distributions of groundfish and crabs over time make it difficult to relate crab recruitment strength to groundfish biomass. Comprehensive field and spatially explicit modeling studies are needed to test the hypotheses and better understand the relative importance and compound effects of bottom-up and top-down controls on crab recruitment.
Spatial Distribution of Fate and Transport Parameters Using Cxtfit in a Karstified Limestone Model
NASA Astrophysics Data System (ADS)
Toro, J.; Padilla, I. Y.
2017-12-01
Karst environments have a high capacity to transport and store large amounts of water. This makes karst aquifers a productive resource for human consumption and ecological integrity, but also makes them vulnerable to potential contamination of hazardous chemical substances. High heterogeneity and anisotropy of karst aquifer properties make them very difficult to characterize for accurate prediction of contaminant mobility and persistence in groundwater. Current technologies to characterize and quantify flow and transport processes at field-scale is limited by low resolution of spatiotemporal data. To enhance this resolution and provide the essential knowledge of karst groundwater systems, studies at laboratory scale can be conducted. This work uses an intermediate karstified lab-scale physical model (IKLPM) to study fate and transport processes and assess viable tools to characterize heterogeneities in karst systems. Transport experiments are conducted in the IKLPM using step injections of calcium chloride, uranine, and rhodamine wt tracers. Temporal concentration distributions (TCDs) obtained from the experiments are analyzed using the method of moments and CXTFIT to quantify fate and transport parameters in the system at various flow rates. The spatial distribution of the estimated fate and transport parameters for the tracers revealed high variability related to preferential flow heterogeneities and scale dependence. Results are integrated to define spatially-variable transport regions within the system and assess their fate and transport characteristics.
NASA Astrophysics Data System (ADS)
Liu, Yong-Yang; Xu, Yu-Liang; Liu, Zhong-Qiang; Li, Jing; Wang, Chun-Yang; Kong, Xiang-Mu
2018-07-01
Employing the correlation matrix technique, the spatial distribution of thermal energy in two-dimensional triangular lattices in equilibrium, interacting with linear springs, is studied. It is found that the spatial distribution of thermal energy varies with the included angle of the springs. In addition, the average thermal energy of the longer springs is lower. Springs with different included angle and length will lead to an inhomogeneous spatial distribution of thermal energy. This suggests that the spatial distribution of thermal energy is affected by the geometrical structure of the system: the more asymmetric the geometrical structure of the system is, the more inhomogeneous is the spatial distribution of thermal energy.
Jia, Xiaoxu; Xie, Baoni; Shao, Ming’an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands. PMID:26295954
Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei
2015-01-01
Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.
Multivariate Spatial Condition Mapping Using Subtractive Fuzzy Cluster Means
Sabit, Hakilo; Al-Anbuky, Adnan
2014-01-01
Wireless sensor networks are usually deployed for monitoring given physical phenomena taking place in a specific space and over a specific duration of time. The spatio-temporal distribution of these phenomena often correlates to certain physical events. To appropriately characterise these events-phenomena relationships over a given space for a given time frame, we require continuous monitoring of the conditions. WSNs are perfectly suited for these tasks, due to their inherent robustness. This paper presents a subtractive fuzzy cluster means algorithm and its application in data stream mining for wireless sensor systems over a cloud-computing-like architecture, which we call sensor cloud data stream mining. Benchmarking on standard mining algorithms, the k-means and the FCM algorithms, we have demonstrated that the subtractive fuzzy cluster means model can perform high quality distributed data stream mining tasks comparable to centralised data stream mining. PMID:25313495
Spectroscopic observations of the extended corona during the SOHO whole sun month
NASA Technical Reports Server (NTRS)
Strachan, L.; Raymond, J. C.; Panasyuk, A. V.; Fineschi, S.; Gardner, L. D.; Antonucci, E.; Giordano, S.; Romoli, M.; Noci, G.; Kohl, J. L.
1997-01-01
The spatial distribution of plasma parameters in the extended corona, derived from the ultraviolet coronagraph spectrometer (UVCS) onboard the Solar and Heliospheric Observatory (SOHO), was investigated. The observations were carried out during the SOHO whole month campaign. Daily coronal scans in the H I Lyman alpha and O VI lambda-lambda 1032 A and 1037 A were used. Maps of outflow velocities of O(5+), based on Doppler dimming of the O VI lines, are discussed. The velocity distribution widths of O(5+) are shown to be a clear signature of coronal holes while the velocity distributions for H(0) show a much smaller effect. The possible physical explanations for some of the observed features are discussed.
An approach for modelling snowcover ablation and snowmelt runoff in cold region environments
NASA Astrophysics Data System (ADS)
Dornes, Pablo Fernando
Reliable hydrological model simulations are the result of numerous complex interactions among hydrological inputs, landscape properties, and initial conditions. Determination of the effects of these factors is one of the main challenges in hydrological modelling. This situation becomes even more difficult in cold regions due to the ungauged nature of subarctic and arctic environments. This research work is an attempt to apply a new approach for modelling snowcover ablation and snowmelt runoff in complex subarctic environments with limited data while retaining integrity in the process representations. The modelling strategy is based on the incorporation of both detailed process understanding and inputs along with information gained from observations of basin-wide streamflow phenomenon; essentially a combination of deductive and inductive approaches. The study was conducted in the Wolf Creek Research Basin, Yukon Territory, using three models, a small-scale physically based hydrological model, a land surface scheme, and a land surface hydrological model. The spatial representation was based on previous research studies and observations, and was accomplished by incorporating landscape units, defined according to topography and vegetation, as the spatial model elements. Comparisons between distributed and aggregated modelling approaches showed that simulations incorporating distributed initial snowcover and corrected solar radiation were able to properly simulate snowcover ablation and snowmelt runoff whereas the aggregated modelling approaches were unable to represent the differential snowmelt rates and complex snowmelt runoff dynamics. Similarly, the inclusion of spatially distributed information in a land surface scheme clearly improved simulations of snowcover ablation. Application of the same modelling approach at a larger scale using the same landscape based parameterisation showed satisfactory results in simulating snowcover ablation and snowmelt runoff with minimal calibration. Verification of this approach in an arctic basin illustrated that landscape based parameters are a feasible regionalisation framework for distributed and physically based models. In summary, the proposed modelling philosophy, based on the combination of an inductive and deductive reasoning, is a suitable strategy for reliable predictions of snowcover ablation and snowmelt runoff in cold regions and complex environments.
[Neurodynamic Bases of Imitation Learning and Episodic Memory].
Tsukerman, V D
2016-01-01
In this review, three essentially important processes in development of cognitive behavior are considered: knowledge of a spatial environment by means of physical activity, coding and a call of an existential context of episodic memory and imitation learning based on the mirror neural mechanism. The data show that the parietal and frontal system of learning by imitation, allows the developing organism to seize skills of management and motive synergies in perisomatic space, to understand intentions and the purposes of observed actions of other individuals. At the same time a widely distributed parietal and frontal and entorhinal-hippocampal system mediates spatial knowledge and the solution of the navigation tasks important for creation of an existential context of episodic memory.
Investigating the galactic Supernova Remnant Kes 78 with XMM-Newton
NASA Astrophysics Data System (ADS)
Miceli, M.; Bamba, A.; Orlando, S.; Bocchino, F.
2016-06-01
The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.
Investigating the Galactic supernova remnant Kes 78 with XMM-Newton
NASA Astrophysics Data System (ADS)
Miceli, Marco; Bamba, Aya; Orlando, Salvatore; Bocchino, Fabrizio
2016-06-01
The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.
Pore-scale dynamics of salt transport and distribution in drying porous media
NASA Astrophysics Data System (ADS)
Shokri, Nima
2014-01-01
Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.
Pore-scale dynamics of salt transport and distribution in drying porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shokri, Nima, E-mail: nima.shokri@manchester.ac.uk
2014-01-15
Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sandmore » column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.« less
Visibility graphs of random scalar fields and spatial data
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Iacovacci, Jacopo
2017-07-01
We extend the family of visibility algorithms to map scalar fields of arbitrary dimension into graphs, enabling the analysis of spatially extended data structures as networks. We introduce several possible extensions and provide analytical results on the topological properties of the graphs associated to different types of real-valued matrices, which can be understood as the high and low disorder limits of real-valued scalar fields. In particular, we find a closed expression for the degree distribution of these graphs associated to uncorrelated random fields of generic dimension. This result holds independently of the field's marginal distribution and it directly yields a statistical randomness test, applicable in any dimension. We showcase its usefulness by discriminating spatial snapshots of two-dimensional white noise from snapshots of a two-dimensional lattice of diffusively coupled chaotic maps, a system that generates high dimensional spatiotemporal chaos. The range of potential applications of this combinatorial framework includes image processing in engineering, the description of surface growth in material science, soft matter or medicine, and the characterization of potential energy surfaces in chemistry, disordered systems, and high energy physics. An illustration on the applicability of this method for the classification of the different stages involved in carcinogenesis is briefly discussed.
NASA Astrophysics Data System (ADS)
Lukoschek, V.; Heatwole, H.; Grech, A.; Burns, G.; Marsh, H.
2007-06-01
Aipysurus laevis and Emydocephalus annulatus typically occur in spatially discrete populations, characteristic of metapopulations; however, little is known about the factors influencing the spatial and temporal stability of populations or whether specific conservation strategies, such as networks of marine protected areas, will ensure the persistence of species. Classification tree analyses of 35 years of distribution data (90 reefs, surveyed 1-11 times) in the southern Great Barrier Reef (GBR) revealed that longitude was a major factor determining the status of A. laevis on reefs (present = 38, absent = 38 and changed = 14). Reef exposure and reef area were also important; however, these factors did not specifically account for the population fluctuations and the recent local extinctions of A. laevis in this region. There were no relationships between the status of E. annulatus (present = 16, absent = 68 and changed = 6) and spatial or physical variables. Moreover, prior protection status of reefs did not account for the distribution of either species. Biotic factors, such as habitat and prey availability and the distribution of predators, which may account for the observed patterns of distribution, are discussed. The potential for inter-population exchange among sea snake populations is poorly understood, as is the degree of protection that will be afforded to sea snakes by the recently implemented network of No-take areas in the GBR. Data from this study provide a baseline for evaluating the responses of A. laevis and E. annulatus populations to changes in biotic factors and the degree of protection afforded on reefs within an ecosystem network of No-take marine protected areas in the southern GBR.
NASA Astrophysics Data System (ADS)
Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.
2015-12-01
Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.
Track structure: time evolution from physics to chemistry.
Dingfelder, M
2006-01-01
This review discusses interaction cross sections of charged particles (electrons, protons, light ions) with atoms and molecules. The focus is on biological relevant targets like liquid water which serves as a substitute of soft tissue in most Monte Carlo codes. The spatial distribution of energy deposition patterns by different radiation qualities and their importance to the time evolution from the physical to the chemical stage or radiation response is discussed. The determination of inelastic interaction cross sections for charged particles in condensed matter is discussed within the relativistic plane-wave Born approximation and semi-empirical models. The dielectric-response-function of liquid water is discussed.
NASA Astrophysics Data System (ADS)
Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas
2015-04-01
Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional validation on spatial results was done for the groundwater head values at observation wells. To ensure that the lumped model can produce results as accurate as the spatially distributed models or close regardless to the number of parameters and implemented physical processes, it was checked whether the structure of the lumped models had to be adjusted. The concept has been implemented in a PCRaster - Python platform and tested for two Belgian case studies (catchments of the rivers Dijle and Grote Nete). So far, use is made of existing model structures (NAM, PDM, VHM and HBV). Acknowledgement: These results were obtained within the scope of research activities for the Flemish Environment Agency (VMM) - division Operational Water Management on "Next Generation hydrological modeling", in cooperation with IMDC consultants, and for Flanders Hydraulics Research (Waterbouwkundig Laboratorium) on "Effect of climate change on the hydrological regime of navigable watercourses in Belgium".
Spatial distribution of traffic in a cellular mobile data network
NASA Astrophysics Data System (ADS)
Linnartz, J. P. M. G.
1987-02-01
The use of integral transforms of the probability density function for the received power to analyze the relation between the spatial distributions of offered and throughout packet traffic in a mobile radio network with Rayleigh fading channels and ALOHA multiple access was assessed. A method to obtain the spatial distribution of throughput traffic from a prescribed spatial distribution of offered traffic is presented. Incoherent and coherent addition of interference signals is considered. The channel behavior for heavy traffic loads is studied. In both the incoherent and coherent case, the spatial distribution of offered traffic required to ensure a prescribed spatially uniform throughput is synthesized numerically.
Challenges and dreams: physics of weak interactions essential to life
Chien, Peter; Gierasch, Lila M.
2014-01-01
Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak “quinary” interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological “glue” that sustains life at a molecular and cellular level. PMID:25368424
GLASS: spatially resolved spectroscopy of lensed galaxies in the Frontier Fields
NASA Astrophysics Data System (ADS)
Jones, Tucker; Treu, Tommaso; Brammer, Gabriel; Borello Schmidt, Kasper; Malkan, Matthew A.
2015-08-01
The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-IR spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O II], [O III], and H alpha at z=1-3. The combination of strong gravitational lensing and HST's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z>1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching unprecedented stellar masses as low as ~10^7 Msun at z=2. I will discuss precise measurements of these physical properties and implications for galaxy evolution.
Spatially resolved spectroscopy of lensed galaxies in the Frontier Fields
NASA Astrophysics Data System (ADS)
Jones, Tucker; Aff004
The Grism Lens-Amplified Survey from Space (GLASS) has obtained slitless near-infrared spectroscopy of 10 galaxy clusters selected for their strong lensing properties, including all six Hubble Frontier Fields. Slitless grism spectra are ideal for mapping emission lines such as [O ii], [O iii], and Hα at z=1-3. The combination of strong gravitational lensing and Hubble's diffraction limit provides excellent sensitivity with spatial resolution as fine as 100 pc for highly magnified sources, and ~500 pc for less magnified sources near the edge of the field of view. The GLASS survey represents the largest spectroscopic sample with such high resolution at z > 1. GLASS and Hubble Frontier Field data provide the distribution of stellar mass, star formation, gas-phase metallicity, and other aspects of the physical structure of high redshift galaxies, reaching stellar masses as low as ~107 M⊙ at z=2. I discuss precise measurements of these physical properties and implications for galaxy evolution.
Monitoring of shallow landslides by distributed optical fibers: insights from a physical model
NASA Astrophysics Data System (ADS)
Luca, Schenato; Matteo, Camporese; Luca, Palmieri; Alessandro, Pasuto; Salandin, Paolo
2017-04-01
Shallow landslides represent an extreme risk for individuals and structures due to their fast propagation and the very short time between appearance of warning signs and collapse. A lot of attention has been paid in the last decades to the analysis of activation mechanisms and to the implementation of appropriate early warning systems. Intense rainfall, stream erosion, flash floods, etc, are only few of the possible triggering factors that have been identified. All those factors may induce an increase in the forces acting and/or in the pore water pressure that eventually trigger the collapse. Due to the decrease of the shear resistance of soils, significant stresses develop at the sliding surface, determining local anomalous strain even before the collapse. This highlights the importance of monitoring the early appearance of hazardous strain fields. In light of the intrinsic lack of control and reproducibility in real cases, strain sensors have been applied in small-scale physical models and testbeds. Nonetheless, it has been observed that a reliable correlation between the landslide evolution and the strain field can be determined only by using minimally invasive sensors, while comprehensive information can be achieved at the cost of very fine spatial sampling, which represents the primary issue with small-to-medium scale physical models. It is evident how the two requirements, i.e., minimal invasiveness and high spatial resolution, are a limiting factor for standard sensor technology. In this regard, strain is one of the first variable addressed by optical fiber sensors, yet only recently for geotechnical applications and in very few case for landslide monitoring. In particular, the technology of distributed fiber optic sensors, with centimeter scale resolution, has the potential to address the aforementioned needs of small scale physical testing. In this work, for the first time, the strain field at the failure surface of a shallow landslide, reproduced in an artificial experimental hillslope, has been monitored by a distributed optical fiber sensing system based on optical fiber domain reflectometry with centimeter spatial resolution. The optical sensing system has been integrated with hydrological sensors for pore water pressure and moisture content, to the aim of supporting the data analysis. From the whole monitoring system a thorough knowledge of the collapsing mechanism has been achieved and it has been possible to identify precursory signs of the soil collapse well before its actual occurrence. The deployment of the sensing system and analysis of the collected data are discussed, together with possible potential for field installation.
NASA Astrophysics Data System (ADS)
Knobles, David; Stotts, Steven; Sagers, Jason
2012-03-01
Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.
Mena, Carlos; Sepúlveda, Cesar; Fuentes, Eduardo; Ormazábal, Yony; Palomo, Iván
2018-05-07
Cardiovascular diseases (CVDs) are the primary cause of death and disability in de world, and the detection of populations at risk as well as localization of vulnerable areas is essential for adequate epidemiological management. Techniques developed for spatial analysis, among them geographical information systems and spatial statistics, such as cluster detection and spatial correlation, are useful for the study of the distribution of the CVDs. These techniques, enabling recognition of events at different geographical levels of study (e.g., rural, deprived neighbourhoods, etc.), make it possible to relate CVDs to factors present in the immediate environment. The systemic literature presented here shows that this group of diseases is clustered with regard to incidence, mortality and hospitalization as well as obesity, smoking, increased glycated haemoglobin levels, hypertension physical activity and age. In addition, acquired variables such as income, residency (rural or urban) and education, contribute to CVD clustering. Both local cluster detection and spatial regression techniques give statistical weight to the findings providing valuable information that can influence response mechanisms in the health services by indicating locations in need of intervention and assignment of available resources.
Coupled economic-coastline modeling with suckers and free riders
NASA Astrophysics Data System (ADS)
Williams, Zachary C.; McNamara, Dylan E.; Smith, Martin D.; Murray, A. Brad.; Gopalakrishnan, Sathya
2013-06-01
erosion is a natural trend along most sandy coastlines. Humans often respond to shoreline erosion with beach nourishment to maintain coastal property values. Locally extending the shoreline through nourishment alters alongshore sediment transport and changes shoreline dynamics in adjacent coastal regions. If left unmanaged, sandy coastlines can have spatially complex or simple patterns of erosion due to the relationship of large-scale morphology and the local wave climate. Using a numerical model that simulates spatially decentralized and locally optimal nourishment decisions characteristic of much of U.S. East Coast beach management, we find that human erosion intervention does not simply reflect the alongshore erosion pattern. Spatial interactions generate feedbacks in economic and physical variables that lead to widespread emergence of "free riders" and "suckers" with subsequent inequality in the alongshore distribution of property value. Along cuspate coastlines, such as those found along the U.S. Southeast Coast, these long-term property value differences span an order of magnitude. Results imply that spatially decentralized management of nourishment can lead to property values that are divorced from spatial erosion signals; this management approach is unlikely to be optimal.
Soil Erosion as a stochastic process
NASA Astrophysics Data System (ADS)
Casper, Markus C.
2015-04-01
The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.
Interpreting the spatio-temporal patterns of sea turtle strandings: Going with the flow
Hart, K.M.; Mooreside, P.; Crowder, L.B.
2006-01-01
Knowledge of the spatial and temporal distribution of specific mortality sources is crucial for management of species that are vulnerable to human interactions. Beachcast carcasses represent an unknown fraction of at-sea mortalities. While a variety of physical (e.g., water temperature) and biological (e.g., decomposition) factors as well as the distribution of animals and their mortality sources likely affect the probability of carcass stranding, physical oceanography plays a major role in where and when carcasses strand. Here, we evaluate the influence of nearshore physical oceanographic and wind regimes on sea turtle strandings to decipher seasonal trends and make qualitative predictions about stranding patterns along oceanfront beaches. We use results from oceanic drift-bottle experiments to check our predictions and provide an upper limit on stranding proportions. We compare predicted current regimes from a 3D physical oceanographic model to spatial and temporal locations of both sea turtle carcass strandings and drift bottle landfalls. Drift bottle return rates suggest an upper limit for the proportion of sea turtle carcasses that strand (about 20%). In the South Atlantic Bight, seasonal development of along-shelf flow coincides with increased numbers of strandings of both turtles and drift bottles in late spring and early summer. The model also predicts net offshore flow of surface waters during winter - the season with the fewest relative strandings. The drift bottle data provide a reasonable upper bound on how likely carcasses are to reach land from points offshore and bound the general timeframe for stranding post-mortem (< two weeks). Our findings suggest that marine turtle strandings follow a seasonal regime predictable from physical oceanography and mimicked by drift bottle experiments. Managers can use these findings to reevaluate incidental strandings limits and fishery takes for both nearshore and offshore mortality sources. ?? 2005 Elsevier Ltd. All rights reserved.
Evaluation of induced seismicity forecast models in the Induced Seismicity Test Bench
NASA Astrophysics Data System (ADS)
Király, Eszter; Gischig, Valentin; Zechar, Jeremy; Doetsch, Joseph; Karvounis, Dimitrios; Wiemer, Stefan
2016-04-01
Induced earthquakes often accompany fluid injection, and the seismic hazard they pose threatens various underground engineering projects. Models to monitor and control induced seismic hazard with traffic light systems should be probabilistic, forward-looking, and updated as new data arrive. Here, we propose an Induced Seismicity Test Bench to test and rank such models. We apply the test bench to data from the Basel 2006 and Soultz-sous-Forêts 2004 geothermal stimulation projects, and we assess forecasts from two models that incorporate a different mix of physical understanding and stochastic representation of the induced sequences: Shapiro in Space (SiS) and Hydraulics and Seismics (HySei). SiS is based on three pillars: the seismicity rate is computed with help of the seismogenic index and a simple exponential decay of the seismicity; the magnitude distribution follows the Gutenberg-Richter relation; and seismicity is distributed in space based on smoothing seismicity during the learning period with 3D Gaussian kernels. The HySei model describes seismicity triggered by pressure diffusion with irreversible permeability enhancement. Our results show that neither model is fully superior to the other. HySei forecasts the seismicity rate well, but is only mediocre at forecasting the spatial distribution. On the other hand, SiS forecasts the spatial distribution well but not the seismicity rate. The shut-in phase is a difficult moment for both models in both reservoirs: the models tend to underpredict the seismicity rate around, and shortly after, shut-in. Ensemble models that combine HySei's rate forecast with SiS's spatial forecast outperform each individual model.
NASA Technical Reports Server (NTRS)
Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Nakamura-Messenger, K.
