Sample records for spatially distributed rainfall

  1. Spatial distribution and temporal trends of rainfall erosivity in mainland China for 1951-2010

    Treesearch

    Wei Qin; Qiankun Guo; Changqing Zuo; Zhijie Shan; Liang Ma; Ge Sun

    2016-01-01

    Rainfall erosivity is an important factor for estimating soil erosion rates. Understanding the spatial distributionand temporal trends of rainfall erosivity is especially critical for soil erosion risk assessment and soil conservationplanning in mainland China. However, reports on the spatial distribution and temporal trends of rainfall...

  2. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2017-03-01

    The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.

  3. Stochastic characteristics of different duration annual maximum rainfall and its spatial difference in China based on information entropy

    NASA Astrophysics Data System (ADS)

    Li, X.; Sang, Y. F.

    2017-12-01

    Mountain torrents, urban floods and other disasters caused by extreme precipitation bring great losses to the ecological environment, social and economic development, people's lives and property security. So there is of great significance to floods prevention and control by the study of its spatial distribution. Based on the annual maximum rainfall data of 60min, 6h and 24h, the paper generate long sequences following Pearson-III distribution, and then use the information entropy index to study the spatial distribution and difference of different duration. The results show that the information entropy value of annual maximum rainfall in the south region is greater than that in the north region, indicating more obvious stochastic characteristics of annual maximum rainfall in the latter. However, the spatial distribution of stochastic characteristics is different in different duration. For example, stochastic characteristics of 60min annual maximum rainfall in the Eastern Tibet is smaller than surrounding, but 6h and 24h annual maximum rainfall is larger than surrounding area. In the Haihe River Basin and the Huaihe River Basin, the stochastic characteristics of the 60min annual maximum rainfall was not significantly different from that in the surrounding area, and stochastic characteristics of 6h and 24h was smaller than that in the surrounding area. We conclude that the spatial distribution of information entropy values of annual maximum rainfall in different duration can reflect the spatial distribution of its stochastic characteristics, thus the results can be an importantly scientific basis for the flood prevention and control, agriculture, economic-social developments and urban flood control and waterlogging.

  4. Can we improve streamflow simulation by using higher resolution rainfall information?

    NASA Astrophysics Data System (ADS)

    Lobligeois, Florent; Andréassian, Vazken; Perrin, Charles

    2013-04-01

    The catchment response to rainfall is the interplay between space-time variability of precipitation, catchment characteristics and antecedent hydrological conditions. Precipitation dominates the high frequency hydrological response, and its simulation is thus dependent on the way rainfall is represented. One of the characteristics which distinguishes distributed from lumped models is their ability to represent explicitly the spatial variability of precipitation and catchment characteristics. The sensitivity of runoff hydrographs to the spatial variability of forcing data has been a major concern of researchers over the last three decades. However, although the literature on the relationship between spatial rainfall and runoff response is abundant, results are contrasted and sometimes contradictory. Several studies concluded that including information on rainfall spatial distribution improves discharge simulation (e.g. Ajami et al., 2004, among others) whereas other studies showed the lack of significant improvement in simulations with better information on rainfall spatial pattern (e.g. Andréassian et al., 2004, among others). The difficulties to reach a clear consensus is mainly due to the fact that each modeling study is implemented only on a few catchments whereas the impact of the spatial distribution of rainfall on runoff is known to be catchment and event characteristics-dependent. Many studies are virtual experiments and only compare flow simulations, which makes it difficult to reach conclusions transposable to real-life case studies. Moreover, the hydrological rainfall-runoff models differ between the studies and the parameterization strategies sometimes tend to advantage the distributed approach (or the lumped one). Recently, Météo-France developed a rainfall reanalysis over the whole French territory at the 1-kilometer resolution and the hourly time step over a 10-year period combining radar data and raingauge measurements: weather radar data were corrected and adjusted with both hourly and daily raingauge data. Based on this new high resolution product, we propose a framework to evaluate the improvements in streamflow simulation by using higher resolution rainfall information. Semi-distributed modelling is performed for different spatial resolution of precipitation forcing: from lumped to semi-distributed simulations. Here we do not work on synthetic (simulated) streamflow, but with actual measurements, on a large set of 181 French catchments representing a variety of size and climate. The rainfall-runoff model is re-calibrated for each resolution of rainfall spatial distribution over a 5-year sub-period and evaluated on the complementary sub-period in validation mode. The results are analysed by catchment classes based on catchment area and for various types of rainfall events based on the spatial variability of precipitation. References Ajami, N. K., Gupta, H. V, Wagener, T. & Sorooshian, S. (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4), 112-135. Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C. & Loumagne, C. (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), 1-9.

  5. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  6. Application of spatial Poisson process models to air mass thunderstorm rainfall

    NASA Technical Reports Server (NTRS)

    Eagleson, P. S.; Fennessy, N. M.; Wang, Qinliang; Rodriguez-Iturbe, I.

    1987-01-01

    Eight years of summer storm rainfall observations from 93 stations in and around the 154 sq km Walnut Gulch catchment of the Agricultural Research Service, U.S. Department of Agriculture, in Arizona are processed to yield the total station depths of 428 storms. Statistical analysis of these random fields yields the first two moments, the spatial correlation and variance functions, and the spatial distribution of total rainfall for each storm. The absolute and relative worth of three Poisson models are evaluated by comparing their prediction of the spatial distribution of storm rainfall with observations from the second half of the sample. The effect of interstorm parameter variation is examined.

  7. Temporal and spatial variations of rainfall erosivity in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang

    2014-05-01

    Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.

  8. Spatio-temporal analysis of annual rainfall in Crete, Greece

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia

    2018-03-01

    Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.

  9. On the distributions of annual and seasonal daily rainfall extremes in central Arizona and their spatial variability

    NASA Astrophysics Data System (ADS)

    Mascaro, Giuseppe

    2018-04-01

    This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.

  10. Spatiotemporal variability of rainfall extremes in monsoonal climates - examples from the South American Monsoon and the Indian Monsoon Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Boers, N.; Marwan, N.; Malik, N.; Kurths, J.

    2013-12-01

    Monsoonal rainfall is the crucial component for more than half of the world's population. Runoff associated with monsoon systems provide water resources for agriculture, hydropower, drinking-water generation, recreation, and social well-being and are thus a fundamental part of human society. However, monsoon systems are highly stochastic and show large variability on various timescales. Here, we use various rainfall datasets to characterize spatiotemporal rainfall patterns using traditional as well as new approaches emphasizing nonlinear spatial correlations from a complex networks perspective. Our analyses focus on the South American (SAMS) and Indian (ISM) Monsoon Systems on the basis of Tropical Rainfall Measurement Mission (TRMM) using precipitation radar and passive-microwave products with horizontal spatial resolutions of ~5x5 km^2 (products 2A25, 2B31) and 25x25 km^2 (3B42) and interpolated rainfall-gauge data for the ISM (APHRODITE, 25x25 km^2). The eastern slopes of the Andes of South America and the southern front of the Himalaya are characterized by significant orographic barriers that intersect with the moisture-bearing, monsoonal wind systems. We demonstrate that topography exerts a first-order control on peak rainfall amounts on annual timescales in both mountain belts. Flooding in the downstream regions is dominantly caused by heavy rainfall storms that propagate deep into the mountain range and reach regions that are arid and without vegetation cover promoting rapid runoff. These storms exert a significantly different spatial distribution than average-rainfall conditions and assessing their recurrence intervals and prediction is key in understanding flooding for these regions. An analysis of extreme-value distributions of our high-spatial resolution data reveal that semi-arid areas are characterized by low-frequency/high-magnitude events (i.e., are characterized by a ';heavy tail' distribution), whereas regions with high mean annual rainfall have a less skewed distribution. In a second step, an analysis of the spatial characteristics of extreme rainfall synchronicity by means of complex networks reveals patterns of the propagation of extreme rainfall events. These patterns differ substantially from those obtained from the mean annual rainfall distribution. In addition, we have developed a scheme to predict rainfall extreme events in the eastern Central Andes based on event synchronization and spatial patterns of complex networks. The presented methods and result will allow to critically evaluate data and models in space and time.

  11. The spatial return level of aggregated hourly extreme rainfall in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Shaffie, Mardhiyyah; Eli, Annazirin; Wan Zin, Wan Zawiah; Jemain, Abdul Aziz

    2015-07-01

    This paper is intended to ascertain the spatial pattern of extreme rainfall distribution in Peninsular Malaysia at several short time intervals, i.e., on hourly basis. Motivation of this research is due to historical records of extreme rainfall in Peninsular Malaysia, whereby many hydrological disasters at this region occur within a short time period. The hourly periods considered are 1, 2, 3, 6, 12, and 24 h. Many previous hydrological studies dealt with daily rainfall data; thus, this study enables comparison to be made on the estimated performances between daily and hourly rainfall data analyses so as to identify the impact of extreme rainfall at a shorter time scale. Return levels based on the time aggregate considered are also computed. Parameter estimation using L-moment method for four probability distributions, namely, the generalized extreme value (GEV), generalized logistic (GLO), generalized Pareto (GPA), and Pearson type III (PE3) distributions were conducted. Aided with the L-moment diagram test and mean square error (MSE) test, GLO was found to be the most appropriate distribution to represent the extreme rainfall data. At most time intervals (10, 50, and 100 years), the spatial patterns revealed that the rainfall distribution across the peninsula differ for 1- and 24-h extreme rainfalls. The outcomes of this study would provide additional information regarding patterns of extreme rainfall in Malaysia which may not be detected when considering only a higher time scale such as daily; thus, appropriate measures for shorter time scales of extreme rainfall can be planned. The implementation of such measures would be beneficial to the authorities to reduce the impact of any disastrous natural event.

  12. The significance of spatial variability of rainfall on streamflow: A synthetic analysis at the Upper Lee catchment, UK

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard

    2017-04-01

    Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.

  13. Temporal and spatial characteristics of annual and seasonal rainfall in Malawi

    NASA Astrophysics Data System (ADS)

    Ngongondo, Cosmo; Xu, Chong-Yu; Gottschalk, Lars; Tallaksen, Lena M.; Alemaw, Berhanu

    2010-05-01

    An understanding of the temporal and spatial characteristics of rainfall is central to water resources planning and management. However, such information is often limited in many developing countries like Malawi. In an effort to bridge the information gap, this study examined the temporal and spatial charecteristics of rainfall in Malawi. Rainfall readings from 42 stations across Malawi from 1960 to 2006 were analysed at monthly, annual and seasonal scales. The Malawian rainfall season lasts from November to April. The data were firstly subjected to quality checks through the cumulative deviations test and the Standard Normal Homogeinity Test (SNHT). Monthly distribution in a typical year, called heterogeneity, was investigated using the Precipitation Concentration Index (PCI). Further, normalized precipitation anomaly series of annual rainfall series (AR) and the PCI (APCI) were used to test for interannual rainfall variability. Spatial variability was characterised by fitting the Spatial Correlation function (SCF). The nonparametric Mann-Kendall statistic was used to investigate the temporal trends of the various rainfall variables. The results showed that 40 of the stations passed both data quality tests. For the two stations that failed, the data were adjusted using nearby stations. Annual and seasonal rainfall were found to be characterised by high spatial variation. The country mean annual rainfall was 1095 mm with mean interannual variability of 26%. The highland areas to the north and southeast of the country exhibited the highest rainfall and lowest interannual variability. Lowest rainfall coupled with high interannual variability was found in the Lower Shire basin, in the southern part of Malawi. This simillarity is the pattern of annual and seasonal rainfall should be expected because all stations had over 90% of their observed annual rainfall in the six month period between November and April. Monthly rainfall was found to be highly variable both temporally and spatially. None of the stations have stable monthly rainfall regimes (mean PCI of less than 10). Stations with the highest mean rainfall were found to have a lower interannual variability. The rainfall stations showed low spatial correlations for annual, monthly as well as seasonal timescales indicating that the data may not be suitable for spatial interpolation. However, some structure (i.e. lower correlation with distance) could be observed when aggregating the data at 50 mile intervals. The annual and seasonal rainfall series were dominated by negative trends. The spatial distribution of the trends can be described as heterogeneous, although most of the stations in the southern region have negative trends. At the monthly timescale, 37 of the stations show a negative trend with four of the stations, all in the south, showing significant negative trends. On the other hand, only 5 stations show positive trends with only one significant trend in the south. Keywords: Malawi, rainfall trends, spatial variation

  14. Parameter Estimation for a Model of Space-Time Rainfall

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Karr, Alan F.

    1985-08-01

    In this paper, parameter estimation procedures, based on data from a network of rainfall gages, are developed for a class of space-time rainfall models. The models, which are designed to represent the spatial distribution of daily rainfall, have three components, one that governs the temporal occurrence of storms, a second that distributes rain cells spatially for a given storm, and a third that determines the rainfall pattern within a rain cell. Maximum likelihood and method of moments procedures are developed. We illustrate that limitations on model structure are imposed by restricting data sources to rain gage networks. The estimation procedures are applied to a 240-mi2 (621 km2) catchment in the Potomac River basin.

  15. Extreme flood event analysis in Indonesia based on rainfall intensity and recharge capacity

    NASA Astrophysics Data System (ADS)

    Narulita, Ida; Ningrum, Widya

    2018-02-01

    Indonesia is very vulnerable to flood disaster because it has high rainfall events throughout the year. Flood is categorized as the most important hazard disaster because it is causing social, economic and human losses. The purpose of this study is to analyze extreme flood event based on satellite rainfall dataset to understand the rainfall characteristic (rainfall intensity, rainfall pattern, etc.) that happened before flood disaster in the area for monsoonal, equatorial and local rainfall types. Recharge capacity will be analyzed using land cover and soil distribution. The data used in this study are CHIRPS rainfall satellite data on 0.05 ° spatial resolution and daily temporal resolution, and GSMap satellite rainfall dataset operated by JAXA on 1-hour temporal resolution and 0.1 ° spatial resolution, land use and soil distribution map for recharge capacity analysis. The rainfall characteristic before flooding, and recharge capacity analysis are expected to become the important information for flood mitigation in Indonesia.

  16. The Spatial Scaling of Global Rainfall Extremes

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.

    2013-12-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.

  17. Impact of rainfall spatial variability on Flash Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kevin

    2014-05-01

    According to the United States National Hazard Statistics database, flooding and flash flooding have caused the largest number of deaths of any weather-related phenomenon over the last 30 years (Flash Flood Guidance Improvement Team, 2003). Like the storms that cause them, flash floods are very variable and non-linear phenomena in time and space, with the result that understanding and anticipating flash flood genesis is far from straightforward. In the U.S., the Flash Flood Guidance (FFG) estimates the average number of inches of rainfall for given durations required to produce flash flooding in the indicated county. In Europe, flash flood often occurred on small catchments (approximately 100 km2) and it has been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, based on the Flash flood Guidance method, rainfall spatial variability information is introduced in the threshold estimation. As for FFG, the threshold is the number of millimeters of rainfall required to produce a discharge higher than the discharge corresponding to the first level (yellow) warning of the French flood warning service (SCHAPI: Service Central d'Hydrométéorologie et d'Appui à la Prévision des Inondations). The indexes δ1 and δ2 of Zoccatelli et al. (2010), based on the spatial moments of catchment rainfall, are used to characterize the rainfall spatial distribution. Rainfall spatial variability impacts on warning threshold and on hydrological processes are then studied. The spatially distributed hydrological model MARINE (Roux et al., 2011), dedicated to flash flood prediction is forced with synthetic rainfall patterns of different spatial distributions. This allows the determination of a warning threshold diagram: knowing the spatial distribution of the rainfall forecast and therefore the 2 indexes δ1 and δ2, the threshold value is read on the diagram. A warning threshold diagram is built for each studied catchment. The proposed methodology is applied on three Mediterranean catchments often submitted to flash floods. The new forecasting method as well as the Flash Flood Guidance method (uniform rainfall threshold) are tested on 25 flash floods events that had occurred on those catchments. Results show a significant impact of rainfall spatial variability. Indeed, it appears that the uniform rainfall threshold (FFG threshold) always overestimates the observed rainfall threshold. The difference between the FFG threshold and the proposed threshold ranges from 8% to 30%. The proposed methodology allows the calculation of a threshold more representative of the observed one. However, results strongly depend on the related event duration and on the catchment properties. For instance, the impact of the rainfall spatial variability seems to be correlated with the catchment size. According to these results, it seems to be interesting to introduce information on the catchment properties in the threshold calculation. Flash Flood Guidance Improvement Team, 2003. River Forecast Center (RFC) Development Management Team. Final Report. Office of Hydrologic Development (OHD), Silver Spring, Mary-land. Le Lay, M. and Saulnier, G.-M., 2007. Exploring the signature of climate and landscape spatial variabilities in flash flood events: Case of the 8-9 September 2002 Cévennes-Vivarais catastrophic event. Geophysical Research Letters, 34(L13401), doi:10.1029/2007GL029746. Roux, H., Labat, D., Garambois, P.-A., Maubourguet, M.-M., Chorda, J. and Dartus, D., 2011. A physically-based parsimonious hydrological model for flash floods in Mediterranean catchments. Nat. Hazards Earth Syst. Sci. J1 - NHESS, 11(9), 2567-2582. Zoccatelli, D., Borga, M., Zanon, F., Antonescu, B. and Stancalie, G., 2010. Which rainfall spatial information for flash flood response modelling? A numerical investigation based on data from the Carpathian range, Romania. Journal of Hydrology, 394(1-2), 148-161.

  18. Analysis of rainfall distribution in Kelantan river basin, Malaysia

    NASA Astrophysics Data System (ADS)

    Che Ros, Faizah; Tosaka, Hiroyuki

    2018-03-01

    Using rainfall gauge on its own as input carries great uncertainties regarding runoff estimation, especially when the area is large and the rainfall is measured and recorded at irregular spaced gauging stations. Hence spatial interpolation is the key to obtain continuous and orderly rainfall distribution at unknown points to be the input to the rainfall runoff processes for distributed and semi-distributed numerical modelling. It is crucial to study and predict the behaviour of rainfall and river runoff to reduce flood damages of the affected area along the Kelantan river. Thus, a good knowledge on rainfall distribution is essential in early flood prediction studies. Forty six rainfall stations and their daily time-series were used to interpolate gridded rainfall surfaces using inverse-distance weighting (IDW), inverse-distance and elevation weighting (IDEW) methods and average rainfall distribution. Sensitivity analysis for distance and elevation parameters were conducted to see the variation produced. The accuracy of these interpolated datasets was examined using cross-validation assessment.

  19. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  20. Continuous rainfall simulation for regional flood risk assessment - application in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Salinas, Jose Luis; Nester, Thomas; Komma, Jürgen; Blöschl, Günter

    2017-04-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of the observed rainfall characteristics, such as regional intensity-duration-frequency curves, is necessary to adequately model the magnitude and frequency of the flood peaks. Furthermore, the replication of the observed rainfall spatial and temporal correlations allows to model important other hydrological features like antecedent soil moisture conditions before extreme rainfall events. In this work, we present an application in the Tirol region (Austrian alps) of a modification of the model presented by Bardossy and Platte (1992), where precipitation is modeled on a station basis as a mutivariate autoregressive model (mAr) in a Normal space, and then transformed to a Gamma-distributed space. For the sake of simplicity, the parameters of the Gamma distributions are assumed to vary monthly according to a sinusoidal function, and are calibrated trying to simultaneously reproduce i) mean annual rainfall, ii) mean daily rainfall amounts, iii) standard deviations of daily rainfall amounts, and iv) 24-hours intensity duration frequency curve. The calibration of the spatial and temporal correlation parameters is performed in a way that the intensity-duration-frequency curves aggregated at different spatial and temporal scales reproduce the measured ones. Bardossy, A., and E. J. Plate (1992), Space-time model for daily rainfall using atmospheric circulation patterns, Water Resour. Res., 28(5), 1247-1259, doi:10.1029/91WR02589.

  1. Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing

    NASA Technical Reports Server (NTRS)

    Over, Thomas, M.; Gupta, Vijay K.

    1994-01-01

    Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.

  2. Characterizing multiscale variability of zero intermittency in spatial rainfall

    NASA Technical Reports Server (NTRS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1994-01-01

    In this paper the authors study how zero intermittency in spatial rainfall, as described by the fraction of area covered by rainfall, changes with spatial scale of rainfall measurement or representation. A statistical measure of intermittency that describes the size distribution of 'voids' (nonrainy areas imbedded inside rainy areas) as a function of scale is also introduced. Morphological algorithms are proposed for reconstructing rainfall intermittency at fine scales given the intermittency at coarser scales. These algorithms are envisioned to be useful in hydroclimatological studies where the rainfall spatial variability at the subgrid scale needs to be reconstructed from the results of synoptic- or mesoscale meteorological numerical models. The developed methodologies are demsonstrated and tested using data from a severe springtime midlatitude squall line and a mild midlatitude winter storm monitored by a meteorological radar in Norman, Oklahoma.

  3. Remote rainfall sensing for landslide hazard analysis

    USGS Publications Warehouse

    Wieczorek, Gerald F.; McWreath, Harry; Davenport, Clay

    2001-01-01

    Methods of assessing landslide hazards and providing warnings are becoming more advanced as remote sensing of rainfall provides more detailed temporal and spatial data on rainfall distribution. Two recent landslide disasters are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. For the June 27, 1995, storm in Madison County, Virginia, USA, National Weather Service WSR-88D Doppler radar provided rainfall estimates based on a relation between cloud reflectivity and moisture content on a 1 sq. km. resolution every 6 minutes. Ground-based measurements of rainfall intensity and precipitation total, in addition to landslide timing and distribution, were compared with the radar-derived rainfall data. For the December 14-16, 1999, storm in Vargas State, Venezuela, infrared sensing from the GOES-8 satellite of cloud top temperatures provided the basis for NOAA/NESDIS rainfall estimates on a 16 sq. km. resolution every 30 minutes. These rainfall estimates were also compared with ground-based measurements of rainfall and landslide distribution. In both examples, the remotely sensed data either overestimated or underestimated ground-based values by up to a factor of 2. The factors that influenced the accuracy of rainfall data include spatial registration and map projection, as well as prevailing wind direction, cloud orientation, and topography.

  4. The relationship between extreme precipitation events and landslides distributions in 2009 in Lower Austria

    NASA Astrophysics Data System (ADS)

    Katzensteiner, H.; Bell, R.; Petschko, H.; Glade, T.

    2012-04-01

    The prediction and forecast of widespread landsliding for a given triggering event is an open research question. Numerous studies tried to link spatial rainfall and landslide distributions. This study focuses on analysing the relationship between intensive precipitation and rainfall-triggered shallow landslides in the year 2009 in Lower Austria. Landslide distributions were gained from the building ground register, which is maintained by the Geological Survey of Lower Austria. It contains detailed information of landslides, which were registered due to damage reports. Spatially distributed rainfall estimates were extracted from INCA (Integrated Nowcasting through Comprehensive Analysis) precipitation analysis, which is a combination of station data interpolation and radar data in a spatial resolution of 1km developed by the Central Institute for Meteorology and Geodynamics (ZAMG), Vienna, Austria. The importance of the data source is shown by comparing rainfall data based on reference gauges, spatial interpolation and INCA-analysis for a certain storm period. INCA precipitation data can detect precipitating cells that do not hit a station but might trigger a landslide, which is an advantage over the application of reference stations for the definition of rainfall thresholds. Empirical thresholds at regional scale were determined based on rainfall-intensity and duration in the year 2009 and landslide information. These thresholds are dependent on the criteria which separate the landslide triggering and non-triggering precipitation events from each other. Different approaches for defining thresholds alter the shape of the threshold as well. A temporarily threshold I=8,8263*D^(-0.672) for extreme rainfall events in summer in Lower Austria was defined. A verification of the threshold with similar events of other years as well as following analyses based on a larger landslide database are in progress.

  5. TRMM rainfall estimative coupled with Bell (1969) methodology for extreme rainfall characterization

    NASA Astrophysics Data System (ADS)

    Schiavo Bernardi, E.; Allasia, D.; Basso, R.; Freitas Ferreira, P.; Tassi, R.

    2015-06-01

    The lack of rainfall data in Brazil, and, in particular, in Rio Grande do Sul State (RS), hinders the understanding of the spatial and temporal distribution of rainfall, especially in the case of the more complex extreme events. In this context, rainfall's estimation from remote sensors is seen as alternative to the scarcity of rainfall gauges. However, as they are indirect measures, such estimates needs validation. This paper aims to verify the applicability of the Tropical Rainfall Measuring Mission (TRMM) satellite information for extreme rainfall determination in RS. The analysis was accomplished at different temporal scales that ranged from 5 min to daily rainfall while spatial distribution of rainfall was investigated by means of regionalization. An initial test verified TRMM rainfall estimative against measured rainfall at gauges for 1998-2013 period considering different durations and return periods (RP). Results indicated that, for the RP of 2, 5, 10 and 15 years, TRMM overestimated on average 24.7% daily rainfall. As TRMM minimum time-steps is 3 h, in order to verify shorter duration rainfall, the TRMM data were adapted to fit Bell's (1969) generalized IDF formula (based on the existence of similarity between the mechanisms of extreme rainfall events as they are associated to convective cells). Bell`s equation error against measured precipitation was around 5-10%, which varied based on location, RP and duration while the coupled BELL+TRMM error was around 10-35%. However, errors were regionally distributed, allowing a correction to be implemented that reduced by half these values. These findings in turn permitted the use of TRMM+Bell estimates to improve the understanding of spatiotemporal distribution of extreme hydrological rainfall events.

  6. Spatial and temporal variability in the R-5 infiltration data set: Déjà vu and rainfall-runoff simulations

    NASA Astrophysics Data System (ADS)

    Loague, Keith; Kyriakidis, Phaedon C.

    1997-12-01

    This paper is a continuation of the event-based rainfall-runoff model evaluation study reported by Loague and Freeze [1985[. Here we reevaluate the performance of a quasi-physically based rainfall-runoff model for three large events from the well-known R-5 catchment. Five different statistical criteria are used to quantitatively judge model performance. Temporal variability in the large R-5 infiltration data set [Loague and Gander, 1990] is filtered by working in terms of permeability. The transformed data set is reanalyzed via geostatistical methods to model the spatial distribution of permeability across the R-5 catchment. We present new estimates of the spatial distribution of infiltration that are in turn used in our rainfall-runoff simulations with the Horton rainfall-runoff model. The new rainfall-runoff simulations, complicated by reinfiltration impacts at the smaller scales of characterization, indicate that the near-surface hydrologic response of the R-5 catchment is most probably dominated by a combination of the Horton and Dunne overland flow mechanisms.

  7. Effect of radar rainfall time resolution on the predictive capability of a distributed hydrologic model

    NASA Astrophysics Data System (ADS)

    Atencia, A.; Llasat, M. C.; Garrote, L.; Mediero, L.

    2010-10-01

    The performance of distributed hydrological models depends on the resolution, both spatial and temporal, of the rainfall surface data introduced. The estimation of quantitative precipitation from meteorological radar or satellite can improve hydrological model results, thanks to an indirect estimation at higher spatial and temporal resolution. In this work, composed radar data from a network of three C-band radars, with 6-minutal temporal and 2 × 2 km2 spatial resolution, provided by the Catalan Meteorological Service, is used to feed the RIBS distributed hydrological model. A Window Probability Matching Method (gage-adjustment method) is applied to four cases of heavy rainfall to improve the observed rainfall sub-estimation in both convective and stratiform Z/R relations used over Catalonia. Once the rainfall field has been adequately obtained, an advection correction, based on cross-correlation between two consecutive images, was introduced to get several time resolutions from 1 min to 30 min. Each different resolution is treated as an independent event, resulting in a probable range of input rainfall data. This ensemble of rainfall data is used, together with other sources of uncertainty, such as the initial basin state or the accuracy of discharge measurements, to calibrate the RIBS model using probabilistic methodology. A sensitivity analysis of time resolutions was implemented by comparing the various results with real values from stream-flow measurement stations.

  8. Synthetic generation of spatially high resolution extreme rainfall in Japan using Monte Carlo simulation with AMeDAS analyzed rainfall data sets

    NASA Astrophysics Data System (ADS)

    Haruki, W.; Iseri, Y.; Takegawa, S.; Sasaki, O.; Yoshikawa, S.; Kanae, S.

    2016-12-01

    Natural disasters caused by heavy rainfall occur every year in Japan. Effective countermeasures against such events are important. In 2015, a catastrophic flood occurred in Kinu river basin, which locates in the northern part of Kanto region. The remarkable feature of this flood event was not only in the intensity of rainfall but also in the spatial characteristics of heavy rainfall area. The flood was caused by continuous overlapping of heavy rainfall area over the Kinu river basin, suggesting consideration of spatial extent is quite important to assess impacts of heavy rainfall events. However, the spatial extent of heavy rainfall events cannot be properly measured through rainfall measurement by rain gauges at observation points. On the other hand, rainfall measurements by radar observations provide spatially and temporarily high resolution rainfall data which would be useful to catch the characteristics of heavy rainfall events. For long term effective countermeasure, extreme heavy rainfall scenario considering rainfall area and distribution is required. In this study, a new method for generating extreme heavy rainfall events using Monte Carlo Simulation has been developed in order to produce extreme heavy rainfall scenario. This study used AMeDAS analyzed precipitation data which is high resolution grid precipitation data made by Japan Meteorological Agency. Depth area duration (DAD) analysis has been conducted to extract extreme rainfall events in the past, considering time and spatial scale. In the Monte Carlo Simulation, extreme rainfall event is generated based on events extracted by DAD analysis. Extreme heavy rainfall events are generated in specific region in Japan and the types of generated extreme heavy rainfall events can be changed by varying the parameter. For application of this method, we focused on Kanto region in Japan. As a result, 3000 years rainfall data are generated. 100 -year probable rainfall and return period of flood in Kinu River Basin (2015) are obtained using generated data. We compared 100-year probable rainfall calculated by this method with other traditional method. New developed method enables us to generate extreme rainfall events considering time and spatial scale and produce extreme rainfall scenario.

  9. Interpretation of heavy rainfall spatial distribution in mountain watersheds by copula functions

    NASA Astrophysics Data System (ADS)

    Grossi, Giovanna; Balistrocchi, Matteo

    2016-04-01

    The spatial distribution of heavy rainfalls can strongly influence flood dynamics in mountain watersheds, depending on their geomorphologic features, namely orography, slope, land covers and soil types. Unfortunately, the direct observation of rainfall fields by meteorological radar is very difficult in this situation, so that interpolation of rain gauge observations or downscaling of meteorological predictions must be adopted to derive spatial rainfall distributions. To do so, various stochastic and physically based approaches are already available, even though the first one is the most familiar in hydrology. Indeed, Kriging interpolation procedures represent very popular techniques to face this problem by means of a stochastic approach. A certain number of restrictive assumptions and parameter uncertainties however affects Kriging. Many alternative formulations and additional procedures were therefore developed during the last decades. More recently, copula functions (Joe, 1997; Nelsen, 2006; Salvadori et al. 2007) were suggested to provide a more straightforward solution to carry out spatial interpolations of hydrologic variables (Bardossy & Pegram; 2009). Main advantages lie in the possibility of i) assessing the dependence structure relating to rainfall variables independently of marginal distributions, ii) expressing the association degree through rank correlation coefficients, iii) implementing marginal distributions and copula functions belonging to different models to develop complex joint distribution functions, iv) verifying the model reliability by effective statistical tests (Genest et al., 2009). A suitable case study to verify these potentialities is provided by the Taro River, a right-bank tributary of the Po River (northern Italy), whose contributing area amounts to about 2˙000 km2. The mountain catchment area is divided into two similar watersheds, so that spatial distribution is crucial in extreme flood event generation. A quite well diffused hydro-meteorological network, consisting of about 30 rain gauges and 10 hydrometers, monitors this medium-size watershed. A decade of rainfall-runoff event observations are available. Severe rainfall events were identified with reference to a main raingauge station, by using an interevent time definition and a depth threshold. Rainfall depths were thus derived and the spatial variability of their association degree was represented by using the Kendall coefficient. A unique copula model based on Gumbel copula function was finally found to be suitable to represent the dependence structure relating to rainfall depths observed in distinct raingauges. Bardossy A., Pegram G. (2009), Copula based multisite model for daily precipitation simulation, Hydrol. Earth Syst. Sci., 13, 2299-2314. Genest C., Rémilland B., Beaudoin D. (2009), Goodness-of-fit tests for copulas: a review and a power study, Insur. Math. Econ., 44(2), 199-213. Joe H. (1997), Multivariate models and dependence concepts, Chapman and Hall, London. Nelsen R. B. (2006), An introduction to copulas, second ed., Springer, New York. Salvadori G., De Michele C., Kottegoda N. T., Rosso R. (2007), Extremes in nature: an approach using copulas, Springer, Dordrecht, The Nederlands.

  10. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Shrestha, M.S.; Artan, G.A.; Bajracharya, S.R.; Gautam, D.K.; Tokar, S.A.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32000km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC-RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC-RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC-RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction. ?? 2011 The Authors. Journal of Flood Risk Management ?? 2011 The Chartered Institution of Water and Environmental Management.

  11. Bias-adjusted satellite-based rainfall estimates for predicting floods: Narayani Basin

    USGS Publications Warehouse

    Artan, Guleid A.; Tokar, S.A.; Gautam, D.K.; Bajracharya, S.R.; Shrestha, M.S.

    2011-01-01

    In Nepal, as the spatial distribution of rain gauges is not sufficient to provide detailed perspective on the highly varied spatial nature of rainfall, satellite-based rainfall estimates provides the opportunity for timely estimation. This paper presents the flood prediction of Narayani Basin at the Devghat hydrometric station (32 000 km2) using bias-adjusted satellite rainfall estimates and the Geospatial Stream Flow Model (GeoSFM), a spatially distributed, physically based hydrologic model. The GeoSFM with gridded gauge observed rainfall inputs using kriging interpolation from 2003 was used for calibration and 2004 for validation to simulate stream flow with both having a Nash Sutcliff Efficiency of above 0.7. With the National Oceanic and Atmospheric Administration Climate Prediction Centre's rainfall estimates (CPC_RFE2.0), using the same calibrated parameters, for 2003 the model performance deteriorated but improved after recalibration with CPC_RFE2.0 indicating the need to recalibrate the model with satellite-based rainfall estimates. Adjusting the CPC_RFE2.0 by a seasonal, monthly and 7-day moving average ratio, improvement in model performance was achieved. Furthermore, a new gauge-satellite merged rainfall estimates obtained from ingestion of local rain gauge data resulted in significant improvement in flood predictability. The results indicate the applicability of satellite-based rainfall estimates in flood prediction with appropriate bias correction.

  12. Impacts of rainfall spatial variability on hydrogeological response

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Jódar, Jorge; Navarro, Vicente; Slooten, Luit Jan; Carrera, Jesús; Gupta, Hoshin V.

    2015-02-01

    There is currently no general consensus on how the spatial variability of rainfall impacts and propagates through complex hydrogeological systems. Most studies to date have focused on the effects of rainfall spatial variability (RSV) on river discharge, while paying little attention to other important aspects of system response. Here, we study the impacts of RSV on several responses of a hydrological model of an overexploited system. To this end, we drive a spatially distributed hydrogeological model for the semiarid Upper Guadiana basin in central Spain with stochastic daily rainfall fields defined at three different spatial resolutions (fine → 2.5 km × 2.5 km, medium → 50 km × 50 km, large → lumped). This enables us to investigate how (i) RSV at different spatial resolutions, and (ii) rainfall uncertainty, are propagated through the hydrogeological model of the system. Our results demonstrate that RSV has a significant impact on the modeled response of the system, by specifically affecting groundwater recharge and runoff generation, and thereby propagating through to various other related hydrological responses (river discharge, river-aquifer exchange, groundwater levels). These results call into question the validity of management decisions made using hydrological models calibrated or forced with spatially lumped rainfall.

  13. Continuous Sub-daily Rainfall Simulation for Regional Flood Risk Assessment - Modelling of Spatio-temporal Correlation Structure of Extreme Precipitation in the Austrian Alps

    NASA Astrophysics Data System (ADS)

    Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.

    2017-12-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic precipitation, fed into a rainfall-runoff model to derive the flood frequency in the Tirolean Alps in Austria. Given the number of generated events, the simulation framework is able to generate a large variety of rainfall patterns, as well as reproduce the variograms of relevant extreme rainfall events in the region of interest.

  14. Accuration of Time Series and Spatial Interpolation Method for Prediction of Precipitation Distribution on the Geographical Information System

    NASA Astrophysics Data System (ADS)

    Prasetyo, S. Y. J.; Hartomo, K. D.

    2018-01-01

    The Spatial Plan of the Province of Central Java 2009-2029 identifies that most regencies or cities in Central Java Province are very vulnerable to landslide disaster. The data are also supported by other data from Indonesian Disaster Risk Index (In Indonesia called Indeks Risiko Bencana Indonesia) 2013 that suggest that some areas in Central Java Province exhibit a high risk of natural disasters. This research aims to develop an application architecture and analysis methodology in GIS to predict and to map rainfall distribution. We propose our GIS architectural application of “Multiplatform Architectural Spatiotemporal” and data analysis methods of “Triple Exponential Smoothing” and “Spatial Interpolation” as our significant scientific contribution. This research consists of 2 (two) parts, namely attribute data prediction using TES method and spatial data prediction using Inverse Distance Weight (IDW) method. We conduct our research in 19 subdistricts in the Boyolali Regency, Central Java Province, Indonesia. Our main research data is the biweekly rainfall data in 2000-2016 Climatology, Meteorology, and Geophysics Agency (In Indonesia called Badan Meteorologi, Klimatologi, dan Geofisika) of Central Java Province and Laboratory of Plant Disease Observations Region V Surakarta, Central Java. The application architecture and analytical methodology of “Multiplatform Architectural Spatiotemporal” and spatial data analysis methodology of “Triple Exponential Smoothing” and “Spatial Interpolation” can be developed as a GIS application framework of rainfall distribution for various applied fields. The comparison between the TES and IDW methods show that relative to time series prediction, spatial interpolation exhibit values that are approaching actual. Spatial interpolation is closer to actual data because computed values are the rainfall data of the nearest location or the neighbour of sample values. However, the IDW’s main weakness is that some area might exhibit the rainfall value of 0. The representation of 0 in the spatial interpolation is mainly caused by the absence of rainfall data in the nearest sample point or too far distance that produces smaller weight.

  15. Effect of spatial variability of storm on the optimal placement of best management practices (BMPs).

    PubMed

    Chang, C L; Chiueh, P T; Lo, S L

    2007-12-01

    It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.

  16. Opportunities for multivariate analysis of open spatial datasets to characterize urban flooding risks

    NASA Astrophysics Data System (ADS)

    Gaitan, S.; ten Veldhuis, J. A. E.

    2015-06-01

    Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.

  17. The Effect of Rainfall Measurement Technique and Its Spatiotemporal Resolution on Discharge Predictions in the Netherlands

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, R.; Brauer, C.; Overeem, A.; Sassi, M.; Rios Gaona, M. F.

    2014-12-01

    Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of these spatiotemporal resolutions on discharge simulations in lowland catchments by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in a freely draining lowland catchment and a polder with controlled water levels. We used rain gauge networks with automatic (hourly resolution but low spatial density) and manual gauges (high spatial density but daily resolution). Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. We also investigated the effect of spatiotemporal resolution with a high-resolution X-band radar data set for catchments with different sizes. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. When catchments are divided into sub-catchments, rainfall spatial variability can become more important, especially during convective rainfall events, leading to spatially varying catchment wetness and spatially varying contribution of quick flow routes. Improving rainfall measurements and their spatiotemporal resolution can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.

  18. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  19. Modelling Ecuador's rainfall distribution according to geographical characteristics.

    NASA Astrophysics Data System (ADS)

    Tobar, Vladimiro; Wyseure, Guido

    2017-04-01

    It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting produced explained variances of 59%, 81%, 49% and 17% for PC1, PC2, PC3 and PC4, respectively, backing up the hypothesis of good correlation between geographical characteristics and seasonal rainfall patterns (comprised in the four principal components). With the obtained coefficients from the regression, the 108 rainfall percentiles for each station were back estimated giving very good results when compared with the original ones, with an overall 60% explained variance.

  20. Regional frequency analysis of extreme rainfall for the Baltimore Metropolitan region based on stochastic storm transposition

    NASA Astrophysics Data System (ADS)

    Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Wright, D.; Liu, S.

    2017-12-01

    Regional frequency analyses of extreme rainfall are critical for development of engineering hydrometeorology procedures. In conventional approaches, the assumptions that `design storms' have specified time profiles and are uniform in space are commonly applied but often not appropriate, especially over regions with heterogeneous environments (due to topography, water-land boundaries and land surface properties). In this study, we present regional frequency analyses of extreme rainfall for Baltimore study region combining storm catalogs of rainfall fields derived from weather radar and stochastic storm transposition (SST, developed by Wright et al., 2013). The study region is Dead Run, a small (14.3 km2) urban watershed, in the Baltimore Metropolitan region. Our analyses build on previous empirical and modeling studies showing pronounced spatial heterogeneities in rainfall due to the complex terrain, including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in this region. We expand the original SST approach by applying a multiplier field that accounts for spatial heterogeneities in extreme rainfall. We also characterize the spatial heterogeneities of extreme rainfall distribution through analyses of rainfall fields in the storm catalogs. We examine the characteristics of regional extreme rainfall and derive intensity-duration-frequency (IDF) curves using the SST approach for heterogeneous regions. Our results highlight the significant heterogeneity of extreme rainfall in this region. Estimates of IDF show the advantages of SST in capturing the space-time structure of extreme rainfall. We also illustrate application of SST analyses for flood frequency analyses using a distributed hydrological model. Reference: Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck (2013), Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition, J. Hydrol., 488, 150-165.

  1. A dependence modelling study of extreme rainfall in Madeira Island

    NASA Astrophysics Data System (ADS)

    Gouveia-Reis, Délia; Guerreiro Lopes, Luiz; Mendonça, Sandra

    2016-08-01

    The dependence between variables plays a central role in multivariate extremes. In this paper, spatial dependence of Madeira Island's rainfall data is addressed within an extreme value copula approach through an analysis of maximum annual data. The impact of altitude, slope orientation, distance between rain gauge stations and distance from the stations to the sea are investigated for two different periods of time. The results obtained highlight the influence of the island's complex topography on the spatial distribution of extreme rainfall in Madeira Island.

  2. A Development of Nonstationary Regional Frequency Analysis Model with Large-scale Climate Information: Its Application to Korean Watershed

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Young; Kwon, Hyun-Han; Kim, Hung-Soo

    2015-04-01

    The existing regional frequency analysis has disadvantages in that it is difficult to consider geographical characteristics in estimating areal rainfall. In this regard, this study aims to develop a hierarchical Bayesian model based nonstationary regional frequency analysis in that spatial patterns of the design rainfall with geographical information (e.g. latitude, longitude and altitude) are explicitly incorporated. This study assumes that the parameters of Gumbel (or GEV distribution) are a function of geographical characteristics within a general linear regression framework. Posterior distribution of the regression parameters are estimated by Bayesian Markov Chain Monte Carlo (MCMC) method, and the identified functional relationship is used to spatially interpolate the parameters of the distributions by using digital elevation models (DEM) as inputs. The proposed model is applied to derive design rainfalls over the entire Han-river watershed. It was found that the proposed Bayesian regional frequency analysis model showed similar results compared to L-moment based regional frequency analysis. In addition, the model showed an advantage in terms of quantifying uncertainty of the design rainfall and estimating the area rainfall considering geographical information. Finally, comprehensive discussion on design rainfall in the context of nonstationary will be presented. KEYWORDS: Regional frequency analysis, Nonstationary, Spatial information, Bayesian Acknowledgement This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  3. Interpolating Non-Parametric Distributions of Hourly Rainfall Intensities Using Random Mixing

    NASA Astrophysics Data System (ADS)

    Mosthaf, Tobias; Bárdossy, András; Hörning, Sebastian

    2015-04-01

    The correct spatial interpolation of hourly rainfall intensity distributions is of great importance for stochastical rainfall models. Poorly interpolated distributions may lead to over- or underestimation of rainfall and consequently to wrong estimates of following applications, like hydrological or hydraulic models. By analyzing the spatial relation of empirical rainfall distribution functions, a persistent order of the quantile values over a wide range of non-exceedance probabilities is observed. As the order remains similar, the interpolation weights of quantile values for one certain non-exceedance probability can be applied to the other probabilities. This assumption enables the use of kernel smoothed distribution functions for interpolation purposes. Comparing the order of hourly quantile values over different gauges with the order of their daily quantile values for equal probabilities, results in high correlations. The hourly quantile values also show high correlations with elevation. The incorporation of these two covariates into the interpolation is therefore tested. As only positive interpolation weights for the quantile values assure a monotonically increasing distribution function, the use of geostatistical methods like kriging is problematic. Employing kriging with external drift to incorporate secondary information is not applicable. Nonetheless, it would be fruitful to make use of covariates. To overcome this shortcoming, a new random mixing approach of spatial random fields is applied. Within the mixing process hourly quantile values are considered as equality constraints and correlations with elevation values are included as relationship constraints. To profit from the dependence of daily quantile values, distribution functions of daily gauges are used to set up lower equal and greater equal constraints at their locations. In this way the denser daily gauge network can be included in the interpolation of the hourly distribution functions. The applicability of this new interpolation procedure will be shown for around 250 hourly rainfall gauges in the German federal state of Baden-Württemberg. The performance of the random mixing technique within the interpolation is compared to applicable kriging methods. Additionally, the interpolation of kernel smoothed distribution functions is compared with the interpolation of fitted parametric distributions.

  4. Statistical characterization of spatial patterns of rainfall cells in extratropical cyclones

    NASA Astrophysics Data System (ADS)

    Bacchi, Baldassare; Ranzi, Roberto; Borga, Marco

    1996-11-01

    The assumption of a particular type of distribution of rainfall cells in space is needed for the formulation of several space-time rainfall models. In this study, weather radar-derived rain rate maps are employed to evaluate different types of spatial organization of rainfall cells in storms through the use of distance functions and second-moment measures. In particular the spatial point patterns of the local maxima of rainfall intensity are compared to a completely spatially random (CSR) point process by applying an objective distance measure. For all the analyzed radar maps the CSR assumption is rejected, indicating that at the resolution of the observation considered, rainfall cells are clustered. Therefore a theoretical framework for evaluating and fitting alternative models to the CSR is needed. This paper shows how the "reduced second-moment measure" of the point pattern can be employed to estimate the parameters of a Neyman-Scott model and to evaluate the degree of adequacy to the experimental data. Some limitations of this theoretical framework, and also its effectiveness, in comparison to the use of scaling functions, are discussed.

  5. A parametric approach for simultaneous bias correction and high-resolution downscaling of climate model rainfall

    NASA Astrophysics Data System (ADS)

    Mamalakis, Antonios; Langousis, Andreas; Deidda, Roberto; Marrocu, Marino

    2017-03-01

    Distribution mapping has been identified as the most efficient approach to bias-correct climate model rainfall, while reproducing its statistics at spatial and temporal resolutions suitable to run hydrologic models. Yet its implementation based on empirical distributions derived from control samples (referred to as nonparametric distribution mapping) makes the method's performance sensitive to sample length variations, the presence of outliers, the spatial resolution of climate model results, and may lead to biases, especially in extreme rainfall estimation. To address these shortcomings, we propose a methodology for simultaneous bias correction and high-resolution downscaling of climate model rainfall products that uses: (a) a two-component theoretical distribution model (i.e., a generalized Pareto (GP) model for rainfall intensities above a specified threshold u*, and an exponential model for lower rainrates), and (b) proper interpolation of the corresponding distribution parameters on a user-defined high-resolution grid, using kriging for uncertain data. We assess the performance of the suggested parametric approach relative to the nonparametric one, using daily raingauge measurements from a dense network in the island of Sardinia (Italy), and rainfall data from four GCM/RCM model chains of the ENSEMBLES project. The obtained results shed light on the competitive advantages of the parametric approach, which is proved more accurate and considerably less sensitive to the characteristics of the calibration period, independent of the GCM/RCM combination used. This is especially the case for extreme rainfall estimation, where the GP assumption allows for more accurate and robust estimates, also beyond the range of the available data.

  6. Spatial connections in regional climate model rainfall outputs at different temporal scales: Application of network theory

    NASA Astrophysics Data System (ADS)

    Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui

    2018-01-01

    Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.

  7. Ground and satellite based assessment of meteorological droughts: The Coello river basin case study

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, A. F.; Olaya-Marín, E. J.; Barrios, M. I.

    2017-10-01

    The spatial distribution of droughts is a key factor for designing water management policies at basin scale in arid and semi-arid regions. Ground hydro-meteorological data in neo-tropical areas are scarce; therefore, the merging of ground and satellite datasets is a promissory approach for improving our understanding of water distribution. This paper compares three monthly rainfall interpolation methods for drought evaluation. The ordinary kriging technique based on ground data, and cokriging with elevation as auxiliary variable were compared against cokriging using the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA). Twenty rain gauge stations and the 3B42V7 version of the TMPA research dataset were considered. Comparisons were made over the Coello river basin (Colombia) at 3″ spatial resolution covering a period of eight years (1998-2005). The best spatial rainfall estimation was found for cokriging using ground data and elevation. The spatial support of TMPA dataset is very coarse for a merged interpolation with ground data, this spatial scales discrepancy highlight the need to consider scaling rules in the interpolation process.

  8. Exploring the relationship between malaria, rainfall intermittency, and spatial variation in rainfall seasonality

    NASA Astrophysics Data System (ADS)

    Merkord, C. L.; Wimberly, M. C.; Henebry, G. M.; Senay, G. B.

    2014-12-01

    Malaria is a major public health problem throughout tropical regions of the world. Successful prevention and treatment of malaria requires an understanding of the environmental factors that affect the life cycle of both the malaria pathogens, protozoan parasites, and its vectors, anopheline mosquitos. Because the egg, larval, and pupal stages of mosquito development occur in aquatic habitats, information about the spatial and temporal distribution of rainfall is critical for modeling malaria risk. Potential sources of hydrological data include satellite-derived rainfall estimates (TRMM and GPM), evapotranspiration derived from a simplified surface energy balance, and estimates of soil moisture and fractional water cover from passive microwave imagery. Previous studies have found links between malaria cases and total monthly or weekly rainfall in areas where both are highly seasonal. However it is far from clear that monthly or weekly summaries are the best metrics to use to explain malaria outbreaks. It is possible that particular temporal or spatial patterns of rainfall result in better mosquito habitat and thus higher malaria risk. We used malaria case data from the Amhara region of Ethiopia and satellite-derived rainfall estimates to explore the relationship between malaria outbreaks and rainfall with the goal of identifying the most useful rainfall metrics for modeling malaria occurrence. First, we explored spatial variation in the seasonal patterns of both rainfall and malaria cases in Amhara. Second, we assessed the relative importance of different metrics of rainfall intermittency, including alternation of wet and dry spells, the strength of intensity fluctuations, and spatial variability in these measures, in determining the length and severity of malaria outbreaks. We also explored the sensitivity of our results to the choice of method for describing rainfall intermittency and the spatial and temporal scale at which metrics were calculated. Results demonstrate that information about the seasonality and intermittency of rainfall has the potential to improve our understanding of malaria epidemiology and improve our ability to forecast malaria outbreaks.

  9. Trends and spatial distribution of annual and seasonal rainfall in Ethiopia

    USGS Publications Warehouse

    Cheung, W.H.; Senay, G.B.; Singh, A.

    2008-01-01

    As a country whose economy is heavily dependent on low-productivity rainfed agriculture, rainfall trends are often cited as one of the more important factors in explaining various socio-economic problems such as food insecurity. Therefore, in order to help policymakers and developers make more informed decisions, this study investigated the temporal dynamics of rainfall and its spatial distribution within Ethiopia. Changes in rainfall were examined using data from 134 stations in 13 watersheds between 1960 and 2002. The variability and trends in seasonal and annual rainfall were analysed at the watershed scale with data (1) from all available years, and (2) excluding years that lacked observations from at least 25% of the gauges. Similar analyses were also performed at the gauge, regional, and national levels. By regressing annual watershed rainfall on time, results from the one-sample t-test show no significant changes in rainfall for any of the watersheds examined. However, in our regressions of seasonal rainfall averages against time, we found a significant decline in June to September rainfall (i.e. Kiremt) for the Baro-Akobo, Omo-Ghibe, Rift Valley, and Southern Blue Nile watersheds located in the southwestern and central parts of Ethiopia. While the gauge level analysis showed that certain gauge stations experienced recent changes in rainfall, these trends are not necessarily reflected at the watershed or regional levels.

  10. Requirements for future development of small scale rainfall simulators

    NASA Astrophysics Data System (ADS)

    Iserloh, Thomas; Ries, Johannes B.; Seeger, Manuel

    2013-04-01

    Rainfall simulation with small scale simulators is a method used worldwide to assess the generation of overland flow, soil erosion, infiltration and interrelated processes such as soil sealing, crusting, splash and redistribution of solids and solutes. Following the outcomes of the project "Comparability of simulation results of different rainfall simulators as input data for soil erosion modelling (Deutsche Forschungsgemeinschaft - DFG, Project No. Ri 835/6-1)" and the "International Rainfall Simulator Workshop 2011" in Trier, the necessity for further technical improvements of simulators and strategies towards an adaption of designs and methods becomes obvious. Uniform measurements of artificially generated rainfall and comparative measurements on a prepared bare fallow with rainfall simulators used by European research groups showed limitations of the comparability of the results. The following requirements, essential for small portable rainfall simulators, were identified: (I) Low and efficient water consumption for use in areas with water shortage, (II) easy handling and control of test conditions, (III) homogeneous spatial rainfall distribution, (IV) best possible drop spectrum (physically), (V) reproducibility and knowledge of spatial distribution and drop spectrum, (VI) easy and fast training of operators to obtain reproducible experiments and (VII) good mobility and easy installation for use in remote areas and in regions where highly erosive rainfall events are rare or irregular. The presentation discusses possibilities for a common use of identical plot designs, rainfall intensities and nozzles.

  11. The assessment of Global Precipitation Measurement estimates over the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.

    2017-08-01

    Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.

  12. An assessment of the feasibility of the use of satellite-only rainfall estimates for the hydrological monitoring in central Italy

    NASA Astrophysics Data System (ADS)

    Campo, Lorenzo; Caparrini, Francesca

    2013-04-01

    The need for accurate distributed hydrological modelling has constantly increased in last years for several purposes: agricultural applications, water resources management, hydrological balance at watershed scale, floods forecast. The main input for the hydrological numerical models is rainfall data that present, at the same time, a large availability of measures (in gauged regions, with respect to other micro-meteorological variables) and the most complex spatial patterns. While also in presence of densely gauged watersheds the spatial interpolation of the rainfall is a non-trivial problem, due to the spatial intermittence of the variable (especially at finer temporal scales), ungauged regions need an alternative source of rainfall data in order to perform the hydrological modelling. Such source can be constituted by the satellite-estimated rainfall fields, with reference to both geostationary and polar-orbit platforms. In this work the rainfall product obtained by the Aqua-AIRS sensor were used in order to assess the feasibility of the use of satellite-based rainfall as input for distributed hydrological modelling. The MOBIDIC (MOdello di BIlancio Distribuito e Continuo) model, developed at the Department of civil and Environmental Engineering of the University of Florence and operationally used by Tuscany Region and Umbria Region for flood prediction and management, was used for the experiments. In particular three experiments were carried on: a) hydrological simulation with the use of rain-gauges data, b) simulation with the use of satellite-only rainfall estimates, c) simulation with the combined use of the two sources of data in order to obtain an optimal estimate of the actual rainfall fields. The domain of the study was the central Italy. Several critical events occurred in the area were analyzed. A discussion of the results is provided.

  13. Flood and Landslide Applications of High Time Resolution Satellite Rain Products

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Hong, Yang; Huffman, George J.

    2006-01-01

    Experimental, potentially real-time systems to detect floods and landslides related to heavy rain events are described. A key basis for these applications is high time resolution satellite rainfall analyses. Rainfall is the primary cause for devastating floods across the world. However, in many countries, satellite-based precipitation estimation may be the best source of rainfall data due to insufficient ground networks and absence of data sharing along many trans-boundary river basins. Remotely sensed precipitation from the NASA's TRMM Multi-satellite Precipitation Analysis (TMPA) operational system (near real-time precipitation at a spatial-temporal resolution of 3 hours and 0.25deg x 0.25deg) is used to monitor extreme precipitation events. Then these data are ingested into a macro-scale hydrological model which is parameterized using spatially distributed elevation, soil and land cover datasets available globally from satellite remote sensing. Preliminary flood results appear reasonable in terms of location and frequency of events, with implementation on a quasi-global basis underway. With the availability of satellite rainfall analyses at fine time resolution, it has also become possible to assess landslide risk on a near-global basis. Early results show that landslide occurrence is closely associated with the spatial patterns and temporal distribution of TRMM rainfall characteristics. Particularly, the number of landslides triggered by rainfall is related to rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms. For the purpose of prediction, an empirical TMPA-based rainfall intensity-duration threshold is developed and shown to have skill in determining potential areas of landslides. These experimental findings, in combination with landslide surface susceptibility information based on satellite-based land surface information, form a starting point towards a potential operational landslide monitoring/warning system around the globe.

  14. A comparative study of mixed exponential and Weibull distributions in a stochastic model replicating a tropical rainfall process

    NASA Astrophysics Data System (ADS)

    Abas, Norzaida; Daud, Zalina M.; Yusof, Fadhilah

    2014-11-01

    A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial-Temporal Neyman-Scott Rectangular Pulse model was used. The model, which is governed by the Neyman-Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.

  15. Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2010-01-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.

  16. Re-assessing Rainwater Harvesting Volume by CHIRPS Satellite in Semarang Settlement Area

    NASA Astrophysics Data System (ADS)

    Prihanto, Yosef; Koestoer, Raldi H.; Sutjiningsih, Dwita

    2017-12-01

    Semarang City is one of the most influential coastal cities in Java Island. The city is facing increasingly-high water demand due to its development and water problems due to climate change. The spatial physiography and landscape of Semarang City are also exposed the city to water security problem. Hence, rainwater harvesting treatment is an urgent effort to meet the city’s water needs. However, planning, implementation and management of rainwater harvesting are highly depended on multitemporal rainfall data. It has not yet been fully compiled due to limited rain stations. This study aims to examine the extent to which CHIRPS satellite data can be utilized in estimating volume of rainwater harvesting 16 sub-districts in Semarang and determine the water security status. This study uses descriptive statistical method based on spatial analyses. Such method was developed through spatial modeling for rainfall using isohyetal model. The parameters used are rainfall, residential rooftop area, administrative area, population, physiographic and altitude units. Validation is carried out by using monthly 10 rain stations data. The results show level of validity by utilizing CHIRPS Satellite data and mapping rainfall distribution. This study also produces a potential map of distribution rainfall volume that can be harvested in 16 sub-districts of Semarang.

  17. Drought assessment using a TRMM-derived standardized precipitation index for the upper São Francisco River basin, Brazil.

    PubMed

    Santos, Celso Augusto Guimarães; Brasil Neto, Reginaldo Moura; Passos, Jacqueline Sobral de Araújo; da Silva, Richarde Marques

    2017-06-01

    In this work, the use of Tropical Rainfall Measuring Mission (TRMM) rainfall data and the Standardized Precipitation Index (SPI) for monitoring spatial and temporal drought variabilities in the Upper São Francisco River basin is investigated. Thus, the spatiotemporal behavior of droughts and cluster regions with similar behaviors is identified. As a result, the joint analysis of clusters, dendrograms, and the spatial distribution of SPI values proved to be a powerful tool in identifying homogeneous regions. The results showed that the northeast region of the basin has the lowest rainfall indices and the southwest region has the highest rainfall depths, and that the region has well-defined dry and rainy seasons from June to August and November to January, respectively. An analysis of the drought and rain conditions showed that the studied region was homogeneous and well-distributed; however, the quantity of extreme and severe drought events in short-, medium- and long-term analysis was higher than that expected in regions with high rainfall depths, particularly in the south/southwest and southeast areas. Thus, an alternative classification is proposed to characterize the drought, which spatially categorizes the drought type (short-, medium-, and long-term) according to the analyzed drought event type (extreme, severe, moderate, and mild).

  18. Autocorrelation structure of convective rainfall in semiarid-arid climate derived from high-resolution X-Band radar estimates

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2018-02-01

    Small scale rainfall variability is a key factor driving runoff response in fast responding systems, such as mountainous, urban and arid catchments. In this paper, the spatial-temporal autocorrelation structure of convective rainfall is derived with extremely high resolutions (60 m, 1 min) using estimates from an X-Band weather radar recently installed in a semiarid-arid area. The 2-dimensional spatial autocorrelation of convective rainfall fields and the temporal autocorrelation of point-wise and distributed rainfall fields are examined. The autocorrelation structures are characterized by spatial anisotropy, correlation distances 1.5-2.8 km and rarely exceeding 5 km, and time-correlation distances 1.8-6.4 min and rarely exceeding 10 min. The observed spatial variability is expected to negatively affect estimates from rain gauges and microwave links rather than satellite and C-/S-Band radars; conversely, the temporal variability is expected to negatively affect remote sensing estimates rather than rain gauges. The presented results provide quantitative information for stochastic weather generators, cloud-resolving models, dryland hydrologic and agricultural models, and multi-sensor merging techniques.

  19. A statistical model of extreme storm rainfall

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Karr, Alan F.

    1990-02-01

    A model of storm rainfall is developed for the central Appalachian region of the United States. The model represents the temporal occurrence of major storms and, for a given storm, the spatial distribution of storm rainfall. Spatial inhomogeneities of storm rainfall and temporal inhomogeneities of the storm occurrence process are explicitly represented. The model is used for estimating recurrence intervals of extreme storms. The parameter estimation procedure developed for the model is based on the substitution principle (method of moments) and requires data from a network of rain gages. The model is applied to a 5000 mi2 (12,950 km2) region in the Valley and Ridge Province of Virginia and West Virginia.

  20. Impacts of Spatial Distribution of Impervious Areas on Runoff Response of Hillslope Catchments: Simulation Study

    EPA Science Inventory

    This study analyzes variations in the model-projected changes in catchment runoff response after urbanization that stem from variations in the spatial distribution of impervious areas, interevent differences in temporal rainfall structure, and antecedent soil moisture (ASM). In t...

  1. Bias adjustment of infrared-based rainfall estimation using Passive Microwave satellite rainfall data

    NASA Astrophysics Data System (ADS)

    Karbalaee, Negar; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan

    2017-04-01

    This study explores using Passive Microwave (PMW) rainfall estimation for spatial and temporal adjustment of Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS). The PERSIANN-CCS algorithm collects information from infrared images to estimate rainfall. PERSIANN-CCS is one of the algorithms used in the Integrated Multisatellite Retrievals for GPM (Global Precipitation Mission) estimation for the time period PMW rainfall estimations are limited or not available. Continued improvement of PERSIANN-CCS will support Integrated Multisatellite Retrievals for GPM for current as well as retrospective estimations of global precipitation. This study takes advantage of the high spatial and temporal resolution of GEO-based PERSIANN-CCS estimation and the more effective, but lower sample frequency, PMW estimation. The Probability Matching Method (PMM) was used to adjust the rainfall distribution of GEO-based PERSIANN-CCS toward that of PMW rainfall estimation. The results show that a significant improvement of global PERSIANN-CCS rainfall estimation is obtained.

  2. A dam-reservoir module for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2017-04-01

    Developing modeling tools that help to assess the spatial distribution of water resources is a key issue to achieve better solutions for the optimal management of water availability among users in a river basin. Streamflow dynamics depends on (i) the spatial variability of rainfall, (ii) the heterogeneity of catchment behavior and response, and (iii) local human regulations (e.g., reservoirs) that store and control surface water. These aspects can be successfully handled by distributed or semi-distributed hydrological models. In this study, we develop a dam-reservoir module within a semi-distributed rainfall-runoff model (de Lavenne et al. 2016). The model runs at the daily time step, and has five parameters for each sub-catchment as well as a streamflow velocity parameter for flow routing. Its structure is based on two stores, one for runoff production and one for routing. The calibration of the model is performed from upstream to downstream sub-catchments, which efficiently uses spatially-distributed streamflow measurements. In a previous study, Payan et al. (2008) described a strategy to implement a dam module within a lumped rainfall-runoff model. Here we propose to adapt this strategy to a semi-distributed hydrological modelling framework. In this way, the specific location of existing reservoirs inside a river basin is explicitly accounted for. Our goal is to develop a tool that can provide answers to the different issues involved in spatial water management in human-influenced contexts and at large modelling scales. The approach is tested for the Seine basin in France. Results are shown for model performance with and without the dam module. Also, a comparison with the lumped GR5J model highlights the improvements obtained in model performance by considering human influences more explicitly, and by facilitating parameter identifiability. This work opens up new perspectives for streamflow naturalization analyses and scenario-based spatial assessment of water resources under global change. References de Lavenne, A.; Thirel, G.; Andréassian, V.; Perrin, C. & Ramos, M.-H. (2016), 'Spatial variability of the parameters of a semi-distributed hydrological model', PIAHS 373, 87-94. Payan, J.-L.; Perrin, C.; Andréassian, V. & Michel, C. (2008), 'How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?', Water Resour. Res. 44(3), W03420.

  3. Influence of rainfall data scarcity on non-point source pollution prediction: Implications for physically based models

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Xu, Jiajia; Wang, Guobo; Liu, Hongbin; Zhai, Limei; Li, Shuang; Sun, Cheng; Shen, Zhenyao

    2018-07-01

    Hydrological and non-point source pollution (H/NPS) predictions in ungagged basins have become the key problem for watershed studies, especially for those large-scale catchments. However, few studies have explored the comprehensive impacts of rainfall data scarcity on H/NPS predictions. This study focused on: 1) the effects of rainfall spatial scarcity (by removing 11%-67% of stations based on their locations) on the H/NPS results; and 2) the impacts of rainfall temporal scarcity (10%-60% data scarcity in time series); and 3) the development of a new evaluation method that incorporates information entropy. A case study was undertaken using the Soil and Water Assessment Tool (SWAT) in a typical watershed in China. The results of this study highlighted the importance of critical-site rainfall stations that often showed greater influences and cross-tributary impacts on the H/NPS simulations. Higher missing rates above a certain threshold as well as missing locations during the wet periods resulted in poorer simulation results. Compared to traditional indicators, information entropy could serve as a good substitute because it reflects the distribution of spatial variability and the development of temporal heterogeneity. This paper reports important implications for the application of Distributed Hydrological Models and Semi-distributed Hydrological Models, as well as for the optimal design of rainfall gauges among large basins.

  4. Detecting surface runoff location in a small catchment using distributed and simple observation method

    NASA Astrophysics Data System (ADS)

    Dehotin, Judicaël; Breil, Pascal; Braud, Isabelle; de Lavenne, Alban; Lagouy, Mickaël; Sarrazin, Benoît

    2015-06-01

    Surface runoff is one of the hydrological processes involved in floods, pollution transfer, soil erosion and mudslide. Many models allow the simulation and the mapping of surface runoff and erosion hazards. Field observations of this hydrological process are not common although they are crucial to evaluate surface runoff models and to investigate or assess different kinds of hazards linked to this process. In this study, a simple field monitoring network is implemented to assess the relevance of a surface runoff susceptibility mapping method. The network is based on spatially distributed observations (nine different locations in the catchment) of soil water content and rainfall events. These data are analyzed to determine if surface runoff occurs. Two surface runoff mechanisms are considered: surface runoff by saturation of the soil surface horizon and surface runoff by infiltration excess (also called hortonian runoff). The monitoring strategy includes continuous records of soil surface water content and rainfall with a 5 min time step. Soil infiltration capacity time series are calculated using field soil water content and in situ measurements of soil hydraulic conductivity. Comparison of soil infiltration capacity and rainfall intensity time series allows detecting the occurrence of surface runoff by infiltration-excess. Comparison of surface soil water content with saturated water content values allows detecting the occurrence of surface runoff by saturation of the soil surface horizon. Automatic records were complemented with direct field observations of surface runoff in the experimental catchment after each significant rainfall event. The presented observation method allows the identification of fast and short-lived surface runoff processes at a small spatial and temporal resolution in natural conditions. The results also highlight the relationship between surface runoff and factors usually integrated in surface runoff mapping such as topography, rainfall parameters, soil or land cover. This study opens interesting prospects for the use of spatially distributed measurement for surface runoff detection, spatially distributed hydrological models implementation and validation at a reasonable cost.

  5. SIMULATED IMPACTS OF SMALL-SCALE SPATIAL DISTRIBUTION OF IMPERVIOUS AREA ON RUNOFF RESPONSE OF FIELD-SCALE CATCHMENTS

    EPA Science Inventory

    Impervious surface is known to negatively affect catchment hydrology through both its extent and spatial distribution. In this study, we empirically quantify via model simulations the impacts of different configurations of impervious surface on watershed response to rainfall. An ...

  6. The influence of natural factors on the spatio-temporal distribution of Oncomelania hupensis.

    PubMed

    Cheng, Gong; Li, Dan; Zhuang, Dafang; Wang, Yong

    2016-12-01

    We analyzed the influence of natural factors, such as temperature, rainfall, vegetation and hydrology, on the spatio-temporal distribution of Oncomelania hupensis and explored the leading factors influencing these parameters. The results will provide reference methods and theoretical a basis for the schistosomiasis control. GIS (Geographic Information System) spatial display and analysis were used to describe the spatio-temporal distribution of Oncomelania hupensis in the study area (Dongting Lake in Hunan Province) from 2004 to 2011. Correlation analysis was used to detect the natural factors associated with the spatio-temporal distribution of O. hupensis. Spatial regression analysis was used to quantitatively analyze the effects of related natural factors on the spatio-temporal distribution of snails and explore the dominant factors influencing this parameter. (1) Overall, the spatio-temporal distribution of O. hupensis was governed by the comprehensive effects of natural factors. In the study area, the average density of living snails showed a downward trend, with the exception of a slight rebound in 2009. The density of living snails showed significant spatial clustering, and the degree of aggregation was initially weak but enhanced later. Regions with high snail density and towns with an HH distribution pattern were mostly distributed in the plain areas in the northwestern and inlet and outlet of the lake. (2) There were space-time differences in the influence of natural factors on the spatio-temporal distribution of O. hupensis. Temporally, the comprehensive influence of natural factors on snail distribution increased first and then decreased. Natural factors played an important role in snail distribution in 2005, 2006, 2010 and 2011. Spatially, it decreased from the northeast to the southwest. Snail distributions in more than 20 towns located along the Yuanshui River and on the west side of the Lishui River were less affected by natural factors, whereas relatively larger in areas around the outlet of the lake (Chenglingji) were more affected. (3) The effects of natural factors on the spatio-temporal distribution of O. hupensis were spatio-temporally heterogeneous. Rainfall, land surface temperature, NDVI, and distance from water sources all played an important role in the spatio-temporal distribution of O. hupensis. In addition, due to the effects of the local geographical environment, the direction of the influences the average annual rainfall, land surface temperature, and NDVI had on the spatio-temporal distribution of O. hupensis were all spatio-temporally heterogeneous, and both the distance from water sources and the history of snail distribution always had positive effects on the distribution O. hupensis, but the direction of the influence was spatio-temporally heterogeneous. (4) Of all the natural factors, the leading factors influencing the spatio-temporal distribution of O. hupensis were rainfall and vegetation (NDVI), and the primary factor alternated between these two. The leading role of rainfall decreased year by year, while that of vegetation (NDVI) increased from 2004 to 2011. The spatio-temporal distribution of O. hupensis was significantly influenced by natural factors, and the influences were heterogeneous across space and time. Additionally, the variation in the spatial-temporal distribution of O. hupensis was mainly affected by rainfall and vegetation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Spatial variability of summer Florida precipitation and its impact on microwave radiometer rainfall-measurement systems

    NASA Technical Reports Server (NTRS)

    Turner, B. J.; Austin, G. L.

    1993-01-01

    Three-dimensional radar data for three summer Florida storms are used as input to a microwave radiative transfer model. The model simulates microwave brightness observations by a 19-GHz, nadir-pointing, satellite-borne microwave radiometer. The statistical distribution of rainfall rates for the storms studied, and therefore the optimal conversion between microwave brightness temperatures and rainfall rates, was found to be highly sensitive to the spatial resolution at which observations were made. The optimum relation between the two quantities was less sensitive to the details of the vertical profile of precipitation. Rainfall retrievals were made for a range of microwave sensor footprint sizes. From these simulations, spatial sampling-error estimates were made for microwave radiometers over a range of field-of-view sizes. The necessity of matching the spatial resolution of ground truth to radiometer footprint size is emphasized. A strategy for the combined use of raingages, ground-based radar, microwave, and visible-infrared (VIS-IR) satellite sensors is discussed.

  8. A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events

    NASA Astrophysics Data System (ADS)

    Zorzetto, E.; Marani, M.

    2017-12-01

    The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.

  9. Comparing Approaches to Deal With Non-Gaussianity of Rainfall Data in Kriging-Based Radar-Gauge Rainfall Merging

    NASA Astrophysics Data System (ADS)

    Cecinati, F.; Wani, O.; Rico-Ramirez, M. A.

    2017-11-01

    Merging radar and rain gauge rainfall data is a technique used to improve the quality of spatial rainfall estimates and in particular the use of Kriging with External Drift (KED) is a very effective radar-rain gauge rainfall merging technique. However, kriging interpolations assume Gaussianity of the process. Rainfall has a strongly skewed, positive, probability distribution, characterized by a discontinuity due to intermittency. In KED rainfall residuals are used, implicitly calculated as the difference between rain gauge data and a linear function of the radar estimates. Rainfall residuals are non-Gaussian as well. The aim of this work is to evaluate the impact of applying KED to non-Gaussian rainfall residuals, and to assess the best techniques to improve Gaussianity. We compare Box-Cox transformations with λ parameters equal to 0.5, 0.25, and 0.1, Box-Cox with time-variant optimization of λ, normal score transformation, and a singularity analysis technique. The results suggest that Box-Cox with λ = 0.1 and the singularity analysis is not suitable for KED. Normal score transformation and Box-Cox with optimized λ, or λ = 0.25 produce satisfactory results in terms of Gaussianity of the residuals, probability distribution of the merged rainfall products, and rainfall estimate quality, when validated through cross-validation. However, it is observed that Box-Cox transformations are strongly dependent on the temporal and spatial variability of rainfall and on the units used for the rainfall intensity. Overall, applying transformations results in a quantitative improvement of the rainfall estimates only if the correct transformations for the specific data set are used.

  10. Evaluation of Rainfall-induced Landslide Potential

    NASA Astrophysics Data System (ADS)

    Chen, Y. R.; Tsai, K. J.; Chen, J. W.; Chue, Y. S.; Lu, Y. C.; Lin, C. W.

    2016-12-01

    Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assessed rainfall-induced landslide potential and spatial distribution in some watersheds of Southern Taiwan to configure reasonable assessment process and methods for landslide potential. This study focused on the multi-year multi-phase heavy rainfall events after 2009 Typhoon Morakot and applied the analysis techniques for the classification of satellite images of research region before and after rainfall to obtain surface information and hazard log data. GIS and DEM were employed to obtain the ridge and water system and to explore characteristics of landslide distribution. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various hazard factors. Furthermore, the interaction between rainfall characteristic, slope disturbance and landslide mechanism was analyzed. The results of image classification show that the values of coefficient of agreement are at medium-high level. The agreement of landslide potential map is at around 80% level compared with historical disaster sites. The relations between landslide potential level, slope disturbance degree, and the ratio of number and area of landslide increment corresponding heavy rainfall events are positive. The ratio of landslide occurrence is proportional to the value of instability index. Moreover, for each rainfall event, the number and scale of secondary landslide sites are much more than those of new landslide sites. The greater the slope land disturbance, the more likely it is that the scale of secondary landslide become greater. The spatial distribution of landslide depends on the interaction of rainfall patterns, slope, and elevation of the research area.

  11. A simple stochastic rainstorm generator for simulating spatially and temporally varying rainfall

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Michaelides, K.; Nichols, M.; Nearing, M. A.

    2016-12-01

    In semi-arid to arid drainage basins, rainstorms often control both water supply and flood risk to marginal communities of people. They also govern the availability of water to vegetation and other ecological communities, as well as spatial patterns of sediment, nutrient, and contaminant transport and deposition on local to basin scales. All of these landscape responses are sensitive to changes in climate that are projected to occur throughout western North America. Thus, it is important to improve characterization of rainstorms in a manner that enables statistical assessment of rainfall at spatial scales below that of existing gauging networks and the prediction of plausible manifestations of climate change. Here we present a simple, stochastic rainstorm generator that was created using data from a rich and dense network of rain gauges at the Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but which is applicable anywhere. We describe our methods for assembling pdfs of relevant rainstorm characteristics including total annual rainfall, storm area, storm center location, and storm duration. We also generate five fitted intensity-duration curves and apply a spatial rainfall gradient to generate precipitation at spatial scales below gauge spacing. The model then runs by Monte Carlo simulation in which a total annual rainfall is selected before we generate rainstorms until the annual precipitation total is reached. The procedure continues for decadal simulations. Thus, we keep track of the hydrologic impact of individual storms and the integral of precipitation over multiple decades. We first test the model using ensemble predictions until we reach statistical similarity to the input data from WGEW. We then employ the model to assess decadal precipitation under simulations of climate change in which we separately vary the distribution of total annual rainfall (trend in moisture) and the intensity-duration curves used for simulation (trends in storminess). We demonstrate the model output through spatial maps of rainfall and through statistical comparisons of relevant parameters and distributions. Finally, discuss how the model can be used to understand basin-scale hydrology in terms of soil moisture, runoff, and erosion.

  12. Spatially distributed groundwater recharge estimated using a water-budget model for the Island of Maui, Hawai`i, 1978–2007

    USGS Publications Warehouse

    Johnson, Adam G.; Engott, John A.; Bassiouni, Maoya; Rotzoll, Kolja

    2014-12-14

    Demand for freshwater on the Island of Maui is expected to grow. To evaluate the availability of fresh groundwater, estimates of groundwater recharge are needed. A water-budget model with a daily computation interval was developed and used to estimate the spatial distribution of recharge on Maui for average climate conditions (1978–2007 rainfall and 2010 land cover) and for drought conditions (1998–2002 rainfall and 2010 land cover). For average climate conditions, mean annual recharge for Maui is about 1,309 million gallons per day, or about 44 percent of precipitation (rainfall and fog interception). Recharge for average climate conditions is about 39 percent of total water inflow consisting of precipitation, irrigation, septic leachate, and seepage from reservoirs and cesspools. Most recharge occurs on the wet, windward slopes of Haleakalā and on the wet, uplands of West Maui Mountain. Dry, coastal areas generally have low recharge. In the dry isthmus, however, irrigated fields have greater recharge than nearby unirrigated areas. For drought conditions, mean annual recharge for Maui is about 1,010 million gallons per day, which is 23 percent less than recharge for average climate conditions. For individual aquifer-system areas used for groundwater management, recharge for drought conditions is about 8 to 51 percent less than recharge for average climate conditions. The spatial distribution of rainfall is the primary factor determining spatially distributed recharge estimates for most areas on Maui. In wet areas, recharge estimates are also sensitive to water-budget parameters that are related to runoff, fog interception, and forest-canopy evaporation. In dry areas, recharge estimates are most sensitive to irrigated crop areas and parameters related to evapotranspiration.

  13. Required spatial resolution of hydrological models to evaluate urban flood resilience measures

    NASA Astrophysics Data System (ADS)

    Gires, A.; Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    During a flood in urban area, several non-linear processes (rainfall, surface runoff, sewer flow, and sub-surface flow) interact. Fully distributed hydrological models are a useful tool to better understand these complex interactions between natural processes and man built environment. Developing an efficient model is a first step to improve the understanding of flood resilience in urban area. Given that the previously mentioned underlying physical phenomenon exhibit different relevant scales, determining the required spatial resolution of such model is tricky but necessary issue. For instance such model should be able to properly represent large scale effects of local scale flood resilience measures such as stop logs. The model should also be as simple as possible without being simplistic. In this paper we test two types of model. First we use an operational semi-distributed model over a 3400 ha peri-urban area located in Seine-Saint-Denis (North-East of Paris). In this model, the area is divided into sub-catchments of average size 17 ha that are considered as homogenous, and only the sewer discharge is modelled. The rainfall data, whose resolution is 1 km is space and 5 min in time, comes from the C-band radar of Trappes, located in the West of Paris, and operated by Météo-France. It was shown that the spatial resolution of both the model and the rainfall field did not enable to fully grasp the small scale rainfall variability. To achieve this, first an ensemble of realistic rainfall fields downscaled to a resolution of 100 m is generated with the help of multifractal space-time cascades whose characteristic exponents are estimated on the available radar data. Second the corresponding ensemble of sewer hydrographs is simulated by inputting each rainfall realization to the model. It appears that the probability distribution of the simulated peak flow exhibits a power-law behaviour. This indicates that there is a great uncertainty associated with small scale rainfall. Second we focus on a 50 ha catchment of this area and implement Multi-Hydro, a fully distributed urban hydrological model currently being developed at Ecole des Ponts ParisTech (El Tabach et al., 2009). The version used in this paper consists in an interactive coupling between a 2D model representing infiltration and surface runoff (TREX, Two dimensional Runoff, Erosion and eXport model, Velleux et al., 2011) and a 1D model of sewer networks (SWMM, Storm Water Management Model, Rossman, 2007). Spatial resolution ranging from 2 m to 50 m for land use, topography and rainfall are tested. A special highlight on the impact of small scales rainfall is done. To achieve this the previously mentioned methodology is implemented with rainfall fields downscaled to 10 m in space and 20 s in time. Finally, we will discuss the gains generated by the implementation of the fully distributed model.

  14. Modeling Spatial Dependence of Rainfall Extremes Across Multiple Durations

    NASA Astrophysics Data System (ADS)

    Le, Phuong Dong; Leonard, Michael; Westra, Seth

    2018-03-01

    Determining the probability of a flood event in a catchment given that another flood has occurred in a nearby catchment is useful in the design of infrastructure such as road networks that have multiple river crossings. These conditional flood probabilities can be estimated by calculating conditional probabilities of extreme rainfall and then transforming rainfall to runoff through a hydrologic model. Each catchment's hydrological response times are unlikely to be the same, so in order to estimate these conditional probabilities one must consider the dependence of extreme rainfall both across space and across critical storm durations. To represent these types of dependence, this study proposes a new approach for combining extreme rainfall across different durations within a spatial extreme value model using max-stable process theory. This is achieved in a stepwise manner. The first step defines a set of common parameters for the marginal distributions across multiple durations. The parameters are then spatially interpolated to develop a spatial field. Storm-level dependence is represented through the max-stable process for rainfall extremes across different durations. The dependence model shows a reasonable fit between the observed pairwise extremal coefficients and the theoretical pairwise extremal coefficient function across all durations. The study demonstrates how the approach can be applied to develop conditional maps of the return period and return level across different durations.

  15. Toward an operational tool to simulate green roof hydrological impact at the basin scale: a new version of the distributed rainfall-runoff model Multi-Hydro.

    PubMed

    Versini, Pierre-Antoine; Gires, Auguste; Tchinguirinskaia, Ioulia; Schertzer, Daniel

    2016-10-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building scale: decrease and slow-down of the peak discharge, and decrease of runoff volume. The present work aims to study their possible impact at the catchment scale, more compatible with stormwater management issues. For this purpose, a specific module dedicated to simulating the hydrological behaviour of a green roof has been developed in the distributed rainfall-runoff model (Multi-Hydro). It has been applied on a French urban catchment where most of the building roofs are flat and assumed to accept the implementation of a green roof. Catchment responses to several rainfall events covering a wide range of meteorological situations have been simulated. The simulation results show green roofs can significantly reduce runoff volume and the magnitude of peak discharge (up to 80%) depending on the rainfall event and initial saturation of the substrate. Additional tests have been made to assess the susceptibility of this response regarding both spatial distributions of green roofs and precipitation. It appears that the total area of greened roofs is more important than their locations. On the other hand, peak discharge reduction seems to be clearly dependent on spatial distribution of precipitation.

  16. Accounting for Rainfall Spatial Variability in Prediction of Flash Floods

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2016-12-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  17. Accounting for rainfall spatial variability in the prediction of flash floods

    NASA Astrophysics Data System (ADS)

    Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Hong, Yang; Vergara, Humberto; Flamig, Zachary L.

    2017-04-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 15,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. The database has been subjected to rigorous quality control by accounting for radar beam height and percentage snow in basins. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  18. How certain is desiccation in west African Sahel rainfall (1930-1990)?

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Agnew, Clive T.

    2008-04-01

    Hypotheses for the late 1960s to 1990 period of desiccation (secular decrease in rainfall) in the west African Sahel (WAS) are typically tested by comparing empirical evidence or model predictions against "observations" of Sahelian rainfall. The outcomes of those comparisons can have considerable influence on the understanding of regional and global environmental systems. Inverse-distance squared area-weighted (IDW) estimates of WAS rainfall observations are commonly aggregated over space to provide temporal patterns without uncertainty. Spatial uncertainty of WAS rainfall was determined using the median approximation sequential indicator simulation. Every year (1930-1990) 300 equally probable realizations of annual summer rainfall were produced to honor station observations, match percentiles of the observed cumulative distributions and indicator variograms and perform adequately during cross validation. More than 49% of the IDW mean annual rainfall fell outside the 5th and 95th percentiles for annual rainfall realization means. The IDW means represented an extreme realization. Uncertainty in desiccation was determined by repeatedly (100,000) sampling the annual distribution of rainfall realization means and by applying Mann-Kendall nonparametric slope detection and significance testing. All of the negative gradients for the entire period were statistically significant. None of the negative gradients for the expected desiccation period were statistically significant. The results support the presence of a long-term decline in annual rainfall but demonstrate that short-term desiccation (1965-1990) cannot be detected. Estimates of uncertainty for precipitation and other climate variables in this or other regions, or across the globe, are essential for the rigorous detection of spatial patterns and time series trends.

  19. Modification of a rainfall-runoff model for distributed modeling in a GIS and its validation

    NASA Astrophysics Data System (ADS)

    Nyabeze, W. R.

    A rainfall-runoff model, which can be inter-faced with a Geographical Information System (GIS) to integrate definition, measurement, calculating parameter values for spatial features, presents considerable advantages. The modification of the GWBasic Wits Rainfall-Runoff Erosion Model (GWBRafler) to enable parameter value estimation in a GIS (GISRafler) is presented in this paper. Algorithms are applied to estimate parameter values reducing the number of input parameters and the effort to populate them. The use of a GIS makes the relationship between parameter estimates and cover characteristics more evident. This paper has been produced as part of research to generalize the GWBRafler on a spatially distributed basis. Modular data structures are assumed and parameter values are weighted relative to the module area and centroid properties. Modifications to the GWBRafler enable better estimation of low flows, which are typical in drought conditions.

  20. Dynamics and spatio-temporal variability of environmental factors in Eastern Australia using functional principal component analysis

    USGS Publications Warehouse

    Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.

    2010-01-01

    This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.

  1. Variability in rainfall at monitoring stations and derivation of a long-term rainfall intensity record in the Grand Canyon Region, Arizona, USA

    USGS Publications Warehouse

    Caster, Joshua J.; Sankey, Joel B.

    2016-04-11

    In this study, we examine rainfall datasets of varying temporal length, resolution, and spatial distribution to characterize rainfall depth, intensity, and seasonality for monitoring stations along the Colorado River within Marble and Grand Canyons. We identify maximum separation distances between stations at which rainfall measurements might be most useful for inferring rainfall characteristics at other locations. We demonstrate a method for applying relations between daily rainfall depth and intensity, from short-term high-resolution data to lower-resolution longer-term data, to synthesize a long-term record of daily rainfall intensity from 1950–2012. We consider the implications of our spatio-temporal characterization of rainfall for understanding local landscape change in sedimentary deposits and archaeological sites, and for better characterizing past and present rainfall and its potential role in overland flow erosion within the canyons. We find that rainfall measured at stations within the river corridor is spatially correlated at separation distances of tens of kilometers, and is not correlated at the large elevation differences that separate stations along the Colorado River from stations above the canyon rim. These results provide guidance for reasonable separation distances at which rainfall measurements at stations within the Grand Canyon region might be used to infer rainfall at other nearby locations along the river. Like other rugged landscapes, spatial variability between rainfall measured at monitoring stations appears to be influenced by canyon and rim physiography and elevation, with preliminary results suggesting the highest elevation landform in the region, the Kaibab Plateau, may function as an important orographic influence. Stations at specific locations within the canyons and along the river, such as in southern (lower) Marble Canyon and eastern (upper) Grand Canyon, appear to have strong potential to receive high-intensity rainfall that can generate runoff which may erode alluvium. The characterization of past and present rainfall variability in this study will be useful for future studies that evaluate more spatially continuous datasets in order to better understand the rainfall dynamics within this, and potentially other, deep canyons.

  2. Analysis of shifts in the spatial distribution of vegetation due to climate change

    NASA Astrophysics Data System (ADS)

    del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio

    2017-04-01

    Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.

  3. Realistic sampling of anisotropic correlogram parameters for conditional simulation of daily rainfields

    NASA Astrophysics Data System (ADS)

    Gyasi-Agyei, Yeboah

    2018-01-01

    This paper has established a link between the spatial structure of radar rainfall, which more robustly describes the spatial structure, and gauge rainfall for improved daily rainfield simulation conditioned on the limited gauged data for regions with or without radar records. A two-dimensional anisotropic exponential function that has parameters of major and minor axes lengths, and direction, is used to describe the correlogram (spatial structure) of daily rainfall in the Gaussian domain. The link is a copula-based joint distribution of the radar-derived correlogram parameters that uses the gauge-derived correlogram parameters and maximum daily temperature as covariates of the Box-Cox power exponential margins and Gumbel copula. While the gauge-derived, radar-derived and the copula-derived correlogram parameters reproduced the mean estimates similarly using leave-one-out cross-validation of ordinary kriging, the gauge-derived parameters yielded higher standard deviation (SD) of the Gaussian quantile which reflects uncertainty in over 90% of cases. However, the distribution of the SD generated by the radar-derived and the copula-derived parameters could not be distinguished. For the validation case, the percentage of cases of higher SD by the gauge-derived parameter sets decreased to 81.2% and 86.6% for the non-calibration and the calibration periods, respectively. It has been observed that 1% reduction in the Gaussian quantile SD can cause over 39% reduction in the SD of the median rainfall estimate, actual reduction being dependent on the distribution of rainfall of the day. Hence the main advantage of using the most correct radar correlogram parameters is to reduce the uncertainty associated with conditional simulations that rely on SD through kriging.

  4. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia

    NASA Astrophysics Data System (ADS)

    Kim, Kiyoung; Park, Jongmin; Baik, Jongjin; Choi, Minha

    2017-05-01

    The acquisition of accurate precipitation data is essential for analyzing various hydrological phenomena and climate change. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing global precipitation characteristics. The main objective in this study is to assess precipitation products from GPM, especially the Integrated Multi-satellitE Retrievals (GPM-3IMERGHH) and the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), using gauge-based precipitation data from Far-East Asia during the pre-monsoon and monsoon seasons. Evaluation was performed by focusing on three different factors: geographical aspects, seasonal factors, and spatial distributions. In both mountainous and coastal regions, the GPM-3IMERGHH product showed better performance than the TRMM 3B42 V7, although both rainfall products showed uncertainties caused by orographic convection and the land-ocean classification algorithm. GPM-3IMERGHH performed about 8% better than TRMM 3B42 V7 during the pre-monsoon and monsoon seasons due to the improvement of loaded sensor and reinforcement in capturing convective rainfall, respectively. In depicting the spatial distribution of precipitation, GPM-3IMERGHH was more accurate than TRMM 3B42 V7 because of its enhanced spatial and temporal resolutions of 10 km and 30 min, respectively. Based on these results, GPM-3IMERGHH would be helpful for not only understanding the characteristics of precipitation with high spatial and temporal resolution, but also for estimating near-real-time runoff patterns.

  5. Rainfall: State of the Science

    NASA Astrophysics Data System (ADS)

    Testik, Firat Y.; Gebremichael, Mekonnen

    Rainfall: State of the Science offers the most up-to-date knowledge on the fundamental and practical aspects of rainfall. Each chapter, self-contained and written by prominent scientists in their respective fields, provides three forms of information: fundamental principles, detailed overview of current knowledge and description of existing methods, and emerging techniques and future research directions. The book discusses • Rainfall microphysics: raindrop morphodynamics, interactions, size distribution, and evolution • Rainfall measurement and estimation: ground-based direct measurement (disdrometer and rain gauge), weather radar rainfall estimation, polarimetric radar rainfall estimation, and satellite rainfall estimation • Statistical analyses: intensity-duration-frequency curves, frequency analysis of extreme events, spatial analyses, simulation and disaggregation, ensemble approach for radar rainfall uncertainty, and uncertainty analysis of satellite rainfall products The book is tailored to be an indispensable reference for researchers, practitioners, and graduate students who study any aspect of rainfall or utilize rainfall information in various science and engineering disciplines.

  6. Water Budget for the Island of Kauai, Hawaii

    USGS Publications Warehouse

    Shade, Patricia J.

    1995-01-01

    A geographic information system model was created to calculate a monthly water budget for the island of Kauai. Ground-water recharge is the residual component of a monthly water budget calculated using long-term average rainfall, streamflow, and pan-evaporation data, applied irrigation-water estimates, and soil characteristics. The water-budget components are defined seasonally, through the use of the monthly water budget, and spatially by aquifer-system areas, through the use of the geographic information system model. The mean annual islandwide water-budget totals are 2,720 Mgal/d for rainfall plus irrigation; 1,157 Mgal/d for direct runoff; 911 Mgal/d for actual evapotranspiration; and 652 Mgal/d for ground-water recharge. Direct runoff is 43 percent, actual evapotranspiration is 33 percent, and ground-water recharge is 24 percent of rainfall plus irrigation. Ground-water recharge in the natural land-use areas is spatially distributed in a pattern similar to the rainfall distribution. Distinct seasonal variations in the water-budget components are apparent from the monthly water-budget calculations. Rainfall and ground-water recharge peak during the wet winter months with highs in January of 3,698 Mgal/d (million gallons per day) and 981 Mgal/d, respectively; a slight peak in July and August relative to June and September is caused by increased orographic rainfall. Recharge is lowest in June (454 Mgal/d) and November (461 Mgal/d).

  7. Spatial Interpolation of Historical Seasonal Rainfall Indices over Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Hassan, Zulkarnain; Haidir, Ahmad; Saad, Farah Naemah Mohd; Ayob, Afizah; Rahim, Mustaqqim Abdul; Ghazaly, Zuhayr Md.

    2018-03-01

    The inconsistency in inter-seasonal rainfall due to climate change will cause a different pattern in the rainfall characteristics and distribution. Peninsular Malaysia is not an exception for this inconsistency, in which it is resulting extreme events such as flood and water scarcity. This study evaluates the seasonal patterns in rainfall indices such as total amount of rainfall, the frequency of wet days, rainfall intensity, extreme frequency, and extreme intensity in Peninsular Malaysia. 40 years (1975-2015) data records have been interpolated using Inverse Distance Weighted method. The results show that the formation of rainfall characteristics are significance during the Northeast monsoon (NEM), as compared to Southwest monsoon (SWM). Also, there is a high rainfall intensity and frequency related to extreme over eastern coasts of Peninsula during the NEM season.

  8. On the use of satellite-based estimates of rainfall temporal distribution to simulate the potential for malaria transmission in rural Africa

    NASA Astrophysics Data System (ADS)

    Yamana, Teresa K.; Eltahir, Elfatih A. B.

    2011-02-01

    This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.

  9. Spatial structure of monthly rainfall measurements average over 25 years and trends of the hourly variability of a current rainy day in Rwanda.

    NASA Astrophysics Data System (ADS)

    Nduwayezu, Emmanuel; Kanevski, Mikhail; Jaboyedoff, Michel

    2013-04-01

    Climate plays a vital role in a wide range of socio-economic activities of most nations particularly of developing countries. Climate (rainfall) plays a central role in agriculture which is the main stay of the Rwandan economy and community livelihood and activities. The majority of the Rwandan population (81,1% in 2010) relies on rain fed agriculture for their livelihoods, and the impacts of variability in climate patterns are already being felt. Climate-related events like heavy rainfall or too little rainfall are becoming more frequent and are impacting on human wellbeing.The torrential rainfall that occurs every year in Rwanda could disturb the circulation for many days, damages houses, infrastructures and causes heavy economic losses and deaths. Four rainfall seasons have been identified, corresponding to the four thermal Earth ones in the south hemisphere: the normal season (summer), the rainy season (autumn), the dry season (winter) and the normo-rainy season (spring). Globally, the spatial rainfall decreasing from West to East, especially in October (spring) and February (summer) suggests an «Atlantic monsoon influence» while the homogeneous spatial rainfall distribution suggests an «Inter-tropical front» mechanism. What is the hourly variability in this mountainous area? Is there any correlation with the identified zones of the monthly average series (from 1965 to 1990 established by the Rwandan meteorological services)? Where could we have hazards with several consecutive rainy days (using forecasted datas from the Norwegian Meteorological Institute)? Spatio-temporal analysis allows for identifying and explaining large-scale anomalies which are useful for understanding hydrological characteristics and subsequently predicting these hydrological events. The objective of our current research (Rainfall variability) is to proceed to an evaluation of the potential rainfall risk by applying advanced geospatial modelling tools in Rwanda: geostatistical predictions and simulations, machine learning algorithm (different types of neural networks) and GIS. Hybrid models - mixing geostatistics and machine learning, will be applied to study spatial non-stationarity of rainfall fields. The research will include rainfalls variability mapping and probabilistic analyses of extreme events. Key words: rainfall variability, Rwanda, extreme event, model, mapping, geostatistics.

  10. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting

    NASA Astrophysics Data System (ADS)

    Luk, K. C.; Ball, J. E.; Sharma, A.

    2000-01-01

    Artificial neural networks (ANNs), which emulate the parallel distributed processing of the human nervous system, have proven to be very successful in dealing with complicated problems, such as function approximation and pattern recognition. Due to their powerful capability and functionality, ANNs provide an alternative approach for many engineering problems that are difficult to solve by conventional approaches. Rainfall forecasting has been a difficult subject in hydrology due to the complexity of the physical processes involved and the variability of rainfall in space and time. In this study, ANNs were adopted to forecast short-term rainfall for an urban catchment. The ANNs were trained to recognise historical rainfall patterns as recorded from a number of gauges in the study catchment for reproduction of relevant patterns for new rainstorm events. The primary objective of this paper is to investigate the effect of temporal and spatial information on short-term rainfall forecasting. To achieve this aim, a comparison test on the forecast accuracy was made among the ANNs configured with different orders of lag and different numbers of spatial inputs. In developing the ANNs with alternative configurations, the ANNs were trained to an optimal level to achieve good generalisation of data. It was found in this study that the ANNs provided the most accurate predictions when an optimum number of spatial inputs was included into the network, and that the network with lower lag consistently produced better performance.

  11. The added value of stochastic spatial disaggregation for short-term rainfall forecasts currently available in Canada

    NASA Astrophysics Data System (ADS)

    Gagnon, Patrick; Rousseau, Alain N.; Charron, Dominique; Fortin, Vincent; Audet, René

    2017-11-01

    Several businesses and industries rely on rainfall forecasts to support their day-to-day operations. To deal with the uncertainty associated with rainfall forecast, some meteorological organisations have developed products, such as ensemble forecasts. However, due to the intensive computational requirements of ensemble forecasts, the spatial resolution remains coarse. For example, Environment and Climate Change Canada's (ECCC) Global Ensemble Prediction System (GEPS) data is freely available on a 1-degree grid (about 100 km), while those of the so-called High Resolution Deterministic Prediction System (HRDPS) are available on a 2.5-km grid (about 40 times finer). Potential users are then left with the option of using either a high-resolution rainfall forecast without uncertainty estimation and/or an ensemble with a spectrum of plausible rainfall values, but at a coarser spatial scale. The objective of this study was to evaluate the added value of coupling the Gibbs Sampling Disaggregation Model (GSDM) with ECCC products to provide accurate, precise and consistent rainfall estimates at a fine spatial resolution (10-km) within a forecast framework (6-h). For 30, 6-h, rainfall events occurring within a 40,000-km2 area (Québec, Canada), results show that, using 100-km aggregated reference rainfall depths as input, statistics of the rainfall fields generated by GSDM were close to those of the 10-km reference field. However, in forecast mode, GSDM outcomes inherit of the ECCC forecast biases, resulting in a poor performance when GEPS data were used as input, mainly due to the inherent rainfall depth distribution of the latter product. Better performance was achieved when the Regional Deterministic Prediction System (RDPS), available on a 10-km grid and aggregated at 100-km, was used as input to GSDM. Nevertheless, most of the analyzed ensemble forecasts were weakly consistent. Some areas of improvement are identified herein.

  12. Connecting spatial and temporal scales of tropical precipitation in observations and the MetUM-GA6

    NASA Astrophysics Data System (ADS)

    Martin, Gill M.; Klingaman, Nicholas P.; Moise, Aurel F.

    2017-01-01

    This study analyses tropical rainfall variability (on a range of temporal and spatial scales) in a set of parallel Met Office Unified Model (MetUM) simulations at a range of horizontal resolutions, which are compared with two satellite-derived rainfall datasets. We focus on the shorter scales, i.e. from the native grid and time step of the model through sub-daily to seasonal, since previous studies have paid relatively little attention to sub-daily rainfall variability and how this feeds through to longer scales. We find that the behaviour of the deep convection parametrization in this model on the native grid and time step is largely independent of the grid-box size and time step length over which it operates. There is also little difference in the rainfall variability on larger/longer spatial/temporal scales. Tropical convection in the model on the native grid/time step is spatially and temporally intermittent, producing very large rainfall amounts interspersed with grid boxes/time steps of little or no rain. In contrast, switching off the deep convection parametrization, albeit at an unrealistic resolution for resolving tropical convection, results in very persistent (for limited periods), but very sporadic, rainfall. In both cases, spatial and temporal averaging smoothes out this intermittency. On the ˜ 100 km scale, for oceanic regions, the spectra of 3-hourly and daily mean rainfall in the configurations with parametrized convection agree fairly well with those from satellite-derived rainfall estimates, while at ˜ 10-day timescales the averages are overestimated, indicating a lack of intra-seasonal variability. Over tropical land the results are more varied, but the model often underestimates the daily mean rainfall (partly as a result of a poor diurnal cycle) but still lacks variability on intra-seasonal timescales. Ultimately, such work will shed light on how uncertainties in modelling small-/short-scale processes relate to uncertainty in climate change projections of rainfall distribution and variability, with a view to reducing such uncertainty through improved modelling of small-/short-scale processes.

  13. Improving predictive power of physically based rainfall-induced shallow landslide models: a probablistic approach

    USGS Publications Warehouse

    Raia, S.; Alvioli, M.; Rossi, M.; Baum, R.L.; Godt, J.W.; Guzzetti, F.

    2013-01-01

    Distributed models to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides are deterministic. These models extend spatially the static stability models adopted in geotechnical engineering and adopt an infinite-slope geometry to balance the resisting and the driving forces acting on the sliding mass. An infiltration model is used to determine how rainfall changes pore-water conditions, modulating the local stability/instability conditions. A problem with the existing models is the difficulty in obtaining accurate values for the several variables that describe the material properties of the slopes. The problem is particularly severe when the models are applied over large areas, for which sufficient information on the geotechnical and hydrological conditions of the slopes is not generally available. To help solve the problem, we propose a probabilistic Monte Carlo approach to the distributed modeling of shallow rainfall-induced landslides. For the purpose, we have modified the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS) code. The new code (TRIGRS-P) adopts a stochastic approach to compute, on a cell-by-cell basis, transient pore-pressure changes and related changes in the factor of safety due to rainfall infiltration. Infiltration is modeled using analytical solutions of partial differential equations describing one-dimensional vertical flow in isotropic, homogeneous materials. Both saturated and unsaturated soil conditions can be considered. TRIGRS-P copes with the natural variability inherent to the mechanical and hydrological properties of the slope materials by allowing values of the TRIGRS model input parameters to be sampled randomly from a given probability distribution. The range of variation and the mean value of the parameters can be determined by the usual methods used for preparing the TRIGRS input parameters. The outputs of several model runs obtained varying the input parameters are analyzed statistically, and compared to the original (deterministic) model output. The comparison suggests an improvement of the predictive power of the model of about 10% and 16% in two small test areas, i.e. the Frontignano (Italy) and the Mukilteo (USA) areas, respectively. We discuss the computational requirements of TRIGRS-P to determine the potential use of the numerical model to forecast the spatial and temporal occurrence of rainfall-induced shallow landslides in very large areas, extending for several hundreds or thousands of square kilometers. Parallel execution of the code using a simple process distribution and the Message Passing Interface (MPI) on multi-processor machines was successful, opening the possibly of testing the use of TRIGRS-P for the operational forecasting of rainfall-induced shallow landslides over large regions.

  14. Combining spray nozzle simulators with meshes: characterization of rainfall intensity and drop properties

    NASA Astrophysics Data System (ADS)

    Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.

    2013-04-01

    Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.

  15. Validation of satellite-based rainfall in Kalahari

    NASA Astrophysics Data System (ADS)

    Lekula, Moiteela; Lubczynski, Maciek W.; Shemang, Elisha M.; Verhoef, Wouter

    2018-06-01

    Water resources management in arid and semi-arid areas is hampered by insufficient rainfall data, typically obtained from sparsely distributed rain gauges. Satellite-based rainfall estimates (SREs) are alternative sources of such data in these areas. In this study, daily rainfall estimates from FEWS-RFE∼11 km, TRMM-3B42∼27 km, CMOPRH∼27 km and CMORPH∼8 km were evaluated against nine, daily rain gauge records in Central Kalahari Basin (CKB), over a five-year period, 01/01/2001-31/12/2005. The aims were to evaluate the daily rainfall detection capabilities of the four SRE algorithms, analyze the spatio-temporal variability of rainfall in the CKB and perform bias-correction of the four SREs. Evaluation methods included scatter plot analysis, descriptive statistics, categorical statistics and bias decomposition. The spatio-temporal variability of rainfall, was assessed using the SREs' mean annual rainfall, standard deviation, coefficient of variation and spatial correlation functions. Bias correction of the four SREs was conducted using a Time-Varying Space-Fixed bias-correction scheme. The results underlined the importance of validating daily SREs, as they had different rainfall detection capabilities in the CKB. The FEWS-RFE∼11 km performed best, providing better results of descriptive and categorical statistics than the other three SREs, although bias decomposition showed that all SREs underestimated rainfall. The analysis showed that the most reliable SREs performance analysis indicator were the frequency of "miss" rainfall events and the "miss-bias", as they directly indicated SREs' sensitivity and bias of rainfall detection, respectively. The Time Varying and Space Fixed (TVSF) bias-correction scheme, improved some error measures but resulted in the reduction of the spatial correlation distance, thus increased, already high, spatial rainfall variability of all the four SREs. This study highlighted SREs as valuable source of daily rainfall data providing good spatio-temporal data coverage especially suitable for areas with limited rain gauges, such as the CKB, but also emphasized SREs' drawbacks, creating avenue for follow up research.

  16. Spatial and temporal synchrony in reptile population dynamics in variable environments.

    PubMed

    Greenville, Aaron C; Wardle, Glenda M; Nguyen, Vuong; Dickman, Chris R

    2016-10-01

    Resources are seldom distributed equally across space, but many species exhibit spatially synchronous population dynamics. Such synchrony suggests the operation of large-scale external drivers, such as rainfall or wildfire, or the influence of oasis sites that provide water, shelter, or other resources. However, testing the generality of these factors is not easy, especially in variable environments. Using a long-term dataset (13-22 years) from a large (8000 km(2)) study region in arid Central Australia, we tested firstly for regional synchrony in annual rainfall and the dynamics of six reptile species across nine widely separated sites. For species that showed synchronous spatial dynamics, we then used multivariate follow a multivariate auto-regressive state-space (MARSS) models to predict that regional rainfall would be positively associated with their populations. For asynchronous species, we used MARSS models to explore four other possible population structures: (1) populations were asynchronous, (2) differed between oasis and non-oasis sites, (3) differed between burnt and unburnt sites, or (4) differed between three sub-regions with different rainfall gradients. Only one species showed evidence of spatial population synchrony and our results provide little evidence that rainfall synchronizes reptile populations. The oasis or the wildfire hypotheses were the best-fitting models for the other five species. Thus, our six study species appear generally to be structured in space into one or two populations across the study region. Our findings suggest that for arid-dwelling reptile populations, spatial and temporal dynamics are structured by abiotic events, but individual responses to covariates at smaller spatial scales are complex and poorly understood.

  17. Conditional probability of rainfall extremes across multiple durations

    NASA Astrophysics Data System (ADS)

    Le, Phuong Dong; Leonard, Michael; Westra, Seth

    2017-04-01

    The conditional probability that extreme rainfall will occur at one location given that it is occurring at another location is critical in engineering design and management circumstances including planning of evacuation routes and the sitting of emergency infrastructure. A challenge with this conditional simulation is that in many situations the interest is not so much the conditional distributions of rainfall of the same duration at two locations, but rather the conditional distribution of flooding in two neighbouring catchments, which may be influenced by rainfall of different critical durations. To deal with this challenge, a model that can consider both spatial and duration dependence of extremes is required. The aim of this research is to develop a model that can take account both spatial dependence and duration dependence into the dependence structure of extreme rainfalls. To achieve this aim, this study is a first attempt at combining extreme rainfall for multiple durations within a spatial extreme model framework based on max-stable process theory. Max-stable processes provide a general framework for modelling multivariate extremes with spatial dependence for just a single duration extreme rainfall. To achieve dependence across multiple timescales, this study proposes a new approach that includes addition elements representing duration dependence of extremes to the covariance matrix of max-stable model. To improve the efficiency of calculation, a re-parameterization proposed by Koutsoyiannis et al. (1998) is used to reduce the number of parameters necessary to be estimated. This re-parameterization enables the GEV parameters to be represented as a function of timescale. A stepwise framework has been adopted to achieve the overall aims of this research. Firstly, the re-parameterization is used to define a new set of common parameters for marginal distribution across multiple durations. Secondly, spatial interpolation of the new parameter set is used to estimate marginal parameters across the full spatial domain. Finally, spatial interpolation result is used as initial condition to estimate dependence parameters via a likelihood function of max-stable model for multiple durations. The Hawkesbury-Nepean catchment near Sydney in Australia was selected as case study for this research. This catchment has 25 sub-daily rain gauges with the minimum record length of 24 years over a region of 300 km × 300 km area. The re-parameterization was applied for each station for durations from 1 hour to 24 hours and then is evaluated by comparing with the at-site fitted GEV. The evaluation showed that the average R2 for all station is around 0.80 with the range from 0.26 to 1.0. The output of re-parameterization then was used to construct the spatial surface based on covariates including longitude, latitude, and elevation. The dependence model showed good agreements between empirical extremal coefficient and theoretical extremal coefficient for multiple durations. For the overall model, a leave-one-out cross-validation for all stations showed it works well for 20 out of 25 stations. The potential application of this model framework was illustrated through a conditional map of return period and return level across multiple durations, both of which are important for engineering design and management.

  18. Demographic patterns of a widespread long-lived tree are associated with rainfall and disturbances along rainfall gradients in SE Australia

    PubMed Central

    Cohn, Janet S; Lunt, Ian D; Bradstock, Ross A; Hua, Quan; McDonald, Simon

    2013-01-01

    Predicting species distributions with changing climate has often relied on climatic variables, but increasingly there is recognition that disturbance regimes should also be included in distribution models. We examined how changes in rainfall and disturbances along climatic gradients determined demographic patterns in a widespread and long-lived tree species, Callitris glaucophylla in SE Australia. We examined recruitment since 1950 in relation to annual (200–600 mm) and seasonal (summer, uniform, winter) rainfall gradients, edaphic factors (topography), and disturbance regimes (vertebrate grazing [tenure and species], fire). A switch from recruitment success to failure occurred at 405 mm mean annual rainfall, coincident with a change in grazing regime. Recruitment was lowest on farms with rabbits below 405 mm rainfall (mean = 0–0.89 cohorts) and highest on less-disturbed tenures with no rabbits above 405 mm rainfall (mean = 3.25 cohorts). Moderate levels of recruitment occurred where farms had no rabbits or less disturbed tenures had rabbits above and below 405 mm rainfall (mean = 1.71–1.77 cohorts). These results show that low annual rainfall and high levels of introduced grazing has led to aging, contracting populations, while higher annual rainfall with low levels of grazing has led to younger, expanding populations. This study demonstrates how demographic patterns vary with rainfall and spatial variations in disturbances, which are linked in complex ways to climatic gradients. Predicting changes in tree distribution with climate change requires knowledge of how rainfall and key disturbances (tenure, vertebrate grazing) will shift along climatic gradients. PMID:23919160

  19. The stochastic runoff-runon process: Extending its analysis to a finite hillslope

    NASA Astrophysics Data System (ADS)

    Jones, O. D.; Lane, P. N. J.; Sheridan, G. J.

    2016-10-01

    The stochastic runoff-runon process models the volume of infiltration excess runoff from a hillslope via the overland flow path. Spatial variability is represented in the model by the spatial distribution of rainfall and infiltration, and their ;correlation scale;, that is, the scale at which the spatial correlation of rainfall and infiltration become negligible. Notably, the process can produce runoff even when the mean rainfall rate is less than the mean infiltration rate, and it displays a gradual increase in net runoff as the rainfall rate increases. In this paper we present a number of contributions to the analysis of the stochastic runoff-runon process. Firstly we illustrate the suitability of the process by fitting it to experimental data. Next we extend previous asymptotic analyses to include the cases where the mean rainfall rate equals or exceeds the mean infiltration rate, and then use Monte Carlo simulation to explore the range of parameters for which the asymptotic limit gives a good approximation on finite hillslopes. Finally we use this to obtain an equation for the mean net runoff, consistent with our asymptotic results but providing an excellent approximation for finite hillslopes. Our function uses a single parameter to capture spatial variability, and varying this parameter gives us a family of curves which interpolate between known upper and lower bounds for the mean net runoff.

  20. Scale effect challenges in urban hydrology highlighted with a Fully Distributed Model and High-resolution rainfall data

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2017-04-01

    Nowadays, there is a growing interest on small-scale rainfall information, provided by weather radars, to be used in urban water management and decision-making. Therefore, an increasing interest is in parallel devoted to the development of fully distributed and grid-based models following the increase of computation capabilities, the availability of high-resolution GIS information needed for such models implementation. However, the choice of an appropriate implementation scale to integrate the catchment heterogeneity and the whole measured rainfall variability provided by High-resolution radar technologies still issues. This work proposes a two steps investigation of scale effects in urban hydrology and its effects on modeling works. In the first step fractal tools are used to highlight the scale dependency observed within distributed data used to describe the catchment heterogeneity, both the structure of the sewer network and the distribution of impervious areas are analyzed. Then an intensive multi-scale modeling work is carried out to understand scaling effects on hydrological model performance. Investigations were conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model was implemented at 17 spatial resolutions ranging from 100 m to 5 m and modeling investigations were performed using both rain gauge rainfall information as well as high resolution X band radar data in order to assess the sensitivity of the model to small scale rainfall variability. Results coming out from this work demonstrate scale effect challenges in urban hydrology modeling. In fact, fractal concept highlights the scale dependency observed within distributed data used to implement hydrological models. Patterns of geophysical data change when we change the observation pixel size. The multi-scale modeling investigation performed with Multi-Hydro model at 17 spatial resolutions confirms scaling effect on hydrological model performance. Results were analyzed at three ranges of scales identified in the fractal analysis and confirmed in the modeling work. The sensitivity of the model to small-scale rainfall variability was discussed as well.

  1. Climate Predictors of the Spatial Distribution of Human Plague Cases in the West Nile Region of Uganda

    PubMed Central

    MacMillan, Katherine; Monaghan, Andrew J.; Apangu, Titus; Griffith, Kevin S.; Mead, Paul S.; Acayo, Sarah; Acidri, Rogers; Moore, Sean M.; Mpanga, Joseph Tendo; Enscore, Russel E.; Gage, Kenneth L.; Eisen, Rebecca J.

    2012-01-01

    East Africa has been identified as a region where vector-borne and zoonotic diseases are most likely to emerge or re-emerge and where morbidity and mortality from these diseases is significant. Understanding when and where humans are most likely to be exposed to vector-borne and zoonotic disease agents in this region can aid in targeting limited prevention and control resources. Often, spatial and temporal distributions of vectors and vector-borne disease agents are predictable based on climatic variables. However, because of coarse meteorological observation networks, appropriately scaled and accurate climate data are often lacking for Africa. Here, we use a recently developed 10-year gridded meteorological dataset from the Advanced Weather Research and Forecasting Model to identify climatic variables predictive of the spatial distribution of human plague cases in the West Nile region of Uganda. Our logistic regression model revealed that within high elevation sites (above 1,300 m), plague risk was positively associated with rainfall during the months of February, October, and November and negatively associated with rainfall during the month of June. These findings suggest that areas that receive increased but not continuous rainfall provide ecologically conducive conditions for Yersinia pestis transmission in this region. This study serves as a foundation for similar modeling efforts of other vector-borne and zoonotic disease in regions with sparse observational meteorologic networks. PMID:22403328

  2. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.

  3. Rainfall-triggered shallow landslides at catchment scale: Threshold mechanics-based modeling for abruptness and localization

    NASA Astrophysics Data System (ADS)

    von Ruette, J.; Lehmann, P.; Or, D.

    2013-10-01

    Rainfall-induced shallow landslides may occur abruptly without distinct precursors and could span a wide range of soil mass released during a triggering event. We present a rainfall-induced landslide-triggering model for steep catchments with surfaces represented as an assembly of hydrologically and mechanically interconnected soil columns. The abruptness of failure was captured by defining local strength thresholds for mechanical bonds linking soil and bedrock and adjacent columns, whereby a failure of a single bond may initiate a chain reaction of subsequent failures, culminating in local mass release (a landslide). The catchment-scale hydromechanical landslide-triggering model (CHLT) was applied to results from two event-based landslide inventories triggered by two rainfall events in 2002 and 2005 in two nearby catchments located in the Prealps in Switzerland. Rainfall radar data, surface elevation and vegetation maps, and a soil production model for soil depth distribution were used for hydromechanical modeling of failure patterns for the two rainfall events at spatial and temporal resolutions of 2.5 m and 0.02 h, respectively. The CHLT model enabled systematic evaluation of the effects of soil type, mechanical reinforcement (soil cohesion and lateral root strength), and initial soil water content on landslide characteristics. We compared various landslide metrics and spatial distribution of simulated landslides in subcatchments with observed inventory data. Model parameters were optimized for the short but intense rainfall event in 2002, and the calibrated model was then applied for the 2005 rainfall, yielding reasonable predictions of landslide events and volumes and statistically reproducing localized landslide patterns similar to inventory data. The model provides a means for identifying local hot spots and offers insights into the dynamics of locally resolved landslide hazards in mountainous regions.

  4. High resolution modeling in urban hydrology: comparison between two modeling approaches and their sensitivity to high rainfall variability

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Bompard, Philippe; Schertzer, Daniel

    2015-04-01

    Urban water management is becoming increasingly complex, due to the rapid increase of impervious areas, and the potential effects of climate change. The large amount of water generated in a very short period of time and the limited capacity of sewer systems increase the vulnerability of urban environments to flooding risk and make it necessary to implement specific devices in order to handle the volume of water generated. This complex situation in urban environments makes the use of hydrological models as well as the implementation of more accurate and reliable tools for flow and rainfall measurements essential for a good pluvial network management, the use of decision support tools such as real-time radar forecasting system, the developpement of general public communication and warning systems, and the implementation of management strategy participate on limiting the flood damages. The very high spatial variability characteristic of urban environments makes it necessary to integrate the variability of physical properties and precipitation at fine scales in modeling processes, suggesting a high resolution modeling approach. In this paper we suggest a comparison between two modeling approaches and their sensitivity to small-scale rainfall variability on a 2.15 km2 urban area located in the County of Val-de-Marne (South-East of Paris, France). The first model used in this study is CANOE, which is a semi-distributed model widely used in France by practitioners for urban hydrology and urban water management. Two configurations of this model are be used in this study, the first one integrate 9 sub-catchments with sizes range from (1ha to 76ha), in the second configuration, the spatial resolution of this model has been improved with 45 sub-catchments with sizes range from (1ha to 14ha), the aim is to see how the semi-distributed model resolution affects it sensitivity to rainfall variability. The second model is Multi-Hydro fully distributed model developed at the Ecole des Ponts ParisTech. It is an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. Multi-Hydro has been set up at two resolutions, 10m and 5m. The validation of these two models is performed using 5 rainfall events that occurred between 2010 and 2013. Radar data comes from the Météo-France radar mosaic and the resolution is 1 km in space and 5 min in time. Raingauge and flow measurements data comes from the General Council of Val-de-Marne County. In this validation part, the hydrological responses given by two models and the different configurations are compared to flow measurements. It appears that CANOE gives better results than Multi-Hydro model, especially when using raingauge data. For some events, we noticed that model responses given when using raingauge and radar data are different, suggesting a sign of sensitivity to the spatial variability of rainfall. 10 high-resolution rainfall events are used in the second part to study the sensitivity of each modeling approach to high rainfall variability. Radar data was available at four spatial resolutions (100, 200, 500 and 1000m) and two temporal resolutions (1min and 5min), for each event, two rainfall directions (parallel and perpendicular) are used, meaning that 16 hydrological responses are simulated for each event and the variability within it analyzed. First results suggest that the fully distributed model is more sensitive to high rainfall variability than the semi-distributed one, the increase of both hydrological model spatial resolution improves their sensitivity to rainfall variability. This study highlights some technical challenges facing the high-resolution modeling, especially the difficulty to obtain reliable input data at an acceptable resolution and also the high computation time noticed particularly for the semi-distributed model making it difficult to use it in real time. The authors greatly acknowledge partial financial support from the project RainGain (http://www.raingain.eu) of the EU Interreg program.

  5. Storm Identification and Tracking for Hydrologic Modeling Using Hourly Accumulated NEXRAD Precipitation Data

    NASA Astrophysics Data System (ADS)

    Olivera, F.; Choi, J.; Socolofsky, S.

    2006-12-01

    Watershed responses to storm events are strongly affected by the spatial and temporal patterns of rainfall; that is, the spatial distribution of the precipitation intensity and its evolution over time. Although real storms are moving entities with non-uniform intensities in both space and time, hydrological applications often synthesize these attributes by assuming storms that are uniformly distributed and have variable intensity according to a pre-defined hyetograph shape. As one considers watersheds of greater size, the non-uniformity of rainfall becomes more important, because a storm may not cover the watershed's entire area and may not stay in the watershed for its full duration. In order to incorporate parameters such as storm area, propagation velocity and direction, and intensity distribution in the definition of synthetic storms, it is necessary to determine these storm characteristics from spatially distributed precipitation data. To date, most algorithms for identifying and tracking storms have been applied to short time-step radar reflectivity data (i.e., 15 minutes or less), where storm features are captured in an effectively synoptic manner. For the entire United States, however, the most reliable distributed precipitation data are the one-hour accumulated 4 km × 4 km gridded NEXRAD data of the U.S. National Weather Service (NWS) (NWS 2005. The one-hour aggregation level of the data, though, makes it more difficult to identify and track storms than when using sequences of synoptic radar reflectivity data, because storms can traverse over a number of NEXRAD cells and change size and shape appreciably between consecutive data maps. In this paper, we present a methodology to overcome the identification and tracking difficulties and to extract the characteristics of moving storms (e.g. size, propagation velocity and direction, and intensity distribution) from one-hour accumulated distributed rainfall data. The algorithm uses Gaussian Mixture Models (GMM) for storm identification and image processing for storm tracking. The method has been successfully applied to Brazos County in Texas using the 2003 Multi-sensor Precipitation Estimator (MPE) NEXRAD rainfall data.

  6. Integrating Agent Models of Subsistence Farming With Dynamic Models of Water Distribution

    NASA Astrophysics Data System (ADS)

    Bithell, M.; Brasington, J.

    2004-12-01

    Subsistence farming communities are dependent on the landscape to provide the resource base upon which their societies can be built. A key component of this is the role of climate, and the feedback between rainfall, crop growth and land clearance, and their coupling to the hydrological cycle. Temporal fluctuations in rainfall on timescales from annual through to decadal and longer, and the associated changes in in the spatial distribution of water availability mediated by the soil-type, slope and landcover determine the locations within the landscape that can support agriculture, and control sustainability of farming practices. We seek to make an integrated modelling system to represent land use change by coupling an agent based model of subsistence farming, and the associated exploitation of natural resources, to a realistic representation of the hydrology at the catchment scale, using TOPMODEL to map the spatial distribution of crop water stress for given time-series of rainfall. In this way we can, for example, investigate how demographic changes and associated removal of forest cover influence the possibilities for field locations within the catchment, through changes in ground water availability. The framework for this modelling exercise will be presented and preliminary results from this system will be discussed.

  7. El Niño, Rainfall, and the Shifting Geography of Cholera in Africa

    NASA Astrophysics Data System (ADS)

    Moore, S.; Azman, A. S.; Zaitchik, B. F.; McKay, H.; Lessler, J.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) and other climate patterns can have profound impacts on the occurrence of infectious diseases. Because of the key role of water supplies in cholera transmission, a relationship between El Niño events and cholera incidence is highly plausible, and previous research has shown a link between El Niño patterns and cholera in Bangladesh. However, there is little systematic evidence for this link in Africa where many cholera cases and deaths are reported. To understand how ENSO affects the geographic distribution of cholera incidence in Africa, we used a hierarchical Bayesian approach to integrate over 17,000 annual observations of cholera incidence from 2000-2014 in over 3,000 unique locations of varying spatial extent, ranging from entire countries to neighborhoods. The resulting maps reflect modeled cholera incidence at a fine spatial resolution using reported counts of cholera cases, key explanatory variables, and a spatially-dependent covariance term. We then examined the potential mechanistic association between ENSO-related changes in cholera incidence and several environmental variables including rainfall. El Niño profoundly changed the annual geographic distribution of cholera in Africa from 2000-2014, shifting the burden to continental East Africa, where almost 50,000 additional cases occur during El Niño years. Cholera incidence during El Niño years was higher in regions of East Africa with increased rainfall, but incidence was also higher in some areas with decreased rainfall suggesting a complex relationship between rainfall and cholera incidence. Here we show clear evidence for a shift in the distribution of cholera incidence throughout Africa in El Niño and non-El Niño years, likely mediated by El Niño's impact on local climatic factors. Knowledge of this relationship between cholera and climate patterns coupled with El Niño forecasting could be used to notify countries in Africa when they are likely to see a major shift in their cholera risk.

  8. Transient deterministic shallow landslide modeling: Requirements for susceptibility and hazard assessments in a GIS framework

    USGS Publications Warehouse

    Godt, J.W.; Baum, R.L.; Savage, W.Z.; Salciarini, D.; Schulz, W.H.; Harp, E.L.

    2008-01-01

    Application of transient deterministic shallow landslide models over broad regions for hazard and susceptibility assessments requires information on rainfall, topography and the distribution and properties of hillside materials. We survey techniques for generating the spatial and temporal input data for such models and present an example using a transient deterministic model that combines an analytic solution to assess the pore-pressure response to rainfall infiltration with an infinite-slope stability calculation. Pore-pressures and factors of safety are computed on a cell-by-cell basis and can be displayed or manipulated in a grid-based GIS. Input data are high-resolution (1.8??m) topographic information derived from LiDAR data and simple descriptions of initial pore-pressure distribution and boundary conditions for a study area north of Seattle, Washington. Rainfall information is taken from a previously defined empirical rainfall intensity-duration threshold and material strength and hydraulic properties were measured both in the field and laboratory. Results are tested by comparison with a shallow landslide inventory. Comparison of results with those from static infinite-slope stability analyses assuming fixed water-table heights shows that the spatial prediction of shallow landslide susceptibility is improved using the transient analyses; moreover, results can be depicted in terms of the rainfall intensity and duration known to trigger shallow landslides in the study area.

  9. How effective is the new generation of GPM satellite precipitation in characterizing the rainfall variability over Malaysia?

    NASA Astrophysics Data System (ADS)

    Mahmud, Mohd Rizaludin; Hashim, Mazlan; Reba, Mohd Nadzri Mohd

    2017-08-01

    We investigated the potential of the new generation of satellite precipitation product from the Global Precipitation Mission (GPM) to characterize the rainfall in Malaysia. Most satellite precipitation products have limited ability to precisely characterize the high dynamic rainfall variation that occurred at both time and scale in this humid tropical region due to the coarse grid size to meet the physical condition of the smaller land size, sub-continent and islands. Prior to the status quo, an improved satellite precipitation was required to accurately measure the rainfall and its distribution. Subsequently, the newly released of GPM precipitation product at half-hourly and 0.1° resolution served an opportunity to anticipate the aforementioned conflict. Nevertheless, related evidence was not found and therefore, this study made an initiative to fill the gap. A total of 843 rain gauges over east (Borneo) and west Malaysia (Peninsular) were used to evaluate the rainfall the GPM rainfall data. The assessment covered all critical rainy seasons which associated with Asian Monsoon including northeast (Nov. - Feb.), southwest (May - Aug.) and their subsequent inter-monsoon period (Mar. - Apr. & Sep. - Oct.). The ability of GPM to provide quantitative rainfall estimates and qualitative spatial rainfall patterns were analysed. Our results showed that the GPM had good capacity to depict the spatial rainfall patterns in less heterogeneous rainfall patterns (Spearman's correlation, 0.591 to 0.891) compared to the clustered one (r = 0.368 to 0.721). Rainfall intensity and spatial heterogeneity that is largely driven by seasonal monsoon has significant influence on GPM ability to resolve local rainfall patterns. In quantitative rainfall estimation, large errors can be primarily associated with the rainfall intensity increment. 77% of the error variation can be explained through rainfall intensity particularly the high intensity (> 35 mm d-1). A strong relationship between GPM rainfall and error was found from heavy ( 35 mm d-1) to violent rain (160 mm d-1). The output of this study provides reference regarding the performance of GPM data for respective hydrology studies in this region.

  10. Spatial and temporal resolution effects on urban catchments with different imperviousness degrees

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-Claire; van de Giesen, Nick C.

    2015-04-01

    One of the main problems in urban hydrological analysis is to measure the rainfall at urban scale with high resolution and use these measurements to model urban runoff processes to predict flows and reduce flood risk. With the aim of building a semi-distribute hydrological sewer model for an urban catchment, high resolution rainfall data are required as input. In this study, the sensitivity of hydrological response to high resolution precipitation data for hydrodynamic models at urban scale is evaluated with different combinations of spatial and temporal resolutions. The aim is to study sensitivity in relation to catchment characteristics, especially drainage area size, imperviousness degree and hydraulic properties such as special structures (weirs, pumping stations). Rainfall data of nine storms are considered with 4 different spatial resolutions (3000m, 1000m, 500m and 100m) combined with 4 different temporal resolutions (10min, 5min, 3min and 1min). The dual polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) provided the high resolution rainfall data of these rainfall events, used to improve the sewer model. The effects of spatial-temporal rainfall input resolution on response is studied in three Districts of Rotterdam (NL): Kralingen, Spaanse Polder and Centrum district. These catchments have different average drainage area size (from 2km2 to 7km2), and different general characteristics. Centrum district and Kralingen are, indeed, more various and include residential and commercial areas, big green areas and a small industrial area, while Spaanse Polder is a industrial area, densely urbanized, and presents a high percentage of imperviousness.

  11. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the forecast skill (mostly in areas of high rainfall to the north and west) and only 30 % of the skill arises from hydrological memory (typically groundwater-dominated areas). Given the high spatial heterogeneity in typical patterns of UK rainfall and evaporation, future development of skilful spatially distributed seasonal forecasts could lead to substantial improvements in seasonal flow forecast capability, potentially benefitting practitioners interested in predicting hydrological extremes, not only in the UK but also across Europe.

  12. Rainfall simulators in hydrological and geomorphological sciences: benefits, applications and future research directions

    NASA Astrophysics Data System (ADS)

    Iserloh, Thomas; Cerdà, Artemi; Fister, Wolfgang; Seitz, Steffen; Keesstra, Saskia; Green, Daniel; Gabriels, Donald

    2017-04-01

    Rainfall simulators are used extensively within the hydrological and geomorphological sciences and provide a useful investigative tool to understand many processes, such as: (i) plot-scale runoff, infiltration and erosion; (ii) irrigation and crop management, and; (iii) investigations into flooding within a laboratory setting. Although natural rainfall is desirable as it represents actual conditions in a given geographic location, data acquisition relying on natural rainfall is often hindered by its unpredictable nature. Furthermore, rainfall characteristics such as the intensity, duration, drop size distribution and kinetic energy cannot be spatially or temporally regulated or repeated between experimentation. Rainfall simulators provide a suitable method to overcome the issues associated with depending on potentially erratic and unpredictable natural rainfall as they allow: (i) multiple measurements to be taken quickly without waiting for suitable natural rainfall conditions; (ii) the simulation of spatially and/or temporally controlled rainfall patterns over a given plot area, and; (iii) the creation of a closed environment, allowing simplified measurement of input and output conditions. There is no standardisation of rainfall simulation and as such, rainfall simulators differ in their design, rainfall characteristics and research application. Although this impedes drawing meaningful comparisons between studies, this allows researchers to create a bespoke and tailored rainfall simulator for the specific research application. This paper summarises the rainfall simulators used in European research institutions (Universities of Trier, Valencia, Basel, Tuebingen, Wageningen, Loughborough and Ghent) to investigate a number of hydrological and geomorphological issues and includes details on the design specifications (such as the extent and characteristics of simulated rainfall), as well as a discussion of the purpose and application of the rainfall simulator.

  13. Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2016-06-01

    Since its introduction in 1954, the Soil Conservation Service curve number (SCS-CN) method has become the standard tool, in practice, for estimating an event-based rainfall-runoff response. However, because of its empirical origins, the SCS-CN method is restricted to certain geographic regions and land use types. Moreover, it does not describe the spatial variability of runoff. To move beyond these limitations, we present a new theoretical framework for spatially lumped, event-based rainfall-runoff modeling. In this framework, we describe the spatially lumped runoff model as a point description of runoff that is upscaled to a watershed area based on probability distributions that are representative of watershed heterogeneities. The framework accommodates different runoff concepts and distributions of heterogeneities, and in doing so, it provides an implicit spatial description of runoff variability. Heterogeneity in storage capacity and soil moisture are the basis for upscaling a point runoff response and linking ecohydrological processes to runoff modeling. For the framework, we consider two different runoff responses for fractions of the watershed area: "prethreshold" and "threshold-excess" runoff. These occur before and after infiltration exceeds a storage capacity threshold. Our application of the framework results in a new model (called SCS-CNx) that extends the SCS-CN method with the prethreshold and threshold-excess runoff mechanisms and an implicit spatial description of runoff. We show proof of concept in four forested watersheds and further that the resulting model may better represent geographic regions and site types that previously have been beyond the scope of the traditional SCS-CN method.

  14. Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model

    NASA Astrophysics Data System (ADS)

    Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.

    2017-09-01

    The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.

  15. Rainfall Induced Landslides in Puerto Rico (Invited)

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Kamal, S.; Arnone, E.; Noto, V.; Shanahan, P.; Bras, R. L.

    2009-12-01

    Landslides are a major geologic hazard in the United States, typically triggered by rainfall, earthquakes, volcanoes and human activity. Rainfall-induced landslides are the most common type in the island of Puerto Rico, with one or two large events per year. We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the rainfall data. A distributed hydrology model capable of simulating landslides, tRIBS-VEGGIE, has been implemented for the first time in a humid tropical environment like Puerto Rico. The Mameyes basin, located in the Luquillo Experimental Forest in Puerto Rico, was selected for modeling based on the availability of soil, vegetation, topographical, meteorological and historic landslide data. .Application of the model yields a temporal and spatial distribution of predicted rainfall-induced landslides, which is used to predict the dynamic susceptibility of the basin to landslides.

  16. Spatial and temporal features of heavy rainstorm events in Calabria, Southern Italy

    NASA Astrophysics Data System (ADS)

    Terranova, Oreste Giuseppe; Gariano, Stefano Luigi; Greco, Raffaele

    2015-04-01

    Heavy rainstorms often induce flash floods, shallow landslides and debris flows, which cause several damage to manmade infrastructures and loss of lives. The analysis of spatial distribution and temporal features of intense rainfall events is a fundamental step for a better understanding of the phenomena and for its possible prediction. The present study is an attempt to improve, from a statistical point of view, the understanding at sub-hourly scale of the temporal and spatial structure of intense rainfall events, by examining those that have hit Calabria (Southern Italy) in the years 1998-2008. More in detail, a considerable amount of series with high temporal detail (5 min) related to 155 sites (one rain gauge per less than 100 sq km), were analysed. First, more than 152 thousands rainfall events, separated by at least 6 hours of dry weather, were recognized. Then, less than a third (45,533) were selected, since denoted as erosive. Finally, several heavy rainstorm events (HREs) were chosen by considering the rainfall events recorded simultaneously at different rain gauges, even non-contiguous, within the region. In particular, this further selection was conducted, based on heuristic threshold values of cumulated rainfall (≥ 100 mm), maximum intensity (≥ 50 mm/h), and kinetic energy (≥ 29 MJ/ha). Therefore, 25 distinct HREs, including all the well-known catastrophic geo-hydrological events, were subjected to thorough investigation. The obtained HREs, automatically classified according to their structure in time, were analysed as regards both spatial and temporal evolution. At this end, the 25 HREs were distinguished as widespread (17) or localized (8), if the affected area is ≥ 500 sq km or < 500 sq km, respectively. In particular, the temporal storm structure was described by means of the standardized rainfall profile (rainfall amount vs. duration, in terms on cumulative percentages). Then, a 4-digit binary shape code was adopted to automatically identify the shape of the profile (Terranova and Iaquinta, 2011; Terranova and Gariano, 2014). HREs have different spatial extents and temporal patterns. A wide spatial extent of the events does not imply damage proportionally high. Generally, a peak at the beginning of the event (thunderstorm-type) characterizes localized events. On the contrary, widespread events present mixed temporal structures with peaks localized in the last half of their duration. The proposed method improves the knowledge regarding the input of rainfall-runoff watershed models. These models can benefit from design storms, based on the synthesis of recorded rainstorms, having a time structure integrated with the results of the spatial analysis. The notable size of the employed sample, including data with a very detailed time resolution that relate to several rain gauges well distributed throughout the region, gives robustness to the obtained results. References O.G. Terranova, and P. Iaquinta.: Temporal properties of rainfall events in Calabria (southern Italy). Nat. Hazards Earth Syst. Sci., 11, 751-757, 2011. O.G. Terranova, and S.L. Gariano.: Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy). Nat. Hazards Earth Syst. Sci., 14, 2423-2434, 2014.

  17. Spatial and Temporal Precipitation Analysis over Saudi Arabia: Inferences from In-situ Rain Gauges and TRMM Derived Rainfall

    NASA Astrophysics Data System (ADS)

    Abouelmagd, A.; McCabe, M. F.; Lopez, O.

    2013-12-01

    Understanding the water resources of the Middle East and North Africa (MENA) regions presents a number of challenges due in large part to the paucity of available hydrologic data. Knowledge gaps occur not only as a result of the low density of monitoring systems, but also because where such networks might exist, they are often poorly reported or maintained. While interpreting and examining such records presents many difficulties, in-situ data represent an invaluable source with which to constrain other reporting platforms and to gain insight into the hydrological systems of the region. An in-situ network of over 300 stations that has been collecting data intermittently from 1960 to present across 13 provinces in Saudi Arabia forms the focus of this investigation. While the data is affected by an uneven spatial distribution, intermittent recordings and instrumental uncertainty, it represents the best estimate of on-ground rainfall available for many parts of the Kingdom. To provide a first-order assessment on the representativeness and fidelity of this data source, a comparison against available satellite based retrievals from the Tropical Rainfall Measuring Mission (TRMM) is undertaken. Through examining the longer in-situ time series and the more recent 15 year record of TRMM based retrievals, a rainfall climatology is being developed that can provide further insight into this critical hydrological response. Here we present the first results from this effort, examining the spatial and temporal distribution of storm events, along with an assessment of patterns and characteristics of rain features across Saudi Arabia. Understanding the capacity of TRMM to reproduce observed rainfall behavior may provide a useful tool for further bridging the hydrological knowledge gaps in the arid and data poor environments of the MENA region.

  18. Impact of Urbanization on Spatial Variability of Rainfall-A case study of Mumbai city with WRF Model

    NASA Astrophysics Data System (ADS)

    Mathew, M.; Paul, S.; Devanand, A.; Ghosh, S.

    2015-12-01

    Urban precipitation enhancement has been identified over many cities in India by previous studies conducted. Anthropogenic effects such as change in land cover from hilly forest areas to flat topography with solid concrete infrastructures has certain effect on the local weather, the same way the greenhouse gas has on climate change. Urbanization could alter the large scale forcings to such an extent that it may bring about temporal and spatial changes in the urban weather. The present study investigate the physical processes involved in urban forcings, such as the effect of sudden increase in wind velocity travelling through the channel space in between the dense array of buildings, which give rise to turbulence and air mass instability in urban boundary layer and in return alters the rainfall distribution as well as rainfall initiation. A numerical model study is conducted over Mumbai metropolitan city which lies on the west coast of India, to assess the effect of urban morphology on the increase in number of extreme rainfall events in specific locations. An attempt has been made to simulate twenty extreme rainfall events that occurred over the summer monsoon period of the year 2014 using high resolution WRF-ARW (Weather Research and Forecasting-Advanced Research WRF) model to assess the urban land cover mechanisms that influences precipitation variability over this spatially varying urbanized region. The result is tested against simulations with altered land use. The correlation of precipitation with spatial variability of land use is found using a detailed urban land use classification. The initial and boundary conditions for running the model were obtained from the global model ECMWF(European Centre for Medium Range Weather Forecast) reanalysis data having a horizontal resolution of 0.75 °x 0.75°. The high resolution simulations show significant spatial variability in the accumulated rainfall, within a few kilometers itself. Understanding the spatial variability of precipitation will help in the planning and management of the built environment more efficiently.

  19. Evaluation of rainfall structure on hydrograph simulation: Comparison of radar and interpolated methods, a study case in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Velasquez, N.; Ochoa, A.; Castillo, S.; Hoyos Ortiz, C. D.

    2017-12-01

    The skill of river discharge simulation using hydrological models strongly depends on the quality and spatio-temporal representativeness of precipitation during storm events. All precipitation measurement strategies have their own strengths and weaknesses that translate into discharge simulation uncertainties. Distributed hydrological models are based on evolving rainfall fields in the same time scale as the hydrological simulation. In general, rainfall measurements from a dense and well maintained rain gauge network provide a very good estimation of the total volume for each rainfall event, however, the spatial structure relies on interpolation strategies introducing considerable uncertainty in the simulation process. On the other hand, rainfall retrievals from radar reflectivity achieve a better spatial structure representation but with higher uncertainty in the surface precipitation intensity and volume depending on the vertical rainfall characteristics and radar scan strategy. To assess the impact of both rainfall measurement methodologies on hydrological simulations, and in particular the effects of the rainfall spatio-temporal variability, a numerical modeling experiment is proposed including the use of a novel QPE (Quantitative Precipitation Estimation) method based on disdrometer data in order to estimate surface rainfall from radar reflectivity. The experiment is based on the simulation of 84 storms, the hydrological simulations are carried out using radar QPE and two different interpolation methods (IDW and TIN), and the assessment of simulated peak flow. Results show significant rainfall differences between radar QPE and the interpolated fields, evidencing a poor representation of storms in the interpolated fields, which tend to miss the precise location of the intense precipitation cores, and to artificially generate rainfall in some areas of the catchment. Regarding streamflow modelling, the potential improvement achieved by using radar QPE depends on the density of the rain gauge network and its distribution relative to the precipitation events. The results for the 84 storms show a better model skill using radar QPE than the interpolated fields. Results using interpolated fields are highly affected by the dominant rainfall type and the basin scale.

  20. A regression-kriging model for estimation of rainfall in the Laohahe basin

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Ren, Li L.; Liu, Gao H.

    2009-10-01

    This paper presents a multivariate geostatistical algorithm called regression-kriging (RK) for predicting the spatial distribution of rainfall by incorporating five topographic/geographic factors of latitude, longitude, altitude, slope and aspect. The technique is illustrated using rainfall data collected at 52 rain gauges from the Laohahe basis in northeast China during 1986-2005 . Rainfall data from 44 stations were selected for modeling and the remaining 8 stations were used for model validation. To eliminate multicollinearity, the five explanatory factors were first transformed using factor analysis with three Principal Components (PCs) extracted. The rainfall data were then fitted using step-wise regression and residuals interpolated using SK. The regression coefficients were estimated by generalized least squares (GLS), which takes the spatial heteroskedasticity between rainfall and PCs into account. Finally, the rainfall prediction based on RK was compared with that predicted from ordinary kriging (OK) and ordinary least squares (OLS) multiple regression (MR). For correlated topographic factors are taken into account, RK improves the efficiency of predictions. RK achieved a lower relative root mean square error (RMSE) (44.67%) than MR (49.23%) and OK (73.60%) and a lower bias than MR and OK (23.82 versus 30.89 and 32.15 mm) for annual rainfall. It is much more effective for the wet season than for the dry season. RK is suitable for estimation of rainfall in areas where there are no stations nearby and where topography has a major influence on rainfall.

  1. Characteristics of PAHs in farmland soil and rainfall runoff in Tianjin, China.

    PubMed

    Shi, Rongguang; Xu, Mengmeng; Liu, Aifeng; Tian, Yong; Zhao, Zongshan

    2017-10-14

    Rainfall runoff can remove certain amounts of pollutants from contaminated farmland soil and result in a decline in water quality. However, the leaching behaviors of polycyclic aromatic hydrocarbons (PAHs) with rainfall have been rarely reported due to wide variations in the soil compositions, rainfall conditions, and sources of soil PAHs in complex farmland ecosystems. In this paper, the levels, spatial distributions, and composition profiles of PAHs in 30 farmland soil samples and 49 rainfall-runoff samples from the Tianjin region in 2012 were studied to investigate their leaching behaviors caused by rainfall runoff. The contents of the Σ 16 PAHs ranged from 58.53 to 3137.90 μg/kg in the soil and 146.58 to 3636.59 μg/L in the runoff. In total, most of the soil sampling sites (23 of 30) were contaminated, and biomass and petroleum combustion were proposed as the main sources of the soil PAHs. Both the spatial distributions of the soil and the runoff PAHs show a decreasing trend moving away from the downtown, which suggested that the leaching behaviors of PAHs in a larger region during rainfall may be mainly affected by the compounds themselves. In addition, 4- and 5-ring PAHs are the dominant components in farmland soil and 3- and 4-ring PAHs dominate the runoff. Comparisons of the PAH pairs and enrichment ratios showed that acenaphthylene, acenaphthene, benzo[a]anthracene, chrysene, and fluoranthene were more easily transferred into water systems from soil than benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, and indeno[123-cd]pyrene, which indicated that PAHs with low molecular weight are preferentially dissolved due to their higher solubility compared to those with high molecular weight.

  2. The Eastern Pacific ITCZ during the Boreal Spring

    NASA Technical Reports Server (NTRS)

    Gu, Guojun; Adler, Robert F.; Sobel, Adam H.

    2004-01-01

    The 6-year (1998-2003) rainfall products from the Tropical Rainfall Measuring Mission (TRMM) are used to quantify the Intertropical Convergence Zone (ITCZ) in the eastern Pacific (defined by longitudinal averages over 90 degrees W-130 degrees W) during boreal spring (March-April). The double ITCZ phenomenon, represented by the occurrence of two maxima with respect to latitude in monthly mean rainfall, is observed in most but not all of the years studied. The relative spatial locations of maxima in sea surface temperature (SST), rainfall, and surface pressure are examined. Interannual and weekly variability are characterized in SST, rainfall, surface convergence, total column water vapor, and cloud water. There appears to be a competition for rainfall between the two hemispheres during this season. When one of the two rainfall maxima is particularly strong, the other tends to be weak, with the total rainfall integrated over the two varying less than does the difference between the rainfall integrated over each separately. There is some evidence for a similar competition between the SST maxima in the two hemispheres, but this is more ambiguous, and there is evidence that some variations in the relative strengths of the two rainfall maxima may be independent of SST. Using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP), four distinct ITCZ types during March-April are defined, based on the relative strengths of rainfall peaks north and south of, and right over the equator. Composite meridional profiles and spatial distributions of rainfall and SST are documented for each type. Consistent with previous studies, an equatorial cold tongue is essential to the existence of the double ITCZs. However, too strong a cold tongue may dampen either the southern or northern rainfall maximum, depending on the magnitude of SST north of the equator.

  3. Integrating a Linear Signal Model with Groundwater and Rainfall time-series on the Characteristic Identification of Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Wen; Wang, Yetmen; Chang, Liang-Cheng

    2017-04-01

    Groundwater resources play a vital role on regional supply. To avoid irreversible environmental impact such as land subsidence, the characteristic identification of groundwater system is crucial before sustainable management of groundwater resource. This study proposes a signal process approach to identify the character of groundwater systems based on long-time hydrologic observations include groundwater level and rainfall. The study process contains two steps. First, a linear signal model (LSM) is constructed and calibrated to simulate the variation of underground hydrology based on the time series of groundwater levels and rainfall. The mass balance equation of the proposed LSM contains three major terms contain net rate of horizontal exchange, rate of rainfall recharge and rate of pumpage and four parameters are required to calibrate. Because reliable records of pumpage is rare, the time-variant groundwater amplitudes of daily frequency (P ) calculated by STFT are assumed as linear indicators of puamage instead of pumpage records. Time series obtained from 39 observation wells and 50 rainfall stations in and around the study area, Pintung Plain, are paired for model construction. Second, the well-calibrated parameters of the linear signal model can be used to interpret the characteristic of groundwater system. For example, the rainfall recharge coefficient (γ) means the transform ratio between rainfall intention and groundwater level raise. The area around the observation well with higher γ means that the saturated zone here is easily affected by rainfall events and the material of unsaturated zone might be gravel or coarse sand with high infiltration ratio. Considering the spatial distribution of γ, the values of γ decrease from the upstream to the downstream of major rivers and also are correlated to the spatial distribution of grain size of surface soil. Via the time-series of groundwater levels and rainfall, the well-calibrated parameters of LSM have ability to identify the characteristic of aquifer.

  4. The impact of rainfall on the temporal and spatial distribution of taxi passengers

    PubMed Central

    Zhang, Yong; Gao, Liangpeng; Geng, Nana; Li, Xuefeng

    2017-01-01

    This paper focuses on the impact of rainfall on the temporal and spatial distribution of taxi passengers. The main objective is to provide guidance for taxi scheduling on rainy days. To this end, we take the occupied and empty states of taxis as units of analysis. By matching a taxi's GPS data to its taximeter data, we can obtain the taxi's operational time and the taxi driver's income from every unit of analysis. The ratio of taxi operation time to taxi drivers' income is used to measure the quality of taxi passengers. The research results show that the spatio-temporal evolution of urban taxi service demand differs based on rainfall conditions and hours of operation. During non-rush hours, taxi demand in peripheral areas is significantly reduced under increasing precipitation conditions, whereas during rush hours, the demand for highly profitable taxi services steadily increases. Thus, as an intelligent response for taxi operations and dispatching, taxi services should guide cruising taxis to high-demand regions to increase their service time and ride opportunities. PMID:28873430

  5. Relative importance of management, meteorological and environmental factors in the spatial distribution of Fasciola hepatica in dairy cattle in a temperate climate zone.

    PubMed

    Bennema, S C; Ducheyne, E; Vercruysse, J; Claerebout, E; Hendrickx, G; Charlier, J

    2011-02-01

    Fasciola hepatica, a trematode parasite with a worldwide distribution, is the cause of important production losses in the dairy industry. Diagnosis is hampered by the fact that the infection is mostly subclinical. To increase awareness and develop regionally adapted control methods, knowledge on the spatial distribution of economically important infection levels is needed. Previous studies modelling the spatial distribution of F. hepatica are mostly based on single cross-sectional samplings and have focussed on climatic and environmental factors, often ignoring management factors. This study investigated the associations between management, climatic and environmental factors affecting the spatial distribution of infection with F. hepatica in dairy herds in a temperate climate zone (Flanders, Belgium) over three consecutive years. A bulk-tank milk antibody ELISA was used to measure F. hepatica infection levels in a random sample of 1762 dairy herds in the autumns of 2006, 2007 and 2008. The infection levels were included in a Geographic Information System together with meteorological, environmental and management parameters. Logistic regression models were used to determine associations between possible risk factors and infection levels. The prevalence and spatial distribution of F. hepatica was relatively stable, with small interannual differences in prevalence and location of clusters. The logistic regression model based on both management and climatic/environmental factors included the factors: annual rainfall, mowing of pastures, proportion of grazed grass in the diet and length of grazing season as significant predictors and described the spatial distribution of F. hepatica better than the model based on climatic/environmental factors only (annual rainfall, elevation and slope, soil type), with an Area Under the Curve of the Receiver Operating Characteristic of 0.68 compared with 0.62. The results indicate that in temperate climate zones without large climatic and environmental variation, management factors affect the spatial distribution of F. hepatica, and should be included in future spatial distribution models. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  6. Research on the semi-distributed monthly rainfall runoff model at the Lancang River basin based on DEM

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Zhao, Rong; Liu, Jiping; Zhang, Qingpu

    2007-06-01

    The Lancang River Basin is so narrow and its hydrological and meteorological information are so flexible. The Rainfall, evaporation, glacial melt water and groundwater affect the runoff whose replenishment forms changing notable with the season in different areas at the basin. Characters of different kind of distributed model and conceptual hydrological model are analyzed. A semi-distributed hydrological model of relation between monthly runoff and rainfall, temperate and soil type has been built in Changdu County based on Visual Basic and ArcObject. The way of discretization of distributed hydrological model was used in the model, and principles of conceptual model are taken into account. The sub-catchment of Changdu is divided into regular cells, and all kinds of hydrological and meteorological information and land use classes and slope extracted from 1:250000 digital elevation models are distributed in each cell. The model does not think of the rainfall-runoff hydro-physical process but use the conceptual model to simulate the whole contributes to the runoff of the area. The affection of evapotranspiration loss and underground water is taken into account at the same time. The spatial distribute characteristics of the monthly runoff in the area are simulated and analyzed with a few parameters.

  7. Adequacy of satellite derived rainfall data for stream flow modeling

    USGS Publications Warehouse

    Artan, G.; Gadain, Hussein; Smith, Jodie; Asante, Kwasi; Bandaragoda, C.J.; Verdin, J.P.

    2007-01-01

    Floods are the most common and widespread climate-related hazard on Earth. Flood forecasting can reduce the death toll associated with floods. Satellites offer effective and economical means for calculating areal rainfall estimates in sparsely gauged regions. However, satellite-based rainfall estimates have had limited use in flood forecasting and hydrologic stream flow modeling because the rainfall estimates were considered to be unreliable. In this study we present the calibration and validation results from a spatially distributed hydrologic model driven by daily satellite-based estimates of rainfall for sub-basins of the Nile and Mekong Rivers. The results demonstrate the usefulness of remotely sensed precipitation data for hydrologic modeling when the hydrologic model is calibrated with such data. However, the remotely sensed rainfall estimates cannot be used confidently with hydrologic models that are calibrated with rain gauge measured rainfall, unless the model is recalibrated. ?? Springer Science+Business Media, Inc. 2007.

  8. Monitoring the Vertical Distribution of Rainfall-Induced Strain Changes in a Landslide Measured by Distributed Fiber Optic Sensing With Rayleigh Backscattering

    NASA Astrophysics Data System (ADS)

    Kogure, Tetsuya; Okuda, Yudai

    2018-05-01

    Distributed fiber optic sensing with Rayleigh backscattering, which has been recognized as a novel technique for measuring differences in temperature or strain, was adopted in a borehole to a depth of 16 m in an actual landslide to detect a vertical profile of strain changes. Strain changes were measured every 6 hr from 19 June 2017 to 18 October 2017 with a spatial resolution of 10 cm and strain resolution of 1.87 μɛ. The measurements provided a clear-cut vertical profile of the strain changes caused by rainfalls that cannot be detected by conventional methods. The results show that there are two types of deformation in the landslide mass: (1) sliding at the boundary between tuff and mudstone and (2) creep in mudstone layers. Activation of deeper sections of the landslide by heavy rainfalls has also been detected.

  9. Area and shape metrics of rainfall fields associated with tropical cyclones landfalling over the western Gulf of Mexico and Caribbean Sea

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2017-12-01

    The rainfall associated with TCs making landfall over western Gulf Coast and Caribbean Sea Coast caused numerous fatalities and divesting damage, however, few studies have been done over these regions. This study examines spatial pattern of rain fields associated with TCs making landfall over western Gulf Coast and Caribbean Sea Coast during 1998-2015 through a Geographic Information System (GIS)-based analysis of satellite-estimated rain rates. Regions of light rainfall (rain rate > 2.5 mm/h) and moderate rainfall (rain rate > 5.0 mm/h) during entire life cycle of each TC are converted into polygons and measurements are made of their area, dispersion and displacement during entire life cycle. The metric of dispersion is calculated for the entire rain field as defined by outlining light and moderate rain rates. The displacement to east and north is calculated by area weighted methods. There are three main objectives of this study. The first goal is to measure the area and spatial distribution of rain fields of TCs making landfall over the western Gulf and Caribbean Sea coastlines. We examine in which regions, the light and moderate rainfall area, dispersion and displacement of rainfall have higher values, and how they change during the entire TC life cycle. The second goal is to determine to determine which environmental conditions are associated with the spatial configuration of light and moderate rain rates. The conditions include storm intensity, motion direction and speed, total precipitable water and wind shear. Last, we determine the time that rainfall reaches land relative to the time that the storm's center makes landfall and durations of rainfall from TCs over land.

  10. Aroma types of flue-cured tobacco in China: spatial distribution and association with climatic factors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing

    2014-02-01

    Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.

  11. Spatial Intensity Duration Frequency Relationships Using Hierarchical Bayesian Analysis for Urban Areas

    NASA Astrophysics Data System (ADS)

    Rupa, Chandra; Mujumdar, Pradeep

    2016-04-01

    In urban areas, quantification of extreme precipitation is important in the design of storm water drains and other infrastructure. Intensity Duration Frequency (IDF) relationships are generally used to obtain design return level for a given duration and return period. Due to lack of availability of extreme precipitation data for sufficiently large number of years, estimating the probability of extreme events is difficult. Typically, a single station data is used to obtain the design return levels for various durations and return periods, which are used in the design of urban infrastructure for the entire city. In an urban setting, the spatial variation of precipitation can be high; the precipitation amounts and patterns often vary within short distances of less than 5 km. Therefore it is crucial to study the uncertainties in the spatial variation of return levels for various durations. In this work, the extreme precipitation is modeled spatially using the Bayesian hierarchical analysis and the spatial variation of return levels is studied. The analysis is carried out with Block Maxima approach for defining the extreme precipitation, using Generalized Extreme Value (GEV) distribution for Bangalore city, Karnataka state, India. Daily data for nineteen stations in and around Bangalore city is considered in the study. The analysis is carried out for summer maxima (March - May), monsoon maxima (June - September) and the annual maxima rainfall. In the hierarchical analysis, the statistical model is specified in three layers. The data layer models the block maxima, pooling the extreme precipitation from all the stations. In the process layer, the latent spatial process characterized by geographical and climatological covariates (lat-lon, elevation, mean temperature etc.) which drives the extreme precipitation is modeled and in the prior level, the prior distributions that govern the latent process are modeled. Markov Chain Monte Carlo (MCMC) algorithm (Metropolis Hastings algorithm within a Gibbs sampler) is used to obtain the samples of parameters from the posterior distribution of parameters. The spatial maps of return levels for specified return periods, along with the associated uncertainties, are obtained for the summer, monsoon and annual maxima rainfall. Considering various covariates, the best fit model is selected using Deviance Information Criteria. It is observed that the geographical covariates outweigh the climatological covariates for the monsoon maxima rainfall (latitude and longitude). The best covariates for summer maxima and annual maxima rainfall are mean summer precipitation and mean monsoon precipitation respectively, including elevation for both the cases. The scale invariance theory, which states that statistical properties of a process observed at various scales are governed by the same relationship, is used to disaggregate the daily rainfall to hourly scales. The spatial maps of the scale are obtained for the study area. The spatial maps of IDF relationships thus generated are useful in storm water designs, adequacy analysis and identifying the vulnerable flooding areas.

  12. A New Look at Rainfall Fluctuations and Scaling Properties of Spatial Rainfall Using Orthogonal Wavelets.

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1993-02-01

    It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.

  13. A new look at rainfall fluctuations and scaling properties of spatial rainfall using orthogonal wavelets

    NASA Technical Reports Server (NTRS)

    Kumar, Praveen; Foufoula-Georgiou, Efi

    1993-01-01

    It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to note that very few attempts have been made to study them in terms of their self-similarity characteristics. This is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated for a squall-line storm to study the presence of self-similarity.

  14. Water balance dynamics in the Nile Basin

    USGS Publications Warehouse

    Senay, Gabriel B.; Asante, Kwabena; Artan, Guleid A.

    2009-01-01

    Understanding the temporal and spatial dynamics of key water balance components of the Nile River will provide important information for the management of its water resources. This study used satellite-derived rainfall and other key weather variables derived from the Global Data Assimilation System to estimate and map the distribution of rainfall, actual evapotranspiration (ETa), and runoff. Daily water balance components were modelled in a grid-cell environment at 0·1 degree (∼10 km) spatial resolution for 7 years from 2001 through 2007. Annual maps of the key water balance components and derived variables such as runoff and ETa as a percent of rainfall were produced. Generally, the spatial patterns of rainfall and ETa indicate high values in the upstream watersheds (Uganda, southern Sudan, and southwestern Ethiopia) and low values in the downstream watersheds. However, runoff as a percent of rainfall is much higher in the Ethiopian highlands around the Blue Nile subwatershed. The analysis also showed the possible impact of land degradation in the Ethiopian highlands in reducing ETa magnitudes despite the availability of sufficient rainfall. Although the model estimates require field validation for the different subwatersheds, the runoff volume estimate for the Blue Nile subwatershed is within 7·0% of a figure reported from an earlier study. Further research is required for a thorough validation of the results and their integration with ecohydrologic models for better management of water and land resources in the various Nile Basin ecosystems.