2012-01-01
Organic matter present within primitive carbonaceous meteorites represents the complex conglomeration of species formed in a variety of physically and temporally distinct environments including circumstellar space, the interstellar medium, the Solar Nebula & Jovian sub-nebulae and asteroids. In each case, multiple chemical pathways would have been available for the synthesis of organic molecules. Consequently these meteorites constitute a unique record of organic chemical evolution in the Universe and one of the biggest challenges in organic cosmochemistry has been in deciphering this record. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is virtually no hard experimental data as to how these species are spatially distributed and their relationship to the host mineral matrix, (with one exception). The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) interaction with aqueous fluids, which based on O isotope data, flowed along thermal gradients within the respective parent bodies. This pervasive aqueous alteration may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. To address such issues we have applied the technique of microprobe two-step laser desorption / photoionization mass spectrometry (L2MS) to map in situ the spatial distribution of a broad range of organic species at the micron scale in the freshly exposed matrices of the Bells, Tagish Lake and Murchison (CM2) carbonaceous chondrites.
Modeling Arctic sea-ice algae: Physical drivers of spatial distribution and algae phenology
NASA Astrophysics Data System (ADS)
Castellani, Giulia; Losch, Martin; Lange, Benjamin A.; Flores, Hauke
2017-09-01
Algae growing in sea ice represent a source of carbon for sympagic and pelagic ecosystems and contribute to the biological carbon pump. The biophysical habitat of sea ice on large scales and the physical drivers of algae phenology are key to understanding Arctic ecosystem dynamics and for predicting its response to ongoing Arctic climate change. In addition, quantifying potential feedback mechanisms between algae and physical processes is particularly important during a time of great change. These mechanisms include a shading effect due to the presence of algae and increased basal ice melt. The present study shows pan-Arctic results obtained from a new Sea Ice Model for Bottom Algae (SIMBA) coupled with a 3-D sea-ice-ocean model. The model is evaluated with data collected during a ship-based campaign to the Eastern Central Arctic in summer 2012. The algal bloom is triggered by light and shows a latitudinal dependency. Snow and ice also play a key role in ice algal growth. Simulations show that after the spring bloom, algae are nutrient limited before the end of summer and finally they leave the ice habitat during ice melt. The spatial distribution of ice algae at the end of summer agrees with available observations, and it emphasizes the importance of thicker sea-ice regions for hosting biomass. Particular attention is given to the distinction between level ice and ridged ice. Ridge-associated algae are strongly light limited, but they can thrive toward the end of summer, and represent an additional carbon source during the transition into polar night.
Large scale patterns in vertical distribution and behaviour of mesopelagic scattering layers
Klevjer, T. A.; Irigoien, X.; Røstad, A.; Fraile-Nuez, E.; Benítez-Barrios, V. M.; Kaartvedt., S.
2016-01-01
Recent studies suggest that previous estimates of mesopelagic biomasses are severely biased, with the new, higher estimates underlining the need to unveil behaviourally mediated coupling between shallow and deep ocean habitats. We analysed vertical distribution and diel vertical migration (DVM) of mesopelagic acoustic scattering layers (SLs) recorded at 38 kHz across oceanographic regimes encountered during the circumglobal Malaspina expedition. Mesopelagic SLs were observed in all areas covered, but vertical distributions and DVM patterns varied markedly. The distribution of mesopelagic backscatter was deepest in the southern Indian Ocean (weighted mean daytime depth: WMD 590 m) and shallowest at the oxygen minimum zone in the eastern Pacific (WMD 350 m). DVM was evident in all areas covered, on average ~50% of mesopelagic backscatter made daily excursions from mesopelagic depths to shallow waters. There were marked differences in migrating proportions between the regions, ranging from ~20% in the Indian Ocean to ~90% in the Eastern Pacific. Overall the data suggest strong spatial gradients in mesopelagic DVM patterns, with implied ecological and biogeochemical consequences. Our results suggest that parts of this spatial variability can be explained by horizontal patterns in physical-chemical properties of water masses, such as oxygen, temperature and turbidity. PMID:26813333
Self-consistent Langmuir waves in resonantly driven thermal plasmas
NASA Astrophysics Data System (ADS)
Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.
2007-12-01
The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.
NASA Astrophysics Data System (ADS)
Houben, Georg J.; Stoeckl, Leonard; Mariner, Katrina E.; Choudhury, Anis S.
2018-03-01
Geological heterogeneity of the subsurface, caused by both discrete features and spatially distributed hydraulic conductivity fields, affects the flow of coastal groundwater. It influences the shape and the position of the interface between saltwater and freshwater, as well as the location and flux rate of freshwater discharge to the ocean. Fringing reefs lead to a bimodal regime of freshwater discharge, with discharge at the beach face and through deeper, submarine springs. Impermeable vertical flow barriers (dykes) lead to an impoundment of fresh groundwater and a compartmentalization of the aquifer but also to a delayed expulsion of saline water. Spatially distributed conductivity fields affect the shape of the interface and the geometry of the saltwater wedge. Higher effective conductivities lead to a further landward intrusion of the wedge toe. These flow characteristics can be important for groundwater extraction, the delineation of protection zones and the assessment of contaminant transport to coastal ecosystems.
Dynamic biogeochemical provinces in the global ocean
NASA Astrophysics Data System (ADS)
Reygondeau, Gabriel; Longhurst, Alan; Martinez, Elodie; Beaugrand, Gregory; Antoine, David; Maury, Olivier
2013-12-01
In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and interannual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll a concentration, surface temperature, and salinity) are used to infer the spatial distribution of each BGCP over 1997-2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and interannual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.
Battaglin, William A.; Kuhn, Gerhard; Parker, Randolph S.
1993-01-01
The U.S. Geological Survey Precipitation-Runoff Modeling System, a modular, distributed-parameter, watershed-modeling system, is being applied to 20 smaller watersheds within the Gunnison River basin. The model is used to derive a daily water balance for subareas in a watershed, ultimately producing simulated streamflows that can be input into routing and accounting models used to assess downstream water availability under current conditions, and to assess the sensitivity of water resources in the basin to alterations in climate. A geographic information system (GIS) is used to automate a method for extracting physically based hydrologic response unit (HRU) distributed parameter values from digital data sources, and for the placement of those estimates into GIS spatial datalayers. The HRU parameters extracted are: area, mean elevation, average land-surface slope, predominant aspect, predominant land-cover type, predominant soil type, average total soil water-holding capacity, and average water-holding capacity of the root zone.
Traveltime-based descriptions of transport and mixing in heterogeneous domains
NASA Astrophysics Data System (ADS)
Luo, Jian; Cirpka, Olaf A.
2008-09-01
Modeling mixing-controlled reactive transport using traditional spatial discretization of the domain requires identifying the spatial distributions of hydraulic and reactive parameters including mixing-related quantities such as dispersivities and kinetic mass transfer coefficients. In most applications, breakthrough curves (BTCs) of conservative and reactive compounds are measured at only a few locations and spatially explicit models are calibrated by matching these BTCs. A common difficulty in such applications is that the individual BTCs differ too strongly to justify the assumption of spatial homogeneity, whereas the number of observation points is too small to identify the spatial distribution of the decisive parameters. The key objective of the current study is to characterize physical transport by the analysis of conservative tracer BTCs and predict the macroscopic BTCs of compounds that react upon mixing from the interpretation of conservative tracer BTCs and reactive parameters determined in the laboratory. We do this in the framework of traveltime-based transport models which do not require spatially explicit, costly aquifer characterization. By considering BTCs of a conservative tracer measured on different scales, one can distinguish between mixing, which is a prerequisite for reactions, and spreading, which per se does not foster reactions. In the traveltime-based framework, the BTC of a solute crossing an observation plane, or ending in a well, is interpreted as the weighted average of concentrations in an ensemble of non-interacting streamtubes, each of which is characterized by a distinct traveltime value. Mixing is described by longitudinal dispersion and/or kinetic mass transfer along individual streamtubes, whereas spreading is characterized by the distribution of traveltimes, which also determines the weights associated with each stream tube. Key issues in using the traveltime-based framework include the description of mixing mechanisms and the estimation of the traveltime distribution. In this work, we account for both apparent longitudinal dispersion and kinetic mass transfer as mixing mechanisms, thus generalizing the stochastic-convective model with or without inter-phase mass transfer and the advective-dispersive streamtube model. We present a nonparametric approach of determining the traveltime distribution, given a BTC integrated over an observation plane and estimated mixing parameters. The latter approach is superior to fitting parametric models in cases wherein the true traveltime distribution exhibits multiple peaks or long tails. It is demonstrated that there is freedom for the combinations of mixing parameters and traveltime distributions to fit conservative BTCs and describe the tailing. A reactive transport case of a dual Michaelis-Menten problem demonstrates that the reactive mixing introduced by local dispersion and mass transfer may be described by apparent mean mass transfer with coefficients evaluated by local BTCs.
J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE
2013-01-01
Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias M.; Petro, Nathan M.; Bradley, Margaret M.; Keil, Andreas
2015-01-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene’s physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. PMID:25640949
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias J; Petro, Nathan M; Bradley, Margaret M; Keil, Andreas
2015-03-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene's physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. Copyright © 2015 Elsevier B.V. All rights reserved.
Magneto-optical visualization of three spatial components of inhomogeneous stray fields
NASA Astrophysics Data System (ADS)
Ivanov, V. E.
2012-08-01
The article deals with the physical principles of magneto-optical visualization (MO) of three spatial components of inhomogeneous stray fields with the help of FeCo metal indicator films in the longitudinal Kerr effect geometry. The inhomogeneous field is created by permanent magnets. Both p- and s-polarization light is used for obtaining MO images with their subsequent summing, subtracting and digitizing. As a result, the MO images and corresponding intensity coordinate dependences reflecting the distributions of the horizontal and vertical magnetization components in pure form have been obtained. Modeling of both the magnetization distribution in the indicator film and the corresponding MO images shows that corresponding to polar sensitivity the intensity is proportional to the normal field component, which permits normal field component mapping. Corresponding to longitudinal sensitivity, the intensity of the MO images reflects the angular distribution of the planar field component. MO images have singular points in which the planar component is zero and their movement under an externally homogeneous planar field permits obtaining of additional information on the two planar components of the field under study. The intensity distribution character in the vicinity of sources and sinks (singular points) remains the same under different orientations of the light incidence plane. The change of incident plane orientation by π/2 alters the distribution pattern in the vicinity of the saddle points.
[Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].
Yuan, Zheming; Fu, Wei; Li, Fangyi
2004-04-01
Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsigabu Gebrehiwet; James R. Henriksen; Luanjing Guo
Multi-component mineral precipitation in porous, subsurface environments is challenging to simulate or engineer when in situ reactant mixing is controlled by diffusion. In contrast to well-mixed systems, the conditions that favor mineral precipitation in porous media are distributed along chemical gradients, which evolve spatially due to concurrent mineral precipitation and modification of solute transport in the media. The resulting physical and chemical characteristics of a mixing/precipitation zone are a consequence of coupling between transport and chemical processes, and the distinctive properties of individual chemical systems. We examined the spatial distribution of precipitates formed in “double diffusion” columns for two chemicalmore » systems, calcium carbonate and calcium phosphate. Polyacrylamide hydrogel was used as a low permeability, high porosity medium to maximize diffusive mixing and minimize pressure- and density-driven flow between reactant solutions. In the calcium phosphate system, multiple, visually dense and narrow bands of precipitates were observed that were reminiscent of previously reported Liesegang patterns. In the calcium carbonate system, wider precipitation zones characterized by more sparse distributions of precipitates and a more open channel structure were observed. In both cases, formation of precipitates inhibited, but did not necessarily eliminate, continued transport and mixing of the reactants. A reactive transport model with fully implicit coupling between diffusion, chemical speciation and precipitation kinetics, but where explicit details of nucleation processes were neglected, was able to qualitatively simulate properties of the precipitation zones. The results help to illustrate how changes in the physical properties of a precipitation zone depend on coupling between diffusion-controlled reactant mixing and chemistry-specific details of precipitation kinetics.« less
Importance of spatial autocorrelation in modeling bird distributions at a continental scale
Bahn, V.; O'Connor, R.J.; Krohn, W.B.
2006-01-01
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perko, Z; Bortfeld, T; Hong, T
Purpose: The safe use of radiotherapy requires the knowledge of tolerable organ doses. For experimental fractionation schemes (e.g. hypofractionation) these are typically extrapolated from traditional fractionation schedules using the Biologically Effective Dose (BED) model. This work demonstrates that using the mean dose in the standard BED equation may overestimate tolerances, potentially leading to unsafe treatments. Instead, extrapolation of mean dose tolerances should take the spatial dose distribution into account. Methods: A formula has been derived to extrapolate mean physical dose constraints such that they are mean BED equivalent. This formula constitutes a modified BED equation where the influence of themore » spatial dose distribution is summarized in a single parameter, the dose shape factor. To quantify effects we analyzed 14 liver cancer patients previously treated with proton therapy in 5 or 15 fractions, for whom also photon IMRT plans were available. Results: Our work has two main implications. First, in typical clinical plans the dose distribution can have significant effects. When mean dose tolerances are extrapolated from standard fractionation towards hypofractionation they can be overestimated by 10–15%. Second, the shape difference between photon and proton dose distributions can cause 30–40% differences in mean physical dose for plans having the same mean BED. The combined effect when extrapolating proton doses to mean BED equivalent photon doses in traditional 35 fraction regimens resulted in up to 7–8 Gy higher doses than when applying the standard BED formula. This can potentially lead to unsafe treatments (in 1 of the 14 analyzed plans the liver mean dose was above its 32 Gy tolerance). Conclusion: The shape effect should be accounted for to avoid unsafe overestimation of mean dose tolerances, particularly when estimating constraints for hypofractionated regimens. In addition, tolerances established for a given treatment modality cannot necessarily be applied to other modalities with drastically different dose distributions.« less
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...
2017-06-18
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois
Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less
Spatial averaging for small molecule diffusion in condensed phase environments
NASA Astrophysics Data System (ADS)
Plattner, Nuria; Doll, J. D.; Meuwly, Markus
2010-07-01
Spatial averaging is a new approach for sampling rare-event problems. The approach modifies the importance function which improves the sampling efficiency while keeping a defined relation to the original statistical distribution. In this work, spatial averaging is applied to multidimensional systems for typical problems arising in physical chemistry. They include (I) a CO molecule diffusing on an amorphous ice surface, (II) a hydrogen molecule probing favorable positions in amorphous ice, and (III) CO migration in myoglobin. The systems encompass a wide range of energy barriers and for all of them spatial averaging is found to outperform conventional Metropolis Monte Carlo. It is also found that optimal simulation parameters are surprisingly similar for the different systems studied, in particular, the radius of the point cloud over which the potential energy function is averaged. For H2 diffusing in amorphous ice it is found that facile migration is possible which is in agreement with previous suggestions from experiment. The free energy barriers involved are typically lower than 1 kcal/mol. Spatial averaging simulations for CO in myoglobin are able to locate all currently characterized metastable states. Overall, it is found that spatial averaging considerably improves the sampling of configurational space.
NASA Astrophysics Data System (ADS)
Botsford, L. W.; Moloney, C. L.; Hastings, A.; Largier, J. L.; Powell, T. M.; Higgins, K.; Quinn, J. F.
We synthesize the results of several modelling studies that address the influence of variability in larval transport and survival on the dynamics of marine metapopulations distributed along a coast. Two important benthic invertebrates in the California Current System (CCS), the Dungeness crab and the red sea urchin, are used as examples of the way in which physical oceanographic conditions can influence stability, synchrony and persistence of meroplanktonic metapopulations. We first explore population dynamics of subpopulations and metapopulations. Even without environmental forcing, isolated local subpopulations with density-dependence can vary on time scales roughly twice the generation time at high adult survival, shifting to annual time scales at low survivals. The high frequency behavior is not seen in models of the Dungeness crab, because of their high adult survival rates. Metapopulations with density-dependent recruitment and deterministic larval dispersal fluctuate in an asynchronous fashion. Along the coast, abundance varies on spatial scales which increase with dispersal distance. Coastwide, synchronous, random environmental variability tends to synchronize these metapopulations. Climate change could cause a long-term increase or decrease in mean larval survival, which in this model leads to greater synchrony or extinction respectively. Spatially managed metapopulations of red sea urchins go extinct when distances between harvest refugia become greater than the scale of larval dispersal. All assessments of population dynamics indicate that metapopulation behavior in general dependes critically on the temporal and spatial nature of larval dispersal, which is largely determined by physical oceanographic conditions. We therfore explore physical influences on larval dispersal patterns. Observed trends in temperature and salinity applied to laboratory-determined responses indicate that natural variability in temperature and salinity can lead to variability in larval development period on interannual (50%), intra-annual (20%) and latitudinal (200%) scales. Variability in development period significantly influences larval survival and, thus, net transport. Larval drifters that undertake diel vertical migration in a primitive equation model of coastal circulation (SPEM) demonstrate the importance of vertical migration in determining horizontal transport. Empirically derived estimates of the effects of wind forcing on larval transport of vertically migrating larvae (wind drift when near the surface and Ekman transport below the surface) match cross-shelf distributions in 4 years of existing larval data. We use a one-dimensional advection-diffusion model, which includes intra-annual timing of cross-shelf flows in the CCS, to explore the combined effects on settlement: (1) temperature- and salinity-dependent development and survival rates and (2) possible horizontal transport due to vertical migration of crab larvae. Natural variability in temperature, wind forcing, and the timing of the spring transition can cause the observed variability in recruitment. We conclude that understanding the dynamics of coastally distributed metapopulations in response to physically-induced variability in larval dispersal will be a critical step in assessing the effects of climate change on marine populations.
NASA Astrophysics Data System (ADS)
Efstathiou, Angeliki; Tzanis, Andreas; Vallianatos, Filippos
2014-05-01
The context of Non Extensive Statistical Physics (NESP) has recently been suggested to comprise an appropriate tool for the analysis of complex dynamic systems with scale invariance, long-range interactions, long-range memory and systems that evolve in a fractal-like space-time. This is because the active tectonic grain is thought to comprise a (self-organizing) complex system; therefore, its expression (seismicity) should be manifested in the temporal and spatial statistics of energy release rates. In addition to energy release rates expressed by the magnitude M, measures of the temporal and spatial interactions are the time (Δt) and hypocentral distance (Δd) between consecutive events. Recent work indicated that if the distributions of M, Δt and Δd are independent so that the joint probability p(M,Δt,Δd) factorizes into the probabilities of M, Δt and Δd, i.e. p(M,Δt,Δd)= p(M)p(Δt)p(Δd), then the frequency of earthquake occurrence is multiply related, not only to magnitude as the celebrated Gutenberg - Richter law predicts, but also to interevent time and distance by means of well-defined power-laws consistent with NESP. The present work applies these concepts to investigate the self-organization and temporal/spatial dynamics of seismicity in Greece and western Turkey, for the period 1964-2011. The analysis was based on the ISC earthquake catalogue which is homogenous by construction with consistently determined hypocenters and magnitude. The presentation focuses on the analysis of bivariate Frequency-Magnitude-Time distributions, while using the interevent distances as spatial constraints (or spatial filters) for studying the spatial dependence of the energy and time dynamics of the seismicity. It is demonstrated that the frequency of earthquake occurrence is multiply related to the magnitude and the interevent time by means of well-defined multi-dimensional power-laws consistent with NESP and has attributes of universality,as its holds for a broad range of spatial, temporal and magnitude scales. Provided that the multivariate empirical frequency distributions are based on a sufficient number of observations as an empirical lower limit, the results are stable and consistent with the established ken, irrespective of the magnitude and spatio-temporal range of the earthquake catalogue, or operations pertaining to re-sampling, bootstrapping or re-arrangement of the catalogue. It is also demonstrated that that the expression of the regional active tectonic grain may comprise a mixture of processes significantly dependent on Δd. The analysis of the size (energy) distribution of earthquakes yielded results consistent with a correlated sub-extensive system; the results are also consistent with conventional determinations of Frequency-Magnitude distributions. The analysis of interevent times, has determined the existence of sub-extensivity and near-field interaction (correlation) in the complete catalogue of Greek and western Turkish seismicity (mixed background earthquake activity and aftershock processes),as well as in the pure background process (declustered catalogue).This could be attributed to the joint effect of near-field interaction between neighbouring earthquakes or seismic areas and interaction within aftershock sequences. The background process appears to be moderately - weakly correlated at the far field. Formal random temporal processes have not been detected. A general syllogism affordable by the above observations is that aftershock sequences may be an integral part of the seismogenetic process, as they appear to partake in long-range interaction. A formal explanation of such an effect is pending, but may nevertheless involve delayed remote triggering of seismic activity by (transient or static) stress transfer from the main shocks and large aftershocks and/or cascading effects already discussed by Marsan and Lengliné (2008). In this view, the effect weakens when aftershocks are removed because aftershocks are the link between the main shocks and their remote offshoot. Overall, the above results compare well to the results of North Californian seismicity which have shown that the expression of seismicity at Northern California is generally consistent with non-extensive (sub-extensive) thermodynamics. Acknowledgments: This work was supported by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project "Integrated understanding of Seismicity, using innovative methodologies of Fracture Mechanics along with Earthquake and Non-Extensive Statistical Physics - Application to the geodynamic system of the Hellenic Arc - SEISMO FEAR HELLARC". References: Tzanis A., Vallianatos F., Efstathiou A., Multidimensional earthquake frequency distributions consistent with Non-Extensive Statistical Physics: the interdependence of magnitude, interevent time and interevent distance in North California. Bulletin of the Geological Society of Greece, vol. XLVII 2013. Proceedings of the 13th International Congress, Chania, Sept. 2013 Tzanis A., Vallianatos F., Efstathiou A., Generalized multidimensional earthquake frequency distributions consistent with Non-Extensive Statistical Physics: An appraisal of the universality in the interdependence of magnitude, interevent time and interevent distance Geophysical Research Abstracts, Vol. 15, EGU2013-628, 2013, EGU General Assembly 2013 Marsan, D. and Lengliné, O., 2008. Extending earthquakes's reach through cascading, Science, 319, 1076; doi: 10.1126/science.1148783 On-line Bulletin, http://www.isc.ac.uk, Internatl. Seis. Cent., Thatcham, United Kingdom, 2011.
Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework
NASA Astrophysics Data System (ADS)
Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.
2017-12-01
The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to identify and classify SPS. A worldwide network of cosmic-ray detectors could not only become a unique tool to study fundamental physics, it will also provide a number of other opportunities, including space-weather or geophysics studies. Among the latter one has to list the potential to predict earthquakes by monitoring the rate of low energy cosmic-ray events. The diversity of goals motivates us to advertise this concept across the astroparticle physics community.
Modeling spatial accessibility to parks: a national study.
Zhang, Xingyou; Lu, Hua; Holt, James B
2011-05-09
Parks provide ideal open spaces for leisure-time physical activity and important venues to promote physical activity. The spatial configuration of parks, the number of parks and their spatial distribution across neighborhood areas or local regions, represents the basic park access potential for their residential populations. A new measure of spatial access to parks, population-weighted distance (PWD) to parks, combines the advantages of current park access approaches and incorporates the information processing theory and probability access surface model to more accurately quantify residential population's potential spatial access to parks. The PWD was constructed at the basic level of US census geography - blocks - using US park and population data. This new measure of population park accessibility was aggregated to census tract, county, state and national levels. On average, US residential populations are expected to travel 6.7 miles to access their local neighborhood parks. There are significant differences in the PWD to local parks among states. The District of Columbia and Connecticut have the best access to local neighborhood parks with PWD of 0.6 miles and 1.8 miles, respectively. Alaska, Montana, and Wyoming have the largest PWDs of 62.0, 37.4, and 32.8 miles, respectively. Rural states in the western and Midwestern US have lower neighborhood park access, while urban states have relatively higher park access. The PWD to parks provides a consistent platform for evaluating spatial equity of park access and linking with population health outcomes. It could be an informative evaluation tool for health professionals and policy makers. This new method could be applied to quantify geographic accessibility of other types of services or destinations, such as food, alcohol, and tobacco outlets.
Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement
NASA Astrophysics Data System (ADS)
Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim
2018-06-01
We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.
Particle size distribution of the stratospheric aerosol from SCIAMACHY limb measurements
NASA Astrophysics Data System (ADS)
Rozanov, Alexei; Malinina, Elizaveta; Bovensmann, Heinrich; Burrows, John
2017-04-01
A crucial role of the stratospheric aerosols for the radiative budget of the Earth's atmosphere and the consequences for the climate change are widely recognized. A reliable knowledge on physical and optical properties of the stratospheric aerosols as well as on their vertical and spatial distributing is a key issue to assure a proper initialization and running conditions for climate models. On a global scale this information can only be gained from space borne measurements. While a series of past, present and future instruments provide extensive date sets of such aerosol characteristics as extinction coefficient or backscattering ratio, information on a size distribution of the stratospheric aerosols is sparse. One of the important sources on vertically and spatially resolved information on the particle size distribution of stratospheric aerosols is provided by space borne measurements of the scattered solar light in limb viewing geometry performed in visible, near-infrared and short-wave infrared spectral ranges. SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument operated on the European satellite Envisat from 2002 to 2102 was capable of providing spectral information needed to retrieve parameters of aerosol particle size distributions. In this presentation we discuss the retrieval method, present first validation results with SAGE II data and analyze first data sets of stratospheric aerosol particle size distribution parameters obtained from SCIAMACHY limb measurements. The research work was performed in the framework of ROMIC (Role of the middle atmosphere in climate) project.
Location error uncertainties - an advanced using of probabilistic inverse theory
NASA Astrophysics Data System (ADS)
Debski, Wojciech
2016-04-01
The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analyzed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. While estimating of the earthquake foci location is relatively simple a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling, and apriori uncertainties. In this presentation we addressed this task when statistics of observational and/or modeling errors are unknown. This common situation requires introduction of apriori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland we illustrate an approach based on an analysis of Shanon's entropy calculated for the aposteriori distribution. We show that this meta-characteristic of the aposteriori distribution carries some information on uncertainties of the solution found.
Search for new physics with dijet angular distributions in proton-proton collisions at √{s}=13 TeV
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; SchoernerSadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Polikarpov, S.; Zhemchugov, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Sandoval Gonzalez, I. D.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2017-07-01
A search is presented for extra spatial dimensions, quantum black holes, and quark contact interactions in measurements of dijet angular distributions in proton-proton collisions at √{s}=13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 2.6 fb-1. The distributions are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Limits for different contact interaction models are obtained. In a benchmark model, valid to next-to-leading order in QCD and in which only left-handed quarks participate, quark contact interactions are excluded up to a scale of 11.5 and 14.7 TeV for destructive or constructive interference, respectively. The production of quantum black holes is excluded for masses below 7.8 or 5.3 TeV, depending on the model. The lower limits for the scales of virtual graviton exchange in the Arkani-Hamed-Dimopoulos-Dvali model of extra spatial dimensions are in the range 7.9-11.2 TeV, and are the most stringent set of limits available.
Sirunyan, Albert M.
2017-07-05
A search is presented for extra spatial dimensions, quantum black holes, and quark contact interactions in measurements of dijet angular distributions in proton-proton collisions at √s = 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 2.6 fb –1. The distributions are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Limits for different contact interaction models are obtained in a benchmark model, valid to next-to-leading order in QCD, in which only left-handed quarks participate, with quark contact interactions excluded up to amore » scale of 11.5 or 14.7 TeV for destructive or constructive interference, respectively. The production of quantum black holes is excluded for masses below 7.8 or 5.3 TeV, depending on the model. Finally, the lower limits for the scales of virtual graviton exchange in the Arkani-Hamed--Dimopoulos--Dvali model of extra spatial dimensions are in the range 7.9-11.2 TeV, and are the most stringent set of limits available.« less
NASA Astrophysics Data System (ADS)
Postance, Benjamin; Hillier, John; Dijkstra, Tom; Dixon, Neil
2017-01-01
Disruptions to transportation networks by natural hazard events cause direct losses (e.g. by physical damage) and indirect socio-economic losses via travel delays and decreased transportation efficiency. The severity and spatial distribution of these losses varies according to user travel demands and which links, nodes or infrastructure assets are physically disrupted. Increasing transport network resilience, for example by targeted mitigation strategies, requires the identification of the critical network segments which if disrupted would incur undesirable or unacceptable socio-economic impacts. Here, these impacts are assessed on a national road transportation network by coupling hazard data with a transport network model. This process is illustrated using a case study of landslide hazards on the road network of Scotland. A set of possible landslide-prone road segments is generated using landslide susceptibility data. The results indicate that at least 152 road segments are susceptible to landslides, which could cause indirect economic losses exceeding £35 k for each day of closure. In addition, previous estimates for historic landslide events might be significant underestimates. For example, the estimated losses for the 2007 A83 ‘Rest and Be Thankful’ landslide are £80 k day-1, totalling £1.2 million over a 15 day closure, and are ˜60% greater than previous estimates. The spatial distribution of impact to road users is communicated in terms of ‘extended hazard impact footprints’. These footprints reveal previously unknown exposed communities and unanticipated spatial patterns of severe disruption. Beyond cost-benefit analyses for landslide mitigation efforts, the approach implemented is applicable to other natural hazards (e.g. flooding), combinations of hazards, or even other network disruption events.
NASA Astrophysics Data System (ADS)
Lowman, Lauren E. L.; Barros, Ana P.
2014-06-01
Prior studies evaluated the interplay between climate and orography by investigating the sensitivity of relief to precipitation using the stream power erosion law (SPEL) for specified erosion rates. Here we address the inverse problem, inferring realistic spatial distributions of erosion rates for present-day topography and contemporaneous climate forcing. In the central Andes, similarities in the altitudinal distribution and density of first-order stream outlets and precipitation suggest a direct link between climate and fluvial erosion. Erosion rates are estimated with a Bayesian physical-statistical model based on the SPEL applied at spatial scales that capture joint hydrogeomorphic and hydrometeorological patterns within five river basins and one intermontane basin in Peru and Bolivia. Topographic slope and area data were generated from a high-resolution (˜90 m) digital elevation map, and mean annual precipitation was derived from 14 years of Tropical Rainfall Measuring Mission 3B42v.7 product and adjusted with rain gauge data. Estimated decadal-scale erosion rates vary between 0.68 and 11.59 mm/yr, with basin averages of 2.1-8.5 mm/yr. Even accounting for uncertainty in precipitation and simplifying assumptions, these values are 1-2 orders of magnitude larger than most millennial and million year timescale estimates in the central Andes, using various geological dating techniques (e.g., thermochronology and cosmogenic nuclides), but they are consistent with other decadal-scale estimates using landslide mapping and sediment flux observations. The results also reveal a pattern of spatially dependent erosion consistent with basin hypsometry. The modeling framework provides a means of remotely estimating erosion rates and associated uncertainties under current climate conditions over large regions. 2014. American Geophysical Union. All Rights Reserved.
Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure
Skvortsova, Elena B.; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity. PMID:26010779
Universal spatial correlation functions for describing and reconstructing soil microstructure.
Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity.
Distribution, physical state and mixing of materials at the surface of Pluto from New Horizons
NASA Astrophysics Data System (ADS)
Schmitt, Bernard; Philippe, Sylvain; Grundy, Will; Reuter, D. C.; Quirico, Eric; Protopapa, Silvia; Côte, Rémi; Young, Leslie; Binzel, Richard; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Ennico, Kimberly; Howett, Carly; Jennings, Donald; Linscott, Ivan; Lunsford, A. W.; Olkin, Catherine B.; Parker, Joel Wm.; Parker, Alex; Singer, Kelsi N.; Spencer, John R.; Stansberry, John A.; Stern, S. Alan; Tsang, Constantine; Verbiscer, Anne J.; Weaver, Harold A.; New Horizons Science Team
2016-10-01
In July 2015 the New Horizons spacecraft recorded a large set of data on Pluto, in particular with the LEISA spectro-imager dedicated to the study of the surface composition.In this talk we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's surface and their mode and degree of mixing. Principal Component analysis as well as specific spectral indicators and correlation plots are used on high resolution LEISA spectro-images covering the whole illuminated face of Pluto. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. These maps indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich:(CO:N2?) ices and H2O ice. Their mixing lines and with the dark reddish material are studied. CH4 is mixed at the molecular level with N2 and CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a decrease of the CO/CH4 ratio tell us that a fractionation sublimation sequence transforms N2-rich ice into either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich(:CO:N2) ice crust that may hide the N2-rich ice below. The CH4-rich - H2O mixing line witnesses the subsequent sublimation of CH4 ice left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on cold H2O ice (S autumn). The very sharp spatial transitions between CH4-containing ices and the dark red material are probably due to thermal incompatibility. Finally there is some spatial mixing of the reddish material covering H2O ice. H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. The spatial distribution of these materials is very complex.The high spatial definition of all these composition maps will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active cold world.
Edwards, James P; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
NASA Astrophysics Data System (ADS)
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Controlling factors of the OMZ in the Arabian Sea
NASA Astrophysics Data System (ADS)
Resplandy, L.; Lévy, M.; Bopp, L.; Echevin, V.; Pous, S.; Sarma, V. V. S. S.; Kumar, D.
2012-05-01
In-situ observations indicate that the Arabian Sea oxygen minimum zone (OMZ) is only weakly influenced by the strong seasonal cycle of ocean dynamic and biogeochemistry forced by the asian monsoon system and it is spatially decorrelated from the coastal upwelling systems where the biological production is the strongest. In this study we examine the factors controlling the seasonality and the spatial distribution of the OMZ in the Arabian Sea using a coupled bio-physical model. We find that the oxygen concentration in the OMZ displays a seasonal cycle with an amplitude of 5-15 % of the annual mean oxygen concentration. The OMZ is ventilated by lateral ventilation along the western boundary current and in the coastal undercurrent along India during the summer monsoon and by coastal downwelling and negative Ekman pumping during the fall intermonsoon and winter monsoon. This ventilation is counterbalanced by strong coastal upwelling and positive Ekman pumping of low oxygen waters at the base of the OMZ during the spring intermonsoon. Although the factors controlling the OMZ seasonality are associated with the men circulation, we find that mesoscale dynamics modulates them by limiting the vertical ventilation during winter and enhancing it through lateral advection during the rest of the year. Processes explaining the establishment and spatial distribution of the OMZ were quantified using a perturbation experiment initialised with no OMZ. As expected, the oxygen depletion is triggered by strong biological activity in central Arabian Sea during winter and in western and eastern boundary coastal upwelling systems during summer. We find that the 3-D ocean dynamic largely controls the spatial distribution of the OMZ. The eastward shift ensues from the northward lateral transport of ventilated waters along the western and eastern coasts and the advection offshore of low oxygen waters formed in the upwelling system.
Knowledge representation of rock plastic deformation
NASA Astrophysics Data System (ADS)
Davarpanah, Armita; Babaie, Hassan
2017-04-01
The first iteration of the Rock Plastic Deformation (RPD) ontology models the semantics of the dynamic physical and chemical processes and mechanisms that occur during the deformation of the generally inhomogeneous polycrystalline rocks. The ontology represents the knowledge about the production, reconfiguration, displacement, and consumption of the structural components that participate in these processes. It also formalizes the properties that are known by the structural geology and metamorphic petrology communities to hold between the instances of the spatial components and the dynamic processes, the state and system variables, the empirical flow laws that relate the variables, and the laboratory testing conditions and procedures. The modeling of some of the complex physio-chemical, mathematical, and informational concepts and relations of the RPD ontology is based on the class and property structure of some well-established top-level ontologies. The flexible and extensible design of the initial version of the RPD ontology allows it to develop into a model that more fully represents the knowledge of plastic deformation of rocks under different spatial and temporal scales in the laboratory and in solid Earth. The ontology will be used to annotate the datasets related to the microstructures and physical-chemical processes that involve them. This will help the autonomous and globally distributed communities of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and enhanced data integration and software interoperability.
Investigation of water imbibition in porous stone by thermal neutron radiography
NASA Astrophysics Data System (ADS)
Hassanein, R.; Meyer, H. O.; Carminati, A.; Estermann, M.; Lehmann, E.; Vontobel, P.
2006-10-01
The understanding and modelling of the process of water imbibition is important for various applications of physics (e.g. building or soil physics). To measure the spatial distribution of the water content at arbitrary times is not trivial. Neutron radiography provides an appropriate tool for such investigations with excellent time and spatial resolution. Because of the high sensitivity to hydrogen, even small amounts of water in a porous structure can be detected in samples with dimensions up to 40 cm. Three different porous stones found in Indiana, USA, have been investigated (Mansfield sandstone, Salem limestone and Hindustan whetstone). The imbibition of deionized water and a NaCl solution in up- and downwards directions has been tracked during several hours and radiographed at regular intervals. A correction method to reduce the disturbing effects due to neutron scattering is applied. This allows a quantitative evaluation of the water content in addition to the visualization of the water distribution. The results agree well with theoretical models describing water infiltration and reproduce the water content with a pixel resolution of 272 µm in time steps of 1 min. The comparison with the radiographed structure of the dry stone explains variations in the conduction or retention of the water, respectively. The experimental and correction procedures described here can be applied to other porous media and their uptake and loss of fluids.
Yerramilli, Anjaneyulu; Dodla, Venkata B.; Desamsetti, Srinivas; Challa, Srinivas V.; Young, John H.; Patrick, Chuck; Baham, Julius M.; Hughes, Robert L.; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G.; Swanier, Shelton J.
2011-01-01
In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting–Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators. PMID:21776240
NASA Astrophysics Data System (ADS)
Moulds, S.; Djordjevic, S.; Savic, D.
2017-12-01
The Global Change Assessment Model (GCAM), an integrated assessment model, provides insight into the interactions and feedbacks between physical and human systems. The land system component of GCAM, which simulates land use activities and the production of major crops, produces output at the subregional level which must be spatially downscaled in order to use with gridded impact assessment models. However, existing downscaling routines typically consider cropland as a homogeneous class and do not provide information about land use intensity or specific management practices such as irrigation and multiple cropping. This paper presents a spatial allocation procedure to downscale crop production data from GCAM to a spatial grid, producing a time series of maps which show the spatial distribution of specific crops (e.g. rice, wheat, maize) at four input levels (subsistence, low input rainfed, high input rainfed and high input irrigated). The model algorithm is constrained by available cropland at each time point and therefore implicitly balances extensification and intensification processes in order to meet global food demand. It utilises a stochastic approach such that an increase in production of a particular crop is more likely to occur in grid cells with a high biophysical suitability and neighbourhood influence, while a fall in production will occur more often in cells with lower suitability. User-supplied rules define the order in which specific crops are downscaled as well as allowable transitions. A regional case study demonstrates the ability of the model to reproduce historical trends in India by comparing the model output with district-level agricultural inventory data. Lastly, the model is used to predict the spatial distribution of crops globally under various GCAM scenarios.
Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao
2015-09-01
Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.
NASA Astrophysics Data System (ADS)
Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.
2017-12-01
The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.
Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; ...
2015-06-02
Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the twomore » modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.« less
Helmholtz Natural Modes: the universal and discrete spatial fabric of electromagnetic wavefields
NASA Astrophysics Data System (ADS)
El Gawhary, Omar
2017-01-01
The interaction of electromagnetic waves with matter is at the foundation of the way we perceive and explore the world around us. In fact, when a field interacts with an object, signatures on the object’s geometry and physical properties are recorded in the resulting scattered field and are transported away from the object, where they can eventually be detected and processed. An optical field can transport information through its spectral content, its polarization state, and its spatial distribution. Generally speaking, the field’s spatial structure is typically subjected to changes under free-space propagation and any information therein encoded gets reshuffled by the propagation process. We must ascribe to this fundamental reason the fact that spectroscopy was known to the ancient civilizations already, and founded as modern science in the middle of seventeenth century, while to date we do not have an established scientific of field of ‘spatial spectroscopy’ yet. In this work we tackle this issue and we show how any field, whose evolution is dictated by Helmholtz equation, contains a universal and invariant spatial structure. When expressed in the framework of this spatial fabric, the spatial information content carried by any field reveals its invariant nature. This opens the way to novel paradigms in optical digital communications, inverse scattering, materials inspection, nanometrology and quantum optics.
Spatial analysis of cities using Renyi entropy and fractal parameters
NASA Astrophysics Data System (ADS)
Chen, Yanguang; Feng, Jian
2017-12-01
The spatial distributions of cities fall into two groups: one is the simple distribution with characteristic scale (e.g. exponential distribution), and the other is the complex distribution without characteristic scale (e.g. power-law distribution). The latter belongs to scale-free distributions, which can be modeled with fractal geometry. However, fractal dimension is not suitable for the former distribution. In contrast, spatial entropy can be used to measure any types of urban distributions. This paper is devoted to generalizing multifractal parameters by means of dual relation between Euclidean and fractal geometries. The main method is mathematical derivation and empirical analysis, and the theoretical foundation is the discovery that the normalized fractal dimension is equal to the normalized entropy. Based on this finding, a set of useful spatial indexes termed dummy multifractal parameters are defined for geographical analysis. These indexes can be employed to describe both the simple distributions and complex distributions. The dummy multifractal indexes are applied to the population density distribution of Hangzhou city, China. The calculation results reveal the feature of spatio-temporal evolution of Hangzhou's urban morphology. This study indicates that fractal dimension and spatial entropy can be combined to produce a new methodology for spatial analysis of city development.
Spatio-temporal analysis of aftershock sequences in terms of Non Extensive Statistical Physics.
NASA Astrophysics Data System (ADS)
Chochlaki, Kalliopi; Vallianatos, Filippos
2017-04-01
Earth's seismicity is considered as an extremely complicated process where long-range interactions and fracturing exist (Vallianatos et al., 2016). For this reason, in order to analyze it, we use an innovative methodological approach, introduced by Tsallis (Tsallis, 1988; 2009), named Non Extensive Statistical Physics. This approach introduce a generalization of the Boltzmann-Gibbs statistical mechanics and it is based on the definition of Tsallis entropy Sq, which maximized leads the the so-called q-exponential function that expresses the probability distribution function that maximizes the Sq. In the present work, we utilize the concept of Non Extensive Statistical Physics in order to analyze the spatiotemporal properties of several aftershock series. Marekova (Marekova, 2014) suggested that the probability densities of the inter-event distances between successive aftershocks follow a beta distribution. Using the same data set we analyze the inter-event distance distribution of several aftershocks sequences in different geographic regions by calculating non extensive parameters that determine the behavior of the system and by fitting the q-exponential function, which expresses the degree of non-extentivity of the investigated system. Furthermore, the inter-event times distribution of the aftershocks as well as the frequency-magnitude distribution has been analyzed. The results supports the applicability of Non Extensive Statistical Physics ideas in aftershock sequences where a strong correlation exists along with memory effects. References C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479-487. doi:10.1007/BF01016429 C. Tsallis, Introduction to nonextensive statistical mechanics: Approaching a complex world, 2009. doi:10.1007/978-0-387-85359-8. E. Marekova, Analysis of the spatial distribution between successive earthquakes in aftershocks series, Annals of Geophysics, 57, 5, doi:10.4401/ag-6556, 2014 F. Vallianatos, G. Papadakis, G. Michas, Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A, 472, 20160497, 2016.
The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass
Reuchlin-Hugenholtz, Emilie
2015-01-01
The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. PMID:25789624
Design and implementation of a distributed large-scale spatial database system based on J2EE
NASA Astrophysics Data System (ADS)
Gong, Jianya; Chen, Nengcheng; Zhu, Xinyan; Zhang, Xia
2003-03-01
With the increasing maturity of distributed object technology, CORBA, .NET and EJB are universally used in traditional IT field. However, theories and practices of distributed spatial database need farther improvement in virtue of contradictions between large scale spatial data and limited network bandwidth or between transitory session and long transaction processing. Differences and trends among of CORBA, .NET and EJB are discussed in details, afterwards the concept, architecture and characteristic of distributed large-scale seamless spatial database system based on J2EE is provided, which contains GIS client application, web server, GIS application server and spatial data server. Moreover the design and implementation of components of GIS client application based on JavaBeans, the GIS engine based on servlet, the GIS Application server based on GIS enterprise JavaBeans(contains session bean and entity bean) are explained.Besides, the experiments of relation of spatial data and response time under different conditions are conducted, which proves that distributed spatial database system based on J2EE can be used to manage, distribute and share large scale spatial data on Internet. Lastly, a distributed large-scale seamless image database based on Internet is presented.
NASA Technical Reports Server (NTRS)
Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Cote, R.; Quirico, E.; Protopappa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.;
2016-01-01
From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that may hide the N2-rich ice below. The strong CH4-rich - H2O mixing line witnesses the subsequent sublimation of the CH4-rich ice lag left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on the cold H2O ice (S autumn). The weak mixing line between CH4-containing ices and the dark red material and the very sharp spatial transitions between these ices and this non-volatile material are probably due to thermal incompatibility. Finally the occurrence of a H2O ice - red material mixing line advocates for a spatial mixing of the red material covering H2O ice, with possibly a small amount intimately mixed in water ice. From this analysis of the different materials distribution and their relative mixing lines, H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. N2-rich ices seem to evolve to CH4-dominated ices, possibly still containing traces of CO and N2, as N2 and CO sublimate away. The spatial distribution of these materials is very complex. The high spatial definition of all these composition maps, as well as those at even higher resolution that will be soon available, will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active frozen world.