  15. Temporal and spatial variations of soil carbon dioxide, methane, and nitrous oxide fluxes in a Southeast Asian tropical rainforest

    NASA Astrophysics Data System (ADS)

    Itoh, M.; Kosugi, Y.; Takanashi, S.; Hayashi, Y.; Kanemitsu, S.; Osaka, K.; Tani, M.; Nik, A. R.

    2010-09-01

    To clarify the factors controlling temporal and spatial variations of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes, we investigated these gas fluxes and environmental factors in a tropical rainforest in Peninsular Malaysia. Temporal variation of CO2 flux in a 2-ha plot was positively related to soil water condition and rainfall history. Spatially, CO2 flux was negatively related to soil water condition. When CO2 flux hotspots were included, no other environmental factors such as soil C or N concentrations showed any significant correlation. Although the larger area sampled in the present study complicates explanations of spatial variation of CO2 flux, our results support a previously reported bipolar relationship between the temporal and spatial patterns of CO2 flux and soil water condition observed at the study site in a smaller study plot. Flux of CH4 was usually negative with little variation, resulting in the soil at our study site functioning as a CH4 sink. Both temporal and spatial variations of CH4 flux were positively related to the soil water condition. Soil N concentration was also related to the spatial distribution of CH4 flux. Some hotspots were observed, probably due to CH4 production by termites, and these hotspots obscured the relationship between both temporal and spatial variations of CH4 flux and environmental factors. Temporal variation of N2O flux and soil N2O concentration was large and significantly related to the soil water condition, or in a strict sense, to rainfall history. Thus, the rainfall pattern controlled wet season N2O production in soil and its soil surface flux. Spatially, large N2O emissions were detected in wet periods at wetter and anaerobic locations, and were thus determined by soil physical properties. Our results showed that, even in Southeast Asian rainforests where distinct dry and wet seasons do not exist, variation in the soil water condition related to rainfall history controlled the temporal variations of soil CO2 flux, CH4 uptake, and N2O emission. The soil water condition associated with soil hydraulic properties was also the important controlling factor of the spatial distributions of these gas fluxes.

  16. Framework for event-based semidistributed modeling that unifies the SCS-CN method, VIC, PDM, and TOPMODEL

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2016-09-01

    Hydrologists and engineers may choose from a range of semidistributed rainfall-runoff models such as VIC, PDM, and TOPMODEL, all of which predict runoff from a distribution of watershed properties. However, these models are not easily compared to event-based data and are missing ready-to-use analytical expressions that are analogous to the SCS-CN method. The SCS-CN method is an event-based model that describes the runoff response with a rainfall-runoff curve that is a function of the cumulative storm rainfall and antecedent wetness condition. Here we develop an event-based probabilistic storage framework and distill semidistributed models into analytical, event-based expressions for describing the rainfall-runoff response. The event-based versions called VICx, PDMx, and TOPMODELx also are extended with a spatial description of the runoff concept of "prethreshold" and "threshold-excess" runoff, which occur, respectively, before and after infiltration exceeds a storage capacity threshold. For total storm rainfall and antecedent wetness conditions, the resulting ready-to-use analytical expressions define the source areas (fraction of the watershed) that produce runoff by each mechanism. They also define the probability density function (PDF) representing the spatial variability of runoff depths that are cumulative values for the storm duration, and the average unit area runoff, which describes the so-called runoff curve. These new event-based semidistributed models and the traditional SCS-CN method are unified by the same general expression for the runoff curve. Since the general runoff curve may incorporate different model distributions, it may ease the way for relating such distributions to land use, climate, topography, ecology, geology, and other characteristics.

  17. Attempting to physically explain space-time correlation of extremes

    NASA Astrophysics Data System (ADS)

    Bernardara, Pietro; Gailhard, Joel

    2010-05-01

    Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.

  18. A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Kwon, Hyun-Han; Kim, Jin-Young

    2016-09-01

    The estimation of intensity-duration-frequency (IDF) curves for rainfall data comprises a classical task in hydrology studies to support a variety of water resources projects, including urban drainage and the design of flood control structures. In a changing climate, however, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to poor estimates of rainfall intensity quantiles. Climate change scenarios built on General Circulation Models offer a way to access and estimate future changes in spatial and temporal rainfall patterns at the daily scale at the utmost, which is not as fine temporal resolution as required (e.g. hours) to directly estimate IDF curves. In this paper we propose a novel methodology based on a four-parameter beta distribution to estimate IDF curves conditioned on the observed (or simulated) daily rainfall, which becomes the time-varying upper bound of the updated nonstationary beta distribution. The inference is conducted in a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters when building the IDF curves. The proposed model is tested using rainfall data from four stations located in South Korea and projected climate change Representative Concentration Pathways (RCPs) scenarios 6 and 8.5 from the Met Office Hadley Centre HadGEM3-RA model. The results show that the developed model fits the historical data as good as the traditional Generalized Extreme Value (GEV) distribution but is able to produce future IDF curves that significantly differ from the historically based IDF curves. The proposed model predicts for the stations and RCPs scenarios analysed in this work an increase in the intensity of extreme rainfalls of short duration with long return periods.

  19. Uncertainty in determining extreme precipitation thresholds

    NASA Astrophysics Data System (ADS)

    Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili

    2013-10-01

    Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method are more reasonable and applicable for the Pearl River Basin.

  20. Influence of high resolution rainfall data on the hydrological response of urban flat catchments

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2016-04-01

    In the last decades, cities have become more and more urbanized and population density in urban areas is increased. At the same time, due to the climate changes, rainfall events present higher intensity and shorter duration than in the past. The increase of imperviousness degree, due to urbanization, combined with short and intense rainfall events, determinates a fast hydrological response of the urban catchment and in some cases it can lead to flooding. Urban runoff processes are sensitive to rainfall spatial and temporal variability and, for this reason, high resolution rainfall data are required as input for the hydrological model. A better knowledge of the hydrological response of system can help to prevent damages caused by flooding. This study aims to evaluate the sensitivity of urban hydrological response to spatial and temporal rainfall variability in urban areas, focusing especially on understanding the hydrological behaviour in lowland areas. In flat systems, during intense rainfall events, the flow in the sewer network can be pressurized and it can change direction, depending on the setting of pumping stations and CSOs (combined sewer overflow). In many cases these systems are also looped and it means that the water can follow different paths, depending on the pipe filling process. For these reasons, hydrological response of flat and looped catchments is particularly complex and it can be difficult characterize and predict it. A new dual polarimetric X-band weather radar, able to measure rainfall with temporal resolution of 1 min and spatial resolution of 100mX100m, was recently installed in the city of Rotterdam (NL). With this instrument, high resolution rainfall data were measured and used, in this work, as input for the hydrodynamic model. High detailed, semi-distributed hydrodynamic models of some districts of Rotterdam were used to investigate the hydrological response of flat catchments to high resolution rainfall data. In particular, the hydrological response of some subcatchments of the district of Kralingen was studied. Rainfall data were combined with level and discharge measurements at the pumping station that connects the sewer system with the waste water treatment plane. Using this data it was possible to study the water balance and to have a better idea of the amount of water that leave the system during a specific rainfall events. Results show that the hydrological response of flat and looped catchments is sensitive to spatial and temporal rainfall variability and it can be strongly influenced by rainfall event characteristics, such as intensity, velocity and intermittency of the storm.

  1. Significant Features of Warm Season Water Vapor Flux Related to Heavy Rainfall and Draught in Japan

    NASA Astrophysics Data System (ADS)

    Nishiyama, Koji; Iseri, Yoshihiko; Jinno, Kenji

    2009-11-01

    In this study, our objective is to reveal complicated relationships between spatial water vapor inflow patterns and heavy rainfall activities in Kyushu located in the western part of Japan, using the outcomes of pattern recognition of water vapor inflow, based on the Self-Organizing Map. Consequently, it could be confirmed that water vapor inflow patterns control the distribution and the frequency of heavy rainfall depending on the direction of their fluxes and the intensity of Precipitable water. Historically serious flood disasters in South Kyushu in 1993 were characterized by high frequency of the water vapor inflow patterns linking to heavy rainfall. On the other hand, severe draught in 1994 was characterized by inactive frontal activity that do not related to heavy rainfall.

  2. Analysis of spatial autocorrelation patterns of heavy and super-heavy rainfall in Iran

    NASA Astrophysics Data System (ADS)

    Rousta, Iman; Doostkamian, Mehdi; Haghighi, Esmaeil; Ghafarian Malamiri, Hamid Reza; Yarahmadi, Parvane

    2017-09-01

    Rainfall is a highly variable climatic element, and rainfall-related changes occur in spatial and temporal dimensions within a regional climate. The purpose of this study is to investigate the spatial autocorrelation changes of Iran's heavy and super-heavy rainfall over the past 40 years. For this purpose, the daily rainfall data of 664 meteorological stations between 1971 and 2011 are used. To analyze the changes in rainfall within a decade, geostatistical techniques like spatial autocorrelation analysis of hot spots, based on the Getis-Ord G i statistic, are employed. Furthermore, programming features in MATLAB, Surfer, and GIS are used. The results indicate that the Caspian coast, the northwest and west of the western foothills of the Zagros Mountains of Iran, the inner regions of Iran, and southern parts of Southeast and Northeast Iran, have the highest likelihood of heavy and super-heavy rainfall. The spatial pattern of heavy rainfall shows that, despite its oscillation in different periods, the maximum positive spatial autocorrelation pattern of heavy rainfall includes areas of the west, northwest and west coast of the Caspian Sea. On the other hand, a negative spatial autocorrelation pattern of heavy rainfall is observed in central Iran and parts of the east, particularly in Zabul. Finally, it is found that patterns of super-heavy rainfall are similar to those of heavy rainfall.

  3. On the asymmetric distribution of shear-relative typhoon rainfall

    NASA Astrophysics Data System (ADS)

    Gao, Si; Zhai, Shunan; Li, Tim; Chen, Zhifan

    2018-02-01

    The Tropical Rainfall Measuring Mission (TRMM) 3B42 precipitation, the National Centers for Environmental Prediction (NCEP) Final analysis and the Regional Specialized Meteorological Center (RSMC) Tokyo best-track data during 2000-2015 are used to compare spatial rainfall distribution associated with Northwest Pacific tropical cyclones (TCs) with different vertical wind shear directions and investigate possible mechanisms. Results show that the maximum TC rainfall are all located in the downshear left quadrant regardless of shear direction, and TCs with easterly shear have greater magnitudes of rainfall than those with westerly shear, consistent with previous studies. Rainfall amount of a TC is related to its relative position and proximity from the western Pacific subtropical high (WPSH) and the intensity of water vapor transport, and low-level jet is favorable for water vapor transport. The maximum of vertically integrated moisture flux convergence (MFC) are located on the downshear side regardless of shear direction, and the contribution of wind convergence to the total MFC is far larger than that of moisture advection. The cyclonic displacement of the maximum rainfall relative to the maximum MFC is possibly due to advection of hydrometeors by low- and middle-level cyclonic circulation of TCs. The relationship between TC rainfall and the WPSH through water vapor transport and vertical wind shear implies that TC rainfall may be highly predictable given the high predictability of the WPSH.

  4. Ensemble flood simulation for a small dam catchment in Japan using 10 and 2 km resolution nonhydrostatic model rainfalls

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenichiro; Otsuka, Shigenori; Apip; Saito, Kazuo

    2016-08-01

    This paper presents a study on short-term ensemble flood forecasting specifically for small dam catchments in Japan. Numerical ensemble simulations of rainfall from the Japan Meteorological Agency nonhydrostatic model (JMA-NHM) are used as the input data to a rainfall-runoff model for predicting river discharge into a dam. The ensemble weather simulations use a conventional 10 km and a high-resolution 2 km spatial resolutions. A distributed rainfall-runoff model is constructed for the Kasahori dam catchment (approx. 70 km2) and applied with the ensemble rainfalls. The results show that the hourly maximum and cumulative catchment-average rainfalls of the 2 km resolution JMA-NHM ensemble simulation are more appropriate than the 10 km resolution rainfalls. All the simulated inflows based on the 2 and 10 km rainfalls become larger than the flood discharge of 140 m3 s-1, a threshold value for flood control. The inflows with the 10 km resolution ensemble rainfall are all considerably smaller than the observations, while at least one simulated discharge out of 11 ensemble members with the 2 km resolution rainfalls reproduces the first peak of the inflow at the Kasahori dam with similar amplitude to observations, although there are spatiotemporal lags between simulation and observation. To take positional lags into account of the ensemble discharge simulation, the rainfall distribution in each ensemble member is shifted so that the catchment-averaged cumulative rainfall of the Kasahori dam maximizes. The runoff simulation with the position-shifted rainfalls shows much better results than the original ensemble discharge simulations.

  5. An analysis of the relationship between drought events and mangrove changes along the northern coasts of the Pe rsian Gulf and Oman Sea

    NASA Astrophysics Data System (ADS)

    Mafi-Gholami, Davood; Mahmoudi, Beytollah; Zenner, Eric K.

    2017-12-01

    Relating the changes of mangrove forests to spatially explicit reductions in rainfall amounts and increases in drought occurrences is a prerequisite for improving the effectiveness and success of mangrove forest conservation programs. To this end, we investigated the relationship between drought events (quantified using the Standardized Precipitation Index [SPI]) and changes in area and canopy cover of mangrove forests on the northern coast of the Persian Gulf and the Oman Sea using satellite imagery and long-term annual rainfall data over a period of 30 years (1986-2016). Statistical analyses revealed 1998 as the year marking the most significant change-point in the mean annual rainfall values in the catchments and mangroves, after which average SPI values consistently remained at lower levels. In the period of 1998-2016, decreases in the mean annual rainfall and increases in the severity of droughts differed spatially and were greater in the catchments and mangroves on the coasts of the Oman Sea than the coasts of the Persian Gulf. These spatially explicit results were closely mirrored by the mangrove response, with differential in reductions in mangrove areas and canopy cover that corresponded closely with the spatial distribution of drought intensities in the different parts of the coasts, with correlation coefficients ≥0.89 for the different coastal regions.

  6. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    PubMed Central

    Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.

    2018-01-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions. PMID:29657544

  7. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards.

    PubMed

    Wright, Daniel B; Mantilla, Ricardo; Peters-Lidard, Christa D

    2017-04-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, RainyDay can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, RainyDay can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. RainyDay can be useful for hazard modeling under nonstationary conditions.

  8. A Remote Sensing-Based Tool for Assessing Rainfall-Driven Hazards

    NASA Technical Reports Server (NTRS)

    Wright, Daniel B.; Mantilla, Ricardo; Peters-Lidard, Christa D.

    2017-01-01

    RainyDay is a Python-based platform that couples rainfall remote sensing data with Stochastic Storm Transposition (SST) for modeling rainfall-driven hazards such as floods and landslides. SST effectively lengthens the extreme rainfall record through temporal resampling and spatial transposition of observed storms from the surrounding region to create many extreme rainfall scenarios. Intensity-Duration-Frequency (IDF) curves are often used for hazard modeling but require long records to describe the distribution of rainfall depth and duration and do not provide information regarding rainfall space-time structure, limiting their usefulness to small scales. In contrast, Rainy Day can be used for many hazard applications with 1-2 decades of data, and output rainfall scenarios incorporate detailed space-time structure from remote sensing. Thanks to global satellite coverage, Rainy Day can be used in inaccessible areas and developing countries lacking ground measurements, though results are impacted by remote sensing errors. Rainy Day can be useful for hazard modeling under nonstationary conditions.

  9. Assessing the importance of rainfall uncertainty on hydrological models with different spatial and temporal scale

    NASA Astrophysics Data System (ADS)

    Nossent, Jiri; Pereira, Fernando; Bauwens, Willy

    2015-04-01

    Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.

  10. The Use of Radar-Based Products for Deriving Extreme Rainfall Frequencies Using Regional Frequency Analysis with Application in South Louisiana

    NASA Astrophysics Data System (ADS)

    Eldardiry, H. A.; Habib, E. H.

    2014-12-01

    Radar-based technologies have made spatially and temporally distributed quantitative precipitation estimates (QPE) available in an operational environmental compared to the raingauges. The floods identified through flash flood monitoring and prediction systems are subject to at least three sources of uncertainties: (a) those related to rainfall estimation errors, (b) those due to streamflow prediction errors due to model structural issues, and (c) those due to errors in defining a flood event. The current study focuses on the first source of uncertainty and its effect on deriving important climatological characteristics of extreme rainfall statistics. Examples of such characteristics are rainfall amounts with certain Average Recurrence Intervals (ARI) or Annual Exceedance Probability (AEP), which are highly valuable for hydrologic and civil engineering design purposes. Gauge-based precipitation frequencies estimates (PFE) have been maturely developed and widely used over the last several decades. More recently, there has been a growing interest by the research community to explore the use of radar-based rainfall products for developing PFE and understand the associated uncertainties. This study will use radar-based multi-sensor precipitation estimates (MPE) for 11 years to derive PFE's corresponding to various return periods over a spatial domain that covers the state of Louisiana in southern USA. The PFE estimation approach used in this study is based on fitting generalized extreme value distribution to hydrologic extreme rainfall data based on annual maximum series (AMS). Some of the estimation problems that may arise from fitting GEV distributions at each radar pixel is the large variance and seriously biased quantile estimators. Hence, a regional frequency analysis approach (RFA) is applied. The RFA involves the use of data from different pixels surrounding each pixel within a defined homogenous region. In this study, region of influence approach along with the index flood technique are used in the RFA. A bootstrap technique procedure is carried out to account for the uncertainty in the distribution parameters to construct 90% confidence intervals (i.e., 5% and 95% confidence limits) on AMS-based precipitation frequency curves.

  11. Increased Spatial Variability and Intensification of Extreme Monsoon Rainfall due to Urbanization.

    PubMed

    Paul, Supantha; Ghosh, Subimal; Mathew, Micky; Devanand, Anjana; Karmakar, Subhankar; Niyogi, Dev

    2018-03-02

    While satellite data provides a strong robust signature of urban feedback on extreme precipitation; urbanization signal is often not so prominent with station level data. To investigate this, we select the case study of Mumbai, India and perform a high resolution (1 km) numerical study with Weather Research and Forecasting (WRF) model for eight extreme rainfall days during 2014-2015. The WRF model is coupled with two different urban schemes, the Single Layer Urban Canopy Model (WRF-SUCM), Multi-Layer Urban Canopy Model (WRF-MUCM). The differences between the WRF-MUCM and WRF-SUCM indicate the importance of the structure and characteristics of urban canopy on modifications in precipitation. The WRF-MUCM simulations resemble the observed distributed rainfall. WRF-MUCM also produces intensified rainfall as compared to the WRF-SUCM and WRF-NoUCM (without UCM). The intensification in rainfall is however prominent at few pockets of urban regions, that is seen in increased spatial variability. We find that the correlation of precipitation across stations within the city falls below statistical significance at a distance greater than 10 km. Urban signature on extreme precipitation will be reflected on station rainfall only when the stations are located inside the urban pockets having intensified precipitation, which needs to be considered in future analysis.

  12. Spatial variability of extreme rainfall at radar subpixel scale

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2018-01-01

    Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.

  13. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  14. Spatial and temporal variation of rainfall trends of Sri Lanka

    NASA Astrophysics Data System (ADS)

    Wickramagamage, P.

    2016-08-01

    This study was based on daily rainfall data of 48 stations distributed over the entire island covering a 30-year period from 1981 to 2010. Data analysis was done to identify the spatial pattern of rainfall trends. The methods employed in data analysis are linear regression and interpolation by Universal Kriging and Radial Basis function. The slope of linear regression curves of 48 stations was used in interpolation. The regression coefficients show spatially and seasonally variable positive and negative trends of annual and seasonal rainfall. About half of the mean annual pentad series show negative trends, while the rest shows positive trends. By contrast, the rainfall trends of the Southwest Monsoon (SWM) season are predominantly negative throughout the country. The first phase of the Northeast Monsoon (NEM1) displays downward trends everywhere, with the exception of the Southeastern coastal area. The strongest negative trends were found in the Northeast and in the Central Highlands. The second phase (NEM2) is mostly positive, except in the Northeast. The Inter-Monsoon (IM) periods have predominantly upward trends almost everywhere, but still the trends in some parts of the Highlands and Northeast are negative. The long-term data at Watawala Nuwara Eliya and Sandringham show a consistent decline in the rainfall over the last 100 years, particularly during the SWM. There seems to be a faster decline in the rainfall in the last 3 decades. These trends are consistent with the observations in India. It is generally accepted that there has been changes in the circulation pattern. Weakening of the SWM circulation parameters caused by global warming appears to be the main causes of recent changes. Effect of the Asian Brown Cloud may also play a role in these changes.

  15. Cluster analysis applied to the spatial and temporal variability of monthly rainfall in Mato Grosso do Sul State, Brazil

    NASA Astrophysics Data System (ADS)

    Teodoro, Paulo Eduardo; de Oliveira-Júnior, José Francisco; da Cunha, Elias Rodrigues; Correa, Caio Cezar Guedes; Torres, Francisco Eduardo; Bacani, Vitor Matheus; Gois, Givanildo; Ribeiro, Larissa Pereira

    2016-04-01

    The State of Mato Grosso do Sul (MS) located in Brazil Midwest is devoid of climatological studies, mainly in the characterization of rainfall regime and producers' meteorological systems and rain inhibitors. This state has different soil and climatic characteristics distributed among three biomes: Cerrado, Atlantic Forest and Pantanal. This study aimed to apply the cluster analysis using Ward's algorithm and identify those meteorological systems that affect the rainfall regime in the biomes. The rainfall data of 32 stations (sites) of the MS State were obtained from the Agência Nacional de Águas (ANA) database, collected from 1954 to 2013. In each of the 384 monthly rainfall temporal series was calculated the average and applied the Ward's algorithm to identify spatial and temporal variability of rainfall. Bartlett's test revealed only in January homogeneous variance at all sites. Run test showed that there was no increase or decrease in trend of monthly rainfall. Cluster analysis identified five rainfall homogeneous regions in the MS State, followed by three seasons (rainy, transitional and dry). The rainy season occurs during the months of November, December, January, February and March. The transitional season ranges between the months of April and May, September and October. The dry season occurs in June, July and August. The groups G1, G4 and G5 are influenced by South Atlantic Subtropical Anticyclone (SASA), Chaco's Low (CL), Bolivia's High (BH), Low Levels Jet (LLJ) and South Atlantic Convergence Zone (SACZ) and Maden-Julian Oscillation (MJO). Group G2 is influenced by Upper Tropospheric Cyclonic Vortex (UTCV) and Front Systems (FS). The group G3 is affected by UTCV, FS and SACZ. The meteorological systems' interaction that operates in each biome and the altitude causes the rainfall spatial and temporal diversity in MS State.

  16. Approximation and spatial regionalization of rainfall erosivity based on sparse data in a mountainous catchment of the Yangtze River in Central China.

    PubMed

    Schönbrodt-Stitt, Sarah; Bosch, Anna; Behrens, Thorsten; Hartmann, Heike; Shi, Xuezheng; Scholten, Thomas

    2013-10-01

    In densely populated countries like China, clean water is one of the most challenging issues of prospective politics and environmental planning. Water pollution and eutrophication by excessive input of nitrogen and phosphorous from nonpoint sources is mostly linked to soil erosion from agricultural land. In order to prevent such water pollution by diffuse matter fluxes, knowledge about the extent of soil loss and the spatial distribution of hot spots of soil erosion is essential. In remote areas such as the mountainous regions of the upper and middle reaches of the Yangtze River, rainfall data are scarce. Since rainfall erosivity is one of the key factors in soil erosion modeling, e.g., expressed as R factor in the Revised Universal Soil Loss Equation model, a methodology is needed to spatially determine rainfall erosivity. Our study aims at the approximation and spatial regionalization of rainfall erosivity from sparse data in the large (3,200 km(2)) and strongly mountainous catchment of the Xiangxi River, a first order tributary to the Yangtze River close to the Three Gorges Dam. As data on rainfall were only obtainable in daily records for one climate station in the central part of the catchment and five stations in its surrounding area, we approximated rainfall erosivity as R factors using regression analysis combined with elevation bands derived from a digital elevation model. The mean annual R factor (R a) amounts for approximately 5,222 MJ mm ha(-1) h(-1) a(-1). With increasing altitudes, R a rises up to maximum 7,547 MJ mm ha(-1) h(-1) a(-1) at an altitude of 3,078 m a.s.l. At the outlet of the Xiangxi catchment erosivity is at minimum with approximate R a=1,986 MJ mm ha(-1) h(-1) a(-1). The comparison of our results with R factors from high-resolution measurements at comparable study sites close to the Xiangxi catchment shows good consistance and allows us to calculate grid-based R a as input for a spatially high-resolution and area-specific assessment of soil erosion risk.

  17. Recent and future rainfall erosivity on the territory of the Czech Republic

    NASA Astrophysics Data System (ADS)

    Krasa, Josef; Stredova, Hana; Stepanek, Petr; Hanel, Martin; Dostal, Tomas; Novotny, Ivan

    2015-04-01

    Water erosion is a main factor of degradation of soils used for agriculture in the Czech Republic. For landscape conservation purposes the soil erosion risk is defined here mostly by USLE (Wischmeier and Smith, 1978). Within USLE the precipitation impact on erosion is a function of rainfall kinetic energy and intensity represented by R-factor. In the Czech Republic historically and recently several research teams have analyzed rainfall data to assess R-factor. Till now not many European countries have performed detailed spatially distributed analyses of rain erosivities. Most studies use only simplified methods based on long-term rainfall averages or databases of only several station-datasets. The most recent study on rainfall erosivity spatial distribution over the Czech Republic was based on digital rain gauge data from automatic stations of the Czech Hydrometeorogical Institute. The erosive rains were derived from continuous 1 minute step 10-year rainfall data (2003-2012) from 245 stations. Based on the research recent annual R-factor values in the stations vary from 37 to 239 [N.h-1] (values over 100 are located in mountain regions with minimum of agricultural land). Average value is 69 [N.h-1.year-1]. For the Czech Republic the future prediction is based on 10km resolution ALADIN/CZ regional climate model. Within the EU FP6 project CECILIA it was coupled with GCM ARPEGE to provide a projection of future climate in two time slices, 2021-2050 and 2071-2100, according to the IPCC A1B emission scenario. Daily precipitation volumes and percentiles of maximal events allowed authors to develop R-factor maps of present and future scenarios. Based on the analyses we can conclude that average value for the whole territory of the Czech Republic will remain close to 70 [N.h-1.year-1] or even decrease for 2071-2100, but we can expect significant changes (30-40 % rise or decrease) for several large agricultural regions (eg. Southern Moravia). These changes will have impact on soil erosion dynamics of the specific areas. Details on the spatial distribution of recent and future rain erosivities over the Czech Republic and the consequences for the erosion risk will be presented. The paper was prepared within the projects NAZV QJ1230056 and BV VG 20122015092.

  18. Nonstationary Intensity-Duration-Frequency Curves for Drainge Infrastructure Coping with Climate Change

    NASA Astrophysics Data System (ADS)

    Kim, Byung Sik; Jeung, Se Jin; Lee, Dong Seop; Han, Woo Suk

    2015-04-01

    As the abnormal rainfall condition has been more and more frequently happen and serious by climate change and variabilities, the question whether the design of drainage system could be prepared with abnormal rainfall condition or not has been on the rise. Usually, the drainage system has been designed by rainfall I-D-F (Intensity-Duration-Frequency) curve with assumption that I-D-F curve is stationary. The design approach of the drainage system has limitation not to consider the extreme rainfall condition of which I-D-F curve is non-stationary by climate change and variabilities. Therefore, the assumption that the I-D-F curve is stationary to design drainage system maybe not available in the climate change period, because climate change has changed the characteristics of extremes rainfall event to be non-stationary. In this paper, design rainfall by rainfall duration and non-stationary I-D-F curve are derived by the conditional GEV distribution considering non-stationary of rainfall characteristics. Furthermore, the effect of designed peak flow with increase of rainfall intensity was analyzed by distributed rainfall-runoff model, S-RAT(Spatial Runoff Assessment Tool). Although there are some difference by rainfall duration, the traditional I-D-F curves underestimates the extreme rainfall events for high-frequency rainfall condition. As a result, this paper suggest that traditional I-D-F curves could not be suitable for the design of drainage system under climate change condition. Keywords : Drainage system, Climate Change, non-stationary, I-D-F curves This research was supported by a grant 'Development of multi-function debris flow control technique considering extreme rainfall event' [NEMA-Natural-2014-74] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of KOREA

  19. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    NASA Astrophysics Data System (ADS)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a strong spatial and rainfall category dependency, sometimes offsetting the effect of the water vapour increase. Additionally, we found that the moisture convergence is mainly dominated by the climatological vertical motion acting on the humidity changes and the interplay between all these processes proves to play a pivotal role for regulating the intensities of various rainfall events in the two domains.

  20. Regularized joint inverse estimation of extreme rainfall amounts in ungauged coastal basins of El Salvador

    USGS Publications Warehouse

    Friedel, M.J.

    2008-01-01

    A regularized joint inverse procedure is presented and used to estimate the magnitude of extreme rainfall events in ungauged coastal river basins of El Salvador: Paz, Jiboa, Grande de San Miguel, and Goascoran. Since streamflow measurements reflect temporal and spatial rainfall information, peak-flow discharge is hypothesized to represent a similarity measure suitable for regionalization. To test this hypothesis, peak-flow discharge values determined from streamflow recurrence information (10-year, 25-year, and 100-year) collected outside the study basins are used to develop regional (country-wide) regression equations. Peak-flow discharge derived from these equations together with preferred spatial parameter relations as soft prior information are used to constrain the simultaneous calibration of 20 tributary basin models. The nonlinear range of uncertainty in estimated parameter values (1 curve number and 3 recurrent rainfall amounts for each model) is determined using an inverse calibration-constrained Monte Carlo approach. Cumulative probability distributions for rainfall amounts indicate differences among basins for a given return period and an increase in magnitude and range among basins with increasing return interval. Comparison of the estimated median rainfall amounts for all return periods were reasonable but larger (3.2-26%) than rainfall estimates computed using the frequency-duration (traditional) approach and individual rain gauge data. The observed 25-year recurrence rainfall amount at La Hachadura in the Paz River basin during Hurricane Mitch (1998) is similar in value to, but outside and slightly less than, the estimated rainfall confidence limits. The similarity in joint inverse and traditionally computed rainfall events, however, suggests that the rainfall observation may likely be due to under-catch and not model bias. ?? Springer Science+Business Media B.V. 2007.

  1. Pluvial, urban flood mechanisms and characteristics - Assessment based on insurance claims

    NASA Astrophysics Data System (ADS)

    Sörensen, Johanna; Mobini, Shifteh

    2017-12-01

    Pluvial flooding is a problem in many cities and for city planning purpose the mechanisms behind pluvial flooding are of interest. Previous studies seldom use insurance claim data to analyse city scale characteristics that lead to flooding. In the present study, two long time series (∼20 years) of flood claims from property owners have been collected and analysed in detail to investigate the mechanisms and characteristics leading to urban flooding. The flood claim data come from the municipal water utility company and property owners with insurance that covers property loss from overland flooding, groundwater intrusion through basement walls and flooding from the drainage system. These data are used as a proxy for flood severity for several events in the Swedish city of Malmö. It is discussed which rainfall characteristics give most flooding and why some rainfall events do not lead to severe flooding, how city scale topography and sewerage system type influence spatial distribution of flood claims, and which impact high sea level has on flooding in Malmö. Three severe flood events are described in detail and compared with a number of smaller flood events. It was found that the main mechanisms and characteristics of flood extent and its spatial distribution in Malmö are intensity and spatial distribution of rainfall, distance to the main sewer system as well as overland flow paths, and type of drainage system, while high sea level has little impact on the flood extent. Finally, measures that could be taken to lower the flood risk in Malmö, and other cities with similar characteristics, are discussed.

  2. Spatial distribution of the largest rainfall-runoff floods from basins between 2.6 and 26,000 km2 in the United States and Puerto Rico

    NASA Astrophysics Data System (ADS)

    O'Connor, Jim E.; Costa, John E.

    2004-01-01

    We assess the spatial distribution of the largest rainfall-generated streamflows from a database of 35,663 flow records composed of the largest 10% of annual peak flows from each of 14,815 U.S. Geological Survey stream gaging stations in the United States and Puerto Rico. High unit discharges (peak discharge per unit contributing area) from basins with areas of 2.6 to 26,000 km2 (1-10,000 mi2) are widespread, but streams in Hawaii, Puerto Rico, and Texas together account for more than 50% of the highest unit discharges. The Appalachians and western flanks of Pacific coastal mountain systems are also regions of high unit discharges, as are several areas in the southern Midwest. By contrast, few exceptional discharges have been recorded in the interior West, northern Midwest, and Atlantic Coastal Plain. Most areas of high unit discharges result from the combination of (1) regional atmospheric conditions that produce large precipitation volumes and (2) steep topography, which enhances precipitation by convective and orographic processes and allows flow to be quickly concentrated into stream channels. Within the conterminous United States, the greatest concentration of exceptional unit discharges is at the Balcones Escarpment of central Texas, where maximum U.S. rainfall amounts apparently coincide with appropriate basin physiography to produce many of the largest measured U.S. floods. Flood-related fatalities broadly correspond to the spatial distribution of high unit discharges, with Texas having nearly twice the average annual flood-related fatalities of any other state.

  3. Improving a spatial rainfall product using multiple-point geostatistical simulations and its effect on a national hydrological model.

    NASA Astrophysics Data System (ADS)

    Oriani, F.; Stisen, S.

    2016-12-01

    Rainfall amount is one of the most sensitive inputs to distributed hydrological models. Its spatial representation is of primary importance to correctly study the uncertainty of basin recharge and its propagation to the surface and underground circulation. We consider here the 10-km-grid rainfall product provided by the Danish Meteorological Institute as input to the National Water Resources Model of Denmark. Due to a drastic reduction in the rain gauge network in recent years (from approximately 500 stations in the period 1996-2006, to 250 in the period 2007-2014), the grid rainfall product, based on the interpolation of these data, is much less reliable. Consequently, the related hydrological model shows a significantly lower prediction power. To give a better estimation of spatial rainfall at the grid points far from ground measurements, we use the direct sampling technique (DS) [1], belonging to the family of multiple-point geostatistics. DS, already applied to rainfall and spatial variable estimation [2, 3], simulates a grid value by sampling a training data set where a similar data neighborhood occurs. In this way, complex statistical relations are preserved by generating similar spatial patterns to the ones found in the training data set. Using the reliable grid product from the period 1996-2006 as training data set, we first test the technique by simulating part of this data set, then we apply the technique to the grid product of the period 2007-2014, and subsequently analyzing the uncertainty propagation to the hydrological model. We show that DS can improve the reliability of the rainfall product by generating more realistic rainfall patterns, with a significant repercussion on the hydrological model. The reduction of rain gauge networks is a global phenomenon which has huge implications for hydrological model performance and the uncertainty assessment of water resources. Therefore, the presented methodology can potentially be used in many regions where historical records can act as training data. [1] G.Mariethoz et al. (2010), Water Resour. Res., 10.1029/2008WR007621.[2] F. Oriani et al. (2014), Hydrol. Earth Syst. Sc., 10.5194/hessd-11-3213-2014. [3] G. Mariethoz et al. (2012), Water Resour. Res., 10.1029/2012WR012115.

  4. Climatological characteristics of raindrop size distributions within a topographically complex area

    NASA Astrophysics Data System (ADS)

    Suh, S.-H.; You, C.-H.; Lee, D.-I.

    2015-04-01

    Raindrop size distribution (DSD) characteristics within the complex area of Busan, Korea (35.12° N, 129.10° E) were studied using a Precipitation Occurrence Sensor System (POSS) disdrometer over a four-year period from 24 February 2001 to 24 December 2004. Average DSD parameters in Busan, a mid-latitude site, were compared with corresponding parameters recorded in the high-latitude site of Järvenpää, Finland. Mean values of median drop diameter (D0) and the shape parameter (μ) in Busan are smaller than those in Järvenpää, whereas the mean normalized intercept parameter (Nw) and rainfall rate (R) are higher in Busan. To analyze the climatological DSD characteristics in more detail, the entire period of recorded rainfall was divided into 10 categories with different temporal and spatial scales. When only convective rainfall was considered, mean Dm and Nw values for all these categories converged around a maritime cluster, except for rainfall associated with typhoons. The convective rainfall of a typhoon showed much smaller Dm and larger Nw compared with the other rainfall categories. In terms of diurnal DSD variability, we observe maritime (continental) precipitation during the daytime (DT) (nighttime, NT), which likely results from sea (land) breeze identified through wind direction analysis. These features also appeared in the seasonal diurnal distribution. The DT and NT Probability Density Function (PDF) during the summer was similar to the PDF of the entire study period. However, the DT and NT PDF during the winter season displayed an inverse distribution due to seasonal differences in wind direction.

  5. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    PubMed Central

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  6. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    PubMed

    Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S

    2016-01-01

    India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  7. A Coupled Approach with Stochastic Rainfall-Runoff Simulation and Hydraulic Modeling for Extreme Flood Estimation on Large Watersheds

    NASA Astrophysics Data System (ADS)

    Paquet, E.

    2015-12-01

    The SCHADEX method aims at estimating the distribution of peak and daily discharges up to extreme quantiles. It couples a precipitation probabilistic model based on weather patterns, with a stochastic rainfall-runoff simulation process using a conceptual lumped model. It allows exploring an exhaustive set of hydrological conditions and watershed responses to intense rainfall events. Since 2006, it has been widely applied in France to about one hundred watersheds for dam spillway design, and also aboard (Norway, Canada and central Europe among others). However, its application to large watersheds (above 10 000 km²) faces some significant issues: spatial heterogeneity of rainfall and hydrological processes and flood peak damping due to hydraulic effects (flood plains, natural or man-made embankment) being the more important. This led to the development of an extreme flood simulation framework for large and heterogeneous watersheds, based on the SCHADEX method. Its main features are: Division of the large (or main) watershed into several smaller sub-watersheds, where the spatial homogeneity of the hydro-meteorological processes can reasonably be assumed, and where the hydraulic effects can be neglected. Identification of pilot watersheds where discharge data are available, thus where rainfall-runoff models can be calibrated. They will be parameters donors to non-gauged watersheds. Spatially coherent stochastic simulations for all the sub-watersheds at the daily time step. Identification of a selection of simulated events for a given return period (according to the distribution of runoff volumes at the scale of the main watershed). Generation of the complete hourly hydrographs at each of the sub-watersheds outlets. Routing to the main outlet with hydraulic 1D or 2D models. The presentation will be illustrated with the case-study of the Isère watershed (9981 km), a French snow-driven watershed. The main novelties of this method will be underlined, as well as its perspectives and future improvements.

  8. Evaluation of satellite and simulated rainfall products for hydrological applications in the Notwane catchment, Botswana

    NASA Astrophysics Data System (ADS)

    Kenabatho, P. K.; Parida, B. P.; Moalafhi, D. B.

    2017-08-01

    In semi-arid catchments, hydrological modeling, water resources planning and management are hampered by insufficient spatial rainfall data which is usually derived from limited rain gauge networks. Satellite products are potential candidates to augment the limited spatial rainfall data in these areas. In this paper, the utility of the Tropical Rainfall Measuring Mission (TRMM) product (3B42 v7) is evaluated using data from the Notwane catchment in Botswana. In addition, rainfall simulations obtained from a multi-site stochastic rainfall model based on the generalised linear models (GLMs) were used as additional spatial rainfall estimates. These rainfall products were compared to the observed rainfall data obtained from six (6) rainfall stations available in the catchment for the period 1998-2012. The results show that in general the two approaches produce reasonable spatial rainfall estimates. However, the TRMM products provided better spatial rainfall estimates compared to the GLM rainfall outputs on an average, as more than 90% of the monthly rainfall variations were explained by the TRMM compared to 80% from the GLMs. However, there is still uncertainty associated mainly with limited rainfall stations, and the inability of the two products to capture unusually high rainfall values in the data sets. Despite this observation, rainfall indices computed to further assess the daily rainfall products (i.e. rainfall occurrence and amounts, length of dry spells) were adequately represented by the TRMM data compared to the GLMs. Performance from the GLMs is expected to improve with addition of further rainfall predictors. A combination of these rainfall products allows for reasonable spatial rainfall estimates and temporal (short term future) rainfall simulations from the TRMM and GLMs, respectively. The results have significant implications on water resources planning and management in the catchment which has, for the past three years, been experiencing prolonged droughts as shown by the drying of Gaborone dam (currently at a record low of 1.6% full), which is the main source of water supply to the city of Gaborone and neighbouring townships in Botswana.

  9. Intensity-Duration-Frequency curves from remote sensing datasets: direct comparison of weather radar and CMORPH over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Morin, Efrat; Marra, Francesco; Peleg, Nadav; Mei, Yiwen; Anagnostou, Emmanouil N.

    2017-04-01

    Rainfall frequency analysis is used to quantify the probability of occurrence of extreme rainfall and is traditionally based on rain gauge records. The limited spatial coverage of rain gauges is insufficient to sample the spatiotemporal variability of extreme rainfall and to provide the areal information required by management and design applications. Conversely, remote sensing instruments, even if quantitative uncertain, offer coverage and spatiotemporal detail that allow overcoming these issues. In recent years, remote sensing datasets began to be used for frequency analyses, taking advantage of increased record lengths and quantitative adjustments of the data. However, the studies so far made use of concepts and techniques developed for rain gauge (i.e. point or multiple-point) data and have been validated by comparison with gauge-derived analyses. These procedures add further sources of uncertainty and prevent from isolating between data and methodological uncertainties and from fully exploiting the available information. In this study, we step out of the gauge-centered concept presenting a direct comparison between at-site Intensity-Duration-Frequency (IDF) curves derived from different remote sensing datasets on corresponding spatial scales, temporal resolutions and records. We analyzed 16 years of homogeneously corrected and gauge-adjusted C-Band weather radar estimates, high-resolution CMORPH and gauge-adjusted high-resolution CMORPH over the Eastern Mediterranean. Results of this study include: (a) good spatial correlation between radar and satellite IDFs ( 0.7 for 2-5 years return period); (b) consistent correlation and dispersion in the raw and gauge adjusted CMORPH; (c) bias is almost uniform with return period for 12-24 h durations; (d) radar identifies thicker tail distributions than CMORPH and the tail of the distributions depends on the spatial and temporal scales. These results demonstrate the potential of remote sensing datasets for rainfall frequency analysis for management (e.g. warning and early-warning systems) and design (e.g. sewer design, large scale drainage planning)

  10. Throughfall and its spatial variability beneath xerophytic shrub canopies within water-limited arid desert ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia

    2016-08-01

    Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.

  11. Local influence of south-east France topography and land cover on the distribution and characteristics of intense rainfall cells

    NASA Astrophysics Data System (ADS)

    Renard, Florent

    2017-04-01

    The Greater Lyon area is strongly built up, grouping 58 communes and a population of 1.3 million in approximately 500 km2. The flood risk is high as the territory is crossed by two large watercourses and by streams with torrential flow. Floods may also occur in case of runoff after heavy rain or because of a rise in the groundwater level. The whole territory can therefore be affected, and it is necessary to possess in-depth knowledge of the depths, causes and consequences of rainfall to achieve better management of precipitation in urban areas and to reduce flood risk. This study is thus focused on the effects of topography and land cover on the occurrence, intensity and area of intense rainfall cells. They are identified by local radar meteorology (C-band) combined with a processing algorithm running in a geographic information system (GIS) which identified 109,979 weighted mean centres of them in a sample composed of the five most intense rainfall events from 2001 to 2005. First, analysis of spatial distribution at an overall scale is performed, completed by study at a more detailed scale. The results show that the distribution of high-intensity rainfall cells is spread in cluster form. Subsequently, comparison of intense rainfall cells with the topography shows that cell density is closely linked with land slope but that, above all, urbanised zones feature nearly twice as many rainfall cells as farm land or forest, with more intense intensity.

  12. An improved rainfall disaggregation technique for GCMs

    NASA Astrophysics Data System (ADS)

    Onof, C.; Mackay, N. G.; Oh, L.; Wheater, H. S.

    1998-08-01

    Meteorological models represent rainfall as a mean value for a grid square so that when the latter is large, a disaggregation scheme is required to represent the spatial variability of rainfall. In general circulation models (GCMs) this is based on an assumption of exponentiality of rainfall intensities and a fixed value of areal rainfall coverage, dependent on rainfall type. This paper examines these two assumptions on the basis of U.K. and U.S. radar data. Firstly, the coverage of an area is strongly dependent on its size, and this dependence exhibits a scaling law over a range of sizes. Secondly, the coverage is, of course, dependent on the resolution at which it is measured, although this dependence is weak at high resolutions. Thirdly, the time series of rainfall coverages has a long-tailed autocorrelation function which is comparable to that of the mean areal rainfalls. It is therefore possible to reproduce much of the temporal dependence of coverages by using a regression of the log of the mean rainfall on the log of the coverage. The exponential assumption is satisfactory in many cases but not able to reproduce some of the long-tailed dependence of some intensity distributions. Gamma and lognormal distributions provide a better fit in these cases, but they have their shortcomings and require a second parameter. An improved disaggregation scheme for GCMs is proposed which incorporates the previous findings to allow the coverage to be obtained for any area and any mean rainfall intensity. The parameters required are given and some of their seasonal behavior is analyzed.

  13. Modeling landslide recurrence in Seattle, Washington, USA

    USGS Publications Warehouse

    Salciarini, Diana; Godt, Jonathan W.; Savage, William Z.; Baum, Rex L.; Conversini, Pietro

    2008-01-01

    To manage the hazard associated with shallow landslides, decision makers need an understanding of where and when landslides may occur. A variety of approaches have been used to estimate the hazard from shallow, rainfall-triggered landslides, such as empirical rainfall threshold methods or probabilistic methods based on historical records. The wide availability of Geographic Information Systems (GIS) and digital topographic data has led to the development of analytic methods for landslide hazard estimation that couple steady-state hydrological models with slope stability calculations. Because these methods typically neglect the transient effects of infiltration on slope stability, results cannot be linked with historical or forecasted rainfall sequences. Estimates of the frequency of conditions likely to cause landslides are critical for quantitative risk and hazard assessments. We present results to demonstrate how a transient infiltration model coupled with an infinite slope stability calculation may be used to assess shallow landslide frequency in the City of Seattle, Washington, USA. A module called CRF (Critical RainFall) for estimating deterministic rainfall thresholds has been integrated in the TRIGRS (Transient Rainfall Infiltration and Grid-based Slope-Stability) model that combines a transient, one-dimensional analytic solution for pore-pressure response to rainfall infiltration with an infinite slope stability calculation. Input data for the extended model include topographic slope, colluvial thickness, initial water-table depth, material properties, and rainfall durations. This approach is combined with a statistical treatment of rainfall using a GEV (General Extreme Value) probabilistic distribution to produce maps showing the shallow landslide recurrence induced, on a spatially distributed basis, as a function of rainfall duration and hillslope characteristics.

  14. Rainfall-runoff properties of tephra: Simulated effects of grain-size and antecedent rainfall

    NASA Astrophysics Data System (ADS)

    Jones, Robbie; Thomas, Robert E.; Peakall, Jeff; Manville, Vern

    2017-04-01

    Rain-triggered lahars (RTLs) are a significant and often persistent secondary volcanic hazard at many volcanoes around the world. Rainfall on unconsolidated volcaniclastic material is the primary initiation mechanism of RTLs: the resultant flows have the potential for large runout distances (> 100 km) and present a substantial hazard to downstream infrastructure and communities. RTLs are frequently anticipated in the aftermath of eruptions, but the pattern, timing and scale of lahars varies on an eruption-by-eruption and even catchment-by-catchment basis. This variability is driven by a set of local factors including the grain size distribution, thickness, stratigraphy and spatial distribution of source material in addition to topography, vegetation coverage and rainfall conditions. These factors are often qualitatively discussed in RTL studies based on post-eruption lahar observations or instrumental detections. Conversely, this study aims to move towards a quantitative assessment of RTL hazard in order to facilitate RTL predictions and forecasts based on constrained rainfall, grain size distribution and isopach data. Calibrated simulated rainfall and laboratory-constructed tephra beds are used within a repeatable experimental set-up to isolate the effects of individual parameters and to examine runoff and infiltration processes from analogous RTL source conditions. Laboratory experiments show that increased antecedent rainfall and finer-grained surface tephra individually increase runoff rates and decrease runoff lag times, while a combination of these factors produces a compound effect. These impacts are driven by increased residual moisture content and decreased permeability due to surface sealing, and have previously been inferred from downstream observations of lahars but not identified at source. Water and sediment transport mechanisms differ based on surface grain size distribution: a fine-grained surface layer displayed airborne remobilisation, accretionary pellet formation, rapid surface sealing and infiltration-excess overland flow generation whilst a coarse surface layer demonstrated exclusively rainsplash-driven particle detachment throughout the rainfall simulations. This experimental protocol has the potential to quantitatively examine the effects of a variety of individual parameters in RTL initiation under controlled conditions.

  15. Modeling short duration extreme precipitation patterns using copula and generalized maximum pseudo-likelihood estimation with censoring

    NASA Astrophysics Data System (ADS)

    Bargaoui, Zoubeida Kebaili; Bardossy, Andràs

    2015-10-01

    The paper aims to develop researches on the spatial variability of heavy rainfall events estimation using spatial copula analysis. To demonstrate the methodology, short time resolution rainfall time series from Stuttgart region are analyzed. They are constituted by rainfall observations on continuous 30 min time scale recorded over a network composed by 17 raingages for the period July 1989-July 2004. The analysis is performed aggregating the observations from 30 min up to 24 h. Two parametric bivariate extreme copula models, the Husler-Reiss model and the Gumbel model are investigated. Both involve a single parameter to be estimated. Thus, model fitting is operated for every pair of stations for a giving time resolution. A rainfall threshold value representing a fixed rainfall quantile is adopted for model inference. Generalized maximum pseudo-likelihood estimation is adopted with censoring by analogy with methods of univariate estimation combining historical and paleoflood information with systematic data. Only pairs of observations greater than the threshold are assumed as systematic data. Using the estimated copula parameter, a synthetic copula field is randomly generated and helps evaluating model adequacy which is achieved using Kolmogorov Smirnov distance test. In order to assess dependence or independence in the upper tail, the extremal coefficient which characterises the tail of the joint bivariate distribution is adopted. Hence, the extremal coefficient is reported as a function of the interdistance between stations. If it is less than 1.7, stations are interpreted as dependent in the extremes. The analysis of the fitted extremal coefficients with respect to stations inter distance highlights two regimes with different dependence structures: a short spatial extent regime linked to short duration intervals (from 30 min to 6 h) with an extent of about 8 km and a large spatial extent regime related to longer rainfall intervals (from 12 h to 24 h) with an extent of 34 to 38 km.

  16. Geographic Information System and Remote Sensing Approach with Hydrologic Rational Model for Flood Event Analysis in Jakarta

    NASA Astrophysics Data System (ADS)

    Aditya, M. R.; Hernina, R.; Rokhmatuloh

    2017-12-01

    Rapid development in Jakarta which generates more impervious surface has reduced the amount of rainfall infiltration into soil layer and increases run-off. In some events, continuous high rainfall intensity could create sudden flood in Jakarta City. This article used rainfall data of Jakarta during 10 February 2015 to compute rainfall intensity and then interpolate it with ordinary kriging technique. Spatial distribution of rainfall intensity then overlaid with run-off coefficient based on certain land use type of the study area. Peak run-off within each cell resulted from hydrologic rational model then summed for the whole study area to generate total peak run-off. For this study area, land use types consisted of 51.9 % industrial, 37.57% parks, and 10.54% residential with estimated total peak run-off 6.04 m3/sec, 0.39 m3/sec, and 0.31 m3/sec, respectively.

  17. Predictive susceptibility analysis of typhoon induced landslides in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Shou, Keh-Jian; Lin, Zora

    2017-04-01

    Climate change caused by global warming affects Taiwan significantly for the past decade. The increasing frequency of extreme rainfall events, in which concentrated and intensive rainfalls generally cause geohazards including landslides and debris flows. The extraordinary, such as 2004 Mindulle and 2009 Morakot, hit Taiwan and induced serious flooding and landslides. This study employs rainfall frequency analysis together with the atmospheric general circulation model (AGCM) downscaling estimation to understand the temporal rainfall trends, distributions, and intensities in the adopted Wu River watershed in Central Taiwan. To assess the spatial hazard of the landslides, landslide susceptibility analysis was also applied. Different types of rainfall factors were tested in the susceptibility models for a better accuracy. In addition, the routes of typhoons were also considered in the predictive analysis. The results of predictive analysis can be applied for risk prevention and management in the study area.

  18. Signal to Noise Ratio for Different Gridded Rainfall Products of Indian Monsoon

    NASA Astrophysics Data System (ADS)

    Nehra, P.; Shastri, H. K.; Ghosh, S.; Mishra, V.; Murtugudde, R. G.

    2014-12-01

    Gridded rainfall datasets provide useful information of spatial and temporal distribution of precipitation over a region. For India, there are 3 gridded rainfall data products available from India Meteorological Department (IMD), Tropical Rainfall Measurement Mission (TRMM) and Asian Precipitation - Highly Resolved Observational Data Integration towards Evaluation of Water Resources (APHRODITE), these compile precipitation information obtained through satellite based measurement and ground station based data. The gridded rainfall data from IMD is available at spatial resolution of 1°, 0.5° and 0.25° where as TRMM and APHRODITE is available at 0.25°. Here, we employ 7 years (1998-2004) of common time period amongst the 3 data products for the south-west monsoon season, i.e., the months June to September. We examine temporal mean and standard deviation of these 3 products to observe substantial variation amongst them at 1° resolution whereas for 0.25° resolution, all the data types are nearly identical. We determine the Signal to Noise Ratio (SNR) of the 3 products at 1° and 0.25° resolution based on noise separation technique adopting horizontal separation of the power spectrum generated with the Fast Fourier Transformation (FFT). A methodology is developed for threshold based separation of signal and noise from the power spectrum, treating the noise as white. The variance of signal to that of noise is computed to obtain SNR. Determination of SNR for different regions over the country shows the highest SNR with APHRODITE at 0.25° resolution. It is observed that the eastern part of India has the highest SNR in all cases considered whereas the northern and southern most Indian regions have lowest SNR. An incremental linear trend is observed among the SNR values and the spatial variance of corresponding region. Relationship between the computed SNR values and the interpolation method used with the dataset is analyzed. The SNR analysis provides an effective tool to evaluate the gridded precipitation data products. However detailed analysis is needed to determine the processes that lead to these SNR distributions so that the quality of the gridded rainfall data products can be further improved and transferability of the gridding algorithms can be explored to produce a unified high-quality rainfall dataset.

  19. Evaluation of ET-based drought index derived from geostationary satellite data

    USDA-ARS?s Scientific Manuscript database

    The utility and reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, precipitation-based indices only reflect one component of the surface hydrologic cycle,...

  20. How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed

    NASA Astrophysics Data System (ADS)

    Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.

    2017-12-01

    Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.

  1. The issues of current rainfall estimation techniques in mountain natural multi-hazard investigation

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei; Chen, Ningsheng; Wang, Tao

    2017-04-01

    Mountain hazards (e.g., landslides, debris flows, and floods) induced by rainfall are complex phenomena that require good knowledge of rainfall representation at different spatiotemporal scales. This study reveals rainfall estimation from gauges is rather unrepresentative over a large spatial area in mountain regions. As a result, the conventional practice of adopting the triggering threshold for hazard early warning purposes is insufficient. The main reason is because of the huge orographic influence on rainfall distribution. Modern rainfall estimation methods such as numerical weather prediction modelling and remote sensing utilising radar from the space or on land are able to provide spatially more representative rainfall information in mountain areas. But unlike rain gauges, they only indirectly provide rainfall measurements. Remote sensing suffers from many sources of errors such as weather conditions, attenuation and sampling methods, while numerical weather prediction models suffer from spatiotemporal and amplitude errors depending on the model physics, dynamics, and model configuration. A case study based on Sichuan, China is used to illustrate the significant difference among the three aforementioned rainfall estimation methods. We argue none of those methods can be relied on individually, and the challenge is on how to make the full utilisation of the three methods conjunctively because each of them only provides partial information. We propose that a data fusion approach should be adopted based on the Bayesian inference method. However such an approach requires the uncertainty information from all those estimation techniques which still need extensive research. We hope this study will raise the awareness of this important issue and highlight the knowledge gap that should be filled in so that such a challenging problem could be tackled collectively by the community.

  2. A single scaling parameter as a first approximation to describe the rainfall pattern of a place: application on Catalonia

    NASA Astrophysics Data System (ADS)

    Casas-Castillo, M. Carmen; Llabrés-Brustenga, Alba; Rius, Anna; Rodríguez-Solà, Raúl; Navarro, Xavier

    2018-02-01

    As well as in other natural processes, it has been frequently observed that the phenomenon arising from the rainfall generation process presents fractal self-similarity of statistical type, and thus, rainfall series generally show scaling properties. Based on this fact, there is a methodology, simple scaling, which is used quite broadly to find or reproduce the intensity-duration-frequency curves of a place. In the present work, the relationship of the simple scaling parameter with the characteristic rainfall pattern of the area of study has been investigated. The calculation of this scaling parameter has been performed from 147 daily rainfall selected series covering the temporal period between 1883 and 2016 over the Catalonian territory (Spain) and its nearby surroundings, and a discussion about the relationship between the scaling parameter spatial distribution and rainfall pattern, as well as about trends of this scaling parameter over the past decades possibly due to climate change, has been presented.

  3. Rainfall estimation using microwave links. Results from an experimental setup in Luxembourg

    NASA Astrophysics Data System (ADS)

    Fenicia, Fabrizio; Matgen, Patrick; Pfister, Laurent

    2010-05-01

    Microwave links represent a valid alternative to traditional rainfall estimation methods. They are commonly used in mobile phone communication, and they constitute built-in widely distributed networks. Due to their ability of providing high temporal and spatial resolution measurements, their use is particularly suitable in urban settings. We here show results from an experimental setup in Luxembourg City, where two dual frequency links have been installed. The links cover a distance of about 4km, and measure power attenuation at 1 min. timestep. The links have been equipped with several recording raingauges, which measure rainfall in real-time communicating through a wireless connection. This set-up has been used to analyze in detail the mapping between attenuation and rainfall intensity, and gain insights into the potential accuracy of these instruments. In addition, we investigated the relation between rainfall and discharge response of the urban area of Luxembourg, which shows the potential utility of high frequency rainfall measurements for urban environments.

  4. A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland

    NASA Astrophysics Data System (ADS)

    Panziera, Luca; Gabella, Marco; Zanini, Stefano; Hering, Alessandro; Germann, Urs; Berne, Alexis

    2016-06-01

    This paper presents a regional extreme rainfall analysis based on 10 years of radar data for the 159 regions adopted for official natural hazard warnings in Switzerland. Moreover, a nowcasting tool aimed at issuing heavy precipitation regional alerts is introduced. The two topics are closely related, since the extreme rainfall analysis provides the thresholds used by the nowcasting system for the alerts. Warm and cold seasons' monthly maxima of several statistical quantities describing regional rainfall are fitted to a generalized extreme value distribution in order to derive the precipitation amounts corresponding to sub-annual return periods for durations of 1, 3, 6, 12, 24 and 48 h. It is shown that regional return levels exhibit a large spatial variability in Switzerland, and that their spatial distribution strongly depends on the duration of the aggregation period: for accumulations of 3 h and shorter, the largest return levels are found over the northerly alpine slopes, whereas for longer durations the southern Alps exhibit the largest values. The inner alpine chain shows the lowest values, in agreement with previous rainfall climatologies. The nowcasting system presented here is aimed to issue heavy rainfall alerts for a large variety of end users, who are interested in different precipitation characteristics and regions, such as, for example, small urban areas, remote alpine catchments or administrative districts. The alerts are issued not only if the rainfall measured in the immediate past or forecast in the near future exceeds some predefined thresholds but also as soon as the sum of past and forecast precipitation is larger than threshold values. This precipitation total, in fact, has primary importance in applications for which antecedent rainfall is as important as predicted one, such as urban floods early warning systems. The rainfall fields, the statistical quantity representing regional rainfall and the frequency of alerts issued in case of continuous threshold exceedance are some of the configurable parameters of the tool. The analysis of the urban flood which occurred in the city of Schaffhausen in May 2013 suggests that this alert tool might have complementary skill with respect to radar-based thunderstorm nowcasting systems for storms which do not show a clear convective signature.

  5. Regional landslide hazard assessment in a deep uncertain future

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Landslides have many negative economic and societal impacts, including the potential for significant loss of life and damage to infrastructure. These risks are likely to be exacerbated in the future by a combination of climatic and socio-economic factors. Climate change, for example, is expected to increase the occurrence of rainfall-triggered landslides, because a warmer atmosphere tends to produce more high intensity rainfall events. Prediction of future changes in rainfall, however, is subject to high levels of uncertainty, making it challenging for decision-makers to identify the areas and populations that are most vulnerable to landslide hazards. In this study, we demonstrate how a physically-based model - the Combined Hydrology and Stability Model (CHASM) - can be used together with Global Sensitivity Analysis (GSA) to explore the underlying factors controlling the spatial distribution of landslide risks across a regional landscape, while also accounting for deep uncertainty around future rainfall conditions. We demonstrate how GSA can used to analyse CHASM which in turn represents the spatial variability of hillslope characteristics in the study region, while accounting for other uncertainties. Results are presented in the form of landslide hazard maps, utilising high-resolution digital elevation datasets for a case study in St Lucia in the Caribbean. Our findings about spatial landslide hazard drivers have important implications for data collection approaches and for long-term decision-making about land management practices.

  6. Regional Landslide Hazard Assessment Considering Potential Climate Change

    NASA Astrophysics Data System (ADS)

    Almeida, S.; Holcombe, E.; Pianosi, F.; Wagener, T.

    2016-12-01

    Landslides have many negative economic and societal impacts, including the potential for significant loss of life and damage to infrastructure. These risks are likely to be exacerbated in the future by a combination of climatic and socio-economic factors. Climate change, for example, is expected to increase the occurrence of rainfall-triggered landslides, because a warmer atmosphere tends to produce more high intensity rainfall events. Prediction of future changes in rainfall, however, is subject to high levels of uncertainty, making it challenging for decision-makers to identify the areas and populations that are most vulnerable to landslide hazards. In this study, we demonstrate how a physically-based model - the Combined Hydrology and Stability Model (CHASM) - can be used together with Global Sensitivity Analysis (GSA) to explore the underlying factors controlling the spatial distribution of landslide risks across a regional landscape, while also accounting for deep uncertainty around potential future rainfall triggers. We demonstrate how GSA can be used to analyse CHASM which in turn represents the spatial variability of hillslope characteristics in the study region, while accounting for other uncertainties. Results are presented in the form of landslide hazard maps, utilising high-resolution digital elevation datasets for a case study in St Lucia in the Caribbean. Our findings about spatial landslide hazard drivers have important implications for data collection approaches and for long-term decision-making about land management practices.

  7. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China)

    NASA Astrophysics Data System (ADS)

    Li, Dan; Christakos, George; Ding, Xinxin; Wu, Jiaping

    2018-01-01

    Spatial rainfall data is an essential input to Distributed Hydrological Models (DHM), and a significant contributor to hydrological model uncertainty. Model uncertainty is higher when rain gauges are sparse, as is often the case in practice. Currently, satellite-based precipitation products increasingly provide an alternative means to ground-based rainfall estimates, in which case a rigorous product assessment is required before implementation. Accordingly, the twofold objective of this work paper was the real-world assessment of both (a) the Tropical Rainfall Measuring Mission (TRMM) rainfall product using gauge data, and (b) the TRMM product's role in forcing data for hydrologic simulations in the area of the Tiaoxi catchment (Taihu lake basin, China). The TRMM rainfall products used in this study are the Version-7 real-time 3B42RT and the post-real-time 3B42. It was found that the TRMM rainfall data showed a superior performance at the monthly and annual scales, fitting well with surface observation-based frequency rainfall distributions. The Nash-Sutcliffe Coefficient of Efficiency (NSCE) and the relative bias ratio (BIAS) were used to evaluate hydrologic model performance. The satisfactory performance of the monthly runoff simulations in the Tiaoxi study supports the view that the implementation of real-time 3B42RT allows considerable room for improvement. At the same time, post-real-time 3B42 can be a valuable tool of hydrologic modeling, water balance analysis, and basin water resource management, especially in developing countries or at remote locations in which rainfall gauges are scarce.

  8. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  9. Performance of CMIP3 and CMIP5 GCMs to simulate observed rainfall characteristics over the Western Himalayan region

    NASA Astrophysics Data System (ADS)

    Meher, J. K.; Das, L.

    2017-12-01

    The Western Himalayan Region (WHR) was subject to a significant negative trend in the annual and monsoon rainfall during 1902-2005. Annual and seasonal rainfall change over WHR of India was estimated using 22 rain gauge station rainfall data from the India Meteorological Department. The performance of 13 global climate models (GCMs) from the coupled model intercomparison project phase 3 (CMIP3) and 42 GCMs from CMIP5 was evaluated through multiple analysis: the evaluation of the mean annual cycle, annual cycles of interannual variability, spatial patterns, trends and signal-to-noise ratio. In general, CMIP5 GCMs were more skillful in terms of simulating the annual cycle of interannual variability compared to CMIP3 GCMs. The CMIP3 GCMs failed to reproduce the observed trend whereas 50% of the CMIP5 GCMs reproduced the statistical distribution of short-term (30-years) trend-estimates than for the longer term (99-years). GCMs from both CMIP3 and CMIP5 were able to simulate the spatial distribution of observed rainfall in pre-monsoon and winter months. Based on performance, each model of CMIP3 and CMIP5 was given an overall rank, which puts the high resolution version of the MIROC3.2 model (MIROC3.2 hires) and MIROC5 at the top in CMIP3 and CMIP5 respectively. Robustness of the ranking was judged through a sensitivity analysis, which indicated that ranks were independent during the process of adding or removing any individual method. It also revealed that trend analysis was not a robust method of judging performances of the model as compared to other methods.

  10. Influence of different rates of rainfall in the basin of the Uruguay River

    NASA Astrophysics Data System (ADS)

    Bohrer, M.; Zaparoli, B.; Saldanha, C. B.

    2013-04-01

    In the state of Rio Grande do Sul, the rainfall pattern is fairly regular and precipitation is well distributed throughout the year. The aim of this study was to evaluate the spatial and temporal distribution of precipitation in the Uruguay River basin from the determination of homogeneous regions based on the rainfall pattern. Values of 47 meteorological stations of the ANA (National Water Agency) from 1975 to 2005 were used, and values of Pacific sea surface temperature were collected from the National Oceanic and Atmospheric Administration, which is based on observed anomalies for different regions' niños (1 + niño 2, 3 niño, niño 4, niño 3 + 4). From the analysis of the results it was found that the study region showed five homogeneous regions. Knowing the time series of each region, it was possible to verify the regional variability in precipitation, indicating which regions have values above and below the climatological normal, and how the different indexes influence the rainfall pattern in the region.

  11. A satellite-based drought index describing anomalies in evapotranspiration for global crop monitoring

    USDA-ARS?s Scientific Manuscript database

    The utility and reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, precipitation-based indices only reflect one component of the surface hydrologic cycle, ...

  12. RainyDay: An Online, Open-Source Tool for Physically-based Rainfall and Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Wright, D.; Yu, G.; Holman, K. D.

    2017-12-01

    Flood frequency analysis in ungaged or changing watersheds typically requires rainfall intensity-duration-frequency (IDF) curves combined with hydrologic models. IDF curves only depict point-scale rainfall depth, while true rainstorms exhibit complex spatial and temporal structures. Floods result from these rainfall structures interacting with watershed features such as land cover, soils, and variable antecedent conditions as well as river channel processes. Thus, IDF curves are traditionally combined with a variety of "design storm" assumptions such as area reduction factors and idealized rainfall space-time distributions to translate rainfall depths into inputs that are suitable for flood hydrologic modeling. The impacts of such assumptions are relatively poorly understood. Meanwhile, modern precipitation estimates from gridded weather radar, grid-interpolated rain gages, satellites, and numerical weather models provide more realistic depictions of rainfall space-time structure. Usage of such datasets for rainfall and flood frequency analysis, however, are hindered by relatively short record lengths. We present RainyDay, an open-source stochastic storm transposition (SST) framework for generating large numbers of realistic rainfall "scenarios." SST "lengthens" the rainfall record by temporal resampling and geospatial transposition of observed storms to extract space-time information from regional gridded rainfall data. Relatively short (10-15 year) records of bias-corrected radar rainfall data are sufficient to estimate rainfall and flood events with much longer recurrence intervals including 100-year and 500-year events. We describe the SST methodology as implemented in RainyDay and compare rainfall IDF results from RainyDay to conventional estimates from NOAA Atlas 14. Then, we demonstrate some of the flood frequency analysis properties that are possible when RainyDay is integrated with a distributed hydrologic model, including robust estimation of flood hazards in a changing watershed. The U.S. Bureau of Reclamation is supporting the development of a web-based variant of RainyDay, a "beta" version of which is available at http://her.cee.wisc.edu/projects/rainyday/.

  13. Application of Archimedean copulas to the impact assessment of hydro-climatic variables in semi-arid aquifers of western India

    NASA Astrophysics Data System (ADS)

    Wable, Pawan S.; Jha, Madan K.

    2018-02-01

    The effects of rainfall and the El Niño Southern Oscillation (ENSO) on groundwater in a semi-arid basin of India were analyzed using Archimedean copulas considering 17 years of data for monsoon rainfall, post-monsoon groundwater level (PMGL) and ENSO Index. The evaluated dependence among these hydro-climatic variables revealed that PMGL-Rainfall and PMGL-ENSO Index pairs have significant dependence. Hence, these pairs were used for modeling dependence by employing four types of Archimedean copulas: Ali-Mikhail-Haq, Clayton, Gumbel-Hougaard, and Frank. For the copula modeling, the results of probability distributions fitting to these hydro-climatic variables indicated that the PMGL and rainfall time series are best represented by Weibull and lognormal distributions, respectively, while the non-parametric kernel-based normal distribution is the most suitable for the ENSO Index. Further, the PMGL-Rainfall pair is best modeled by the Clayton copula, and the PMGL-ENSO Index pair is best modeled by the Frank copula. The Clayton copula-based conditional probability of PMGL being less than or equal to its average value at a given mean rainfall is above 70% for 33% of the study area. In contrast, the spatial variation of the Frank copula-based probability of PMGL being less than or equal to its average value is 35-40% in 23% of the study area during El Niño phase, while it is below 15% in 35% of the area during the La Niña phase. This copula-based methodology can be applied under data-scarce conditions for exploring the impacts of rainfall and ENSO on groundwater at basin scales.

  14. Rainfall variability and extremes over southern Africa: assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.

  15. Modelling of extreme rainfall events in Peninsular Malaysia based on annual maximum and partial duration series

    NASA Astrophysics Data System (ADS)

    Zin, Wan Zawiah Wan; Shinyie, Wendy Ling; Jemain, Abdul Aziz

    2015-02-01

    In this study, two series of data for extreme rainfall events are generated based on Annual Maximum and Partial Duration Methods, derived from 102 rain-gauge stations in Peninsular from 1982-2012. To determine the optimal threshold for each station, several requirements must be satisfied and Adapted Hill estimator is employed for this purpose. A semi-parametric bootstrap is then used to estimate the mean square error (MSE) of the estimator at each threshold and the optimal threshold is selected based on the smallest MSE. The mean annual frequency is also checked to ensure that it lies in the range of one to five and the resulting data is also de-clustered to ensure independence. The two data series are then fitted to Generalized Extreme Value and Generalized Pareto distributions for annual maximum and partial duration series, respectively. The parameter estimation methods used are the Maximum Likelihood and the L-moment methods. Two goodness of fit tests are then used to evaluate the best-fitted distribution. The results showed that the Partial Duration series with Generalized Pareto distribution and Maximum Likelihood parameter estimation provides the best representation for extreme rainfall events in Peninsular Malaysia for majority of the stations studied. Based on these findings, several return values are also derived and spatial mapping are constructed to identify the distribution characteristic of extreme rainfall in Peninsular Malaysia.

  16. A weakly-constrained data assimilation approach to address rainfall-runoff model structural inadequacy in streamflow prediction

    NASA Astrophysics Data System (ADS)

    Lee, Haksu; Seo, Dong-Jun; Noh, Seong Jin

    2016-11-01

    This paper presents a simple yet effective weakly-constrained (WC) data assimilation (DA) approach for hydrologic models which accounts for model structural inadequacies associated with rainfall-runoff transformation processes. Compared to the strongly-constrained (SC) DA, WC DA adjusts the control variables less while producing similarly or more accurate analysis. Hence the adjusted model states are dynamically more consistent with those of the base model. The inadequacy of a rainfall-runoff model was modeled as an additive error to runoff components prior to routing and penalized in the objective function. Two example modeling applications, distributed and lumped, were carried out to investigate the effects of the WC DA approach on DA results. For distributed modeling, the distributed Sacramento Soil Moisture Accounting (SAC-SMA) model was applied to the TIFM7 Basin in Missouri, USA. For lumped modeling, the lumped SAC-SMA model was applied to nineteen basins in Texas. In both cases, the variational DA (VAR) technique was used to assimilate discharge data at the basin outlet. For distributed SAC-SMA, spatially homogeneous error modeling yielded updated states that are spatially much more similar to the a priori states, as quantified by Earth Mover's Distance (EMD), than spatially heterogeneous error modeling by up to ∼10 times. DA experiments using both lumped and distributed SAC-SMA modeling indicated that assimilating outlet flow using the WC approach generally produce smaller mean absolute difference as well as higher correlation between the a priori and the updated states than the SC approach, while producing similar or smaller root mean square error of streamflow analysis and prediction. Large differences were found in both lumped and distributed modeling cases between the updated and the a priori lower zone tension and primary free water contents for both WC and SC approaches, indicating possible model structural deficiency in describing low flows or evapotranspiration processes for the catchments studied. Also presented are the findings from this study and key issues relevant to WC DA approaches using hydrologic models.

  17. WegenerNet 1km-scale sub-daily rainfall data and their application: a hydrological modeling study on the sensitivity of small-catchment runoff to spatial rainfall variability

    NASA Astrophysics Data System (ADS)

    Oh, Sungmin; Hohmann, Clara; Foelsche, Ulrich; Fuchsberger, Jürgen; Rieger, Wolfgang; Kirchengast, Gottfried

    2017-04-01

    WegenerNet Feldbach region (WEGN), a pioneering experiment for weather and climate observations, has recently completed its first 10-year precipitation measurement cycle. The WEGN has measured precipitation, temperature, humidity, and other parameters since the beginning of 2007, supporting local-level monitoring and modeling studies, over an area of about 20 km x 15 km centered near the City of Feldbach (46.93 ˚ N, 15.90 ˚ E) in the Alpine forelands of southeast Austria. All the 151 stations in the network are now equipped with high-quality Meteoservis sensors as of August 2016, following an equipment with Friedrichs sensors at most stations before, and continue to provide high-resolution (2 km2/5-min) gauge based precipitation measurements for interested users in hydro-meteorological communities. Here we will present overall characteristics of the WEGN, with a focus on sub-daily precipitation measurements, from the data processing (data quality control, gridded data products generation, etc.) to data applications (e.g., ground validation of satellite estimates). The latter includes our recent study on the propagation of uncertainty from rainfall to runoff. The study assesses responses of small-catchment runoff to spatial rainfall variability in the WEGN region over the Raab valley, using a physics-based distributed hydrological model; Water Flow and Balance Simulation Model (WaSiM), developed at ETH Zurich (Schulla, ETH Zurich, 1997). Given that uncertainty due to resolution of rainfall measurements is believed to be a significant source of error in hydrologic modeling especially for convective rainfall that dominates in the region during summer, the high-resolution of WEGN data furnishes a great opportunity to analyze effects of rainfall events on the runoff at different spatial resolutions. Furthermore, the assessment can be conducted not only for the lower Raab catchment (area of about 500 km2) but also for its sub-catchments (areas of about 30-70 km2). Beside the question how many stations are necessary for reliable hydrological modeling, different interpolation methods like Inverse Distance Interpolation, Elevation Dependent Regression, and combinations will be tested. This presentation will show the first results from a scale-depending analysis of spatial and temporal structures of heavy rainfall events and responses of simulated runoff at the event scale in the WEGN region.

  18. Using the raindrop size distribution to quantify the soil detachment rate at the laboratory scale

    NASA Astrophysics Data System (ADS)

    Jomaa, S.; Jaffrain, J.; Barry, D. A.; Berne, A.; Sander, G. C.

    2010-05-01

    Rainfall simulators are beneficial tools for studying soil erosion processes and sediment transport for different circumstances and scales. They are useful to better understand soil erosion mechanisms and, therefore, to develop and validate process-based erosion models. Simulators permit experimental replicates for both simple and complex configurations. The 2 m × 6 m EPFL erosion flume is equipped with a hydraulic slope control and a sprinkling system located on oscillating bars 3 m above the surface. It provides a near-uniform spatial rainfall distribution. The intensity of the precipitation can be adjusted by changing the oscillation interval. The flume is filled to a depth of 0.32 m with an agricultural loamy soil. Raindrop detachment is an important process in interrill erosion, the latter varying with the soil properties as well as the raindrop size distribution and drop velocity. Since the soil detachment varies with the kinetic energy of raindrops, an accurate characterization of drop size distribution (DSD, measured, e.g., using a laser disdrometer) can potentially support erosion calculations. Here, a laser disdrometer was used at different rainfall intensities in the EPFL flume to quantify the rainfall event in terms of number of drops, diameter and velocity. At the same time, soil particle motion was measured locally using splash cups. These cups measured the detached material rates into upslope and downslope compartments. In contrast to previously reported splash cup experiments, the cups used in this study were equipped at the top with upside-down funnels, the upper part having the same diameter as the soil sampled at the bottom. This ensured that the soil detached and captured by the device was not re-exposed to rainfall. The experimental data were used to quantify the relationship between the raindrop distribution and the splash-driven sediment transport.

  19. Modeling Rainfall-Runoff Dynamics in Tropical, Urban Socio-Hydrological Systems: Green Infrastructure and Variable Precipitation Interception

    NASA Astrophysics Data System (ADS)

    Nytch, C. J.; Meléndez-Ackerman, E. J.

    2014-12-01

    There is a pressing need to generate spatially-explicit models of rainfall-runoff dynamics in the urban humid tropics that can characterize flow pathways and flood magnitudes in response to erratic precipitation events. To effectively simulate stormwater runoff processes at multiple scales, complex spatio-temporal parameters such as rainfall, evapotranspiration, and antecedent soil moisture conditions must be accurately represented, in addition to uniquely urban factors including stormwater conveyance structures and connectivity between green and gray infrastructure elements. In heavily urbanized San Juan, Puerto Rico, stream flashiness and frequent flooding are major issues, yet still lacking is a hydrological analysis that models the generation and movement of fluvial and pluvial stormwater through the watershed. Our research employs a novel and multifaceted approach to dealing with this problem that integrates 1) field-based rainfall interception and infiltration methodologies to quantify the hydrologic functions of natural and built infrastructure in San Juan; 2) remote sensing analysis to produce a fine-scale typology of green and gray cover types in the city and determine patterns of spatial distribution and connectivity; 3) assessment of precipitation and streamflow variability at local and basin-wide scales using satellite and radar precipitation estimates in concert with rainfall and stream gauge point data and participatory flood mapping; 4) simulation of historical, present-day, and future stormwater runoff scenarios with a fully distributed hydrologic model that couples diverse components of urban socio-hydrological systems from formal and informal knowledge sources; and 5) bias and uncertainty analysis of parameters and model structure within a Bayesian hierarchical framework. Preliminary results from the rainfall interception study suggest that canopy structure and leaf area index of different tree species contribute to variable throughfall and stemflow responses. Additional investigations are pending. The findings from this work will help inform urban planning and design, and build adaptive capacity to reduce flood vulnerability in the context of a changing climate.

  20. Rainfall variability over southern Africa: an overview of current research using satellite and climate model data

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, satellite-derived rainfall data are used as a basis for undertaking model experiments using a state-of-the-art climate model, run at both high and low spatial resolution. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, a brief overview is given of the authors' research to date, pertaining to southern African rainfall. This covers (i) a description of present-day rainfall variability over southern Africa; (ii) a comparison of model simulated daily rainfall with the satellite-derived dataset; (iii) results from sensitivity testing of the model's domain size; and (iv) results from the idealised SST experiments.

  1. Evaluate Hydrologic Response on Spatiotemporal Characteristics of Rainfall Using High Resolution Radar Rainfall Data and WRF-Hydro Model

    NASA Astrophysics Data System (ADS)

    Gao, S.; Fang, N. Z.

    2017-12-01

    A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher peak discharge.

  2. Short-term rainfall: its scaling properties over Portugal

    NASA Astrophysics Data System (ADS)

    de Lima, M. Isabel P.

    2010-05-01

    The characterization of rainfall at a variety of space- and time-scales demands usually that data from different origins and resolution are explored. Different tools and methodologies can be used for this purpose. In regions where the spatial variation of rain is marked, the study of the scaling structure of rainfall can lead to a better understanding of the type of events affecting that specific area, which is essential for many engineering applications. The relevant factors affecting rain variability, in time and space, can lead to contrasting statistics which should be carefully taken into account in design procedures and decision making processes. One such region is Mainland Portugal; the territory is located in the transitional region between the sub-tropical anticyclone and the subpolar depression zones and is characterized by strong north-south and east-west rainfall gradients. The spatial distribution and seasonal variability of rain are particularly influenced by the characteristics of the global circulation. One specific feature is the Atlantic origin of many synoptic disturbances in the context of the regional geography (e.g. latitude, orography, oceanic and continental influences). Thus, aiming at investigating the statistical signature of rain events of different origins, resulting from the large number of mechanisms and factors affecting the rainfall climate over Portugal, scale-invariant analyses of the temporal structure of rain from several locations in mainland Portugal were conducted. The study used short-term rainfall time series. Relevant scaling ranges were identified and characterized that help clarifying the small-scale behaviour and statistics of this process.