NASA Astrophysics Data System (ADS)
Schmitt, B.; Philippe, S.; Grundy, W. M.; Reuter, D. C.; Côte, R.; Quirico, E.; Protopapa, S.; Young, L. A.; Binzel, R. P.; Cook, J. C.; Cruikshank, D. P.; Dalle Ore, C. M.; Earle, A. M.; Ennico, K.; Howett, C. J. A.; Jennings, D. E.; Linscott, I. R.; Lunsford, A. W.; Olkin, C. B.; Parker, A. H.; Parker, J. Wm.; Singer, K. N.; Spencer, J. R.; Stansberry, J. A.; Stern, S. A.; Tsang, C. C. C.; Verbiscer, A. J.; Weaver, H. A.; New Horizons Science Team
2017-05-01
From Earth based observations Pluto is known to be the host of N2, CH4 and CO ices and also a dark red material. Very limited spatial distribution information is available from rotational visible and near-infrared spectral curves obtained from hemispheric measurements. In July 2015 the New Horizons spacecraft reached Pluto and its satellite system and recorded a large set of data. The LEISA spectro-imager of the RALPH instruments are dedicated to the study of the composition and physical state of the materials composing the surface. In this paper we report a study of the distribution and physical state of the ices and non-ice materials on Pluto's illuminated surface and their mode and degree of mixing. Principal Component analysis as well as various specific spectral indicators and correlation plots are used on the first set of 2 high resolution spectro-images from the LEISA instrument covering the whole illuminated face of Pluto at the time of the New Horizons encounter. Qualitative distribution maps have been obtained for the 4 main condensed molecules, N2, CH4, CO, H2O as well as for the visible-dark red material. Based on specific spectral indicators, using either the strength or the position of absorption bands, these 4 molecules are found to indicate the presence of 3 different types of ices: N2-rich:CH4:CO ices, CH4-rich(:CO:N2?) ices and H2O ice. The mixing lines between these ices and with the dark red material are studied using scatter plots between the various spectral indicators. CH4 is mixed at the molecular level with N2, most probably also with CO, thus forming a ternary molecular mixture that follows its phase diagram with low solubility limits. The occurrence of a N2-rich - CH4-rich ices mixing line associated with a progressive decrease of the CO/CH4 ratio tells us that a fractionation sublimation sequence transforms one type of ice to the other forming either a N2-rich - CH4-rich binary mixture at the surface or an upper CH4-rich ice crust that may hide the N2-rich ice below. The strong CH4-rich - H2O mixing line witnesses the subsequent sublimation of the CH4-rich ice lag left behind by the N2:CO sublimation (N spring-summer), or a direct condensation of CH4 ice on the cold H2O ice (S autumn). The weak mixing line between CH4-containing ices and the dark red material and the very sharp spatial transitions between these ices and this non-volatile material are probably due to thermal incompatibility. Finally the occurrence of a H2O ice - red material mixing line advocates for a spatial mixing of the red material covering H2O ice, with possibly a small amount intimately mixed in water ice. From this analysis of the different materials distribution and their relative mixing lines, H2O ice appears to be the substratum on which other ices condense or non-volatile organic material is deposited from the atmosphere. N2-rich ices seem to evolve to CH4-dominated ices, possibly still containing traces of CO and N2, as N2 and CO sublimate away. The spatial distribution of these materials is very complex. The high spatial definition of all these composition maps, as well as those at even higher resolution that will be soon available, will allow us to compare them with Pluto's geologic features observed by LORRI panchromatic and MVIC multispectral imagers to better understand the geophysical processes in action at the surface of this astonishingly active frozen world.
Latychevskaia, Tatiana; Wicki, Flavio; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner
2016-09-14
Visualizing individual charges confined to molecules and observing their dynamics with high spatial resolution is a challenge for advancing various fields in science, ranging from mesoscopic physics to electron transfer events in biological molecules. We show here that the high sensitivity of low-energy electrons to local electric fields can be employed to directly visualize individual charged adsorbates and to study their behavior in a quantitative way. This makes electron holography a unique probing tool for directly visualizing charge distributions with a sensitivity of a fraction of an elementary charge. Moreover, spatial resolution in the nanometer range and fast data acquisition inherent to lens-less low-energy electron holography allows for direct visual inspection of charge transfer processes.
Diversity and distribution of deep-sea shrimps in the Ross Sea region of Antarctica.
Basher, Zeenatul; Bowden, David A; Costello, Mark J
2014-01-01
Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be considered both in the use of species distribution models.
Diversity and Distribution of Deep-Sea Shrimps in the Ross Sea Region of Antarctica
Basher, Zeenatul; Bowden, David A.; Costello, Mark J.
2014-01-01
Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be considered both in the use of species distribution models. PMID:25051333
NASA Astrophysics Data System (ADS)
Morgavi, D.; Ielpo, M.; Valentini, L.; Laeger, K.; Paredes, J.; Petrelli, M.; Costa, A.; Perugini, D.
2015-12-01
The Secche di Lazzaro formation (7 Ka) is a phreatomagmatic deposit in the south-western part of the island of Stromboli (Aeolian Archipelago, Italy). The volcanic sequence is constituted by three main sub-units. In two of them abundant accretionary lapilli are present. We performed granulometric analysis to describe the spatial arrangement and the grain-size distribution of the lapilli inside the deposit. Lapilli were characterized by SEM investigations (BSE images). EMPA and LA-ICP-MS analyses of major and trace elements on glasses and minerals were performed. Although BSE images provide accurate morphological information, they do not allow the real 3D microstructure to be accessed. Therefore, non-invasive 3D imaging of the lapilli was performed by X-ray micro-tomography (X-mCT). The results of the X-mCT measurements provided a set of 2D cross-sectional slices stacked along the vertical axis, with a voxel size varying between 2.7 and 4.1 mm, depending on the size of the sample. The X-mCT images represent a mapping of X-ray attenuation, which in turn depends on the density of the phases distributed within the sample. This technique helped us to better constrain the particle and crystal distribution inside the accretionary lapilli. The recognized phases are: glass, clinopyroxene, plagioclase and Ti-Fe minerals. We discover also a high concentration of Na, Cl and SO3 in the ash matrix. This evidence is ubiquitous in all the accretionary lapilli. The work presented here could define a new route for future studies in the field of physical volcanology as X-ray micro-tomography could be a useful, non destructive technique to better characterize the internal structure of accretionary lapilli helping us to describe grain-size distribution of component particles and their spatial distribution within aggregates.
Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods
Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.
2002-01-01
Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.
Non-Local Diffusion of Energetic Electrons during Solar Flares
NASA Astrophysics Data System (ADS)
Bian, N. H.; Emslie, G.; Kontar, E.
2017-12-01
The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze this approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.
Burr, D.M.; Bruno, B.C.; Lanagan, P.D.; Glaze, L.S.; Jaeger, W.L.; Soare, R.J.; Wan, Bun Tseung J.-M.; Skinner, J.A.; Baloga, S.M.
2009-01-01
Fields of mesoscale raised rim depressions (MRRDs) of various origins are found on Earth and Mars. Examples include rootless cones, mud volcanoes, collapsed pingos, rimmed kettle holes, and basaltic ring structures. Correct identification of MRRDs on Mars is valuable because different MRRD types have different geologic and/or climatic implications and are often associated with volcanism and/or water, which may provide locales for biotic or prebiotic activity. In order to facilitate correct identification of fields of MRRDs on Mars and their implications, this work provides a review of common terrestrial MRRD types that occur in fields. In this review, MRRDs by formation mechanism, including hydrovolcanic (phreatomagmatic cones, basaltic ring structures), sedimentological (mud volcanoes), and ice-related (pingos, volatile ice-block forms) mechanisms. For each broad mechanism, we present a comparative synopsis of (i) morphology and observations, (ii) physical formation processes, and (iii) published hypothesized locations on Mars. Because the morphology for MRRDs may be ambiguous, an additional tool is provided for distinguishing fields of MRRDs by origin on Mars, namely, spatial distribution analyses for MRRDs within fields on Earth. We find that MRRDs have both distinguishing and similar characteristics, and observation that applies both to their mesoscale morphology and to their spatial distribution statistics. Thus, this review provides tools for distinguishing between various MRRDs, while highlighting the utility of the multiple working hypotheses approach. ?? 2008 Elsevier Ltd.
Maity, Somsubhra; Wu, Wei-Chen; Xu, Chao; Tracy, Joseph B.; Gundogdu, Kenan; Bochinski, Jason R.; Clarke, Laura I.
2015-01-01
Heat emanates from gold nanorods (GNRs) under ultrafast optical excitation of the localized surface plasmon resonance. The steady state nanoscale temperature distribution formed within a polymer matrix embedded with GNRs undergoing pulsed femtosecond photothermal heating is determined experimentally using two independent ensemble optical techniques. Physical rotation of the nanorods reveals the average local temperature of the polymer melt in the immediate spatial volume surrounding them while fluorescence of homogeneously-distributed perylene molecules monitors temperature over sample regions at larger distances from the GNRs. Polarization-sensitive fluorescence measurements of the perylene probes provide an estimate of the average size of the quasi-molten region surrounding each nanorod (that is, the boundary between softened polymer and solid material as the temperature decreases radially away from each particle) and distinguishes the steady state temperature in the solid and melt regions. Combining these separate methods enables nanoscale spatial mapping of the average steady state temperature distribution caused by ultrafast excitation of the GNRs. These observations definitively demonstrate the presence of a steady-state temperature gradient and indicate that localized heating via the photothermal effect within materials enables nanoscale thermal manipulations without significantly altering the bulk sample temperature in these systems. These quantitative results are further verified by reorienting nanorods within a solid polymer nanofiber without inducing any morphological changes to the highly temperature-sensitive nanofiber surface. Temperature differences of 70 – 90 °C were observed over a distances of ~100 nm. PMID:25379775
The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects
NASA Astrophysics Data System (ADS)
Rozitis, B.; Green, S. F.
2012-06-01
It is now becoming widely accepted that photon recoil forces from the asymmetric reflection and thermal re-radiation of absorbed sunlight are, together with collisions and gravitational forces, primary mechanisms governing the dynamical and physical evolution of asteroids. The Yarkovsky effect causes orbital semimajor axis drift, and the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect causes changes in the rotation rate and pole orientation. We present an adaptation of the Advanced Thermophysical Model to simultaneously predict the Yarkovsky and YORP effects in the presence of thermal-infrared beaming caused by surface roughness, which has been neglected or dismissed in all previous models. Tests on Gaussian random sphere shaped asteroids, and on the real shapes of asteroids (1620) Geographos and (6489) Golevka, show that rough surface thermal-infrared beaming enhances the Yarkovsky orbital drift by typically tens of per cent but it can be as much as a factor of 2. The YORP rotational acceleration is on average dampened by up to a third typically but can be as much as one-half. We find that the Yarkovsky orbital drift is only sensitive to the average degree, and not to the spatial distribution, of roughness across an asteroid surface. However, the YORP rotational acceleration is sensitive to the surface roughness spatial distribution, and can add significant uncertainties to the predictions for asteroids with relatively weak YORP effects. To accurately predict either effect the degree and spatial distribution of roughness across an asteroid surface must be known.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, T. A.; Moskalenko, I. V.; Jóhannesson, G., E-mail: tporter@stanford.edu
High-energy γ -rays of interstellar origin are produced by the interaction of cosmic-ray (CR) particles with the diffuse gas and radiation fields in the Galaxy. The main features of this emission are well understood and are reproduced by existing CR propagation models employing 2D galactocentric cylindrically symmetrical geometry. However, the high-quality data from instruments like the Fermi Large Area Telescope reveal significant deviations from the model predictions on few to tens of degrees scales, indicating the need to include the details of the Galactic spiral structure and thus requiring 3D spatial modeling. In this paper, the high-energy interstellar emissions frommore » the Galaxy are calculated using the new release of the GALPROP code employing 3D spatial models for the CR source and interstellar radiation field (ISRF) densities. Three models for the spatial distribution of CR sources are used that are differentiated by their relative proportion of input luminosity attributed to the smooth disk or spiral arms. Two ISRF models are developed based on stellar and dust spatial density distributions taken from the literature that reproduce local near- to far-infrared observations. The interstellar emission models that include arms and bulges for the CR source and ISRF densities provide plausible physical interpretations for features found in the residual maps from high-energy γ -ray data analysis. The 3D models for CR and ISRF densities provide a more realistic basis that can be used for the interpretation of the nonthermal interstellar emissions from the Galaxy.« less
NASA Astrophysics Data System (ADS)
Usowicz, B.; Marczewski, W.; Lipiec, J.; Usowicz, J. B.; Sokolowska, Z.; Dabkowska-Naskret, H.; Hajnos, M.; Lukowski, M. I.
2009-04-01
The purpose is obtaining trustful ground based measurement data of SM (Soil Moisture) for validating SMOS, respectively to spatial and temporal distribution and variations. A use of Time Domain Reflectometric (TDR) method is fast, simple and less destructive, to the soil matter, than a usual standard gravimetric method. TDR tools operate efficiently, enable nearly instant measurements, and allow on collecting many measurements from numerous sites, even when operated manually in short time intervals. The method enables also very frequent sampling of SM at few selected fixed sites, when long terms of temporal variations are needed. In effect one obtains reasonably large data base for determining spatial and temporal distributions of SM. The study is devoted to determining a plan on collecting TDR data, in the scales of small and large field areas, and checking their relevance to those available from gravimetric methods. Finally, the ground based SM distributions are needed for validating other SM distributions, available remotely in larger scales, from the satellite data of ENVISAT-ASAR, and from SMOS (Soil Moisture and Ocean Salinity Mission) when it becomes operational. The ground based evaluations are served mainly by geo-statistical analysis. The space borne estimations are retrieved by image processing and physical models, proper to relevant Remote Sensing (RS) instruments on the orbit. Finally, validation must engage again the geo-statistical evaluations, to assess the agreement between direct and remote sensing means, and provide a measure of trust for extending the limited scales of the ground based data, on concluding the agreement in scales proper to the satellite data. The study is focused mainly on trustful evaluating data from the ground, provided independently on satellite data sources. SM ground based data are collected permanently at 2 selected tests sites, and temporary in areas around the tests sites, in one day sessions, repeated several times per vegetation season. Permanent measurements are provided in profiles, down to 50 cm below surface. Temporary SM measurements are collected by hand held TDR (FOM/mts type, Easy Test Ltd., Lublin, Poland) from the top surface layer (1-6 cm), in a grid covering small and large areas, containing few hundred sites. The same places are served by collecting soil samples for the gravimetric analysis of SM, bulk density, other physical and textural characteristics. Sessions on measurement in large areas on the scale of community are repeated for separate days. The two methods used were compared with correlation coefficient, regression equation and differences of values. The spatial variability of soil moisture from gravimetric and TDR measurements were analyzed using geostatistical methods. The semivariogram parameters were determined and mathematical functions were fitted to empirically derived semivariograms. These functions were used for estimation of spatial distribution of soil moisture in cultivated fields by the kriging method. The results showed that spatial distribution patterns of topsoil soil moisture in the investigated areas obtained from TDR and gravimetric methods were in general similar to each other. The TDR soil moisture contents were dependent on bulk density and texture of soil. In areas with fine-textured soils of lower soil bulk densities (approximately below 1.35 Mg m^-3) we observed that TDR soil moisture and spatial differentiation were greater compared to those with gravimetric method. However at higher bulk densities the inverse was true. The spatial patterns were further modified in areas with domination of coarse-textured soils. Decrease of measurement points results in smoothing soil moisture pattern and at the same time in a greater estimation error. The TDR method can be useful tool for ground moisture measurements and validation of satellite data. The use of specific calibration or correction for soil bulk density and texture with respect to the reflectometric method is recommended. The study is a contribution to the project SWEX (AO-3275) and funded by the Polish Ministry of Science and Higher Education (in part by Grant No. N305 046 31/1707 and in part by Grant No. N305 107 32/3865).
Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Y Churmakov, D.; Meglinski, I. V.; Piletsky, S. A.; Greenhalgh, D. A.
2003-07-01
A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an `effective' depth.
Methodology and application of combined watershed and ground-water models in Kansas
Sophocleous, M.; Perkins, S.P.
2000-01-01
Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling system much easier. This approach also enhances model calibration and thus the reliability of model results. (C) 2000 Elsevier Science B.V.Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and ve
"SABER": A new software tool for radiotherapy treatment plan evaluation.
Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay
2010-11-01
Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined, both the calculation method and the application of DCF can change the ranking order of competing plans. The voxel-by-voxel TCP model makes it feasible to incorporate spatial variations of clonogen densities (n), radiosensitivities (SF2), and fractionation sensitivities (alpha/beta) as those data become available. The new software incorporates both spatial and biological information into the treatment planning process. The application of multiple methods for the incorporation of biological and spatial information has demonstrated that the order of application of biological models can change the order of plan ranking. Thus, the results of plan evaluation and optimization are dependent not only on the models used but also on the order in which they are applied. This software can help the planner choose more biologically optimal treatment plans and potentially predict treatment outcome more accurately.
Institutions, Politics, and Mental Health Parity
Hernandez, Elaine M.; Uggen, Christopher
2013-01-01
Mental health parity laws require insurers to extend comparable benefits for mental and physical health care. Proponents argue that by placing mental health services alongside physical health services, such laws can help ensure needed treatment and destigmatize mental illness. Opponents counter that such mandates are costly or unnecessary. The authors offer a sociological account of the diffusion and spatial distribution of state mental health parity laws. An event history analysis identifies four factors as especially important: diffusion of law, political ideology, the stability of mental health advocacy organizations and the relative health of state economies. Mental health parity is least likely to be established during times of high state unemployment and under the leadership of conservative state legislatures. PMID:24353902
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
Total Water-Vapor Distribution in the Summer Cloudless Atmosphere over the South of Western Siberia
NASA Astrophysics Data System (ADS)
Troshkin, D. N.; Bezuglova, N. N.; Kabanov, M. V.; Pavlov, V. E.; Sokolov, K. I.; Sukovatov, K. Yu.
2017-12-01
The spatial distribution of the total water vapor in different climatic zones of the south of Western Siberia in summer of 2008-2011 is studied on the basis of Envisat data. The correlation analysis of the water-vapor time series from the Envisat data W and radiosonde observations w for the territory of Omsk aerological station show that the absolute values of W and w are linearly correlated with a coefficient of 0.77 (significance level p < 0.05). The distribution functions of the total water vapor are calculated based on the number of its measurements by Envisat for a cloudless sky of three zones with different physical properties of the underlying surface, in particular, steppes to the south of the Vasyugan Swamp and forests to the northeast of the Swamp. The distribution functions are bimodal; each mode follows the lognormal law. The parameters of these functions are given.
VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases
NASA Technical Reports Server (NTRS)
Roussopoulos, N.; Sellis, Timos
1992-01-01
One of biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental database access method, VIEWCACHE, provides such an interface for accessing distributed data sets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image data sets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate distributed database search.
NASA Astrophysics Data System (ADS)
Henriquez, Miguel F.; Thompson, Derek S.; Kenily, Shane; Khaziev, Rinat; Good, Timothy N.; McIlvain, Julianne; Siddiqui, M. Umair; Curreli, Davide; Scime, Earl E.
2016-10-01
Understanding particle distributions in plasma boundary regions is critical to predicting plasma-surface interactions. Ions in the presheath exhibit complex behavior because of collisions and due to the presence of boundary-localized electric fields. Complete understanding of particle dynamics is necessary for understanding the critical problems of tokamak wall loading and Hall thruster channel wall erosion. We report measurements of 3D argon ion velocity distribution functions (IVDFs) in the vicinity of an absorbing boundary oriented obliquely to a background magnetic field. Measurements were obtained via argon ion laser induced fluorescence throughout a spatial volume upstream of the boundary. These distribution functions reveal kinetic details that provide a point-to-point check on particle-in-cell and 1D3V Boltzmann simulations. We present the results of this comparison and discuss some implications for plasma boundary interaction physics.
Catchment-scale Validation of a Physically-based, Post-fire Runoff and Erosion Model
NASA Astrophysics Data System (ADS)
Quinn, D.; Brooks, E. S.; Robichaud, P. R.; Dobre, M.; Brown, R. E.; Wagenbrenner, J.
2017-12-01
The cascading consequences of fire-induced ecological changes have profound impacts on both natural and managed forest ecosystems. Forest managers tasked with implementing post-fire mitigation strategies need robust tools to evaluate the effectiveness of their decisions, particularly those affecting hydrological recovery. Various hillslope-scale interfaces of the physically-based Water Erosion Prediction Project (WEPP) model have been successfully validated for this purpose using fire-effected plot experiments, however these interfaces are explicitly designed to simulate single hillslopes. Spatially-distributed, catchment-scale WEPP interfaces have been developed over the past decade, however none have been validated for post-fire simulations, posing a barrier to adoption for forest managers. In this validation study, we compare WEPP simulations with pre- and post-fire hydrological records for three forested catchments (W. Willow, N. Thomas, and S. Thomas) that burned in the 2011 Wallow Fire in Northeastern Arizona, USA. Simulations were conducted using two approaches; the first using automatically created inputs from an online, spatial, post-fire WEPP interface, and the second using manually created inputs which incorporate the spatial variability of fire effects observed in the field. Both approaches were compared to five years of observed post-fire sediment and flow data to assess goodness of fit.
Physically Unclonable Cryptographic Primitives by Chemical Vapor Deposition of Layered MoS2.
Alharbi, Abdullah; Armstrong, Darren; Alharbi, Somayah; Shahrjerdi, Davood
2017-12-26
Physically unclonable cryptographic primitives are promising for securing the rapidly growing number of electronic devices. Here, we introduce physically unclonable primitives from layered molybdenum disulfide (MoS 2 ) by leveraging the natural randomness of their island growth during chemical vapor deposition (CVD). We synthesize a MoS 2 monolayer film covered with speckles of multilayer islands, where the growth process is engineered for an optimal speckle density. Using the Clark-Evans test, we confirm that the distribution of islands on the film exhibits complete spatial randomness, hence indicating the growth of multilayer speckles is a spatial Poisson process. Such a property is highly desirable for constructing unpredictable cryptographic primitives. The security primitive is an array of 2048 pixels fabricated from this film. The complex structure of the pixels makes the physical duplication of the array impossible (i.e., physically unclonable). A unique optical response is generated by applying an optical stimulus to the structure. The basis for this unique response is the dependence of the photoemission on the number of MoS 2 layers, which by design is random throughout the film. Using a threshold value for the photoemission, we convert the optical response into binary cryptographic keys. We show that the proper selection of this threshold is crucial for maximizing combination randomness and that the optimal value of the threshold is linked directly to the growth process. This study reveals an opportunity for generating robust and versatile security primitives from layered transition metal dichalcogenides.
NASA Astrophysics Data System (ADS)
Leptokaropoulos, K.; Papadimitriou, E.; Orlecka-Sikora, B.; Karakostas, V.