  3. Simulation of extreme rainfall event of November 2009 over Jeddah, Saudi Arabia: the explicit role of topography and surface heating

    NASA Astrophysics Data System (ADS)

    Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.

    2018-04-01

    In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.

  4. Spatial dependence of extreme rainfall

    NASA Astrophysics Data System (ADS)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  5. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states.

    PubMed

    Staver, A Carla; Archibald, Sally; Levin, Simon

    2011-05-01

    Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions and in carbon storage under climate and global change scenarios.

  6. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-07-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  7. Forecasting Global Rainfall for Points Using ECMWF's Global Ensemble and Its Applications in Flood Forecasting

    NASA Astrophysics Data System (ADS)

    Pillosu, F. M.; Hewson, T.; Mazzetti, C.

    2017-12-01

    Prediction of local extreme rainfall has historically been the remit of nowcasting and high resolution limited area modelling, which represent only limited areas, may not be spatially accurate, give reasonable results only for limited lead times (<2 days) and become prohibitively expensive at global scale. ECMWF/EFAS/GLOFAS have developed a novel, cost-effective and physically-based statistical post-processing software ("ecPoint-Rainfall, ecPR", operational in 2017) that uses ECMWF Ensemble (ENS) output to deliver global probabilistic rainfall forecasts for points up to day 10. Firstly, ecPR applies a new notion of "remote calibration", which 1) allows us to replicate a multi-centennial training period using only one year of data, and 2) provides forecasts for anywhere in the world. Secondly, the software applies an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals, and of where biases in the model can be improved upon. A long-term verification has shown that the post-processed rainfall has better reliability and resolution at every lead time if compared with ENS, and for large totals, ecPR outputs have the same skill at day 5 that the raw ENS has at day 1 (ROC area metric). ecPR could be used as input for hydrological models if its probabilistic output is modified accordingly to the inputs requirements for hydrological models. Indeed, ecPR does not provide information on where the highest total is likely to occur inside the gridbox, nor on the spatial distribution of rainfall values nearby. "Scenario forecasts" could be a solution. They are derived from locating the rainfall peak in sensitive positions (e.g. urban areas), and then redistributing the remaining quantities in the gridbox modifying traditional spatial correlation characterization methodologies (e.g. variogram analysis) in order to take account, for instance, of the type of rainfall forecast (stratiform, convective). Such an approach could be a turning point in the field of medium-range global real-time riverine flood forecasts. This presentation will illustrate for ecPR 1) system calibration, 2) operational implementation, 3) long-term verification, 4) future developments, and 5) early ideas for the application of ecPR outputs in hydrological models.

  8. Distributed modelling of water resources in the Lower Jordan River Basin - from present day variability to suitability for new water sources

    NASA Astrophysics Data System (ADS)

    Gunkel, Anne; Lange, Jens

    2010-05-01

    The Middle East is characterized by a high temporal and spatial variability of rainfall. As a result, water resources are not reliable and severe drought events are frequent, worsening the natural water scarcity. Single high magnitude events may dominate the water balance of entire seasons - a fact that is poorly represented in the assessments of available water resources that are normally based on long term averages. Therefore, a distributed hydrological model with a high temporal and spatial resolution is applied to the Lower Jordan River basin (LJRB). The focus is hereby to capture the variability of rainfall and to investigate how this signal is amplified in the hydrological cycle in this arid and semi arid environment. Rainfall variability is addressed through a volume scanning rainfall radar providing precipitation data with a resolution of 5 minutes for entire seasons that serves as input to a conceptual hydrological model. The raw radar data recorded by a C-Band system was pre-corrected by a multiple regression approach prior to regionalization to the LJRB, ground truthing with rainfall station data and conditional merging. Despite certain uncertainties, the data documents the accentuated rainfall variability in the entire LJRB. In order to include the full range of present rainfall variability, one average and two extreme seasons (wet and dry) are studied. Hydrological modelling is undertaken with a new modelling tool created by coupling two hydrological models, TRAIN and ZIN, complementing each other in respect to the addressed processes and water fluxes. The resulting modelling tool enables conceptual modelling of the processes relevant for semi-arid / arid environments with a high temporal and spatial resolution. The model is applied to the large scale LJRB (16,000 km²) in order to simulate all components of the water balance for three rainy seasons representing the present climate variability. Under given conditions of low data availability, the results give a basin wide view on the availability of surface water resources without human intervention with a high resolution in time (5 min) and space (up to 250 x 250 m²). The scarcity of water resources in many areas within the region is illustrated and detailed maps of the water balance components reveal spatial pattern of water availability characterizing the different potentials of regions or sub basins for water management options. Moreover, comparing different climate conditions provides valuable information for water management, including insights into the relation between green and blue water. For instance, runoff generation and percolation react stronger to changes in precipitation than evapotranspiration and the changes in runoff and percolation are considerably higher than the differences in rainfall between the three years. This amplification of rainfall variability by the hydrological cycle is significant for water management. Based on the results for current conditions, the impact of different scenarios and management options is analyzed, e.g. the effect of land use changes or the suitability of different regions for rainwater harvesting, one of the urgently needed new water sources.

  9. Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region

    NASA Astrophysics Data System (ADS)

    Tobin, Cara; Nicotina, Ludovico; Parlange, Marc B.; Berne, Alexis; Rinaldo, Andrea

    2011-04-01

    SummaryThis paper presents a comparative study on the mapping of temperature and precipitation fields in complex Alpine terrain. Its relevance hinges on the major impact that inadequate interpolations of meteorological forcings bear on the accuracy of hydrologic predictions regardless of the specifics of the models, particularly during flood events. Three flood events measured in the Swiss Alps are analyzed in detail to determine the interpolation methods which best capture the distribution of intense, orographically-induced precipitation. The interpolation techniques comparatively examined include: Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Kriging with External Drift (KED). Geostatistical methods rely on a robust anisotropic variogram for the definition of the spatial rainfall structure. Results indicate that IDW tends to significantly underestimate rainfall volumes whereas OK and KED methods capture spatial patterns and rainfall volumes induced by storm advection. Using numerical weather forecasts and elevation data as covariates for precipitation, we provide evidence for KED to outperform the other methods. Most significantly, the use of elevation as auxiliary information in KED of temperatures demonstrates minimal errors in estimated instantaneous rainfall volumes and provides instantaneous lapse rates which better capture snow/rainfall partitioning. Incorporation of the temperature and precipitation input fields into a hydrological model used for operational management was found to provide vastly improved outputs with respect to measured discharge volumes and flood peaks, with notable implications for flood modeling.

  10. Patterns in woody vegetation structure across African savannas

    NASA Astrophysics Data System (ADS)

    Axelsson, Christoffer R.; Hanan, Niall P.

    2017-07-01

    Vegetation structure in water-limited systems is to a large degree controlled by ecohydrological processes, including mean annual precipitation (MAP) modulated by the characteristics of precipitation and geomorphology that collectively determine how rainfall is distributed vertically into soils or horizontally in the landscape. We anticipate that woody canopy cover, crown density, crown size, and the level of spatial aggregation among woody plants in the landscape will vary across environmental gradients. A high level of woody plant aggregation is most distinct in periodic vegetation patterns (PVPs), which emerge as a result of ecohydrological processes such as runoff generation and increased infiltration close to plants. Similar, albeit weaker, forces may influence the spatial distribution of woody plants elsewhere in savannas. Exploring these trends can extend our knowledge of how semi-arid vegetation structure is constrained by rainfall regime, soil type, topography, and disturbance processes such as fire. Using high-spatial-resolution imagery, a flexible classification framework, and a crown delineation method, we extracted woody vegetation properties from 876 sites spread over African savannas. At each site, we estimated woody cover, mean crown size, crown density, and the degree of aggregation among woody plants. This enabled us to elucidate the effects of rainfall regimes (MAP and seasonality), soil texture, slope, and fire frequency on woody vegetation properties. We found that previously documented increases in woody cover with rainfall is more consistently a result of increasing crown size than increasing density of woody plants. Along a gradient of mean annual precipitation from the driest (< 200 mm yr-1) to the wettest (1200-1400 mm yr-1) end, mean estimates of crown size, crown density, and woody cover increased by 233, 73, and 491 % respectively. We also found a unimodal relationship between mean crown size and sand content suggesting that maximal savanna tree sizes do not occur in either coarse sands or heavy clays. When examining the occurrence of PVPs, we found that the same factors that contribute to the formation of PVPs also correlate with higher levels of woody plant aggregation elsewhere in savannas and that rainfall seasonality plays a key role for the underlying processes.

  11. Effects of Spatial Variability of Soil Properties on the Triggering of Rainfall-Induced Shallow Landslides

    NASA Astrophysics Data System (ADS)

    Fan, Linfeng; Lehmann, Peter; Or, Dani

    2015-04-01

    Naturally-occurring spatial variations in soil properties (e.g., soil depth, moisture, and texture) affect key hydrological processes and potentially the mechanical response of soil to hydromechanical loading (relative to the commonly-assumed uniform soil mantle). We quantified the effects of soil spatial variability on the triggering of rainfall-induced shallow landslides at the hillslope- and catchment-scales, using a physically-based landslide triggering model that considers interacting soil columns with mechanical strength thresholds (represented by the Fiber Bundle Model). The spatial variations in soil properties are represented as Gaussian random distributions and the level of variation is characterized by the coefficient of variation and correlation lengths of soil properties (i.e., soil depth, soil texture and initial water content in this study). The impacts of these spatial variations on landslide triggering characteristics were measured by comparing the times to triggering and landslide volumes for heterogeneous soil properties and homogeneous cases. Results at hillslope scale indicate that for spatial variations of an individual property (without cross correlation), the increasing of coefficient of variation introduces weak spots where mechanical damage is accelerated and leads to earlier onset of landslide triggering and smaller volumes. Increasing spatial correlation length of soil texture and initial water content also induces early landslide triggering and small released volumes due to the transition of failure mode from brittle to ductile failure. In contrast, increasing spatial correlation length of soil depth "reduces" local steepness and postpones landslide triggering. Cross-correlated soil properties generally promote landslide initiation, but depending on the internal structure of spatial distribution of each soil property, landslide triggering may be reduced. The effects of cross-correlation between initial water content and soil texture were investigated in detail at the catchment scale by incorporating correlations of both variables with topography. Results indicate that the internal structure of the spatial distribution of each soil property together with their interplays determine the overall performance of the coupled spatial variability. This study emphasizes the importance of both the randomness and spatial structure of soil properties on landslide triggering and characteristics.

  12. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.

  13. A reference data set of hillslope rainfall-runoff response, Panola Mountain Research Watershed, United States

    USGS Publications Warehouse

    Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.

    2008-01-01

    Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.

  14. Identification of homogeneous regions for rainfall regional frequency analysis considering typhoon event in South Korea

    NASA Astrophysics Data System (ADS)

    Heo, J. H.; Ahn, H.; Kjeldsen, T. R.

    2017-12-01

    South Korea is prone to large, and often disastrous, rainfall events caused by a mixture of monsoon and typhoon rainfall phenomena. However, traditionally, regional frequency analysis models did not consider this mixture of phenomena when fitting probability distributions, potentially underestimating the risk posed by the more extreme typhoon events. Using long-term observed records of extreme rainfall from 56 sites combined with detailed information on the timing and spatial impact of past typhoons from the Korea Meteorological Administration (KMA), this study developed and tested a new mixture model for frequency analysis of two different phenomena; events occurring regularly every year (monsoon) and events only occurring in some years (typhoon). The available annual maximum 24 hour rainfall data were divided into two sub-samples corresponding to years where the annual maximum is from either (1) a typhoon event, or (2) a non-typhoon event. Then, three-parameter GEV distribution was fitted to each sub-sample along with a weighting parameter characterizing the proportion of historical events associated with typhoon events. Spatial patterns of model parameters were analyzed and showed that typhoon events are less commonly associated with annual maximum rainfall in the North-West part of the country (Seoul area), and more prevalent in the southern and eastern parts of the country, leading to the formation of two distinct typhoon regions: (1) North-West; and (2) Southern and Eastern. Using a leave-one-out procedure, a new regional frequency model was tested and compared to a more traditional index flood method. The results showed that the impact of typhoon on design events might previously have been underestimated in the Seoul area. This suggests that the use of the mixture model should be preferred where the typhoon phenomena is less frequent, and thus can have a significant effect on the rainfall-frequency curve. This research was supported by a grant(2017-MPSS31-001) from Supporting Technology Development Program for Disaster Management funded by Ministry of Public Safety and Security(MPSS) of the Korean government.

  15. Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy)

    NASA Astrophysics Data System (ADS)

    Terranova, O. G.; Gariano, S. L.

    2014-03-01

    Heavy rainstorms often induce flash flooding, one of the natural disasters most responsible for damage to man-made infrastructure and loss of lives, adversely affecting also the opportunities for socio-economic development of Mediterranean Countries. The frequently dramatic damage of flash floods are often detected with sufficient accuracy by post-event surveys, but rainfall causing them are still only roughly characterized. With the aim of improving the understanding of the temporal structure and spatial distribution of heavy rainstorms in the Mediterranean context, a statistical analysis was carried out in Calabria (southern Italy) concerning rainstorms that mainly induced flash floods, but also shallow landslides and debris-flows. Thus a method is proposed - based on the overcoming of heuristically predetermined threshold values of cumulated rainfall, maximum intensity, and kinetic energy of the rainfall event - to select and characterize the rainstorms able to induce flash floods in the Mediterranean-climate Countries. Therefore the obtained (heavy) rainstorms were automatically classified and studied according to their structure in time, localization and extension. Rainfall-runoff watershed models can consequently benefit from the enhanced identification of design storms, with a realistic time structure integrated with the results of the spatial analysis. A survey of flash flood events recorded in the last decades provides a preliminary validation of the method proposed to identify the heavy rainstorms and synthetically describe their characteristics. The notable size of the employed sample, including data with a very detailed resolution in time, that relate to several rain gauges well-distributed throughout the region, give robustness to the obtained results.

  16. Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy)

    NASA Astrophysics Data System (ADS)

    Terranova, O. G.; Gariano, S. L.

    2014-09-01

    Heavy rainstorms often induce flash flooding, one of the natural disasters most responsible for damage to man-made infrastructures and loss of lives, also adversely affecting the opportunities for socio-economic development of Mediterranean countries. The frequently dramatic damage of flash floods are often detected, with sufficient accuracy, by post-event surveys, but rainfall causing them are still only roughly characterized. With the aim of improving the understanding of the temporal structure and spatial distribution of heavy rainstorms in the Mediterranean context, a statistical analysis was carried out in Calabria (southern Italy) concerning rainstorms that mainly induced flash floods, but also shallow landslides and debris flows. Thus, a method is proposed - based on the overcoming of heuristically predetermined threshold values of cumulated rainfall, maximum intensity, and kinetic energy of the rainfall event - to select and characterize the rainstorms able to induce flash floods in the Mediterranean-climate countries. Therefore, the obtained (heavy) rainstorms were automatically classified and studied according to their structure in time, localization, and extension. Rainfall-runoff watershed models can consequently benefit from the enhanced identification of design storms, with a realistic time structure integrated with the results of the spatial analysis. A survey of flash flood events recorded in the last decades provides a preliminary validation of the method proposed to identify the heavy rainstorms and synthetically describe their characteristics. The notable size of the employed sample, including data with a very detailed resolution in time that relate to several rain gauges well-distributed throughout the region, gives robustness to the obtained results.

  17. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.

    2010-01-01

    Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.

  18. Spatial averaging of oceanic rainfall variability using underwater sound: Ionian Sea rainfall experiment 2004.

    PubMed

    Nystuen, Jeffrey A; Amitai, Eyal; Anagnostou, Emmanuel N; Anagnostou, Marios N

    2008-04-01

    An experiment to evaluate the inherent spatial averaging of the underwater acoustic signal from rainfall was conducted in the winter of 2004 in the Ionian Sea southwest of Greece. A mooring with four passive aquatic listeners (PALs) at 60, 200, 1000, and 2000 m was deployed at 36.85 degrees N, 21.52 degrees E, 17 km west of a dual-polarization X-band coastal radar at Methoni, Greece. The acoustic signal is classified into wind, rain, shipping, and whale categories. It is similar at all depths and rainfall is detected at all depths. A signal that is consistent with the clicking of deep-diving beaked whales is present 2% of the time, although there was no visual confirmation of whale presence. Co-detection of rainfall with the radar verifies that the acoustic detection of rainfall is excellent. Once detection is made, the correlation between acoustic and radar rainfall rates is high. Spatial averaging of the radar rainfall rates in concentric circles over the mooring verifies the larger inherent spatial averaging of the rainfall signal with recording depth. For the PAL at 2000 m, the maximum correlation was at 3-4 km, suggesting a listening area for the acoustic rainfall measurement of roughly 30-50 km(2).

  19. Evaluation of radar rainfall estimates and nowcasts to prevent flash flood in real time by using a road submersion warning tool

    NASA Astrophysics Data System (ADS)

    Versini, Pierre-Antoine; Sempere-Torres, Daniel

    2010-05-01

    Important damages occur in small headwater catchments when they are hit by severe storms with complex spatio-temporal structure, sometimes resulting in flash floods. As these catchments are mostly not covered by sensor networks, it is difficult to forecast these floods. This is particularly true for road submersions. These are major concerns for flood event managers. The use of Quantitative Precipitation Estimates and Forecasts (QPE/QPF) especially based on radar measurements could particularly be adequate to evaluate rainfall-induced risks. Although their characteristic time and space scales would make them suitable for flash flood modelling, the impact of their uncertainties remain uncertain and have to be evaluated. The Gard region (France) has been chosen as case study. This area is frequently affected by severe flash floods and different kinds of rainfall observations are available in real time: radar rainfall estimates and nowcasts from METEO FRANCE and the CALAMAR system from SPC (state authority in charge of flood forecasting). An application devoted to the road network, has also been recently developed for this region. It combines distributed hydro-meteorological very short range forecasts and vulnerability analysis to provide warnings of road submersions. The first results demonstrate that it is technically possible to provide distributed short-term forecasts for a large number of sites. The study also demonstrates that a reliable estimation of the spatial distribution of rainfall is essential. For this reason, the road submersion warning system can be used to evaluate the quality of rainfall estimates and nowcasts. The warning system has been tested on the specific storm of the 29-30 September 2007. During this event, more than 300mm dropped on the South part of the Gard and many roads were submerged. Each of the mentioned rainfall datasets (i.e. estimates and nowcasts) was available in real time. They have been used to forecast the exact location of road submersions and the results have been compared to the effective road submersions actually occurred during the event as listed by the emergency services. The results confirm that the road submersion warning system represents a promising tool for anticipating and quantifying the consequences of storm events at ground. It rates the submersion risk with an acceptable level of accuracy and a reasonable false alarm ratio. It demonstrates also the quality of high spatial and temporal resolution radar rainfall data in real time, and the possibility to use them despite their uncertainties. However because of the quality of rainfall nowcasts falls drastically with time, it is not often sufficient to provide valuable information for lead times exceeding one hour.

  20. Evaluation of NU-WRF Rainfall Forecasts for IFloodS

    NASA Technical Reports Server (NTRS)

    Wu, Di; Peters-Lidard, Christa; Tao, Wei-Kuo; Petersen, Walter

    2016-01-01

    The Iowa Flood Studies (IFloodS) campaign was conducted in eastern Iowa as a pre- GPM-launch campaign from 1 May to 15 June 2013. During the campaign period, real time forecasts are conducted utilizing NASA-Unified Weather Research and Forecasting (NU-WRF) model to support the everyday weather briefing. In this study, two sets of the NU-WRF rainfall forecasts are evaluated with Stage IV and Multi-Radar Multi-Sensor (MRMS) Quantitative Precipitation Estimation (QPE), with the objective to understand the impact of Land Surface initialization on the predicted precipitation. NU-WRF is also compared with North American Mesoscale Forecast System (NAM) 12 kilometer forecast. In general, NU-WRF did a good job at capturing individual precipitation events. NU-WRF is also able to replicate a better rainfall spatial distribution compare with NAM. Further sensitivity tests show that the high-resolution makes a positive impact on rainfall forecast. The two sets of NU-WRF simulations produce very close rainfall characteristics. The Land surface initialization do not show significant impact on short term rainfall forecast, and it is largely due to the soil conditions during the field campaign period.

  1. Rainfall erosivity in Central Chile

    NASA Astrophysics Data System (ADS)

    Bonilla, Carlos A.; Vidal, Karim L.

    2011-11-01

    SummaryOne of the most widely used indicators of potential water erosion risk is the rainfall-runoff erosivity factor ( R) of the Revised Universal Soil Loss Equation (RUSLE). R is traditionally determined by calculating a long-term average of the annual sum of the product of a storm's kinetic energy ( E) and its maximum 30-min intensity ( I30), known as the EI30. The original method used to calculate EI30 requires pluviograph records for at most 30-min time intervals. Such high resolution data is difficult to obtain in many parts of the world, and processing it is laborious and time-consuming. In Chile, even though there is a well-distributed rain gauge network, there is no systematic characterization of the territory in terms of rainfall erosivity. This study presents a rainfall erosivity map for most of the cultivated land in the country. R values were calculated by the prescribed method for 16 stations with continuous graphical record rain gauges in Central Chile. The stations were distributed along 800 km (north-south), and spanned a precipitation gradient of 140-2200 mm yr -1. More than 270 years of data were used, and 5400 storms were analyzed. Additionally, 241 spatially distributed R values were generated by using an empirical procedure based on annual rainfall. Point estimates generated by both methods were interpolated by using kriging to create a map of rainfall erosivity for Central Chile. The results show that the empirical procedure used in this study predicted the annual rainfall erosivity well (model efficiency = 0.88). Also, an increment in the rainfall erosivities was found as a result of the rainfall depths, a regional feature determined by elevation and increasing with latitude from north to south. R values in the study area range from 90 MJ mm ha -1 h -1 yr -1 in the north up to 7375 MJ mm ha -1 h -1 yr -1 in the southern area, at the foothills of the Andes Mountains. Although the map and the estimates could be improved in the future by generating additional data points, the erosivity map should prove to be a good tool for land-use planners in Chile and other areas with similar rainfall characteristics.

  2. Mentoring Temporal and Spatial Variations in Rainfall across Wadi Ar-Rumah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alharbi, T.; Ahmed, M.

    2015-12-01

    Across the Kingdom of Saudi Arabia (KSA), the fresh water resources are limited only to those found in aquifer systems. Those aquifers were believed to be recharged during the previous wet climatic period but still receiving modest local recharge in interleaving dry periods such as those prevailing at present. Quantifying temporal and spatial variabilities in rainfall patterns, magnitudes, durations, and frequencies is of prime importance when it comes to sustainable management of such aquifer systems. In this study, an integrated approach, using remote sensing and field data, was used to assess the past, the current, and the projected spatial and temporal variations in rainfall over one of the major watersheds in KSA, Wadi Ar-Rumah. This watershed was selected given its larger areal extent and population intensity. Rainfall data were extracted from (1) the Climate Prediction Centers (CPC) Merged Analysis of Precipitation (CMAP; spatial coverage: global; spatial resolution: 2.5° × 2.5°; temporal coverage: January 1979 to April 2015; temporal resolution: monthly), and (2) the Tropical Rainfall Measuring Mission (TRMM; spatial coverage: 50°N to 50°S; spatial resolution: 0.25° × 0.25°; temporal coverage: January 1998 to March 2015; temporal resolution: 3 hours) and calibrated against rainfall measurements extracted from rain gauges. Trends in rainfall patterns were examined over four main investigation periods: period I (01/1979 to 12/1985), period II (01/1986 to 12/1992), period III (01/1993 to 12/2002), and period IV (01/2003 to 12/2014). Our findings indicate: (1) a significant increase (+14.19 mm/yr) in rainfall rates were observed during period I, (2) a significant decrease in rainfall rates were observed during periods II (-5.80 mm/yr), III (-9.38 mm/yr), and IV (-2.46 mm/yr), and (3) the observed variations in rainfall rates are largely related to the temporal variations in the northerlies (also called northwesterlies) and the monsoonal wind regimes.

  3. Runoff simulation sensitivity to remotely sensed initial soil water content

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Schmugge, T. J.; Jackson, T. J.; Unkrich, C. L.; Keefer, T. O.; Parry, R.; Bach, L. B.; Amer, S. A.

    1994-05-01

    A variety of aircraft remotely sensed and conventional ground-based measurements of volumetric soil water content (SW) were made over two subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture's Agricultural Research Service Walnut Gulch experimental watershed during the 1990 monsoon season. Spatially distributed soil water contents estimated remotely from the NASA push broom microwave radiometer (PBMR), an Institute of Radioengineering and Electronics (IRE) multifrequency radiometer, and three ground-based point methods were used to define prestorm initial SW for a distributed rainfall-runoff model (KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium catchment scale (631 ha or 6.31 km2) spatially distributed PBMR SW data were aggregated via stream order reduction. The impacts of the various spatial averages of SW on runoff simulations are discussed and are compared to runoff simulations using SW estimates derived from a simple daily water balance model. It was found that at the small catchment scale the SW data obtained from any of the measurement methods could be used to obtain reasonable runoff predictions. At the medium catchment scale, a basin-wide remotely sensed average of initial water content was sufficient for runoff simulations. This has important implications for the possible use of satellite-based microwave soil moisture data to define prestorm SW because the low spatial resolutions of such sensors may not seriously impact runoff simulations under the conditions examined. However, at both the small and medium basin scale, adequate resources must be devoted to proper definition of the input rainfall to achieve reasonable runoff simulations.

  4. Modelling of Rainfall Induced Landslides in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Arnone, E.; Sivandran, G.; Noto, L. V.; Bras, R. L.

    2010-12-01

    We performed an island-wide determination of static landslide susceptibility and hazard assessment as well as dynamic modeling of rainfall-induced shallow landslides in a particular hydrologic basin. Based on statistical analysis of past landslides, we determined that reliable prediction of the susceptibility to landslides is strongly dependent on the resolution of the digital elevation model (DEM) employed and the reliability of the rainfall data. A distributed hydrology model, Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator with VEGetation Generator for Interactive Evolution (tRIBS-VEGGIE), tRIBS-VEGGIE, has been implemented for the first time in a humid tropical environment like Puerto Rico and validated against in-situ measurements. A slope-failure module has been added to tRIBS-VEGGIE’s framework, after analyzing several failure criterions to identify the most suitable for our application; the module is used to predict the location and timing of landsliding events. The Mameyes basin, located in the Luquillo Experimental Forest in Puerto Rico, was selected for modeling based on the availability of soil, vegetation, topographical, meteorological and historic landslide data. Application of the model yields a temporal and spatial distribution of predicted rainfall-induced landslides.

  5. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China

    NASA Astrophysics Data System (ADS)

    Tian, Jiyang; Liu, Jia; Wang, Jianhua; Li, Chuanzhe; Yu, Fuliang; Chu, Zhigang

    2017-07-01

    Mesoscale Numerical Weather Prediction systems can provide rainfall products at high resolutions in space and time, playing an increasingly more important role in water management and flood forecasting. The Weather Research and Forecasting (WRF) model is one of the most popular mesoscale systems and has been extensively used in research and practice. However, for hydrologists, an unsolved question must be addressed before each model application in a different target area. That is, how are the most appropriate combinations of physical parameterisations from the vast WRF library selected to provide the best downscaled rainfall? In this study, the WRF model was applied with 12 designed parameterisation schemes with different combinations of physical parameterisations, including microphysics, radiation, planetary boundary layer (PBL), land-surface model (LSM) and cumulus parameterisations. The selected study areas are two semi-humid and semi-arid catchments located in the Daqinghe River basin, Northern China. The performance of WRF with different parameterisation schemes is tested for simulating eight typical 24-h storm events with different evenness in space and time. In addition to the cumulative rainfall amount, the spatial and temporal patterns of the simulated rainfall are evaluated based on a two-dimensional composed verification statistic. Among the 12 parameterisation schemes, Scheme 4 outperforms the other schemes with the best average performance in simulating rainfall totals and temporal patterns; in contrast, Scheme 6 is generally a good choice for simulations of spatial rainfall distributions. Regarding the individual parameterisations, Single-Moment 6 (WSM6), Yonsei University (YSU), Kain-Fritsch (KF) and Grell-Devenyi (GD) are better choices for microphysics, planetary boundary layers (PBL) and cumulus parameterisations, respectively, in the study area. These findings provide helpful information for WRF rainfall downscaling in semi-humid and semi-arid areas. The methodologies to design and test the combination schemes of parameterisations can also be regarded as a reference for generating ensembles in numerical rainfall predictions using the WRF model.

  6. Rainfall estimates for hydrological models: Comparing rain gauge, radar and microwave link data as input for the Wageningen Lowland Runoff Simulator (WALRUS)

    NASA Astrophysics Data System (ADS)

    Brauer, Claudia; Overeem, Aart; Uijlenhoet, Remko

    2015-04-01

    Several rainfall measurement techniques are available for hydrological applications, each with its own spatial and temporal resolution. We investigated the effect of differences in rainfall estimates on discharge simulations in a lowland catchment by forcing a novel rainfall-runoff model (WALRUS) with rainfall data from gauges, radars and microwave links. The hydrological model used for this analysis is the recently developed Wageningen Lowland Runoff Simulator (WALRUS). WALRUS is a rainfall-runoff model accounting for hydrological processes relevant to areas with shallow groundwater (e.g. groundwater-surface water feedback). Here, we used WALRUS for case studies in the Hupsel Brook catchment. We used two automatic rain gauges with hourly resolution, located inside the catchment (the base run) and 30 km northeast. Operational (real-time) and climatological (gauge-adjusted) C-band radar products and country-wide rainfall maps derived from microwave link data from a cellular telecommunication network were also used. Discharges simulated with these different inputs were compared to observations. Traditionally, the precipitation research community places emphasis on quantifying spatial errors and uncertainty, but for hydrological applications, temporal errors and uncertainty should be quantified as well. Its memory makes the hydrologic system sensitive to missed or badly timed rainfall events, but also emphasizes the effect of a bias in rainfall estimates. Systematic underestimation of rainfall by the uncorrected operational radar product leads to very dry model states and an increasing underestimation of discharge. Using the rain gauge 30 km northeast of the catchment yields good results for climatological studies, but not for forecasting individual floods. Simulating discharge using the maps derived from microwave link data and the gauge-adjusted radar product yields good results for both events and climatological studies. This indicates that these products can be used in catchments without gauges in or near the catchment. Uncertainty in rainfall forcing is a major source of uncertainty in discharge predictions, both with lumped and with distributed models. For lumped rainfall-runoff models, the main source of input uncertainty is associated with the way in which (effective) catchment-average rainfall is estimated. Improving rainfall measurements can improve the performance of rainfall-runoff models, indicating their potential for reducing flood damage through real-time control.

  7. Regionalisation of a distributed method for flood quantiles estimation: Revaluation of local calibration hypothesis to enhance the spatial structure of the optimised parameter

    NASA Astrophysics Data System (ADS)

    Odry, Jean; Arnaud, Patrick

    2016-04-01

    The SHYREG method (Aubert et al., 2014) associates a stochastic rainfall generator and a rainfall-runoff model to produce rainfall and flood quantiles on a 1 km2 mesh covering the whole French territory. The rainfall generator is based on the description of rainy events by descriptive variables following probability distributions and is characterised by a high stability. This stochastic generator is fully regionalised, and the rainfall-runoff transformation is calibrated with a single parameter. Thanks to the stability of the approach, calibration can be performed against only flood quantiles associated with observated frequencies which can be extracted from relatively short time series. The aggregation of SHYREG flood quantiles to the catchment scale is performed using an areal reduction factor technique unique on the whole territory. Past studies demonstrated the accuracy of SHYREG flood quantiles estimation for catchments where flow data are available (Arnaud et al., 2015). Nevertheless, the parameter of the rainfall-runoff model is independently calibrated for each target catchment. As a consequence, this parameter plays a corrective role and compensates approximations and modelling errors which makes difficult to identify its proper spatial pattern. It is an inherent objective of the SHYREG approach to be completely regionalised in order to provide a complete and accurate flood quantiles database throughout France. Consequently, it appears necessary to identify the model configuration in which the calibrated parameter could be regionalised with acceptable performances. The revaluation of some of the method hypothesis is a necessary step before the regionalisation. Especially the inclusion or the modification of the spatial variability of imposed parameters (like production and transfer reservoir size, base flow addition and quantiles aggregation function) should lead to more realistic values of the only calibrated parameter. The objective of the work presented here is to develop a SHYREG evaluation scheme focusing on both local and regional performances. Indeed, it is necessary to maintain the accuracy of at site flood quantiles estimation while identifying a configuration leading to a satisfactory spatial pattern of the calibrated parameter. This ability to be regionalised can be appraised by the association of common regionalisation techniques and split sample validation tests on a set of around 1,500 catchments representing the whole diversity of France physiography. Also, the presence of many nested catchments and a size-based split sample validation make possible to assess the relevance of the calibrated parameter spatial structure inside the largest catchments. The application of this multi-objective evaluation leads to the selection of a version of SHYREG more suitable for regionalisation. References: Arnaud, P., Cantet, P., Aubert, Y., 2015. Relevance of an at-site flood frequency analysis method for extreme events based on stochastic simulation of hourly rainfall. Hydrological Sciences Journal: on press. DOI:10.1080/02626667.2014.965174 Aubert, Y., Arnaud, P., Ribstein, P., Fine, J.A., 2014. The SHYREG flow method-application to 1605 basins in metropolitan France. Hydrological Sciences Journal, 59(5): 993-1005. DOI:10.1080/02626667.2014.902061

  8. Prediction of Rainfall-Induced Landslides

    NASA Astrophysics Data System (ADS)

    Nadim, F.; Sandersen, F.

    2009-12-01

    Rainfall-induced landslides can be triggered by two main mechanisms: shear failure due to build-up of pore water pressure and erosion by surface water runoff when flow velocity exceeds a critical value. Field measurements indicate that, in the initial phase, the slip surface of a landslide often occurs along the top of a relatively impermeable layer located at some depth within the soil profile, e.g. at the contact with a shallow underlying bedrock or parent rock. The shear strength along this surface and hence the stability of the slope is governed by the pore water pressure. The pore pressure is in turn controlled by water seepage through the slope, either from infiltrated rain, or from groundwater that follows bedrock joints and soil layers with high permeability. When the infiltration rate of the underlying layer is too low for further downward penetration of water or when a wetting front is produced, pore water pressure builds up, reducing the soil shear strength. During high intensity rainfall, surface water runoff will exert shear stresses on the bed material. De-pending on the grain size distribution and specific gravity of the material, erosion might occur when the flow velocity exceeds a critical value. As erosion progresses and sediment concentration increases, the flow regime may become unstable with heavy erosion at high flow velocity locations triggering a debris flow. In many cases, previous landslides along steep gully walls have fed an abundance of loose soil material into the gullies. Landslides along gully walls that obstruct the water transport may also trigger debris flows when the landslide-dam collapses, creating a surge downstream. Both the long-duration (1 or more days) and short-duration precipitation (of the order of 1 hour) are significant in the triggering of shallow landslides, since the critical short-duration rainfall intensity reduces as the antecedent accumulated rainfall increases. Experiences in Norway indicate that the maxi-mum intensity of rain within a short period of time (1-3 hours) during a storm is most critical for triggering of debris flows. Therefore empirical methods developed for prediction of initiation of debris flows include both long-duration and short-duration rain-fall. More recent research has focused on the spatial distribution of unstable areas and on better spatial resolution of the occurrence of landslide-triggering precipitation events. Spatial distribution can be assessed by analyzing the stability conditions for shallow landslides if reasonable estimates of strength parameters are available. In general, two different approaches may be adopted for the assessment of threshold values for rainfall-induced landslides: empirical methods that are based on past observations and statistical analyses, and numerical analyses that are based on geo-mechanical modelling. The former approach together with very short-term weather forecasting (now-casting) are commonly used in the design of early warning systems for debris flows.

  9. Mapping the distribution of malaria: current approaches and future directions

    USGS Publications Warehouse

    Johnson, Leah R.; Lafferty, Kevin D.; McNally, Amy; Mordecai, Erin A.; Paaijmans, Krijn P.; Pawar, Samraat; Ryan, Sadie J.; Chen, Dongmei; Moulin, Bernard; Wu, Jianhong

    2015-01-01

    Mapping the distribution of malaria has received substantial attention because the disease is a major source of illness and mortality in humans, especially in developing countries. It also has a defined temporal and spatial distribution. The distribution of malaria is most influenced by its mosquito vector, which is sensitive to extrinsic environmental factors such as rainfall and temperature. Temperature also affects the development rate of the malaria parasite in the mosquito. Here, we review the range of approaches used to model the distribution of malaria, from spatially explicit to implicit, mechanistic to correlative. Although current methods have significantly improved our understanding of the factors influencing malaria transmission, significant gaps remain, particularly in incorporating nonlinear responses to temperature and temperature variability. We highlight new methods to tackle these gaps and to integrate new data with models.

  10. Numerical simulations of significant orographic precipitation in Madeira island

    NASA Astrophysics Data System (ADS)

    Couto, Flavio Tiago; Ducrocq, Véronique; Salgado, Rui; Costa, Maria João

    2016-03-01

    High-resolution simulations of high precipitation events with the MESO-NH model are presented, and also used to verify that increasing horizontal resolution in zones of complex orography, such as in Madeira island, improve the simulation of the spatial distribution and total precipitation. The simulations succeeded in reproducing the general structure of the cloudy systems over the ocean in the four periods considered of significant accumulated precipitation. The accumulated precipitation over the Madeira was better represented with the 0.5 km horizontal resolution and occurred under four distinct synoptic situations. Different spatial patterns of the rainfall distribution over the Madeira have been identified.

  11. Optimization of rainfall networks using information entropy and temporal variability analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wenqi; Wang, Dong; Singh, Vijay P.; Wang, Yuankun; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin

    2018-04-01

    Rainfall networks are the most direct sources of precipitation data and their optimization and evaluation are essential and important. Information entropy can not only represent the uncertainty of rainfall distribution but can also reflect the correlation and information transmission between rainfall stations. Using entropy this study performs optimization of rainfall networks that are of similar size located in two big cities in China, Shanghai (in Yangtze River basin) and Xi'an (in Yellow River basin), with respect to temporal variability analysis. Through an easy-to-implement greedy ranking algorithm based on the criterion called, Maximum Information Minimum Redundancy (MIMR), stations of the networks in the two areas (each area is further divided into two subareas) are ranked during sliding inter-annual series and under different meteorological conditions. It is found that observation series with different starting days affect the ranking, alluding to the temporal variability during network evaluation. We propose a dynamic network evaluation framework for considering temporal variability, which ranks stations under different starting days with a fixed time window (1-year, 2-year, and 5-year). Therefore, we can identify rainfall stations which are temporarily of importance or redundancy and provide some useful suggestions for decision makers. The proposed framework can serve as a supplement for the primary MIMR optimization approach. In addition, during different periods (wet season or dry season) the optimal network from MIMR exhibits differences in entropy values and the optimal network from wet season tended to produce higher entropy values. Differences in spatial distribution of the optimal networks suggest that optimizing the rainfall network for changing meteorological conditions may be more recommended.

  12. Stormwater runoff pollutant loading distributions and their correlation with rainfall and catchment characteristics in a rapidly industrialized city.

    PubMed

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries.

  13. A Multiplicative Cascade Model for High-Resolution Space-Time Downscaling of Rainfall

    NASA Astrophysics Data System (ADS)

    Raut, Bhupendra A.; Seed, Alan W.; Reeder, Michael J.; Jakob, Christian

    2018-02-01

    Distributions of rainfall with the time and space resolutions of minutes and kilometers, respectively, are often needed to drive the hydrological models used in a range of engineering, environmental, and urban design applications. The work described here is the first step in constructing a model capable of downscaling rainfall to scales of minutes and kilometers from time and space resolutions of several hours and a hundred kilometers. A multiplicative random cascade model known as the Short-Term Ensemble Prediction System is run with parameters from the radar observations at Melbourne (Australia). The orographic effects are added through multiplicative correction factor after the model is run. In the first set of model calculations, 112 significant rain events over Melbourne are simulated 100 times. Because of the stochastic nature of the cascade model, the simulations represent 100 possible realizations of the same rain event. The cascade model produces realistic spatial and temporal patterns of rainfall at 6 min and 1 km resolution (the resolution of the radar data), the statistical properties of which are in close agreement with observation. In the second set of calculations, the cascade model is run continuously for all days from January 2008 to August 2015 and the rainfall accumulations are compared at 12 locations in the greater Melbourne area. The statistical properties of the observations lie with envelope of the 100 ensemble members. The model successfully reproduces the frequency distribution of the 6 min rainfall intensities, storm durations, interarrival times, and autocorrelation function.

  14. Stormwater Runoff Pollutant Loading Distributions and Their Correlation with Rainfall and Catchment Characteristics in a Rapidly Industrialized City

    PubMed Central

    Li, Dongya; Wan, Jinquan; Ma, Yongwen; Wang, Yan; Huang, Mingzhi; Chen, Yangmei

    2015-01-01

    Fast urbanization and industrialization in developing countries result in significant stormwater runoff pollution, due to drastic changes in land-use, from rural to urban. A three-year study on the stormwater runoff pollutant loading distributions of industrial, parking lot and mixed commercial and residential catchments was conducted in the Tongsha reservoir watershed of Dongguan city, a typical, rapidly industrialized urban area in China. This study presents the changes in concentration during rainfall events, event mean concentrations (EMCs) and event pollution loads per unit area (EPLs). The first flush criterion, namely the mass first flush ratio (MFFn), was used to identify the first flush effects. The impacts of rainfall and catchment characterization on EMCs and pollutant loads percentage transported by the first 40% of runoff volume (FF40) were evaluated. The results indicated that the pollutant wash-off process of runoff during the rainfall events has significant temporal and spatial variations. The mean rainfall intensity (I), the impervious rate (IMR) and max 5-min intensity (Imax5) are the critical parameters of EMCs, while Imax5, antecedent dry days (ADD) and rainfall depth (RD) are the critical parameters of FF40. Intercepting the first 40% of runoff volume can remove 55% of TSS load, 53% of COD load, 58% of TN load, and 61% of TP load, respectively, according to all the storm events. These results may be helpful in mitigating stormwater runoff pollution for many other urban areas in developing countries. PMID:25774922

  15. Forecasting Global Point Rainfall using ECMWF's Ensemble Forecasting System

    NASA Astrophysics Data System (ADS)

    Pillosu, Fatima; Hewson, Timothy; Zsoter, Ervin; Baugh, Calum

    2017-04-01

    ECMWF (the European Centre for Medium range Weather Forecasts), in collaboration with the EFAS (European Flood Awareness System) and GLOFAS (GLObal Flood Awareness System) teams, has developed a new operational system that post-processes grid box rainfall forecasts from its ensemble forecasting system to provide global probabilistic point-rainfall predictions. The project attains a higher forecasting skill by applying an understanding of how different rainfall generation mechanisms lead to different degrees of sub-grid variability in rainfall totals. In turn this approach facilitates identification of cases in which very localized extreme totals are much more likely. This approach aims also to improve the rainfall input required in different hydro-meteorological applications. Flash flood forecasting, in particular in urban areas, is a good example. In flash flood scenarios precipitation is typically characterised by high spatial variability and response times are short. In this case, to move beyond radar based now casting, the classical approach has been to use very high resolution hydro-meteorological models. Of course these models are valuable but they can represent only very limited areas, may not be spatially accurate and may give reasonable results only for limited lead times. On the other hand, our method aims to use a very cost-effective approach to downscale global rainfall forecasts to a point scale. It needs only rainfall totals from standard global reporting stations and forecasts over a relatively short period to train it, and it can give good results even up to day 5. For these reasons we believe that this approach better satisfies user needs around the world. This presentation aims to describe two phases of the project: The first phase, already completed, is the implementation of this new system to provide 6 and 12 hourly point-rainfall accumulation probabilities. To do this we use a limited number of physically relevant global model parameters (i.e. convective precipitation ratio, speed of steering winds, CAPE - Convective Available Potential Energy - and solar radiation), alongside the rainfall forecasts themselves, to define the "weather types" that in turn define the expected sub-grid variability. The calibration and computational strategy intrinsic to the system will be illustrated. The quality of the global point rainfall forecasts is also illustrated by analysing recent case studies in which extreme totals and a greatly elevated flash flood risk could be foreseen some days in advance but especially by a longer-term verification that arises out of retrospective global point rainfall forecasting for 2016. The second phase, currently in development, is focussing on the relationships with other relevant geographical aspects, for instance, orography and coastlines. Preliminary results will be presented. These are promising but need further study to fully understand their impact on the spatial distribution of point rainfall totals.

  16. Spatial Precipitation Frequency of an Extreme Event: the July 2006 Mesoscale Convective Complexes and Debris Flows in Southeastern Arizona

    NASA Astrophysics Data System (ADS)

    Griffiths, P. G.; Webb, W. H.; Magirl, C. S.; Pytlak, E.

    2008-12-01

    An extreme, multi-day rainfall event over southeastern Arizona during 27-31 July 2006 culminated in an historically unprecedented spate of 435 slope failures and associated debris flows in the Santa Catalina Mountains north of Tucson. Previous to this occurrence, only twenty small debris flows had been observed in this region over the past 100 years. Although intense orographic precipitation is routinely delivered by single- cell thunderstorms to the Santa Catalinas during the North American monsoon, in this case repeated nocturnal mesoscale convective systems were induced over southeastern Arizona by an upper-level low- pressure system centered over the Four Corners region for five continuous days, generating five-day rainfall totals up to 360 mm. Calibrating weather radar data with point rainfall data collected at 31 rain gages, mean-area storms totals for the southern Santa Catalina Mountains were calculated for 754 radar grid cells at a resolution of approximately 1 km2 to provide a detailed picture of the spatial and temporal distribution of rainfall during the event. Precipitation intensity for the 31 July storms was typical for monsoonal precipitation in this region, with peak 15-minute rainfall averaging 17 mm/hr for a recurrence interval (RI) < 1 yr. However, RI > 50 yrs for four-day rainfall totals overall, RI > 100 yrs where slope failures occurred, and RI > 1000 yrs for individual grid cells in the heart of the slope failure zone. A comparison of rainfall at locations where debris-flows did and did not occur suggests an intensity (I)-duration (D) threshold for debris flow occurrence for the Santa Catalina Mountains of I = 14.82D-0.39(I in mm/hr). This threshold falls slightly higher than the 1000-year rainfall predicted for this area. The relatively large exponent reflects the high frequency of short-duration, high-intensity rainfall and the relative rarity of the long-duration rainfall that triggered these debris flows. Analysis of the rainfall/runoff ratio in the drainage basin at the heart of the debris flows confirms that sediments were nearly saturated before debris flows were initiated on July 31.

  17. Ability of WRF to Simulate Rainfall Distribution Over West Africa: Role of Horizontal Resolution and Dynamical Processes

    NASA Astrophysics Data System (ADS)

    Kouadio, K.; Konare, A.; Bastin, S.; Ajayi, V. O.

    2016-12-01

    This research work focused on the thorny problem of the representation of rainfall over West Africa and particularly in the Gulf of Guinea and its surroundings by Regional Climate Models (RCMs). The sensitivities of Weather Research and Forecasting (WRF) Model are tested for changes in horizontal resolution (convective permitting versus parameterized) on the replication of West African Climate in year 2014 and also changes in microphysics (MP) and planetary boundary layer (PBL) schemes on June 2014. The sensitivity to horizontal resolution study show that both runs at 24km and 4km (explicit convection) resolution fairly replicate the general distribution of the rainfall over West African region. The analysis also reveals a good replication of the dynamical features of West African monsoon system including Tropical Easterly Jet (TEJ), African Easterly Jet (AEJ), monsoon flow and the West African Heat Low (WAHL). Some differences have been noticed between WRF and ERA-interim outputs irrespective to the spectral nudging used in the experiment which then suggest strong interactions between scales. The link between the seasonal displacement of the WAHL and the spatial distribution of the rainfall and the Sahelian onset is confirmed in this study. The results also show an improvement on the replication of rainfall with the very high resolution run observed at daily scale over the Sahel while a dry bias is observed in WRF simulations of the rainfall over Ivorian Coast and in the Gulf of Guinea. Generally, over the Guinean coast the high resolution run did not provide subsequent improvement on the replication of rainfall. The sensitivity of WRF to MP and PBL on rainfall replication study reveals that the most significant added value over the Guinean coast and surroundings area is provided by the configurations that used the PBL Asymmetric Convective Model V2 (ACM2) suggesting more influence of the PBL compared to MP. The change on microphysics and planetary boundary layer schemes in general, seems to have less effect on the explicit runs into the replication of the rainfall over the Gulf of Guinea and the surroundings seaboard.

  18. Application of satellite precipitation data to analyse and model arbovirus activity in the tropics

    PubMed Central

    2011-01-01

    Background Murray Valley encephalitis virus (MVEV) is a mosquito-borne Flavivirus (Flaviviridae: Flavivirus) which is closely related to Japanese encephalitis virus, West Nile virus and St. Louis encephalitis virus. MVEV is enzootic in northern Australia and Papua New Guinea and epizootic in other parts of Australia. Activity of MVEV in Western Australia (WA) is monitored by detection of seroconversions in flocks of sentinel chickens at selected sample sites throughout WA. Rainfall is a major environmental factor influencing MVEV activity. Utilising data on rainfall and seroconversions, statistical relationships between MVEV occurrence and rainfall can be determined. These relationships can be used to predict MVEV activity which, in turn, provides the general public with important information about disease transmission risk. Since ground measurements of rainfall are sparse and irregularly distributed, especially in north WA where rainfall is spatially and temporally highly variable, alternative data sources such as remote sensing (RS) data represent an attractive alternative to ground measurements. However, a number of competing alternatives are available and careful evaluation is essential to determine the most appropriate product for a given problem. Results The Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42 product was chosen from a range of RS rainfall products to develop rainfall-based predictor variables and build logistic regression models for the prediction of MVEV activity in the Kimberley and Pilbara regions of WA. Two models employing monthly time-lagged rainfall variables showed the strongest discriminatory ability of 0.74 and 0.80 as measured by the Receiver Operating Characteristics area under the curve (ROC AUC). Conclusions TMPA data provide a state-of-the-art data source for the development of rainfall-based predictive models for Flavivirus activity in tropical WA. Compared to ground measurements these data have the advantage of being collected spatially regularly, irrespective of remoteness. We found that increases in monthly rainfall and monthly number of days above average rainfall increased the risk of MVEV activity in the Pilbara at a time-lag of two months. Increases in monthly rainfall and monthly number of days above average rainfall increased the risk of MVEV activity in the Kimberley at a lag of three months. PMID:21255449

  19. Topographic relationships for design rainfalls over Australia

    NASA Astrophysics Data System (ADS)

    Johnson, F.; Hutchinson, M. F.; The, C.; Beesley, C.; Green, J.

    2016-02-01

    Design rainfall statistics are the primary inputs used to assess flood risk across river catchments. These statistics normally take the form of Intensity-Duration-Frequency (IDF) curves that are derived from extreme value probability distributions fitted to observed daily, and sub-daily, rainfall data. The design rainfall relationships are often required for catchments where there are limited rainfall records, particularly catchments in remote areas with high topographic relief and hence some form of interpolation is required to provide estimates in these areas. This paper assesses the topographic dependence of rainfall extremes by using elevation-dependent thin plate smoothing splines to interpolate the mean annual maximum rainfall, for periods from one to seven days, across Australia. The analyses confirm the important impact of topography in explaining the spatial patterns of these extreme rainfall statistics. Continent-wide residual and cross validation statistics are used to demonstrate the 100-fold impact of elevation in relation to horizontal coordinates in explaining the spatial patterns, consistent with previous rainfall scaling studies and observational evidence. The impact of the complexity of the fitted spline surfaces, as defined by the number of knots, and the impact of applying variance stabilising transformations to the data, were also assessed. It was found that a relatively large number of 3570 knots, suitably chosen from 8619 gauge locations, was required to minimise the summary error statistics. Square root and log data transformations were found to deliver marginally superior continent-wide cross validation statistics, in comparison to applying no data transformation, but detailed assessments of residuals in complex high rainfall regions with high topographic relief showed that no data transformation gave superior performance in these regions. These results are consistent with the understanding that in areas with modest topographic relief, as for most of the Australian continent, extreme rainfall is closely aligned with elevation, but in areas with high topographic relief the impacts of topography on rainfall extremes are more complex. The interpolated extreme rainfall statistics, using no data transformation, have been used by the Australian Bureau of Meteorology to produce new IDF data for the Australian continent. The comprehensive methods presented for the evaluation of gridded design rainfall statistics will be useful for similar studies, in particular the importance of balancing the need for a continentally-optimum solution that maintains sufficient definition at the local scale.

  20. The use of distributed hydrological models for the Gard 2002 flash flood event: Analysis of associated hydrological processes

    NASA Astrophysics Data System (ADS)

    Braud, Isabelle; Roux, Hélène; Anquetin, Sandrine; Maubourguet, Marie-Madeleine; Manus, Claire; Viallet, Pierre; Dartus, Denis

    2010-11-01

    SummaryThis paper presents a detailed analysis of the September 8-9, 2002 flash flood event in the Gard region (southern France) using two distributed hydrological models: CVN built within the LIQUID® hydrological platform and MARINE. The models differ in terms of spatial discretization, infiltration and water redistribution representation, and river flow transfer. MARINE can also account for subsurface lateral flow. Both models are set up using the same available information, namely a DEM and a pedology map. They are forced with high resolution radar rainfall data over a set of 18 sub-catchments ranging from 2.5 to 99 km2 and are run without calibration. To begin with, models simulations are assessed against post field estimates of the time of peak and the maximum peak discharge showing a fair agreement for both models. The results are then discussed in terms of flow dynamics, runoff coefficients and soil saturation dynamics. The contribution of the subsurface lateral flow is also quantified using the MARINE model. This analysis highlights that rainfall remains the first controlling factor of flash flood dynamics. High rainfall peak intensities are very influential of the maximum peak discharge for both models, but especially for the CVN model which has a simplified overland flow transfer. The river bed roughness also influences the peak intensity and time. Soil spatial representation is shown to have a significant role on runoff coefficients and on the spatial variability of saturation dynamics. Simulated soil saturation is found to be strongly related with soil depth and initial storage deficit maps, due to a full saturation of most of the area at the end of the event. When activated, the signature of subsurface lateral flow is also visible in the spatial patterns of soil saturation with higher values concentrating along the river network. However, the data currently available do not allow the assessment of both patterns. The paper concludes with a set of recommendations for enhancing field observations in order to progress in process understanding and gather a larger set of data to improve the realism of distributed models.

  1. The role of storm scale, position and movement in controlling urban flood response

    NASA Astrophysics Data System (ADS)

    ten Veldhuis, Marie-claire; Zhou, Zhengzheng; Yang, Long; Liu, Shuguang; Smith, James

    2018-01-01

    The impact of spatial and temporal variability of rainfall on hydrological response remains poorly understood, in particular in urban catchments due to their strong variability in land use, a high degree of imperviousness and the presence of stormwater infrastructure. In this study, we analyze the effect of storm scale, position and movement in relation to basin scale and flow-path network structure on urban hydrological response. A catalog of 279 peak events was extracted from a high-quality observational dataset covering 15 years of flow observations and radar rainfall data for five (semi)urbanized basins ranging from 7.0 to 111.1 km2 in size. Results showed that the largest peak flows in the event catalog were associated with storm core scales exceeding basin scale, for all except the largest basin. Spatial scale of flood-producing storm events in the smaller basins fell into two groups: storms of large spatial scales exceeding basin size or small, concentrated events, with storm core much smaller than basin size. For the majority of events, spatial rainfall variability was strongly smoothed by the flow-path network, increasingly so for larger basin size. Correlation analysis showed that position of the storm in relation to the flow-path network was significantly correlated with peak flow in the smallest and in the two more urbanized basins. Analysis of storm movement relative to the flow-path network showed that direction of storm movement, upstream or downstream relative to the flow-path network, had little influence on hydrological response. Slow-moving storms tend to be associated with higher peak flows and longer lag times. Unexpectedly, position of the storm relative to impervious cover within the basins had little effect on flow peaks. These findings show the importance of observation-based analysis in validating and improving our understanding of interactions between the spatial distribution of rainfall and catchment variability.

  2. Analysis of spatial and temporal rainfall trends in Sicily during the 1921-2012 period

    NASA Astrophysics Data System (ADS)

    Liuzzo, Lorena; Bono, Enrico; Sammartano, Vincenzo; Freni, Gabriele

    2016-10-01

    Precipitation patterns worldwide are changing under the effects of global warming. The impacts of these changes could dramatically affect the hydrological cycle and, consequently, the availability of water resources. In order to improve the quality and reliability of forecasting models, it is important to analyse historical precipitation data to account for possible future changes. For these reasons, a large number of studies have recently been carried out with the aim of investigating the existence of statistically significant trends in precipitation at different spatial and temporal scales. In this paper, the existence of statistically significant trends in rainfall from observational datasets, which were measured by 245 rain gauges over Sicily (Italy) during the 1921-2012 period, was investigated. Annual, seasonal and monthly time series were examined using the Mann-Kendall non-parametric statistical test to detect statistically significant trends at local and regional scales, and their significance levels were assessed. Prior to the application of the Mann-Kendall test, the historical dataset was completed using a geostatistical spatial interpolation technique, the residual ordinary kriging, and then processed to remove the influence of serial correlation on the test results, applying the procedure of trend-free pre-whitening. Once the trends at each site were identified, the spatial patterns of the detected trends were examined using spatial interpolation techniques. Furthermore, focusing on the 30 years from 1981 to 2012, the trend analysis was repeated with the aim of detecting short-term trends or possible changes in the direction of the trends. Finally, the effect of climate change on the seasonal distribution of rainfall during the year was investigated by analysing the trend in the precipitation concentration index. The application of the Mann-Kendall test to the rainfall data provided evidence of a general decrease in precipitation in Sicily during the 1921-2012 period. Downward trends frequently occurred during the autumn and winter months. However, an increase in total annual precipitation was detected during the period from 1981 to 2012.

  3. Interpolating precipitation and its relation to runoff and non-point source pollution.

    PubMed

    Chang, Chia-Ling; Lo, Shang-Lien; Yu, Shaw-L

    2005-01-01

    When rainfall spatially varies, complete rainfall data for each region with different rainfall characteristics are very important. Numerous interpolation methods have been developed for estimating unknown spatial characteristics. However, no interpolation method is suitable for all circumstances. In this study, several methods, including the arithmetic average method, the Thiessen Polygons method, the traditional inverse distance method, and the modified inverse distance method, were used to interpolate precipitation. The modified inverse distance method considers not only horizontal distances but also differences between the elevations of the region with no rainfall records and of its surrounding rainfall stations. The results show that when the spatial variation of rainfall is strong, choosing a suitable interpolation method is very important. If the rainfall is uniform, the precipitation estimated using any interpolation method would be quite close to the actual precipitation. When rainfall is heavy in locations with high elevation, the rainfall changes with the elevation. In this situation, the modified inverse distance method is much more effective than any other method discussed herein for estimating the rainfall input for WinVAST to estimate runoff and non-point source pollution (NPSP). When the spatial variation of rainfall is random, regardless of the interpolation method used to yield rainfall input, the estimation errors of runoff and NPSP are large. Moreover, the relationship between the relative error of the predicted runoff and predicted pollutant loading of SS is high. However, the pollutant concentration is affected by both runoff and pollutant export, so the relationship between the relative error of the predicted runoff and the predicted pollutant concentration of SS may be unstable.

  4. A medium scale mobile rainfall simulator for experiments on soil erosion and soil hydrology

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Dostál, Tomáš; Iserloh, Thomas; Davidová, Tereza; Krása, Josef; David, Václav; Vopravil, Jan; Khel, Tomáš; Bauer, Miroslav

    2015-04-01

    Numerous types of rainfall simulators (RS) have been used to the study the behaviour of surface runoff and sediment transport caused by rainfall. It has been documented, that reproducibility and the knowledge of test conditions are essential for gathering necessary and comparable data. Therefore medium, to large scale field rainfall simulators are very desirable. Such devices are nevertheless very much time and laboratory consuming and their weakness is especially a high water consumption. A new, compact and mobile medium scale rainfall simulator has been developed under close cooperation of CTU Prague and Research Institute of Soil Conservation. The main idea was to develop a device, which is easily to handle by 4 persons, transportable with trailer behind an off-road car and independent of additional water sources and energy. Therefore, a special construction fixed on a standard trailer has been developed. It consists of an aggregate to produce power, an electric pump and a water tank with a capacity up to 1000 l. The pump can work in reverse mode, what allows filling the water tank from any source, including stream or pond. The capacity of the tank is normally sufficient for experiments with duration up to 30 minutes. The RS itself consist of a folding arm, which carries 4 nozzles (SS Full Jet 40WSQ), controlled by electromagnetic valves, which allow to set up desired rainfall intensity by opening intervals. A simple logical unit allows programming various schemes of operation of individual nozzles, to keep low pressure fluctuation in the system. The arm is first unfolded into total length of 9.6 m and then lifted up, using simple crab to its operation position which is 2.3 - 2.65 m above terrain surface. The distance between individual nozzles had been optimized based on number of calibrating experiments on 2.4 m. There is also special space at the trailer for transportation of metal sheets and collector (for experimental plot), additional equipment, tools and measurement devices. To prevent the wind effect, whole construction can be easily covered by tarpaulin. The experimental plot has a basic size of 9.5 x 2 m, however, we usually use only 8 x 2 m. The nozzles are fed with a water pressure of about 0.8 bars. Various schemes of opened nozzles allow varying rainfall intensities between 40 and 80 mm.h-1. Rainfall collectors were used to measure spatial rainfall distribution. The spatial rainfall distribution on the entire plot is higher than 80% (Christiansen-Uniformity Coefficient). Drop size distribution and drop fall velocities were analyzed by means of a Laser Precipitation Monitor (by Thies) with satisfactory results. The mean drop sizes ranging between 0.75 - 2.00 mm depending on applied intensity. Resulting kinetic energies ranging from 188 - 582 J m-2 mm-1. The measured rainfall variables show low fluctuations throughout the tests and are therefore reproducible in field investigations. The research has been supported by the research projects SGS14/180/OHK1/3T/11 and QJ330118.

  5. Four-dimensional soil moisture response during an extreme rainfall event at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, Peter A.; Niu, Guo-Yue; Gevaert, Anouk; Teuling, Adriaan; Uijlenhoet, Remko; Pasetto, Damiano; Paniconi, Claudio; Putti, Mario

    2014-05-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. We observed the spatial and temporal evolution of the soil moisture content at 496 5-TM Decagon sensors distributed over 5 different depths during a low-intensity long-duration rainfall experiment in February 2013. This presentation will focus on our modeling efforts to reveal subsurface hydraulic heterogeneity required to explain observed rainfall-runoff dynamics at the hillslope scale.

  6. Statistical analysis of trends in monthly precipitation at the Limbang River Basin, Sarawak (NW Borneo), Malaysia

    NASA Astrophysics Data System (ADS)

    Krishnan, M. V. Ninu; Prasanna, M. V.; Vijith, H.

    2018-05-01

    Effect of climate change in a region can be characterised by the analysis of rainfall trends. In the present research, monthly rainfall trends at Limbang River Basin (LRB) in Sarawak, Malaysia for a period of 45 years (1970-2015) were characterised through the non-parametric Mann-Kendall and Spearman's Rho tests and relative seasonality index. Statistically processed monthly rainfall of 12 well distributed rain gauging stations in LRB shows almost equal amount of rainfall in all months. Mann-Kendall and Spearman's Rho tests revealed a specific pattern of rainfall trend with a definite boundary marked in the months of January and August with positive trends in all stations. Among the stations, Limbang DID, Long Napir and Ukong showed positive (increasing) trends in all months with a maximum increase of 4.06 mm/year (p = 0.01) in November. All other stations showed varying trends (both increasing and decreasing). Significant (p = 0.05) decreasing trend was noticed in Ulu Medalam and Setuan during September (- 1.67 and - 1.79 mm/year) and October (- 1.59 and - 1.68 mm/year) in Mann-Kendall and Spearman's Rho tests. Spatial pattern of monthly rainfall trends showed two clusters of increasing rainfalls (maximas) in upper and lower part of the river basin separated with a dominant decreasing rainfall corridor. The results indicate a generally increasing trend of rainfall in Sarawak, Borneo.

  7. [Deuterium isotope characteristics of precipitation infiltrated in the West Ordos Desert of Inner Mongolia, China].

    PubMed

    Chen, Jie; Xu, Qing; Gao, De Qiang; Ma, Ying Bin; Zhang, Bei Bei; Hao, Yu Guang

    2017-07-18

    Understanding the soil-profile temporal and spatial distribution of rainwater in arid and semiarid regions provides a scientific basis for the restoration and maintenance of degraded desert ecosystems in the West Ordos Desert of Inner Mongolia, China. In this study, the deuterium isotope (δD) value of rainwater, soil water, and groundwater were examined in the West Ordos Desert. The contribution of precipitation to soil water in each layer of the soil profile was calculated with two-end linear mixed model. In addition, the temporal and spatial distribution of δD of soil water in the soil profile was analyzed under different-intensity precipitation. The results showed that small rainfall events (0-10 mm) affected the soil moisture and the δD value of soil water in surface soil (0-10 cm). About 30.3% to 87.9% of rainwater was kept in surface soil for nine days following the rainfall event. Medium rainfall events (10-20 mm) influenced the soil moisture and the δD value of soil water at soil depth of 0-40 cm. About 28.2% to 80.8% of rainwater was kept in soil layer of 0-40 cm for nine days following the medium rainfall event. Large (20-30 mm) and extremely large (>30 mm) rainfall events considerably influenced the soil moisture and δD value of soil water in each of the soil layers, except for the 100-150 cm layer. The δD value of soil water was between those δD values of rainwater and groundwater, which suggested that precipitation and groundwater were the sources of soil water in the West Ordos Desert. Under the same intensity rainfall, the δD value of surface soil water (0-10 cm) was directly affected by δD of rainwater. With increasing soil depth, the variation of soil water δD decreased, and the soil water of 100-150 cm kept stable. With increasing intensity of precipitation, the influence of precipitation on soil water δD lasted for a longer duration and occurred at a deeper soil depth.

  8. A parametric and non-parametric metamodeling approach for the bias-correction of Satellite Rainfall Estimates using rain gauge measurements. Cases of study: Magdalena Basin (Colombia), Imperial Basin (Chile) and Paraiba do Sul (Brazil).

    NASA Astrophysics Data System (ADS)

    Rebolledo Coy, M. A.; Villanueva, O. M. B.; Bartz-Beielstein, T.; Ribbe, L.

    2017-12-01

    Rainfall measurement plays an important role on the understanding and modeling of the water cycle. However, the assessment of scarce data regions using common rain gauge information, cannot be done using a straightforward approach. Some of the main problems concerning rainfall assessment are; the lack of a sufficiently dense grid of ground stations in extensive areas and the unstable spatial accuracy of the Satellite Rainfall Estimates (SREs). Following previous works on SREs analysis and bias-correction, we generate an ensemble model that corrects the bias error on a seasonal and yearly basis using six different state-of-the-art SREs (TRMM 3B42RT, TRMM 3B42v7, PERSIANN-CDR, CHIRPSv2, CMORPH and MSWEPv1.2) in a point-to-pixel approach for the studied period (2003-2015). Three different basins; Magdalena in Colombia, Imperial in Chile and Paraiba do Sul in Brazil are evaluated. Using Gaussian process regression and Bayesian robust regression we model the behavior of the ground stations and evaluate its goodness-of-fit by using the modified Kling-Gupta efficiency (KGE'). Following this evaluation, the models are re-fitted by taking into account the error distribution in each point and the corresponding KGE' is evaluated again. Both models were specified using the probabilistic language STAN. To improve the efficiency of the Gaussian model a clustering of the data was implemented. We also compared the performance of both models in term of uncertainty and stability against the raw input concluding that both models represent better the study areas. The results show that the error displays an exponential behavior for days where precipitation was present, this allows the models to be corrected according to the observed rainfall values. The seasonal evaluations also show improved performance in relation to the yearly evaluations. The use of bias-corrected SREs for hydrologic purposes in scarce data regions is highly recommended in order to merge the punctual values from the ground measurements and the spatial distribution of rainfall from the satellite estimates.

  9. Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Rejaur; Lateh, Habibah

    2017-04-01

    In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.

  10. Nonlinear responses of southern African rainfall to forcing from Atlantic SST in a high-resolution regional climate model

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes remote SST anomalies.

  11. STEP-TRAMM - A modeling interface for simulating localized rainfall induced shallow landslides and debris flow runout pathways

    NASA Astrophysics Data System (ADS)

    von Ruette, Jonas; Lehmann, Peter; Fan, Linfeng; Bickel, Samuel; Or, Dani

    2017-04-01

    Landslides and subsequent debris-flows initiated by rainfall represent a ubiquitous natural hazard in steep mountainous regions. We integrated a landslide hydro-mechanical triggering model and associated debris flow runout pathways with a graphical user interface (GUI) to represent these natural hazards in a wide range of catchments over the globe. The STEP-TRAMM GUI provides process-based locations and sizes of landslides patterns using digital elevation models (DEM) from SRTM database (30 m resolution) linked with soil maps from global database SoilGrids (250 m resolution) and satellite based information on rainfall statistics for the selected region. In a preprocessing step STEP-TRAMM models soil depth distribution and complements soil information that jointly capture key hydrological and mechanical properties relevant to local soil failure representation. In the presentation we will discuss feature of this publicly available platform and compare landslide and debris flow patterns for different regions considering representative intense rainfall events. Model outcomes will be compared for different spatial and temporal resolutions to test applicability of web-based information on elevation and rainfall for hazard assessment.

  12. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  13. Soil moisture response to snowmelt and rainfall in a Sierra Nevada mixed-conifer forest

    Treesearch

    Roger C. Bales; Jan W. Hopmans; Anthony T. O’Geen; Matthew Meadows; Peter C. Hartsough; Peter Kirchner; Carolyn T. Hunsaker; Dylan Beaudette

    2011-01-01

    Using data from a water-balance instrument cluster with spatially distributed sensors we determined the magnitude and within-catchment variability of components of the catchment-scale water balance, focusing on the relationship of seasonal evapotranspiration to changes in snowpack and soil moisture storage. Co-located, continuous snow depth and soil moisture...

  14. Spatial outline of malaria transmission in Iran.

    PubMed

    Barati, Mohammad; Keshavarz-valian, Hossein; Habibi-nokhandan, Majid; Raeisi, Ahmad; Faraji, Leyla; Salahi-moghaddam, Abdoreza

    2012-10-01

    To conduct for modeling spatial distribution of malaria transmission in Iran. Records of all malaria cases from the period 2008-2010 in Iran were retrieved for malaria control department, MOH&ME. Metrological data including annual rainfall, maximum and minimum temperature, relative humidity, altitude, demographic, districts border shapefiles, and NDVI images received from Iranian Climatologic Research Center. Data arranged in ArcGIS. 99.65% of malaria transmission cases were focused in southeast part of Iran. These transmissions had statistically correlation with altitude (650 m), maximum (30 °C), minimum (20 °C) and average temperature (25.3 °C). Statistical correlation and overall relationship between NDVI (118.81), relative humidity (⩾45%) and rainfall in southeast area was defined and explained in this study. According to ecological condition and mentioned cut-off points, predictive map was generated using cokriging method. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  15. Remote Sensing and Modeling of Landslides: Detection, Monitoring and Risk Evaluation

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Fukuoka, Hiroshi

    2012-01-01

    Landslides are one of the most pervasive hazards in the world, resulting in more fatalities and economic damage than is generally recognized_ Occurring over an extensive range of lithologies, morphologies, hydrologies, and climates, mass movements can be triggered by intense or prolonged rainfall, seismicity, freeze/thaw processes, and antbropogertic activities, among other factors. The location, size, and timing of these processes are characteristically difficult to predict and assess because of their localized spatial scales, distribution, and complex interactions between rainfall infiltration, hydromechanical properties of the soil, and the underlying surface composition. However, the increased availability, accessibility, and resolution of remote sensing data offer a new opportunity to explore issues of landslide susceptibility, hazard, and risk over a variety of spatial scales. This special issue presents a series of papers that investigate the sources, behavior, and impacts of different mass movement types using a diverse set of data sources and evaluation methodologies.

  16. Effects of variable regolith depth, hydraulic properties, and rainfall on debris-flow initiation during the September 2013 northern Colorado Front Range rainstorm

    NASA Astrophysics Data System (ADS)

    Baum, R. L.; Coe, J. A.; Kean, J. W.; Jones, E. S.; Godt, J.

    2015-12-01

    Heavy rainfall during 9 - 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m. Typical values of saturated hydraulic conductivity of soils and regolith units mapped in the source areas range from about 10-4 - 10-6 m/s, with a median value of 2.8 x 10-5 m/s based on number of source areas in each map unit. Rainfall intensities varied spatially and temporally, from 0 to 2.5 x 10-5 m/s (90 mm/hour), with two periods of relatively heavy rainfall on September 12 - 13. The distribution of debris flows appears to correlate with total storm rainfall, and reported times of greatest landslide activity coincide with times of heaviest rainfall. Process-based models of rainfall infiltration and slope stability (TRIGRS) representing the observed ranges of regolith depth, hydraulic conductivity, and rainfall intensity, provide additional insights about the timing and distribution of debris flows from this storm. For example, small debris flows from shallower source areas (<2 m) occurred late on September 11 and in the early morning of September 12, whereas large debris flows from deeper (3 - 5 m) source areas in the western part of the affected area occurred late on September 12. Timing of these flows can be understood in terms of the time required for pore pressure rise depending on regolith depth and rainfall intensity. The variable hydraulic properties combined with variable regolith depth and slope angles account for much of the observed range in timing in areas of similar rainfall intensity and duration. Modeling indicates that the greatest and most rapid pore pressure rise likely occurred in areas of highest rainfall intensity and amount. This is consistent with the largest numbers of debris flows occurring on steep canyon walls in areas of high total storm rainfall.

  17. Implementation of the Short-Term Ensemble Prediction System (STEPS) in Belgium and verification of case studies

    NASA Astrophysics Data System (ADS)

    Foresti, Loris; Reyniers, Maarten; Delobbe, Laurent

    2014-05-01

    The Short-Term Ensemble Prediction System (STEPS) is a probabilistic precipitation nowcasting scheme developed at the Australian Bureau of Meteorology in collaboration with the UK Met Office. In order to account for the multiscaling nature of rainfall structures, the radar field is decomposed into an 8 levels multiplicative cascade using a Fast Fourier Transform. The cascade is advected using the velocity field estimated with optical flow and evolves stochastically according to a hierarchy of auto-regressive processes. This allows reproducing the empirical observation that the rate of temporal evolution of the small scales is faster than the large scales. The uncertainty in radar rainfall measurement and the unknown future development of the velocity field are also considered by stochastic modelling in order to reflect their typical spatial and temporal variability. Recently, a 4 years national research program has been initiated by the University of Leuven, the Royal Meteorological Institute (RMI) of Belgium and 3 other partners: PLURISK ("forecasting and management of extreme rainfall induced risks in the urban environment"). The project deals with the nowcasting of rainfall and subsequent urban inundations, as well as socio-economic risk quantification, communication, warning and prevention. At the urban scale it is widely recognized that the uncertainty of hydrological and hydraulic models is largely driven by the input rainfall estimation and forecast uncertainty. In support to the PLURISK project the RMI aims at integrating STEPS in the current operational deterministic precipitation nowcasting system INCA-BE (Integrated Nowcasting through Comprehensive Analysis). This contribution will illustrate examples of STEPS ensemble and probabilistic nowcasts for a few selected case studies of stratiform and convective rain in Belgium. The paper focuses on the development of STEPS products for potential hydrological users and a preliminary verification of the nowcasts, especially to analyze the spatial distribution of forecast errors. The analysis of nowcast biases reveals the locations where the convective initiation, rainfall growth and decay processes significantly reduce the forecast accuracy, but also points out the need for improving the radar-based quantitative precipitation estimation product that is used both to generate and verify the nowcasts. The collection of fields of verification statistics is implemented using an online update strategy, which potentially enables the system to learn from forecast errors as the archive of nowcasts grows. The study of the spatial or temporal distribution of nowcast errors is a key step to convey to the users an overall estimation of the nowcast accuracy and to drive future model developments.

  18. [Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan desert under saline water drip-irrigation].

    PubMed

    Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao

    2015-09-01

    Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.

  19. Uncertainty Analysis of Radar and Gauge Rainfall Estimates in the Russian River Basin

    NASA Astrophysics Data System (ADS)

    Cifelli, R.; Chen, H.; Willie, D.; Reynolds, D.; Campbell, C.; Sukovich, E.

    2013-12-01

    Radar Quantitative Precipitation Estimation (QPE) has been a very important application of weather radar since it was introduced and made widely available after World War II. Although great progress has been made over the last two decades, it is still a challenging process especially in regions of complex terrain such as the western U.S. It is also extremely difficult to make direct use of radar precipitation data in quantitative hydrologic forecasting models. To improve the understanding of rainfall estimation and distributions in the NOAA Hydrometeorology Testbed in northern California (HMT-West), extensive evaluation of radar and gauge QPE products has been performed using a set of independent rain gauge data. This study focuses on the rainfall evaluation in the Russian River Basin. The statistical properties of the different gridded QPE products will be compared quantitatively. The main emphasis of this study will be on the analysis of uncertainties of the radar and gauge rainfall products that are subject to various sources of error. The spatial variation analysis of the radar estimates is performed by measuring the statistical distribution of the radar base data such as reflectivity and by the comparison with a rain gauge cluster. The application of mean field bias values to the radar rainfall data will also be described. The uncertainty analysis of the gauge rainfall will be focused on the comparison of traditional kriging and conditional bias penalized kriging (Seo 2012) methods. This comparison is performed with the retrospective Multisensor Precipitation Estimator (MPE) system installed at the NOAA Earth System Research Laboratory. The independent gauge set will again be used as the verification tool for the newly generated rainfall products.

  20. Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from Carbonate, Slate, Raspberry, and Milton Creeks, near Marble, Gunnison County, Colorado

    USGS Publications Warehouse

    Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.

    2011-01-01

    During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.

  1. Applications of high resolution rainfall radar data to quantify water temperature dynamics in urban catchments

    NASA Astrophysics Data System (ADS)

    Croghan, Danny; Van Loon, Anne; Bradley, Chris; Sadler, Jon; Hannnah, David

    2017-04-01

    Studies relating rainfall events to river water quality are frequently hindered by the lack of high resolution rainfall data. Local studies are particularly vulnerable due to the spatial variability of precipitation, whilst studies in urban environments require precipitation data at high spatial and temporal resolutions. The use of point-source data makes identifying causal effects of storms on water quality problematic and can lead to erroneous interpretations. High spatial and temporal resolution rainfall radar data offers great potential to address these issues. Here we use rainfall radar data with a 1km spatial resolution and 5 minute temporal resolution sourced from the UK Met Office Nimrod system to study the effects of storm events on water temperature (WTemp) in Birmingham, UK. 28 WTemp loggers were placed over 3 catchments on a rural-urban land use gradient to identify trends in WTemp during extreme events within urban environments. Using GIS, the catchment associated with each logger was estimated, and 5 min. rainfall totals and intensities were produced for each sub-catchment. Comparisons of rainfall radar data to meteorological stations in the same grid cell revealed the high accuracy of rainfall radar data in our catchments (<5% difference for studied months). The rainfall radar data revealed substantial differences in rainfall quantity between the three adjacent catchments. The most urban catchment generally received more rainfall, with this effect greatest in the highest intensity storms, suggesting the possibility of urban heat island effects on precipitation dynamics within the catchment. Rainfall radar data provided more accurate sub-catchment rainfall totals allowing better modelled estimates of storm flow, whilst spatial fluctuations in both discharge and WTemp can be simply related to precipitation intensity. Storm flow inputs for each sub-catchment were estimated and linked to changes in WTemp. WTemp showed substantial fluctuations (>1 °C) over short durations (<30 minutes) during storm events in urbanised sub-catchments, however WTemp recovery times were more prolonged. Use of the rainfall radar data allowed increased accuracy in estimates of storm flow timings and rainfall quantities at each sub-catchment, from which the impact of storm flow on WTemp could be quantified. We are currently using the radar data to derive thresholds for rainfall amount and intensity at which these storm deviations occur for each logger, from which the relative effects of land use and other catchment characteristics in each sub-catchment can be assessed. Our use of the rainfall radar data calls into question the validity of using station based data for small scale studies, particularly in urban areas, with high variation apparent in rainfall intensity both spatially and temporally. Variation was particularly high within the heavily urbanised catchment. For water quality studies, high resolution rainfall radar can be implemented to increase the reliability of interpretations of the response of water quality variables to storm water inputs in urban catchments.

  2. Data-Driven Geospatial Visual Analytics for Real-Time Urban Flooding Decision Support

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hill, D.; Rodriguez, A.; Marini, L.; Kooper, R.; Myers, J.; Wu, X.; Minsker, B. S.