2012-04-01
The spatial variation of the stress field (ΔCFF) after the 2001 strong (Mw=6.4) Skyros earthquake in North Aegean Sea, Greece, is investigated in association with the changes of earthquake production rates. A detailed slip model is considered in which the causative fault is consisted of several sub-faults with different coseismic slip onto each one of them. First the spatial distribution of aftershock productivity is compared with the static stress changes due to the coseismic slip. Calculations of ΔCFF are performed at different depths inside the seismogenic layer, defined from the vertical distribution of the aftershocks. Seismicity rates of the smaller magnitude events with M≥Mc for different time increments before and after the main shock are then derived from the application of a Probability Density Function (PDF). These rates are computed by spatially smoothing the seismicity and for this purpose a normal grid of rectangular cells is superimposed onto the area and the PDF determines seismicity rate values at the center of each cell. The differences between the earthquake occurrence rates before and after the main shock are compared and used as input data in a stress inversion algorithm based upon the Rate/State dependent friction concept in order to provide an independent estimation of stress changes. This model incorporates the physical properties of the fault zones (characteristic relaxation time, fault constitutive parameters, effective friction coefficient) with a probabilistic estimation of the spatial distribution of seismicity rates, derived from the application of the PDF. The stress patterns derived from the previously mentioned approaches are compared and the quantitative correlation between the respective results is accomplished by the evaluation of Pearson linear correlation coefficient and its confidence intervals to quantify their significance. Different assumptions and combinations of the physical and statistical parameters are tested for the model performance and robustness to be evaluated. Simulations will provide a measure of how robust is the use of seismicity rate changes as a stress meter for both positive and negative stress steps. This work was partially prepared within the framework of the research projects No. N N307234937 and 3935/B/T02/2010/39 financed by the Ministry of Education and Science of Poland during the period 2009 to 2011 and 2010 to 2012, respectively.
NASA Astrophysics Data System (ADS)
Flinchum, B. A.; Holbrook, W. S.; Grana, D.; Parsekian, A.; Carr, B.; Jiao, J.
2017-12-01
Porosity is generated by chemical, physical and biological processes that work to transform bedrock into soil. The resulting porosity structure can provide specifics about these processes and can improve understanding groundwater storage in the deep critical zone. Near-surface geophysical methods, when combined with rock physics and drilling, can be a tool used to map porosity over large spatial scales. In this study, we estimate porosity in three-dimensions (3D) across a 58 Ha granite catchment. Observations focus on seismic refraction, downhole nuclear magnetic resonance logs, downhole sonic logs, and samples of core acquired by push coring. We use a novel petrophysical approach integrating two rock physics models, a porous medium for the saprolite and a differential effective medium for the fractured rock, that drive a Bayesian inversion to calculate porosity from seismic velocities. The inverted geophysical porosities are within about 0.05 m3/m3 of lab measured values. We extrapolate the porosity estimates below seismic refraction lines to a 3D volume using ordinary kriging to map the distribution of porosity in 3D up to depths of 80 m. This study provides a unique map of porosity on scale never-before-seen in critical zone science. Estimating porosity on these large spatial scales opens the door for improving and understanding the processes that shape the deep critical zone.
NASA Astrophysics Data System (ADS)
Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.
2012-12-01
A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based multilayer snow and glacier module to estimate the spatial distribution of snow/glacier cover and snow and glacier melt runoff for a river basin in the Karakoram Himalayan region.
Constancias, Florentin; Saby, Nicolas P A; Terrat, Sébastien; Dequiedt, Samuel; Horrigue, Wallid; Nowak, Virginie; Guillemin, Jean-Philippe; Biju-Duval, Luc; Chemidlin Prévost-Bouré, Nicolas; Ranjard, Lionel
2015-06-01
Even though recent studies have clarified the influence and hierarchy of environmental filters on bacterial community structure, those constraining bacterial populations variations remain unclear. In consequence, our ability to understand to ecological attributes of soil bacteria and to predict microbial community response to environmental stress is therefore limited. Here, we characterized the bacterial community composition and the various bacterial taxonomic groups constituting the community across an agricultural landscape of 12 km(2) , by using a 215 × 215 m systematic grid representing 278 sites to precisely decipher their spatial distribution and drivers at this scale. The bacterial and Archaeal community composition was characterized by applying 16S rRNA gene pyrosequencing directly to soil DNA from samples. Geostatistics tools were used to reveal the heterogeneous distribution of bacterial composition at this scale. Soil physical parameters and land management explained a significant amount of variation, suggesting that environmental selection is the major process shaping bacterial composition. All taxa systematically displayed also a heterogeneous and particular distribution patterns. Different relative influences of soil characteristics, land use and space were observed, depending on the taxa, implying that selection and spatial processes might be differentially but not exclusively involved for each bacterial phylum. Soil pH was a major factor determining the distribution of most of the bacterial taxa and especially the most important factor explaining the spatial patterns of α-Proteobacteria and Planctomycetes. Soil texture, organic carbon content and quality were more specific to a few number of taxa (e.g., β-Proteobacteria and Chlorobi). Land management also influenced the distribution of bacterial taxa across the landscape and revealed different type of response to cropping intensity (positive, negative, neutral or hump-backed relationships) according to phyla. Altogether, this study provided valuable clues about the ecological behavior of soil bacterial and archaeal taxa at an agricultural landscape scale and could be useful for developing sustainable strategies of land management. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Resolution of the EPR Paradox for Fermion Spin Correlations
NASA Astrophysics Data System (ADS)
Close, Robert
2011-10-01
The EPR paradox addresses the question of whether a physical system can have a definite state independent of its measurement. Bell's Theorem places limits on correlations between local measurements of particles whose properties are established prior to measurement. Experimental violation of Bell's theorem has been regarded as evidence against the existence of a definite state prior to measurement. We model fermions as having a spatial distribution of spin values, so that a Stern-Gerlach device samples the spin distribution differently at different orientations. The computed correlations agree with quantum mechanical predictions and experimental observations. Bell's Theorem is not applicable because for any sampling of angles, different points on the sphere have different density of states.
Singh, Milind; Morris, Casey P.; Ellis, Ryan J.; Detamore, Michael S.
2008-01-01
Spatial and temporal control of bioactive signals in three-dimensional (3D) tissue engineering scaffolds is greatly desired. Coupled together, these attributes may mimic and maintain complex signal patterns, such as those observed during axonal regeneration or neovascularization. Seamless polymer constructs may provide a route to achieve spatial control of signal distribution. In this study, a novel microparticle-based scaffold fabrication technique is introduced as a method to create 3D scaffolds with spatial control over model dyes using uniform poly(D,L-lactide-co-glycolide) microspheres. Uniform microspheres were produced using the Precision Particle Fabrication technique. Scaffolds were assembled by flowing microsphere suspensions into a cylindrical glass mold, and then microspheres were physically attached to form a continuous scaffold using ethanol treatment. An ethanol soak of 1 h was found to be optimum for improved mechanical characteristics. Morphological and physical characterization of the scaffolds revealed that microsphere matrices were porous (41.1 ± 2.1%) and well connected, and their compressive stiffness ranged from 142 to 306 kPa. Culturing chondrocytes on the scaffolds revealed the compatibility of these substrates with cell attachment and viability. In addition, bilayered, multilayered, and gradient scaffolds were fabricated, exhibiting excellent spatial control and resolution. Such novel scaffolds can serve as sustained delivery devices of heterogeneous signals in a continuous and seamless manner, and may be particularly useful in future interfacial tissue engineering investigations. PMID:18795865
Prey Patch Patterns Predict Habitat Use by Top Marine Predators with Diverse Foraging Strategies
Benoit-Bird, Kelly J.; Battaile, Brian C.; Heppell, Scott A.; Hoover, Brian; Irons, David; Jones, Nathan; Kuletz, Kathy J.; Nordstrom, Chad A.; Paredes, Rosana; Suryan, Robert M.; Waluk, Chad M.; Trites, Andrew W.
2013-01-01
Spatial coherence between predators and prey has rarely been observed in pelagic marine ecosystems. We used measures of the environment, prey abundance, prey quality, and prey distribution to explain the observed distributions of three co-occurring predator species breeding on islands in the southeastern Bering Sea: black-legged kittiwakes (Rissa tridactyla), thick-billed murres (Uria lomvia), and northern fur seals (Callorhinus ursinus). Predictions of statistical models were tested using movement patterns obtained from satellite-tracked individual animals. With the most commonly used measures to quantify prey distributions - areal biomass, density, and numerical abundance - we were unable to find a spatial relationship between predators and their prey. We instead found that habitat use by all three predators was predicted most strongly by prey patch characteristics such as depth and local density within spatial aggregations. Additional prey patch characteristics and physical habitat also contributed significantly to characterizing predator patterns. Our results indicate that the small-scale prey patch characteristics are critical to how predators perceive the quality of their food supply and the mechanisms they use to exploit it, regardless of time of day, sampling year, or source colony. The three focal predator species had different constraints and employed different foraging strategies – a shallow diver that makes trips of moderate distance (kittiwakes), a deep diver that makes trip of short distances (murres), and a deep diver that makes extensive trips (fur seals). However, all three were similarly linked by patchiness of prey rather than by the distribution of overall biomass. This supports the hypothesis that patchiness may be critical for understanding predator-prey relationships in pelagic marine systems more generally. PMID:23301063
Validating modelled variable surface saturation in the riparian zone with thermal infrared images
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa
2015-04-01
Variable contributing areas and hydrological connectivity have become prominent new concepts for hydrologic process understanding in recent years. The dynamic connectivity within the hillslope-riparian-stream (HRS) system is known to have a first order control on discharge generation and especially the riparian zone functions as runoff buffering or producing zone. However, despite their importance, the highly dynamic processes of contraction and extension of saturation within the riparian zone and its impact on runoff generation still remain not fully understood. In this study, we analysed the potential of a distributed, fully coupled and physically based model (HydroGeoSphere) to represent the spatial and temporal water flux dynamics of a forested headwater HRS system (6 ha) in western Luxembourg. The model was set up and parameterised under consideration of experimentally-derived knowledge of catchment structure and was run for a period of four years (October 2010 to August 2014). For model evaluation, we especially focused on the temporally varying spatial patterns of surface saturation. We used ground-based thermal infrared (TIR) imagery to map surface saturation with a high spatial and temporal resolution and collected 20 panoramic snapshots of the riparian zone (ca. 10 by 20 m) under different hydrologic conditions. These TIR panoramas were used in addition to several classical discharge and soil moisture time series for a spatially-distributed model validation. In a manual calibration process we optimised model parameters (e.g. porosity, saturated hydraulic conductivity, evaporation depth) to achieve a better agreement between observed and modelled discharges and soil moistures. The subsequent validation of surface saturation patterns by a visual comparison of processed TIR panoramas and corresponding model output panoramas revealed an overall good accordance for all but one region that was always too dry in the model. However, quantitative comparisons of modelled and observed saturated pixel percentages and of their modelled and measured relationships to concurrent discharges revealed remarkable similarities. During the calibration process we observed that surface saturation patterns were mostly affected by changing the soil properties of the topsoil in the riparian zone, but that the discharge behaviour did not change substantially at the same time. This effect of various spatial patterns occurring concomitant to a nearly unchanged integrated response demonstrates the importance of spatially distributed validation data. Our study clearly benefited from using different kinds of data - spatially integrated and distributed, temporally continuous and discrete - for the model evaluation procedure.
Application of sunlight and lamps for plant irradiation in space bases
NASA Astrophysics Data System (ADS)
Sager, J. C.; Wheeler, R. M.
The radiation sources used for plant growth on a space base must meet the biological requirements for photosynthesis and photomorphogensis. In addition the sources must be energy and volume efficient, while maintaining the required irradiance levels, spectral, spatial and temporal distribution. These requirements are not easily met, but as the biological and mission requirements are better defined, then specific facility designs can begin to accommodate both the biological requirements and the physical limitations of a space based plant growth system.
Application of sunlight and lamps for plant irradiation in space bases
NASA Technical Reports Server (NTRS)
Sager, J. C.; Wheeler, R. M.
1992-01-01
The radiation sources used for plant growth on a space base must meet the biological requirements for photosynthesis and photomorphogenesis. In addition, the sources must be energy and volume efficient, while maintaining the required irradiance levels, spectral, spatial and temporal distribution. These requirements are not easily met, but as the biological and mission requirements are better defined, then specific facility designs can begin to accommodate both the biological requirements and the physical limitations of a space-based plant growth system.
The Effects of Implementing TopModel Concepts in the Noah Model
NASA Technical Reports Server (NTRS)
Peters-Lidard, C. D.; Houser, Paul R. (Technical Monitor)
2002-01-01
Topographic effects on runoff generation have been documented observationally (e.g., Dunne and Black, 1970) and are the subject of the physically based rainfall-runoff model TOPMODEL (Beven and Kirkby, 1979; Beven, 1986a;b) and its extensions, which incorporate variable soil transmissivity effects (Sivapalan et al, 1987, Wood et al., 1988; 1990). These effects have been shown to exert significant control over the spatial distribution of runoff, soil moisture and evapotranspiration, and by extension, the latent and sensible heat fluxes
High Sensitivity Stress Sensor Based on Hybrid Materials
NASA Technical Reports Server (NTRS)
Cao, Xian-An (Inventor)
2014-01-01
A sensing device is used to detect the spatial distributions of stresses applied by physical contact with the surface of the sensor or induced by pressure, temperature gradients, and surface absorption. The sensor comprises a hybrid active layer that includes luminophores doped in a polymeric or organic host, altogether embedded in a matrix. Under an electrical bias, the sensor simultaneously converts stresses into electrical and optical signals. Among many applications, the device may be used for tactile sensing and biometric imaging.
An Easily Constructed and Versatile Molecular Model
NASA Astrophysics Data System (ADS)
Hernandez, Sandra A.; Rodriguez, Nora M.; Quinzani, Oscar
1996-08-01
Three-dimensional molecular models are powerful tools used in basic courses of general and organic chemistry when the students must visualize the spatial distributions of atoms in molecules and relate them to the physical and chemical properties of such molecules. This article discusses inexpensive, easily carried, and semipermanent molecular models that the students may build by themselves. These models are based upon two different types of arrays of thin flexible wires, like telephone hook-up wires, which may be bent easily but keep their shapes.
2012-02-29
couples the estimation scheme with the computational scheme, using one to enhance the other. Numerically, this switching changes several of the matrices...2011. 11. M.A. Demetriou, Enforcing and enhancing consensus of spatially distributed filters utilizing mobile sensor networks, Proceedings of the 49th...expected May, 2012. References [1] J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York
[Spatial distribution pattern of Pontania dolichura larvae and sampling technique].
Zhang, Feng; Chen, Zhijie; Zhang, Shulian; Zhao, Huiyan
2006-03-01
In this paper, the spatial distribution pattern of Pontania dolichura larvae was analyzed with Taylor's power law, Iwao's distribution function, and six aggregation indexes. The results showed that the spatial distribution pattern of P. dolichura larvae was of aggregated, and the basic component of the distribution was individual colony, with the aggregation intensity increased with density. On branches, the aggregation was caused by the adult behavior of laying eggs and the spatial position of leaves, while on leaves, the aggregation was caused by the spatial position of news leaves in spring when m < 2.37, and by the spatial position of news leaves in spring and the behavior of eclosion and laying eggs when m > 2.37. By using the parameters alpha and beta in Iwao's m * -m regression equation, the optimal and sequential sampling numbers were determined.
Hiding in Plain Sight: A Case for Cryptic Metapopulations in Brook Trout (Salvelinus fontinalis)
Kazyak, David C.; Hilderbrand, Robert H.; King, Tim L.; Keller, Stephen R.; Chhatre, Vikram E.
2016-01-01
A fundamental issue in the management and conservation of biodiversity is how to define a population. Spatially contiguous fish occupying a stream network have often been considered to represent a single, homogenous population. However, they may also represent multiple discrete populations, a single population with genetic isolation-by-distance, or a metapopulation. We used microsatellite DNA and a large-scale mark-recapture study to assess population structure in a spatially contiguous sample of Brook Trout (Salvelinus fontinalis), a species of conservation concern. We found evidence for limited genetic exchange across small spatial scales and in the absence of barriers to physical movement. Mark-recapture and stationary passive integrated transponder antenna records demonstrated that fish from two tributaries very seldom moved into the opposite tributary, but movements between the tributaries and mainstem were more common. Using Bayesian genetic clustering, we identified two genetic groups that exhibited significantly different growth rates over three years of study, yet survival rates were very similar. Our study highlights the importance of considering the possibility of multiple genetically distinct populations occurring within spatially contiguous habitats, and suggests the existence of a cryptic metapopulation: a spatially continuous distribution of organisms exhibiting metapopulation-like behaviors. PMID:26730588
Hiding in Plain Sight: A Case for Cryptic Metapopulations in Brook Trout (Salvelinus fontinalis).
Kazyak, David C; Hilderbrand, Robert H; King, Tim L; Keller, Stephen R; Chhatre, Vikram E
2016-01-01
A fundamental issue in the management and conservation of biodiversity is how to define a population. Spatially contiguous fish occupying a stream network have often been considered to represent a single, homogenous population. However, they may also represent multiple discrete populations, a single population with genetic isolation-by-distance, or a metapopulation. We used microsatellite DNA and a large-scale mark-recapture study to assess population structure in a spatially contiguous sample of Brook Trout (Salvelinus fontinalis), a species of conservation concern. We found evidence for limited genetic exchange across small spatial scales and in the absence of barriers to physical movement. Mark-recapture and stationary passive integrated transponder antenna records demonstrated that fish from two tributaries very seldom moved into the opposite tributary, but movements between the tributaries and mainstem were more common. Using Bayesian genetic clustering, we identified two genetic groups that exhibited significantly different growth rates over three years of study, yet survival rates were very similar. Our study highlights the importance of considering the possibility of multiple genetically distinct populations occurring within spatially contiguous habitats, and suggests the existence of a cryptic metapopulation: a spatially continuous distribution of organisms exhibiting metapopulation-like behaviors.
Vegetation function and non-uniqueness of the hydrological response
NASA Astrophysics Data System (ADS)
Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.
2012-04-01
Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.
Tedoldi, Damien; Chebbo, Ghassan; Pierlot, Daniel; Branchu, Philippe; Kovacs, Yves; Gromaire, Marie-Christine
2017-02-01
Stormwater runoff infiltration brings about some concerns regarding its potential impact on both soil and groundwater quality; besides, the fate of contaminants in source-control devices somewhat suffers from a lack of documentation. The present study was dedicated to assessing the spatial distribution of three heavy metals (copper, lead, zinc) in the surface soil of ten small-scale infiltration facilities, along with several physical parameters (soil moisture, volatile matter, variable thickness of the upper horizon). High-resolution samplings and in-situ measurements were undertaken, followed by X-ray fluorescence analyses and spatial interpolation. Highest metal accumulation was found in a relatively narrow area near the water inflow zone, from which concentrations markedly decreased with increasing distance. Maximum enrichment ratios amounted to >20 in the most contaminated sites. Heavy metal patterns give a time-integrated vision of the non-uniform infiltration fluxes, sedimentation processes and surface flow pathways within the devices. This element indicates that the lateral extent of contamination is mainly controlled by hydraulics. The evidenced spatial structure of soil concentrations restricts the area where remediation measures would be necessary in these systems, and suggests possible optimization of their hydraulic functioning towards an easier maintenance. Heterogeneous upper boundary conditions should be taken into account when studying the fate of micropollutants in infiltration facilities with either mathematical modeling or soil coring field surveys. Copyright © 2016 Elsevier B.V. All rights reserved.
Inner membrane fusion mediates spatial distribution of axonal mitochondria
Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge
2016-01-01
In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817
Statistics of natural binaural sounds.
Młynarski, Wiktor; Jost, Jürgen
2014-01-01
Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction.
Statistics of Natural Binaural Sounds
Młynarski, Wiktor; Jost, Jürgen
2014-01-01
Binaural sound localization is usually considered a discrimination task, where interaural phase (IPD) and level (ILD) disparities at narrowly tuned frequency channels are utilized to identify a position of a sound source. In natural conditions however, binaural circuits are exposed to a stimulation by sound waves originating from multiple, often moving and overlapping sources. Therefore statistics of binaural cues depend on acoustic properties and the spatial configuration of the environment. Distribution of cues encountered naturally and their dependence on physical properties of an auditory scene have not been studied before. In the present work we analyzed statistics of naturally encountered binaural sounds. We performed binaural recordings of three auditory scenes with varying spatial configuration and analyzed empirical cue distributions from each scene. We have found that certain properties such as the spread of IPD distributions as well as an overall shape of ILD distributions do not vary strongly between different auditory scenes. Moreover, we found that ILD distributions vary much weaker across frequency channels and IPDs often attain much higher values, than can be predicted from head filtering properties. In order to understand the complexity of the binaural hearing task in the natural environment, sound waveforms were analyzed by performing Independent Component Analysis (ICA). Properties of learned basis functions indicate that in natural conditions soundwaves in each ear are predominantly generated by independent sources. This implies that the real-world sound localization must rely on mechanisms more complex than a mere cue extraction. PMID:25285658
Etherington, L.L.; Eggleston, D.B.
2003-01-01
We assessed determinants and consequences of multistage dispersal on spatial recruitment of the blue crab, Callinectes sapidus, within the Croatan, Albemarle, Pamlico Estuarine System (CAPES), North Carolina, U.S.A. Large-scale sampling of early juvenile crabs over 4 years indicated that spatial abundance patterns were size-dependent and resulted from primary post-larval dispersal (pre-settlement) and secondary juvenile dispersal (early post-settlement). In general, primary dispersal led to high abundances within more seaward habitats, whereas secondary dispersal (which was relatively consistent) expanded the distribution of juveniles, potentially increasing the estuarine nursery capacity. There were strong relationships between juvenile crab density and specific wind characteristics; however, these patterns were spatially explicit. Various physical processes (e.g., seasonal wind events, timing and magnitude of tropical cyclones) interacted to influence dispersal during multiple stages and determined crab recruitment patterns. Our results suggest that the nursery value of different habitats is highly dependent on the dispersal potential (primary and secondary dispersal) to and from these areas, which is largely determined by the relative position of habitats within the estuarine landscape.
Controls on the variability of net infiltration to desert sandstone
Heilweil, Victor M.; McKinney, Tim S.; Zhdanov, Michael S.; Watt, Dennis E.