    2009-12-01

    Urban flooding is responsible for the loss of life and property as well as the release of pathogens and other pollutants into the environment. Previous studies have shown that spatial distribution of intense rainfall significantly impacts the triggering and behavior of urban flooding. However, no general purpose tools yet exist for deriving rainfall data and rendering them in real-time at the resolution of hydrologic units used for analyzing urban flooding. This paper presents a new visual analytics system that derives and renders rainfall data from the NEXRAD weather radar system at the sewershed (i.e. urban hydrologic unit) scale in real-time for a Chicago stormwater management project. We introduce a lightweight Web 2.0 approach which takes advantages of scientific workflow management and publishing capabilities developed at NCSA (National Center for Supercomputing Applications), streaming data-aware semantic content management repository, web-based Google Earth/Map and time-aware KML (Keyhole Markup Language). A collection of polygon-based virtual sensors is created from the NEXRAD Level II data using spatial, temporal and thematic transformations at the sewershed level in order to produce persistent virtual rainfall data sources for the animation. Animated color-coded rainfall map in the sewershed can be played in real-time as a movie using time-aware KML inside the web browser-based Google Earth for visually analyzing the spatiotemporal patterns of the rainfall intensity in the sewershed. Such system provides valuable information for situational awareness and improved decision support during extreme storm events in an urban area. Our further work includes incorporating additional data (such as basement flooding events data) or physics-based predictive models that can be used for more integrated data-driven decision support.

  3. Multifractal Downscaling of Rainfall Using Normalized Difference Vegetation Index (NDVI) in the Andes Plateau.

    PubMed

    Duffaut Espinosa, L A; Posadas, A N; Carbajal, M; Quiroz, R

    2017-01-01

    In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study.

  4. Multifractal Downscaling of Rainfall Using Normalized Difference Vegetation Index (NDVI) in the Andes Plateau

    PubMed Central

    Posadas, A. N.; Carbajal, M.; Quiroz, R.

    2017-01-01

    In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study. PMID:28125607

  5. Definition of Pluviometric Thresholds For A Real Time Flood Forecasting System In The Arno Watershed

    NASA Astrophysics Data System (ADS)

    Amadio, P.; Mancini, M.; Mazzetti, P.; Menduni, G.; Nativi, S.; Rabuffetti, D.; Ravazzani, G.; Rosso, R.

    The pluviometric flood forecasting thresholds are an easy method that helps river flood emergency management collecting data from limited area meteorologic model or telemetric raingauges. The thresholds represent the cumulated rainfall depth which generate critic discharge for a particular section. The thresholds were calculated for different sections of Arno river and for different antecedent moisture condition using the flood event distributed hydrologic model FEST. The model inputs were syntethic hietographs with different shape and duration. The system realibility has been verified by generating 500 year syntethic rainfall for 3 important subwatersheds of the studied area. A new technique to consider spatial variability of rainfall and soil properties effects on hydrograph has been investigated. The "Geomorphologic Weights" were so calculated. The alarm system has been implemented in a dedicated software (MIMI) that gets measured and forecast rainfall data from Autorità di Bacino and defines the state of the alert of the river sections.

  6. Self-organization of river channels as a critical filter on climate signals.

    PubMed

    Phillips, Colin B; Jerolmack, Douglas J

    2016-05-06

    Spatial and temporal variations in rainfall are hypothesized to influence landscape evolution through erosion and sediment transport by rivers. However, determining the relation between rainfall and river dynamics requires a greater understanding of the feedbacks between flooding and a river's capacity to transport sediment. We analyzed channel geometry and stream-flow records from 186 coarse-grained rivers across the United States. We found that channels adjust their shape so that floods slightly exceed the critical shear velocity needed to transport bed sediment, independently of climatic, tectonic, and bedrock controls. The distribution of fluid shear velocity associated with floods is universal, indicating that self-organization of near-critical channels filters the climate signal evident in discharge. This effect blunts the impact of extreme rainfall events on landscape evolution. Copyright © 2016, American Association for the Advancement of Science.

  7. Transient hazard model using radar data for predicting debris flows in Madison County, Virginia

    USGS Publications Warehouse

    Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.

    2004-01-01

    During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a 16-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, VA. We developed a distributed version of Iverson's transient response model for regional slope stability analysis for the Madison County debris flows. This version of the model evaluates pore-pressure head response and factor of safety on a regional scale in areas prone to rainfall-induced shallow (<2-3 m) landslides. These calculations used soil properties of shear strength and hydraulic conductivity from laboratory measurements of soil samples collected from field sites where debris flows initiated. Rainfall data collected by radar every 6 minutes provided a basis for calculating the temporal variation of slope stability during the storm. The results demonstrate that the spatial and temporal variation of the factor of safety correlates with the movement of the storm cell. When the rainstorm was treated as two separate rainfall events and a larger hydraulic conductivity and friction angle than the laboratory values were used, the timing and location of landslides predicted by the model were in closer agreement with eyewitness observations of debris flows. Application of spatially variable initial pre-storm water table depth and soil properties may improve both the spatial and temporal prediction of instability.

  8. A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.; Kim, K. M.

    2012-01-01

    Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.

  9. The estimation of probable maximum precipitation: the case of Catalonia.

    PubMed

    Casas, M Carmen; Rodríguez, Raül; Nieto, Raquel; Redaño, Angel

    2008-12-01

    A brief overview of the different techniques used to estimate the probable maximum precipitation (PMP) is presented. As a particular case, the 1-day PMP over Catalonia has been calculated and mapped with a high spatial resolution. For this purpose, the annual maximum daily rainfall series from 145 pluviometric stations of the Instituto Nacional de Meteorología (Spanish Weather Service) in Catalonia have been analyzed. In order to obtain values of PMP, an enveloping frequency factor curve based on the actual rainfall data of stations in the region has been developed. This enveloping curve has been used to estimate 1-day PMP values of all the 145 stations. Applying the Cressman method, the spatial analysis of these values has been achieved. Monthly precipitation climatological data, obtained from the application of Geographic Information Systems techniques, have been used as the initial field for the analysis. The 1-day PMP at 1 km(2) spatial resolution over Catalonia has been objectively determined, varying from 200 to 550 mm. Structures with wavelength longer than approximately 35 km can be identified and, despite their general concordance, the obtained 1-day PMP spatial distribution shows remarkable differences compared to the annual mean precipitation arrangement over Catalonia.

  10. Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo forest, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Arnone, E.; Noto, L. V.; Sivandran, G.; Bras, R. L.

    2013-09-01

    This paper presents the development of a rainfall-triggered landslide module within an existing physically based spatially distributed ecohydrologic model. The model, tRIBS-VEGGIE (Triangulated Irregular Networks-based Real-time Integrated Basin Simulator and Vegetation Generator for Interactive Evolution), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics are resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made within the study area of Luquillo Forest. The newly developed landslide module builds upon the previous version of the tRIBS landslide component. This new module utilizes a numerical solution to the Richards' equation (present in tRIBS-VEGGIE but not in tRIBS), which better represents the time evolution of soil moisture transport through the soil column. Moreover, the new landslide module utilizes an extended formulation of the factor of safety (FS) to correctly quantify the role of matric suction in slope stability and to account for unsaturated conditions in the evaluation of FS. The new modeling framework couples the capabilities of the detailed hydrologic model to describe soil moisture dynamics with the infinite slope model, creating a powerful tool for the assessment of rainfall-triggered landslide risk.

  11. TRMM- and GPM-based precipitation analysis and modelling in the Tropical Andes

    NASA Astrophysics Data System (ADS)

    Manz, Bastian; Buytaert, Wouter; Zulkafli, Zed; Onof, Christian

    2016-04-01

    Despite wide-spread applications of satellite-based precipitation products (SPPs) throughout the TRMM-era, the scarcity of ground-based in-situ data (high density gauge networks, rainfall radar) in many hydro-meteorologically important regions, such as tropical mountain environments, has limited our ability to evaluate both SPPs and individual satellite-based sensors as well as accurately model or merge rainfall at high spatial resolutions, particularly with respect to extremes. This has restricted both the understanding of sensor behaviour and performance controls in such regions as well as the accuracy of precipitation estimates and respective hydrological applications ranging from water resources management to early warning systems. Here we report on our recent research into precipitation analysis and modelling using various TRMM and GPM products (2A25, 3B42 and IMERG) in the tropical Andes. In an initial study, 78 high-frequency (10-min) recording gauges in Colombia and Ecuador are used to generate a ground-based validation dataset for evaluation of instantaneous TRMM Precipitation Radar (TPR) overpasses from the 2A25 product. Detection ability, precipitation time-series, empirical distributions and statistical moments are evaluated with respect to regional climatological differences, seasonal behaviour, rainfall types and detection thresholds. Results confirmed previous findings from extra-tropical regions of over-estimation of low rainfall intensities and under-estimation of the highest 10% of rainfall intensities by the TPR. However, in spite of evident regionalised performance differences as a function of local climatological regimes, the TPR provides an accurate estimate of climatological annual and seasonal rainfall means. On this basis, high-resolution (5 km) climatological maps are derived for the entire tropical Andes. The second objective of this work is to improve the local precipitation estimation accuracy and representation of spatial patterns of extreme rainfall probabilities over the region. For this purpose, an ensemble of high-resolution rainfall fields is generated by stochastic simulation using space-time averaged, coarse-scale (daily, 0.25°) satellite-based rainfall inputs (TRMM 3B42/ -RT) and the high-resolution climatological information derived from the TPR as spatial disaggregation proxies. For evaluation and merging, gridded ground-based rainfall fields are generated from gauge data using sequential simulation. Satellite and ground-based ensembles are subsequently merged using an inverse error weighting scheme. The model was tested over a case study in the Colombian Andes with optional coarse-scale bias correction prior to disaggregation and merging. The resulting outputs were assessed in the context of Generalized Extreme Value theory and showed improved estimation of extreme rainfall probabilities compared to the original TMPA inputs. Initial findings using GPM-IMERG inputs are also presented.

  12. Spatial Organization In Europe of Decadal and Interdecadal Fluctuations In Annual Rainfall

    NASA Astrophysics Data System (ADS)

    Lucero, O. A.; Rodriguez, N. C.

    In this research the spatial patterns of decadal and bidecadal fluctuations in annual rainfall in Europe are identified. Filtering of time series of anomaly of annual rainfall is carried out using the Morlet wavelet technique. Reconstruction is achieved by sum- ming the contributions from bands of wavelet timescales; the decadal band and the bidecadal band are composed of contributions from the band of (10- to 17-year] and (17- to 27- year] timescales respectively. Results indicate that 1) the spatial organi- zation of decadal and bidecadal components of annual rainfall are standing wave-like organized patterns. Three standing decadal fluctuations zonally aligned formed the spatial pattern from 1900 until 1931; thereafter the pattern changed into a NW-SE orientation. The decadal band shows an average 12-year period. 2) The spatial orga- nization of bidecadal component was composed of three standing fluctuations since 1903 to 1986. After 1987 two standing bidecadal fluctuations were located on Europe. The orientation of bidecadal fluctuations changed during the period under study. Until 1913 the spatial pattern of the bidecadal component was zonally aligned. Since 1913 until 1986 the three bidecadal fluctuations composing the spatial pattern were aligned SW U NE; starting 1987 the spatial pattern is composed of two standing fluctuations zonally aligned. The bidecadal spatial pattern shows an average period of 20- to 22- year length. 3) At decadal and bidecadal timescales, the first principal component of the spatial field of anomaly of annual rainfall and the NAO index are connected. The upper positive third (lower negative third) of values of first principal component are indicative of extensive area with positive (negative) anomaly of annual rainfall. 4) At decadal timescale the relative phase between the first PC and the NAO index changes through the period under study; these changes define three regimes: 1) Dur- ing the regime covering the period 1900 (start of period under study) to about 1945, at the time of peak values of decadal NAO-index it takes place a transition between extremes (a neutral state) of the decadal rainfall spatial pattern (first PC takes small absolute values). Besides, for positive (negative) peak value of NAO index the spatial pattern of annual rainfall is evolving toward an area of predominantly positive (nega- tive) anomaly. 2) The second regime starts about 1946 and reaches up to early 1980s. At the time of negative (positive) peak of decadal NAO there is a prevailing spatial pattern of positive (negative) anomaly of decadal rainfall. 3) The third regime starts 1 about late 1970s and reaches to the end of the period under study (in 1996). There is a change of relative phase within this period in late 1980s. In this regime a spatial pattern of prevailing positive or negative anomaly of decadal rainfall takes place dur- ing values of decadal NAO close to zero. 5) At bidecadal timescale the relative phase between the first PC and the NAO index remains almost constant through the period under study. The first PC of the transformed bidecadal component of annual rainfall anomaly attains its positive (negative) peak about three years before the bidecadal component of NAO reaches its negative (positive) peak. 2

  13. Characteristics of Landslide Size Distribution in Response to Different Rainfall Scenarios

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Lan, H.; Li, L.

    2017-12-01

    There have long been controversies on the characteristics of landslide size distribution in response to different rainfall scenarios. For inspecting the characteristics, we have collected a large amount of data, including shallow landslide inventory with landslide areas and landslide occurrence times recorded, and a longtime daily rainfall series fully covering all the landslide occurrences. Three indexes were adopted to quantitatively describe the characteristics of landslide-related rainfall events, which are rainfall duration, rainfall intensity, and the number of rainy days. The first index, rainfall duration, is derived from the exceptional character of a landslide-related rainfall event, which can be explained in terms of the recurrence interval or return period, according to the extreme value theory. The second index, rainfall intensity, is the average rainfall in this duration. The third index is the number of rainy days in this duration. These three indexes were normalized using the standard score method to ensure that they are in the same order of magnitude. Based on these three indexes, landslide-related rainfall events were categorized by a k-means method into four scenarios: moderate rainfall, storm, long-duration rainfall, and long-duration intermittent rainfall. Then, landslides were in turn categorized into four groups according to the scenarios of rainfall events related to them. Inverse-gamma distribution was applied to characterize the area distributions of the four different landslide groups. A tail index and a rollover of the landslide size distribution can be obtained according to the parameters of the distribution. Characteristics of landslide size distribution show that the rollovers of the size distributions of landslides related to storm and long-duration rainfall are larger than those of landslides in the other two groups. It may indicate that the location of rollover may shift right with the increase of rainfall intensity and the extension of rainfall duration. In addition, higher rainfall intensities are prone to trigger larger rainfall-induced landslides since the tail index of landslide area distribution are smaller for higher rainfall intensities, which indicate higher probabilities of large landslides.

  14. Simulated sensitivity of African terrestrial ecosystem photosynthesis to rainfall frequency, intensity, and rainy season length

    NASA Astrophysics Data System (ADS)

    Guan, Kaiyu; Good, Stephen P.; Caylor, Kelly K.; Medvigy, David; Pan, Ming; Wood, Eric F.; Sato, Hisashi; Biasutti, Michela; Chen, Min; Ahlström, Anders; Xu, Xiangtao

    2018-02-01

    There is growing evidence of ongoing changes in the statistics of intra-seasonal rainfall variability over large parts of the world. Changes in annual total rainfall may arise from shifts, either singly or in a combination, of distinctive intra-seasonal characteristics -i.e. rainfall frequency, rainfall intensity, and rainfall seasonality. Understanding how various ecosystems respond to the changes in intra-seasonal rainfall characteristics is critical for predictions of future biome shifts and ecosystem services under climate change, especially for arid and semi-arid ecosystems. Here, we use an advanced dynamic vegetation model (SEIB-DGVM) coupled with a stochastic rainfall/weather simulator to answer the following question: how does the productivity of ecosystems respond to a given percentage change in the total seasonal rainfall that is realized by varying only one of the three rainfall characteristics (rainfall frequency, intensity, and rainy season length)? We conducted ensemble simulations for continental Africa for a realistic range of changes (-20% ~ +20%) in total rainfall amount. We find that the simulated ecosystem productivity (measured by gross primary production, GPP) shows distinctive responses to the intra-seasonal rainfall characteristics. Specifically, increase in rainfall frequency can lead to 28% more GPP increase than the same percentage increase in rainfall intensity; in tropical woodlands, GPP sensitivity to changes in rainy season length is ~4 times larger than to the same percentage changes in rainfall frequency or intensity. In contrast, shifts in the simulated biome distribution are much less sensitive to intra-seasonal rainfall characteristics than they are to total rainfall amount. Our results reveal three major distinctive productivity responses to seasonal rainfall variability—‘chronic water stress’, ‘acute water stress’ and ‘minimum water stress’ - which are respectively associated with three broad spatial patterns of African ecosystem physiognomy, i.e. savannas, woodlands, and tropical forests.

  15. Uncertainties on the definition of critical rainfall patterns for debris-flows triggering. Results from the Rebaixader monitoring site (Central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Hürlimann, Marcel; Abancó, Clàudia; Moya, Jose; Berenguer, Marc

    2015-04-01

    Empirical rainfall thresholds are a widespread technique in debris-flow hazard assessment and can be established by statistical analysis of historic data. Typically, data from one or several rain gauges located nearby the affected catchment is used to define the triggering conditions. However, this procedure has been demonstrated not to be accurate enough due to the spatial variability of convective rainstorms. In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, 28 torrential flows (debris flows and debris floods) have occurred and rainfall data of 25 of them are available with a 5-minutes frequency of recording ("event rainfalls"). Other 142 rainfalls that did not trigger events ("no event rainfalls) were also collected and analysed. The goal of this work was threefold: a) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential events and others that did not; b) define and test Intensity-Duration (ID) thresholds using rainfall data measured inside the catchment; c) estimate the uncertainty derived from the use of rain gauges located outside the catchment based on the spatial correlation depicted by radar rainfall maps. The results of the statistical analysis showed that the parameters that more distinguish between the two populations of rainfalls are the rainfall intensities, the mean rainfall and the total precipitation. On the other side, the storm duration and the antecedent rainfall are not significantly different between "event rainfalls" and "no event rainfalls". Four different ID rainfall thresholds were derived based on the dataset of the first 5 years and tested using the 2014 dataset. The results of the test indicated that the threshold corresponding to the 90% percentile showed the best performance. Weather radar data was used to analyse the spatial variability of the triggering rainfalls. The analysis indicates that rain gauges outside the catchment may be considered useful or not to describe the rainfall depending on the type of rainfall. For widespread rainfalls, further rain gauges can give a reliable measurement, because the spatial correlation decreases slowly with the distance between the rain gauge and the debris-flow initiation area. Contrarily, local storm cells show higher space-time variability and, therefore, representative rainfall measurements are obtained only by the closest rain gauges. In conclusion, the definition of rainfall thresholds is a delicate task. When the rainfall records are coming from gauges that are outside the catchment under consideration, the data should be carefully analysed and crosschecked with radar data (especially for small convective cells).

  16. Radar-rain-gauge rainfall estimation for hydrological applications in small catchments

    NASA Astrophysics Data System (ADS)

    Gabriele, Salvatore; Chiaravalloti, Francesco; Procopio, Antonio

    2017-07-01

    The accurate evaluation of the precipitation's time-spatial structure is a critical step for rainfall-runoff modelling. Particularly for small catchments, the variability of rainfall can lead to mismatched results. Large errors in flow evaluation may occur during convective storms, responsible for most of the flash floods in small catchments in the Mediterranean area. During such events, we may expect large spatial and temporal variability. Therefore, using rain-gauge measurements only can be insufficient in order to adequately depict extreme rainfall events. In this work, a double-level information approach, based on rain gauges and weather radar measurements, is used to improve areal rainfall estimations for hydrological applications. In order to highlight the effect that precipitation fields with different level of spatial details have on hydrological modelling, two kinds of spatial rainfall fields were computed for precipitation data collected during 2015, considering both rain gauges only and their merging with radar information. The differences produced by these two precipitation fields in the computation of the areal mean rainfall accumulation were evaluated considering 999 basins of the region Calabria, southern Italy. Moreover, both of the two precipitation fields were used to carry out rainfall-runoff simulations at catchment scale for main precipitation events that occurred during 2015 and the differences between the scenarios obtained in the two cases were analysed. A representative case study is presented in detail.

  17. Application of satellite products and hydrological modelling for flood early warning

    NASA Astrophysics Data System (ADS)

    Koriche, Sifan A.; Rientjes, Tom H. M.

    2016-06-01

    Floods have caused devastating impacts to the environment and society in Awash River Basin, Ethiopia. Since flooding events are frequent, this marks the need to develop tools for flood early warning. In this study, we propose a satellite based flood index to identify the runoff source areas that largely contribute to extreme runoff production and floods in the basin. Satellite based products used for development of the flood index are CMORPH (Climate Prediction Center MORPHing technique: 0.25° by 0.25°, daily) product for calculation of the Standard Precipitation Index (SPI) and a Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) for calculation of the Topographic Wetness Index (TWI). Other satellite products used in this study are for rainfall-runoff modelling to represent rainfall, potential evapotranspiration, vegetation cover and topography. Results of the study show that assessment of spatial and temporal rainfall variability by satellite products may well serve in flood early warning. Preliminary findings on effectiveness of the flood index developed in this study indicate that the index is well suited for flood early warning. The index combines SPI and TWI, and preliminary results illustrate the spatial distribution of likely runoff source areas that cause floods in flood prone areas.

  18. Incorporating rainfall uncertainty in a SWAT model: the river Zenne basin (Belgium) case study

    NASA Astrophysics Data System (ADS)

    Tolessa Leta, Olkeba; Nossent, Jiri; van Griensven, Ann; Bauwens, Willy

    2013-04-01

    The European Union Water Framework Directive (EU-WFD) called its member countries to achieve a good ecological status for all inland and coastal water bodies by 2015. According to recent studies, the river Zenne (Belgium) is far from this objective. Therefore, an interuniversity and multidisciplinary project "Towards a Good Ecological Status in the river Zenne (GESZ)" was launched to evaluate the effects of wastewater management plans on the river. In this project, different models have been developed and integrated using the Open Modelling Interface (OpenMI). The hydrologic, semi-distributed Soil and Water Assessment Tool (SWAT) is hereby used as one of the model components in the integrated modelling chain in order to model the upland catchment processes. The assessment of the uncertainty of SWAT is an essential aspect of the decision making process, in order to design robust management strategies that take the predicted uncertainties into account. Model uncertainty stems from the uncertainties on the model parameters, the input data (e.g, rainfall), the calibration data (e.g., stream flows) and on the model structure itself. The objective of this paper is to assess the first three sources of uncertainty in a SWAT model of the river Zenne basin. For the assessment of rainfall measurement uncertainty, first, we identified independent rainfall periods, based on the daily precipitation and stream flow observations and using the Water Engineering Time Series PROcessing tool (WETSPRO). Secondly, we assigned a rainfall multiplier parameter for each of the independent rainfall periods, which serves as a multiplicative input error corruption. Finally, we treated these multipliers as latent parameters in the model optimization and uncertainty analysis (UA). For parameter uncertainty assessment, due to the high number of parameters of the SWAT model, first, we screened out its most sensitive parameters using the Latin Hypercube One-factor-At-a-Time (LH-OAT) technique. Subsequently, we only considered the most sensitive parameters for parameter optimization and UA. To explicitly account for the stream flow uncertainty, we assumed that the stream flow measurement error increases linearly with the stream flow value. To assess the uncertainty and infer posterior distributions of the parameters, we used a Markov Chain Monte Carlo (MCMC) sampler - differential evolution adaptive metropolis (DREAM) that uses sampling from an archive of past states to generate candidate points in each individual chain. It is shown that the marginal posterior distributions of the rainfall multipliers vary widely between individual events, as a consequence of rainfall measurement errors and the spatial variability of the rain. Only few of the rainfall events are well defined. The marginal posterior distributions of the SWAT model parameter values are well defined and identified by DREAM, within their prior ranges. The posterior distributions of output uncertainty parameter values also show that the stream flow data is highly uncertain. The approach of using rainfall multipliers to treat rainfall uncertainty for a complex model has an impact on the model parameter marginal posterior distributions and on the model results Corresponding author: Tel.: +32 (0)2629 3027; fax: +32(0)2629 3022. E-mail: otolessa@vub.ac.be

  19. Monsoon Rainfall and Landslides in Nepal

    NASA Astrophysics Data System (ADS)

    Dahal, R. K.; Hasegawa, S.; Bhandary, N. P.; Yatabe, R.

    2009-12-01

    A large number of human settlements on the Nepal Himalayas are situated either on old landslide mass or on landslide-prone areas. As a result, a great number of people are affected by large- and small-scale landslides all over the Himalayas especially during monsoon periods. In Nepal, only in the half monsoon period (June 10 to August 15), 70, 50 and 68 people were killed from landslides in 2007, 2008 and 2009, respectively. In this context, this paper highlights monsoon rainfall and their implications in the Nepal Himalaya. In Nepal, monsoon is major source of rainfall in summer and approximately 80% of the annual total rainfall occurs from June to September. The measured values of mean annual precipitation in Nepal range from a low of approximately 250 mm at area north of the Himalaya to many areas exceeding 6,000 mm. The mean annual rainfall varying between 1500 mm and 2500 mm predominate over most of the country. In Nepal, the daily distribution of precipitation during rainy season is also uneven. Sometime 10% of the total annual precipitation can occur in a single day. Similarly, 50% total annual rainfall also can occur within 10 days of monsoon. This type of uneven distribution plays an important role in triggering many landslides in Nepal. When spatial distribution of landslides was evaluated from record of more than 650 landslides, it is found that more landslides events were concentrated at central Nepal in the area of high mean annual rainfall. When monsoon rainfall and landslide relationship was taken into consideration, it was noticed that a considerable number of landslides were triggered in the Himalaya by continuous rainfall of 3 to 90 days. It has been noticed that continuous rainfall of few days (5 days or 7 days or 10 days) are usually responsible for landsliding in the Nepal Himalaya. Monsoon rains usually fall with interruptions of 2-3 days and are generally characterized by low intensity and long duration. Thus, there is a strong role of antecedent rainfall in triggering landslides. It is noticed that a moderate correlation exists between the antecedent rainfalls of 3 to 10 days and the daily rainfall at failure in the Nepal Himalaya. The rainfall thresholds are utilized to develop early warning systems. Taking reference of the intensity-duration threshold and normalized rainfall intensity threshold, two proto-type models of early warning systems (RIEWS and N-RIEWS) are proposed. Early warning models show less time for evacuation in the case of short duration and high intensity rainfall, whereas for long duration rainfall, warning time is enough and when warning information disseminate to the people, people will aware to possible landslide risk. In the meantime, they will be mentally ready to tackle with possible disaster of coming hours or days and will avoid the consequences. On the basis of coarse hydro-meteorological data of developing country like Nepal, this simple and rather easy model of early warning will certainly help to reduce fatalities from landslides.

  20. Spatial variability of soil moisture retrieved by SMOS satellite

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy

    2015-04-01

    Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies ergodicity and quasi-stationarity assumptions, required for geostatistical analysis. The semivariograms examinations revealed that spatial dependences occurring in the surface soil moisture distributions for the selected area were more or less 200 km. The exception was the driest of the studied days, when the spatial correlations of soil moisture were not disturbed for a long time by any rainfall. Spatial correlation length on that day was about 400 km. Because of zonal character of frost, the spatial dependences in the examined surface soil moisture distributions during freezing/thawing found to be disturbed. Probably, the amount of water remains the same, but it is not detected by SMOS, hence analysing dielectric constant instead of soil moisture would be more appropriate. Some spatial relations of soil moisture and freezing distribution with existing maps of soil granulometric fractions and soil specific surface area for Poland have also been found. The work was partially funded under the ELBARA_PD (Penetration Depth) project No. 4000107897/13/NL/KML. ELBARA_PD project is funded by the Government of Poland through an ESA (European Space Agency) Contract under the PECS (Plan for European Cooperating States).

  1. Using Low-Cost GNSS Receivers to Investigate the Small-Scale Precipitable Water Vapor Variability in the Atmosphere for Improving High Resolution Rainfall Forecasts

    NASA Astrophysics Data System (ADS)

    Krietemeyer, Andreas; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-04-01

    Recent research has shown that assimilation of Precipitable Water Vapor (PWV) measurements into numerical weather predictions models improve the quality of rainfall now- and forecasting. Local PWV fluctuations may be related with water vapor increases in the lower troposphere which lead to deep convection. Prior studies show that about 20 minutes before rain occurs, the amount of water vapor in the atmosphere at 1 km height increases. Monitoring the small-scale temporal and spatial variability of PWV is therefore crucial to improve the weather now- and forecasting for convective storms, that are typically critical for urban stormwater systems. One established technique to obtain PWV measurements in the atmosphere is to exploit signal delays from GNSS satellites to dual-frequency receivers on the ground. Existing dual-frequency receiver networks typically have inter-station distances in the order of tens of kilometers, which is not sufficiently dense to capture the small-scale PWV variations. In this study, we will add low-cost, single-frequency GNSS receivers to an existing dual-frequency receiver network to obtain an inter-station distance of about 1 km in the Rotterdam area (Netherlands). The aim is to investigate the spatial variability of PWV in the atmosphere at this scale. We use the surrounding dual-frequency network (distributed over a radius of approximately 25 km) to apply an ionospheric delay model that accounts for the delay in the ionosphere (50-1000 km altitude) that cannot be eliminated by single-frequency receivers. The results are validated by co-aligning a single-frequency receiver to a dual-frequency receiver. In the next steps, we will investigate how the high temporal and increased spatial resolution network can help to improve high-resolution rainfall forecasts. Their supposed improved forecasting results will be evaluated based on high-resolution rainfall estimates from a polarimetric X-band rainfall radar installed in the city of Rotterdam.

  2. The roles of dry convection, cloud-radiation feedback processes and the influence of recent improvements in the parameterization of convection in the GLA GCM

    NASA Technical Reports Server (NTRS)

    Sud, Y.; Molod, A.

    1988-01-01

    The Goddard Laboratory for Atmospheres GCM is used to study the sensitivity of the simulated July circulation to modifications in the parameterization of dry and moist convection, evaporation from falling raindrops, and cloud-radiation interaction. It is shown that the Arakawa-Schubert (1974) cumulus parameterization and a more realistic dry convective mixing calculation yielded a better intertropical convergence zone over North Africa than the previous convection scheme. It is found that the physical mechanism for the improvement was the upward mixing of PBL moisture by vigorous dry convective mixing. A modified rain-evaporation parameterization which accounts for raindrop size distribution, the atmospheric relative humidity, and a typical spatial rainfall intensity distribution for convective rain was developed and implemented. This scheme led to major improvements in the monthly mean vertical profiles of relative humidity and temperature, convective and large-scale cloudiness, rainfall distributions, and mean relative humidity in the PBL.

  3. Sediment reallocations due to erosive rainfall events in the Three Gorges Reservoir Area, Central China

    NASA Astrophysics Data System (ADS)

    Stumpf, Felix; Goebes, Philipp; Schmidt, Karsten; Schindewolf, Marcus; Schönbrodt-Stitt, Sarah; Wadoux, Alexandre; Xiang, Wei; Scholten, Thomas

    2017-04-01

    Soil erosion by water outlines a major threat to the Three Gorges Reservoir Area in China. A detailed assessment of soil conservation measures requires a tool that spatially identifies sediment reallocations due to rainfall-runoff events in catchments. We applied EROSION 3D as a physically based soil erosion and deposition model in a small mountainous catchment. Generally, we aim to provide a methodological frame that facilitates the model parametrization in a data scarce environment and to identify sediment sources and deposits. We used digital soil mapping techniques to generate spatially distributed soil property information for parametrization. For model calibration and validation, we continuously monitored the catchment on rainfall, runoff and sediment yield for a period of 12 months. The model performed well for large events (sediment yield>1 Mg) with an averaged individual model error of 7.5%, while small events showed an average error of 36.2%. We focused on the large events to evaluate reallocation patterns. Erosion occurred in 11.1% of the study area with an average erosion rate of 49.9Mgha 1. Erosion mainly occurred on crop rotation areas with a spatial proportion of 69.2% for 'corn-rapeseed' and 69.1% for 'potato-cabbage'. Deposition occurred on 11.0%. Forested areas (9.7%), infrastructure (41.0%), cropland (corn-rapeseed: 13.6%, potatocabbage: 11.3%) and grassland (18.4%) were affected by deposition. Because the vast majority of annual sediment yields (80.3%) were associated to a few large erosive events, the modelling approach provides a useful tool to spatially assess soil erosion control and conservation measures.

  4. A step towards considering the spatial heterogeneity of urban key features in urban hydrology flood modelling

    NASA Astrophysics Data System (ADS)

    Leandro, J.; Schumann, A.; Pfister, A.

    2016-04-01

    Some of the major challenges in modelling rainfall-runoff in urbanised areas are the complex interaction between the sewer system and the overland surface, and the spatial heterogeneity of the urban key features. The former requires the sewer network and the system of surface flow paths to be solved simultaneously. The latter is still an unresolved issue because the heterogeneity of runoff formation requires high detailed information and includes a large variety of feature specific rainfall-runoff dynamics. This paper discloses a methodology for considering the variability of building types and the spatial heterogeneity of land surfaces. The former is achieved by developing a specific conceptual rainfall-runoff model and the latter by defining a fully distributed approach for infiltration processes in urban areas with limited storage capacity dependent on OpenStreetMaps (OSM). The model complexity is increased stepwise by adding components to an existing 2D overland flow model. The different steps are defined as modelling levels. The methodology is applied in a German case study. Results highlight that: (a) spatial heterogeneity of urban features has a medium to high impact on the estimated overland flood-depths, (b) the addition of multiple urban features have a higher cumulative effect due to the dynamic effects simulated by the model, (c) connecting the runoff from buildings to the sewer contributes to the non-linear effects observed on the overland flood-depths, and (d) OSM data is useful in identifying pounding areas (for which infiltration plays a decisive role) and permeable natural surface flow paths (which delay the flood propagation).

  5. Stochastic Generation of Spatiotemporal Rainfall Events for Flood Risk Assessment

    NASA Astrophysics Data System (ADS)

    Diederen, D.; Liu, Y.; Gouldby, B.; Diermanse, F.

    2017-12-01

    Current flood risk analyses that only consider peaks of hydrometeorological forcing variables have limitations regarding their representation of reality. Simplistic assumptions regarding antecedent conditions are required, often different sources of flooding are considered in isolation, and the complex temporal and spatial evolution of the events is not considered. Mid-latitude storms, governed by large scale climatic conditions, often exhibit a high degree of temporal dependency, for example. For sustainable flood risk management, that accounts appropriately for climate change, it is desirable for flood risk analyses to reflect reality more appropriately. Analysis of risk mitigation measures and comparison of their relative performance is therefore likely to be more robust and lead to improved solutions. We provide a new framework for the provision of boundary conditions to flood risk analyses that more appropriately reflects reality. The boundary conditions capture the temporal dependencies of complex storms whilst preserving the extreme values and associated spatial dependencies. We demonstrate the application of this framework to generate a synthetic rainfall events time series boundary condition set from reanalysis rainfall data (CFSR) on the continental scale. We define spatiotemporal clusters of rainfall as events, extract hydrological parameters for each event, generate synthetic parameter sets with a multivariate distribution with a focus on the joint tail probability [Heffernan and Tawn, 2004], and finally create synthetic events from the generated synthetic parameters. We highlight the stochastic integration of (a) spatiotemporal features, e.g. event occurrence intensity over space-time, or time to previous event, which we use for the spatial placement and sequencing of the synthetic events, and (b) value-specific parameters, e.g. peak intensity and event extent. We contrast this to more traditional approaches to highlight the significant improvements in terms of representing the reality of extreme flood events.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Eugene; Pierce, Julia; Mahat, Vinod

    This project is a part of the Regional Resiliency Assessment Program, led by the Department of Homeland Security, to address flooding hazards of regional significance for Portland, Maine. The pilot study was performed by Argonne National Laboratory to identify differences in spatial rainfall distributions between the radar-derived and rain-gauge rainfall datasets and to evaluate their impacts on urban flooding. The flooding impact analysis utilized a high-resolution 2-dimensional (2-D) hydrodynamic model (15 ft by 15 ft) incorporating the buildings, streets, stream channels, hydraulic structures, an existing city storm drain system, and assuming a storm surge along the coast coincident with amore » heavy rainfall event. Two historical storm events from April 16, 2007, and September 29, 2015, were selected for evaluation. The radar-derived rainfall data at a 200-m resolution provide spatially-varied rainfall patterns with a wide range of intensities for each event. The resultant maximum flood depth using data from a single rain gauge within the study area could be off (either under- or over-estimated) by more than 10% in the 2007 storm and more than 60% in the 2015 storm compared to the radar-derived rainfall data. The model results also suggest that the inundation area with a flow depth at or greater than 0.5 ft could reach 11% (2007 storm) and 17% (2015 storm) of the total study area, respectively. The lowland areas within the neighborhoods of North Deering, East Deering, East and West Baysides and northeastern Parkside, appear to be more vulnerable to the flood hazard in both storm events. The high-resolution 2-D hydrodynamic model with high-resolution radar-derived rainfall data provides an excellent tool for detailed urban flood analysis and vulnerability assessment. The model developed in this study could be potentially used to evaluate any proposed mitigation measures and optimize their effects in the future for Portland, ME.« less

  7. Alluvial groundwater recharge estimation in semi-arid environment using remotely sensed data

    NASA Astrophysics Data System (ADS)

    Coelho, Victor Hugo R.; Montenegro, Suzana; Almeida, Cristiano N.; Silva, Bernardo B.; Oliveira, Leidjane M.; Gusmão, Ana Cláudia V.; Freitas, Emerson S.; Montenegro, Abelardo A. A.

    2017-05-01

    Data limitations on groundwater (GW) recharge over large areas are still a challenge for efficient water resource management, especially in semi-arid regions. Thus, this study seeks to integrate hydrological cycle variables from satellite imagery to estimate the spatial distribution of GW recharge in the Ipanema river basin (IRB), which is located in the State of Pernambuco in Northeast Brazil. Remote sensing data, including monthly maps (2011-2012) of rainfall, runoff and evapotranspiration, are used as input for the water balance method within Geographic Information Systems (GIS). Rainfall data are derived from the TRMM Multi-satellite Precipitation Analysis (TMPA) Version 7 (3B43V7) product and present the same monthly average temporal distributions from 15 rain gauges that are distributed over the study area (r = 0.93 and MAE = 12.7 mm), with annual average estimates of 894.3 (2011) and 300.7 mm (2012). The runoff from the Natural Resources Conservation Service (NRCS) method, which is based on regional soil information and Thematic Mapper (TM) sensor image, represents 29% of the TMPA rainfall that was observed across two years of study. Actual evapotranspiration data, which were provided by the SEBAL application of MODIS images, present annual averages of 1213 (2011) and 1067 (2012) mm. The water balance results reveal a large inter-annual difference in the IRB GW recharge, which is characterized by different rainfall regimes, with averages of 30.4 (2011) and 4.7 (2012) mm year-1. These recharges were mainly observed between January and July in regions with alluvial sediments and highly permeable soils. The GW recharge approach with remote sensing is compared to the WTF (Water Table Fluctuation) method, which is used in an area of alluvium in the IRB. The estimates from these two methods exhibit reliable annual agreement, with average values of 154.6 (WTF) and 124.6 (water balance) mm in 2011. These values correspond to 14.89 and 13.53% of the rainfall that was recorded at the rain gauges and the TMPA, respectively. Only the WTF method indicates a very low recharge of 15.9 mm for the second year. The values in this paper provide reliable insight regarding the use of remotely sensed data to evaluate the rates of alluvial GW recharge in regions where the potential runoff cannot be disregarded from WB equation and must be calculated spatially.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Subimal; Das, Debasish; Kao, Shih-Chieh

    Recent studies disagree on how rainfall extremes over India have changed in space and time over the past half century, as well as on whether the changes observed are due to global warming or regional urbanization. Although a uniform and consistent decrease in moderate rainfall has been reported, a lack of agreement about trends in heavy rainfall may be due in part to differences in the characterization and spatial averaging of extremes. Here we use extreme value theory to examine trends in Indian rainfall over the past half century in the context of long-term, low-frequency variability.We show that when generalizedmore » extreme value theory is applied to annual maximum rainfall over India, no statistically significant spatially uniform trends are observed, in agreement with previous studies using different approaches. Furthermore, our space time regression analysis of the return levels points to increasing spatial variability of rainfall extremes over India. Our findings highlight the need for systematic examination of global versus regional drivers of trends in Indian rainfall extremes, and may help to inform flood hazard preparedness and water resource management in the region.« less

  9. High-Resolution Rainfall From Radar Reflectivity and Terrestrial Rain Gages for use in Estimating Debris-Flow Susceptibility in the Day Fire, California

    NASA Astrophysics Data System (ADS)

    Hanshaw, M. N.; Schmidt, K. M.; Jorgensen, D. P.; Stock, J. D.

    2007-12-01

    Constraining the distribution of rainfall is essential to evaluating the post-fire mass-wasting response of steep soil-mantled landscapes. As part of a pilot early-warning project for flash floods and debris flows, NOAA deployed a portable truck-mounted Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) to the 2006 Day fire in the Transverse Ranges of Southern California. In conjunction with a dense array of ground- based instruments, including 8 tipping-bucket rain gages located within an area of 170 km2, this C-band mobile Doppler radar provided 200-m grid cell estimates of precipitation data at fine temporal and spatial scales in burned steeplands at risk from hazardous flash floods and debris flows. To assess the utility of using this data in process models for flood and debris flow initiation, we converted grids of radar reflectivity to hourly time-steps of precipitation using an empirical relationship for convective storms, sampling the radar data at the locations of each rain gage as determined by GPS. The SMART-R was located 14 km from the farthest rain gage, but <10 km away from our intensive research area, where 5 gages are located within <1-2 km of each other. Analyses of the nine storms imaged by radar throughout the 2006/2007 winter produced similar cumulative rainfall totals between the gages and their SMART-R grid location over the entire season which correlate well on the high side, with gages recording the most precipitation agreeing to within 11% of the SMART-R. In contrast, on the low rainfall side, totals between the two recording systems are more variable, with a 62% variance between the minimums. In addition, at the scale of individual storms, a correlation between ground-based rainfall measurements and radar-based rainfall estimates is less evident, with storm totals between the gages and the SMART-R varying between 7 and 88%, a possible result of these being relatively small, fast-moving storms in an unusually dry winter. The SMART-R also recorded higher seasonal cumulative rainfall than the terrestrial gages, perhaps indicating that not all precipitation reached the ground. For one storm in particular, time-lapse photographs of the ground document snow. This could explain, in part, the discrepancy between storm-specific totals when the rain gages recorded significantly lower totals than the SMART-R. For example, during the storm where snow was observed, the SMART-R recorded a maximum of 66% higher rainfall than the maximum recorded by the gages. Unexpectedly, the highest elevation gage, located in a pre-fire coniferous vegetation community, consistently recorded the lowest precipitation, whereas gages in the lower elevation pre- fire chaparral community recorded the highest totals. The spatial locations of the maximum rainfall inferred by the SMART-R and the terrestrial gages are also offset by 1.6 km, with terrestrial values shifted easterly. The observation that the SMART-R images high rainfall intensities recorded by rain gages suggests that this technology has the ability to quantitatively estimate the spatial distribution over larger areas at a high resolution. Discrepancies on the storm scale, however, need to be investigated further, but we are optimistic that such high resolution data from the SMART-R and the terrestrial gages may lead to the effective application of a prototype debris-flow warning system where such processes put lives at risk.

  10. Systematic errors in the simulation of the Asian summer monsoon: the role of rainfall variability on a range of time and space scales

    NASA Astrophysics Data System (ADS)

    Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven

    2015-04-01

    Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large-scale circulation than is indicated by the intensity and frequency of rainfall alone. Monsoon depressions and low pressure systems are important contributors to monsoon rainfall over central and northern India, areas where MetUM climate simulations typically show deficient monsoon rainfall. Analysis of MetUM climate simulations at resolutions ranging from N96 (~135km) to N512 (~25km) suggests that at lower resolution the numbers and intensities of monsoon depressions and low pressure systems and their associated rainfall are very low compared with re-analyses/observations. We show that there are substantial increases with horizontal resolution, but resolution is not the only factor. Idealised simulations, either using nudged atmospheric winds or initialised coupled hindcasts, which improve (strengthen) the mean state monsoon and cyclonic circulation over the Indian peninsula, also result in a substantial increase in monsoon depressions and associated rainfall. This suggests that a more realistic representation of monsoon depressions is possible even at lower resolution if the larger-scale systematic error pattern in the monsoon is improved.

  11. A new hydrological model for estimating extreme floods in the Alps

    NASA Astrophysics Data System (ADS)

    Receanu, R. G.; Hertig, J.-A.; Fallot, J.-M.

    2012-04-01

    Protection against flooding is very important for a country like Switzerland with a varied topography and many rivers and lakes. Because of the potential danger caused by extreme precipitation, structural and functional safety of large dams must be guaranteed to withstand the passage of an extreme flood. We introduce a new distributed hydrological model to calculate the PMF from a PMP which is spatially and temporally distributed using clouds. This model has permitted the estimation of extreme floods based on the distributed PMP and the taking into account of the specifics of alpine catchments, in particular the small size of the basins, the complex topography, the large lakes, snowmelt and glaciers. This is an important evolution compared to other models described in the literature, as they mainly use a uniform distribution of extreme precipitation all over the watershed. This paper presents the results of calculation with the developed rainfall-runoff model, taking into account measured rainfall and comparing results to observed flood events. This model includes three parts: surface runoff, underground flow and melting snow. Two Swiss watersheds are studied, for which rainfall data and flow rates are available for a considerably long period, including several episodes of heavy rainfall with high flow events. From these events, several simulations are performed to estimate the input model parameters such as soil roughness and average width of rivers in case of surface runoff. Following the same procedure, the parameters used in the underground flow simulation are also estimated indirectly, since direct underground flow and exfiltration measurements are difficult to obtain. A sensitivity analysis of the parameters is performed at the first step to define more precisely the boundary and initial conditions. The results for the two alpine basins, validated with the Nash equation, show a good correlation between the simulated and observed flows. This good correlation shows that the model is valid and gives us the confidence that the results can be extrapolated to phenomena of extreme rainfall of PMP type.

  12. Regionalization of monthly rainfall erosivity patternsin Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Alewell, Christine; Panagos, Panos; Meusburger, Katrin

    2016-10-01

    One major controlling factor of water erosion is rainfall erosivity, which is quantified as the product of total storm energy and a maximum 30 min intensity (I30). Rainfall erosivity is often expressed as R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). As rainfall erosivity is closely correlated with rainfall amount and intensity, the rainfall erosivity of Switzerland can be expected to have a regional characteristic and seasonal dynamic throughout the year. This intra-annual variability was mapped by a monthly modeling approach to assess simultaneously spatial and monthly patterns of rainfall erosivity. So far only national seasonal means and regional annual means exist for Switzerland. We used a network of 87 precipitation gauging stations with a 10 min temporal resolution to calculate long-term monthly mean R-factors. Stepwise generalized linear regression (GLM) and leave-one-out cross-validation (LOOCV) were used to select spatial covariates which explain the spatial and temporal patterns of the R-factor for each month across Switzerland. The monthly R-factor is mapped by summarizing the predicted R-factor of the regression equation and the corresponding residues of the regression, which are interpolated by ordinary kriging (regression-kriging). As spatial covariates, a variety of precipitation indicator data has been included such as snow depths, a combination product of hourly precipitation measurements and radar observations (CombiPrecip), daily Alpine precipitation (EURO4M-APGD), and monthly precipitation sums (RhiresM). Topographic parameters (elevation, slope) were also significant explanatory variables for single months. The comparison of the 12 monthly rainfall erosivity maps showed a distinct seasonality with the highest rainfall erosivity in summer (June, July, and August) influenced by intense rainfall events. Winter months have the lowest rainfall erosivity. A proportion of 62 % of the total annual rainfall erosivity is identified within four months only (June-September). The highest erosion risk can be expected in July, where not only rainfall erosivity but also erosivity density is high. In addition to the intra-annual temporal regime, a spatial variability of this seasonality was detectable between different regions of Switzerland. The assessment of the dynamic behavior of the R-factor is valuable for the identification of susceptible seasons and regions.

  13. The Role of Rainfall Patterns in Seasonal Malaria Transmission

    NASA Astrophysics Data System (ADS)

    Bomblies, A.

    2010-12-01

    Seasonal total precipitation is well known to affect malaria transmission because Anopheles mosquitoes depend on standing water for breeding habitat. However, the within-season temporal pattern of the rainfall influences persistence of standing water and thus rainfall patterns also affect mosquito population dynamics. In this talk, I show that intraseasonal rainfall pattern describes 40% of the variance in simulated mosquito abundance in a Niger Sahel village where malaria is endemic but highly seasonal, demonstrating the necessity for detailed distributed hydrology modeling to explain the variance from this important effect. I apply a field validated, high spatial- and temporal-resolution hydrology model coupled with an entomology model. Using synthetic rainfall time series generated using a stationary first-order Markov Chain model, I hold all variables except hourly rainfall constant, thus isolating the contribution of rainfall pattern to variance in mosquito abundance. I further show the utility of hydrology modeling to assess precipitation effects by analyzing collected water. Time-integrated surface area of pools explains 70% of the variance in mosquito abundance, and time-integrated surface area of pools persisting longer than seven days explains 82% of the variance, showing an improved predictive ability when pool persistence is explicitly modeled at high spatio-temporal resolution. I extend this analysis to investigate the impacts of this effect on malaria vector mosquito populations under climate shift scenarios, holding all climate variables except precipitation constant. In these scenarios, rainfall mean and variance change with climatic change, and the modeling approach evaluates the impact of non-stationarity in rainfall and the associated rainfall patterns on expected mosquito activity.

  14. Reply to comment by Fred L. Ogden et al. on "Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response"

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; Parolari, A. J.; McDonnell, J. J.; Porporato, A.

    2017-07-01

    Though Ogden et al. list several shortcomings of the original SCS-CN method, fit for purpose is a key consideration in hydrological modelling, as shown by the adoption of SCS-CN method in many design standards. The theoretical framework of Bartlett et al. [2016a] reveals a family of semidistributed models, of which the SCS-CN method is just one member. Other members include event-based versions of the Variable Infiltration Capacity (VIC) model and TOPMODEL. This general model allows us to move beyond the limitations of the original SCS-CN method under different rainfall-runoff mechanisms and distributions for soil and rainfall variability. Future research should link this general model approach to different hydrogeographic settings, in line with the call for action proposed by Ogden et al.

  15. Analyzing Flash Flood Data in an Ultra-Urban Region

    NASA Astrophysics Data System (ADS)

    Smith, B. K.; Rodriguez, S.

    2016-12-01

    New York City is an ultra-urban region, with combined sewers and buried stream channels. Traditional flood studies rely on the presence of stream gages to detect flood stage and discharge, but ultra-urban regions frequently lack the surface stream channels and gages necessary for this approach. In this study we aggregate multiple non-traditional data for detecting flash flood events. These data including phone call reports, city records, and, for one particular flood event, news reports and social media reports. These data are compared with high-resolution bias-corrected radar rainfall fields to study flash flood events in New York City. We seek to determine if these non-traditional data will allow for a comprehensive study of rainfall-runoff relationships in New York City. We also seek to map warm season rainfall heterogeneities in the city and to compare them to spatial distribution of reported flood occurrence.

  16. Analysis of Non-Tropical Cyclone Induced Flood Events over South East Asia: Investigating Flood Frequency and Extremes in the Philippines

    NASA Astrophysics Data System (ADS)

    Marcella, M. P.; CHEN, C.; Senarath, S. U.

    2013-12-01

    Much work has been completed in analyzing Southeast Asia's tropical cyclone climatology and the associated flooding throughout the region. Although, an active and strong monsoon season also brings major flooding across the Philippines resulting in the loss of lives and significant economic impacts, only a limited amount of research work has been conducted to investigate the frequency and flood loss estimates of these non-tropical cyclone (TC) storms. In this study, using the TRMM 3-hourly rainfall product, tropical cyclone rainfall is removed to construct a non-TC rainfall climatology across the region. Given this data, stochastically generated rainfall that is both spatially and temporally correlated across the country is created to generate a longer historically-based record of non-TC precipitation. After defining the rainfall criteria that constitutes a flood event based on observed floods and TRMM data, this event definition is applied to the stochastic catalog of rainfall to determine flood events. Subsequently, a thorough analysis of non-TC flood extremes, frequency, and distribution is completed for the country of the Philippines. As a result, the above methodology and datasets provide a unique opportunity to further study flood occurrences and their extremes across most of South East Asia.

  17. Effects of rainfall spatial variability and intermittency on shallow landslide triggering patterns at a catchment scale

    NASA Astrophysics Data System (ADS)

    von Ruette, J.; Lehmann, P.; Or, D.

    2014-10-01

    The occurrence of shallow landslides is often associated with intense and prolonged rainfall events, where infiltrating water reduces soil strength and may lead to abrupt mass release. Despite general understanding of the role of rainfall water in slope stability, the prediction of rainfall-induced landslides remains a challenge due to natural heterogeneity that affect hydrologic loading patterns and the largely unobservable internal progressive failures. An often overlooked and potentially important factor is the role of rainfall variability in space and time on landslide triggering that is often obscured by coarse information (e.g., hourly radar data at spatial resolution of a few kilometers). To quantify potential effects of rainfall variability on failure dynamics, spatial patterns, landslide numbers and volumes, we employed a physically based "Catchment-scale Hydromechanical Landslide Triggering" (CHLT) model for a study area where a summer storm in 2002 triggered 51 shallow landslides. In numerical experiments based on the CHLT model, we applied the measured rainfall amount of 53 mm in different artificial spatiotemporal rainfall patterns, resulting in between 30 and 100 landslides and total released soil volumes between 3000 and 60,000 m3 for the various scenarios. Results indicate that low intensity rainfall below soil's infiltration capacity resulted in the largest mechanical perturbation. This study illustrates how small-scale rainfall variability that is often overlooked by present operational rainfall data may play a key role in shaping landslide patterns.

  18. Influence of Rainfall Product on Hydrological and Sediment Outputs when Calibrating the STREAP Rainfall Generator for the CAESAR-Lisflood Landscape Evolution Model

    NASA Astrophysics Data System (ADS)

    Skinner, Christopher; Peleg, Nadav; Quinn, Niall

    2017-04-01

    The use of Landscape Evolution Models often requires a timeseries of rainfall to drive the model. The spatial and temporal resolution of the driving data has an impact on several model outputs, including the shape of the landscape itself. Attempts to compensate for the spatiotemporal smoothing of local rainfall intensities are insufficient and may exacerbate these issues, meaning that to produce the best results the model needs to be run with data of highest spatial and temporal resolutions available. Some rainfall generators are able to produce timeseries with high spatial and temporal resolution. Observed data is used for the calibration of these generators. However, rainfall observations are highly uncertain and vary between different products (e.g. raingauges, weather radar) which may cascade through the Landscape Evolution Model. Here, we used the STREAP rainfall generator to produce high spatial (1km) and temporal (hourly) resolution ensembles of rainfall for a 50-year period, and used these to drive the CAESAR-Lisflood Landscape Evolution Model for a test catchment. Three different calibrations of STREAP were used against different products: gridded raingauge (TBR), weather radar (NIMROD), and a merged of the two. Analysis of the discharge and sediment yields from the model runs showed that the models run by STREAP calibrated by the different products were statistically significantly different, with the raingauge calibration producing 12.4 % more sediment on average over the 50-year period. The merged product produced results which were between the raingauge and radar products. The results demonstrate the importance of considering the selection of rainfall driving data on Landscape Evolution Modelling. Rainfall products are highly uncertain, different instruments will observe rainfall differently, and these uncertainties are clearly shown to cascade through the calibration of the rainfall generator and the Landscape Evolution Model. Merging raingauge and radar products is a common practise operationally, and by using features of both to calibrate the rainfall generator it is likely a more robust rainfall timeseries is produced.

  19. Fitting monthly Peninsula Malaysian rainfall using Tweedie distribution

    NASA Astrophysics Data System (ADS)

    Yunus, R. M.; Hasan, M. M.; Zubairi, Y. Z.

    2017-09-01

    In this study, the Tweedie distribution was used to fit the monthly rainfall data from 24 monitoring stations of Peninsula Malaysia for the period from January, 2008 to April, 2015. The aim of the study is to determine whether the distributions within the Tweedie family fit well the monthly Malaysian rainfall data. Within the Tweedie family, the gamma distribution is generally used for fitting the rainfall totals, however the Poisson-gamma distribution is more useful to describe two important features of rainfall pattern, which are the occurrences (dry months) and the amount (wet months). First, the appropriate distribution of the monthly rainfall was identified within the Tweedie family for each station. Then, the Tweedie Generalised Linear Model (GLM) with no explanatory variable was used to model the monthly rainfall data. Graphical representation was used to assess model appropriateness. The QQ plots of quantile residuals show that the Tweedie models fit the monthly rainfall data better for majority of the stations in the west coast and mid land than those in the east coast of Peninsula. This significant finding suggests that the best fitted distribution depends on the geographical location of the monitoring station. In this paper, a simple model is developed for generating synthetic rainfall data for use in various areas, including agriculture and irrigation. We have showed that the data that were simulated using the Tweedie distribution have fairly similar frequency histogram to that of the actual data. Both the mean number of rainfall events and mean amount of rain for a month were estimated simultaneously for the case that the Poisson gamma distribution fits the data reasonably well. Thus, this work complements previous studies that fit the rainfall amount and the occurrence of rainfall events separately, each to a different distribution.

  20. Simulation of polycyclic aromatic hydrocarbons transport in multimedia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.; Chu, C.J.

    1999-07-01

    Many studies have indicated that the threat from toxic air pollutants such as VOCs comes not through inhalation by humans while the pollutants are in a gaseous state but through absorption when the pollutants are in a solid state such as in an aerosol or particulate form. Pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) usually exist in a semi-volatile state. To assess the risk of the PAHs, one needs to estimate the dose of the pollutants to which a human would be exposed through various pathways. In this study, the authors modified a Spatial Multimedia Compartmental Model (SMCM) originally developedmore » by UCLA Professor Cohen to predict the PAHs distribution among multimedia such as air, water, soil and sediment in the Taipei metropolitan area. Three PAHs were considered in this study. They are Benzo(a)pyrene, Pyrene and Chrysene. When PAHs are emitted into atmosphere, physical and chemical mechanisms may redistribute the PAHs among multimedia. Five cases of PAHs distribution in multimedia were simulated: (1) PAHs distribution in a dry condition, (2) PAHs distribution when there are different dry deposition velocities, (3) PAHs distribution under a single rainfall event, (4) PAHs distribution when there are different soil properties, (5) PAHs distribution under a random rainfall case. The simulation results are concluded: (1) In the dry case, the PAHs accumulate mostly in soil and air compartments, (2) Different dry depositing velocities will affect the PAHs distribution among compartments. (3) Different soil properties affect the PAHs concentration in the soil and sediment compartments, (4) The soil PAHs concentrations usually increase for those PAHs with a high solid/gas ratio. (5) The random rainfall only affects the PAHs concentration in the soil.« less

  1. Searching regional rainfall homogeneity using atmospheric fields

    NASA Astrophysics Data System (ADS)

    Gabriele, Salvatore; Chiaravalloti, Francesco

    2013-03-01

    The correct identification of homogeneous areas in regional rainfall frequency analysis is fundamental to ensure the best selection of the probability distribution and the regional model which produce low bias and low root mean square error of quantiles estimation. In an attempt at rainfall spatial homogeneity, the paper explores a new approach that is based on meteo-climatic information. The results are verified ex-post using standard homogeneity tests applied to the annual maximum daily rainfall series. The first step of the proposed procedure selects two different types of homogeneous large regions: convective macro-regions, which contain high values of the Convective Available Potential Energy index, normally associated with convective rainfall events, and stratiform macro-regions, which are characterized by low values of the Q vector Divergence index, associated with dynamic instability and stratiform precipitation. These macro-regions are identified using Hot Spot Analysis to emphasize clusters of extreme values of the indexes. In the second step, inside each identified macro-region, homogeneous sub-regions are found using kriging interpolation on the mean direction of the Vertically Integrated Moisture Flux. To check the proposed procedure, two detailed examples of homogeneous sub-regions are examined.

  2. Characterizing rainfall in the Tenerife island

    NASA Astrophysics Data System (ADS)

    Díez-Sierra, Javier; del Jesus, Manuel; Losada Rodriguez, Inigo

    2017-04-01

    In many locations, rainfall data are collected through networks of meteorological stations. The data collection process is nowadays automated in many places, leading to the development of big databases of rainfall data covering extensive areas of territory. However, managers, decision makers and engineering consultants tend not to extract most of the information contained in these databases due to the lack of specific software tools for their exploitation. Here we present the modeling and development effort put in place in the Tenerife island in order to develop MENSEI-L, a software tool capable of automatically analyzing a complete rainfall database to simplify the extraction of information from observations. MENSEI-L makes use of weather type information derived from atmospheric conditions to separate the complete time series into homogeneous groups where statistical distributions are fitted. Normal and extreme regimes are obtained in this manner. MENSEI-L is also able to complete missing data in the time series and to generate synthetic stations by using Kriging techniques. These techniques also serve to generate the spatial regimes of precipitation, both normal and extreme ones. MENSEI-L makes use of weather type information to also provide a stochastic three-day probability forecast for rainfall.

  3. The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  4. Analysis of shallow landslides and soil erosion induced by rainfall over large areas

    NASA Astrophysics Data System (ADS)

    Cuomo, Sabatino; Della Sala, Maria

    2014-05-01

    Due to heavy rainstorms, steep hillslopes may be affected by either shallow landslides or soil superficial erosion (Acharya et al., 2011), which originate different flow-like mass movements in adjacent or overlapping source areas (Cascini et al., 2013). Triggering analysis (Cascini et al., 2011) is a relevant issue for hazard assessment that is, in turn, the first step of risk analysis procedures (Fell et al., 2008). Nevertheless, the available approaches separately consider shallow landslides and soil erosion. Specifically, quantitative models for landslides triggering analysis allow simulating the physical processes leading to failure such as pore water pressure increase and soil shear mobilization and provide estimates of the amount of material potentially involved; however, success of quantitative methods must be carefully evaluated in complex geological setting as recently outlined (Sorbino et al., 2010) and further applications to real case histories are straightforward. On the other hand, a wide range of models exist for soil erosion analysis, which differ in terms of complexity, processes considered and data required for the model calibration and practical applications; in particular, quantitative models can estimate the source areas and the amount of eroded soil through empirical relationships or mathematical equations describing the main physical processes governing soil erosion (Merritt et al., 2003). In this work a spatially distributed analysis is proposed for testing the potentialities of two available models to respectively investigate the spatial occurrence of first-time shallow landslides and superficial soil erosion repeatedly occurring in a large test area of the Southern Italy. Both analyses take into account the seasonal variation of soil suction, rainfall characteristics and soil cover use (Cuomo and Della Sala, 2013). The achieved results show that the source areas of shallow landslides strongly depend on rainfall intensity and duration and soil initial suction. On the other hand, the source areas for erosion phenomena depend on rainfall characteristics and soil cover, with simulated eroded areas larger in autumn season. In addition, for a past event, the simulated source areas of shallow landslides are smaller than those observed in the field while the simulated eroded areas with thickness greater than 5 cm are comparable with the in-situ evidences if the analysis takes into account high rainfall intensity and a spatially variable soil cover use, thus providing a consistent interpretation of the event. References Acharya, G., Cochrane, T., Davies, T., Bowman, E. (2011). Quantifying and modeling postfailure sediment yields from laboratory-scale soil erosion and shallow landslide experiments with silty loess. Geomorphology 129, 49-58. Cascini L., Cuomo S., Della Sala M. (2011). Spatial and temporal occurrence of rainfall-induced shallow landslides of flow type: A case of Sarno-Quindici, Italy. Geomorphology, 126(1-2), 148-158. Cascini, L., Sorbino, G., Cuomo, S., Ferlisi, S. (2013). Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). Landslides, 1-14, DOI: 10.1007/s10346-013-0395-3. Cuomo S., Della Sala M. (2013). Spatially distributed analysis of shallow landslides and soil erosion induced by rainfall. (submitted to Natural Hazards). Fell, R., Corominas J., Bonnard, C., Cascini, L., Leroi E., Savage, W.Z., on behalf of the JTC-1 Joint Technical Committee on Landslides and Engineered Slopes (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geolology, 102(3-4):85-98. Merritt, W.S., Latcher, R.A., Jakeman, A.J. (2003). A review of erosion and sediment transport models. Environmental Modelling and Software 18, 761- 799. Sorbino G., Sica C., Cascini L. (2010). Susceptibility analysis of shallow landslides source areas using physically based models. Natural Hazards, 53(2), 313-332.

  5. Use of radar QPE for the derivation of Intensity-Duration-Frequency curves in a range of climatic regimes

    NASA Astrophysics Data System (ADS)

    Marra, Francesco; Morin, Efrat

    2015-12-01

    Intensity-Duration-Frequency (IDF) curves are widely used in flood risk management because they provide an easy link between the characteristics of a rainfall event and the probability of its occurrence. Weather radars provide distributed rainfall estimates with high spatial and temporal resolutions and overcome the scarce representativeness of point-based rainfall for regions characterized by large gradients in rainfall climatology. This work explores the use of radar quantitative precipitation estimation (QPE) for the identification of IDF curves over a region with steep climatic transitions (Israel) using a unique radar data record (23 yr) and combined physical and empirical adjustment of the radar data. IDF relationships were derived by fitting a generalized extreme value distribution to the annual maximum series for durations of 20 min, 1 h and 4 h. Arid, semi-arid and Mediterranean climates were explored using 14 study cases. IDF curves derived from the study rain gauges were compared to those derived from radar and from nearby rain gauges characterized by similar climatology, taking into account the uncertainty linked with the fitting technique. Radar annual maxima and IDF curves were generally overestimated but in 70% of the cases (60% for a 100 yr return period), they lay within the rain gauge IDF confidence intervals. Overestimation tended to increase with return period, and this effect was enhanced in arid climates. This was mainly associated with radar estimation uncertainty, even if other effects, such as rain gauge temporal resolution, cannot be neglected. Climatological classification remained meaningful for the analysis of rainfall extremes and radar was able to discern climatology from rainfall frequency analysis.

  6. Bivariate Rainfall and Runoff Analysis Using Shannon Entropy Theory

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Zhang, L.

    2012-12-01

    Rainfall-Runoff analysis is the key component for many hydrological and hydraulic designs in which the dependence of rainfall and runoff needs to be studied. It is known that the convenient bivariate distribution are often unable to model the rainfall-runoff variables due to that they either have constraints on the range of the dependence or fixed form for the marginal distributions. Thus, this paper presents an approach to derive the entropy-based joint rainfall-runoff distribution using Shannon entropy theory. The distribution derived can model the full range of dependence and allow different specified marginals. The modeling and estimation can be proceeded as: (i) univariate analysis of marginal distributions which includes two steps, (a) using the nonparametric statistics approach to detect modes and underlying probability density, and (b) fitting the appropriate parametric probability density functions; (ii) define the constraints based on the univariate analysis and the dependence structure; (iii) derive and validate the entropy-based joint distribution. As to validate the method, the rainfall-runoff data are collected from the small agricultural experimental watersheds located in semi-arid region near Riesel (Waco), Texas, maintained by the USDA. The results of unviariate analysis show that the rainfall variables follow the gamma distribution, whereas the runoff variables have mixed structure and follow the mixed-gamma distribution. With this information, the entropy-based joint distribution is derived using the first moments, the first moments of logarithm transformed rainfall and runoff, and the covariance between rainfall and runoff. The results of entropy-based joint distribution indicate: (1) the joint distribution derived successfully preserves the dependence between rainfall and runoff, and (2) the K-S goodness of fit statistical tests confirm the marginal distributions re-derived reveal the underlying univariate probability densities which further assure that the entropy-based joint rainfall-runoff distribution are satisfactorily derived. Overall, the study shows the Shannon entropy theory can be satisfactorily applied to model the dependence between rainfall and runoff. The study also shows that the entropy-based joint distribution is an appropriate approach to capture the dependence structure that cannot be captured by the convenient bivariate joint distributions. Joint Rainfall-Runoff Entropy Based PDF, and Corresponding Marginal PDF and Histogram for W12 Watershed The K-S Test Result and RMSE on Univariate Distributions Derived from the Maximum Entropy Based Joint Probability Distribution;

  7. New spatial and temporal indices of Indian summer monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sanjeev; Uma, R.; Lakshmi Kumar, T. V.; Narayanan, M. S.; Pokhrel, Samir; Kripalani, R. H.

    2018-02-01

    The overall yearly seasonal performance of Indian southwest monsoon rainfall (ISMR) for the whole Indian land mass is presently expressed by the India Meteorological Department (IMD) by a single number, the total quantum of rainfall. Any particular year is declared as excess/deficit or normal monsoon rainfall year on the basis of this single number. It is well known that monsoon rainfall also has high interannual variability in spatial and temporal scales. To account for these aspects in ISMR, we propose two new spatial and temporal indices. These indices have been calculated using the 115 years of IMD daily 0.25° × 0.25° gridded rainfall data. Both indices seem to go in tandem with the in vogue seasonal quantum index. The anomaly analysis indicates that the indices during excess monsoon years behave randomly, while for deficit monsoon years the phase of all the three indices is the same. Evaluation of these indices is also studied with respect to the existing dynamical indices based on large-scale circulation. It is found that the new temporal indices have better link with circulation indices as compared to the new spatial indices. El Nino and Southern Oscillation (ENSO) especially over the equatorial Pacific Ocean still have the largest influence in both the new indices. However, temporal indices have much better remote influence as compared to that of spatial indices. Linkages over the Indian Ocean regions are very different in both the spatial and temporal indices. Continuous wavelet transform (CWT) analysis indicates that the complete spectrum of oscillation of the QI is shared in the lower oscillation band by the spatial index and in the higher oscillation band by the temporal index. These new indices may give some extra dimension to study Indian summer monsoon variability.

  8. Dynamic Rainfall Patterns and the Simulation of Changing Scenarios: A behavioral watershed response

    NASA Astrophysics Data System (ADS)

    Chu, M.; Guzman, J.; Steiner, J. L.; Hou, C.; Moriasi, D.

    2015-12-01

    Rainfall is one of the fundamental drivers that control hydrologic responses including runoff production and transport phenomena that consequently drive changes in aquatic ecosystems. Quantifying the hydrologic responses to changing scenarios (e.g., climate, land use, and management) using environmental models requires a realistic representation of probable rainfall in its most sensible spatio-temporal dimensions matching that of the phenomenon under investigation. Downscaling projected rainfall from global circulation models (GCMs) is the most common practice in deriving rainfall datasets to be used as main inputs to hydrologic models which in turn are used to assess the impacts of climate changes on ecosystems. Downscaling assumes that local climate is a combination of large-scale climatic/atmospheric conditions and local conditions. However, the representation of the latter is generally beyond the capacity of current GCMs. The main objective of this study was to develop and implement a synthetic rainfall generator to downscale expected rainfall trends to 1 x 1 km rainfall daily patterns that mimic the dynamic propagation of probability distribution functions (pdf) derived from historic rainfall data (rain-gauge or radar estimated). Future projections were determined based on actual and expected changes in the pdf and stochastic processes to account for variability. Watershed responses in terms of streamflow and nutrients loads were evaluated using synthetically generated rainfall patterns and actual data. The framework developed in this study will allow practitioners to generate rainfall datasets that mimic the temporal and spatial patterns exclusive to their study area under full disclosure of the uncertainties involved. This is expected to provide significantly more accurate environmental models than is currently available and would provide practitioners with ways to evaluate the spectrum of systemic responses to changing scenarios.

  9. Characterization of the Sahelian-Sudan rainfall based on observations and regional climate models

    NASA Astrophysics Data System (ADS)

    Salih, Abubakr A. M.; Elagib, Nadir Ahmed; Tjernström, Michael; Zhang, Qiong

    2018-04-01

    The African Sahel region is known to be highly vulnerable to climate variability and change. We analyze rainfall in the Sahelian Sudan in terms of distribution of rain-days and amounts, and examine whether regional climate models can capture these rainfall features. Three regional models namely, Regional Model (REMO), Rossby Center Atmospheric Model (RCA) and Regional Climate Model (RegCM4), are evaluated against gridded observations (Climate Research Unit, Tropical Rainfall Measuring Mission, and ERA-interim reanalysis) and rain-gauge data from six arid and semi-arid weather stations across Sahelian Sudan over the period 1989 to 2008. Most of the observed rain-days are characterized by weak (0.1-1.0 mm/day) to moderate (> 1.0-10.0 mm/day) rainfall, with average frequencies of 18.5% and 48.0% of the total annual rain-days, respectively. Although very strong rainfall events (> 30.0 mm/day) occur rarely, they account for a large fraction of the total annual rainfall (28-42% across the stations). The performance of the models varies both spatially and temporally. RegCM4 most closely reproduces the observed annual rainfall cycle, especially for the more arid locations, but all of the three models fail to capture the strong rainfall events and hence underestimate its contribution to the total annual number of rain-days and rainfall amount. However, excessive moderate rainfall compensates this underestimation in the models in an annual average sense. The present study uncovers some of the models' limitations in skillfully reproducing the observed climate over dry regions, will aid model users in recognizing the uncertainties in the model output and will help climate and hydrological modeling communities in improving models.

  10. Effect of Spatio-Temporal Variability of Rainfall on Stream flow Prediction of Birr Watershed

    NASA Astrophysics Data System (ADS)

    Demisse, N. S.; Bitew, M. M.; Gebremichael, M.

    2012-12-01

    The effect of rainfall variability on our ability to forecast flooding events was poorly studied in complex terrain region of Ethiopia. In order to establish relation between rainfall variability and stream flow, we deployed 24 rain gauges across Birr watershed. Birr watershed is a medium size mountainous watershed with an area of 3000 km2 and elevation ranging between 1435 m.a.s.l and 3400 m.a.s.l in the central Ethiopia highlands. One summer monsoon rainfall of 2012 recorded at high temporal scale of 15 minutes interval and stream flow recorded at an hourly interval in three sub-watershed locations representing different scales were used in this study. Based on the data obtained from the rain gauges and stream flow observations, we quantify extent of temporal and spatial variability of rainfall across the watershed using standard statistical measures including mean, standard deviation and coefficient of variation. We also establish rainfall-runoff modeling system using a physically distributed hydrological model: the Soil and Water Assessment Tool (SWAT) and examine the effect of rainfall variability on stream flow prediction. The accuracy of predicted stream flow is measured through direct comparison with observed flooding events. The results demonstrate the significance of relation between stream flow prediction and rainfall variability in the understanding of runoff generation mechanisms at watershed scale, determination of dominant water balance components, and effect of variability on accuracy of flood forecasting activities.

  11. Energy balance-based distributed modeling of snow and glacier melt runoff for the Hunza river basin in the Pakistan Karakoram Himalayan region

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.

    2012-12-01

    A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based multilayer snow and glacier module to estimate the spatial distribution of snow/glacier cover and snow and glacier melt runoff for a river basin in the Karakoram Himalayan region.

  12. Modelling Inland Flood Events for Hazard Maps in Taiwan

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nzerem, K.; Sassi, M.; Hilberts, A.; Assteerawatt, A.; Tillmanns, S.; Mathur, P.; Mitas, C.; Rafique, F.

    2015-12-01

    Taiwan experiences significant inland flooding, driven by torrential rainfall from plum rain storms and typhoons during summer and fall. From last 13 to 16 years data, 3,000 buildings were damaged by such floods annually with a loss US$0.41 billion (Water Resources Agency). This long, narrow island nation with mostly hilly/mountainous topography is located at tropical-subtropical zone with annual average typhoon-hit-frequency of 3-4 (Central Weather Bureau) and annual average precipitation of 2502mm (WRA) - 2.5 times of the world's average. Spatial and temporal distributions of countrywide precipitation are uneven, with very high local extreme rainfall intensities. Annual average precipitation is 3000-5000mm in the mountainous regions, 78% of it falls in May-October, and the 1-hour to 3-day maximum rainfall are about 85 to 93% of the world records (WRA). Rivers in Taiwan are short with small upstream areas and high runoff coefficients of watersheds. These rivers have the steepest slopes, the shortest response time with rapid flows, and the largest peak flows as well as specific flood peak discharge (WRA) in the world. RMS has recently developed a countrywide inland flood model for Taiwan, producing hazard return period maps at 1arcsec grid resolution. These can be the basis for evaluating and managing flood risk, its economic impacts, and insured flood losses. The model is initiated with sub-daily historical meteorological forcings and calibrated to daily discharge observations at about 50 river gauges over the period 2003-2013. Simulations of hydrologic processes, via rainfall-runoff and routing models, are subsequently performed based on a 10000 year set of stochastic forcing. The rainfall-runoff model is physically based continuous, semi-distributed model for catchment hydrology. The 1-D wave propagation hydraulic model considers catchment runoff in routing and describes large-scale transport processes along the river. It also accounts for reservoir storage. Major historical flood events have been successfully simulated along with spatial patterns of flows. Comparison of stochastic discharge statistics w.r.t. observed ones from Hydrological Year Books of Taiwan over all recorded years are also in good agreement.

  13. Spatial structure and scaling of macropores in hydrological process at small catchment scale

    NASA Astrophysics Data System (ADS)

    Silasari, Rasmiaditya; Broer, Martine; Blöschl, Günter

    2013-04-01

    During rainfall events, the formation of overland flow can occur under the circumstances of saturation excess and/or infiltration excess. These conditions are affected by the soil moisture state which represents the soil water content in micropores and macropores. Macropores act as pathway for the preferential flows and have been widely studied locally. However, very little is known about their spatial structure and conductivity of macropores and other flow characteristic at the catchment scale. This study will analyze these characteristics to better understand its importance in hydrological processes. The research will be conducted in Petzenkirchen Hydrological Open Air Laboratory (HOAL), a 64 ha catchment located 100 km west of Vienna. The land use is divided between arable land (87%), pasture (5%), forest (6%) and paved surfaces (2%). Video cameras will be installed on an agricultural field to monitor the overland flow pattern during rainfall events. A wireless soil moisture network is also installed within the monitored area. These field data will be combined to analyze the soil moisture state and the responding surface runoff occurrence. The variability of the macropores spatial structure of the observed area (field scale) then will be assessed based on the topography and soil data. Soil characteristics will be supported with laboratory experiments on soil matrix flow to obtain proper definitions of the spatial structure of macropores and its variability. A coupled physically based distributed model of surface and subsurface flow will be used to simulate the variability of macropores spatial structure and its effect on the flow behaviour. This model will be validated by simulating the observed rainfall events. Upscaling from field scale to catchment scale will be done to understand the effect of macropores variability on larger scales by applying spatial stochastic methods. The first phase in this study is the installation and monitoring configuration of video cameras and soil moisture monitoring equipment to obtain the initial data of overland flow occurrence and soil moisture state relationships.

  14. Influence of throughfall spatial and temporal patterns on soil moisture variability under Downy oak and Scots pine stands in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Llorens, Pilar; Garcia-Estringana, Pablo; Cayuela, Carles; Latron, Jérôme; Molina, Antonio; Gallart, Francesc

    2015-04-01

    Temporal and spatial variability of throughfall and stemflow patterns, due to differences in forest structure and seasonality of Mediterranean climate, may lead to significant changes in the volume of water that locally reaches the soil, with a potential effect on groundwater recharge and on hydrological response of forested hillslopes. Two forest stands in Mediterranean climatic conditions were studied to explore the role of vegetation on the temporal and spatial redistribution of rainfall. One is a Downy oak forest (Quercus pubescens) and the other is a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). These plots are representative of Mediterranean mountain areas with spontaneous afforestation by Scots pine as a consequence of the abandonment of agricultural terraces, formerly covered by Downy oaks. The monitoring design of each plot consists of 20 automatic rain recorders to measuring throughfall, 7 stemflow rings connected to tipping-buckets and 40 automatic soil moisture probes. All data were recorded each 5 min. Bulk rainfall and meteorological conditions above both forest covers were also recorded, and canopy cover and biometric characteristics of the plots were measured. Results indicate a marked temporal stability of throughfall in both stands, and a lower persistence of spatial patterns in the leafless period than in the leafed one in the oaks stand. Moreover, in the oaks plot the ranks of gauges in the leafed and leafless periods were not significantly correlated, indicating different wet and dry hotspots in each season. The spatial distribution of throughfall varied significantly depending on rainfall volume, with small events having larger variability, whereas large events tended to homogenize the relative differences in point throughfall. Soil water content spatial variability increased with increasing soil water content, but direct dependence of soil water content variability on throughfall patterns is difficult to establish.

  15. A non-parametric automatic blending methodology to estimate rainfall fields from rain gauge and radar data

    NASA Astrophysics Data System (ADS)

    Velasco-Forero, Carlos A.; Sempere-Torres, Daniel; Cassiraga, Eduardo F.; Jaime Gómez-Hernández, J.

    2009-07-01

    Quantitative estimation of rainfall fields has been a crucial objective from early studies of the hydrological applications of weather radar. Previous studies have suggested that flow estimations are improved when radar and rain gauge data are combined to estimate input rainfall fields. This paper reports new research carried out in this field. Classical approaches for the selection and fitting of a theoretical correlogram (or semivariogram) model (needed to apply geostatistical estimators) are avoided in this study. Instead, a non-parametric technique based on FFT is used to obtain two-dimensional positive-definite correlograms directly from radar observations, dealing with both the natural anisotropy and the temporal variation of the spatial structure of the rainfall in the estimated fields. Because these correlation maps can be automatically obtained at each time step of a given rainfall event, this technique might easily be used in operational (real-time) applications. This paper describes the development of the non-parametric estimator exploiting the advantages of FFT for the automatic computation of correlograms and provides examples of its application on a case study using six rainfall events. This methodology is applied to three different alternatives to incorporate the radar information (as a secondary variable), and a comparison of performances is provided. In particular, their ability to reproduce in estimated rainfall fields (i) the rain gauge observations (in a cross-validation analysis) and (ii) the spatial patterns of radar fields are analyzed. Results seem to indicate that the methodology of kriging with external drift [KED], in combination with the technique of automatically computing 2-D spatial correlograms, provides merged rainfall fields with good agreement with rain gauges and with the most accurate approach to the spatial tendencies observed in the radar rainfall fields, when compared with other alternatives analyzed.

  16. Spatial trends in Pearson Type III statistical parameters

    USGS Publications Warehouse

    Lichty, R.W.; Karlinger, M.R.

    1995-01-01

    Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors

  17. Lantana camara L. (Verbenaceae) invasion along streams in a heterogeneous landscape.

    PubMed

    Ramaswami, Geetha; Sukumar, Raman

    2014-09-01

    Streams are periodically disturbed due to flooding, act as edges between habitats and also facilitate the dispersal of propagules, thus being potentially more vulnerable to invasions than adjoining regions. We used a landscape-wide transect-based sampling strategy and a mixed effects modelling approach to understand the effects of distance from stream, a rainfall gradient, light availability and fire history on the distribution of the invasive shrub Lantana camara L.(lantana) in the tropical dry forests of Mudumalai in southern India. The area occupied by lantana thickets and lantana stem abundance were both found to be highest closest to streams across this landscape with a rainfall gradient. There was no advantage in terms of increased abundance or area occupied by lantana when it grew closer to streams in drier areas as compared to moister areas. On an average, the area covered by lantana increased with increasing annual rainfall. Areas that experienced greater number of fires during 1989-2010 had lower lantana stem abundance irrespective of distance from streams. In this landscape, total light availability did not affect lantana abundance. Understanding the spatially variable environmental factors in a heterogeneous landscape influencing the distribution of lantana would aid in making informed management decisions at this scale.

  18. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    NASA Astrophysics Data System (ADS)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze these datasets to better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly analysis showed that all satellite products highly overestimated rainfall in the arid North zone. However, there were no major difference between all three products from North to South-Central zones. Though, in the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, while CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in situ measurements. The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best results found during winter seasons and in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when it was compared in situ against satellite SPI's. Because of its higher spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3 over Chile. The results of this study show that in order to use the CHIRPS 2.0 and PERSIANN-CDR datasets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products should be calibrated to adjust for the overestimation/underestimation of rainfall geographically specially in the North zone and seasonally during the summer and spring months in the other zones.

  19. Spatial and seasonal variation of pollution sources in proximity of the Jaranman-Saryangdo area in Korea.

    PubMed

    Jung, Yeoun Joong; Park, Young Cheol; Lee, Ka Jeong; Kim, Min Seon; Go, Kyeong Ri; Park, Sang Gi; Kwon, Soon Jae; Yang, Ji Hye; Mok, Jong Soo

    2017-02-15

    We aimed to compare the spatial and seasonal distributions of fecal coliforms (FCs) and other physiochemical factors in the drainage basin of the Jaranman-Saryangdo area. Among the pollution sources, the mean daily loads and half-circle radii of FCs were the highest in June. However, the pollutants did not reach the boundary line of the designated area due to an existing buffer zone. The value of the FC geometric mean at station 1 was highest in August during periods of heavy rainfall; however, this value was lower than the regulation limit. The highest daily loads of chemical oxygen demand (COD) and chlorophyll-a (Chl-a) in seawater were in the surface layer in August; however, dissolved oxygen (DO) in the bottom water layer was at its lowest in August. This study demonstrated that season and rainfall have significant effects on the FC, COD, DO, and Chl-a concentrations in seawater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. High Resolution Flash Flood Forecasting Using a Wireless Sensor Network in the Dallas-Fort Worth Metroplex

    NASA Astrophysics Data System (ADS)

    Bartos, M. D.; Kerkez, B.; Noh, S.; Seo, D. J.

    2017-12-01

    In this study, we develop and evaluate a high resolution urban flash flood monitoring system using a wireless sensor network (WSN), a real-time rainfall-runoff model, and spatially-explicit radar rainfall predictions. Flooding is the leading cause of natural disaster fatalities in the US, with flash flooding in particular responsible for a majority of flooding deaths. While many riverine flood models have been operationalized into early warning systems, there is currently no model that is capable of reliably predicting flash floods in urban areas. Urban flash floods are particularly difficult to model due to a lack of rainfall and runoff data at appropriate scales. To address this problem, we develop a wide-area flood-monitoring wireless sensor network for the Dallas-Fort Worth metroplex, and use this network to characterize rainfall-runoff response over multiple heterogeneous catchments. First, we deploy a network of 22 wireless sensor nodes to collect real-time stream stage measurements over catchments ranging from 2-80 km2 in size. Next, we characterize the rainfall-runoff response of each catchment by combining stream stage data with gage and radar-based precipitation measurements. Finally, we demonstrate the potential for real-time flash flood prediction by joining the derived rainfall-runoff models with real-time radar rainfall predictions. We find that runoff response is highly heterogeneous among catchments, with large variabilities in runoff response detected even among nearby gages. However, when spatially-explicit rainfall fields are included, spatial variability in runoff response is largely captured. This result highlights the importance of increased spatial coverage for flash flood prediction.

  1. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale.

    PubMed

    Gariano, S L; Rianna, G; Petrucci, O; Guzzetti, F

    2017-10-15

    According to the fifth report of the Intergovernmental Panel on Climate Change, an increase in the frequency and the intensity of extreme rainfall is expected in the Mediterranean area. Among different impacts, this increase might result in a variation in the frequency and the spatial distribution of rainfall-induced landslides, and in an increase in the size of the population exposed to landslide risk. We propose a method for the regional-scale evaluation of future variations in the occurrence of rainfall-induced landslides, in response to changes in rainfall regimes. We exploit information on the occurrence of 603 rainfall-induced landslides in Calabria, southern Italy, in the period 1981-2010, and daily rainfall data recorded in the same period in the region. Furthermore, we use high-resolution climate projections based on RCP4.5 and RCP8.5 scenarios. In particular, we consider the mean variations between a 30-year future period (2036-2065) and the reference period 1981-2010 in three variables assumed as proxy for landslide activity: annual rainfall, seasonal cumulated rainfall, and annual maxima of daily rainfall. Based on reliable correlations between landslide occurrence and weather variables estimated in the reference period, we assess future variations in rainfall-induced landslide occurrence for all the municipalities of Calabria. A +45.7% and +21.2% average regional variation in rainfall-induced landslide occurrence is expected in the region for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. We also investigate the future variations in the impact of rainfall-induced landslides on the population of Calabria. We find a +80.2% and +54.5% increase in the impact on the population for the period 2036-2065, under the RCP4.5 and RCP8.5 scenario, respectively. The proposed method is quantitative and reproducible, thus it can be applied in similar regions, where adequate landslide and rainfall information is available. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Modelling urban rainfall-runoff responses using an experimental, two-tiered physical modelling environment

    NASA Astrophysics Data System (ADS)

    Green, Daniel; Pattison, Ian; Yu, Dapeng

    2016-04-01

    Surface water (pluvial) flooding occurs when rainwater from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flooding poses a serious hazard to urban areas across the world, with the UK's perceived risk appearing to have increased in recent years due to surface water flood events seeming more severe and frequent. Surface water flood risk currently accounts for 1/3 of all UK flood risk, with approximately two million people living in urban areas at risk of a 1 in 200-year flood event. Research often focuses upon using numerical modelling techniques to understand the extent, depth and severity of actual or hypothetical flood scenarios. Although much research has been conducted using numerical modelling, field data available for model calibration and validation is limited due to the complexities associated with data collection in surface water flood conditions. Ultimately, the data which numerical models are based upon is often erroneous and inconclusive. Physical models offer a novel, alternative and innovative environment to collect data within, creating a controlled, closed system where independent variables can be altered independently to investigate cause and effect relationships. A physical modelling environment provides a suitable platform to investigate rainfall-runoff processes occurring within an urban catchment. Despite this, physical modelling approaches are seldom used in surface water flooding research. Scaled laboratory experiments using a 9m2, two-tiered 1:100 physical model consisting of: (i) a low-cost rainfall simulator component able to simulate consistent, uniformly distributed (>75% CUC) rainfall events of varying intensity, and; (ii) a fully interchangeable, modular plot surface have been conducted to investigate and quantify the influence of a number of terrestrial and meteorological factors on overland flow and rainfall-runoff patterns within a modelled urban setting. Terrestrial factors investigated include altering the physical model's catchment slope (0°- 20°), as well as simulating a number of spatially-varied impermeability and building density/configuration scenarios. Additionally, the influence of different storm dynamics and intensities were investigated. Preliminary results demonstrate that rainfall-runoff responses in the physical modelling environment are highly sensitive to slight increases in catchment gradient and rainfall intensity and that more densely distributed building layouts significantly increase peak flows recorded at the physical model outflow when compared to sparsely distributed building layouts under comparable simulated rainfall conditions.

  3. Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China.

    PubMed

    Wu, Xinliang; Wei, Yujie; Wang, Junguang; Xia, Jinwen; Cai, Chongfa; Wei, Zhiyuan

    2018-04-15

    Soil erosion poses a major threat to the sustainability of natural ecosystems. The main objective of this study was to investigate the effects of soil type and rainfall intensity on sheet erosion processes (hydrological, erosional processes and sediment characteristics) from temperate to tropical climate. Field plot experiments were conducted under pre-wetted bare fallow condition for five soil types (two Luvisols, an Alisol, an Acrisol and a Ferralsol) with heavy textures (silty clay loam, silty clay and clay) derived separately from loess deposits, quaternary red clays and basalt in central-south China. Rainfall simulations were performed at two rainfall intensities (45 and 90mmh -1 ) and lasted one hour after runoff generation. Runoff coefficient, sediment concentration, sediment yield rate and sediment effective size distribution were determined at 3-min intervals. Runoff temporal variations were similar at the high rainfall intensity, but exhibited a remarkable difference at the low rainfall intensity among soil types except for tropical Ferralsol. Illite was positively correlated with runoff coefficient (p<0.05). Rainfall intensity significantly contributed to the erosional process (p<0.001). Sediment concentration and yield rate were the smallest for the tropical Ferralsol and sediment concentration was the largest for the temperate Luvisol. The regimes (transport and detachment) limiting erosion varied under the interaction of rainfall characteristics (intensity and duration) and soil types, with amorphous iron oxides and bulk density jointly enhancing soil resistance to erosive forces (Adj-R 2 >88%, p<0.001). Sediment size was dominated by <0.1mm size fraction for the Luvisols and bimodally distributed with the peaks at <0.1mm and 1-0.5mm size for the other soil types. Exchangeable sodium decreased sediment size while rainfall intensity and clay content increased it (Adj-R 2 =96%, p<0.01). These results allow to better understand the climate effect on erosion processes at the spatial-temporal scale from the perspective of soil properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Quantifying discharge uncertainty from remotely sensed precipitation data products in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Weerasinghe, H.; Raoufi, R.; Yoon, Y.; Beighley, E., II; Alshawabkeh, A.

    2014-12-01

    Preterm birth is a serious health issue in the United States that contributes to over one-third of all infant deaths. Puerto Rico being one of the hot spots, preliminary research found that the high preterm birth rate can be associated with exposure to some contaminants in water used on daily basis. Puerto Rico has more than 200 contaminated sites including 16 active Superfund sites. Risk of exposure to contaminants is aggravated by unlined landfills lying over the karst regions, highly mobile and dynamic nature of the karst aquifers, and direct contact with surface water through sinkholes and springs. Much of the population in the island is getting water from natural springs or artesian wells that are connected with many of these potentially contaminated karst aquifers. Mobility of contaminants through surface water flows and reservoirs are largely known and are highly correlated with the variations in hydrologic events and conditions. In this study, we quantify the spatial and temporal distribution of Puerto Rico's surface water stores and fluxes to better understand potential impacts on the distribution of groundwater contamination. To quantify and characterize Puerto Rico's surface waters, hydrologic modeling, remote sensing and field measurements are combined. Streamflow measurements are available from 27 U.S. Geological Survey (USGS) gauging stations with drainage areas ranging from 2 to 510 km2. Hillslope River Routing (HRR) model is used to simulate hourly streamflow from watersheds larger than 1 km2 that discharge to ocean. HRR model simulates vertical water balance, lateral surface and subsurface runoff and river discharge. The model consists of 4418 sub-catchments with a mean model unit area (i.e., sub-catchment) of 1.8 km2. Using gauged streamflow measurements for validation, we first assess model results for simulated discharge using three precipitation products: TRMM-3B42 (3 hour temporal resolution, 0.25 degree spatial resolution); NWS stage-III radar rainfall (~ 5 min temporal resolution and 4 km spatial resolution); and gauge measurements from 37 rainfall stations for the period 2000-2012. We then explore methods for combining each product to improve overall model performance. Effects of varied spatial and temporal rainfall resolutions on simulated discharge are also investigated.

  5. Precipitation observations for operational flood forecasting in Scotland: Data availability, limitations and the impact of observational uncertainty

    NASA Astrophysics Data System (ADS)

    Parry, Louise; Neely, Ryan, III; Bennett, Lindsay; Collier, Chris; Dufton, David

    2017-04-01

    The Scottish Environment Protection Agency (SEPA) has a statutory responsibility to provide flood warning across Scotland. It achieves this through an operational partnership with the UK Met Office wherein meteorological forecasts are applied to a national distributed hydrological model, Grid- to- Grid (G2G), and catchment specific lumped PDM models. Both of these model types rely on observed precipitation input for model development and calibration, and operationally for historical runs to generate initial conditions. Scotland has an average annual precipitation of 1430mm per annum (1971-2000), but the spatial variability in totals is high, predominantly in relation to the topography and prevailing winds, which poses different challenges to both radar and point measurement methods of observation. In addition, the high elevations mean that in winter a significant proportion of precipitation falls as snow. For the operational forecasting models, observed rainfall data is provided in Near Real Time (NRT) from SEPA's network of approximately 260 telemetered TBR gauges and 4 UK Met Office C-band radars. Both data sources have their strengths and weaknesses, particularly in relation to the orography and spatial representativeness, but estimates of rainfall from the two methods can vary greatly. Northern Scotland, particularly near Inverness, is a comparatively sparse part of the radar network. Rainfall totals and distribution in this area are determined by the Northern Western Highlands and Cairngorms mountain ranges, which also have a negative impact on radar observations. In recognition of this issue, the NCAS mobile X-band weather radar (MXWR) was deployed in this area between February and August 2016. This study presents a comparison of rainfall estimates for the Inverness and Moray Firth region generated from the operational radar network, the TBR network, and the MXWR. Quantitative precipitation estimates (QPEs) from both sources of radar data were compared to point estimates of precipitation as well as catchment average estimates generated using different spatial averaging methods, including the operationally applied Thiessen polygons. In addition, the QPEs were applied to operational PDM models to compare the effect on the simulated runoff. The results highlight the hydrological significance of uncertainty in observed rainfall. Recommendations for future investigations are to improve the estimate of radar QPEs through improvement of the correction for orography and the correction for different precipitation types, as well as to analyse the benefits of the UK Met Office radar-raingauge merged product. In addition, we need to quantity the cost-benefit of deploying more radars in Scotland in light of the problems posed by the orography.

  6. Physically based modeling of rainfall-triggered landslides: a case study in the Luquillo Forest, Puerto Rico

    NASA Astrophysics Data System (ADS)

    Lepore, C.; Arnone, E.; Noto, L. V.; Sivandran, G.; Bras, R. L.

    2013-01-01

    This paper presents the development of a rainfall-triggered landslide module within a physically based spatially distributed ecohydrologic model. The model, Triangulated Irregular Networks Real-time Integrated Basin Simulator and VEGetation Generator for Interactive Evolution (tRIBS-VEGGIE), is capable of a sophisticated description of many hydrological processes; in particular, the soil moisture dynamics is resolved at a temporal and spatial resolution required to examine the triggering mechanisms of rainfall-induced landslides. The validity of the tRIBS-VEGGIE model to a tropical environment is shown with an evaluation of its performance against direct observations made within the Luquillo Forest (the study area). The newly developed landslide module builds upon the previous version of the tRIBS landslide component. This new module utilizes a numerical solution to the Richards equation to better represent the time evolution of soil moisture transport through the soil column. Moreover, the new landslide module utilizes an extended formulation of the Factor of Safety (FS) to correctly quantify the role of matric suction in slope stability and to account for unsaturated conditions in the evaluation of FS. The new modeling framework couples the capabilities of the detailed hydrologic model to describe soil moisture dynamics with the Infinite Slope model creating a powerful tool for the assessment of landslide risk.

  7. Future climate change enhances rainfall seasonality in a regional model of western Maritime Continent

    NASA Astrophysics Data System (ADS)

    Kang, Suchul; Im, Eun-Soon; Eltahir, Elfatih A. B.

    2018-03-01

    In this study, future changes in rainfall due to global climate change are investigated over the western Maritime Continent based on dynamically downscaled climate projections using the MIT Regional Climate Model (MRCM) with 12 km horizontal resolution. A total of nine 30-year regional climate projections driven by multi-GCMs projections (CCSM4, MPI-ESM-MR and ACCESS1.0) under multi-scenarios of greenhouse gases emissions (Historical: 1976-2005, RCP4.5 and RCP8.5: 2071-2100) from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) are analyzed. Focusing on dynamically downscaled rainfall fields, the associated systematic biases originating from GCM and MRCM are removed based on observations using Parametric Quantile Mapping method in order to enhance the reliability of future projections. The MRCM simulations with bias correction capture the spatial patterns of seasonal rainfall as well as the frequency distribution of daily rainfall. Based on projected rainfall changes under both RCP4.5 and RCP8.5 scenarios, the ensemble of MRCM simulations project a significant decrease in rainfall over the western Maritime Continent during the inter-monsoon periods while the change in rainfall is not relevant during wet season. The main mechanism behind the simulated decrease in rainfall is rooted in asymmetries of the projected changes in seasonal dynamics of the meridional circulation along different latitudes. The sinking motion, which is marginally positioned in the reference simulation, is enhanced and expanded under global climate change, particularly in RCP8.5 scenario during boreal fall season. The projected enhancement of rainfall seasonality over the western Maritime Continent suggests increased risk of water stress for natural ecosystems as well as man-made water resources reservoirs.

  8. Estimation of groundwater recharge via percolation outputs from a rainfall/runoff model for the Verlorenvlei estuarine system, west coast, South Africa

    NASA Astrophysics Data System (ADS)

    Watson, Andrew; Miller, Jodie; Fleischer, Melanie; de Clercq, Willem

    2018-03-01

    Wetlands are conservation priorities worldwide, due to their high biodiversity and productivity, but are under threat from agricultural and climate change stresses. To improve the water management practices and resource allocation in these complex systems, a modelling approach has been developed to estimate potential recharge for data poor catchments using rainfall data and basic assumptions regarding soil and aquifer properties. The Verlorenvlei estuarine lake (RAMSAR #525) on the west coast of South Africa is a data poor catchment where rainfall records have been supplemented with farmer's rainfall records. The catchment has multiple competing users. To determine the ecological reserve for the wetlands, the spatial and temporal distribution of recharge had to be well constrained using the J2000 rainfall/runoff model. The majority of rainfall occurs in the mountains (±650 mm/yr) and considerably less in the valley (±280 mm/yr). Percolation was modelled as ∼3.6% of rainfall in the driest parts of the catchment, ∼10% of rainfall in the moderately wet parts of the catchment and ∼8.4% but up to 28.9% of rainfall in the wettest parts of the catchment. The model results are representative of rainfall and water level measurements in the catchment, and compare well with water table fluctuation technique, although estimates are dissimilar to previous estimates within the catchment. This is most likely due to the daily timestep nature of the model, in comparison to other yearly average methods. These results go some way in understanding the fact that although most semi-arid catchments have very low yearly recharge estimates, they are still capable of sustaining high biodiversity levels. This demonstrates the importance of incorporating shorter term recharge event modeling for improving recharge estimates.

  9. A space-time multifractal analysis on radar rainfall sequences from central Poland

    NASA Astrophysics Data System (ADS)

    Licznar, Paweł; Deidda, Roberto

    2014-05-01

    Rainfall downscaling belongs to most important tasks of modern hydrology. Especially from the perspective of urban hydrology there is real need for development of practical tools for possible rainfall scenarios generation. Rainfall scenarios of fine temporal scale reaching single minutes are indispensable as inputs for hydrological models. Assumption of probabilistic philosophy of drainage systems design and functioning leads to widespread application of hydrodynamic models in engineering practice. However models like these covering large areas could not be supplied with only uncorrelated point-rainfall time series. They should be rather supplied with space time rainfall scenarios displaying statistical properties of local natural rainfall fields. Implementation of a Space-Time Rainfall (STRAIN) model for hydrometeorological applications in Polish conditions, such as rainfall downscaling from the large scales of meteorological models to the scale of interest for rainfall-runoff processes is the long-distance aim of our research. As an introduction part of our study we verify the veracity of the following STRAIN model assumptions: rainfall fields are isotropic and statistically homogeneous in space; self-similarity holds (so that, after having rescaled the time by the advection velocity, rainfall is a fully homogeneous and isotropic process in the space-time domain); statistical properties of rainfall are characterized by an "a priori" known multifractal behavior. We conduct a space-time multifractal analysis on radar rainfall sequences selected from the Polish national radar system POLRAD. Radar rainfall sequences covering the area of 256 km x 256 km of original 2 km x 2 km spatial resolution and 15 minutes temporal resolution are used as study material. Attention is mainly focused on most severe summer convective rainfalls. It is shown that space-time rainfall can be considered with a good approximation to be a self-similar multifractal process. Multifractal analysis is carried out assuming Taylor's hypothesis to hold and the advection velocity needed to rescale the time dimension is assumed to be equal about 16 km/h. This assumption is verified by the analysis of autocorrelation functions along the x and y directions of "rainfall cubes" and along the time axis rescaled with assumed advection velocity. In general for analyzed rainfall sequences scaling is observed for spatial scales ranging from 4 to 256 km and for timescales from 15 min to 16 hours. However in most cases scaling break is identified for spatial scales between 4 and 8, corresponding to spatial dimensions of 16 km to 32 km. It is assumed that the scaling break occurrence at these particular scales in central Poland conditions could be at least partly explained by the rainfall mesoscale gap (on the edge of meso-gamma, storm-scale and meso-beta scale).

  10. Changing Pattern of Indian Monsoon Extremes: Global and Local Factors

    NASA Astrophysics Data System (ADS)

    Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha

    2017-04-01

    Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).

  11. Evaluation and intercomparison of GPM-IMERG and TRMM 3B42 daily precipitation products over Greece

    NASA Astrophysics Data System (ADS)

    Kazamias, A. P.; Sapountzis, M.; Lagouvardos, K.

    2017-09-01

    Accurate precipitation data at high temporal and spatial resolutions are needed for numerous applications in hydrology, water resources management and flood risk management. Satellite-based precipitation estimations/products offer a potential alternative source of rainfall data for regions with sparse rain gauge network. The recently launched Global Precipitation Measurement (GPM) mission is the successor of Tropical Rainfall Measuring Mission (TRMM) providing global precipitation estimates at spatial resolution of 0.1 degree x 0.1 degree and half-hourly temporal resolution. This study aims at evaluating the accuracy of the Integrated Multi-satellite Retrievals for GPM (IMERG) near-real-time daily product (GPM-3IMERGDL) against rain gauge observations from a network of stations distributed across Greece for the year 2016. Moreover, the GPM-IMERG product is also compared with its predecessor, the Version-7 near-real-time (3B42RT) daily product of TRMM Multisatellite Precipitation Analysis (TMPA). Several statistical metrics are used to quantitatively evaluate the performance of the satellite-based precipitation estimates against rain gauge observations. In addition, categorical statistical indices are used to assess rain detection capabilities of the two satellite products. The GPM-IMERG daily product shows reasonable agreement (CC=0.60) against rain gauge observations, with the exception of coastal areas in which low correlations are achieved. The GPM-IMERG daily precipitation product tends to overestimate rainfall, especially in complex terrain areas with high annual precipitation. In particular, rainfall estimates in western Greece have a strong positive bias. On the other hand, the TRMM 3B42 product shows low correlation (CC=0.45) against rain gauge observations and slightly underestimates rainfall. This study is a first attempt to evaluate and compare the newly introduced GPM-IMERG and the TRMM 3B42 rainfall products at daily timescale over Greece.

  12. Assessment of Rainfall-induced Landslide Potential and Spatial Distribution

    NASA Astrophysics Data System (ADS)

    Chen, Yie-Ruey; Tsai, Kuang-Jung; Chen, Jing-Wen; Chiang, Jie-Lun; Hsieh, Shun-Chieh; Chue, Yung-Sheng

    2016-04-01

    Recently, due to the global climate change, most of the time the rainfall in Taiwan is of short duration but with high intensity. Due to Taiwan's steep terrain, rainfall-induced landslides often occur and lead to human causalities and properties loss. Taiwan's government has invested huge reconstruction funds to the affected areas. However, after rehabilitation they still face the risk of secondary sediment disasters. Therefore, this study assesses rainfall-induced (secondary) landslide potential and spatial distribution in watershed of Southern Taiwan under extreme climate change. The study areas in this research are Baolai and Jianshan villages in the watershed of the Laonongxi River Basin in the Southern Taiwan. This study focused on the 3 years after Typhoon Morakot (2009 to 2011). During this period, the study area experienced six heavy rainfall events including five typhoons and one heavy rainfall. The genetic adaptive neural network, texture analysis and GIS were implemented in the analysis techniques for the interpretation of satellite images and to obtain surface information and hazard log data and to analyze land use change. A multivariate hazards evaluation method was applied to quantitatively analyze the weights of various natural environmental and slope development hazard factors. Furthermore, this study established a slope landslide potential assessment model and depicted a slope landslide potential diagram by using the GIS platform. The interaction between (secondary) landslide mechanism, scale, and location was analyzed using association analysis of landslide historical data and regional environmental characteristics. The results of image classification before and after six heavy rainfall events show that the values of coefficient of agreement are at medium-high level. By multivariate hazards evaluation method, geology and the effective accumulative rainfall (EAR) are the most important factors. Slope, distance from fault, aspect, land disturbance, and elevation are the secondary important factors. Under the different rainfall, the greater the average of EAR, the more the landslide occurrence and area increments. The determination coefficients of trend lines on the charts of the average of EAR versus number and area of landslide increment are 0.83 and 0.92, respectively. The relations between landslide potential level, degree of land disturbance, and the ratio of number and area of landslide increment corresponding six heavy rainfall events are positive and the determination coefficients of trend lines are 0.82 and 0.72, respectively. The relation between the average of EAR and the area of landslide increment corresponding five heavy rainfall events (excluding Morakot) is positive and the determination coefficient of trend line is 0.98. Furthermore, the relation between the area increment of secondary landslide, average of EAR or the slope disturbance is positive. Under the same slope disturbance, the greater the EAR, the more the area increment of secondary landslide. Contrarily, under the same EAR, the greater the slope disturbance, the more the area increment of secondary landslide. The results of the analysis of this study can be a reference for the government for subsequent countermeasures for slope sediment disaster sensitive area to reduce the number of casualties and significantly reduce the social cost of post-disaster.

  13. Distribution of rock fragments and their effects on hillslope soil erosion in purple soil, China

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyan

    2017-04-01

    Purple soil is widely distributed in Sichuan Basin and Three Gorges Reservoir Area. Purple soil region is abundant in soil fertility and hydrothermal resources, playing an important role in the agricultural development of China. Soil erosion has long been recognized as a major environmental problem in the purple soil region where the population is large and slope farming is commonly practiced, and rainstorm is numerous. The existence of rock fragments is one of the most important characteristics of purple soil. Rock fragments at the soil surface or in the soil layer affect soil erosion processes by water in various direct and indirect ways, thus the erosion processes of soil containing rock fragments have unique features. Against the severe soil degradation by erosion of purple soil slope, carrying out the research about the characteristics of purple soil containing rock fragments and understanding the influence of rock fragments on soil erosion processes have important significance, which would promote the rational utilization of purple soil slope land resources and accurate prediction of purple soil loss. Therefore, the aims of this study were to investigate the distribution of rock fragments in purple soil slope and the impact of rock fragment content on soil physical properties and soil erosion. First, field sampling methods were used to survey the spatial variability of rock fragments in soil profiles and along slope and the physical properties of soils containing rock fragments. Secondly, indoor simulated rainfall experiments were used to exam the effect of rock fragments in the soil layer on soil erosion processes and the relationships between rainfall infiltration, change of surface flow velocity, surface runoff volume and sediment on one hand, and rock fragment content (Rv, 0% 30%, which was determined according the results of field investigation for rock fragment distribution) on the other were investigated. Thirdly, systematic analysis about the influence of rock fragment cover on purple soil slope erosion process were carried on, under different conditions with two kind of rock fragment positions (resting on soil surface and embedded into top soil layer), varied rock fragment coverage (Rc, 0% 40%), two kind of soils with textural porosity or structural porosity, and three kind of rainfall intensities (I, 1 mm/min, 1.5 mm/min and 2 mm/min). Simulated rainfall experiments in situ plots in the field, combined with simulated rainfall experiments in soil pans indoor, were used. The main conclusions of this dissertation are as following: 1. The spatial distribution characteristics of rock fragments in purple soil slope and its effects on the soil physical properties were clarified basically. 2. The mechanism of influence of rock fragments within top soil layer on soil erosion processes was understood and a threshold of rock fragment content on the infiltration was figured out. 3. The relationships between surface rock fragment cover and hillslope soil erosion in purple soil under different conditions with varied rock fragment positions, soil structures and rainfall intensities were obtained and the soil and water conservation function of surface rock fragment cover on reducing soil loss was affirmed.

  14. Reduced-complexity multi-site rainfall generation: one million years over night using the model TripleM

    NASA Astrophysics Data System (ADS)

    Breinl, Korbinian; Di Baldassarre, Giuliano; Girons Lopez, Marc

    2017-04-01

    We assess uncertainties of multi-site rainfall generation across spatial scales and different climatic conditions. Many research subjects in earth sciences such as floods, droughts or water balance simulations require the generation of long rainfall time series. In large study areas the simulation at multiple sites becomes indispensable to account for the spatial rainfall variability, but becomes more complex compared to a single site due to the intermittent nature of rainfall. Weather generators can be used for extrapolating rainfall time series, and various models have been presented in the literature. Even though the large majority of multi-site rainfall generators is based on similar methods, such as resampling techniques or Markovian processes, they often become too complex. We think that this complexity has been a limit for the application of such tools. Furthermore, the majority of multi-site rainfall generators found in the literature are either not publicly available or intended for being applied at small geographical scales, often only in temperate climates. Here we present a revised, and now publicly available, version of a multi-site rainfall generation code first applied in 2014 in Austria and France, which we call TripleM (Multisite Markov Model). We test this fast and robust code with daily rainfall observations from the United States, in a subtropical, tropical and temperate climate, using rain gauge networks with a maximum site distance above 1,000km, thereby generating one million years of synthetic time series. The modelling of these one million years takes one night on a recent desktop computer. In this research, we first start the simulations with a small station network of three sites and progressively increase the number of sites and the spatial extent, and analyze the changing uncertainties for multiple statistical metrics such as dry and wet spells, rainfall autocorrelation, lagged cross correlations and the inter-annual rainfall variability. Our study contributes to the scientific community of earth sciences and the ongoing debate on extreme precipitation in a changing climate by making a stable, and very easily applicable, multi-site rainfall generation code available to the research community and providing a better understanding of the performance of multi-site rainfall generation depending on spatial scales and climatic conditions.

  15. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.

  16. Monthly Rainfall Erosivity Assessment for Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation cover (C-factor) maps would enable the assessment of seasonal dynamics of erosion processes in Switzerland.

  17. CMIP5 ensemble-based spatial rainfall projection over homogeneous zones of India

    NASA Astrophysics Data System (ADS)

    Akhter, Javed; Das, Lalu; Deb, Argha

    2017-09-01

    Performances of the state-of-the-art CMIP5 models in reproducing the spatial rainfall patterns over seven homogeneous rainfall zones of India viz. North Mountainous India (NMI), Northwest India (NWI), North Central India (NCI), Northeast India (NEI), West Peninsular India (WPI), East Peninsular India (EPI) and South Peninsular India (SPI) have been assessed using different conventional performance metrics namely spatial correlation (R), index of agreement (d-index), Nash-Sutcliffe efficiency (NSE), Ratio of RMSE to the standard deviation of the observations (RSR) and mean bias (MB). The results based on these indices revealed that majority of the models are unable to reproduce finer-scaled spatial patterns over most of the zones. Thereafter, four bias correction methods i.e. Scaling, Standardized Reconstruction, Empirical Quantile Mapping and Gamma Quantile Mapping have been applied on GCM simulations to enhance the skills of the GCM projections. It has been found that scaling method compared to other three methods shown its better skill in capturing mean spatial patterns. Multi-model ensemble (MME) comprising 25 numbers of better performing bias corrected (Scaled) GCMs, have been considered for developing future rainfall patterns over seven zones. Models' spread from ensemble mean (uncertainty) has been found to be larger in RCP 8.5 than RCP4.5 ensemble. In general, future rainfall projections from RCP 4.5 and RCP 8.5 revealed an increasing rainfall over seven zones during 2020s, 2050s, and 2080s. The maximum increase has been found over southwestern part of NWI (12-30%), northwestern part of WPI (3-30%), southeastern part of NEI (5-18%) and northern and eastern part of SPI (6-24%). However, the contiguous region comprising by the southeastern part of NCI and northeastern part of EPI, may experience slight decreasing rainfall (about 3%) during 2020s whereas the western part of NMI may also receive around 3% reduction in rainfall during both 2050s and 2080s.

  18. A Bivariate Mixed Distribution with a Heavy-tailed Component and its Application to Single-site Daily Rainfall Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chao ..; Singh, Vijay P.; Mishra, Ashok K.

    2013-02-06

    This paper presents an improved brivariate mixed distribution, which is capable of modeling the dependence of daily rainfall from two distinct sources (e.g., rainfall from two stations, two consecutive days, or two instruments such as satellite and rain gauge). The distribution couples an existing framework for building a bivariate mixed distribution, the theory of copulae and a hybrid marginal distribution. Contributions of the improved distribution are twofold. One is the appropriate selection of the bivariate dependence structure from a wider admissible choice (10 candidate copula families). The other is the introduction of a marginal distribution capable of better representing lowmore » to moderate values as well as extremes of daily rainfall. Among several applications of the improved distribution, particularly presented here is its utility for single-site daily rainfall simulation. Rather than simulating rainfall occurrences and amounts separately, the developed generator unifies the two processes by generalizing daily rainfall as a Markov process with autocorrelation described by the improved bivariate mixed distribution. The generator is first tested on a sample station in Texas. Results reveal that the simulated and observed sequences are in good agreement with respect to essential characteristics. Then, extensive simulation experiments are carried out to compare the developed generator with three other alternative models: the conventional two-state Markov chain generator, the transition probability matrix model and the semi-parametric Markov chain model with kernel density estimation for rainfall amounts. Analyses establish that overall the developed generator is capable of reproducing characteristics of historical extreme rainfall events and is apt at extrapolating rare values beyond the upper range of available observed data. Moreover, it automatically captures the persistence of rainfall amounts on consecutive wet days in a relatively natural and easy way. Another interesting observation is that the recognized ‘overdispersion’ problem in daily rainfall simulation ascribes more to the loss of rainfall extremes than the under-representation of first-order persistence. The developed generator appears to be a sound option for daily rainfall simulation, especially in particular hydrologic planning situations when rare rainfall events are of great importance.« less

  19. Derivation of debris flow critical rainfall thresholds from land stability modeling

    NASA Astrophysics Data System (ADS)

    Papa, M. N.; Medina, V.; Bateman, A.; Ciervo, F.

    2012-04-01

    The aim of the work is to develop a system capable of providing debris flow warnings in areas where historical events data are not available as well as in the case of changing environments and climate. For these reasons, critical rainfall threshold curves are derived from mathematical and numerical simulations rather than the classical derivation from empirical rainfall data. The operational use of distributed model, based on the stability analysis for each grid cell of the basin, is not feasible in the case of warnings due to the long running time required for this kind of model as well as the lack of detailed information on the spatial distribution of the properties of the material in many practical cases. Moreover, with the aim of giving debris flow warnings, it is not necessary to know the distribution of instable elements along the basin but only if a debris flow may affect the vulnerable areas in the valley. The capability of a debris flow of reaching the downstream areas depends on many factors linked with the topography, the solid concentration, the rheological properties of the debris mixture and the flow discharge as well as the occurrence of liquefaction of the sliding mass. In relation to a specific basin, many of these factors may be considered as not time dependent. The most rainfall dependent factors are flow discharge and correlated total debris volume. In the present study, the total volume that is instable, and therefore available for the flow, is considered as the governing factor from which it is possible to assess whether a debris flow will affect the downstream areas or not. The possible triggering debris flow is simulated, in a generic element of the basin, by an infinite slope stability analysis. The groundwater pressure is calculated by the superposition of the effect of an "antecedent" rainfall and an "event" rainfall. The groundwater pressure response to antecedent rainfall is used as the initial condition for the time-dependent computation of the groundwater pressure response to the event rainfall. Antecedent rainfall response is estimated in the hypotheses of low intensity and long duration, thus assuming steady state conditions and slope parallel groundwater flux. The short term response to rainfall is assessed in the hypothesis of vertical infiltration. The simulations are performed in a virtual basin, representative of the one studied, taking into account the uncertainties linked with the definition of the characteristics of the soil. The approach presented is based on the simulation of a large number of cases covering the entire range of the governing input dynamic variables. For any possible combination of rainfall intensity, duration and antecedent rain, the total debris volume, available for the flow, is estimated. The resulting database is elaborated in order to obtain rainfall threshold curves. When operating in real time, if the observed and forecasted rainfall exceeds a given threshold, the corresponding probability of debris flow occurrence may be estimated.

  20. Impact of rain gauge quality control and interpolation on streamflow simulation: an application to the Warwick catchment, Australia

    NASA Astrophysics Data System (ADS)

    Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.

    2017-12-01

    Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.

  1. Impact of rain gauge quality control and interpolation on streamflow simulation: an application to the Warwick catchment, Australia

    NASA Astrophysics Data System (ADS)

    Liu, Shulun; Li, Yuan; Pauwels, Valentijn R. N.; Walker, Jeffrey P.

    2018-01-01

    Rain gauges are widely used to obtain temporally continuous point rainfall records, which are then interpolated into spatially continuous data to force hydrological models. However, rainfall measurements and interpolation procedure are subject to various uncertainties, which can be reduced by applying quality control and selecting appropriate spatial interpolation approaches. Consequently, the integrated impact of rainfall quality control and interpolation on streamflow simulation has attracted increased attention but not been fully addressed. This study applies a quality control procedure to the hourly rainfall measurements obtained in the Warwick catchment in eastern Australia. The grid-based daily precipitation from the Australian Water Availability Project was used as a reference. The Pearson correlation coefficient between the daily accumulation of gauged rainfall and the reference data was used to eliminate gauges with significant quality issues. The unrealistic outliers were censored based on a comparison between gauged rainfall and the reference. Four interpolation methods, including the inverse distance weighting (IDW), nearest neighbors (NN), linear spline (LN), and ordinary Kriging (OK), were implemented. The four methods were firstly assessed through a cross-validation using the quality-controlled rainfall data. The impacts of the quality control and interpolation on streamflow simulation were then evaluated through a semi-distributed hydrological model. The results showed that the Nash–Sutcliffe model efficiency coefficient (NSE) and Bias of the streamflow simulations were significantly improved after quality control. In the cross-validation, the IDW and OK methods resulted in good interpolation rainfall, while the NN led to the worst result. In term of the impact on hydrological prediction, the IDW led to the most consistent streamflow predictions with the observations, according to the validation at five streamflow-gauged locations. The OK method performed second best according to streamflow predictions at the five gauges in the calibration period (01/01/2007–31/12/2011) and four gauges during the validation period (01/01/2012–30/06/2014). However, NN produced the worst prediction at the outlet of the catchment in the validation period, indicating a low robustness. While the IDW exhibited the best performance in the study catchment in terms of accuracy, robustness and efficiency, more general recommendations on the selection of rainfall interpolation methods need to be further explored.

  2. Estimating Vegetation Structure in African Savannas using High Spatial Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Axelsson, C.; Hanan, N. P.

    2016-12-01

    High spatial resolution satellite imagery allows for detailed mapping of trees in savanna landscapes, including estimates of woody cover, tree densities, crown sizes, and the spatial pattern of trees. By linking these vegetation parameters to rainfall and soil properties we gain knowledge of how the local environment influences vegetation. A thorough understanding of the underlying ecosystem processes is key to assessing the future productivity and stability of these ecosystems. In this study, we have processed and analyzed hundreds of sites sampled from African savannas across a wide range of rainfall and soil conditions. The vegetation at each site is classified using unsupervised classification with manual assignment into woody, herbaceous and bare cover classes. A crown delineation method further divides the woody areas into individual tree crowns. The results show that rainfall, soil, and topography interactively influence vegetation structure. We see that both total rainfall and rainfall seasonality play important roles and that soil type influences woody cover and the sizes of tree crowns.

  3. Convection anomalies associated with warm eddy at the coastal area

    NASA Astrophysics Data System (ADS)

    Shi, R.; Wang, D.

    2017-12-01

    A possible correlation between a warm eddy and thunderstorms and convective precipitations are investigated at the coastal area in the northwestern South China Sea. Compared to the climatological mean in August from 2006 to 2013, an extreme enhancement of thunderstorm activities and precipitation rate are identified at the southern offshore area of Hainan island in August 2010 when a strong and long-live warm eddy was observed near the coastline at the same time. The 3 hourly satellite data (TRMM) indicate that the nocturnal convections is strong offshore and that could be responsible for the extreme positive anomalies of thunderstorms and rainfall in August 2010. The TRMM data also show a small reduction of thunderstorm activities and rainfall on the island in the afternoon. Meanwhile, the Weather Research and Forecasting (WRF) model was applied to simulate the change of rainfall in August 2010. The WRF simulation of rainfall rate is comparable with the observation results while there is some difference in the spatial distribution. The WRF simulation successfully captured the strong offshore rainfall and the diurnal variation of rainfall in August 2010. The WRF simulation indicated that the different convergence induced by sea/land breeze could be one essential reason for the adjustment of thunderstorms and rainfall in 2010. The substantial connection between sea/land breeze and upper layer heat content modified by the warm eddy is still on ongoing and will be reported in the future work.

  4. Effect of Temporal and Spatial Rainfall Resolution on HSPF Predictive Performance and Parameter Estimation

    EPA Science Inventory

    Watershed scale rainfall‐runoff models are used for environmental management and regulatory modeling applications, but their effectiveness are limited by predictive uncertainties associated with model input data. This study evaluated the effect of temporal and spatial rainfall re...

  5. Improving PERSIANN-CCS rain estimation using probabilistic approach and multi-sensors information

    NASA Astrophysics Data System (ADS)

    Karbalaee, N.; Hsu, K. L.; Sorooshian, S.; Kirstetter, P.; Hong, Y.

    2016-12-01

    This presentation discusses the recent implemented approaches to improve the rainfall estimation from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Classification System (PERSIANN-CCS). PERSIANN-CCS is an infrared (IR) based algorithm being integrated in the IMERG (Integrated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipitation product in 0.1x0.1degree resolution over the chosen domain 50N to 50S every 30 minutes. Although PERSIANN-CCS has a high spatial and temporal resolution, it overestimates or underestimates due to some limitations.PERSIANN-CCS can estimate rainfall based on the extracted information from IR channels at three different temperature threshold levels (220, 235, and 253k). This algorithm relies only on infrared data to estimate rainfall indirectly from this channel which cause missing the rainfall from warm clouds and false estimation for no precipitating cold clouds. In this research the effectiveness of using other channels of GOES satellites such as visible and water vapors has been investigated. By using multi-sensors the precipitation can be estimated based on the extracted information from multiple channels. Also, instead of using the exponential function for estimating rainfall from cloud top temperature, the probabilistic method has been used. Using probability distributions of precipitation rates instead of deterministic values has improved the rainfall estimation for different type of clouds.

  6. Runoff Analysis Considering Orographical Features Using Dual Polarization Radar Rainfall

    NASA Astrophysics Data System (ADS)

    Noh, Hui-seong; Shin, Hyun-seok; Kang, Na-rae; Lee, Choong-Ke; Kim, Hung-soo

    2013-04-01

    Recently, the necessity for rainfall estimation and forecasting using the radar is being highlighted, due to the frequent occurrence of torrential rainfall resulting from abnormal changes of weather. Radar rainfall data represents temporal and spatial distributions properly and replace the existing rain gauge networks. It is also frequently applied in many hydrologic field researches. However, the radar rainfall data has an accuracy limitation since it estimates rainfall, by monitoring clouds and precipitation particles formed around the surface of the earth(1.5-3km above the surface) or the atmosphere. In a condition like Korea where nearly 70% of the land is covered by mountainous areas, there are lots of restrictions to use rainfall radar, because of the occurrence of beam blocking areas by topography. This study is aiming at analyzing runoff and examining the applicability of (R(Z), R(ZDR) and R(KDP)) provided by the Han River Flood Control Office(HRFCO) based on the basin elevation of Nakdong river watershed. For this purpose, the amount of radar rainfall of each rainfall event was estimated according to three sub-basins of Nakdong river watershed with the average basin elevation above 400m which are Namgang dam, Andong dam and Hapcheon dam and also another three sub-basins with the average basin elevation below 150m which are Waegwan, Changryeong and Goryeong. After runoff analysis using a distribution model, Vflo model, the results were reviewed and compared with the observed runoff. This study estimated the rainfall by using the radar-rainfall transform formulas, (R(Z), R(Z,ZDR) and R(Z,ZDR,KDP) for four stormwater events and compared the results with the point rainfall of the rain gauge. As the result, it was overestimated or underestimated, depending on rainfall events. Also, calculation indicates that the values from R(Z,ZDR) and R(Z,ZDR,KDP) relatively showed the most similar results. Moreover the runoff analysis using the estimated radar rainfall is performed. Then hydrologic component of the runoff hydrographs, peak flows and total runoffs from the estimated rainfall and the observed rainfall are compared. The results show that hydrologic components have high fluctuations depending on storm rainfall event. Thus, it is necessary to choose appropriate radar rainfall data derived from the above radar rainfall transform formulas to analyze the runoff of radar rainfall. The simulated hydrograph by radar in the three basins of agricultural areas is more similar to the observed hydrograph than the other three basins of mountainous areas. Especially the peak flow and shape of hydrograph of the agricultural areas is much closer to the observed ones than that of mountainous areas. This result comes from the difference of radar rainfall depending on the basin elevation. Therefore we need the examination of radar rainfall transform formulas following rainfall event and runoff analysis based on basin elevation for the improvement of radar rainfall application. Acknowledgment This study was financially supported by the Construction Technology Innovation Program(08-Tech-Inovation-F01) through the Research Center of Flood Defence Technology for Next Generation in Korea Institute of Construction & Transportation Technology Evaluation and Planning(KICTEP) of Ministry of Land, Transport and Maritime Affairs(MLTM)

  7. Do we really use rainfall observations consistent with reality in hydrological modelling?

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves

    2017-04-01

    Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.

  8. Extreme Rainfall from Hurricane Harvey (2017): Intercomparisons of WRF Simulations and Polarimetric Radar Fields

    NASA Astrophysics Data System (ADS)

    Yang, L.; Smith, J. A.; Liu, M.; Baeck, M. L.; Chaney, M. M.; Su, Y.

    2017-12-01

    Hurricane Harvey made landfall on 25 August 2017 and produced more than a meter of rain during a four-day period over eastern Texas, making it the wettest tropical cyclone on record in the United States. Extreme rainfall from Harvey was predominantly related to the dynamics and structure of outer rain bands. In this study, we provide details of the extreme rainfall produced by Hurricane Harvey. The principal research questions that motivate this study are: (1) what are the key microphysical properties of extreme rainfall from landfalling tropical cyclones and (2) what are the capabilities and deficiencies of existing bulk microphysics parameterizations from the physical models in capturing them. Our analyses are centered on intercomparisons of high-resolution simulations using the Weather Research and Forecasting (WRF) model and polarimetric radar fields from KHGX (Houston, Texas) WSR-88D. The WRF simulations accurately capture the track and intensity of Hurricane Harvey. Multi-rainband structure and its key evolution features are also well represented in the simulations. Two microphysics parameterizations (WSM6 and WDM6) are tested in this study. Radar reflectivity and differential reflectivity fields simulated by the WRF model are compared with polarimetric radar observations. An important feature for the extreme rainfall from Hurricane Harvey is the sharp boundary of spatial rainfall accumulation along the coast (with torrential rainfall distributed over Houston and its surrounding inland areas). We will examine the role of land-sea contrasts in dictating storm structure and evolution from both WRF simulations and polarimetric radar fields. Implications for improving hurricane rainfall forecasts and estimates will be provided.

  9. Toward a Framework for Systematic Error Modeling of NASA Spaceborne Radar with NOAA/NSSL Ground Radar-Based National Mosaic QPE

    NASA Technical Reports Server (NTRS)

    Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.

    2011-01-01

    Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.

  10. Multiscale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, E.A.; Huso, M.; Pyke, D.A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.

  11. Multi-scale responses of soil stability and invasive plants to removal of non-native grazers from an arid conservation reserve

    USGS Publications Warehouse

    Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.

    2006-01-01

    Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.

  12. Integrated hydrologic modeling: Effects of spatial scale, discretization and initialization

    NASA Astrophysics Data System (ADS)

    Seck, A.; Welty, C.; Maxwell, R. M.

    2011-12-01

    Groundwater discharge contributes significantly to the annual flows of Chesapeake Bay tributaries and is presumed to contribute to the observed lag time between the implementation of management actions and the environmental response in the Chesapeake Bay. To investigate groundwater fluxes and flow paths and interaction with surface flow, we have developed a fully distributed integrated hydrologic model of the Chesapeake Bay Watershed using ParFlow. Here we present a comparison of model spatial resolution and initialization methods. We have studied the effect of horizontal discretization on overland flow processes at a range of scales. Three nested model domains have been considered: the Monocacy watershed (5600 sq. km), the Potomac watershed (92000 sq. km) and the Chesapeake Bay watershed (400,000 sq. km). Models with homogeneous subsurface and topographically-derived slopes were evaluated at 500-m, 1000-m, 2000-m, and 4000-m grid resolutions. Land surface slopes were derived from resampled DEMs and corrected using stream networks. Simulation results show that the overland flow processes are reasonably well represented with a resolution up to 2000 m. We observe that the effects of horizontal resolution dissipate with larger scale models. Using a homogeneous model that includes subsurface and surface terrain characteristics, we have evaluated various initialization methods for the integrated Monocacy watershed model. This model used several options for water table depths and two rainfall forcing methods including (1) a synthetic rainfall-recession cycle corresponding to the region's average annual rainfall rate, and (2) an initial shut-off of rainfall forcing followed by a rainfall-recession cycling. Results show the dominance of groundwater generated runoff during a first phase of the simulation followed by a convergence towards more balanced runoff generation mechanisms. We observe that the influence of groundwater runoff increases in dissected relief areas characterized by high slope magnitudes. This is due to the increase in initial water table gradients in these regions. As a result, in the domain conditions for this study, an initial shut-off of rainfall forcing proved to be the more efficient initialization method. The initialized model is then coupled with a Land Surface Model (CLM). Ongoing work includes coupling a heterogeneous subsurface field with spatially variable meteorological forcing using the National Land Data Assimilation System (NLDAS) data products. Seasonal trends of groundwater levels for current and pre-development conditions of the basin will be compared.

  13. SUBPIXEL-SCALE RAINFALL VARIABILITY AND THE EFFECTS ON SEPARATION OF RADAR AND GAUGE RAINFALL ERRORS

    EPA Science Inventory

    One of the primary sources of the discrepancies between radar-based rainfall estimates and rain gauge measurements is the point-area difference, i.e., the intrinsic difference in the spatial dimensions of the rainfall fields that the respective data sets are meant to represent. ...

  14. Application of commercial microwave link (CML) derived precipitation data in a hydrology model

    NASA Astrophysics Data System (ADS)

    Smiatek, Gerhard; Chwala, Christian; Kunstmann, Harald

    2017-04-01

    In 2016 very local and extremely intensive convective events caused severe flooding in the Alpine space. Despite the large number of monitoring stations most of the rainfall events were not captured accurately by the existing rain gauge network. As the number of traditional precipitation monitoring sites is in general decreasing, novel rain monitoring techniques are gaining attention. One of the new techniques is the rainfall estimation from signal attenuation in commercial microwave link (CML) networks operated by cellular phone companies. In this contribution, we use CML-derived rainfall information to improve the streamflow forecast of the distributed hydrology model WaSiM-ETH in hindcasting and nowcasting modes. Our model domain covers the complex terrain of the Ammer catchment located in the German Alps. The hydrology model is operated with a spatial resolution of 100m and with an hourly time step. We present two alternative methods of rainfall estimation from CMLs and compare the results to data from rain gauges and a weather radar. Finally, we show the impact of the rainfall data sets on the hydrology model initialization and in discharge simulations of the Ammer River for selected episodes in 2015 and 2016. We found that the densification of the observation network by the CML observations leads to a significant improvement of the model performance.

  15. Experimental Investigation of Rainfall Impact on Overland Flow Driven Erosion Processes and Flow Hydrodynamics on a Steep Hillslope

    NASA Astrophysics Data System (ADS)

    Tian, P.; Xu, X.; Pan, C.; Hsu, K. L.; Yang, T.

    2016-12-01

    Few attempts have been made to investigate the quantitative effects of rainfall on overland flow driven erosion processes and flow hydrodynamics on steep hillslopes under field conditions. Field experiments were performed in flows for six inflow rates (q: 6-36 Lmin-1m-1) with and without rainfall (60 mm h-1) on a steep slope (26°) to investigate: (1) the quantitative effects of rainfall on runoff and sediment yield processes, and flow hydrodynamics; (2) the effect of interaction between rainfall and overland flow on soil loss. Results showed that the rainfall increased runoff coefficients and the fluctuation of temporal variations in runoff. The rainfall significantly increased soil loss (10.6-68.0%), but this increment declined as q increased. When the interrill erosion dominated (q=6 Lmin-1m-1), the increment in the rill erosion was 1.5 times that in the interrill erosion, and the effect of the interaction on soil loss was negative. When the rill erosion dominated (q=6-36 Lmin-1m-1), the increment in the interrill erosion was 1.7-8.8 times that in the rill erosion, and the effect of the interaction on soil loss became positive. The rainfall was conducive to the development of rills especially for low inflow rates. The rainfall always decreased interrill flow velocity, decreased rill flow velocity (q=6-24 Lmin-1m-1), and enhanced the spatial uniformity of the velocity distribution. Under rainfall disturbance, flow depth, Reynolds number (Re) and resistance were increased but Froude number was reduced, and lower Re was needed to transform a laminar flow to turbulent flow. The rainfall significantly increased flow shear stress (τ) and stream power (φ), with the most sensitive parameters to sediment yield being τ (R2=0.994) and φ (R2=0.993), respectively, for non-rainfall and rainfall conditions. Compared to non-rainfall conditions, there was a reduction in the critical hydrodynamic parameters of mean flow velocity, τ, and φ by the rainfall. These findings provide a better understanding on the influence mechanism of rainfall impact on hillslope erosion processes.

  16. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    PubMed Central

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  17. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    PubMed

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-06-15

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  18. Toward a Global Map of Raindrop Size Distributions. Part 1; Rain-Type Classification and Its Implications for Validating Global Rainfall Products

    NASA Technical Reports Server (NTRS)

    L'Ecuyer, Tristan S.; Kummerow, Christian; Berg,Wesley

    2004-01-01

    Variability in the global distribution of precipitation is recognized as a key element in assessing the impact of climate change for life on earth. The response of precipitation to climate forcings is, however, poorly understood because of discrepancies in the magnitude and sign of climatic trends in satellite-based rainfall estimates. Quantifying and ultimately removing these biases is critical for studying the response of the hydrologic cycle to climate change. In addition, estimates of random errors owing to variability in algorithm assumptions on local spatial and temporal scales are critical for establishing how strongly their products should be weighted in data assimilation or model validation applications and for assigning a level of confidence to climate trends diagnosed from the data. This paper explores the potential for refining assumed drop size distributions (DSDs) in global radar rainfall algorithms by establishing a link between satellite observables and information gleaned from regional validation experiments where polarimetric radar, Doppler radar, and disdrometer measurements can be used to infer raindrop size distributions. By virtue of the limited information available in the satellite retrieval framework, the current method deviates from approaches adopted in the ground-based radar community that attempt to relate microphysical processes and resultant DSDs to local meteorological conditions. Instead, the technique exploits the fact that different microphysical pathways for rainfall production are likely to lead to differences in both the DSD of the resulting raindrops and the three-dimensional structure of associated radar reflectivity profiles. Objective rain-type classification based on the complete three-dimensional structure of observed reflectivity profiles is found to partially mitigate random and systematic errors in DSDs implied by differential reflectivity measurements. In particular, it is shown that vertical and horizontal reflectivity structure obtained from spaceborne radar can be used to reproduce significant differences in Z(sub dr) between the easterly and westerly climate regimes observed in the Tropical Rainfall Measuring Mission Large-scale Biosphere-Atmosphere (TRMM-LBA) field experiment as well as the even larger differences between Amazonian rainfall and that observed in eastern Colorado. As such, the technique offers a potential methodology for placing locally observed DSD information into a global framework.

  19. Estimation of design floods in ungauged catchments using a regional index flood method. A case study of Lake Victoria Basin in Kenya

    NASA Astrophysics Data System (ADS)

    Nobert, Joel; Mugo, Margaret; Gadain, Hussein

    Reliable estimation of flood magnitudes corresponding to required return periods, vital for structural design purposes, is impacted by lack of hydrological data in the study area of Lake Victoria Basin in Kenya. Use of regional information, derived from data at gauged sites and regionalized for use at any location within a homogenous region, would improve the reliability of the design flood estimation. Therefore, the regional index flood method has been applied. Based on data from 14 gauged sites, a delineation of the basin into two homogenous regions was achieved using elevation variation (90-m DEM), spatial annual rainfall pattern and Principal Component Analysis of seasonal rainfall patterns (from 94 rainfall stations). At site annual maximum series were modelled using the Log normal (LN) (3P), Log Logistic Distribution (LLG), Generalized Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions. The parameters of the distributions were estimated using the method of probability weighted moments. Goodness of fit tests were applied and the GEV was identified as the most appropriate model for each site. Based on the GEV model, flood quantiles were estimated and regional frequency curves derived from the averaged at site growth curves. Using the least squares regression method, relationships were developed between the index flood, which is defined as the Mean Annual Flood (MAF) and catchment characteristics. The relationships indicated area, mean annual rainfall and altitude were the three significant variables that greatly influence the index flood. Thereafter, estimates of flood magnitudes in ungauged catchments within a homogenous region were estimated from the derived equations for index flood and quantiles from the regional curves. These estimates will improve flood risk estimation and to support water management and engineering decisions and actions.

  20. Algorithm for Identifying Erroneous Rain-Gauge Readings

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2005-01-01

    An algorithm analyzes rain-gauge data to identify statistical outliers that could be deemed to be erroneous readings. Heretofore, analyses of this type have been performed in burdensome manual procedures that have involved subjective judgements. Sometimes, the analyses have included computational assistance for detecting values falling outside of arbitrary limits. The analyses have been performed without statistically valid knowledge of the spatial and temporal variations of precipitation within rain events. In contrast, the present algorithm makes it possible to automate such an analysis, makes the analysis objective, takes account of the spatial distribution of rain gauges in conjunction with the statistical nature of spatial variations in rainfall readings, and minimizes the use of arbitrary criteria. The algorithm implements an iterative process that involves nonparametric statistics.

  1. Spatial Scaling of Global Rainfall and Flood Extremes

    NASA Astrophysics Data System (ADS)

    Devineni, Naresh; Lall, Upmanu; Xi, Chen; Ward, Philip

    2014-05-01

    Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration and spatial extent of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (up to 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances and floods. We present the first ever results on a global analysis of the scaling characteristics of extreme rainfall and flood event duration, volumes and contiguous flooded areas as a result of large scale organization of long duration rainfall events. Results are organized by latitude and with reference to the phases of ENSO, and reveal surprising invariance across latitude. Speculation as to the potential relation to the dynamical factors is presented

  2. Internal and International Mobility as Adaptation to Climatic Variability in Contemporary Mexico: Evidence from the Integration of Census and Satellite Data.

    PubMed

    Leyk, Stefan; Runfola, Dan; Nawrotzki, Raphael J; Hunter, Lori M; Riosmena, Fernando

    2017-08-01

    Migration provides a strategy for rural Mexican households to cope with, or adapt to, weather events and climatic variability. Yet prior studies on "environmental migration" in this context have not examined the differences between choices of internal (domestic) or international movement. In addition, much of the prior work relied on very coarse spatial scales to operationalize the environmental variables such as rainfall patterns. To overcome these limitations, we use fine-grain rainfall estimates derived from NASA's Tropical Rainfall Measuring Mission (TRMM) satellite. The rainfall estimates are combined with Population and Agricultural Census information to examine associations between environmental changes and municipal rates of internal and international migration 2005-2010. Our findings suggest that municipal-level rainfall deficits relative to historical levels are an important predictor of both international and internal migration, especially in areas dependent on seasonal rainfall for crop productivity. Although our findings do not contradict results of prior studies using coarse spatial resolution, they offer clearer results and a more spatially nuanced examination of migration as related to social and environmental vulnerability and thus higher degrees of confidence.

  3. Evaluating the extreme precipitation events using a mesoscale atmopshere model

    NASA Astrophysics Data System (ADS)

    Yucel, I.; Onen, A.

    2012-04-01

    Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Mesoscale atmospheric models coupled with land surface models provide efficient forecasts for meteorological events in high lead time and therefore they should be used for flood forecasting and warning issues as they provide more continuous monitoring of precipitation over large areas. This study examines the performance of the Weather Research and Forecasting (WRF) model in producing the temporal and spatial characteristics of the number of extreme precipitation events observed in West Black Sea Region of Turkey. Extreme precipitation events usually resulted in flood conditions as an associated hydrologic response of the basin. The performance of the WRF system is further investigated by using the three dimensional variational (3D-VAR) data assimilation scheme within WRF. WRF performance with and without data assimilation at high spatial resolution (4 km) is evaluated by making comparison with gauge precipitation and satellite-estimated rainfall data from Multi Precipitation Estimates (MPE). WRF-derived precipitation showed capabilities in capturing the timing of the precipitation extremes and in some extent spatial distribution and magnitude of the heavy rainfall events. These precipitation characteristics are enhanced with the use of 3D-VAR scheme in WRF system. Data assimilation improved area-averaged precipitation forecasts by 9 percent and at some points there exists quantitative match in precipitation events, which are critical for hydrologic forecast application.

  4. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment.

    PubMed

    Lovelock, Catherine E; Andersen, Kelly; Morton, Joseph B

    2003-04-01

    Arbuscular mycorrhizal (AM) fungi are mutualists with plant roots that are proposed to enhance plant community diversity. Models indicate that AM fungal communities could maintain plant diversity in forests if functionally different communities are spatially separated. In this study we assess the spatial and temporal distribution of the AM fungal community in a wet tropical rainforest in Costa Rica. We test whether distinct fungal communities correlate with variation in tree life history characteristics, with host tree species, and the relative importance of soil type, seasonality and rainfall. Host tree species differ in their associated AM fungal communities, but differences in the AM community between hosts could not be generalized over life history groupings of hosts. Changes in the relative abundance of a few common AM fungal species were the cause of differences in AM fungal communities for different host tree species instead of differences in the presence and absence of AM fungal species. Thus, AM fungal communities are spatially distinguishable in the forest, even though all species are widespread. Soil fertility ranging between 5 and 9 Mg/ha phosphorus did not affect composition of AM fungal communities, although sporulation was more abundant in lower fertility soils. Sampling soils over seasons revealed that some AM fungal species sporulate profusely in the dry season compared to the rainy season. On one host tree species sampled at two sites with vastly different rainfall, relative abundance of spores from Acaulospora was lower and that of Glomus was relatively higher at the site with lower and more seasonal rainfall.

  5. How runoff begins (and ends): characterizing hydrologic response at the catchment scale

    USGS Publications Warehouse

    Mirus, Benjamin B.; Loague, Keith

    2013-01-01

    Improved understanding of the complex dynamics associated with spatially and temporally variable runoff response is needed to better understand the hydrology component of interdisciplinary problems. The objective of this study was to quantitatively characterize the environmental controls on runoff generation for the range of different streamflow-generation mechanisms illustrated in the classic Dunne diagram. The comprehensive physics-based model of coupled surface-subsurface flow, InHM, is employed in a heuristic mode. InHM has been employed previously to successfully simulate the observed hydrologic response at four diverse, well-characterized catchments, which provides the foundation for this study. The C3 and CB catchments are located within steep, forested terrain; the TW and R5 catchments are located in gently sloping rangeland. The InHM boundary-value problems for these four catchments provide the corner-stones for alternative simulation scenarios designed to address the question of how runoff begins (and ends). Simulated rainfall-runoff events are used to systematically explore the impact of soil-hydraulic properties and rainfall characteristics. This approach facilitates quantitative analysis of both integrated and distributed hydrologic responses at high-spatial and temporal resolution over the wide range of environmental conditions represented by the four catchments. The results from 140 unique simulation scenarios illustrate how rainfall intensity/depth, subsurface permeability contrasts, characteristic curve shapes, and topography provide important controls on the hydrologic-response dynamics. The processes by which runoff begins (and ends) are shown, in large part, to be defined by the relative rates of rainfall, infiltration, lateral flow convergence, and storage dynamics within the variably saturated soil layers.

  6. Temporal rainfall estimation using input data reduction and model inversion

    NASA Astrophysics Data System (ADS)

    Wright, A. J.; Vrugt, J. A.; Walker, J. P.; Pauwels, V. R. N.

    2016-12-01

    Floods are devastating natural hazards. To provide accurate, precise and timely flood forecasts there is a need to understand the uncertainties associated with temporal rainfall and model parameters. The estimation of temporal rainfall and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of rainfall input to be considered when estimating model parameters and provides the ability to estimate rainfall from poorly gauged catchments. Current methods to estimate temporal rainfall distributions from streamflow are unable to adequately explain and invert complex non-linear hydrologic systems. This study uses the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia. The reduction of rainfall to DWT coefficients allows the input rainfall time series to be simultaneously estimated along with model parameters. The estimation process is conducted using multi-chain Markov chain Monte Carlo simulation with the DREAMZS algorithm. The use of a likelihood function that considers both rainfall and streamflow error allows for model parameter and temporal rainfall distributions to be estimated. Estimation of the wavelet approximation coefficients of lower order decomposition structures was able to estimate the most realistic temporal rainfall distributions. These rainfall estimates were all able to simulate streamflow that was superior to the results of a traditional calibration approach. It is shown that the choice of wavelet has a considerable impact on the robustness of the inversion. The results demonstrate that streamflow data contains sufficient information to estimate temporal rainfall and model parameter distributions. The extent and variance of rainfall time series that are able to simulate streamflow that is superior to that simulated by a traditional calibration approach is a demonstration of equifinality. The use of a likelihood function that considers both rainfall and streamflow error combined with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.

  7. Efficient Probabilistic Forecasting for High-Resolution Models through Clustered-State Data Assimilation

    NASA Astrophysics Data System (ADS)

    Hamidi, A.; Grossberg, M.; Khanbilvardi, R.

    2016-12-01

    Flood response in an urban area is the product of interactions of spatially and temporally varying rainfall and infrastructures. In urban areas, however, the complex sub-surface networks of tunnels, waste and storm water drainage systems are often inaccessible, pose challenges for modeling and prediction of the drainage infrastructure performance. The increased availability of open data in cities is an emerging information asset for a better understanding of the dynamics of urban water drainage infrastructure. This includes crowd sourced data and community reporting. A well-known source of this type of data is the non-emergency hotline "311" which is available in many US cities, and may contain information pertaining to the performance of physical facilities, condition of the environment, or residents' experience, comfort and well-being. In this study, seven years of New York City 311 (NYC311) call during 2010-2016 is employed, as an alternative approach for identifying the areas of the city most prone to sewer back up flooding. These zones are compared with the hydrologic analysis of runoff flooding zones to provide a predictive model for the City. The proposed methodology is an example of urban system phenomenology using crowd sourced, open data. A novel algorithm for calculating the spatial distribution of flooding complaints across NYC's five boroughs is presented in this study. In this approach, the features that represent reporting bias are separated from those that relate to actual infrastructure system performance. The sewer backup results are assessed with the spatial distribution of runoff in NYC during 2010-2016. With advances in radar technologies, a high spatial-temporal resolution data set for precipitation is available for most of the United States that can be implemented in hydrologic analysis of dense urban environments. High resolution gridded Stage IV radar rainfall data along with the high resolution spatially distributed land cover data are employed to investigate the urban pluvial flooding. The monthly results of excess runoff are compared with the sewer backup in NYC to build a predictive model of flood zones according to the 311 phone calls.

  8. Evaluation of Urban Drainage Infrastructure: New York City Case Study

    NASA Astrophysics Data System (ADS)

    Hamidi, A.; Grossberg, M.; Khanbilvardi, R.

    2017-12-01

    Flood response in an urban area is the product of interactions of spatially and temporally varying rainfall and infrastructures. In urban areas, however, the complex sub-surface networks of tunnels, waste and storm water drainage systems are often inaccessible, pose challenges for modeling and prediction of the drainage infrastructure performance. The increased availability of open data in cities is an emerging information asset for a better understanding of the dynamics of urban water drainage infrastructure. This includes crowd sourced data and community reporting. A well-known source of this type of data is the non-emergency hotline "311" which is available in many US cities, and may contain information pertaining to the performance of physical facilities, condition of the environment, or residents' experience, comfort and well-being. In this study, seven years of New York City 311 (NYC311) call during 2010-2016 is employed, as an alternative approach for identifying the areas of the city most prone to sewer back up flooding. These zones are compared with the hydrologic analysis of runoff flooding zones to provide a predictive model for the City. The proposed methodology is an example of urban system phenomenology using crowd sourced, open data. A novel algorithm for calculating the spatial distribution of flooding complaints across NYC's five boroughs is presented in this study. In this approach, the features that represent reporting bias are separated from those that relate to actual infrastructure system performance. The sewer backup results are assessed with the spatial distribution of runoff in NYC during 2010-2016. With advances in radar technologies, a high spatial-temporal resolution data set for precipitation is available for most of the United States that can be implemented in hydrologic analysis of dense urban environments. High resolution gridded Stage IV radar rainfall data along with the high resolution spatially distributed land cover data are employed to investigate the urban pluvial flooding. The monthly results of excess runoff are compared with the sewer backup in NYC to build a predictive model of flood zones according to the 311 phone calls.

  9. Distributional changes in rainfall and river flow in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Sa'adi, Zulfaqar; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Wang, Xiao-Jun

    2017-11-01

    Climate change may not change the rainfall mean, but the variability and extremes. Therefore, it is required to explore the possible distributional changes of rainfall characteristics over time. The objective of present study is to assess the distributional changes in annual and northeast monsoon rainfall (November-January) and river flow in Sarawak where small changes in rainfall or river flow variability/distribution may have severe implications on ecology and agriculture. A quantile regression-based approach was used to assess the changes of scale and location of empirical probability density function over the period 1980-2014 at 31 observational stations. The results indicate that diverse variation patterns exist at all stations for annual rainfall but mainly increasing quantile trend at the lowers, and higher quantiles for the month of January and December. The significant increase in annual rainfall is found mostly in the north and central-coastal region and monsoon month rainfalls in the interior and north of Sarawak. Trends in river flow data show that changes in rainfall distribution have affected higher quantiles of river flow in monsoon months at some of the basins and therefore more flooding. The study reveals that quantile trend can provide more information of rainfall change which may be useful for climate change mitigation and adaptation planning.

  10. A comparative analysis of simulated and observed landslide locations triggered by Hurricane Camille in Nelson County, Virginia

    USGS Publications Warehouse

    Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.

    2008-01-01

    In 1969, Nelson County, Virginia received up to 71 cm of rain within 12 h starting at 7 p.m. on August 19. The total rainfall from the storm exceeded the 1000-year return period in the region. Several thousands of landslides were induced by rainfall associated with Hurricane Camille causing fatalities and destroying infrastructure. We apply a distributed transient response model for regional slope stability analysis to shallow landslides. Initiation points of over 3000 debris flows and effects of flooding from this storm are applied to the model. Geotechnical data used in the calculations are published data from samples of colluvium. Results from these calculations are compared with field observations such as landslide trigger location and timing of debris flows to assess how well the model predicts the spatial and temporal distribution. of landslide initiation locations. The model predicts many of the initiation locations in areas where debris flows are observed. Copyright ?? 2007 John Wiley & Sons, Ltd.

  11. Hydrological and geochemical investigations of selenium behavior at Kesterson Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zawislanski, P.T.; Tokunaga, T.K.; Benson, S.M.

    1995-05-01

    This report describes research relevant to selenium specification, fractionation, physical redistribution, reduction and oxidation, and spatial distribution as related to Kesterson Reservoir. The work was carried out by scientists and engineers from the Earth Sciences Division of the Lawrence Berkeley Laboratory over a two year period from October 1992 to September 1994. Much of the focus of these efforts was on the effects of two above-average rainfall years (1991/1992 and 1992/1993). These events marked a departure from the previous six years of drought conditions, under which oxidation of Se in the soil profile led to a marked increase in solublemore » Se. Evidence from the last two years show that much of the re-oxidized Se was once more reduced due to increased soil moisture content. Also, in areas of high hydraulic conductivity, major vertical displacement of selenium and other solutes due to rainfall infiltration was observed. Such observations underscore the dependence of the future of Se speciation and distribution on environmental conditions.« less

  12. Dynamic, physical-based landslide susceptibility modelling based on real-time weather data

    NASA Astrophysics Data System (ADS)

    Canli, Ekrem; Glade, Thomas

    2016-04-01

    By now there seem to be a broad consensus that due to human-induced global change the frequency and magnitude of precipitation intensities within extensive rainstorm events is expected to increase in certain parts of the world. Given the fact, that rainfall serves as one of the most common triggers for landslide initiation, also an increased landside activity might be expected. Landslide occurrence is a globally spread phenomenon that clearly needs to be handled by a variety of concepts, methods, and models. However, most of the research done with respect to landslides deals with retrospect cases, thus classical back-analysis approaches do not incorporate real-time data. This is remarkable, as most destructive landslides are related to immediate events due to external triggering factors. Only few works so far addressed real-time dynamic components for spatial landslide susceptibility and hazard assessment. Here we present an approach for integrating real-time web-based rainfall data from different sources into an automated workflow. Rain gauge measurements are interpolated into a continuous raster which in return is directly utilized in a dynamic, physical-based model. We use the Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis (TRIGRS) model that was modified in a way that it is automatically updated with the most recent rainfall raster for producing hourly landslide susceptibility maps on a regional scale. To account for the uncertainties involved in spatial modelling, the model was further adjusted by not only applying single values for given geotechnical parameters, but ranges instead. The values are determined randomly between user-defined thresholds defining the parameter ranges. Consequently, a slope failure probability from a larger number of model runs is computed rather than just the distributed factor of safety. This will ultimately allow a near-real time spatial landslide alert for a given region.

  13. Multisite rainfall downscaling and disaggregation in a tropical urban area

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Qin, X. S.

    2014-02-01

    A systematic downscaling-disaggregation study was conducted over Singapore Island, with an aim to generate high spatial and temporal resolution rainfall data under future climate-change conditions. The study consisted of two major components. The first part was to perform an inter-comparison of various alternatives of downscaling and disaggregation methods based on observed data. This included (i) single-site generalized linear model (GLM) plus K-nearest neighbor (KNN) (S-G-K) vs. multisite GLM (M-G) for spatial downscaling, (ii) HYETOS vs. KNN for single-site disaggregation, and (iii) KNN vs. MuDRain (Multivariate Rainfall Disaggregation tool) for multisite disaggregation. The results revealed that, for multisite downscaling, M-G performs better than S-G-K in covering the observed data with a lower RMSE value; for single-site disaggregation, KNN could better keep the basic statistics (i.e. standard deviation, lag-1 autocorrelation and probability of wet hour) than HYETOS; for multisite disaggregation, MuDRain outperformed KNN in fitting interstation correlations. In the second part of the study, an integrated downscaling-disaggregation framework based on M-G, KNN, and MuDRain was used to generate hourly rainfall at multiple sites. The results indicated that the downscaled and disaggregated rainfall data based on multiple ensembles from HadCM3 for the period from 1980 to 2010 could well cover the observed mean rainfall amount and extreme data, and also reasonably keep the spatial correlations both at daily and hourly timescales. The framework was also used to project future rainfall conditions under HadCM3 SRES A2 and B2 scenarios. It was indicated that the annual rainfall amount could reduce up to 5% at the end of this century, but the rainfall of wet season and extreme hourly rainfall could notably increase.

  14. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds. The two-CN system approach

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.

    2011-10-01

    The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. They suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the novel hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behavior of the CN-rainfall function produced by the proposed two-CN system concept is approached theoretically, it is analyzed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous original method based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.

  15. Integrating Entropy-Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard.

    PubMed

    Liu, Rui; Chen, Yun; Wu, Jianping; Gao, Lei; Barrett, Damian; Xu, Tingbao; Li, Xiaojuan; Li, Linyi; Huang, Chang; Yu, Jia

    2017-04-01

    Regional flood risk caused by intensive rainfall under extreme climate conditions has increasingly attracted global attention. Mapping and evaluation of flood hazard are vital parts in flood risk assessment. This study develops an integrated framework for estimating spatial likelihood of flood hazard by coupling weighted naïve Bayes (WNB), geographic information system, and remote sensing. The north part of Fitzroy River Basin in Queensland, Australia, was selected as a case study site. The environmental indices, including extreme rainfall, evapotranspiration, net-water index, soil water retention, elevation, slope, drainage proximity, and density, were generated from spatial data representing climate, soil, vegetation, hydrology, and topography. These indices were weighted using the statistics-based entropy method. The weighted indices were input into the WNB-based model to delineate a regional flood risk map that indicates the likelihood of flood occurrence. The resultant map was validated by the maximum inundation extent extracted from moderate resolution imaging spectroradiometer (MODIS) imagery. The evaluation results, including mapping and evaluation of the distribution of flood hazard, are helpful in guiding flood inundation disaster responses for the region. The novel approach presented consists of weighted grid data, image-based sampling and validation, cell-by-cell probability inferring and spatial mapping. It is superior to an existing spatial naive Bayes (NB) method for regional flood hazard assessment. It can also be extended to other likelihood-related environmental hazard studies. © 2016 Society for Risk Analysis.

  16. On the Use of the Log-Normal Particle Size Distribution to Characterize Global Rain

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Rincon, Rafael; Liao, Liang

    2003-01-01

    Although most parameterizations of the drop size distributions (DSD) use the gamma function, there are several advantages to the log-normal form, particularly if we want to characterize the large scale space-time variability of the DSD and rain rate. The advantages of the distribution are twofold: the logarithm of any moment can be expressed as a linear combination of the individual parameters of the distribution; the parameters of the distribution are approximately normally distributed. Since all radar and rainfall-related parameters can be written approximately as a moment of the DSD, the first property allows us to express the logarithm of any radar/rainfall variable as a linear combination of the individual DSD parameters. Another consequence is that any power law relationship between rain rate, reflectivity factor, specific attenuation or water content can be expressed in terms of the covariance matrix of the DSD parameters. The joint-normal property of the DSD parameters has applications to the description of the space-time variation of rainfall in the sense that any radar-rainfall quantity can be specified by the covariance matrix associated with the DSD parameters at two arbitrary space-time points. As such, the parameterization provides a means by which we can use the spaceborne radar-derived DSD parameters to specify in part the covariance matrices globally. However, since satellite observations have coarse temporal sampling, the specification of the temporal covariance must be derived from ancillary measurements and models. Work is presently underway to determine whether the use of instantaneous rain rate data from the TRMM Precipitation Radar can provide good estimates of the spatial correlation in rain rate from data collected in 5(sup 0)x 5(sup 0) x 1 month space-time boxes. To characterize the temporal characteristics of the DSD parameters, disdrometer data are being used from the Wallops Flight Facility site where as many as 4 disdrometers have been used to acquire data over a 2 km path. These data should help quantify the temporal form of the covariance matrix at this site.

  17. [Spatial distribution characteristics of China cotton fiber quality and climatic factors based on GIS].