2007-01-01
As populations grow in arid climates and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration becomes critically important for accurately inventorying water resources and mapping contamination vulnerability. This paper presents a conceptual model of net infiltration to desert sandstone and then develops an empirical equation for its spatial quantification at the watershed scale using linear least squares inversion methods for evaluating controlling parameters (independent variables) based on estimated net infiltration rates (dependent variables). Net infiltration rates used for this regression analysis were calculated from environmental tracers in boreholes and more than 3000 linear meters of vadose zone excavations in an upland basin in southwestern Utah underlain by Navajo sandstone. Soil coarseness, distance to upgradient outcrop, and topographic slope were shown to be the primary physical parameters controlling the spatial variability of net infiltration. Although the method should be transferable to other desert sandstone settings for determining the relative spatial distribution of net infiltration, further study is needed to evaluate the effects of other potential parameters such as slope aspect, outcrop parameters, and climate on absolute net infiltration rates.
A Distributed Snow Evolution Modeling System (SnowModel)
NASA Astrophysics Data System (ADS)
Liston, G. E.; Elder, K.
2004-12-01
A spatially distributed snow-evolution modeling system (SnowModel) has been specifically designed to be applicable over a wide range of snow landscapes, climates, and conditions. To reach this goal, SnowModel is composed of four sub-models: MicroMet defines the meteorological forcing conditions, EnBal calculates surface energy exchanges, SnowMass simulates snow depth and water-equivalent evolution, and SnowTran-3D accounts for snow redistribution by wind. While other distributed snow models exist, SnowModel is unique in that it includes a well-tested blowing-snow sub-model (SnowTran-3D) for application in windy arctic, alpine, and prairie environments where snowdrifts are common. These environments comprise 68% of the seasonally snow-covered Northern Hemisphere land surface. SnowModel also accounts for snow processes occurring in forested environments (e.g., canopy interception related processes). SnowModel is designed to simulate snow-related physical processes occurring at spatial scales of 5-m and greater, and temporal scales of 1-hour and greater. These include: accumulation from precipitation; wind redistribution and sublimation; loading, unloading, and sublimation within forest canopies; snow-density evolution; and snowpack ripening and melt. To enhance its wide applicability, SnowModel includes the physical calculations required to simulate snow evolution within each of the global snow classes defined by Sturm et al. (1995), e.g., tundra, taiga, alpine, prairie, maritime, and ephemeral snow covers. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) are used as SnowModel simulation examples to highlight model strengths, weaknesses, and features in forested, semi-forested, alpine, and shrubland environments.
A young bipolar outflow from IRAS 15398-3359
NASA Astrophysics Data System (ADS)
Bjerkeli, P.; Jørgensen, J. K.; Brinch, C.
2016-03-01
Context. Changing physical conditions in the vicinity of protostars allow for a rich and interesting chemistry to occur. Heating and cooling of the gas allows molecules to be released from and frozen out on dust grains. These changes in physics, traced by chemistry as well as the kinematical information, allows us to distinguish between different scenarios describing the infall of matter and the launching of molecular outflows and jets. Aims: We aim to determine the spatial distribution of different species that are of different chemical origin. This is to examine the physical processes in play in the observed region. From the kinematical information of the emission lines we aim to determine the nature of the infalling and outflowing gas in the system. We also aim to determine the physical properties of the outflow. Methods: Maps from the Submillimeter Array (SMA) reveal the spatial distribution of the gaseous emission towards IRAS 15398-3359. The line radiative transfer code LIME is used to construct a full 3D model of the system taking all relevant components and scales into account. Results: CO, HCO+, and N2H+ are detected and shown to trace the motions of the outflow. For CO, the circumstellar envelope and the surrounding cloud also have a profound impact on the observed line profiles. N2H+ is detected in the outflow, but is suppressed towards the central region, perhaps because of the competing reaction between CO and H3+ in the densest regions as well as the destruction of N2H+ by CO. N2D+ is detected in a ridge south-west of the protostellar condensation and is not associated with the outflow. The morphology and kinematics of the CO emission suggests that the source is younger than ~1000 years. The mass, momentum, momentum rate, mechanical luminosity, kinetic energy, and mass-loss rate are also all estimated to be low. A full 3D radiative transfer model of the system can explain all the kinematical and morphological features in the system.
Ubertini, Martin; Lefebvre, Sébastien; Gangnery, Aline; Grangeré, Karine; Le Gendre, Romain; Orvain, Francis
2012-01-01
The high degree of physical factors in intertidal estuarine ecosystem increases material processing between benthic and pelagic compartments. In these ecosystems, microphytobenthos resuspension is a major phenomenon since its contribution to higher trophic levels can be highly significant. Understanding the sediment and associated microphytobenthos resuspension and its fate in the water column is indispensable for measuring the food available to benthic and pelagic food webs. To identify and hierarchize the physical/biological factors potentially involved in MPB resuspension, the entire intertidal area and surrounding water column of an estuarine ecosystem, the Bay des Veys, was sampled during ebb tide. A wide range of physical parameters (hydrodynamic regime, grain size of the sediment, and suspended matter) and biological parameters (flora and fauna assemblages, chlorophyll) were analyzed to characterize benthic-pelagic coupling at the bay scale. Samples were collected in two contrasted periods, spring and late summer, to assess the impact of forcing variables on benthic-pelagic coupling. A mapping approach using kriging interpolation enabled us to overlay benthic and pelagic maps of physical and biological variables, for both hydrological conditions and trophic indicators. Pelagic Chl a concentration was the best predictor explaining the suspension-feeders spatial distribution. Our results also suggest a perennial spatio-temporal structure of both benthic and pelagic compartments in the ecosystem, at least when the system is not imposed to intense wind, with MPB distribution controlled by both grain size and bathymetry. The benthic component appeared to control the pelagic one via resuspension phenomena at the scale of the bay. Co-inertia analysis showed closer benthic-pelagic coupling between the variables in spring. The higher MPB biomass observed in summer suggests a higher contribution to filter-feeders diets, indicating a higher resuspension effect in summer than in spring, in turn suggesting an important role of macrofauna bioturbation and filter feeding (Cerastoderma edule). PMID:22952910
Interpretation of heavy rainfall spatial distribution in mountain watersheds by copula functions
NASA Astrophysics Data System (ADS)
Grossi, Giovanna; Balistrocchi, Matteo
2016-04-01
The spatial distribution of heavy rainfalls can strongly influence flood dynamics in mountain watersheds, depending on their geomorphologic features, namely orography, slope, land covers and soil types. Unfortunately, the direct observation of rainfall fields by meteorological radar is very difficult in this situation, so that interpolation of rain gauge observations or downscaling of meteorological predictions must be adopted to derive spatial rainfall distributions. To do so, various stochastic and physically based approaches are already available, even though the first one is the most familiar in hydrology. Indeed, Kriging interpolation procedures represent very popular techniques to face this problem by means of a stochastic approach. A certain number of restrictive assumptions and parameter uncertainties however affects Kriging. Many alternative formulations and additional procedures were therefore developed during the last decades. More recently, copula functions (Joe, 1997; Nelsen, 2006; Salvadori et al. 2007) were suggested to provide a more straightforward solution to carry out spatial interpolations of hydrologic variables (Bardossy & Pegram; 2009). Main advantages lie in the possibility of i) assessing the dependence structure relating to rainfall variables independently of marginal distributions, ii) expressing the association degree through rank correlation coefficients, iii) implementing marginal distributions and copula functions belonging to different models to develop complex joint distribution functions, iv) verifying the model reliability by effective statistical tests (Genest et al., 2009). A suitable case study to verify these potentialities is provided by the Taro River, a right-bank tributary of the Po River (northern Italy), whose contributing area amounts to about 2˙000 km2. The mountain catchment area is divided into two similar watersheds, so that spatial distribution is crucial in extreme flood event generation. A quite well diffused hydro-meteorological network, consisting of about 30 rain gauges and 10 hydrometers, monitors this medium-size watershed. A decade of rainfall-runoff event observations are available. Severe rainfall events were identified with reference to a main raingauge station, by using an interevent time definition and a depth threshold. Rainfall depths were thus derived and the spatial variability of their association degree was represented by using the Kendall coefficient. A unique copula model based on Gumbel copula function was finally found to be suitable to represent the dependence structure relating to rainfall depths observed in distinct raingauges. Bardossy A., Pegram G. (2009), Copula based multisite model for daily precipitation simulation, Hydrol. Earth Syst. Sci., 13, 2299-2314. Genest C., Rémilland B., Beaudoin D. (2009), Goodness-of-fit tests for copulas: a review and a power study, Insur. Math. Econ., 44(2), 199-213. Joe H. (1997), Multivariate models and dependence concepts, Chapman and Hall, London. Nelsen R. B. (2006), An introduction to copulas, second ed., Springer, New York. Salvadori G., De Michele C., Kottegoda N. T., Rosso R. (2007), Extremes in nature: an approach using copulas, Springer, Dordrecht, The Nederlands.
Spatial modeling of cell signaling networks.
Cowan, Ann E; Moraru, Ion I; Schaff, James C; Slepchenko, Boris M; Loew, Leslie M
2012-01-01
The shape of a cell, the sizes of subcellular compartments, and the spatial distribution of molecules within the cytoplasm can all control how molecules interact to produce a cellular behavior. This chapter describes how these spatial features can be included in mechanistic mathematical models of cell signaling. The Virtual Cell computational modeling and simulation software is used to illustrate the considerations required to build a spatial model. An explanation of how to appropriately choose between physical formulations that implicitly or explicitly account for cell geometry and between deterministic versus stochastic formulations for molecular dynamics is provided, along with a discussion of their respective strengths and weaknesses. As a first step toward constructing a spatial model, the geometry needs to be specified and associated with the molecules, reactions, and membrane flux processes of the network. Initial conditions, diffusion coefficients, velocities, and boundary conditions complete the specifications required to define the mathematics of the model. The numerical methods used to solve reaction-diffusion problems both deterministically and stochastically are then described and some guidance is provided in how to set up and run simulations. A study of cAMP signaling in neurons ends the chapter, providing an example of the insights that can be gained in interpreting experimental results through the application of spatial modeling. Copyright © 2012 Elsevier Inc. All rights reserved.
Ooi, Jillian L. S.; Van Niel, Kimberly P.; Kendrick, Gary A.; Holmes, Karen W.
2014-01-01
Background Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Methods and Results Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2–3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5–50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5–140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. Conclusion In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused on monospecific temperate meadows. PMID:24497978
Ooi, Jillian L S; Van Niel, Kimberly P; Kendrick, Gary A; Holmes, Karen W
2014-01-01
Seagrass species in the tropics occur in multispecies meadows. How these meadows are maintained through species co-existence and what their ecological drivers may be has been an overarching question in seagrass biogeography. In this study, we quantify the spatial structure of four co-existing species and infer potential ecological processes from these structures. Species presence/absence data were collected using underwater towed and dropped video cameras in Pulau Tinggi, Malaysia. The geostatistical method, utilizing semivariograms, was used to describe the spatial structure of Halophila spp, Halodule uninervis, Syringodium isoetifolium and Cymodocea serrulata. Species had spatial patterns that were oriented in the along-shore and across-shore directions, nested with larger species in meadow interiors, and consisted of multiple structures that indicate the influence of 2-3 underlying processes. The Linear Model of Coregionalization (LMC) was used to estimate the amount of variance contributing to the presence of a species at specific spatial scales. These distances were <2.5 m (micro-scale), 2.5-50 m (fine-scale) and >50 m (broad-scale) in the along-shore; and <2.5 m (micro-scale), 2.5-140 m (fine-scale) and >140 m (broad-scale) in the across-shore. The LMC suggests that smaller species (Halophila spp and H. uninervis) were most influenced by broad-scale processes such as hydrodynamics and water depth whereas large, localised species (S. isoetifolium and C. serrulata) were more influenced by finer-scale processes such as sediment burial, seagrass colonization and growth, and physical disturbance. In this study, we provide evidence that spatial structure is distinct even when species occur in well-mixed multispecies meadows, and we suggest that size-dependent plant traits have a strong influence on the distribution and maintenance of tropical marine plant communities. This study offers a contrast from previous spatial models of seagrasses which have largely focused on monospecific temperate meadows.
NASA Astrophysics Data System (ADS)
Sabol, Bruce M.
2005-09-01
There has been a longstanding need for an objective and cost-effective technique to detect, characterize, and quantify submersed aquatic vegetation at spatial scales between direct physical sampling and remote aerial-based imaging. Acoustic-based approaches for doing so are reviewed and an explicit approach, using a narrow, single-beam echosounder, is described in detail. This heuristic algorithm is based on the spatial distribution of a thresholded signal generated from a high-frequency, narrow-beam echosounder operated in a vertical orientation from a survey boat. The physical basis, rationale, and implementation of this algorithm are described, and data documenting performance are presented. Using this technique, it is possible to generate orders of magnitude more data than would be available using previous techniques with a comparable level of effort. Thus, new analysis and interpretation approaches are called for which can make full use of these data. Several analyses' examples are shown for environmental effects application studies. Current operational window and performance limitations are identified and thoughts on potential processing approaches to improve performance are discussed.
Scale-free correlations in the geographical spreading of obesity
NASA Astrophysics Data System (ADS)
Gallos, Lazaros; Barttfeld, Pablo; Havlin, Shlomo; Sigman, Mariano; Makse, Hernan
2012-02-01
Obesity levels have been universally increasing. A crucial problem is to determine the influence of global and local drivers behind the obesity epidemic, to properly guide effective policies. Despite the numerous factors that affect the obesity evolution, we show a remarkable regularity expressed in a predictable pattern of spatial long-range correlations in the geographical spreading of obesity. We study the spatial clustering of obesity and a number of related health and economic indicators, and we use statistical physics methods to characterize the growth of the resulting clusters. The resulting scaling exponents allow us to broadly classify these indicators into two separate universality classes, weakly or strongly correlated. Weak correlations are found in generic human activity such as population distribution and the growth of the whole economy. Strong correlations are recovered, among others, for obesity, diabetes, and the food industry sectors associated with food consumption. Obesity turns out to be a global problem where local details are of little importance. The long-range correlations suggest influence that extends to large scales, hinting that the physical model of obesity clustering can be mapped to a long-range correlated percolation process.
Serendipitous occultations by kilometer size Kuiper Belt with MIOSOTYS
NASA Astrophysics Data System (ADS)
Doressoundiram, A.; Liu, C.-Y.; Maquet, L.; Roques, F.
2017-09-01
MIOSOTYS (Multi-object Instrument for Occultations in the SOlar system and TransitorY Systems) is a multi-fiber positioner coupled with a fast photometry camera. This is a visitor instrument mounted on the 193 cm telescope at the Observatoire de Haute-Provence, France and on the 123 cm telescope at the Calar Alto Observatory, Spain. Our immediate goal is to characterize the spatial distribution and extension of the Kuiper Belt, and the physical size distribution of TNOs. We present the observation campaigns during 2010-2013, objectives and observing strategy. We report the detection of potential candidates for occultation events of TNOs. We will discuss more specifically the method used to process the data and the modelling of diffraction patterns. We, finally present the results obtained concerning the distribution of sub-kilometer TNOs in the Kuiper Belt.
Neutron-skin effect in direct-photon and charged-hadron production in Pb+Pb collisions at the LHC
NASA Astrophysics Data System (ADS)
Helenius, Ilkka; Paukkunen, Hannu; Eskola, Kari J.
2017-03-01
A well-established observation in nuclear physics is that in neutron-rich spherical nuclei the distribution of neutrons extends farther than the distribution of protons. In this work, we scrutinize the influence of this so called neutron-skin effect on the centrality dependence of high-p_T direct-photon and charged-hadron production. We find that due to the estimated spatial dependence of the nuclear parton distribution functions, it will be demanding to unambiguously expose the neutron-skin effect with direct photons. However, when taking a ratio between the cross sections for negatively and positively charged high-p_T hadrons, even centrality-dependent nuclear-PDF effects cancel, making this observable a better handle on the neutron skin. Up to 10% effects can be expected for the most peripheral collisions in the measurable region.
Metabolic Flexibility as a Major Predictor of Spatial Distribution in Microbial Communities
Carbonero, Franck; Oakley, Brian B.; Purdy, Kevin J.
2014-01-01
A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology. PMID:24465487
The Human and Physical Determinants of Wildfires and Burnt Areas in Israel
NASA Astrophysics Data System (ADS)
Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive
2016-09-01
Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.
The Human and Physical Determinants of Wildfires and Burnt Areas in Israel.
Levin, Noam; Tessler, Naama; Smith, Andrew; McAlpine, Clive
2016-09-01
Wildfires are expected to increase in Mediterranean landscapes as a result of climate change and changes in land-use practices. In order to advance our understanding of human and physical factors shaping spatial patterns of wildfires in the region, we compared two independently generated datasets of wildfires for Israel that cover approximately the same study period. We generated a site-based dataset containing the location of 10,879 wildfires (1991-2011), and compared it to a dataset of burnt areas derived from MODIS imagery (2000-2011). We hypothesized that the physical and human factors explaining the spatial distribution of burnt areas derived from remote sensing (mostly large fires, >100 ha) will differ from those explaining site-based wildfires recorded by national agencies (mostly small fires, <10 ha). Small wildfires recorded by forestry agencies were concentrated within planted forests and near built-up areas, whereas the largest wildfires were located in more remote regions, often associated with military training areas and herbaceous vegetation. We conclude that to better understand wildfire dynamics, consolidation of wildfire databases should be achieved, combining field reports and remote sensing. As nearly all wildfires in Mediterranean landscapes are caused by human activities, improving the management of forest areas and raising public awareness to fire risk are key considerations in reducing fire danger.
Interfacial mixing in high-energy-density matter with a multiphysics kinetic model
NASA Astrophysics Data System (ADS)
Haack, Jeffrey R.; Hauck, Cory D.; Murillo, Michael S.
2017-12-01
We have extended a recently developed multispecies, multitemperature Bhatnagar-Gross-Krook model [Haack et al., J. Stat. Phys. 168, 822 (2017), 10.1007/s10955-017-1824-9], to include multiphysics capabilities that enable modeling of a wider range of physical conditions. In terms of geometry, we have extended from the spatially homogeneous setting to one spatial dimension. In terms of the physics, we have included an atomic ionization model, accurate collision physics across coupling regimes, self-consistent electric fields, and degeneracy in the electronic screening. We apply the model to a warm dense matter scenario in which the ablator-fuel interface of an inertial confinement fusion target is heated, but for larger length and time scales and for much higher temperatures than can be simulated using molecular dynamics. Relative to molecular dynamics, the kinetic model greatly extends the temperature regime and the spatiotemporal scales over which we are able to model. In our numerical results we observe hydrogen from the ablator material jetting into the fuel during the early stages of the implosion and compare the relative size of various diffusion components (Fickean diffusion, electrodiffusion, and barodiffusion) that drive this process. We also examine kinetic effects, such as anisotropic distributions and velocity separation, in order to determine when this problem can be described with a hydrodynamic model.
The spatial distribution of cropland carbon transfer in Jilin province during 2014
NASA Astrophysics Data System (ADS)
Cai, Xintong; Meng, Jian; Li, Qiuhui; Gao, Shuang; Zhu, Xianjin
2018-01-01
Cropland carbon transfer (CCT, gC yr-1) is an important component in the carbon budget of terrestrial ecosystems. Analyzing the value of CCT and its spatial variation would provide a data basis for assessing the regional carbon balance. Based on the data from Jilin statistical yearbook 2015, we investigated the spatial variation of CCT in Jilin province during 2014. Results suggest that the CCT of Jilin province was 30.83 TgC, which exhibited a decreasing trend from the centre to the border but the west side was higher than the east. The magnitude of carbon transfer per area (MCT), which showed a similar spatial distribution with CCT, was the dominating component of CCT spatial distribution. The spatial distribution of MCT was jointly affected by that of the ratio of planting area to regional area (RPR) and carbon transfer per planting area (CTP), where RPR and CTP contributed 65.55% and 34.5% of MCT spatial distribution, respectively. Therefore, CCT in Jilin province spatially varied, which made it highly needed to consider the difference in CCT among regions when we assessing the regional carbon budget.
MRI of chemical reactions and processes.
Britton, Melanie M
2017-08-01
As magnetic resonance imaging (MRI) can spatially resolve a wealth of molecular information available from nuclear magnetic resonance (NMR), it is able to non-invasively visualise the composition, properties and reactions of a broad range of spatially-heterogeneous molecular systems. Hence, MRI is increasingly finding applications in the study of chemical reactions and processes in a diverse range of environments and technologies. This article will explain the basic principles of MRI and how it can be used to visualise chemical composition and molecular properties, providing an overview of the variety of information available. Examples are drawn from the disciplines of chemistry, chemical engineering, environmental science, physics, electrochemistry and materials science. The review introduces a range of techniques used to produce image contrast, along with the chemical and molecular insight accessible through them. Methods for mapping the distribution of chemical species, using chemical shift imaging or spatially-resolved spectroscopy, are reviewed, as well as methods for visualising physical state, temperature, current density, flow velocities and molecular diffusion. Strategies for imaging materials with low signal intensity, such as those containing gases or low sensitivity nuclei, using compressed sensing, para-hydrogen or polarisation transfer, are discussed. Systems are presented which encapsulate the diversity of chemical and physical parameters observable by MRI, including one- and two-phase flow in porous media, chemical pattern formation, phase transformations and hydrodynamic (fingering) instabilities. Lastly, the emerging area of electrochemical MRI is discussed, with studies presented on the visualisation of electrochemical deposition and dissolution processes during corrosion and the operation of batteries, supercapacitors and fuel cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Scott, B. E.; Webb, A.; Palmer, M. R.; Embling, C. B.; Sharples, J.
2013-10-01
As we begin to manage our oceans in much more spatial detail we must understand a great deal more about oceanographic habitat preferences of marine mobile top predators. In this unique field study we test a hypothesis on the mechanisms defining mobile predator foraging habitat characteristics by comparing temporally and spatially detailed bio-physical oceanographic data from contrasting topographical locations. We contrast the foraging locations of two very different seabird species, gannets and storm petrels, by repeatedly sampling a bank and a nearby flat area over daily tidal cycles during spring and neap tides. The results suggest that storm petrels are linked to foraging in specific locations where internal waves are produced, which is mainly on banks. These locations can also include the presence of high biomass of chlorophyll. In contrast, the location where more gannets are foraging is significantly influenced by temporal variables with higher densities of foraging birds much more likely during the neap tide than times of spring tide. The foraging times of both species was influenced by differences between the vertical layers of the water column above and below the thermocline; via either vertical shear of horizontal currents or absolute differences in speed between layers. Higher densities of foraging gannets were significantly more likely to be found at ebb tides in both bank and flat regions however over the bank, the density of foraging gannets was higher when the differences in speed between the layers were at a maximum. Both gannets and storm petrels appear to be more likely to forage when wind direction is opposed to tidal direction. This detailed understanding links foraging behaviour to predictable spatial and temporal bio-physical vertical characteristics and thus can be immediately used to explain variance and increase certainty in past abundance and distributional surveys. These results also illuminate the types of variables that should be considered when assessing potential changes to the distribution and characteristics of habitats from increased anthropogenic disturbances such as large scale offshore wind, wave and tidal renewable deployments.