    PubMed

    Xiong, Zong-Wei; Gu, Sheng-Hao; Mao, Li-Li; Wang, Xue-Jiao; Zhang, Li-Zhen; Zhou, Zhi-Guo

    2012-12-01

    By using geographical information system (GIS), the cotton fiber quality data from 2005 to 2011 and the daily meteorological data from 1981 to 2010 at 82 sites (counties and cities) in China major cotton production regions were collected and treated with spatial interpolation. The spatial information system of cotton fiber quality in China major cotton production regions was established based on GIS, and the spatial distribution characteristics of the cotton fiber quality and their relationships with the local climatic factors were analyzed. In the northwest region (especially Xinjiang) of China, due to the abundant sunlight, low precipitation, and low relative humidity, the cotton fiber length, micronaire, and grade ranked the first. In the Yangtze River region and Yellow River region, the specific strength of cotton fiber was higher, and in the Yangtze River region, the cotton fiber length and specific strength were higher, while the micronaire and grade were lower than those in the Yellow River region. The cotton fiber quality was closely related to the climate factors such as temperature, sunlight, rainfall, and humidity.

  18. Spatial characteristics of observed precipitation fields: A catalog of summer storms in Arizona, Volume 2

    NASA Technical Reports Server (NTRS)

    Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.

    1986-01-01

    The parameters of the conceptual model are evaluated from the analysis of eight years of summer rainstorm data from the dense raingage network in the Walnut Gulch catchment near Tucson, Arizona. The occurrence of measurable rain at any one of the 93 gages during a noon to noon day defined a storm. The total rainfall at each of the gages during a storm day constituted the data set for a single storm. The data are interpolated onto a fine grid and analyzed to obtain: an isohyetal plot at 2 mm intervals, the first three moments of point storm depth, the spatial correlation function, the spatial variance function, and the spatial distribution of the total storm depth. The description of the data analysis and the computer programs necessary to read the associated data tapes are presented.

  19. Simulating a Lowland Flash Flood in a Long-term Experimental Watershed with 7 Standard Hydrological Models

    NASA Astrophysics Data System (ADS)

    Torfs, P.; Brauer, C.; Teuling, R.; Kloosterman, P.; Willems, G.; Verkooijen, B.; Uijlenhoet, R.

    2012-12-01

    On 26 August 2010 the 6.5 km2 Hupsel Brook catchment in The Netherlands, which has been the experimental watershed employed by Wageningen University since the 1960s, was struck by an exceptionally heavy rainfall event (return period > 1000 years). We investigated the unprecedented flash flood triggered by this event and this study improved our understanding of the dynamics of such lowland flash floods (Brauer et al., 2011). During this extreme event some thresholds became apparent that do not play a role during average conditions and are not incorporated in most rainfall-runoff models. This may lead to errors when these models are used to forecast runoff responses to rainfall events that are extreme today, but likely to become less extreme when climate changes. The aim of this research project was to find out to what extent different types of rainfall-runoff models are able to simulate this extreme event, and, if not, which processes, thresholds or parameters are lacking to describe the event accurately. Five of the 7 employed models treat the catchment as a lumped system. This group includes the well-known HBV and Sacramento models. The Wageningen Model, which has been developed in our group, has a structure similar to HBV and the Sacramento Model. The SWAP (Soil, Water, Atmosphere, Plant) Model represents a physically-based model of a single soil column, but has been used here as a representation for the whole catchment. The LGSI (Lowland Groundwater Surface water Interaction) Model uses probability distributions to account for spatial variability in groundwater depth and resulting flow routes in the catchment. We did not only analyze how accurately each model simulated the discharge, but also whether groundwater and soil moisture dynamics and resulting flow processes were captured adequately. The 6th model is a spatially distributed model called SIMGRO. It is based on a MODFLOW groundwater model, extended with an unsaturated zone based on the previously mentioned SWAP model and a surface water network. This model has a very detailed groundwater-surface water interface and should therefore be particularly suitable to study the effect of backwater feedbacks we observed during the flood. In addition, the effect of spatially varying soil characteristics on the runoff response has been studied. The final model is SOBEK, which was originally developed as a hydraulic model consisting of a surface water network with nodes and links. To some of the nodes, upstream areas with associated rainfall-runoff models have been assigned. This model is especially useful to study the effect of hydraulic structures, such as culverts, and stream bed vegetation on dampening the flood peak. Brauer, C. C., Teuling, A.J., Overeem, A., van der Velde, Y., Hazenberg, P., Warmerdam, P. M. M. and Uijlenhoet, R.: Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment, Hydrol. Earth Syst. Sci., 15, 1991-2005, 2011.

  20. Spatial Interpolation of Rain-field Dynamic Time-Space Evolution in Hong Kong

    NASA Astrophysics Data System (ADS)

    Liu, P.; Tung, Y. K.

    2017-12-01

    Accurate and reliable measurement and prediction of spatial and temporal distribution of rain-field over a wide range of scales are important topics in hydrologic investigations. In this study, geostatistical treatment of precipitation field is adopted. To estimate the rainfall intensity over a study domain with the sample values and the spatial structure from the radar data, the cumulative distribution functions (CDFs) at all unsampled locations were estimated. Indicator Kriging (IK) was used to estimate the exceedance probabilities for different pre-selected cutoff levels and a procedure was implemented for interpolating CDF values between the thresholds that were derived from the IK. Different interpolation schemes of the CDF were proposed and their influences on the performance were also investigated. The performance measures and visual comparison between the observed rain-field and the IK-based estimation suggested that the proposed method can provide fine results of estimation of indicator variables and is capable of producing realistic image.

  1. Effect of Variable Spatial Scales on USLE-GIS Computations

    NASA Astrophysics Data System (ADS)

    Patil, R. J.; Sharma, S. K.

    2017-12-01

    Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.

  2. Forecasting of monsoon heavy rains: challenges in NWP

    NASA Astrophysics Data System (ADS)

    Sharma, Kuldeep; Ashrit, Raghavendra; Iyengar, Gopal; Bhatla, R.; Rajagopal, E. N.

    2016-05-01

    Last decade has seen a tremendous improvement in the forecasting skill of numerical weather prediction (NWP) models. This is attributed to increased sophistication in NWP models, which resolve complex physical processes, advanced data assimilation, increased grid resolution and satellite observations. However, prediction of heavy rains is still a challenge since the models exhibit large error in amounts as well as spatial and temporal distribution. Two state-of-art NWP models have been investigated over the Indian monsoon region to assess their ability in predicting the heavy rainfall events. The unified model operational at National Center for Medium Range Weather Forecasting (NCUM) and the unified model operational at the Australian Bureau of Meteorology (Australian Community Climate and Earth-System Simulator -- Global (ACCESS-G)) are used in this study. The recent (JJAS 2015) Indian monsoon season witnessed 6 depressions and 2 cyclonic storms which resulted in heavy rains and flooding. The CRA method of verification allows the decomposition of forecast errors in terms of error in the rainfall volume, pattern and location. The case by case study using CRA technique shows that contribution to the rainfall errors come from pattern and displacement is large while contribution due to error in predicted rainfall volume is least.

  3. Vegetation Variability And Its Effect On Monsoon Rainfall Over South East Asia: Observational and Modeling Results

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Peters-Lidard, C.; Chiu, L.; Kafatos, M.

    2005-12-01

    Increasing population and urbanization have created stress on developing nations. The quickly shifting patterns of vegetation change in different parts of the world have given rise to the pertinent question of feedback on the climate prevailing on local to regional scales. It is now known with some certainty, that vegetation changes can affect the climate by influencing the heat and water balance. The hydrological cycle particularly is susceptible to changes in vegetation. The Monsoon rainfall forms a vital link in the hydrological cycle prevailing over South East Asia This work examines the variability of vegetation over South East Asia and assesses its impact on the monsoon rainfall. We explain the role of changing vegetation and show how this change has affected the heat and energy balance. We demonstrate the role of vegetation one season earlier in influencing rainfall intensity over specific areas in South East Asia and show the ramification of vegetation change on the summer rainfall behavior. The vegetation variability study specifically focuses on India and China, two of the largest and most populous nations. We have done an assessment to find out the key meteorological and human induced parameters affecting vegetation over the study area through a spatial analysis of monthly NDVI values. This study highlights the role of monsoon rainfall, regional climate dynamics and large scale human induced pollution to be the crucial factors governing the vegetation and vegetation distribution. The vegetation is seen to follow distinct spatial patterns that have been found to be crucial in its eventual impact on monsoon rainfall. We have carried out a series of sensitivity experiments using a land surface hydrologic modeling scheme. The vital energy and water balance parameters are identified and the daily climatological cycles are examined for possible change in behavior for different boundary conditions. It is found that the change from native deciduous forest vegetation to crop land affects monsoon rainfall in two ways: 1) The presence of cropland increases the sensible heat release from ground, increasing the chances for development of forced convection; 2) Large scale irrigation associated with spring crop development creates a moister lower boundary layer thus inducing more moist instability and free convection in the succeeding season.

  4. The PRESSCA operational early warning system for landslide forecasting: the 11-12 November 2013 rainfall event in Central Italy.

    NASA Astrophysics Data System (ADS)

    Ciabatta, Luca; Brocca, Luca; Ponziani, Francesco; Berni, Nicola; Stelluti, Marco; Moramarco, Tommaso

    2014-05-01

    The Umbria Region, located in Central Italy, is one of the most landslide risk prone area in Italy, almost yearly affected by landslides events at different spatial scales. For early warning procedures aimed at the assessment of the hydrogeological risk, the rainfall thresholds represent the main tool for the Italian Civil Protection System. As shown in previous studies, soil moisture plays a key-role in landslides triggering. In fact, acting on the pore water pressure, soil moisture influences the rainfall amount needed for activating a landslide. In this work, an operational physically-based early warning system, named PRESSCA, that takes into account soil moisture for the definition of rainfall thresholds is presented. Specifically, the soil moisture conditions are evaluated in PRESSCA by using a distributed soil water balance model that is recently coupled with near real-time satellite soil moisture product obtained from ASCAT (Advanced SCATterometer) and from in-situ monitoring data. The integration of three different sources of soil moisture information allows to estimate the most accurate possible soil moisture condition. Then, both observed and forecasted rainfall data are compared with the soil moisture-based thresholds in order to obtain risk indicators over a grid of ~ 5 km. These indicators are then used for the daily hydrogeological risk evaluation and management by the Civil Protection regional service, through the sharing/delivering of near real-time landslide risk scenarios (also through an open source web platform: www.cfumbria.it). On the 11th-12th November, 2013, Umbria Region was hit by an exceptional rainfall event with up to 430mm/72hours that resulted in significant economic damages, but fortunately no casualties among the population. In this study, the results during the rainfall event of PRESSCA system are described, by underlining the model capability to reproduce, two days in advance, landslide risk scenarios in good spatial and temporal agreement with the occurred actual conditions. High-resolution risk scenarios (100mx100m), obtained by coupling PRESSCA forecasts with susceptibility and vulnerability layers, are also produced. The results show good relationship between the PRESSCA forecast and the reported landslides to the Civil Protection Service during the rainfall event, confirming the system robustness. The good forecasts of PRESSCA system have surely contributed to start well in advance the Civil Protection operations (alerting local authorities and population).

  5. Improving rainfall representation for large-scale hydrological modelling of tropical mountain basins

    NASA Astrophysics Data System (ADS)

    Zulkafli, Zed; Buytaert, Wouter; Onof, Christian; Lavado, Waldo; Guyot, Jean-Loup

    2013-04-01

    Errors in the forcing data are sometimes overlooked in hydrological studies even when they could be the most important source of uncertainty. The latter particularly holds true in tropical countries with short historical records of rainfall monitoring and remote areas with sparse rain gauge network. In such instances, alternative data such as the remotely sensed precipitation from the TRMM (Tropical Rainfall Measuring Mission) satellite have been used. These provide a good spatial representation of rainfall processes but have been established in the literature to contain volumetric biases that may impair the results of hydrological modelling or worse, are compensated during model calibration. In this study, we analysed precipitation time series from the TMPA (TRMM Multiple Precipitation Algorithm, version 6) against measurements from over 300 gauges in the Andes and Amazon regions of Peru and Ecuador. We found moderately good monthly correlation between the pixel and gauge pairs but a severe underestimation of rainfall amounts and wet days. The discrepancy between the time series pairs is particularly visible over the east side of the Andes and may be attributed to localized and orographic-driven high intensity rainfall, which the satellite product may have limited skills at capturing due to technical and scale issues. This consequently results in a low bias in the simulated streamflow volumes further downstream. In comparison, with the recently released TMPA, version 7, the biases reduce. This work further explores several approaches to merge the two sources of rainfall measurements, each of a different spatial and temporal support, with the objective of improving the representation of rainfall in hydrological simulations. The methods used are (1) mean bias correction (2) data assimilation using Kalman filter Bayesian updating. The results are evaluated by means of (1) a comparison of runoff ratios (the ratio of the total runoff and the total precipitation over an extended period) in multiple basins, and (2) a comparison of the outcome of hydrological modelling using the distributed JULES (Joint-UK Land Environment Simulator) land surface model. First results indicate an improvement in the water balance that directly translates into an increased hydrological performance. The more interesting aspect of the study, however, will be the insights into the nature of satellite precipitation errors in this extreme environment and the optimal means of improving the data to generate increased confidence in hydrological predictions.

  6. Analysis of the dependence of extreme rainfalls

    NASA Astrophysics Data System (ADS)

    Padoan, Simone; Ancey, Christophe; Parlange, Marc

    2010-05-01

    The aim of spatial analysis is to quantitatively describe the behavior of environmental phenomena such as precipitation levels, wind speed or daily temperatures. A number of generic approaches to spatial modeling have been developed[1], but these are not necessarily ideal for handling extremal aspects given their focus on mean process levels. The areal modelling of the extremes of a natural process observed at points in space is important in environmental statistics; for example, understanding extremal spatial rainfall is crucial in flood protection. In light of recent concerns over climate change, the use of robust mathematical and statistical methods for such analyses has grown in importance. Multivariate extreme value models and the class of maxstable processes [2] have a similar asymptotic motivation to the univariate Generalized Extreme Value (GEV) distribution , but providing a general approach to modeling extreme processes incorporating temporal or spatial dependence. Statistical methods for max-stable processes and data analyses of practical problems are discussed by [3] and [4]. This work illustrates methods to the statistical modelling of spatial extremes and gives examples of their use by means of a real extremal data analysis of Switzerland precipitation levels. [1] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York. [2] de Haan, L and Ferreria A. (2006). Extreme Value Theory An Introduction. Springer, USA. [3] Padoan, S. A., Ribatet, M and Sisson, S. A. (2009). Likelihood-Based Inference for Max-Stable Processes. Journal of the American Statistical Association, Theory & Methods. In press. [4] Davison, A. C. and Gholamrezaee, M. (2009), Geostatistics of extremes. Journal of the Royal Statistical Society, Series B. To appear.

  7. Using sediment particle size distribution to evaluate sediment sources in the Tobacco Creek Watershed

    NASA Astrophysics Data System (ADS)

    Liu, Cenwei; Lobb, David; Li, Sheng; Owens, Philip; Kuzyk, ZouZou

    2014-05-01

    Lake Winnipeg has recently brought attention to the deteriorated water quality due to in part to nutrient and sediment input from agricultural land. Improving water quality in Lake Winnipeg requires the knowledge of the sediment sources within this ecosystem. There are a variety of environmental fingerprinting techniques have been successfully used in the assessment of sediment sources. In this study, we used particle size distribution to evaluate spatial and temporal variations of suspended sediment and potential sediment sources collected in the Tobacco Creek Watershed in Manitoba, Canada. The particle size distribution of suspended sediment can reflect the origin of sediment and processes during sediment transport, deposition and remobilization within the watershed. The objectives of this study were to quantify visually observed spatial and temporal changes in sediment particles, and to assess the sediment source using a rapid and cost-effective fingerprinting technique based on particle size distribution. The suspended sediment was collected by sediment traps twice a year during rainfall and snowmelt periods from 2009 to 2012. The potential sediment sources included the top soil of cultivated field, riparian area and entire profile from stream banks. Suspended sediment and soil samples were pre-wet with RO water and sieved through 600 μm sieve before analyzing. Particle size distribution of all samples was determined using a Malvern Mastersizer 2000S laser diffraction with the measurement range up to 600μm. Comparison of the results for different fractions of sediment showed significant difference in particle size distribution of suspended sediment between snowmelt and rainfall events. An important difference of particle size distribution also found between the cultivated soil and forest soil. This difference can be explained by different land uses which provided a distinct fingerprint of sediment. An overall improvement in water quality can be achieved by managing sediment according to the identified sediment sources in the watershed.

  8. Determination of mean rainfall from the Special Sensor Microwave/Imager (SSM/I) using a mixed lognormal distribution

    NASA Technical Reports Server (NTRS)

    Berg, Wesley; Chase, Robert

    1992-01-01

    Global estimates of monthly, seasonal, and annual oceanic rainfall are computed for a period of one year using data from the Special Sensor Microwave/Imager (SSM/I). Instantaneous rainfall estimates are derived from brightness temperature values obtained from the satellite data using the Hughes D-matrix algorithm. The instantaneous rainfall estimates are stored in 1 deg square bins over the global oceans for each month. A mixed probability distribution combining a lognormal distribution describing the positive rainfall values and a spike at zero describing the observations indicating no rainfall is used to compute mean values. The resulting data for the period of interest are fitted to a lognormal distribution by using a maximum-likelihood. Mean values are computed for the mixed distribution and qualitative comparisons with published historical results as well as quantitative comparisons with corresponding in situ raingage data are performed.

  9. Spatially distributed groundwater recharge for 2010 land cover estimated using a water-budget model for the Island of O‘ahu, Hawai‘i

    USGS Publications Warehouse

    Engott, John A.; Johnson, Adam G.; Bassiouni, Maoya; Izuka, Scot K.; Rotzoll, Kolja

    2015-02-25

    Owing mainly to projected population growth, demand for freshwater on the Island of Oʻahu is expected to increase by about 26 percent between 2010 and 2030, according to the City and County of Honolulu. Estimates of groundwater recharge are needed to evaluate the availability of fresh groundwater. For this study, a water-budget model with a daily computation interval was developed and used to estimate the spatial distribution of recharge on Oʻahu for average climate conditions (1978–2007 rainfall and 2010 land cover) and for drought conditions (1998–2002 rainfall and 2010 land cover). For average climate conditions, mean annual recharge for Oʻahu is about 660 million gallons per day, or about 36 percent of precipitation (rainfall and fog interception). Recharge for average climate conditions is about 34 percent of total water inflow, which consists of precipitation, irrigation, septic leachate, water-main leakage, and seepage from reservoirs and cesspools. Recharge is high along the crest of the Koʻolau Range, reaching as much as about 180 inches per year in the north-central part of the range. Recharge is much lower outside of the mountainous areas of the island, commonly less than 5 inches per year in unirrigated areas. The island-wide estimate of groundwater recharge for average climate conditions from this study is within 1 percent of the recharge estimate used in the 2008 State of Hawaiʻi Water Resource Protection Plan, which divides the Island of Oʻahu into 23 aquifer systems for groundwater management purposes. To facilitate direct comparisons with this study, these 23 aquifer systems were consolidated into 21 aquifer systems. Recharge estimates from this study are higher for 12 of the aquifer-system areas and lower for 9. Differences in mean rainfall distribution and the inclusion of irrigation in this study are the primary reasons for discrepancies in recharge estimates between this study and the 2008 Hawaiʻi Water Resources Protection Plan. For drought conditions, mean annual recharge for Oʻahu is about 417 million gallons per day, which is about 37 percent less than recharge for average climate conditions. For individual aquifer-system areas, recharge for drought conditions is about 25 to 70 percent less than recharge for average climate conditions.

  10. Analysis of the precipitation and streamflow extremes in Northern Italy using high resolution reanalysis dataset Express-Hydro

    NASA Astrophysics Data System (ADS)

    Silvestro, Francesco; Parodi, Antonio; Campo, Lorenzo

    2017-04-01

    The characterization of the hydrometeorological extremes, both in terms of rainfall and streamflow, in a given region plays a key role in the environmental monitoring provided by the flood alert services. In last years meteorological simulations (both near real-time and historical reanalysis) were available at increasing spatial and temporal resolutions, making possible long-period hydrological reanalysis in which the meteo dataset is used as input in distributed hydrological models. In this work, a very high resolution meteorological reanalysis dataset, namely Express-Hydro (CIMA, ISAC-CNR, GAUSS Special Project PR45DE), was employed as input in the hydrological model Continuum in order to produce long time series of streamflows in the Liguria territory, located in the Northern part of Italy. The original dataset covers the whole Europe territory in the 1979-2008 period, at 4 km of spatial resolution and 3 hours of time resolution. Analyses in terms of comparison between the rainfall estimated by the dataset and the observations (available from the local raingauges network) were carried out, and a bias correction was also performed in order to better match the observed climatology. An extreme analysis was eventually carried on the streamflows time series obtained by the simulations, by comparing them with the results of the same hydrological model fed with the observed time series of rainfall. The results of the analysis are shown and discussed.

  11. Predicting watershed acidification under alternate rainfall conditions

    USGS Publications Warehouse

    Huntington, T.G.

    1996-01-01

    The effect of alternate rainfall scenarios on acidification of a forested watershed subjected to chronic acidic deposition was assessed using the model of acidification of groundwater in catchments (MAGIC). The model was calibrated at the Panola Mountain Research Watershed, near Atlanta, Georgia, U.S.A. using measured soil properties, wet and dry deposition, and modeled hydrologic routing. Model forecast simulations were evaluated to compare alternate temporal averaging of rainfall inputs and variations in rainfall amount and seasonal distribution. Soil water alkalinity was predicted to decrease to substantially lower concentrations under lower rainfall compared with current or higher rainfall conditions. Soil water alkalinity was also predicted to decrease to lower levels when the majority of rainfall occurred during the growing season compared with other rainfall distributions. Changes in rainfall distribution that result in decreases in net soil water flux will temporarily delay acidification. Ultimately, however, decreased soil water flux will result in larger increases in soil- adsorbed sulfur and soil-water sulfate concentrations and decreases in alkalinity when compared to higher water flux conditions. Potential climate change resulting in significant changes in rainfall amounts, seasonal distribution of rainfall, or evapotranspiration will change net soil water flux and, consequently, will affect the dynamics of the acidification response to continued sulfate loading.

  12. Geographic distribution of Aedes aegypti and Aedes albopictus collected from used tires in Vietnam.

    PubMed

    Higa, Yukiko; Yen, Nguyen Thi; Kawada, Hitoshi; Son, Tran Hai; Hoa, Nguyen Thuy; Takagi, Masahiro

    2010-03-01

    The spatial distribution of Aedes aegypti and Aedes albopictus in environmental and geographical zones, e.g., urban-rural, coastal-mountainous, and north-south, was investigated throughout Vietnam. Immature stages were collected from used tires along roads. The effects of regions, seasons, and the degree of urbanization on the density and the frequency were statistically analyzed. Aedes aegypti predominated in the southern and central regions, while Ae. albopictus predominated in the northern region, which may be related to climatic conditions (temperature and rainfall). Larval collection from used tires may be suitable to assess rapidly the current distribution of dengue mosquitoes for estimating health risks and implementing vector control measures.

  13. Multi-century cool- and warm-season rainfall reconstructions for Australia's major climatic regions

    NASA Astrophysics Data System (ADS)

    Freund, Mandy; Henley, Benjamin J.; Karoly, David J.; Allen, Kathryn J.; Baker, Patrick J.

    2017-11-01

    Australian seasonal rainfall is strongly affected by large-scale ocean-atmosphere climate influences. In this study, we exploit the links between these precipitation influences, regional rainfall variations, and palaeoclimate proxies in the region to reconstruct Australian regional rainfall between four and eight centuries into the past. We use an extensive network of palaeoclimate records from the Southern Hemisphere to reconstruct cool (April-September) and warm (October-March) season rainfall in eight natural resource management (NRM) regions spanning the Australian continent. Our bi-seasonal rainfall reconstruction aligns well with independent early documentary sources and existing reconstructions. Critically, this reconstruction allows us, for the first time, to place recent observations at a bi-seasonal temporal resolution into a pre-instrumental context, across the entire continent of Australia. We find that recent 30- and 50-year trends towards wetter conditions in tropical northern Australia are highly unusual in the multi-century context of our reconstruction. Recent cool-season drying trends in parts of southern Australia are very unusual, although not unprecedented, across the multi-century context. We also use our reconstruction to investigate the spatial and temporal extent of historical drought events. Our reconstruction reveals that the spatial extent and duration of the Millennium Drought (1997-2009) appears either very much below average or unprecedented in southern Australia over at least the last 400 years. Our reconstruction identifies a number of severe droughts over the past several centuries that vary widely in their spatial footprint, highlighting the high degree of diversity in historical droughts across the Australian continent. We document distinct characteristics of major droughts in terms of their spatial extent, duration, intensity, and seasonality. Compared to the three largest droughts in the instrumental period (Federation Drought, 1895-1903; World War II Drought, 1939-1945; and the Millennium Drought, 1997-2005), we find that the historically documented Settlement Drought (1790-1793), Sturt's Drought (1809-1830) and the Goyder Line Drought (1861-1866) actually had more regionalised patterns and reduced spatial extents. This seasonal rainfall reconstruction provides a new opportunity to understand Australian rainfall variability by contextualising severe droughts and recent trends in Australia.

  14. Inaccuracies in sediment budgets arising from estimations of tributary sediment inputs: an example from a monitoring network on the southern Colorado plateau

    USGS Publications Warehouse

    Griffiths, Ronald; Topping, David

    2015-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain-size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a channel reach is in a state of sediment accumulation, deficit or stasis. Many studies have estimated sediment loads from ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of sediment loads in semi-arid climates, where rainfall events, contributing geology, and vegetation have large spatial variability.

  15. Parameter Tuning and Calibration of RegCM3 with MIT-Emanuel Cumulus Parameterization Scheme over CORDEX East Asian Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Liwei; Qian, Yun; Zhou, Tianjun

    2014-10-01

    In this study, we calibrated the performance of regional climate model RegCM3 with Massachusetts Institute of Technology (MIT)-Emanuel cumulus parameterization scheme over CORDEX East Asia domain by tuning the selected seven parameters through multiple very fast simulated annealing (MVFSA) sampling method. The seven parameters were selected based on previous studies, which customized the RegCM3 with MIT-Emanuel scheme through three different ways by using the sensitivity experiments. The responses of model results to the seven parameters were investigated. Since the monthly total rainfall is constrained, the simulated spatial pattern of rainfall and the probability density function (PDF) distribution of daily rainfallmore » rates are significantly improved in the optimal simulation. Sensitivity analysis suggest that the parameter “relative humidity criteria” (RH), which has not been considered in the default simulation, has the largest effect on the model results. The responses of total rainfall over different regions to RH were examined. Positive responses of total rainfall to RH are found over northern equatorial western Pacific, which are contributed by the positive responses of explicit rainfall. Followed by an increase of RH, the increases of the low-level convergence and the associated increases in cloud water favor the increase of the explicit rainfall. The identified optimal parameters constrained by the total rainfall have positive effects on the low-level circulation and the surface air temperature. Furthermore, the optimized parameters based on the extreme case are suitable for a normal case and the model’s new version with mixed convection scheme.« less

  16. Climatology of contribution-weighted tropical rain rates based on TRMM 3B42

    NASA Astrophysics Data System (ADS)

    Venugopal, V.; Wallace, J. M.

    2016-10-01

    The climatology of annual mean tropical rain rate is investigated based on merged Tropical Rainfall Measuring Mission (TRMM) 3B42 data. At 0.25° × 0.25° spatial resolution, and 3-hourly temporal resolution, half the rain is concentrated within only ˜1% of the area of the tropics at any given instant. When plotted as a function of logarithm of rain rate, the cumulative contribution of rate-ranked rain occurrences to the annual mean rainfall in each grid box is S shaped and its derivative, the contribution-weighted rain rate spectrum, is Gaussian shaped. The 50% intercept of the cumulative contribution R50 is almost equivalent to the contribution-weighted mean logarithmic rain rate RL¯ based on all significant rain occurrences. The spatial patterns of R50 and RL¯ are similar to those obtained by mapping the fraction of the annual accumulation explained by rain occurrences with rates above various specified thresholds. The geographical distribution of R50 confirms the existence of patterns noted in prior analyses based on TRMM precipitation radar data and reveals several previously unnoticed features.

  17. An evaluation of the spatial resolution of soil moisture information

    NASA Technical Reports Server (NTRS)

    Hardy, K. R.; Cohen, S. H.; Rogers, L. K.; Burke, H. H. K.; Leupold, R. C.; Smallwood, M. D.

    1981-01-01

    Rainfall-amount patterns in the central regions of the U.S. were assessed. The spatial scales of surface features and their corresponding microwave responses in the mid western U.S. were investigated. The usefulness for U.S. government agencies of soil moisture information at scales of 10 km and 1 km. was ascertained. From an investigation of 494 storms, it was found that the rainfall resulting from the passage of most types of storms produces patterns which can be resolved on a 10 km scale. The land features causing the greatest problem in the sensing of soil moisture over large agricultural areas with a radiometer are bodies of water. Over the mid-western portions of the U.S., water occupies less than 2% of the total area, the consequently, the water bodies will not have a significant impact on the mapping of soil moisture. Over most of the areas, measurements at a 10-km resolution would adequately define the distribution of soil moisture. Crop yield models and hydrological models would give improved results if soil moisture information at scales of 10 km was available.

  18. Towards a Quasi-global precipitation-induced Landslide Detection System using Remote Sensing Information

    NASA Astrophysics Data System (ADS)

    Adler, B.; Hong, Y.; Huffman, G.; Negri, A.; Pando, M.

    2006-05-01

    Landslides and debris flows are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage per year. Currently, no system exists at either a national or a global scale to monitor or detect rainfall conditions that may trigger landslides. In this study, global landslide susceptibility is mapped using USGS GTOPO30 Digital Elevation, hydrological derivatives (slopes and wetness index etc.) from HYDRO1k data, soil type information downscaled from Digital Soil Map of the World (Sand, Loam, Silt, or Clay etc.), and MODIS land cover/use classification data. These variables are then combined with empirical landslide inventory data, if available, to derive a global landslide susceptibility map at elemental resolution of 1 x 1 km. This map can then be overlain with the driving force, namely rainfall estimates from the TRMM-based Multiple-satellite Precipitation Analysis to identify when areas with significant landslide potential receive heavy rainfall. The relations between rainfall intensity and rainstorm duration are regionally specific and often take the form of a power-law relation. Several empirical landslide-triggering Rainfall Intensity-Duration thresholds are implemented regionally using the 8-year TRMM-based precipitation with or without the global landslide susceptibility map at continuous space and time domain. Finally, the effectiveness of this system is validated by studying several recent deadly landslide/mudslide events. This study aims to build up a prototype quasi-global potential landslide warning system. Spatially-distributed landslide susceptibility maps and regional empirical rainfall intensity-duration thresholds, in combination with real-time rainfall measurements from space and rainfall forecasts from models, will be the basis for this experimental system.

  19. Why the predictions for monsoon rainfall fail?

    NASA Astrophysics Data System (ADS)

    Lee, J.

    2016-12-01

    To be in line with the Global Land/Atmosphere System Study (GLASS) of the Global Energy and Water Cycle Experiment (GEWEX) international research scheme, this study discusses classical arguments about the feedback mechanisms between land surface and precipitation to improve the predictions of African monsoon rainfall. In order to clarify the impact of antecedent soil moisture on subsequent rainfall evolution, several data sets will be presented. First, in-situ soil moisture field measurements acquired by the AMMA field campaign will be shown together with rain gauge data. This data set will validate various model and satellite data sets such as NOAH land surface model, TRMM rainfall, CMORPH rainfall and HadGEM climate models, SMOS soil moisture. To relate soil moisture with precipitation, two approaches are employed: one approach makes a direct comparison between the spatial distributions of soil moisture as an absolute value and rainfall, while the other measures a temporal evolution of the consecutive dry days (i.e. a relative change within the same soil moisture data set over time) and rainfall occurrences. Consecutive dry days shows consistent results of a negative feedback between soil moisture and rainfall across various data sets, contrary to the direct comparison of soil moisture state. This negative mechanism needs attention, as most climate models usually focus on a positive feedback only. The approach of consecutive dry days takes into account the systematic errors in satellite observations, reminding us that it may cause the misinterpretation to directly compare model with satellite data, due to their difference in data retrievals. This finding is significant, as the climate indices employed by the Intergovernmental Panel on Climate Change (IPCC) modelling archive are based on the atmospheric variable rathr than land.

  20. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  1. Groundwater recharge estimation under semi arid climate: Case of Northern Gafsa watershed, Tunisia

    NASA Astrophysics Data System (ADS)

    Melki, Achraf; Abdollahi, Khodayar; Fatahi, Rouhallah; Abida, Habib

    2017-08-01

    Natural groundwater recharge under semi arid climate, like rainfall, is subjected to large variations in both time and space and is therefore very difficult to predict. Nevertheless, in order to set up any strategy for water resources management in such regions, understanding the groundwater recharge variability is essential. This work is interested in examining the impact of rainfall on the aquifer system recharge in the Northern Gafsa Plain in Tunisia. The study is composed of two main parts. The first is interested in the analysis of rainfall spatial and temporal variability in the study basin while the second is devoted to the simulation of groundwater recharge. Rainfall analysis was performed based on annual precipitation data recorded in 6 rainfall stations over a period of 56 years (1960-2015). Potential evapotranspiration data were also collected from 1960 to 2011 (52 years). The hydrologic distributed model WetSpass was used for the estimation of groundwater recharge. Model calibration was performed based on an assessment of the agreement between the sum of recharge and runoff values estimated by the WetSpass hydrological model and those obtained by the climatic method. This latter is based on the difference calculated between rainfall and potential evapotranspiration recorded at each rainy day. Groundwater recharge estimation, on monthly scale, showed that average annual precipitation (183.3 mm/year) was partitioned to 5, 15.3, 36.8, and 42.8% for interception, runoff, actual evapotranspiration and recharge respectively.

  2. Spatial and seasonal distribution of polychlorinated biphenyls (PCBs) in the vicinity of an iron and steel making plant.

    PubMed

    Baek, Song-Yee; Choi, Sung-Deuk; Park, Hyokeun; Kang, Jung-Ho; Chang, Yoon-Seok

    2010-04-15

    Four consecutive passive air samplings (September 2006-July 2007) were conducted at 15 sites around an iron and steel making plant in Pohang, Korea to investigate the spatial and seasonal distributions of polychlorinated biphenyls (PCBs) and ultimately the source-receptor relationships. Annual mean values of Sigma(8)PCBs (IUPAC number 8, 28, 52, 101, 118, 138, 153, 180) were in the range of 15.1-166 pg/m(3) with an average of 53.0 pg/m(3). The spatial distribution of PCBs for each sampling period clearly suggests that the steel complex is a major source of PCBs in this area, and the prevailing winds facilitated the atmospheric transport and dispersion of PCBs from the steel complex to the surrounding areas. Seasonal patterns of PCBs were observed clearly, which were influenced by meteorological conditions; the highest levels of PCBs were observed with the highest average air temperature, and the influence of rainfall (i.e., wet scavenging) was also observed. In addition, PCB 11, a non-Aroclor congener, was detected in high concentrations at all sites, implying that the sources of PCB 11 are both unique and ubiquitous. This study confirms that passive air sampling is a useful tool to obtain seasonal and spatial distributions of time-averaged POPs data at a local scale.

  3. Spatial pulses of water inputs in deciduous and hemlock forest stands

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Mussehl, M.; Pecht, A.; Spence, C.

    2010-12-01

    Trees intercept and redistribute precipitation in time and space. While spatial patterns of throughfall are challenging to link to plant and canopy characteristics, many studies have shown that the spatial patterns persist through time. This persistence leads to wet and dry spots under the trees, creating spatial pulses of moisture that can affect infiltration, transpiration, and biogeochemical processes. In the northeast, the invasive hemlock woolly adelgid poses a significant threat to eastern hemlock (Tsuga canadensis), and replacement of hemlock forests by other species, such as birch, maple, and oak, has the potential to alter throughfall patterns and hydrologic processes. During the summers of 2009 and 2010, we measured throughfall in both hemlock and deciduous plots to assess its spatial distribution and temporal persistence. From 3 June to 25 July 2009, we measured throughfall in one hemlock and one deciduous plot over fourteen events with rainfall totaling 311 mm. From 8 June through 28 July 2010, we measured throughfall in the same two plots plus an additional hemlock stand and a young black birch stand, and rainfall totaled 148 mm over eight events. Averaged over space and time, throughfall was 81% of open precipitation in the hemlock stands, 88% in the mixed deciduous stand, and 100% in the young black birch stand. On an event basis, spatial coefficients of variation are similar among the stands and range from 11% to 49% for rain events greater than 5 mm. With the exception of very light events, coefficients of variation are insensitive to precipitation amount. Spatial patterns of throughfall persist through time, and seasonal coefficients of variation range from 13% to 33%. All stands indicate localized concentrations of water inputs, and there were individual collectors in the deciduous stands that regularly received more than twice the stand-average throughfall.

  4. A Probabilistic Analysis of Surface Water Flood Risk in London.

    PubMed

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2018-06-01

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  5. Spatial distribution of podoconiosis in relation to environmental factors in Ethiopia: a historical review.

    PubMed

    Deribe, Kebede; Brooker, Simon J; Pullan, Rachel L; Hailu, Asrat; Enquselassie, Fikre; Reithinger, Richard; Newport, Melanie; Davey, Gail

    2013-01-01

    An up-to-date and reliable map of podoconiosis is needed to design geographically targeted and cost-effective intervention in Ethiopia. Identifying the ecological correlates of the distribution of podoconiosis is the first step for distribution and risk maps. The objective of this study was to investigate the spatial distribution and ecological correlates of podoconiosis using historical and contemporary survey data. Data on the observed prevalence of podoconiosis were abstracted from published and unpublished literature into a standardized database, according to strict inclusion and exclusion criteria. In total, 10 studies conducted between 1969 and 2012 were included, and data were available for 401,674 individuals older than 15 years of age from 229 locations. A range of high resolution environmental factors were investigated to determine their association with podoconiosis prevalence, using logistic regression. The prevalence of podoconiosis in Ethiopia was estimated at 3.4% (95% CI 3.3%-3.4%) with marked regional variation. We identified significant associations between mean annual Land Surface Temperature (LST), mean annual precipitation, topography of the land and fine soil texture and high prevalence of podoconiosis. The derived maps indicate both widespread occurrence of podoconiosis and a marked variability in prevalence of podoconiosis, with prevalence typically highest at altitudes >1500 m above sea level (masl), with >1500 mm annual rainfall and mean annual LST of 19-21°C. No (or very little) podoconiosis occurred at altitudes <1225 masl, with annual rainfall <900 mm, and mean annual LST of >24°C. Podoconiosis remains a public health problem in Ethiopia over considerable areas of the country, but exhibits marked geographical variation associated in part with key environmental factors. This is work in progress and the results presented here will be refined in future work.

  6. Extreme climatic events drive mammal irruptions: regression analysis of 100-year trends in desert rainfall and temperature

    PubMed Central

    Greenville, Aaron C; Wardle, Glenda M; Dickman, Chris R

    2012-01-01

    Extreme climatic events, such as flooding rains, extended decadal droughts and heat waves have been identified increasingly as important regulators of natural populations. Climate models predict that global warming will drive changes in rainfall and increase the frequency and severity of extreme events. Consequently, to anticipate how organisms will respond we need to document how changes in extremes of temperature and rainfall compare to trends in the mean values of these variables and over what spatial scales the patterns are consistent. Using the longest historical weather records available for central Australia – 100 years – and quantile regression methods, we investigate if extreme climate events have changed at similar rates to median events, if annual rainfall has increased in variability, and if the frequency of large rainfall events has increased over this period. Specifically, we compared local (individual weather stations) and regional (Simpson Desert) spatial scales, and quantified trends in median (50th quantile) and extreme weather values (5th, 10th, 90th, and 95th quantiles). We found that median and extreme annual minimum and maximum temperatures have increased at both spatial scales over the past century. Rainfall changes have been inconsistent across the Simpson Desert; individual weather stations showed increases in annual rainfall, increased frequency of large rainfall events or more prolonged droughts, depending on the location. In contrast to our prediction, we found no evidence that intra-annual rainfall had become more variable over time. Using long-term live-trapping records (22 years) of desert small mammals as a case study, we demonstrate that irruptive events are driven by extreme rainfalls (>95th quantile) and that increases in the magnitude and frequency of extreme rainfall events are likely to drive changes in the populations of these species through direct and indirect changes in predation pressure and wildfires. PMID:23170202

  7. The cross wavelet and wavelet coherence analysis of spatio-temporal rainfall-groundwater system in Pingtung plain, Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Chien; Yu, Hwa-Lung

    2013-04-01

    The increasing frequency and intensity of extreme rainfall events has been observed recently in Taiwan. Particularly, Typhoon Morakot, Typhoon Fanapi, and Typhoon Megi consecutively brought record-breaking intensity and magnitude of rainfalls to different locations of Taiwan in these two years. However, records show the extreme rainfall events did not elevate the amount of annual rainfall accordingly. Conversely, the increasing frequency of droughts has also been occurring in Taiwan. The challenges have been confronted by governmental agencies and scientific communities to come up with effective adaptation strategies for natural disaster reduction and sustainable environment establishment. Groundwater has long been a reliable water source for a variety of domestic, agricultural, and industrial uses because of its stable quantity and quality. In Taiwan, groundwater accounts for the largest proportion of all water resources for about 40%. This study plans to identify and quantify the nonlinear relationship between precipitation and groundwater recharge, find the non-stationary time-frequency relations between the variations of rainfall and groundwater levels to understand the phase difference of time series. Groundwater level data and over-50-years hourly rainfall records obtained from 20 weather stations in Pingtung Plain, Taiwan has been collected. Extract the space-time pattern by EOF method, which is a decomposition of a signal or data set in terms of orthogonal basis functions determined from the data for both time series and spatial patterns, to identify the important spatial pattern of groundwater recharge and using cross wavelet and wavelet coherence method to identify the relationship between rainfall and groundwater levels. Results show that EOF method can specify the spatial-temporal patterns which represents certain geological characteristics and other mechanisms of groundwater, and the wavelet coherence method can identify general correlation between rainfall and groundwater signal at low frequency and high frequency relationship at some certain extreme rainfall events. Keywords: extreme rainfall, groundwater, EOF, wavelet coherence

  8. Temporal and spatial variability of rainfall pH

    Treesearch

    Richard G. Semonin

    1977-01-01

    The distribution of average rainwater pH over an area of 1,800 km² containing 81 collectors was determined from 25 storm events. The areal average of the data was pH 4.9, with a range of values from 4.3 to 6.8. A single storm event was studied to determine the change of pH as a function of time. The initial rain was pH 7.1, decreasing to 4.1. An excellent...

  9. Merging gauge and satellite rainfall with specification of associated uncertainty across Australia

    NASA Astrophysics Data System (ADS)

    Woldemeskel, Fitsum M.; Sivakumar, Bellie; Sharma, Ashish

    2013-08-01

    Accurate estimation of spatial rainfall is crucial for modelling hydrological systems and planning and management of water resources. While spatial rainfall can be estimated either using rain gauge-based measurements or using satellite-based measurements, such estimates are subject to uncertainties due to various sources of errors in either case, including interpolation and retrieval errors. The purpose of the present study is twofold: (1) to investigate the benefit of merging rain gauge measurements and satellite rainfall data for Australian conditions and (2) to produce a database of retrospective rainfall along with a new uncertainty metric for each grid location at any timestep. The analysis involves four steps: First, a comparison of rain gauge measurements and the Tropical Rainfall Measuring Mission (TRMM) 3B42 data at such rain gauge locations is carried out. Second, gridded monthly rain gauge rainfall is determined using thin plate smoothing splines (TPSS) and modified inverse distance weight (MIDW) method. Third, the gridded rain gauge rainfall is merged with the monthly accumulated TRMM 3B42 using a linearised weighting procedure, the weights at each grid being calculated based on the error variances of each dataset. Finally, cross validation (CV) errors at rain gauge locations and standard errors at gridded locations for each timestep are estimated. The CV error statistics indicate that merging of the two datasets improves the estimation of spatial rainfall, and more so where the rain gauge network is sparse. The provision of spatio-temporal standard errors with the retrospective dataset is particularly useful for subsequent modelling applications where input error knowledge can help reduce the uncertainty associated with modelling outcomes.

  10. Shallow landslide stability computation using a distributed transient response model for susceptibility assessment and validation. A case study from Ribeira Quente valley (S. Miguel island, Azores)

    NASA Astrophysics Data System (ADS)

    Amaral, P.; Marques, R.; Zêzere, J. L.; Marques, F.; Queiroz, G.

    2009-04-01

    In the last 15 years, several heavy rainstorms have occurred in Povoação County (S. Miguel Island, Azores), namely in the Ribeira Quente Valley. These rainfall events have triggered hundreds of shallow landslides that killed tens of people and have been responsible for direct and indirect damages amounting to tens of millions of Euros. On the 6th March 2005 an intense rainfall episode, up to 160 mm of rain in less than 24 h, triggered several shallow landslides that caused 3 victims and damaged/blocked roads. The Ribeira Quente Valley has an area of about 9.5 km2 and is mainly constituted by pyroclastic materials (pumice ash and lapilli), that were produced by the Furnas Volcano explosive eruptions. To provide an assessment of slope-failure conditions for the 6th March 2005 rainfall event, it was applied a distributed transient response model for slope stability analysis. The adopted methodology is a modified version of Iversońs (2000) transient response model, which couple an infinite slope stability analysis with an analytic solution of the Richard's equation for vertical water infiltration in quasi-saturated soil. The validation was made on two different scales: (1) at a slope scale, using two distinct test sites where landslides were triggered; and (2) at the basin scale, using the entire landslide database and generalizing the modeling input parameters for the regional spatialization of results. At the slope scale, the obtained results were very accurate, and it was possible to predict the precise time of the slope failures. At the basin scale, the obtained results were very conservative, even though the model predicted all the observed landslide locations, in the 23.7% of the area classified as untable at the time of the slope failures. This methodology revealed to be a reasonable tool for landslide forecast for both temporal and spatial distributions, on both slope and regional scales. In the future, the model components will be integrated into a GIS based system that will publish the FS values to a WebGIS platform, based on near real time ground-based rainfall monitoring. This application will allow the evaluation of scenarios considering the variation of the pressure head response, related to transient rainfall regime. The resultant computational platform combined with regional empirical rainfall triggered landslides threshold (Marques et al. 2008) can be incorporated in a common server with the Regional Civil Protection for emergency planning purposes. This work is part of the project VOLCSOILRISK (Volcanic Soils Geotechnical Characterization for Landslide Risk Mitigation), supported by Direcção Regional da Ciência e Tecnologia do Governo Regional dos Açores. References: IVERSON, R.M. (2000) - Landslide triggering by rain infiltration. Water Resources Research 36, 1897-1910. MARQUES, R., ZÊZERE, J.L., TRIGO, R., GASPAR, J.L., TRIGO, I. (2008) - Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): relationships with the North Atlantic Oscillation. Hydrol. Process. 22, 478-494. DOI: 10.1002/hyp.6879.

  11. Evaluating spatial and temporal variations of rainfall erosivity, case of Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Meshesha, Derege Tsegaye; Tsunekawa, Atsushi; Tsubo, Mitsuru; Haregeweyn, Nigussie; Adgo, Enyew

    2015-02-01

    Land degradation in many Ethiopian highlands occurs mainly due to high rainfall erosivity and poor soil conservation practices. Rainfall erosivity is an indicator of the precipitation energy and ability to cause soil erosion. In Central Rift Valley (CRV) of Ethiopia, where the climate is characterized as arid and semiarid, rainfall is the main driver of soil erosion that in turn causes a serious expansion in land degradation. In order to evaluate the spatial and temporal variability of rainfall erosivity and its impact on soil erosion, long-term rainfall data (1980-2010) was used, and the monthly Fournier index (FI) and the annual modified Fournier index (MFI) were applied. Student's t test analysis was performed particularly to examine statistical significances of differences in average monthly and annual erosivity values. The result indicated that, in a similar spatial pattern with elevation and rainfall amount, average annual erosivity is also found being higher in western highlands of the valley and gradually decreased towards the east. The long-term average annual erosivity (MFI) showed a general decreasing trend in recent 10 years (2000-2010) as compared to previous 20 years (1980-1999). In most of the stations, average erosivity of main rainy months (May, June, July, and August) showed a decreasing trend, whereby some of them (about 33.3 %) are statically significant at 90 and 95 % confidence intervals but with high variation in spatial pattern of changes. The overall result of the study showed that rainfall aggression (erosivity) in the region has a general decreasing trend in the recent decade as compared to previous decades, especially in the western highlands of the valley. Hence, it implies that anthropogenic factors such as land use change being coupled with topography (steep slope) have largely contributed to increased soil erosion rate in the region.

  12. Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past

    NASA Astrophysics Data System (ADS)

    Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.

    2016-12-01

    The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood risks.

  13. Evaluating the use of different precipitation datasets in simulating a flood event

    NASA Astrophysics Data System (ADS)

    Akyurek, Z.; Ozkaya, A.

    2016-12-01

    Floods caused by convective storms in mountainous regions are sensitive to the temporal and spatial variability of rainfall. Space-time estimates of rainfall from weather radar, satellites and numerical weather prediction models can be a remedy to represent pattern of the rainfall with some inaccuracy. However, there is a strong need for evaluation of the performance and limitations of these estimates in hydrology. This study aims to provide a comparison of gauge, radar, satellite (Hydro-Estimator (HE)) and numerical weather prediciton model (Weather Research and Forecasting (WRF)) precipitation datasets during an extreme flood event (22.11.2014) lasting 40 hours in Samsun-Turkey. For this study, hourly rainfall data from 13 ground observation stations were used in the analyses. This event having a peak discharge of 541 m3/sec created flooding at the downstream of Terme Basin. Comparisons were performed in two parts. First the analysis were performed in areal and point based manner. Secondly, a semi-distributed hydrological model was used to assess the accuracy of the rainfall datasets to simulate river flows for the flood event. Kalman Filtering was used in the bias correction of radar rainfall data compared to gauge measurements. Radar, gauge, corrected radar, HE and WRF rainfall data were used as model inputs. Generally, the HE product underestimates the cumulative rainfall amounts in all stations, radar data underestimates the results in cumulative sense but keeps the consistency in the results. On the other hand, almost all stations in WRF mean statistics computations have better results compared to the HE product but worse than the radar dataset. Results in point comparisons indicated that, trend of the rainfall is captured by the radar rainfall estimation well but radar underestimates the maximum values. According to cumulative gauge value, radar underestimated the cumulative rainfall amount by % 32. Contrary to other datasets, the bias of WRF is positive due to the overestimation of rainfall forecasts. It was seen that radar-based flow predictions demonstrated good potential for successful hydrological modeling. Moreover, flow predictions obtained from bias corrected radar rainfall values produced an increase in the peak flows compared to the ones obtained from radar data itself.

  14. Pattern Analysis of El Nino and La Nina Phenomenon Based on Sea Surface Temperature (SST) and Rainfall Intensity using Oceanic Nino Index (ONI) in West Java Area

    NASA Astrophysics Data System (ADS)

    Prasetyo, Yudo; Nabilah, Farras

    2017-12-01

    Climate change occurs in 1998-2016 brings significant alteration in the earth surface. It is affects an extremely anomaly temperature such as El Nino and La Nina or mostly known as ENSO (El Nino Southern Oscillation). West Java is one of the regions in Indonesia that encounters the impact of this phenomenon. Climate change due to ENSO also affects food production and other commodities. In this research, processing data method is conducted using programming language to process SST data and rainfall data from 1998 to 2016. The data are sea surface temperature from NOAA satellite, SST Reynolds (Sea Surface Temperature) and daily rainfall temperature from TRMM satellite. Data examination is done using analysis of rainfall spatial pattern and sea surface temperature (SST) where is affected by El Nino and La Nina phenomenon. This research results distribution map of SST and rainfall for each season to find out the impacts of El Nino and La Nina around West Java. El Nino and La Nina in Java Sea are occurring every August to February. During El Nino, sea surface temperature is between 27°C - 28°C with average temperature on 27.71°C. Rainfall intensity is 1.0 mm/day - 2.0 mm/day and the average are 1.63 mm/day. During La Nina, sea surface temperature is between 29°C - 30°C with average temperature on 29.06°C. Rainfall intensity is 9.0 mm/day - 10 mm/day, and the average is 9.74 mm/day. The correlation between rainfall and SST is 0,413 which is expresses a fairly strong correlation between parameters. The conclusion is, during La Nina SST and rainfall increase. While during El Nino SST and rainfall decrease. Hopefully this research could be a guideline to plan disaster mitigation in West Java region that is related extreme climate change.

  15. Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast

    PubMed Central

    2013-01-01

    Background The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Methods Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Results Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. Conclusions The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria. PMID:24330615

  16. Assessing the Change in Rainfall Characteristics and Trends for the Southern African ITCZ Region

    NASA Astrophysics Data System (ADS)

    Baumberg, Verena; Weber, Torsten; Helmschrot, Jörg

    2015-04-01

    Southern Africa is strongly influenced by the movement and intensity of the Intertropical Convergence Zone (ITCZ) thus determining the climate in this region with distinct seasonal and inter-annual rainfall dynamics. The amount and variability of rainfall affect the various ecosystems by controlling the hydrological system, regulating water availability and determining agricultural practices. Changes in rainfall characteristics potentially caused by climate change are of uppermost relevance for both ecosystem functioning and human well-being in this region and, thus, need to be investigated. To analyse the rainfall variability governed by the ITCZ in southern Africa, observational daily rainfall datasets with a high spatial resolution of 0.25° x 0.25° (about 28 km x 28 km) from satellite-based Tropical Rainfall Measuring Mission (TRMM) and Global Land Data Assimilation System (GLDAS) are used. These datasets extend from 1998 to 2008 and 1948 to 2010, respectively, and allow for the assessment of rainfall characteristics over different spatial and temporal scales. Furthermore, a comparison of TRMM and GLDAS and, where available, with observed data will be made to determine the differences of both datasets. In order to quantify the intra- and inner-annual variability of rainfall, the amount of total rainfall, duration of rainy seasons and number of dry spells along with further indices are calculated from the observational datasets. Over the southern African ITCZ region, the rainfall characteristics change moving from wetter north to the drier south, but also from west to east, i.e. the coast to the interior. To address expected spatial and temporal variabilities, the assessment of changes in the rainfall parameters will be carried out for different transects in zonal and meridional directions over the region affected by the ITCZ. Revealing trends over more than 60 years, the results will help to identify and understand potential impacts of climate change on rainfall characteristics for the southern African ITCZ region. The findings of this study will feed into various ecosystem assessment and biodiversity change studies in Angola and Zambia.

  17. Distributed modelling of hydrologic regime at three subcatchments of Kopaninský tok catchment

    NASA Astrophysics Data System (ADS)

    Žlábek, Pavel; Tachecí, Pavel; Kaplická, Markéta; Bystřický, Václav

    2010-05-01

    Kopaninský tok catchment is situated in crystalline area of Bohemo-Moravian highland hilly region, with cambisol cover and prevailing agricultural land use. It is a subject of long term (since 1980's) observation. Time series (discharge, precipitation, climatic parameters...) are nowadays available in 10 min. time step, water quality average daily composit samples plus samples during events are available. Soil survey resulting in reference soil hydraulic properties for horizons and vegetation cover survey incl. LAI measurement has been done. All parameters were analysed and used for establishing of distributed mathematical models of P6, P52 and P53 subcatchments, using MIKE SHE 2009 WM deterministic hydrologic modelling system. The aim is to simulate long-term hydrologic regime as well as rainfall-runoff events, serving the base for modelling of nitrate regime and agricultural management influence in the next step. Mentioned subcatchments differs in ratio of artificial drainage area, soil types, land use and slope angle. The models are set-up in a regular computational grid of 2 m size. Basic time step was set to 2 hrs, total simulated period covers 3 years. Runoff response and moisture regime is compared using spatially distributed simulation results. Sensitivity analysis revealed most important parameters influencing model response. Importance of spatial distribution of initial conditions was underlined. Further on, different runoff components in terms of their origin, flow paths and travel time were separated using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND) in 12 subcatchments of Kopaninský tok catchment. These two methods were chosen based on a number of methods testing. Ordinations diagrams performed with Canoco software were used to evaluate influence of different catchment parameters on different runoff components. A canonical ordination method analyses (RDA) was used to explain one data set (runoff components - either volumes of each runoff component or occurence of baseflow) with another data set (catchment parameters - proportion of arable land, proportion of forest, proportion of vulnerable zones with high infiltration capacity, average slope, topographic index and runoff coefficient). The influence was analysed both for long-term runoff balance and selected rainfall-runoff events. Keywords: small catchment, water balance modelling, rainfall-runoff modelling, distributed deterministic model, runoff separation, sensitivity analysis

  18. Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993-2009

    NASA Astrophysics Data System (ADS)

    Aira, María-Jesús; Rodríguez-Rajo, Francisco-Javier; Fernández-González, María; Seijo, Carmen; Elvira-Rendueles, Belén; Abreu, Ilda; Gutiérrez-Bustillo, Montserrat; Pérez-Sánchez, Elena; Oliveira, Manuela; Recio, Marta; Tormo, Rafael; Morales, Julia

    2013-03-01

    This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m-3; Mérida 53 spores m-3 and Málaga 35 spores m-3) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.

  19. Role of Environmental Factors in Shaping Spatial Distribution of Salmonella enterica Serovar Typhi, Fiji.

    PubMed

    de Alwis, Ruklanthi; Watson, Conall; Nikolay, Birgit; Lowry, John H; Thieu, Nga Tran Vu; Van, Tan Trinh; Ngoc, Dung Tran Thi; Rawalai, Kitione; Taufa, Mere; Coriakula, Jerimaia; Lau, Colleen L; Nilles, Eric J; Edmunds, W John; Kama, Mike; Baker, Stephen; Cano, Jorge

    2018-02-01

    Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen-specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12-1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80-0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69-0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji.

  20. Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993-2009.

    PubMed

    Aira, María-Jesús; Rodríguez-Rajo, Francisco-Javier; Fernández-González, María; Seijo, Carmen; Elvira-Rendueles, Belén; Abreu, Ilda; Gutiérrez-Bustillo, Montserrat; Pérez-Sánchez, Elena; Oliveira, Manuela; Recio, Marta; Tormo, Rafael; Morales, Julia

    2013-03-01

    This paper provides an updated of airborne Alternaria spore spatial and temporal distribution patterns in the Iberian Peninsula, using a common non-viable volumetric sampling method. The highest mean annual spore counts were recorded in Sevilla (39,418 spores), Mérida (33,744) and Málaga (12,947), while other sampling stations never exceeded 5,000. The same cities also recorded the highest mean daily spore counts (Sevilla 109 spores m(-3); Mérida 53 spores m(-3) and Málaga 35 spores m(-3)) and the highest number of days on which counts exceeded the threshold levels required to trigger allergy symptoms (Sevilla 38 % and Mérida 30 % of days). Analysis of annual spore distribution patterns revealed either one or two peaks, depending on the location and prevailing climate of sampling stations. For all stations, average temperature was the weather parameter displaying the strongest positive correlation with airborne spore counts, whilst negative correlations were found for rainfall and relative humidity.

  1. Quantifying the Spatial Distribution of Hill Slope Erosion Using a 3-D Laser Scanner

    NASA Astrophysics Data System (ADS)

    Scholl, B. N.; Bogonko, M.; He, Y.; Beighley, R. E.; Milberg, C. T.

    2007-12-01

    Soil erosion is a complicated process involving many interdependent variables including rainfall intensity and duration, drop size, soil characteristics, ground cover, and surface slope. The interplay of these variables produces differing spatial patterns of rill versus inter-rill erosion by changing the effective energy from rain drop impacts and the quantities and timing of sheet and shallow, concentrated flow. The objective of this research is to characterize the spatial patterns of rill and inter-rill erosion produced from simulated rainfall on different soil densities and surface slopes using a 3-D laser scanner. The soil used in this study is a sandy loam with bulk density due to compaction ranging from 1.25-1.65 g/cm3. The surface slopes selected for this study are 25, 33, and 50 percent and represent common slopes used for grading on construction sites. The spatial patterns of soil erosion are measured using a Trimble GX DR 200+ 3D Laser Scanner which employs a time of flight calculation averaged over 4 points using a class 2, pulsed, 532 nm, green laser at a distance of 2 to 11 m from the surface. The scanner measures point locations on an approximately 5 mm grid. The pre- and post-erosion scan surfaces are compared to calculate the change in volume and the dimensions of rills and inter-rill areas. The erosion experiments were performed in the Soil Erosion Research Laboratory (SERL), part of the Civil and Environmental Engineering department at San Diego State University. SERL experiments utilize a 3-m by 10-m tilting soil bed with a soil depth of 0.5 meters. Rainfall is applied to the soil surface using two overhead Norton ladder rainfall simulators, which produce realistic rain drop diameters (median = 2.25 mm) and impact velocities. Simulated storm events used in this study consist of rainfall intensities ranging from 5, 10 to 15 cm/hr for durations of 20 to 30 minutes. Preliminary results are presented that illustrate a change in runoff processes and erosion patterns as soil density increases and reduces infiltration characteristics. Total soil loss measured from the bottom of the erosion bed is compared to the volume of soil loss determined using the laser scanner. Due to soil consolidation during the experiment, the accuracy of measured soil loss from the laser scanner increases with increasing soil density. Ratios of rill and inter-rill erosions for each experiment are also presented. URL: http://spatialhydro.sdsu.edu

  2. Spatial Dependence of the Relationship between Rainfall and Outgoing Longwave Radiation in the Tropical Atlantic.

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Moon; Carton, James A.

    1988-10-01

    We develop a Spatially dependent formula to estimate rainfall from satellite-derived outgoing longwave radiation (OLR) data and the height of the base of the trade-wind inversion. This formula has been constructed by comparing rainfall records from twelve islands in the tropical Atlantic with 11 years of OLR data. Zonal asymmetries due to the differing cloud types in the eastern and western Atlantic and the presence of Saharan sand in the cast are included.The climatological winter and summer rainfall derived from the above formula concurs with ship observations described by Dorman and Bourke. However, during the spring and fall, OLR-derived rainfall is higher than observations by 2-4 mm day1 in the intertropical convergence zone. The largest discrepancy occurs during the fall in the region west of 28°W. Interannual anomalies of rainfall computed using this technique are large enough to cause potentially important changes in ocean surface salinity.

  3. Is convective precipitation increasing? The case of Catalonia

    NASA Astrophysics Data System (ADS)

    Llasat, M. C.; Marcos, R.; Turco, M.

    2012-04-01

    A recent work (Turco and Llasat, 2011) has been performed to analyse the trends of the ETCCDI (Expert Team on Climate Change Detection and Indices) precipitation indices in Catalonia (NE Iberian Peninsula) from 1951 to 2003, calculated from a interpolated dataset of daily precipitation, namely SPAIN02, regular at 0.2° horizontal resolution. This work has showed that no general trends at a regional scale have been observed, considering the annual and the seasonal regional values, and only the consecutive dry days index (CDD) at annual scale shows a locally coherent spatial trend pattern. Simultaneously, Llasat et al (2009, 2010) have showed an important increase of flash-flood events in the same region. Although aspects related with vulnerability, exposure and changes in uses of soil have been found as the main responsible of this increase, a major knowledge on the evolution of high rainfall events is mandatory. Heavy precipitation is usually associated to convective precipitation and therefore the analysis of the latter is a good indicator of it. Particularly, in Catalonia, funding was raised to define a parameter, designated as β, related with the greater or lesser convective character of the precipitation (Llasat, 2001). This parameter estimates the contribution of convective precipitation to total precipitation using 1-min or 5-min rainfall intensities usually estimated by rain gauges and it can be also analysed by means of the meteorological radar (Llasat et al, 2007). Its monthly distribution shows a maximum in August, followed by September, which are the months with the major number of flash-floods in Catalonia. This parameter also allows distinguishing between different kinds of precipitation events taking into account the degree of convective contribution. The main problem is the lack of long rainfall rate series that allow analysing trends in convective precipitation. The second one is related with its heterogeneous spatial and temporal distribution. To deal with both questions the 1-min rainfall intensity provided by the Jardí pluviograph (Barcelona, Spain) and the 5-min rainfall intensity from the SAIH network have been used. The first is situated in the Fabra observatory, at an altitude of 414 ma.s.l. and at a distance of 7.5 km from the sea, inland from the city of Barcelona. It started functioning in 1921 (Jardí, 1921), although only the series corresponding to the period 1927-1979 can be considered reliable (Burgueño et al, 1987), for this reason this series will be completed with information from other rain agues. The SAIH network from the Internal Basins of Catalonia is constituted by 126 rain gauges and provides information since 1996 (Llasat et al, 2007). Thanks to this information is possible to see that more than 70% of the population of Catalonia lives in regions where the convective contribution to the total rainfall between May and November is above 50%. Consequently, any change in its distribution can have an important social impact.

  4. Rainfall disaggregation for urban hydrology: Effects of spatial consistence

    NASA Astrophysics Data System (ADS)

    Müller, Hannes; Haberlandt, Uwe

    2015-04-01

    For urban hydrology rainfall time series with a high temporal resolution are crucial. Observed time series of this kind are very short in most cases, so they cannot be used. On the contrary, time series with lower temporal resolution (daily measurements) exist for much longer periods. The objective is to derive time series with a long duration and a high resolution by disaggregating time series of the non-recording stations with information of time series of the recording stations. The multiplicative random cascade model is a well-known disaggregation model for daily time series. For urban hydrology it is often assumed, that a day consists of only 1280 minutes in total as starting point for the disaggregation process. We introduce a new variant for the cascade model, which is functional without this assumption and also outperforms the existing approach regarding time series characteristics like wet and dry spell duration, average intensity, fraction of dry intervals and extreme value representation. However, in both approaches rainfall time series of different stations are disaggregated without consideration of surrounding stations. This yields in unrealistic spatial patterns of rainfall. We apply a simulated annealing algorithm that has been used successfully for hourly values before. Relative diurnal cycles of the disaggregated time series are resampled to reproduce the spatial dependence of rainfall. To describe spatial dependence we use bivariate characteristics like probability of occurrence, continuity ratio and coefficient of correlation. Investigation area is a sewage system in Northern Germany. We show that the algorithm has the capability to improve spatial dependence. The influence of the chosen disaggregation routine and the spatial dependence on overflow occurrences and volumes of the sewage system will be analyzed.

  5. Measurements of DSD Second Moment Based on Laser Extinction

    NASA Technical Reports Server (NTRS)

    Lane, John E.; Jones, Linwood; Kasparis, Takis C.; Metzger, Philip

    2013-01-01

    Using a technique recently developed for estimating the density of surface dust dispersed during a rocket landing, measuring the extinction of a laser passing through rain (or dust in the rocket case) yields an estimate of the 2nd moment of the particle cloud, and rainfall drop size distribution (DSD) in the terrestrial meteorological case. With the exception of disdrometers, instruments that measure rainfall make in direct measurements of the DSD. Most common of these instruments are the rainfall rate gauge measuring the 1 1/3 th moment, (when using a D(exp 2/3) dependency on terminal velocity). Instruments that scatter microwaves off of hydrometeors, such as the WSR-880, vertical wind profilers, and microwave disdrometers, measure the 6th moment of the DSD. By projecting a laser onto a target, changes in brightness of the laser spot against the target background during rain, yield a measurement of the DSD 2nd moment, using the Beer-Lambert law. In order to detect the laser attenuation within the 8-bit resolution of most camera image arrays, a minimum path length is required, depending on the intensity of the rainfall rate. For moderate to heavy rainfall, a laser path length of 100 m is sufficient to measure variations in optical extinction using a digital camera. A photo-detector could replace the camera, for automated installations. In order to spatially correlate the 2nd moment measurements to a collocated disdrometer or tipping bucket, the laser's beam path can be reflected multiple times using mirrors to restrict the spatial extent of the measurement. In cases where a disdrometer is not available, complete DSD estimates can be produced by parametric fitting of DSD model to the 2nd moment data in conjunction with tipping bucket data. In cases where a disdrometer is collocated, the laser extinction technique may yield a significant improvement to insitu disdrometer validation and calibration strategies

  6. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    DOE PAGES

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.; ...

    2017-02-03

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are alreadymore » limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.« less

  7. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are alreadymore » limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.« less

  8. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    NASA Astrophysics Data System (ADS)

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.; Hulshof, Catherine; Medvigy, David; Pizano, Camila; Salgado-Negret, Beatriz; Smith, Christina M.; Trierweiler, Annette; Van Bloem, Skip J.; Waring, Bonnie G.; Xu, Xiangtao; Powers, Jennifer S.

    2017-02-01

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are already limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.

  9. Derivation of flood frequency curves in poorly gauged Mediterranean catchments using a simple stochastic hydrological rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Aronica, G. T.; Candela, A.

    2007-12-01

    SummaryIn this paper a Monte Carlo procedure for deriving frequency distributions of peak flows using a semi-distributed stochastic rainfall-runoff model is presented. The rainfall-runoff model here used is very simple one, with a limited number of parameters and practically does not require any calibration, resulting in a robust tool for those catchments which are partially or poorly gauged. The procedure is based on three modules: a stochastic rainfall generator module, a hydrologic loss module and a flood routing module. In the rainfall generator module the rainfall storm, i.e. the maximum rainfall depth for a fixed duration, is assumed to follow the two components extreme value (TCEV) distribution whose parameters have been estimated at regional scale for Sicily. The catchment response has been modelled by using the Soil Conservation Service-Curve Number (SCS-CN) method, in a semi-distributed form, for the transformation of total rainfall to effective rainfall and simple form of IUH for the flood routing. Here, SCS-CN method is implemented in probabilistic form with respect to prior-to-storm conditions, allowing to relax the classical iso-frequency assumption between rainfall and peak flow. The procedure is tested on six practical case studies where synthetic FFC (flood frequency curve) were obtained starting from model variables distributions by simulating 5000 flood events combining 5000 values of total rainfall depth for the storm duration and AMC (antecedent moisture conditions) conditions. The application of this procedure showed how Monte Carlo simulation technique can reproduce the observed flood frequency curves with reasonable accuracy over a wide range of return periods using a simple and parsimonious approach, limited data input and without any calibration of the rainfall-runoff model.

  10. Identification of karst sinkholes in a forested karst landscape using airborne laser scanning data and water flow analysis

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Gallay, Michal; Bandura, Peter; Šašak, Ján

    2018-05-01

    Karst sinkholes (dolines) play an important role in a karst landscape by controlling infiltration of surficial water, air flow or spatial distribution of solar energy. These landforms also present a limiting factor for human activities in agriculture or construction. Therefore, mapping such geomorphological forms is vital for appropriate landscape management and planning. There are several mapping techniques available; however, their applicability can be reduced in densely forested areas with poor accessibility and visibility of the landforms. In such conditions, airborne laser scanning (ALS) provides means for efficient and accurate mapping of both land and landscape canopy surfaces. Taking the benefits of ALS into account, we present an innovative method for identification and evaluation of karst sinkholes based on numerical water flow modelling. The suggested method was compared to traditional techniques for sinkhole mapping which use topographic maps and digital terrain modelling. The approach based on simulation of a rainfall event very closely matched the reference datasets derived by manual inspection of the ALS digital elevation model and field surveys. However, our process-based approach provides advantage of assessing the magnitude how sinkholes influence concentration of overland water flow during extreme rainfall events. This was performed by calculating the volume of water accumulated in sinkholes during the simulated rainfall. In this way, the influence of particular sinkholes on underground geomorphological systems can be assessed. The method was demonstrated in a case study of Slovak Karst in the West Carpathians where extreme rainfalls or snow-thaw events occur annually. We identified three spatially contiguous groups of sinkholes with a different effect on overland flow concentration. These results are discussed in relation to the known underground hydrological systems.

  11. Mapping malaria incidence distribution that accounts for environmental factors in Maputo Province - Mozambique

    PubMed Central

    2010-01-01

    Background The objective was to study if an association exists between the incidence of malaria and some weather parameters in tropical Maputo province, Mozambique. Methods A Bayesian hierarchical model to malaria count data aggregated at district level over a two years period is formulated. This model made it possible to account for spatial area variations. The model was extended to include environmental covariates temperature and rainfall. Study period was then divided into two climate conditions: rainy and dry seasons. The incidences of malaria between the two seasons were compared. Parameter estimation and inference were carried out using MCMC simulation techniques based on Poisson variation. Model comparisons are made using DIC. Results For winter season, in 2001 the temperature covariate with estimated value of -8.88 shows no association to malaria incidence. In year 2002, the parameter estimation of the same covariate resulted in 5.498 of positive level of association. In both years rainfall covariate determines no dependency to malaria incidence. Malaria transmission is higher in wet season with both covariates positively related to malaria with posterior means 1.99 and 2.83 in year 2001. For 2002 only temperature is associated to malaria incidence with estimated value 2.23. Conclusions The incidence of malaria in year 2001, presents an independent spatial pattern for temperature in summer and for rainfall in winter seasons respectively. In year 2002 temperature determines the spatial pattern of malaria incidence in the region. Temperature influences the model in cases where both covariates are introduced in winter and summer season. Its influence is extended to the summer model with temperature covariate only. It is reasonable to state that with the occurrence of high temperatures, malaria incidence had certainly escalated in this year. PMID:20302674

  12. Spatio-temporal distribution of dengue fever under scenarios of climate change in the southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Chieh-Han; Yu, Hwa-Lung

    2014-05-01

    Dengue fever has been recognized as the most important widespread vector-borne infectious disease in recent decades. Over 40% of the world's population is risk from dengue and about 50-100 million people are infected world wide annually. Previous studies have found that dengue fever is highly correlated with climate covariates. Thus, the potential effects of global climate change on dengue fever are crucial to epidemic concern, in particular, the transmission of the disease. This present study investigated the nonlinearity of time-delayed impact of climate on spatio-temporal variations of dengue fever in the southern Taiwan during 1998 to 2011. A distributed lag nonlinear model (DLNM) is used to assess the nonlinear lagged effects of meteorology. The statistically significant meteorological factors are considered, including weekly minimum temperature and maximum 24-hour rainfall. The relative risk and the distribution of dengue fever then predict under various climate change scenarios. The result shows that the relative risk is similar for different scenarios. In addition, the impact of rainfall on the incidence risk is higher than temperature. Moreover, the incidence risk is associated to spatially population distribution. The results can be served as practical reference for environmental regulators for the epidemic prevention under climate change scenarios.

  13. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia.

    PubMed

    Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan

    2015-12-01

    Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3 °C, mean incidence rates during epidemics could double. In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries.

  14. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia

    PubMed Central

    Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan

    2015-01-01

    Background/Objectives Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. Methods We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. Results The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3°C, mean incidence rates during epidemics could double. Conclusion In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries. PMID:26624008

  15. Does Geology Matter? Post-Hurricane Maria Landslide Distribution Across the Mountainous Regions of Puerto Rico, USA

    NASA Astrophysics Data System (ADS)

    Cerovski-Darriau, C.; Bessette-Kirton, E.; Schulz, W. H.; Kean, J. W.; Godt, J.; Coe, J. A.

    2017-12-01

    Heavy rainfall from Hurricane Maria—category 4 hurricane that made landfall Sept 20, 2017 on Puerto Rico and produced >500 mm of rain—caused widespread landsliding in mountainous regions throughout the territory. Landslides impacted roads, bridges, and reservoirs—cutting off communities, hindering recovery efforts, and affecting water quality and storage capacity. FEMA tasked the USGS with determining the level of imminent threat posed by landslides to life and property, and helping inform recovery efforts. The USGS landslide response team remotely quantified the spatial density of landslides, then deployed to Puerto Rico to assess damage in the field. These are our initial findings from work currently underway. We used post-hurricane satellite (WorldView 0.5 m resolution) and aerial (Sanborn and QuantumSpatial at 0.15 m resolution) imagery collected Sept 26-Oct 8, 2017 to visually estimate landslide concentration and determine the heaviest hit regions. We divided the territory into 2 x 2 km grids and classified each cell as no visible landslides, <25 landslides (LS)/km2, >25 LS/km2. Hurricane-induced defoliation made landslides readily visible in the imagery as areas of exposed soil or rock with morphology typical of landslides. This method proved to be a rapid way to visualize the spatial distribution of landslides to direct our field efforts. In the field, we found it was a conservative estimate. Landslides occurred in steep areas along the storm track, but high-density pockets occurred in the municipalities of Barranquitos, Jayuya, Lares, Naranjito, Utuado. Assuming Maria produced sufficient rainfall to trigger landslides in all mountainous regions, what controls the density and failure style? We found the highest slide densities disproportionately occurred in the Utuado granodiorite (60% of the unit was >25 LS/km2). Most of the landslides failed as shallow, translational slides. Bedrock slope failures were scarce. Some geologic units, with sufficient topographic relief, generated debris flows. More clay-rich units generated some deeper slumps or shallow flows. Correlations with the 1:100K geologic map revealed that 62% of the high-density areas occurred within granodiorite. Therefore, we hypothesize that when rainfall is not limiting, geology is a major control of landslide susceptibility.

  16. Short-term expansion of glacial lakes in the Himalayas

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Tadono, T.

    2017-12-01

    A glacial lake outburst flood (GLOF) is a serious mountainous hazard that is related to glacial shrinkage. Despite technical developments in satellite-based lake expansion monitoring, small glacial lakes were collapsed in Bhutan in June 2015 and in Nepal in May 2017. Relatively heavy rainfall was reported downstream just before the floods. Does a large amount of short-term precipitation have a possibility of triggering a GLOF? To answer this question, the temporal change in the glacial lake area is assessed by means of satellite-based synthetic aperture radar, coupled with satellite-derived spatial and temporal distribution of precipitation to evaluate the contribution of rainfall in glacial lake expansion. The Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) observed the Mande Chu river basin in central Bhutan on Aug 11, 2016. Glacial lakes were manually delineated from the orthorectified backscatter amplitude image. They were compared with those delineated from the old satellite images of ALOS ( 2011), PALSAR-2 (2014-2016), and Landsat-8 (2016). The temporal and spatial distributions of precipitation (2010-2016) are obtained from the Global Satellite Mapping of Precipitation (GSMaP) data (10-km spatial / 60-min. temporal resolutions), calibrated by in situ rain gauges (GSMap_RNL/MVL). The outlines of 11 glacial lakes in the study site were successfully traced from 2011 to 2016; rapid expansion was recorded especially in the period between March and July 2016. In this period, exceeding 500 mm of the total amount of precipitation is recorded by GSMaP, whereas the mean precipitation amount is 300-400 mm in the previous years. This implies that relatively larger precipitation occurred in 2016, which is related to the short-term expansion of the glacial lakes. The rapid expansion of smaller lakes can be explained by their relatively shallow depths, which is sensitive to the increase in inflow water volume. This study highlights the importance of high-resolution, frequent observation of small glacial lakes that can expand, possibly corresponding to heavy rainfall, whereas most previous studies focused on large glacial lakes expanding at annual scales. Extreme precipitation should be considered as one of the factors responsible for glacial lake expansion as well as glacier melt.

  17. A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn H.

    2016-09-01

    Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation, is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow Distribution_Log-Normal (SD_LN). The two models are implemented in the parameter parsimonious rainfall-runoff model Distance Distribution Dynamics (DDD), and their capability for predicting runoff, SWE and snow-covered area (SCA) is tested and compared for 71 Norwegian catchments. The calibration period is 1985-2000 and validation period is 2000-2014. Results show that SDG better simulates SCA when compared with MODIS satellite-derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SDG is slightly inferior, with a reduction in Nash-Sutcliffe and Kling-Gupta efficiency criterion of 0.01, but it is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.

  18. Evaluation of High-Resolution Precipitation Estimates from Satellites during July 2012 Beijing Flood Event Using Dense Rain Gauge Observations

    PubMed Central

    Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang

    2014-01-01

    Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing. PMID:24691358

  19. Evaluation of high-resolution precipitation estimates from satellites during July 2012 Beijing flood event using dense rain gauge observations.

    PubMed

    Chen, Sheng; Liu, Huijuan; You, Yalei; Mullens, Esther; Hu, Junjun; Yuan, Ye; Huang, Mengyu; He, Li; Luo, Yongming; Zeng, Xingji; Tang, Guoqiang; Hong, Yang

    2014-01-01

    Satellite-based precipitation estimates products, CMORPH and PERSIANN-CCS, were evaluated with a dense rain gauge network over Beijing and adjacent regions for an extremely heavy precipitation event on July 21 2012. CMORPH and PEERSIANN-CSS misplaced the region of greatest rainfall accumulation, and failed to capture the spatial pattern of precipitation, evidenced by a low spatial correlation coefficient (CC). CMORPH overestimated the daily accumulated rainfall by 22.84% while PERSIANN-CCS underestimated by 72.75%. In the rainfall center, both CMORPH and PERSIANN-CCS failed to capture the temporal variation of the rainfall, and underestimated rainfall amounts by 43.43% and 87.26%, respectively. Based on our results, caution should be exercised when using CMORPH and PERSIANN-CCS as input for monitoring and forecasting floods in Beijing urban areas, and the potential for landslides in the mountainous zones west and north of Beijing.