Modeling The Distribution Of Dark Matter And Its Connection To Galaxies
NASA Astrophysics Data System (ADS)
Mao, Yao-Yuan
2016-06-01
Despite the mysterious nature of dark matter and dark energy, the Lambda-Cold Dark Matter (LCDM) model provides a reasonably accurate description of the evolution of the cosmos and the distribution of galaxies. Today, we are set to tackle more specific and quantitative questions about the galaxy formation physics, the nature of dark matter, and the connection between the dark and the visible components. The answers to these questions are however elusive, because dark matter is not directly observable, and various unknowns lie between what we can observe and what we can calculate. Hence, mathematical models that bridge the observable and the calculable are essential for the study of modern cosmology. The aim of my thesis work is to improve existing models and also to construct new models for various aspects of the dark matter distribution, as dark matter structures the cosmic web and forms the nests of visible galaxies. Utilizing a series of cosmological dark matter simulations which span a wide dynamical range and a statistical sample of zoom-in simulations which focus on individual dark matter halos, we develop models for the spatial and velocity distribution of dark matter particles, the abundance of dark substructures, and the empirical connection between dark matter and galaxies. As more precise observational results become available, more accurate models are then required to test the consistency between these results and the LCDM predictions. For all the models we investigate, we find that the formation history of dark matter halos always plays a crucial role. Neglecting the halo formation history would result in systematic biases when we interpret various observational results, including dark matter direct detection experiments, the detection of dark substructures with strong-lensed systems, the large-scale spatial clustering of galaxies, and the abundance of dwarf galaxies. Rectifying this, our work will enable us to fully utilize the complementary power of diverse observational datasets to test the LCDM model and to seek new physics.
Li, Li; Steefel, Carl I; Kowalsky, Michael B; Englert, Andreas; Hubbard, Susan S
2010-03-01
Electron donor amendment for bioremediation often results in precipitation of secondary minerals and the growth of biomass, both of which can potentially change flow paths and the efficacy of bioremediation. Quantitative estimation of precipitate and biomass distribution has remained challenging, partly due to the intrinsic heterogeneities of natural porous media and the scarcity of field data. In this work, we examine the effects of physical and geochemical heterogeneities on the spatial distributions of mineral precipitates and biomass accumulated during a biostimulation field experiment near Rifle, Colorado. Field bromide breakthrough data were used to infer a heterogeneous distribution of hydraulic conductivity through inverse transport modeling, while the solid phase Fe(III) content was determined by assuming a negative correlation with hydraulic conductivity. Validated by field aqueous geochemical data, reactive transport modeling was used to explicitly keep track of the growth of the biomass and to estimate the spatial distribution of precipitates and biomass. The results show that the maximum mineral precipitation and biomass accumulation occurs in the vicinity of the injection wells, occupying up to 5.4vol.% of the pore space, and is dominated by reaction products of sulfate reduction. Accumulation near the injection wells is not strongly affected by heterogeneities present in the system due to the ubiquitous presence of sulfate in the groundwater. However, accumulation in the down-gradient regions is dominated by the iron-reducing reaction products, whose spatial patterns are strongly controlled by both physical and geochemical heterogeneities. Heterogeneities can lead to localized large accumulation of mineral precipitates and biomass, increasing the possibility of pore clogging. Although ignoring the heterogeneities of the system can lead to adequate prediction of the average behavior of sulfate-reducing related products, it can also lead to an overestimation of the overall accumulation of iron-reducing bacteria, as well as the rate and extent of iron reduction. Surprisingly, the model predicts that the total amount of uranium being reduced in the heterogeneous 2D system was similar to that in the 1D homogeneous system, suggesting that the overall uranium bioremediation efficacy may not be significantly affected by the heterogeneities of Fe(III) content in the down-gradient regions. Rather, the characteristics close to the vicinity of the injection wells might be crucial in determining the overall efficacy of uranium bioremediation. These findings have important implications not only for uranium bioremediation at the Rifle site and for bioremediation of other redox sensitive contaminants at sites with similar characteristics, but also for the development of optimal amendment delivery strategies in other settings. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dathe, A.; Nemes, A.; Bloem, E.; Patterson, M.; Gimenez, D.; Angyal, A.; Koestel, J. K.; Jarvis, N.
2017-12-01
Soil spatial heterogeneity plays a critical role for describing water and solute transport processes in the unsaturated zone. Although we have a sound understanding of the physical properties underlying this heterogeneity (like macropores causing preferential water flow), their quantification in a spatial context is still a challenge. To improve existing knowledge and modelling approaches we established a field experiment on an agriculturally used silty clay loam (Stagnosol) in SE Norway. Centimeter to decimeter scale heterogeneities were investigated in the field using electrical resistivity tomography (ERT) in a quasi-3D and a real 3D approach. More than 100 undisturbed soil samples were taken in the 2x1x1 m3plot investigated with 3D ERT to determine soil water retention, saturated and unsaturated hydraulic conductivities and bulk density in the laboratory. A subset of these samples was scanned at the computer tomography (CT) facility at the Swedish University of Agricultural Sciences in Uppsala, Sweden, with special emphasis on characterizing macroporosity. Results show that the ERT measurements captured the spatial distribution of bulk densities and reflected soil water contents. However, ERT could not resolve the large variation observed in saturated hydraulic conductivities from the soil samples. Saturated hydraulic conductivity was clearly related to the macroporosity visible in the CT scans obtained from the respective soil cores. Hydraulic conductivities close to saturation mainly changed with depths in the soil profile and therefore with bulk density. In conclusion, to quantify the spatial heterogeneity of saturated hydraulic conductivities scanning methods with a resolution smaller than the size of macropores have to be used. This is feasible only when the information obtained from for example CT scans of soil cores would be upscaled in a meaningful way.
NASA Astrophysics Data System (ADS)
He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.
2011-12-01
Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.
Lin, L; Ding, W X; Brower, D L
2014-11-01
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.
NASA Astrophysics Data System (ADS)
Mulders, P. J.
2018-03-01
Light-front quantized quark and gluon states (partons) play a dominant role in high energy scattering processes. Initial state hadrons are mixed ensembles of partons, while produced pure partonic states appear as mixed ensembles of hadrons. The transition from collinear hard physics to the 3D structure including partonic transverse momenta is related to confinement which links color and spatial degrees of freedom. We outline ideas on emergent symmetries in the Standard Model and their connection to the 3D structure of hadrons. Wilson loops, including those with light-like Wilson lines such as used in the studies of transverse momentum dependent distribution functions may play a crucial role here, establishing a direct link between transverse spatial degrees of freedom and gluonic degrees of freedom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.
2014-11-15
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less
Bypass transition and spot nucleation in boundary layers
NASA Astrophysics Data System (ADS)
Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno
2016-08-01
The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.
A physically based analytical spatial air temperature and humidity model
Yang Yang; Theodore A. Endreny; David J. Nowak
2013-01-01
Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...
Effects of a cognitive training on spatial learning and associated functional brain activations
2013-01-01
Background Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40–55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). Results Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. Conclusions Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults. PMID:23870447
Spatial patterns in gravel habitats and communities in the central and eastern English Channel
NASA Astrophysics Data System (ADS)
Coggan, Roger; Barrio Froján, Christopher R. S.; Diesing, Markus; Aldridge, John
2012-10-01
The distribution of sediment type and benthic communities in the central and eastern English Channel is shown to be polarised around a distinctive local hydrodynamic feature. The seabed in the region includes an extensive area of gravel substrate which is both an important habitat for benthic marine fauna and a valuable source of material for the marine aggregate industry. Effective management of the area is predicated on an understanding of whether it represents a single homogeneous unit, or several different units that may need to be managed in different ways. The aim of this study was to provide information that would inform such management decisions. Spatial patterns in gravel habitats and communities were studied by investigating the physical environment through modelled and empirical data, and the distribution of infauna and epifauna along an east-west trending transect. A common spatial pattern was observed in both physical and biological parameters, but rather than indicating a simple longitudinal gradient, there was a distinct polarisation around a central feature, a bedload parting (BLP) zone situated between the Isle of Wight and Cotentin peninsula. Sediments and communities at the eastern and western ends of the transect were more similar to each other than to those in the middle. The strong hydrodynamic regime in the BLP area controls sediment distribution, transporting finer material, mainly sand, away from the mid transect area. The pattern in sand content of the substrate mirrors the magnitude of the potential bedload transport, which is complex in this region due to the interplay between the M2 and M4 tidal constituents and produced a series of erosional and depositional zones. The structure of benthic communities reflected the local substrate and hydrodynamic conditions, with sponges observed among the stable substrates and stronger currents that characterised the mid transect area, while infauna became more diverse towards the ends of the transect where substrates were more mobile. We conclude that the area should not be considered as a homogeneous unit for management purposes, despite its apparent uniformity on contemporary seabed sediment maps.
NASA Astrophysics Data System (ADS)
Timm, R. K.; Wissmar, R. C.; Berge, H.; Foley, S.
2005-05-01
Anthropogenic controls on rivers such as dams, hardened banks, and land uses limit the interactions between main river channel and floodplain ecosystems and contribute to decreased habitat diversity. These system controls dampen the frequency and magnitude of natural disturbances that contibute to physical habitat structure and variability. Under natural and altered disturbance regimes river systems are expected to exhibit resiliency. However, in some cases, disturbances cause fluctuations in the trajectory of the mean system state that can have implications for river recovery in the short- and long-term by changing the spatial and temporal dimensions of available habitat relative to specific biological requirements. Historic and contemporary salmon spawning data are analyzed in the context of changing disturbance regimes in the Cedar River, Washington. Historic data are presented for active channel conditions and spawning fish distributions. Contemporary data are presented for an intensively studied reach that received a landslide that deposited approximately 50,000 m3 of sediment in the main channel, temporarily damming the river. Biologically, the spatio-temporal spawning distributions of Chinook (Oncorhynchus tshawytcha) and sockeye (O. nerka) salmon responded to modifications of physical habitat.
Propagation of neutron-reaction uncertainties through multi-physics models of novel LWR's
NASA Astrophysics Data System (ADS)
Hernandez-Solis, Augusto; Sjöstrand, Henrik; Helgesson, Petter
2017-09-01
The novel design of the renewable boiling water reactor (RBWR) allows a breeding ratio greater than unity and thus, it aims at providing for a self-sustained fuel cycle. The neutron reactions that compose the different microscopic cross-sections and angular distributions are uncertain, so when they are employed in the determination of the spatial distribution of the neutron flux in a nuclear reactor, a methodology should be employed to account for these associated uncertainties. In this work, the Total Monte Carlo (TMC) method is used to propagate the different neutron-reactions (as well as angular distributions) covariances that are part of the TENDL-2014 nuclear data (ND) library. The main objective is to propagate them through coupled neutronic and thermal-hydraulic models in order to assess the uncertainty of important safety parameters related to multi-physics, such as peak cladding temperature along the axial direction of an RBWR fuel assembly. The objective of this study is to quantify the impact that ND covariances of important nuclides such as U-235, U-238, Pu-239 and the thermal scattering of hydrogen in H2O have in the deterministic safety analysis of novel nuclear reactors designs.
Park, Rebecca Sejung; Shulaker, Max Marcel; Hills, Gage; Suriyasena Liyanage, Luckshitha; Lee, Seunghyun; Tang, Alvin; Mitra, Subhasish; Wong, H-S Philip
2016-04-26
We present a measurement technique, which we call the Pulsed Time-Domain Measurement, for characterizing hysteresis in carbon nanotube field-effect transistors, and demonstrate its applicability for a broad range of 1D and 2D nanomaterials beyond carbon nanotubes. The Pulsed Time-Domain Measurement enables the quantification (density, energy level, and spatial distribution) of charged traps responsible for hysteresis. A physics-based model of the charge trapping process for a carbon nanotube field-effect transistor is presented and experimentally validated using the Pulsed Time-Domain Measurement. Leveraging this model, we discover a source of traps (surface traps) unique to devices with low-dimensional channels such as carbon nanotubes and nanowires (beyond interface traps which exist in today's silicon field-effect transistors). The different charge trapping mechanisms for interface traps and surface traps are studied based on their temperature dependencies. Through these advances, we are able to quantify the interface trap density for carbon nanotube field-effect transistors (∼3 × 10(13) cm(-2) eV(-1) near midgap), and compare this against a range of previously studied dielectric/semiconductor interfaces.
Determination of the Changes of Drought Occurrence in Turkey Using Regional Climate Modeling
NASA Astrophysics Data System (ADS)
Sibel Saygili, Fatma; Tufan Turp, M.; Kurnaz, M. Levent
2017-04-01
As a consequence of the negative impacts of climate change, Turkey, being a country in the Mediterranean Basin, is under a serious risk of increased drought conditions. In this study, it is aimed to determine and compare the spatial distributions of climatological drought probabilities for Turkey. For this purpose, by making use of Regional Climate Model (RegCM4.4) of the Abdus Salam International Centre for Theoretical Physics (ICTP), the outputs of the MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology are downscaled to 50km for Turkey. To make the future projection over Turkey for the period of 2071-2100 with respect to the reference period of 1986-2005, the worst case emission pathway RCP8.5 is used. The Palmer Drought Severity Index (PDSI) values are computed and classified in accordance with the seven classifications of National Oceanic and Atmospheric Administration (NOAA). Finally, the spatial distribution maps showing the changes in drought probabilities over Turkey are obtained in order to see the impact of climate change on Turkey's drought patterns.
Spatial and temporal distribution of benthic macroinvertebrates in a Southeastern Brazilian river.
Silveira, M P; Buss, D F; Nessimian, J L; Baptista, D F
2006-05-01
Benthic macroinvertebrate assemblages are structured according to physical and chemical parameters that define microhabitats, including food supply, shelter to escape predators, and other biological parameters that influence reproductive success. The aim of this study is to investigate spatial and temporal distribution of macroinvertebrate assemblages at the Macaé river basin, in Rio de Janeiro state, Southeastern Brazil. According to the "Habitat Assessment Field Data Sheet--High Gradient Streams" (Barbour et al., 1999), the five sampling sites are considered as a reference condition. Despite the differences in hydrological parameters (mean width, depth and discharge) among sites, the physicochemical parameters and functional feeding groups' general structure were similar, except for the less impacted area, which showed more shredders. According to the Detrended Correspondence Analysis based on substrates, there is a clear distinction between pool and riffle assemblages. In fact, the riffle litter substrate had higher taxa in terms of richness and abundance, but the pool litter substrate had the greatest number of exclusive taxa. A Cluster Analysis based on sampling sites data showed that temporal variation was the main factor in structuring macroinvertebrate assemblages in the studied habitats.
Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric
2016-01-01
Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance hierarchy are related to spatial positions in primates. PMID:27199845
Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric
2016-01-01
Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance hierarchy are related to spatial positions in primates.
Mu, Guangyu; Liu, Ying; Wang, Limin
2015-01-01
The spatial pooling method such as spatial pyramid matching (SPM) is very crucial in the bag of features model used in image classification. SPM partitions the image into a set of regular grids and assumes that the spatial layout of all visual words obey the uniform distribution over these regular grids. However, in practice, we consider that different visual words should obey different spatial layout distributions. To improve SPM, we develop a novel spatial pooling method, namely spatial distribution pooling (SDP). The proposed SDP method uses an extension model of Gauss mixture model to estimate the spatial layout distributions of the visual vocabulary. For each visual word type, SDP can generate a set of flexible grids rather than the regular grids from the traditional SPM. Furthermore, we can compute the grid weights for visual word tokens according to their spatial coordinates. The experimental results demonstrate that SDP outperforms the traditional spatial pooling methods, and is competitive with the state-of-the-art classification accuracy on several challenging image datasets.
Spatial coding-based approach for partitioning big spatial data in Hadoop
NASA Astrophysics Data System (ADS)
Yao, Xiaochuang; Mokbel, Mohamed F.; Alarabi, Louai; Eldawy, Ahmed; Yang, Jianyu; Yun, Wenju; Li, Lin; Ye, Sijing; Zhu, Dehai
2017-09-01
Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop. This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing information set (SIS), including spatial code, size, count and other information. SIS was then employed to build spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented approach with a case study in this paper is compared against random sampling based partitioning, with three measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance. The experimental results show that our method based on spatial coding technique can improve the query performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.
NASA Astrophysics Data System (ADS)
Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki
2016-10-01
Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.
Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment
Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...
Chen, Lyu Feng; Zhu, Guo Ping
2018-03-01
Based on Antarctic krill fishery and marine environmental data collected by scientific observers, using geographically weighted regression (GWR) model, we analyzed the effects of the factors with spatial attributes, i.e., depth of krill swarm (DKS) and distance from fishing position to shore (DTS), and sea surface temperature (SST), on the spatial distribution of fishing ground in the northern South Shetland Islands. The results showed that there was no significant aggregation in spatial distribution of catch per unit fishing effort (CPUE). Spatial autocorrelations (positive) among three factors were observed in 2010 and 2013, but were not in 2012 and 2016. Results from GWR model showed that the extent for the impacts on spatial distribution of CPUEs varied among those three factors, following the order DKS>SST>DTS. Compared to the DKS and DTS, the impact of SST on the spatial distribution of CPUEs presented adverse trend in the eastern and western parts of the South Shetland Islands. Negative correlations occurred for the spatial effects of DKS and DTS on distribution of CPUEs, though with inter-annual and regional variation. Our results provide metho-dological reference for researches on the underlying mechanism for fishing ground formation for Antarctic krill fishery.
Muška, Milan; Tušer, Michal; Frouzová, Jaroslava; Mrkvička, Tomáš; Ricard, Daniel; Seďa, Jaromír; Morelli, Federico; Kubečka, Jan
2018-03-29
Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.
Rojas, Kristians Diaz; Montero, Maria L.; Yao, Jorge; Messing, Edward; Fazili, Anees; Joseph, Jean; Ou, Yangming; Rubens, Deborah J.; Parker, Kevin J.; Davatzikos, Christos; Castaneda, Benjamin
2015-01-01
Abstract. A methodology to study the relationship between clinical variables [e.g., prostate specific antigen (PSA) or Gleason score] and cancer spatial distribution is described. Three-dimensional (3-D) models of 216 glands are reconstructed from digital images of whole mount histopathological slices. The models are deformed into one prostate model selected as an atlas using a combination of rigid, affine, and B-spline deformable registration techniques. Spatial cancer distribution is assessed by counting the number of tumor occurrences among all glands in a given position of the 3-D registered atlas. Finally, a difference between proportions is used to compare different spatial distributions. As a proof of concept, we compare spatial distributions from patients with PSA greater and less than 5 ng/ml and from patients older and younger than 60 years. Results suggest that prostate cancer has a significant difference in the right zone of the prostate between populations with PSA greater and less than 5 ng/ml. Age does not have any impact in the spatial distribution of the disease. The proposed methodology can help to comprehend prostate cancer by understanding its spatial distribution and how it changes according to clinical parameters. Finally, this methodology can be easily adapted to other organs and pathologies. PMID:26236756
Spatial and temporal variability of groundwater recharge in Geba basin, Northern Ethiopia
NASA Astrophysics Data System (ADS)
Yenehun, Alemu; Walraevens, Kristine; Batelaan, Okke
2017-10-01
WetSpa, a physically based, spatially distributed watershed model, has been used to study the spatial and temporal variation of recharge in the Geba basin, Northern Ethiopia. The model covers an area of about 4, 249 km2 and integrates elevation, soil and land-use data, hydrometeorological and river discharge data. The Geba basin has a highly variable topography ranging from 1000 to 3280 m with an average slope of 12.9%. The area is characterized by a distinct wet and long dry season with a mean annual precipitation of 681 mm and temperatures ranging between 6.5 °C and 32 °C. The model was simulated on daily basis for nearly four years (January 1, 2000 to December 18, 2003). It resulted in a good agreement between measured and simulated streamflow hydrographs with Nash-Sutcliffe efficiency of almost 70% and 85% for, respectively, the calibration and validation. The water balance terms show very strong spatial and temporal variability, about 3.8% of the total precipitation is intercepted by the plant canopy; 87.5% infiltrates into the soil (of which 13% percolates, 2.7% flows laterally off and 84.2% evapotranspired from the root zone), and 7.2% is surface runoff. The mean annual recharge varies from about 45 mm (2003) to 208 mm (2001), with average of 98.6 mm/yr. On monthly basis, August has the maximum (73 mm) and December the lowest (0.1 mm) recharge. The mean annual groundwater recharge spatially varies from 0 to 371 mm; mainly controlled by the distribution of rainfall amount, followed by soil and land-use, and to a certain extent, slope. About 21% of Geba has a recharge larger than 120 mm and 1% less than 5 mm.
Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M
2018-03-01
Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.
Neves, Leonardo M; Teixeira-Neves, Tatiana P; Pereira-Filho, Guilherme H; Araújo, Francisco G
2016-01-01
The conservation and management of site-attached assemblages of coastal reefs are particularly challenging because of the tremendous environmental variation that exists at small spatial scales. In this sense, understanding the primary sources of variation in spatial patterns of the biota is fundamental for designing effective conservation policies. We investigated spatial variation in fish assemblages around the windward and leeward sides of coastal islands situated across a gradient of riverine influence (13 km in length). Specifically, relationships between rocky reef fish assemblages and benthic, topographic and physical predictors were assessed. We hypothesized that river induced disturbances may overcome local habitat features in modeling spatial patterns of fish distribution. Fish assemblages varied primarily due to the strong directional gradient of riverine influence (22.6% of the estimated components of variation), followed by topographic complexity (15%), wave exposure (9.9%), and benthic cover (8%). The trophic structure of fish assemblages changed from having a high abundance of invertebrate feeders in macroalgae-dominated reefs close to river mouths to a high proportion of herbivores, planktivores and invertebrate feeder species in reefs with large boulders covered by epilithic algal matrices, as the distance from rivers increased. This gradient led to an increase of 4.5-fold in fish richness and fish trophic group diversity, 11-fold in fish biomass and 10-fold in fish abundance. Our results have implications for the conservation and monitoring of assemblages patchily distributed at small spatial scales. The major role of distance from river influences on fish assemblages rather than benthic cover and topographic complexity suggest that managing land-based activities should be a conservation priority toward reef restoration.
Neves, Leonardo M.; Teixeira-Neves, Tatiana P.; Pereira-Filho, Guilherme H.; Araújo, Francisco G.
2016-01-01
The conservation and management of site-attached assemblages of coastal reefs are particularly challenging because of the tremendous environmental variation that exists at small spatial scales. In this sense, understanding the primary sources of variation in spatial patterns of the biota is fundamental for designing effective conservation policies. We investigated spatial variation in fish assemblages around the windward and leeward sides of coastal islands situated across a gradient of riverine influence (13 km in length). Specifically, relationships between rocky reef fish assemblages and benthic, topographic and physical predictors were assessed. We hypothesized that river induced disturbances may overcome local habitat features in modeling spatial patterns of fish distribution. Fish assemblages varied primarily due to the strong directional gradient of riverine influence (22.6% of the estimated components of variation), followed by topographic complexity (15%), wave exposure (9.9%), and benthic cover (8%). The trophic structure of fish assemblages changed from having a high abundance of invertebrate feeders in macroalgae-dominated reefs close to river mouths to a high proportion of herbivores, planktivores and invertebrate feeder species in reefs with large boulders covered by epilithic algal matrices, as the distance from rivers increased. This gradient led to an increase of 4.5-fold in fish richness and fish trophic group diversity, 11-fold in fish biomass and 10-fold in fish abundance. Our results have implications for the conservation and monitoring of assemblages patchily distributed at small spatial scales. The major role of distance from river influences on fish assemblages rather than benthic cover and topographic complexity suggest that managing land-based activities should be a conservation priority toward reef restoration. PMID:27907017
The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.
Carson, Cantwell G; Levine, Jonathan S
2016-09-01
The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Ma, Haotong; Hu, Haojun; Xie, Wenke; Xu, Xiaojun
2013-09-01
The generation of vortex laser beam by using phase-only liquid crystal spatial light modulator (LC-SLM) combined with the spiral phase screen is experimentally and theoretically studied. Results show that Gaussian and dark hollow vortex laser beams can be generated by using this method successfully. Differing with the Gaussian and dark hollow beams, far field intensities of the generated vortex laser beams still exhibit dark hollow distributions. The comparisons between the ideal generation and experimental generation of vortex laser beams with different optical topological charges by using phase only LC-SLM is investigated in detail. Compared with the ideal generated vortex laser beam, phase distribution of the experimental generated vortex laser beam contains many phase singularities, the number of which is the same as that of the optical topological charges. The corresponding near field and far field dark hollow intensity distributions of the generated vortex laser beams exhibit discontinuous in rotational direction. Detailed theoretical analysis show that the main reason for the physical phenomenon mentioned above is the response error of phase only LC-SLM. These studies can provide effective guide for the generation of vortex laser beam by using phase only LC-SLM for optical tweezers and free space optical communication.
NASA Astrophysics Data System (ADS)
Debski, Wojciech
2015-06-01
The spatial location of sources of seismic waves is one of the first tasks when transient waves from natural (uncontrolled) sources are analysed in many branches of physics, including seismology, oceanology, to name a few. Source activity and its spatial variability in time, the geometry of recording network, the complexity and heterogeneity of wave velocity distribution are all factors influencing the performance of location algorithms and accuracy of the achieved results. Although estimating of the earthquake foci location is relatively simple, a quantitative estimation of the location accuracy is really a challenging task even if the probabilistic inverse method is used because it requires knowledge of statistics of observational, modelling and a priori uncertainties. In this paper, we addressed this task when statistics of observational and/or modelling errors are unknown. This common situation requires introduction of a priori constraints on the likelihood (misfit) function which significantly influence the estimated errors. Based on the results of an analysis of 120 seismic events from the Rudna copper mine operating in southwestern Poland, we propose an approach based on an analysis of Shanon's entropy calculated for the a posteriori distribution. We show that this meta-characteristic of the a posteriori distribution carries some information on uncertainties of the solution found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Daniel J.; Kastengren, Alan L.; Mason-Smith, Nicholas
Drug concentration measurements in MDI sprays are typically performed using particle filtration or laser scattering. These techniques are ineffective in proximity to the nozzle, making it difficult to determine how factors such as nozzle design will affect the precipitation of co-solvent droplets in solution-based MDIs, and the final particle distribution. In optical measurements, scattering from the constituents is difficult to separate. We present a novel technique to directly measure drug distribution. A focused x-ray beam was used to stimulate x-ray fluorescence from the bromine in a solution containing 85% HFA, 15% ethanol co-solvent, and 1 / IPBr. Instantaneous concentration measurementsmore » were obtained with 1 ms temporal resolution and 5 spatial resolution, providing information in a region that is inaccessible to many other diagnostics. The drug remains homogeneously mixed over time, but was found to be higher at the centerline than at the periphery. This may have implications for oropharyngeal deposition in vivo. Measurements in the dynamic, turbulent region of MDIs allow us to understand the physical links between formulation, inspiration, and geometry on final particle size and distribution. This will ultimately lead to a better understanding of how MDI design can be improved to enhance respirable fraction.« less
González-Castro, A; Peñasco, Y; Blanco, C; González-Fernández, C; Domínguez, M J; Rodríguez-Borregán, J C
2014-01-01
To evaluate, for a consecutive year, the magnitude of unplanned extubation, looking for non-dependent patient variables. Prospective, observational study of cases and controls in a mixed intensive care unit within in a tertiary hospital. Patients were considered cases with more than 24 hours who had an episode of unplanned extubation. Prospective collection of variables case as time of unplanned extubation (collection time), identification of the box where the patient was admitted, presence and type of physical restraint, development of ventilator-associated pneumonia (VAP) and death. There were 17 unplanned extubation in 15 patients, 1.21 unplanned extubation per 100 days of MV. The unplanned extubation had an inhomogeneous spatial distribution (number of boxes). The time distribution of cases compared with controls showed significant differences in time distribution (P=.02). The comparative analysis between cases and controls, showed increased mortality, increased length of ICU stay, longer hospital stay and increased risk for VAP when patients suffer an episode of unplanned extubation. Unplanned extubation occurs most frequently in a given time slot of the day, may play a role in the spatial location of the patient; occurs most often in patients who are in the process of weaning from mechanical ventilation, and develop greater VAP. Copyright © 2014 SECA. Published by Elsevier Espana. All rights reserved.
Tidal Energy: The benthic effects of an operational tidal stream turbine.
O'Carroll, J P J; Kennedy, R M; Creech, A; Savidge, G
2017-08-01
The effect of modified flow on epifaunal boulder reef communities adjacent to the SeaGen, the world's first grid-compliant tidal stream turbine, were assessed. The wake of the SeaGen was modelled and the outputs were used in conjunction with positional and substrate descriptor variables, to relate variation in epifaunal community structure to the modified physical environment. An Artificial Neural Network (ANN) and Generalised Linear Model (GLM) were used to make predictions on the distribution of Ecological Status (ES) of epifaunal communities in relation to the turbulent wake of the SeaGen. ES was assigned using the High Energy Hard Substrate (HEHS) index. ES was largely High throughout the survey area and it was not possible to make predictions on the spatial distribution of ES using an ANN or GLM. Spatial pattern in epifaunal community structure was detected when the study area was partitioned into three treatment areas: area D1; within one rotor diameter (16 m) of the centre of SeaGen, area D2; between one and three rotor diameters, and area D3; outside of three rotor diameters. Area D1 was found to be significantly more variable than D2 and D3 in terms of epifaunal community structure, bare rock distributions and ES. Copyright © 2017 Elsevier Ltd. All rights reserved.
Durand, Jean-Dominique; Guinand, Bruno; Dodson, Julian J.; Lecomte, Frédéric
2013-01-01
The bonga shad, Ethmalosa fimbriata, is a West African pelagic species still abundant in most habitats of its distribution range and thought to be only recently affected by anthropogenic pressure (habitat destruction or fishing pressure). Its presence in a wide range of coastal habitats characterised by different hydrodynamic processes, represents a case study useful for evaluating the importance of physical structure of the west African shoreline on the genetic structure of a small pelagic species. To investigate this question, the genetic diversity of E. fimbriata was assessed at both regional and species range scales, using mitochondrial (mt) and nuclear DNA markers. Whereas only three panmictic units were identified with mtDNA at the large spatial scale, nuclear genetic markers (EPIC: exon-primed intron-crossing) indicated a more complex genetic pattern at the regional scale. In the northern-most section of shad’s distribution range, up to 4 distinct units were identified. Bayesian inference as well as spatial autocorrelation methods provided evidence that gene flow is impeded by the presence of deep-water areas near the coastline (restricting the width of the coastal shelf), such as the Cap Timiris and the Kayar canyons in Mauritania and Senegal, respectively. The added discriminatory power provided by the use of EPIC markers proved to be essential to detect the influence of more subtle, contemporary processes (e.g. gene flow, barriers, etc.) acting within the glacial refuges identified previously by mtDNA. PMID:24130890
Gaines, Tommi L; Beletsky, Leo; Arredondo, Jaime; Werb, Daniel; Rangel, Gudelia; Vera, Alicia; Brouwer, Kimberly
2015-04-01
In 2009, Mexico decriminalized the possession of small amounts of illicit drugs for personal use in order to refocus law enforcement resources on drug dealers and traffickers. This study examines the spatial distribution of law enforcement encounters reported by people who inject drugs (PWID) in Tijuana, Mexico to identify concentrated areas of policing activity after implementation of the new drug policy. Mapping the physical location of law enforcement encounters provided by PWID (n = 461) recruited through targeted sampling, we identified hotspots of extra-judicial encounters (e.g., physical/sexual abuse, syringe confiscation, and money extortion by law enforcement) and routine authorized encounters (e.g., being arrested or stopped but not arrested) using point density maps and the Getis-Ord Gi* statistic calculated at the neighborhood-level. Approximately half of the participants encountered law enforcement more than once in a calendar year and nearly one third of these encounters did not result in arrest but involved harassment or abuse by law enforcement. Statistically significant hotspots of law enforcement encounters were identified in a limited number of neighborhoods located in areas with known drug markets. At the local-level, law enforcement activities continue to target drug users despite a national drug policy that emphasizes drug treatment diversion rather than punitive enforcement. There is a need for law enforcement training and improved monitoring of policing tactics to better align policing with public health goals.
Spatial variability of soil hydraulics and remotely sensed soil parameters
NASA Technical Reports Server (NTRS)
Lascano, R. J.; Van Bavel, C. H. M.
1982-01-01
The development of methods to correctly interpret remotely sensed information about soil moisture and soil temperature requires an understanding of water and energy flow in soil, because the signals originate from the surface, or from a shallow surface layer, but reflect processes in the entire profile. One formidable difficulty in this application of soil physics is the spatial heterogeneity of natural soils. Earlier work has suggested that the heterogeneity of soil hydraulic properties may be described by the frequency distribution of a single scale factor. The sensitivity of hydraulic and energetic processes to the variation of this scale factor is explored with a suitable numerical model. It is believed that such an analysis can help in deciding how accurately and extensively basic physical properties of field soils need to be known in order to interpret thermal or radar waveband signals. It appears that the saturated hydraulic conductivity needs to be known only to its order of magnitude, and that the required accuracy of the soil water retention function is about 0.02 volume fraction. Furthermore, the results may be helpful in deciding how the total scene or view field, as perceived through a sensor, is composed from the actual mosaic of transient soil properties, such as surface temperature or surface soil moisture. However, the latter proposition presupposes a random distribution of permanent properties, a condition that may not be met in many instances, and no solution of the problem is apparent.
Mid-IR Imaging of Orion BN/KL: Modeling of Physical Conditions and Energy Balance
NASA Astrophysics Data System (ADS)
Gezari, Daniel; Varosi, Frank; Dwek, Eli; Danchi, William; Tan, Jonathan; Okumura, Shin-Ichiro
We have modeled two mid-infrared imaging photometry data sets to determine the spatial distribution of physical conditions in the BN/KL infrared complex. We observed the BN/KL region using the 10-m Keck I telescope and the LWS in the direct imaging mode, over a 13'' × 19'' field (Figure 1, left). We also modeled images obtained with COMICS (Kataza et al. 2000) at the 8.2-m SUBARU telescope, over a total field of view is 31'' × 41'' (Figure 1, right), in a total of nine bands: 7.8, 8.8, 9.7, 10.5, 11.7, 12.4, 18.5, 20.8 and 24.8 μm with ~1 μm bandwidth interference filters.
Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea.
Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas
2012-01-01
This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool.
The Role of Diffusion in the Transport of Energetic Electrons during Solar Flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, Nicolas H.; Kontar, Eduard P.; Emslie, A. Gordon, E-mail: nicolas.bian@glasgow.gla.ac.uk, E-mail: emslieg@wku.edu
2017-02-01
The transport of the energy contained in suprathermal electrons in solar flares plays a key role in our understanding of many aspects of flare physics, from the spatial distributions of hard X-ray emission and energy deposition in the ambient atmosphere to global energetics. Historically the transport of these particles has been largely treated through a deterministic approach, in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) generally being either treated as a small correction or even neglected. Here, we critically analyze thismore » approach, and we show that spatial diffusion through pitch-angle scattering necessarily plays a very significant role in the transport of electrons. We further show that a satisfactory treatment of the diffusion process requires consideration of non-local effects, so that the electron flux depends not just on the local gradient of the electron distribution function but on the value of this gradient within an extended region encompassing a significant fraction of a mean free path. Our analysis applies generally to pitch-angle scattering by a variety of mechanisms, from Coulomb collisions to turbulent scattering. We further show that the spatial transport of electrons along the magnetic field of a flaring loop can be modeled rather effectively as a Continuous Time Random Walk with velocity-dependent probability distribution functions of jump sizes and occurrences, both of which can be expressed in terms of the scattering mean free path.« less
Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates.
Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp
2018-04-27
Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Spatial averaging of a dissipative particle dynamics model for active suspensions
NASA Astrophysics Data System (ADS)
Panchenko, Alexander; Hinz, Denis F.; Fried, Eliot
2018-03-01
Starting from a fine-scale dissipative particle dynamics (DPD) model of self-motile point particles, we derive meso-scale continuum equations by applying a spatial averaging version of the Irving-Kirkwood-Noll procedure. Since the method does not rely on kinetic theory, the derivation is valid for highly concentrated particle systems. Spatial averaging yields stochastic continuum equations similar to those of Toner and Tu. However, our theory also involves a constitutive equation for the average fluctuation force. According to this equation, both the strength and the probability distribution vary with time and position through the effective mass density. The statistics of the fluctuation force also depend on the fine scale dissipative force equation, the physical temperature, and two additional parameters which characterize fluctuation strengths. Although the self-propulsion force entering our DPD model contains no explicit mechanism for aligning the velocities of neighboring particles, our averaged coarse-scale equations include the commonly encountered cubically nonlinear (internal) body force density.
Spatial and temporal variability of soil temperature, moisture and surface soil properties
NASA Technical Reports Server (NTRS)
Hajek, B. F.; Dane, J. H.
1993-01-01
The overall objectives of this research were to: (l) Relate in-situ measured soil-water content and temperature profiles to remotely sensed surface soil-water and temperature conditions; to model simultaneous heat and water movement for spatially and temporally changing soil conditions; (2) Determine the spatial and temporal variability of surface soil properties affecting emissivity, reflectance, and material and energy flux across the soil surface. This will include physical, chemical, and mineralogical characteristics of primary soil components and aggregate systems; and (3) Develop surface soil classes of naturally occurring and distributed soil property assemblages and group classes to be tested with respect to water content, emissivity and reflectivity. This document is a report of studies conducted during the period funded by NASA grants. The project was designed to be conducted over a five year period. Since funding was discontinued after three years, some of the research started was not completed. Additional publications are planned whenever funding can be obtained to finalize data analysis for both the arid and humid locations.
Marineau, Mathieu D.; Minear, J. Toby; Wright, Scott A.
2015-01-01
Collecting physical bedload measurements is an expensive and time-consuming endeavor that rarely captures the spatial and temporal variability of sediment transport. Technological advances can improve monitoring of sediment transport by filling in temporal gaps between physical sampling periods. We have developed a low-cost hydrophone recording system designed to record the sediment-generated noise (SGN) resulting from collisions of coarse particles (generally larger than 4 mm) in gravel-bedded rivers. The sound level of the signal recorded by the hydrophone is assumed to be proportional to the magnitude of bedload transport as long as the acoustic frequency of the SGN is known, the grain-size distribution of the bedload is assumed constant, and the frequency band of the ambient noise is known and can be excluded from the analysis. Each system has two hydrophone heads and samples at half-hour intervals. Ten systems were deployed on the San Joaquin River, California, and its tributaries for ten months during water year 2014, and two systems were deployed during a flood event on the Gunnison River, Colorado in 2014. A mobile hydrophone system was also tested at both locations to collect longitudinal profiles of SGN. Physical samples of bedload were not collected in this study. In lieu of physical measurements, several audio recordings from each site were aurally reviewed to confirm the presence or absence of SGN, and hydraulic data were compared to historical measurements of bedload transport or transport capacity estimates to verify if hydraulic conditions during the study would likely produce bedload transport. At one site on the San Joaquin River, the threshold of movement was estimated to have occurred around 30 m 3 /s based on SGN data. During the Gunnison River flood event, continuous data showed clockwise hysteresis, indicating that bedload transport was generally less at any given streamflow discharge during the recession limb of the hydrograph. Spatial variability in transport was also detected in the longitudinal profiles audibly and using signal processing algorithms. These experiments demonstrate the ability of hydrophone technology to capture the temporal and spatial variability of sediment transport, which may be missed when samples are collected using conventional methods.
Physical Controls on Oxygen Distribution and Denitrification Potential in the North West Arabian Sea
NASA Astrophysics Data System (ADS)
Queste, Bastien Y.; Vic, Clément; Heywood, Karen J.; Piontkovski, Sergey A.
2018-05-01
At suboxic oxygen concentrations, key biogeochemical cycles change and denitrification becomes the dominant remineralization pathway. Earth system models predict oxygen loss across most ocean basins in the next century; oxygen minimum zones near suboxia may become suboxic and therefore denitrifying. Using an ocean glider survey and historical data, we show oxygen loss in the Gulf of Oman (from 6-12 to <2 μmol kg-1) not represented in climatologies. Because of the nonlinearity between denitrification and oxygen concentration, resolutions of current Earth system models are too coarse to accurately estimate denitrification. We develop a novel physical proxy for oxygen from the glider data and use a high-resolution physical model to show eddy stirring of oxygen across the Gulf of Oman. We use the model to investigate spatial and seasonal differences in the ratio of oxic and suboxic water across the Gulf of Oman and waters exported to the wider Arabian Sea.
Sgr A* as Source of the Positrons Observed in the Galactic Center Region
NASA Astrophysics Data System (ADS)
Jean, Pierre; Guessoum, Nidhal; Ferrière, Katia
2017-01-01
We explore the possibility that a substantial fraction of the positrons observed to annihilate in the central region of our Galaxy come from the supermassive black hole Sgr A* that lies at the center. This idea was proposed by several authors, but the propagation of the emitted positrons into the bulge and beyond remained a serious problem for models of the origin of GC positrons. We assume models of positron production with different energies. The propagation of positrons from their production site is followed in detail with Monte-Carlo simulations, taking into account the physical conditions of the propagation regions as well as various physical interactions. Using the known physics of positron annihilation in astrophysical environments, we calculate the properties of the annihilation emission (time evolution and spatial distribution) for the different models under consideration. We present the results of these simulations and the conclusions/constraints that can be inferred from them.
Geostatistics applied to gas reservoirs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meunier, G.; Coulomb, C.; Laille, J.P.
1989-09-01
The spatial distribution of many of the physical parameters connected with a gas reservoir is of primary interest to both engineers and geologists throughout the study, development, and operation of a field. It is therefore desirable for the distribution to be capable of statistical interpretation, to have a simple graphical representation, and to allow data to be entered from either two- or three-dimensional grids. To satisfy these needs while dealing with the geographical variables, new methods have been developed under the name geostatistics. This paper describes briefly the theory of geostatistics and its most recent improvements for the specific problemmore » of subsurface description. The external-drift technique has been emphasized in particular, and in addition, four case studies related to gas reservoirs are presented.« less
NASA Astrophysics Data System (ADS)
Mould, J.; Bianchini, F.; Forbes, Duncan A.; Reichardt, C. L.
2018-03-01
The use of roman numerals for stellar populations represents a classification approach to galaxy formation which is now well behind us. Nevertheless, the concept of a pristine generation of stars, followed by a protogalactic era, and finally the mainstream stellar population is a plausible starting point for testing our physical understanding of early star formation. This will be observationally driven as never before in the coming decade. In this paper, we search out observational tests of an idealised coeval and homogeneous distribution of population II stars. We examine the spatial distribution of quasars, globular clusters, and the integrated free electron density of the intergalactic medium, in order to test the assumption of homogeneity. Any real inhomogeneity implies a population II that is not coeval.
Hydroacoustic basis for detection and characterization of eelgrass (Zostera marina)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabol, B.; McCarthy, E.; Rocha, K.
1997-06-01
Understanding the distribution and density of seagrasses is important for a variety of environmental applications. Physical techniques for detection and characterization are labor and cost intensive and provide little insight into spatial distribution. optical-based techniques are limited by water clarity - frequently resulting in systematic underestimation of the extent of seagrasses. Active hydroacoustic techniques have shown the ability to detect seagrasses but the phenomenology behind detection is poorly understood. Laboratory and in-situ hydroacoustic measurements are presented for eelgrass (Zostera marina), a common seagrass in the United States. Based on these data, hydroacoustic approaches for wide area detection and mapping aremore » discussed and several are demonstrated within areas of established eelgrass beds in Narragansett Bay, Rhode Island.« less
Non-contact imaging of venous compliance in humans using an RGB camera
NASA Astrophysics Data System (ADS)
Nakano, Kazuya; Satoh, Ryota; Hoshi, Akira; Matsuda, Ryohei; Suzuki, Hiroyuki; Nishidate, Izumi
2015-04-01
We propose a technique for non-contact imaging of venous compliance that uses the red, green, and blue (RGB) camera. Any change in blood concentration is estimated from an RGB image of the skin, and a regression formula is calculated from that change. Venous compliance is obtained from a differential form of the regression formula. In vivo experiments with human subjects confirmed that the proposed method does differentiate the venous compliances among individuals. In addition, the image of venous compliance is obtained by performing the above procedures for each pixel. Thus, we can measure venous compliance without physical contact with sensors and, from the resulting images, observe the spatial distribution of venous compliance, which correlates with the distribution of veins.
NASA Technical Reports Server (NTRS)
Sun, Jielun
1993-01-01
Results are presented of a test of the physically based total column water vapor retrieval algorithm of Wentz (1992) for sensitivity to realistic vertical distributions of temperature and water vapor. The ECMWF monthly averaged temperature and humidity fields are used to simulate the spatial pattern of systematic retrieval error of total column water vapor due to this sensitivity. The estimated systematic error is within 0.1 g/sq cm over about 70 percent of the global ocean area; systematic errors greater than 0.3 g/sq cm are expected to exist only over a few well-defined regions, about 3 percent of the global oceans, assuming that the global mean value is unbiased.