  20. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    NASA Astrophysics Data System (ADS)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye

    2016-10-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30 years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and evaluate their applicability for agricultural drought evaluation when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in-situ rainfall measurements across Chile were initially compared to the satellite-based precipitation estimates. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite-based estimates. Nine statistics were used to evaluate the performance of satellite products to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze these datasets to better understand their similarities and differences in characterizing rainfall patterns across Chile. Monthly analysis showed that all satellite products highly overestimated precipitation in the arid North zone. However, there were no major difference between all three products from North to South-Central zones. Though, in the South zone, PERSIANN-CDR shows the lowest fit with high underestimation, further CHIRPS 2.0 and TMPA 3B43 v7 had better agreement with in-situ measurements. The accuracy of satellite products were highly dependent on the amount of monthly rainfall with the best results found during winter seasons and in zones (Central to South) with higher amounts of precipitation. PERSIANN-CDR and CHIRPS 2.0 were used to derive SPI at time-scale of 1, 3 and 6 months, both satellite products presented similar results when it was compared in-situ against satellite SPI's. Because of its higher spatial resolution that allows better characterizing of spatial variation in precipitation pattern, the CHIRPS 2.0 was used to mapping the SPI-3 over Chile. The results of this study show that in order to use the CHIRPS 2.0 and PERSIANN-CDR data sets in Chile to monitor spatial patterns in the rainfall and drought intensity conditions, these products should be calibrated to adjust for the overestimation/underestimation of precipitation geographically specially in the North zone and seasonally during the summer and spring months in the other zones.

  1. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    NASA Astrophysics Data System (ADS)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented the change in soil surface structure during crusting. The laser data were also used to create digital surface models (DSM) of the soil states for visual comparison. This research has shown that aggregate breakdown and soil crusting can be shown quantitatively by a decrease in sill variance (silt soil: 11.67 (control) to 1.08 (after 90 mins rainfall)). Features present within semi-variograms were spatially linked to features at the soil surface, such as soil cracks, tillage lines and areas of deposition. Directional semi-variograms were used to provide a spatially orientated component, where the directional sill variance associated with a soil crack was shown to increase from 7.95 to 19.33. Periodicity within semi-variogram was also shown to quantify the spatial scale of soil cracking networks and potentially surface flowpaths; an average distance between soil cracks of 37 mm closely corresponded to the distance of 38 mm shown in the semi-variogram. The results provide a strong basis for the future retrieval of spatio-temporal variations in soil surface condition. Furthermore, the presence of process-based information on hydrological pathways within semi-variograms may work towards an inclusion of geostatisically-derived information in land surface models and the understanding of complex surface processes at different spatial scales.

  2. Evaluation of the Potential of NASA Multi-satellite Precipitation Analysis in Global Landslide Hazard Assessment

    NASA Technical Reports Server (NTRS)

    Hong, Yang; Adler, Robert F.; Huffman, George J.

    2007-01-01

    Landslides are one of the most widespread natural hazards on Earth, responsible for thousands of deaths and billions of dollars in property damage every year. In the U.S. alone landslides occur in every state, causing an estimated $2 billion in damage and 25- 50 deaths each year. Annual average loss of life from landslide hazards in Japan is 170. The situation is much worse in developing countries and remote mountainous regions due to lack of financial resources and inadequate disaster management ability. Recently, a landslide buried an entire village on the Philippines Island of Leyte on Feb 17,2006, with at least 1800 reported deaths and only 3 houses left standing of the original 300. Intense storms with high-intensity , long-duration rainfall have great potential to trigger rapidly moving landslides, resulting in casualties and property damage across the world. In recent years, through the availability of remotely sensed datasets, it has become possible to conduct global-scale landslide hazard assessment. This paper evaluates the potential of the real-time NASA TRMM-based Multi-satellite Precipitation Analysis (TMPA) system to advance our understanding of and predictive ability for rainfall-triggered landslides. Early results show that the landslide occurrences are closely associated with the spatial patterns and temporal distribution of rainfall characteristics. Particularly, the number of landslide occurrences and the relative importance of rainfall in triggering landslides rely on the influence of rainfall attributes [e.g. rainfall climatology, antecedent rainfall accumulation, and intensity-duration of rainstorms). TMPA precipitation data are available in both real-time and post-real-time versions, which are useful to assess the location and timing of rainfall-triggered landslide hazards by monitoring landslide-prone areas while receiving heavy rainfall. For the purpose of identifying rainfall-triggered landslides, an empirical global rainfall intensity-duration threshold is developed by examining a number of landslide occurrences and their corresponding TMPA precipitation characteristics across the world. These early results , in combination with TRMM real-time precipitation estimation system, may form a starting point for developing an operational early warning system for rainfall-triggered landslides around the globe.

  3. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds - the two-CN system approach

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.

    2012-03-01

    The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.

  4. Landslide database dominated by rainfall triggered events

    NASA Astrophysics Data System (ADS)

    Devoli, G.; Strauch, W.; Álvarez, A.

    2009-04-01

    A digital landslide database has been created for Nicaragua to provide the scientific community and national authorities with a tool for landslide hazard assessment. Valuable information on landslide events has been obtained from a great variety of sources. On the basis of the data stored in the database, preliminary analyses performed at national scale aimed to characterize landslides in terms of spatial and temporal distribution, types of slope movements, triggering mechanisms, number of casualties and damage to infrastructure. A total of about 17000 events spatially distributed in mountainous and volcanic terrains have been collected in the database. The events are temporally distributed between 1826 and 2003, but a large number of the records (62% of the total number) occurred during the disastrous Hurricane Mitch in October 1998. The results showed that debris flows are the most common types of landslides recorded in the database (66% of the total amount), but other types, including rockfalls and slides, have also been identified. Rainfall, also associated with tropical cyclones, is the most frequent triggering mechanism of landslides in Nicaragua, but also seismic and volcanic activities are important triggers or, especially, the combination of one of them with rainfall. Rainfall has caused all types of failures, but debris flows and translational shallow slides are more frequent types. Earthquakes have most frequently triggered rockfalls and slides, while volcanic eruptions rockfalls and debris flows. Landslides triggered by rainfall were limited in time to the wet season that lasts from May to October and an increase in the number of events is observed during the months of September and October, which is in accord with the period of the rainy season in the Pacific and Northern and Central regions and when the country has the highest probability of being impacted by hurricanes. Both Atlantic and Pacific tropical cyclones have triggered landslides. At the medium scale, the influence of topographic and lithologic parameters on the occurrence of landslides was also analyzed and the physical characterization of landslides was done to better understand the landslide dynamics and run-out distances in both volcanic and non-volcanic areas. Data from fairly well documented events in Nicaragua were compared with other similar events in Central America and elsewhere and treated statistically to search for possible correlations and empirical relationships to predict run-out distances for different types of landslides, knowing the height of fall or the volume. The empirical relationships showed that debris flows and debris avalanches at volcanoes have the highest mobility and reach longer distances compared to other types of landslides. Because of their characteristics and downstream behaviour (long run-out distances and large volumes) both types of landslides have produced the highest number of victims in the country being the most dangerous to life and property.

  5. Quantitative precipitation estimation for an X-band weather radar network

    NASA Astrophysics Data System (ADS)

    Chen, Haonan

    Currently, the Next Generation (NEXRAD) radar network, a joint effort of the U.S. Department of Commerce (DOC), Defense (DOD), and Transportation (DOT), provides radar data with updates every five-six minutes across the United States. This network consists of about 160 S-band (2.7 to 3.0 GHz) radar sites. At the maximum NEXRAD range of 230 km, the 0.5 degree radar beam is about 5.4 km above ground level (AGL) because of the effect of earth curvature. Consequently, much of the lower atmosphere (1-3 km AGL) cannot be observed by the NEXRAD. To overcome the fundamental coverage limitations of today's weather surveillance radars, and improve the spatial and temporal resolution issues, the National Science Foundation Engineering Center (NSF-ERC) for Collaborative Adaptive Sensing of the Atmosphere (CASA) was founded to revolutionize weather sensing in the lower atmosphere by deploying a dense network of shorter-range, low-power X-band dual-polarization radars. The distributed CASA radars are operating collaboratively to adapt the changing atmospheric conditions. Accomplishments and breakthroughs after five years operation have demonstrated the success of CASA program. Accurate radar quantitative precipitation estimation (QPE) has been pursued since the beginning of weather radar. For certain disaster prevention applications such as flash flood and landslide forecasting, the rain rate must however be measured at a high spatial and temporal resolution. To this end, high-resolution radar QPE is one of the major research activities conducted by the CASA community. A radar specific differential propagation phase (Kdp)-based QPE methodology has been developed in CASA. Unlike the rainfall estimation based on the power terms such as radar reflectivity (Z) and differential reflectivity (Zdr), Kdp-based QPE is less sensitive to the path attenuation, drop size distribution (DSD), and radar calibration errors. The CASA Kdp-based QPE system is also immune to the partial beam blockage and hail contamination. The performance of the CASA QPE system is validated and evaluated by using rain gauges. In CASA's Integrated Project 1 (IP1) test bed in Southwestern Oklahoma, a network of 20 rainfall gauges is used for cross-comparison. 40 rainfall cases, including severe, multicellular thunderstorms, squall lines and widespread stratiform rain, that happened during years 2007 - 2011, are used for validation and evaluation purpose. The performance scores illustrate that the CASA QPE system is a great improvement compared to the current state-of-the-art. In addition, the high-resolution CASA QPE products such as instantaneous rainfall rate map and hourly rainfall amount measurements can serve as a reliable input for various distributed hydrological models. The CASA QPE system can save lived and properties from hazardous flash floods by incorporating hydraulic and hydrologic models for flood monitoring and warning.

  6. Multi-catchment rainfall-runoff simulation for extreme flood estimation

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel

    2017-04-01

    The SCHADEX method (Paquet et al., 2013) is a reference method in France for the estimation of extreme flood for dam design. The method is based on a semi-continuous rainfall-runoff simulation process: hundreds of different rainy events, randomly drawn up to extreme values, are simulated independently in the hydrological conditions of each day when a rainy event has been actually observed. This allows generating an exhaustive set of crossings between precipitation and soil saturation hazards, and to build a complete distribution of flood discharges up to extreme quantiles. The hydrological model used within SCHADEX, the MORDOR model (Garçon, 1996), is a lumped model, which implies that hydrological processes, e.g. rainfall and soil saturation, are supposed to be homogeneous throughout the catchment. Snow processes are nevertheless represented in relation with altitude. This hypothesis of homogeneity is questionable especially as the size of the catchment increases, or in areas of highly contrasted climatology (like mountainous areas). Conversely, modeling the catchment with a fully distributed approach would cause different problems, in particular distributing the rainfall-runoff model parameters trough space, and within the SCHADEX stochastic framework, generating extreme rain fields with credible spatio-temporal features. An intermediate solution is presented here. It provides a better representation of the hydro-climatic diversity of the studied catchment (especially regarding flood processes) while keeping the SCHADEX simulation framework. It consists in dividing the catchment in several, more homogeneous sub-catchments. Rainfall-runoff models are parameterized individually for each of them, using local discharge data if available. A first SCHADEX simulation is done at the global scale, which allows assigning a probability to each simulated event, mainly based on the global areal rainfall drawn for the event (see Paquet el al., 2013 for details). Then the rainfall of each event is distributed through the different sub-catchments using the spatial patterns calculated in the SPAZM precipitation reanalysis (Gottardi et al., 2012) for comparable situations of the 1948-2005 period. Corresponding runoffs are calculated with the hydrological models and aggregated to compute the discharge at the outlet of the main catchment. A complete distribution of flood discharges is finally computed. This method is illustrated with the example of the Durance at Serre-Ponçon catchment (south of French Alps, 3600 km2) which has been divided in four sub-catchements. The proposed approach is compared with the "classical" SCHADEX approach applied on the whole catchment. References: Garçon, R. (1996). Prévision opérationnelle des apports de la Durance à Serre-Ponçon à l'aide du modèle MORDOR. Bilan de l'année 1994-1995. La Houille Blanche, (5), 71-76. Gottardi, F., Obled, C., Gailhard, J., & Paquet, E. (2012). Statistical reanalysis of precipitation fields based on ground network data and weather patterns: Application over French mountains. Journal of Hydrology, 432, 154-167. Paquet, E., Garavaglia, F., Garçon, R., & Gailhard, J. (2013). The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 495, 23-37.

  7. Real-time adjusting of rainfall estimates from commercial microwave links

    NASA Astrophysics Data System (ADS)

    Fencl, Martin; Dohnal, Michal; Bareš, Vojtěch

    2017-04-01

    Urban stormwater predictions require reliable rainfall information with space-time resolution higher than commonly provided by standard rainfall monitoring networks of national weather services. Rainfall data from commercial microwave links (CMLs) could fill this gap. CMLs are line-of-sight radio connections widely used by cellular operators which operate at millimeter bands, where radio waves are attenuated by raindrops. Attenuation data of each single CML in the cellular network can be remotely accessed in (near) real-time with virtually arbitrary sampling frequency and convert to rainfall intensity. Unfortunately, rainfall estimates from CMLs can be substantially biased. Fencl et al., (2017), therefore, proposed adjusting method which enables to correct for this bias. They used rain gauge (RG) data from existing rainfall monitoring networks, which would have otherwise insufficient spatial and temporal resolution for urban rainfall monitoring when used alone without CMLs. In this investigation, we further develop the method to improve its performance in a real-time setting. First, a shortcoming of the original algorithm which delivers unreliable results at the beginning of a rainfall event is overcome by introducing model parameter prior distributions estimated from previous parameter realizations. Second, weights reflecting variance between RGs are introduced into cost function, which is minimized when optimizing model parameters. Finally, RG data used for adjusting are preprocessed by moving average filter. The performance of improved adjusting method is evaluated on four short CMLs (path length < 2 km) located in the small urban catchment (2.3 km2) in Prague-Letnany (CZ). The adjusted CMLs are compared to reference rainfall calculated from six RGs in the catchment. The suggested improvements of the method lead on average to 10% higher Nash-Sutcliffe efficiency coefficient (median value 0.85) for CML adjustment to hourly RG data. Reliability of CML rainfall estimates is especially improved at the beginning of rainfall events and during strong convective rainfalls, whereas performance during longer frontal rainfalls is almost unchanged. Our results clearly demonstrate that adjusting of CMLs to existing RGs represents a viable approach with great potential for real-time applications in stormwater management. This work was supported by the project of Czech Science Foundation (GACR) No.17-16389S. References: Fencl, M., Dohnal, M., Rieckermann, J. and Bareš, V.: Gauge-Adjusted Rainfall Estimates from Commercial Microwave Links, Hydrol Earth Syst. Sci., 2017 (accepted).

  8. Flash floods in Europe: state of the art and research perspectives

    NASA Astrophysics Data System (ADS)

    Gaume, Eric

    2014-05-01

    Flash floods, i.e. floods induced by severe rainfall events generally affecting watersheds of limited area, are the most frequent, destructive and deadly kind of natural hazard known in Europe and throughout the world. Flash floods are especially intense across the Mediterranean zone, where rainfall accumulations exceeding 500 mm within a few hours may be observed. Despite this state of facts, the study of extremes in hydrology has essentially gone unexplored until the recent past, with the exception of some rare factual reports on individual flood events, with the sporadic inclusion of isolated estimated peak discharges. Floods of extraordinary magnitude are in fact hardly ever captured by existing standard measurement networks, either because they are too heavily concentrated in space and time or because their discharges greatly exceed the design and calibration ranges of the measurement devices employed (stream gauges). This situation has gradually evolved over the last decade for two main reasons. First, the expansion and densification of weather radar networks, combined with improved radar quantitative precipitation estimates, now provide ready access to rainfall measurements at spatial and temporal scales that, while not perfectly accurate, are compatible with the study of extreme events. Heavy rainfall events no longer fail to be recorded by existing rain gauge and radar networks. Second, pioneering research efforts on extreme floods, based on precise post-flood surveys, have helped overcome the limitations imposed by a small base of available direct measured data. This activity has already yielded significant progress in expanding the knowledge and understanding of extreme flash floods. This presentation will provide a review of the recent research progresses in the area of flash flood studies, mainly based on the outcomes of the European research projects FLOODsite, HYDRATE and Hymex. It will show how intensive collation of field data helped better define the possible magnitudes of flood volumes and discharges during flash floods, their spatial distribution and rates of occurrence, as well as the factors that control the hydrological response of watersheds to heavy rainfalls explaining the large spatial variability in flood hazard. Developments in the fields of flood frequency analyses and flood forecasting based on the recently acquired data or adapted for the valuation of this specific data will also be presented. The presentation will end suggesting some perspectives for future research activities on flash floods.

  9. The Effects of Implementing TopModel Concepts in the Noah Model

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, C. D.; Houser, Paul R. (Technical Monitor)

    2002-01-01

    Topographic effects on runoff generation have been documented observationally (e.g., Dunne and Black, 1970) and are the subject of the physically based rainfall-runoff model TOPMODEL (Beven and Kirkby, 1979; Beven, 1986a;b) and its extensions, which incorporate variable soil transmissivity effects (Sivapalan et al, 1987, Wood et al., 1988; 1990). These effects have been shown to exert significant control over the spatial distribution of runoff, soil moisture and evapotranspiration, and by extension, the latent and sensible heat fluxes

  10. Recent changes in the spatial distribution of annual precipitation in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberger, E.H.; Gazit-Yaari, N.

    1996-12-01

    Analysis of rainfall series in Israel during the period 1960-1990 for 99 stations has revealed that precipitation amounts have decreased in the northern and central coastal areas and in the northern mountain area. In the southern coastal area and the western slopes of the central mountains precipitation increased. There are indications that the observed trends may be the outcome of changes in the synoptic climate during the winter in the Eastern Mediterranean region. 8 refs., 12 figs., 1 tab.

  11. Longitudinal study on the temporal and micro-spatial distribution of Galba truncatula in four farms in Belgium as a base for small-scale risk mapping of Fasciola hepatica.

    PubMed

    Charlier, Johannes; Soenen, Karen; De Roeck, Els; Hantson, Wouter; Ducheyne, Els; Van Coillie, Frieke; De Wulf, Robert; Hendrickx, Guy; Vercruysse, Jozef

    2014-11-26

    The trematode parasite Fasciola hepatica causes important economic losses in ruminants worldwide. Current spatial distribution models do not provide sufficient detail to support farm-specific control strategies. A technology to reliably assess the spatial distribution of intermediate host snail habitats on farms would be a major step forward to this respect. The aim of this study was to conduct a longitudinal field survey in Flanders (Belgium) to (i) characterise suitable small water bodies (SWB) for Galba truncatula and (ii) describe the population dynamics of G. truncatula. Four F. hepatica-infected farms from two distinct agricultural regions were examined for the abundance of G. truncatula from the beginning (April 2012) until the end (November 2012) of the grazing season. Per farm, 12 to 18 SWB were selected for monthly examination, using a 10 m transect analysis. Observations on G. truncatula abundance were coupled with meteorological and (micro-)environmental factors and the within-herd prevalence of F. hepatica using simple comparison or negative binomial regression models. A total of 54 examined SWB were classified as a pond, ditch, trench, furrow or moist area. G. truncatula abundance was significantly associated with SWB-type, region and total monthly precipitation, but not with monthly temperature. The clear differences in G. truncatula abundance between the 2 studied regions did not result in comparable differences in F. hepatica prevalence in the cattle. Exploration of the relationship of G. truncatula abundance with (micro)-environmental variables revealed a positive association with soil and water pH and the occurrence of Ranunculus sp. and a negative association with mowed pastures, water temperature and presence of reed-like plant species. Farm-level predictions of G. truncatula risk and subsequent risk for F. hepatica occurrence would require a rainfall, soil type (representing the agricultural region) and SWB layer in a geographic information system. While rainfall and soil type information is easily accessible, the recent advances in very high spatial resolution cameras carried on board of satellites, planes or drones should allow the delineation of SWBs in the future.

  12. Global Climatic Indices Influence on Rainfall Spatiotemporal Distribution : A Case Study from Morocco

    NASA Astrophysics Data System (ADS)

    Elkadiri, R.; Zemzami, M.; Phillips, J.

    2017-12-01

    The climate of Morocco is affected by the Mediterranean Sea, the Atlantic Ocean the Sahara and the Atlas mountains, creating a highly variable spatial and temporal distribution. In this study, we aim to decompose the rainfall in Morocco into global and local signals and understand the contribution of the climatic indices (CIs) on rainfall. These analyses will contribute in understanding the Moroccan climate that is typical of other Mediterranean and North African climatic zones. In addition, it will contribute in a long-term prediction of climate. The constructed database ranges from 1950 to 2013 and consists of monthly data from 147 rainfall stations and 37 CIs data provided mostly by the NOAA Climate Prediction Center. The next general steps were followed: (1) the study area was divided into 9 homogenous climatic regions and weighted precipitation was calculated for each region to reduce the local effects. (2) Each CI was decomposed into nine components of different frequencies (D1 to D9) using wavelet multiresolution analysis. The four lowest frequencies of each CI were selected. (3) Each of the original and resulting signals were shifted from one to six months to account for the effect of the global patterns. The application of steps two and three resulted in the creation of 1225 variables from the original 37 CIs. (4) The final 1225 variables were used to identify links between the global and regional CIs and precipitation in each of the nine homogenous regions using stepwise regression and decision tree. The preliminary analyses and results were focused on the north Atlantic zone and have shown that the North Atlantic Oscillation (PC-based) from NCAR (NAOPC), the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), the Western Mediterranean Oscillation (WMO) and the Extreme Eastern Tropical Pacific Sea Surface Temperature (NINO12) have the highest correlation with rainfall (33%, 30%, 27%, 21% and -20%, respectively). In addition the 4-months lagged NINO12 and the 6-months lagged NAOPC and WMO have a collective contribution of more than 45% of the rainfall signal. Low frequencies are also represented in the rainfall; especially the 5th and 4th components of the decomposed CIs (48% and 42% of the frequencies, respectively) suggesting their potential contribution in the interannual rainfall variability.

  13. A spatially distributed and physically based tool to modelling rainfall-triggered landslides

    NASA Astrophysics Data System (ADS)

    Arnone, E.; Noto, L. V.; Lepore, C.; Bras, R. L.

    2009-09-01

    Landslides are a serious threat to lives and property throughout the world. Over the last few years the need to provide consistent tools and support to decision-makers and land managers have led to significant progress in the analysis and understanding of the occurrence of landslides. The causes of landslides are varied. Multiple dynamic processes are involved in driving slope failures. One of these causes is prolonged rainfall, which affect slope stability in different ways. Water entering the ground beneath a slope always causes a rise of the piezometric surface, which in turn involves an increase of the pore-water pressure and a decrease of the soil shear resistance. For this reason, knowledge of spatio-temporal dynamics of soil water content, groundwater and infiltration processes is of considerable importance in the understanding and prediction of landslides dynamics. Many methods and techniques have been proposed to estimate when and where rainfall could trigger slope failure. In this paper a spatially distributed and physically based approach is presented, which integrates of a failure model with an hydrological one. The hydrological model used in the study is the tRIBS model (Triangulated Irregular Network (TIN-based) Real-Time Integrated Basin Simulator) that allows simulation of spatial and temporal hydrological dynamics influencing the landsliding, in particular infiltration, evapotranspiration, groundwater dynamics and soil moisture conditions. In order to evaluate the slope stability, the infinite slope model has been implemented in tRIBS, making up a new component of the model. For each computational element, the model is able to verify the stability condition as a function of the safety factor, splitting between the unconditionally stable and the conditionally stable computational cells. The amount of detached soil and its possible path are also estimated. The variations in elevation due to the landslides modify the basin morphology. The computational TIN is updated when a threshold related to the changes in elevation is exceeded. Model performance has been evaluated carrying out a setup case in a small catchment with very steep slopes, located in the northern part of Sicily (Italy). The test has been useful to highlight weaknesses and strengths of the model as well as to enhance the formulation. Another validation test is being carried out using landslides data recorded in the island of Puerto Rico, a US territory, where landslide triggered by rainfall are the most common type with one or two events per year.

  14. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe.

    PubMed

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.

  15. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe

    PubMed Central

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044

  16. An assessment of the ability of Bartlett-Lewis type of rainfall models to reproduce drought statistics

    NASA Astrophysics Data System (ADS)

    Pham, M. T.; Vanhaute, W. J.; Vandenberghe, S.; De Baets, B.; Verhoest, N. E. C.

    2013-12-01

    Of all natural disasters, the economic and environmental consequences of droughts are among the highest because of their longevity and widespread spatial extent. Because of their extreme behaviour, studying droughts generally requires long time series of historical climate data. Rainfall is a very important variable for calculating drought statistics, for quantifying historical droughts or for assessing the impact on other hydrological (e.g. water stage in rivers) or agricultural (e.g. irrigation requirements) variables. Unfortunately, time series of historical observations are often too short for such assessments. To circumvent this, one may rely on the synthetic rainfall time series from stochastic point process rainfall models, such as Bartlett-Lewis models. The present study investigates whether drought statistics are preserved when simulating rainfall with Bartlett-Lewis models. Therefore, a 105 yr 10 min rainfall time series obtained at Uccle, Belgium is used as a test case. First, drought events were identified on the basis of the Effective Drought Index (EDI), and each event was characterized by two variables, i.e. drought duration (D) and drought severity (S). As both parameters are interdependent, a multivariate distribution function, which makes use of a copula, was fitted. Based on the copula, four types of drought return periods are calculated for observed as well as simulated droughts and are used to evaluate the ability of the rainfall models to simulate drought events with the appropriate characteristics. Overall, all Bartlett-Lewis model types studied fail to preserve extreme drought statistics, which is attributed to the model structure and to the model stationarity caused by maintaining the same parameter set during the whole simulation period.

  17. A copula-based assessment of Bartlett-Lewis type of rainfall models for preserving drought statistics

    NASA Astrophysics Data System (ADS)

    Pham, M. T.; Vanhaute, W. J.; Vandenberghe, S.; De Baets, B.; Verhoest, N. E. C.

    2013-06-01

    Of all natural disasters, the economic and environmental consequences of droughts are among the highest because of their longevity and widespread spatial extent. Because of their extreme behaviour, studying droughts generally requires long time series of historical climate data. Rainfall is a very important variable for calculating drought statistics, for quantifying historical droughts or for assessing the impact on other hydrological (e.g. water stage in rivers) or agricultural (e.g. irrigation requirements) variables. Unfortunately, time series of historical observations are often too short for such assessments. To circumvent this, one may rely on the synthetic rainfall time series from stochastic point process rainfall models, such as Bartlett-Lewis models. The present study investigates whether drought statistics are preserved when simulating rainfall with Bartlett-Lewis models. Therefore, a 105 yr 10 min rainfall time series obtained at Uccle, Belgium is used as test case. First, drought events were identified on the basis of the Effective Drought Index (EDI), and each event was characterized by two variables, i.e. drought duration (D) and drought severity (S). As both parameters are interdependent, a multivariate distribution function, which makes use of a copula, was fitted. Based on the copula, four types of drought return periods are calculated for observed as well as simulated droughts and are used to evaluate the ability of the rainfall models to simulate drought events with the appropriate characteristics. Overall, all Bartlett-Lewis type of models studied fail in preserving extreme drought statistics, which is attributed to the model structure and to the model stationarity caused by maintaining the same parameter set during the whole simulation period.

  18. Characterizing Satellite Rainfall Errors based on Land Use and Land Cover and Tracing Error Source in Hydrologic Model Simulation

    NASA Astrophysics Data System (ADS)

    Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.

    2011-12-01

    Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.

  19. Regional Assessment of Storm-triggered Shall Landslide Risks using the SLIDE (SLope-Infiltration-Distributed Equilibrium) Model

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Kirschbaum, D. B.; Fukuoka, H.

    2011-12-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. An early warning system applying such physical models has been developed to predict rainfall-induced shallow landslides over Java Island in Indonesia and Honduras. The prototyped early warning system integrates three major components: (1) a susceptibility mapping or hotspot identification component based on a land surface geospatial database (topographical information, maps of soil properties, and local landslide inventory etc.); (2) a satellite-based precipitation monitoring system (http://trmm.gsfc.nasa.gov) and a precipitation forecasting model (i.e. Weather Research Forecast); and (3) a physically-based, rainfall-induced landslide prediction model SLIDE (SLope-Infiltration-Distributed Equilibrium). The system utilizes the modified physical model to calculate a Factor of Safety (FS) that accounts for the contribution of rainfall infiltration and partial saturation to the shear strength of the soil in topographically complex terrains. The system's prediction performance has been evaluated using a local landslide inventory. In Java Island, Indonesia, evaluation of SLIDE modeling results by local news reports shows that the system successfully predicted landslides in correspondence to the time of occurrence of the real landslide events. Further study of SLIDE is implemented in Honduras where Hurricane Mitch triggered widespread landslides in 1998. Results shows within the approximately 1,200 square kilometers study areas, the values of hit rates reached as high as 78% and 75%, while the error indices were 35% and 49%. Despite positive model performance, the SLIDE model is limited in the early warning system by several assumptions including, using general parameter calibration rather than in situ tests and neglecting geologic information. Advantages and limitations of this model will be discussed with respect to future applications of landslide assessment and prediction over large scales. In conclusion, integration of spatially distributed remote sensing precipitation products and in-situ datasets and physical models in this prototype system enable us to further develop a regional early warning tool in the future for forecasting storm-induced landslides.

  20. HD Hydrological modelling at catchment scale using rainfall radar observations

    NASA Astrophysics Data System (ADS)

    Ciampalini Rossano. Ciampalini@Gmail. Com), Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Augas, Julien; Moussa, Roger; Colin, François; Le Bissonnais, Yves

    2017-04-01

    Hydrological simulations at catchment scale repose on the quality and data availability both for soil and rainfall data. Soil data are quite easy to be collected, although their quality depends on the resources devoted to this task, rainfall data observations, instead, need further effort because of their spatiotemporal variability. Rainfalls are normally recorded with rain gauges located in the catchment, they can provide detailed temporal data, but, the representativeness is limited to the point where the data are collected. Combining different gauges in space can provide a better representation of the rainfall event but the spatialization is often the main obstacle to obtain data close to the reality. Since several years, radar observations overcome this gap providing continuous data registration, that, when properly calibrated, can offer an adequate, continuous, cover in space and time for medium-wide catchments. Here, we use radar records for the south of the France on the La Peyne catchment with the protocol there adopted by the national meteo agency, with resolution of 1 km space and 5' time scale observations. We present here the realisation of a model able to perform from rainfall radar observations, continuous hydrological and soil erosion simulations. The model is semi-theoretically based, once it simulates water fluxes (infiltration-excess overland flow, saturation overland flow, infiltration and channel routing) with a cinematic wave using the St. Venant equation on a simplified "bucket" conceptual model for ground water, and, an empirical representation of sediment load as adopted in models such as STREAM-LANDSOIL (Cerdan et al., 2002, Ciampalini et al., 2012). The advantage of this approach is to furnish a dynamic representation - simulation of the rainfall-runoff events more easily than using spatialized rainfalls from meteo stations and to offer a new look on the spatial component of the events.

  1. Errors and uncertainties in regional climate simulations of rainfall variability over Tunisia: a multi-model and multi-member approach

    NASA Astrophysics Data System (ADS)

    Fathalli, Bilel; Pohl, Benjamin; Castel, Thierry; Safi, Mohamed Jomâa

    2018-02-01

    Temporal and spatial variability of rainfall over Tunisia (at 12 km spatial resolution) is analyzed in a multi-year (1992-2011) ten-member ensemble simulation performed using the WRF model, and a sample of regional climate hindcast simulations from Euro-CORDEX. RCM errors and skills are evaluated against a dense network of local rain gauges. Uncertainties arising, on the one hand, from the different model configurations and, on the other hand, from internal variability are furthermore quantified and ranked at different timescales using simple spread metrics. Overall, the WRF simulation shows good skill for simulating spatial patterns of rainfall amounts over Tunisia, marked by strong altitudinal and latitudinal gradients, as well as the rainfall interannual variability, in spite of systematic errors. Mean rainfall biases are wet in both DJF and JJA seasons for the WRF ensemble, while they are dry in winter and wet in summer for most of the used Euro-CORDEX models. The sign of mean annual rainfall biases over Tunisia can also change from one member of the WRF ensemble to another. Skills in regionalizing precipitation over Tunisia are season dependent, with better correlations and weaker biases in winter. Larger inter-member spreads are observed in summer, likely because of (1) an attenuated large-scale control on Mediterranean and Tunisian climate, and (2) a larger contribution of local convective rainfall to the seasonal amounts. Inter-model uncertainties are globally stronger than those attributed to model's internal variability. However, inter-member spreads can be of the same magnitude in summer, emphasizing the important stochastic nature of the summertime rainfall variability over Tunisia.

  2. Fluvial signatures of modern and paleo orographic rainfall gradients

    NASA Astrophysics Data System (ADS)

    Schildgen, Taylor; Strecker, Manfred

    2016-04-01

    The morphology of river profiles is intimately linked to both climate and tectonic forcing. While much interest recently has focused on how river profiles can be inverted to derive uplift histories, here we show how in regions of strong orographic rainfall gradients, rivers may primarily record spatial patterns of precipitation. As a case study, we examine the eastern margin of the Andean plateau in NW Argentina, where the outward (eastward) growth of a broken foreland has led to a eastward shift in the main orographic rainfall gradient over the last several million years. Rivers influenced by the modern rainfall gradient are characterized by normalized river steepness values in tributary valleys that closely track spatial variations in rainfall, with higher steepness values in drier areas and lower steepness values in wetter areas. The same river steepness pattern has been predicted in landscape evolution models that apply a spatial gradient in rainfall to a region of uniform erosivity and uplift rate (e.g., Han et al., 2015). Also, chi plots from river networks on individual ranges affected by the modern orographic rainfall reveal patterns consistent with assymmetric precipitation across the range: the largest channels on the windward slopes are characterized by capture, while the longest channels on the leeward slopes are dominated by beheadings. Because basins on the windward side both lengthen and widen, tributary channels in the lengthening basins are characterized by capture, while tributary channels from neighboring basins on the windward side are dominated by beheadings. These patterns from the rivers influenced by the modern orographic rainfall gradient provide a guide for identifying river morphometric signatures of paleo orographic rainfall gradients. Mountain ranges to the west of the modern orographic rainfall have been interpreted to mark the location of orographic rainfall in the past, but these ranges are now in spatially near-uniform semi-arid to arid precipitation regimes. Indeed, despite uniform lithology and uplift history, we see patterns in river steepness values and in chi plots that are consistest a rainfall gradient on the (former) windward side of the range and asymmetric precipitation across the range. We suggest that morphological aspects of the river networks in such regions are dominated by their history of changing climate. These morphologic signatures appear to persist for millions of years in NW Argentina, most likely because the transition from a wetter to a drier climate has prevented a rapid readjustment to new forcing conditions. Reference: Han, J., Gasparini, N.M., and Johnson, J.P., 2015, Measuring the imprint of orographic rainfall gradients on the morphology of steady-state numerical fluvial landscapes. Earth Surf. Process. Landforms, 40(10), 1334-1350.

  3. A pastoral landscape for millennia: Investigating pastoral mobility in northeastern Jordan using quantitative spatial analyses

    NASA Astrophysics Data System (ADS)

    Meister, Julia; Knitter, Daniel; Krause, Jan; Müller-Neuhof, Bernd; Schütt, Brigitta

    2017-04-01

    Northeastern Jordan is one of the few remaining regions in the Middle East where pastoral nomadism is still practiced. In this desert region, pastoral mobility is an adapted land use—able to cope with low rainfall rates, great seasonal and annual rainfall variations and thus heterogeneous vegetation and water availability. During winter, herders and their livestock move into the desert; in summer they move to the desert margins to places with perennial water supply. The system of mobile pastoralism was introduced during the Early Late Neolithic. Within the basaltic region of northeastern Jordan, there is a dense distribution of archeological remains; some of them can be linked to pastoral groups due to the herders' ancient practice of building agglomerations of sub-circular enclosures ('clustered enclosures') made of basalt boulders for corralling their flocks and domestic activities. The resulting features provide an excellent opportunity to investigate a pastoral landscape that has been frequently used by herders during the last eight to nine millennia. In this study, 9118 clustered enclosures in the northeastern Jordanian basalt desert have been systematically recorded using satellite imagery. In order to investigate potential migration or communication routes, grazing lands and social interactions of former pastoralists, we examine their first- and second-order characteristics using distance and density based approaches of point pattern analyses by integrating geomorphometric and geomorphological site properties. The results of this spatial analysis are combined with available archaeological data and a review on traditional herding practices in northeastern Jordan. Overall, the results demonstrate that the observed spatial distribution of clustered enclosures is influenced locally by natural characteristics but regionally by cultural practices.

  4. The complexities of urban flood response: Flood frequency analyses for the Charlotte metropolitan region

    NASA Astrophysics Data System (ADS)

    Zhou, Zhengzheng; Smith, James A.; Yang, Long; Baeck, Mary Lynn; Chaney, Molly; Ten Veldhuis, Marie-Claire; Deng, Huiping; Liu, Shuguang

    2017-08-01

    We examine urban flood response through data-driven analyses for a diverse sample of "small" watersheds (basin scale ranging from 7.0 to 111.1 km2) in the Charlotte Metropolitan region. These watersheds have experienced extensive urbanization and suburban development since the 1960s. The objective of this study is to develop a broad characterization of land surface and hydrometeorological controls of urban flood hydrology. Our analyses are based on peaks-over-threshold flood data developed from USGS streamflow observations and are motivated by problems of flood hazard characterization for urban regions. We examine flood-producing rainfall using high-resolution (1 km2 spatial resolution and 15 min time resolution), bias-corrected radar rainfall fields that are developed through the Hydro-NEXRAD system. The analyses focus on the 2001-2015 period. The results highlight the complexities of urban flood response. There are striking spatial heterogeneities in flood peak magnitudes, response times, and runoff ratios across the study region. These spatial heterogeneities are mainly linked to watershed scale, the distribution of impervious cover, and storm water management. Contrasting land surface properties also determine the mixture of flood-generating mechanisms for a particular watershed. Warm-season thunderstorm systems and tropical cyclones are main flood agents in Charlotte, with winter/spring storms playing a role in less-urbanized watersheds. The mixture of flood agents exerts a strong impact on the upper tail of flood frequency distributions. Antecedent watershed wetness plays a minor role in urban flood response, compared with less-urbanized watersheds. Implications for flood hazard characterization in urban watersheds and for advances in flood science are discussed.

  5. Prediction skill of rainstorm events over India in the TIGGE weather prediction models

    NASA Astrophysics Data System (ADS)

    Karuna Sagar, S.; Rajeevan, M.; Vijaya Bhaskara Rao, S.; Mitra, A. K.

    2017-12-01

    Extreme rainfall events pose a serious threat of leading to severe floods in many countries worldwide. Therefore, advance prediction of its occurrence and spatial distribution is very essential. In this paper, an analysis has been made to assess the skill of numerical weather prediction models in predicting rainstorms over India. Using gridded daily rainfall data set and objective criteria, 15 rainstorms were identified during the monsoon season (June to September). The analysis was made using three TIGGE (THe Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble) models. The models considered are the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centre for Environmental Prediction (NCEP) and the UK Met Office (UKMO). Verification of the TIGGE models for 43 observed rainstorm days from 15 rainstorm events has been made for the period 2007-2015. The comparison reveals that rainstorm events are predictable up to 5 days in advance, however with a bias in spatial distribution and intensity. The statistical parameters like mean error (ME) or Bias, root mean square error (RMSE) and correlation coefficient (CC) have been computed over the rainstorm region using the multi-model ensemble (MME) mean. The study reveals that the spread is large in ECMWF and UKMO followed by the NCEP model. Though the ensemble spread is quite small in NCEP, the ensemble member averages are not well predicted. The rank histograms suggest that the forecasts are under prediction. The modified Contiguous Rain Area (CRA) technique was used to verify the spatial as well as the quantitative skill of the TIGGE models. Overall, the contribution from the displacement and pattern errors to the total RMSE is found to be more in magnitude. The volume error increases from 24 hr forecast to 48 hr forecast in all the three models.

  6. Landslides triggered by the storm of November 3-5, 1985, Wills Mountain Anticline, West Virginia and Virginia: Chapter C in Geomorphic studies of the storm and flood of November 3-5, 1985, in the upper Potomac and Cheat River basins in West Virginia and Virginia

    USGS Publications Warehouse

    Jacobson, Robert B.; McGeehin, John P.; Cron, Elizabeth D.; Carr, Carolyn E.; Harper, John M.; Howard, Alan D.

    1993-01-01

    More than 3,000 landslides were triggered by heavy rainfall in the central Appalachian Mountains of West Virginia and Virginia, November 3-5, 1985. These landslides provided the opportunity to study spatial controls on landslides, magnitude and frequency of triggering events, and the effects of landslides on flood-induced geomorphic change. The study area consists of parts of the Wills Mountain anticline, a major NE-trending structure in the central Appalachians, and a portion of the adjacent Appalachian Plateau. Across the anticline and adjacent plateau, bedrock lithologies vary markedly and include pure marine limestone, marine shale, deltaic mudstone/sandstone sequences, and orthoquartzites. Because of the geologic structure, bedrock lithology varies little along strike. The spatial distribution of landslides triggered by the storm was controlled primarily by rainfall, bedrock lithology, surficial lithology, land cover, and slope morphology. The triggering rainfall was of moderate intensity and long duration. Two-day storm totals varied from 170 mm to more than 240 mm in the study area. Most landslides occurred at the northeast end of the study area, where 48-h rainfall totals were in excess of 200 mm. Different rainfall thresholds are apparent for triggering landslides on different bedrock lithologies. The highest density of landslides occurred in shallow colluvium and residuum of the Reedsville Shale (Ordovician), followed by regolith of the Greenbriar and Mauch Chunk Groups (Mississippian). Most of the landslides in these fine-grained regoliths were shallow slides and slumps, many of which transformed to mudflows and delivered sediment directly to streams; a smaller number of debris avalanches were triggered high on quartzite ridges.Instability of colluvium and residuum derived from the Reedsville Shale, compared with regolith from four other fine-grained bedrock lithologies, is attributable to its low strength combined with moderate infiltration rates that allowed soil moisture to accumulate under the moderate intensities of the rainfall. Slopes covered by coarse, cobbly debris flow and alluvial deposits, mostly of Pleistocene age, were very stable due to their low slope angles and high frictional strength. For a particular bedrock lithology, the spatial distribution of landslides appears controlled by interdependent influences of slope morphology and land cover. On the Reedsville Shale, most landslides occurred on north- to northeast-facing slopes, which might have had higher antecedent levels of soil moisture; these slopes have also been preferentially cleared because they produce better pasture forage for livestock. A secondary concentration of landslides on south- to southwest-facing slopes cannot be explained by conventional soil-moisture models. Landslide density was 100--200 percent higher on cleared land than on forested land. On pastured land, most landslides occurred on laterally planar slopes, but on forested land, most landslides occurred in slope positions that were laterally concave (hillslope hollows). Compared with other documented Appalachian storms that have triggered landslides, the November 1985 storm had lower rainfall intensities over longer durations. Comparison with these other storms suggests that the anomalously high degree of slope instability in 1985 is due to the long duration of low-intensity rainfall on fine-grained regolith derived from shale; the triggering rainfall can be approximated by the 48-h storm total. Landslide density in Reedsville Shale regolith is linearly related to the varying 48-h rainfall along the anticline. These data define a probabilistic model that estimates return intervals of 43 to 300 yr for landslide densities ranging from 1 to 70 landslides/km2. Analysis of flood-induced geomorphic changes in 79 small drainage basins that received 210-240 mm of rainfall showed a clear local association between landslides and channel erosion or deposition adjacent to where the landslides delivered sediment to the stream. When channel change was quantified using an index evaluated at each basin mouth, most of the channel change was attributable to the influence of basin morphology on flood discharge. Landslide density in the basins was of secondary, although measurable, importance in explaining flood-induced channel changes at the basin scale. 

  7. Climate changes and technological disasters in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Petrova, E. G.

    2009-04-01

    Global warming and climate change are responsible for many ecological, economic and other significant influences on natural environment and human society. Increasing in number and severity of natural and technological disasters (TD) around the world is among of such influences. Great changes in geographical distribution of disasters are also expected. The study suggested examines this problem by the example of the Russian Federation. Using data base of TD and na-techs (natural-technological disasters) happened in the Russian Federation in 1992-2008 the most important types of disasters caused by various natural hazards were identified and classified for Russian federal regions. In concept of this study na-techs are considered as TD produced by natural factors. 88 percent of all na-techs occurring in the Russian Federation during the observation period were caused by natural processes related to various meteorological and hydrological phenomena. The majority of them were produced by windstorms and hurricanes (37%), snowfalls and snowstorms (27%), rainfalls (16%), hard frost and icy conditions of roads (12%). 11 types of na-techs caused by meteorological and hydrological hazards were found. These types are: (1) accidents at power and heat supply systems caused by windstorms, cyclones, and hurricanes, snowfalls and sleets, hard frost, rainfalls, hailstones, icing, avalanches, or thunderstorms (more than 50% of all na-techs registered in the data base); (2) accidents at water supply systems caused by hard frost, rainfalls, or subsidence of rock (3%); (3) sudden collapses of constructions caused by windstorms, snowfalls, rainfalls, hard frost, subsidence of rock, or floods (12%); (4) automobile accidents caused by snowfalls and snowstorms, icy conditions of roads, rainfalls, fogs, mist, or avalanches (10%); (5) water transport accidents caused by storms, cyclones, typhoons, or fogs (9%); (6) air crashes caused by windstorms, snowfalls, icing, or fogs; (7) railway accidents caused by snowfalls and snowstorms, rainfalls, landslides, or avalanches; (8) fires and explosions caused by lightning or heat; (9) pipeline ruptures caused by windstorms, subsidence of rock, or landslides; (10) agricultural accidents caused by frost, snowfalls, rainfalls, or storm; (11) accidents with toxic emissions caused by floods and landslides The map of their distribution within the Russian Federation was created. Climate changes expected until the end of the XXI century will have important consequences for frequency increasing and change in spatial distribution of na-techs in the Russian Federation. The occurrence of na-techs caused by hydro- and meteorological hazards as well as by other natural hazards related to climate change will be more frequent to the end of this century. The area subjected to technological risk will be enlarged essentially.

  8. Evaluation of fine soil moisture data from the IFloodS (NASA GPM) Ground Validation campaign using a fully-distributed ecohydrological model

    NASA Astrophysics Data System (ADS)

    Bastola, S.; Dialynas, Y. G.; Arnone, E.; Bras, R. L.

    2014-12-01

    The spatial variability of soil, vegetation, topography, and precipitation controls hydrological processes, consequently resulting in high spatio-temporal variability of most of the hydrological variables, such as soil moisture. Limitation in existing measuring system to characterize this spatial variability, and its importance in various application have resulted in a need of reconciling spatially distributed soil moisture evolution model and corresponding measurements. Fully distributed ecohydrological model simulates soil moisture at high resolution soil moisture. This is relevant for range of environmental studies e.g., flood forecasting. They can also be used to evaluate the value of space born soil moisture data, by assimilating them into hydrological models. In this study, fine resolution soil moisture data simulated by a physically-based distributed hydrological model, tRIBS-VEGGIE, is compared with soil moisture data collected during the field campaign in Turkey river basin, Iowa. The soil moisture series at the 2 and 4 inch depth exhibited a more rapid response to rainfall as compared to bottom 8 and 20 inch ones. The spatial variability in two distinct land surfaces of Turkey River, IA, reflects the control of vegetation, topography and soil texture in the characterization of spatial variability. The comparison of observed and simulated soil moisture at various depth showed that model was able to capture the dynamics of soil moisture at a number of gauging stations. Discrepancies are large in some of the gauging stations, which are characterized by rugged terrain and represented, in the model, through large computational units.

  9. Thermodynamic sensitivities in observed and simulated extreme-rain-producing mesoscale convective systems

    NASA Astrophysics Data System (ADS)

    Schumacher, R. S.; Peters, J. M.

    2015-12-01

    Mesoscale convective systems (MCSs) are responsible for a large fraction of warm-season extreme rainfall events over the continental United States, as well as other midlatitude regions globally. The rainfall production in these MCSs is determined by numerous factors, including the large-scale forcing for ascent, the organization of the convection, cloud microphysical processes, and the surrounding thermodynamic and kinematic environment. Furthermore, heavy-rain-producing MCSs are most common at night, which means that well-studied mechanisms for MCS maintenance and organization such as cold pools (gravity currents) are not always at work. In this study, we use numerical model simulations and recent field observations to investigate the sensitivity of low-level MCS structures, and their influences on rainfall, to the details of the thermodynamic environment. In particular, small alterations to the initial conditions in idealized and semi-idealized simulations result in comparatively large precipitation changes, both in terms of the intensity and the spatial distribution. The uncertainties in the thermodynamic enviroments in the model simulations will be compared with high-resolution observations from the Plains Elevated Convection At Night (PECAN) field experiment in 2015. The results have implications for the paradigms of "surface-based" versus "elevated" convection, as well as for the predictability of warm-season convective rainfall.

  10. Identification of the key ecological factors influencing vegetation degradation in semi-arid agro-pastoral ecotone considering spatial scales

    NASA Astrophysics Data System (ADS)

    Peng, Yu; Wang, Qinghui; Fan, Min

    2017-11-01

    When assessing re-vegetation project performance and optimizing land management, identification of the key ecological factors inducing vegetation degradation has crucial implications. Rainfall, temperature, elevation, slope, aspect, land use type, and human disturbance are ecological factors affecting the status of vegetation index. However, at different spatial scales, the key factors may vary. Using Helin County, Inner-Mongolia, China as the study site and combining remote sensing image interpretation, field surveying, and mathematical methods, this study assesses key ecological factors affecting vegetation degradation under different spatial scales in a semi-arid agro-pastoral ecotone. It indicates that the key factors are different at various spatial scales. Elevation, rainfall, and temperature are identified as crucial for all spatial extents. Elevation, rainfall and human disturbance are key factors for small-scale quadrats of 300 m × 300 m and 600 m × 600 m, temperature and land use type are key factors for a medium-scale quadrat of 1 km × 1 km, and rainfall, temperature, and land use are key factors for large-scale quadrats of 2 km × 2 km and 5 km × 5 km. For this region, human disturbance is not the key factor for vegetation degradation across spatial scales. It is necessary to consider spatial scale for the identification of key factors determining vegetation characteristics. The eco-restoration programs at various spatial scales should identify key influencing factors according their scales so as to take effective measurements. The new understanding obtained in this study may help to explore the forces which driving vegetation degradation in the degraded regions in the world.

  11. The statistical extended-range (10-30-day) forecast of summer rainfall anomalies over the entire China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; Li, Tim

    2017-01-01

    The extended-range (10-30-day) rainfall forecast over the entire China was carried out using spatial-temporal projection models (STPMs). Using a rotated empirical orthogonal function analysis of intraseasonal (10-80-day) rainfall anomalies, China is divided into ten sub-regions. Different predictability sources were selected for each of the ten regions. The forecast skills are ranked for each region. Based on temporal correlation coefficient (TCC) and Gerrity skill score, useful skills are found for most parts of China at a 20-25-day lead. The southern China and the mid-lower reaches of Yangtze River Valley show the highest predictive skills, whereas southwestern China and Huang-Huai region have the lowest predictive skills. By combining forecast results from ten regional STPMs, the TCC distribution of 8-year (2003-2010) independent forecast for the entire China is investigated. The combined forecast results from ten STPMs show significantly higher skills than the forecast with just one single STPM for the entire China. Independent forecast examples of summer rainfall anomalies around the period of Beijing Olympic Games in 2008 and Shanghai World Expo in 2010 are presented. The result shows that the current model is able to reproduce the gross pattern of the summer intraseasonal rainfall over China at a 20-day lead. The present study provides, for the first time, a guide on the statistical extended-range forecast of summer rainfall anomalies for the entire China. It is anticipated that the ideas and methods proposed here will facilitate the extended-range forecast in China.

  12. Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques.

    PubMed

    Chen, Tao; Niu, Rui-qing; Wang, Yi; Li, Ping-xiang; Zhang, Liang-pei; Du, Bo

    2011-08-01

    Soil conservation planning often requires estimates of the spatial distribution of soil erosion at a catchment or regional scale. This paper applied the Revised Universal Soil Loss Equation (RUSLE) to investigate the spatial distribution of annual soil loss over the upper basin of Miyun reservoir in China. Among the soil erosion factors, which are rainfall erosivity (R), soil erodibility (K), slope length (L), slope steepness (S), vegetation cover (C), and support practice factor (P), the vegetative cover or C factor, which represents the effects of vegetation canopy and ground covers in reducing soil loss, has been one of the most difficult to estimate over broad geographic areas. In this paper, the C factor was estimated based on back propagation neural network and the results were compared with the values measured in the field. The correlation coefficient (r) obtained was 0.929. Then the C factor and the other factors were used as the input to RUSLE model. By integrating the six factor maps in geographical information system (GIS) through pixel-based computing, the spatial distribution of soil loss over the upper basin of Miyun reservoir was obtained. The results showed that the annual average soil loss for the upper basin of Miyun reservoir was 9.86 t ha(-1) ya(-1) in 2005, and the area of 46.61 km(2) (0.3%) experiences extremely severe erosion risk, which needs suitable conservation measures to be adopted on a priority basis. The spatial distribution of erosion risk classes was 66.9% very low, 21.89% low, 6.18% moderate, 2.89% severe, and 1.84% very severe. Thus, by using RUSLE in a GIS environment, the spatial distribution of water erosion can be obtained and the regions which susceptible to water erosion and need immediate soil conservation planning and application over the upper watershed of Miyun reservoir in China can be identified.

  13. [Spatio-temporal analysis of the biophysical and ecological conditions of Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae) in the northeast region of Colombia].

    PubMed

    Badel-Mogollón, Jaime; Rodríguez-Figueroa, Laura; Parra-Henao, Gabriel

    2017-03-29

    Due to the lack of information regarding biophysical and spatio-temporal conditions (hydrometheorologic and vegetal coverage density) in areas with Triatoma dimidiata in the Colombian departments of Santander and Boyacá, there is a need to elucidate the association patterns of these variables to determine the distribution and control of this species. To make a spatio-temporal analysis of biophysical variables related to the distribution of T. dimidiate observed in the northeast region of Colombia. We used the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) data bases registering vector presence and hydrometheorologic data. We studied the variables of environmental temperature, relative humidity, rainfall and vegetal coverage density at regional and local levels, and we conducted spatial geostatistic, descriptive statistical and Fourier temporal series analyses. Temperatures two meters above the ground and on covered surface ranged from 14,5°C to 18,8°C in the areas with the higher density of T. dimidiata. The environmental temperature fluctuated between 30 and 32°C. Vegetal coverage density and rainfall showed patterns of annual and biannual peaks. Relative humidity values fluctuated from 66,8 to 85,1%. Surface temperature and soil coverage were the variables that better explained the life cycle of T. dimidiata in the area. High relative humidity promoted the seek of shelters and an increase of the geographic distribution in the annual and biannual peaks of regional rainfall. The ecologic and anthropic conditions suggest that T. dimidiata is a highly resilient species.

  14. Rainfall Observed Over Bangladesh 2000-2008: A Comparison of Spatial Interpolation Methods

    NASA Astrophysics Data System (ADS)

    Pervez, M.; Henebry, G. M.

    2010-12-01

    In preparation for a hydrometeorological study of freshwater resources in the greater Ganges-Brahmaputra region, we compared the results of four methods of spatial interpolation applied to point measurements of daily rainfall over Bangladesh during a seven year period (2000-2008). Two univariate (inverse distance weighted and spline-regularized and tension) and two multivariate geostatistical (ordinary kriging and kriging with external drift) methods were used to interpolate daily observations from a network of 221 rain gauges across Bangladesh spanning an area of 143,000 sq km. Elevation and topographic index were used as the covariates in the geostatistical methods. The validity of the interpolated maps was analyzed through cross-validation. The quality of the methods was assessed through the Pearson and Spearman correlations and root mean square error measurements of accuracy in cross-validation. Preliminary results indicated that the univariate methods performed better than the geostatistical methods at daily scales, likely due to the relatively dense sampled point measurements and a weak correlation between the rainfall and covariates at daily scales in this region. Inverse distance weighted produced the better results than the spline. For the days with extreme or high rainfall—spatially and quantitatively—the correlation between observed and interpolated estimates appeared to be high (r2 ~ 0.6 RMSE ~ 10mm), although for low rainfall days the correlations were poor (r2 ~ 0.1 RMSE ~ 3mm). The performance quality of these methods was influenced by the density of the sample point measurements, the quantity of the observed rainfall along with spatial extent, and an appropriate search radius defining the neighboring points. Results indicated that interpolated rainfall estimates at daily scales may introduce uncertainties in the successive hydrometeorological analysis. Interpolations at 5-day, 10-day, 15-day, and monthly time scales are currently under investigation.

  15. The concurrent multiplicative-additive approach for gauge-radar/satellite multisensor precipitation estimates

    NASA Astrophysics Data System (ADS)

    Garcia-Pintado, J.; Barberá, G. G.; Erena Arrabal, M.; Castillo, V. M.

    2010-12-01

    Objective analysis schemes (OAS), also called ``succesive correction methods'' or ``observation nudging'', have been proposed for multisensor precipitation estimation combining remote sensing data (meteorological radar or satellite) with data from ground-based raingauge networks. However, opposite to the more complex geostatistical approaches, the OAS techniques for this use are not optimized. On the other hand, geostatistical techniques ideally require, at the least, modelling the covariance from the rain gauge data at every time step evaluated, which commonly cannot be soundly done. Here, we propose a new procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) for operational rainfall estimation using rain gauges and meteorological radar, which does not require explicit modelling of spatial covariances. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on the OAS, whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The approach considers radar estimates as background a priori information (first guess), so that nudging to observations (gauges) may be relaxed smoothly to the first guess, and the relaxation shape is obtained from the sequential optimization. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, an OAS spatially variable adjustment with multiplicative factors, ordinary cokriging, and kriging with external drift. In theory, it could be equally applicable to gauge-satellite estimates and other hydrometeorological variables.

  16. Characterizing land surface phenology and responses to rainfall in the Sahara desert

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Zhang, Xiaoyang; Yu, Yunyue; Guo, Wei; Hanan, Niall P.

    2016-08-01

    Land surface phenology (LSP) in the Sahara desert is poorly understood due to the difficulty in detecting subtle variations in vegetation greenness. This study examined the spatial and temporal patterns of LSP and its responses to rainfall seasonality in the Sahara desert. We first generated daily two-band enhanced vegetation index (EVI2) from half-hourly observations acquired by the Spinning Enhanced Visible and Infrared Imager on board the Meteosat Second Generation series of geostationary satellites from 2006 to 2012. The EVI2 time series was used to retrieve LSP based on the Hybrid Piecewise Logistic Model. We further investigated the associations of spatial and temporal patterns in LSP with those in rainfall seasonality derived from the daily rainfall time series of the Tropical Rainfall Measurement Mission. Results show that the spatial shifts in the start of the vegetation growing season generally follow the rainy season onset that is controlled by the summer rainfall regime in the southern Sahara desert. In contrast, the end of the growing season significantly lags the end of the rainy season without any significant dependence. Vegetation growing season can unfold during the dry seasons after onset is triggered during rainy seasons. Vegetation growing season can be as long as 300 days or more in some areas and years. However, the EVI2 amplitude and accumulation across the Sahara region was very low indicating sparse vegetation as expected in desert regions. EVI2 amplitude and accumulated EVI2 strongly depended on rainfall received during the growing season and the preceding dormancy period.

  17. Prediction of Rainfall-Induced Landslides in Tegucigalpa, Honduras, Using a Hydro-Geotechnical Model

    NASA Astrophysics Data System (ADS)

    Garcia Urquia, Elias; Axelsson, K.

    2010-05-01

    Central America is constantly being affected by natural hazards. Among these events are hurricanes and earthquakes, capable of triggering landslides that can alter the natural landscape, destroy infrastructure and cause the death of people in the most important settlements of the region. Hurricane Mitch in October of 1998 was of particular interest for the region, since it provoked hundreds of rainfall-induced landslides, mainly in 4 different countries. Studies carried out after Hurricane Mitch have allowed researchers to identify the factors that contribute to slope instability in many vulnerable areas. As Tegucigalpa, Honduras was partially destroyed due to the various landslide and flooding events triggered by this devastating hurricane, various research teams have deepened in their investigations and have proposed measures to mitigate the effects of similar future incidents. A model coupling an infinite-slope analysis and a simple groundwater flow approach can serve as a basis to predict the occurrence of landslides in Tegucigalpa, Honduras as a function of topographic, hydrological and soil variables. A safety map showing the rainfall-triggered landslide risk zones for Tegucigalpa, Honduras is to be created. As opposed to previous safety maps in which only steady-state conditions are studied, this analysis is extended and different steady-state and quasi-dynamic scenarios are considered for comparison. For the purpose of the latter settings, a hydrological analysis that determines the rainfall extreme values and their return periods in Tegucigalpa will account for the influence of rainfall on the groundwater flow and strength of soils. It is known that the spatial distribution of various factors that contribute to the risk of landslides (i.e. soil thickness, conductivity and strength properties; rainfall intensity and duration; root strength; subsurface flow orientation) is hard to determine. However, an effort is done to derive correlations for these parameters based on the existing information (i.e. rainfall data, soil testing data, land-use data). In addition, the spatial data management and manipulation is done by means of a Geographic Information System (GIS). For such purpose, maps of land-use, topography and geology provided by JICA have bee manually digitized and converted into GIS raster maps. The resulting safety map is then validated by comparing it with existing slope-failure-maps that have been created to show the affected areas during Hurricane Mitch. This safety map represents a useful tool in the prevention of landslide-related disasters, as it would be able to point out which segments of the population are at risk as a consequence of the rainfall-slope interaction in Tegucigalpa.

  18. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Rahman, Rosnani

    2016-02-01

    Global Positioning System (GPS) receivers are widely installed throughout the Peninsular Malaysia, but the implementation for monitoring weather hazard system such as flash flood is still not optimal. To increase the benefit for meteorological applications, the GPS system should be installed in collocation with meteorological sensors so the precipitable water vapor (PWV) can be measured. The distribution of PWV is a key element to the Earth's climate for quantitative precipitation improvement as well as flash flood forecasts. The accuracy of this parameter depends on a large extent on the number of GPS receiver installations and meteorological sensors in the targeted area. Due to cost constraints, a spatial interpolation method is proposed to address these issues. In this paper, we investigated spatial distribution of GPS PWV and meteorological variables (surface temperature, relative humidity, and rainfall) by using thin plate spline (tps) and ordinary kriging (Krig) interpolation techniques over the Klang Valley in Peninsular Malaysia (longitude: 99.5°-102.5°E and latitude: 2.0°-6.5°N). Three flash flood cases in September, October, and December 2013 were studied. The analysis was performed using mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) to determine the accuracy and reliability of the interpolation techniques. Results at different phases (pre, onset, and post) that were evaluated showed that tps interpolation technique is more accurate, reliable, and highly correlated in estimating GPS PWV and relative humidity, whereas Krig is more reliable for predicting temperature and rainfall during pre-flash flood events. During the onset of flash flood events, both methods showed good interpolation in estimating all meteorological parameters with high accuracy and reliability. The finding suggests that the proposed method of spatial interpolation techniques are capable of handling limited data sources with high accuracy, which in turn can be used to predict future floods.

  19. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    NASA Astrophysics Data System (ADS)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units, while the distance from the outlet is accounted for by including sediment wave velocities. The model is calibrated and validated on the basis of continuous turbidity data measured at the outlet of the basin. In addition, SSC data measured twice per week since 1964 are used to evaluate the performance of the model over longer time scales. Our predictive model is shown to reproduce SSC dynamics of the upper Rhône basin satisfactorily. The model accounts for the spatial distribution of sediment sources (location and processes of erosion and transport) and their activation/deactivation throughout the hydrological year. Therefore, it can reproduce the effects of changes in climate on sediment fluxes. In particular, we show that observed changes in SSC in the upper Rhône basin during the last 40 years are likely a consequence of increased air temperatures in this period and the consequent acceleration of glacial erosion.

  20. A probabilistic approach of the Flash Flood Early Warning System (FF-EWS) in Catalonia based on radar ensemble generation

    NASA Astrophysics Data System (ADS)

    Velasco, David; Sempere-Torres, Daniel; Corral, Carles; Llort, Xavier; Velasco, Enrique

    2010-05-01

    Early Warning Systems (EWS) are commonly identified as the most efficient tools in order to improve the preparedness and risk management against heavy rains and Flash Floods (FF) with the objective of reducing economical losses and human casualties. In particular, flash floods affecting torrential Mediterranean catchments are a key element to be incorporated within operational EWSs. The characteristic high spatial and temporal variability of the storms requires high-resolution data and methods to monitor/forecast the evolution of rainfall and its hydrological impact in small and medium torrential basins. A first version of an operational FF-EWS has been implemented in Catalonia (NE Spain) under the name of EHIMI system (Integrated Tool for Hydrometeorological Forecasting) with the support of the Catalan Water Agency (ACA) and the Meteorological Service of Catalonia (SMC). Flash flood warnings are issued based on radar-rainfall estimates. Rainfall estimation is performed on radar observations with high spatial and temporal resolution (1km2 and 10 minutes) in order to adapt the warning scale to the 1-km grid of the EWS. The method is based on comparing observed accumulated rainfall against rainfall thresholds provided by the regional Intensity-Duration-Frequency (IDF) curves. The so-called "aggregated rainfall warning" at every river cell is obtained as the spatially averaged rainfall over its associated upstream draining area. Regarding the time aggregation of rainfall, the critical duration is thought to be an accumulation period similar to the concentration time of each cachtment. The warning is issued once the forecasted rainfall accumulation exceeds the rainfall thresholds mentioned above, which are associated to certain probability of occurrence. Finally, the hazard warning is provided and shown to the decision-maker in terms of exceeded return periods at every river cell covering the whole area of Catalonia. The objective of the present work includes the probabilistic component to the FF-EWS. As a first step, we have incorporated the uncertainty in rainfall estimates and forecasts based on an ensemble of equiprobable rainfall scenarios. The presented study has focused on a number of rainfall events and the performance of the FF-EWS evaluated in terms of its ability to produce probabilistic hazard warnings for decision-making support.

  1. Bias correction method for climate change impact assessment at a basin scale

    NASA Astrophysics Data System (ADS)

    Nyunt, C.; Jaranilla-sanchez, P. A.; Yamamoto, A.; Nemoto, T.; Kitsuregawa, M.; Koike, T.

    2012-12-01

    Climate change impact studies are mainly based on the general circulation models GCM and these studies play an important role to define suitable adaptation strategies for resilient environment in a basin scale management. For this purpose, this study summarized how to select appropriate GCM to decrease the certain uncertainty amount in analysis. This was applied to the Pampanga, Angat and Kaliwa rivers in Luzon Island, the main island of Philippine and these three river basins play important roles in irrigation water supply, municipal water source for Metro Manila. According to the GCM scores of both seasonal evolution of Asia summer monsoon and spatial correlation and root mean squared error of atmospheric variables over the region, finally six GCM is chosen. Next, we develop a complete, efficient and comprehensive statistical bias correction scheme covering extremes events, normal rainfall and frequency of dry period. Due to the coarse resolution and parameterization scheme of GCM, extreme rainfall underestimation, too many rain days with low intensity and poor representation of local seasonality have been known as bias of GCM. Extreme rainfall has unusual characteristics and it should be focused specifically. Estimated maximum extreme rainfall is crucial for planning and design of infrastructures in river basin. Developing countries have limited technical, financial and management resources for implementing adaptation measures and they need detailed information of drought and flood for near future. Traditionally, the analysis of extreme has been examined using annual maximum series (AMS) adjusted to a Gumbel or Lognormal distribution. The drawback is the loss of the second, third etc, largest rainfall. Another approach is partial duration series (PDS) constructed using the values above a selected threshold and permit more than one event per year. The generalized Pareto distribution (GPD) has been used to model PDS and it is the series of excess over a threshold. In this study, the lowest value of AMS of observed is selected as threshold and simultaneously same frequency is considered as extremes in corresponding GCM gridded series. After fitting to GP distribution, bias corrected GCM extreme is found by using the inverse function of observed extremes. The results show it can remove bias effectively. For projected climate, the same transfer function between historical observed and GCM was applied. Moreover, frequency analysis of maximum extreme intensity estimation was done for validation and then approximate for near future by using identical function as past. To fix the error in the number of no rain days of GCM, ranking order statistics is used and define in GCM same as the frequency of wet days in observed station. After this rank, GCM output will be zero and identify same threshold for future projection. Normal rainfall is classified as between threshold of extreme and no rain day. We assume monthly normal rainfall follow gamma distribution. Then, we mapped the CDF of GCM normal rainfall to station's one in each month and bias corrected rainfall is available. In summary, bias of GCM have been addressed efficiently and validated at point scale by seasonal climatology and at all stations for evaluating downscaled rainfall performance. The results show bias corrected and downscaled scheme is good enough for climate impact study.

  2. Estimation of typhoon rainfall in GaoPing River: A Multivariate Maximum Entropy Method

    NASA Astrophysics Data System (ADS)

    Pei-Jui, Wu; Hwa-Lung, Yu

    2016-04-01

    The heavy rainfall from typhoons is the main factor of the natural disaster in Taiwan, which causes the significant loss of human lives and properties. Statistically average 3.5 typhoons invade Taiwan every year, and the serious typhoon, Morakot in 2009, impacted Taiwan in recorded history. Because the duration, path and intensity of typhoon, also affect the temporal and spatial rainfall type in specific region , finding the characteristics of the typhoon rainfall type is advantageous when we try to estimate the quantity of rainfall. This study developed a rainfall prediction model and can be divided three parts. First, using the EEOF(extended empirical orthogonal function) to classify the typhoon events, and decompose the standard rainfall type of all stations of each typhoon event into the EOF and PC(principal component). So we can classify the typhoon events which vary similarly in temporally and spatially as the similar typhoon types. Next, according to the classification above, we construct the PDF(probability density function) in different space and time by means of using the multivariate maximum entropy from the first to forth moment statistically. Therefore, we can get the probability of each stations of each time. Final we use the BME(Bayesian Maximum Entropy method) to construct the typhoon rainfall prediction model , and to estimate the rainfall for the case of GaoPing river which located in south of Taiwan.This study could be useful for typhoon rainfall predictions in future and suitable to government for the typhoon disaster prevention .

  3. The role of stochastic storms on hillslope runoff generation and connectivity in a dryland basin

    NASA Astrophysics Data System (ADS)

    Michaelides, K.; Singer, M. B.; Mudd, S. M.

    2016-12-01

    Despite low annual rainfall, dryland basins can generate significant surface runoff during certain rainstorms, which can cause flash flooding and high rates of erosion. However, it remains challenging to anticipate the nature and frequency of runoff generation in hydrological systems which are driven by spatially and temporally stochastic rainstorms. In particular, the stochasticity of rainfall presents challenges to simulating the hydrological response of dryland basins and understanding flow connectivity from hillslopes to the channel. Here we simulate hillslope runoff generation using rainfall characteristics produced by a simple stochastic rainfall generator, which is based on a rich rainfall dataset from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, USA. We assess hillslope runoff generation using the hydrological model, COUP2D, driven by a subset of characteristic output from multiple ensembles of decadal monsoonal rainfall from the stochastic rainfall generator. The rainfall generator operates across WGEW by simulating storms with areas smaller than the basin and enables explicit characterization of rainfall characteristics at any location. We combine the characteristics of rainfall intensity and duration with data on rainstorm area and location to model the surface runoff properties (depth, velocity, duration, distance downslope) on a range of hillslopes within the basin derived from LiDAR analysis. We also analyze connectivity of flow from hillslopes to the channel for various combinations of hillslopes and storms. This approach provides a framework for understanding spatial and temporal dynamics of runoff generation and connectivity that is faithful to the hydrological characteristics of dryland environments.

  4. Automatic Calibration of a Distributed Rainfall-Runoff Model, Using the Degree-Day Formulation for Snow Melting, Within DMIP2 Project

    NASA Astrophysics Data System (ADS)

    Frances, F.; Orozco, I.

    2010-12-01

    This work presents the assessment of the TETIS distributed hydrological model in mountain basins of the American and Carson rivers in Sierra Nevada (USA) at hourly time discretization, as part of the DMIP2 Project. In TETIS each cell of the spatial grid conceptualizes the water cycle using six tanks connected among them. The relationship between tanks depends on the case, although at the end in most situations, simple linear reservoirs and flow thresholds schemes are used with exceptional results (Vélez et al., 1999; Francés et al., 2002). In particular, within the snow tank, snow melting is based in this work on the simple degree-day method with spatial constant parameters. The TETIS model includes an automatic calibration module, based on the SCE-UA algorithm (Duan et al., 1992; Duan et al., 1994) and the model effective parameters are organized following a split structure, as presented by Francés and Benito (1995) and Francés et al. (2007). In this way, the calibration involves in TETIS up to 9 correction factors (CFs), which correct globally the different parameter maps instead of each parameter cell value, thus reducing drastically the number of variables to be calibrated. This strategy allows for a fast and agile modification in different hydrological processes preserving the spatial structure of each parameter map. With the snowmelt submodel, automatic model calibration was carried out in three steps, separating the calibration of rainfall-runoff and snowmelt parameters. In the first step, the automatic calibration of the CFs during the period 05/20/1990 to 07/31/1990 in the American River (without snow influence), gave a Nash-Sutcliffe Efficiency (NSE) index of 0.92. The calibration of the three degree-day parameters was done using all the SNOTEL stations in the American and Carson rivers. Finally, using previous calibrations as initial values, the complete calibration done in the Carson River for the period 10/01/1992 to 07/31/1993 gave a NSE index of 0.86. The temporal and spatial validation using five periods must be considered in both rivers excellent for discharges (NSEs higher than 0.76) and good for snow distribution (daily spatial coverage errors ranging from -10 to 27%). In conclusion, this work demonstrates: 1.- The viability of automatic calibration of distributed models, with the corresponding personal time saving and maximum exploitation of the available information. 2.- The good performance of the degree-day snowmelt formulation even at hourly time discretization, in spite of its simplicity.

  5. Detecting Climate Variability in Tropical Rainfall

    NASA Astrophysics Data System (ADS)

    Berg, W.

    2004-05-01

    A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to El Niño is substantially smaller due to decreased rainfall in the west Pacific partially canceling increases in the central and east Pacific. These differences are not limited to the long-term merged rainfall products using infrared data, but are also exist in state-of-the-art rainfall retrievals from the active and passive microwave sensors on board the Tropical Rainfall Measuring Mission (TRMM). For example, large differences exist in the response of tropical mean rainfall retrieved from the TRMM microwave imager (TMI) 2A12 algorithm and the precipitation radar (PR) 2A25 algorithm to the 1997/98 El Niño. To assist scientists attempting to wade through the vast array of climate rainfall products currently available, and to help them determine whether systematic biases in these rainfall products impact the conclusions of a given study, we have developed a Climate Rainfall Data Center (CRDC). The CRDC web site (rain.atmos.colostate.edu/CRDC) provides climate researchers information on the various rainfall datasets available as well as access to experts in the field of satellite rainfall retrievals to assist them in the appropriate selection and use of climate rainfall products.

  6. Estimation of synthetic flood design hydrographs using a distributed rainfall-runoff model coupled with a copula-based single storm rainfall generator

    NASA Astrophysics Data System (ADS)

    Candela, A.; Brigandì, G.; Aronica, G. T.

    2014-07-01

    In this paper a procedure to derive synthetic flood design hydrographs (SFDH) using a bivariate representation of rainfall forcing (rainfall duration and intensity) via copulas, which describes and models the correlation between two variables independently of the marginal laws involved, coupled with a distributed rainfall-runoff model, is presented. Rainfall-runoff modelling (R-R modelling) for estimating the hydrological response at the outlet of a catchment was performed by using a conceptual fully distributed procedure based on the Soil Conservation Service - Curve Number method as an excess rainfall model and on a distributed unit hydrograph with climatic dependencies for the flow routing. Travel time computation, based on the distributed unit hydrograph definition, was performed by implementing a procedure based on flow paths, determined from a digital elevation model (DEM) and roughness parameters obtained from distributed geographical information. In order to estimate the primary return period of the SFDH, which provides the probability of occurrence of a hydrograph flood, peaks and flow volumes obtained through R-R modelling were treated statistically using copulas. Finally, the shapes of hydrographs have been generated on the basis of historically significant flood events, via cluster analysis. An application of the procedure described above has been carried out and results presented for the case study of the Imera catchment in Sicily, Italy.

  7. Using Conditional Analysis to Investigate Spatial and Temporal patterns in Upland Rainfall

    NASA Astrophysics Data System (ADS)

    Sakamoto Ferranti, Emma Jayne; Whyatt, James Duncan; Timmis, Roger James

    2010-05-01

    The seasonality and characteristics of rainfall in the UK are altering under a changing climate. Summer rainfall is generally decreasing whereas winter rainfall is increasing, particularly in northern and western areas (Maraun et al., 2008) and recent research suggests these rainfall increases are amplified in upland areas (Burt and Ferranti, 2010). Conditional analysis has been used to investigate these rainfall patterns in Cumbria, an upland area in northwest England. Cumbria was selected as an example of a topographically diverse mid-latitude region that has a predominately maritime and westerly-defined climate. Moreover it has a dense network of more than 400 rain gauges that have operated for periods between 1900 and present day. Cumbria has experienced unprecedented flooding in the past decade and understanding the spatial and temporal changes in this and other upland regions is important for water resource and ecosystem management. The conditional analysis method examines the spatial and temporal variations in rainfall under different synoptic conditions and in different geographic sub-regions (Ferranti et al., 2009). A daily synoptic typing scheme, the Lamb Weather Catalogue, was applied to classify rainfall into different weather types, for example: south-westerly, westerly, easterly or cyclonic. Topographic descriptors developed using GIS were used to classify rain gauges into 6 directionally-dependant geographic sub-regions: coastal, windward-lowland, windward-upland, leeward-upland, leeward-lowland, secondary upland. Combining these classification methods enabled seasonal rainfall climatologies to be produced for specific weather types and sub-regions. Winter rainfall climatologies were constructed for all 6 sub-regions for 3 weather types - south-westerly (SW), westerly (W), and cyclonic (C); these weather types contribute more than 50% of total winter rainfall. The frequency of wet-days (>0.3mm), the total winter rainfall and the average wet day rainfall amount were analysed for each rainfall sub-region and weather type from 1961-2007 (Ferranti et al., 2010). The conditional analysis showed total rainfall under SW and W weather types to be increasing, with the greatest increases observed in the upland sub-regions. The increase in total SW rainfall is driven by a greater occurrence of SW rain days, and there has been little change to the average wet-day rainfall amount. The increase in total W rainfall is driven in part by an increase in the frequency of wet-days, but more significantly by an increase in the average wet-day rainfall amount. In contrast, total rainfall under C weather types has decreased. Further analysis will investigate how spring, summer and autumn rainfall climatologies have changed for the different weather types and sub-regions. Conditional analysis that combines GIS and synoptic climatology provides greater insights into the processes underlying readily available meteorological data. Dissecting Cumbrian rainfall data under different synoptic and geographic conditions showed the observed changes in winter rainfall are not uniform for the different weather types, nor for the different geographic sub-regions. These intricate details are often lost during coarser resolution analysis, and conditional analysis will provide a detailed synopsis of Cumbrian rainfall processes against which Regional Climate Model (RCM) performance can be tested. Conventionally RCMs try to simulate composite rainfall over many different weather types and sub-regions and by undertaking conditional validation the model performance for individual processes can be tested. This will help to target improvements in model performance, and ultimately lead to better simulation of rainfall in areas of complex topography. BURT, T. P. & FERRANTI, E. J. S. (2010) Changing patterns of heavy rainfall in upland areas: a case study from northern England. Atmospheric Environment, [in review]. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R. J. (2009) Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters, 10, 177-184. FERRANTI, E. J. S., WHYATT, J. D., TIMMIS, R. J. & DAVIES, G. (2010) Using GIS to investigate spatial and temporal variations in upland rainfall. Transactions in GIS, [in press]. MARAUN, D., OSBORN, T. J. & GILLETT, N. P. (2008) United Kingdom daily precipitation intensity: improved early data, error estimates and an update from 2000 to 2006. International Journal of Climatology, 28, 833-842.

  8. On the uncertainties associated with using gridded rainfall data as a proxy for observed

    NASA Astrophysics Data System (ADS)

    Tozer, C. R.; Kiem, A. S.; Verdon-Kidd, D. C.

    2011-09-01

    Gridded rainfall datasets are used in many hydrological and climatological studies, in Australia and elsewhere, including for hydroclimatic forecasting, climate attribution studies and climate model performance assessments. The attraction of the spatial coverage provided by gridded data is clear, particularly in Australia where the spatial and temporal resolution of the rainfall gauge network is sparse. However, the question that must be asked is whether it is suitable to use gridded data as a proxy for observed point data, given that gridded data is inherently "smoothed" and may not necessarily capture the temporal and spatial variability of Australian rainfall which leads to hydroclimatic extremes (i.e. droughts, floods)? This study investigates this question through a statistical analysis of three monthly gridded Australian rainfall datasets - the Bureau of Meteorology (BOM) dataset, the Australian Water Availability Project (AWAP) and the SILO dataset. To demonstrate the hydrological implications of using gridded data as a proxy for gauged data, a rainfall-runoff model is applied to one catchment in South Australia (SA) initially using gridded data as the source of rainfall input and then gauged rainfall data. The results indicate a markedly different runoff response associated with each of the different sources of rainfall data. It should be noted that this study does not seek to identify which gridded dataset is the "best" for Australia, as each gridded data source has its pros and cons, as does gauged or point data. Rather the intention is to quantify differences between various gridded data sources and how they compare with gauged data so that these differences can be considered and accounted for in studies that utilise these gridded datasets. Ultimately, if key decisions are going to be based on the outputs of models that use gridded data, an estimate (or at least an understanding) of the uncertainties relating to the assumptions made in the development of gridded data and how that gridded data compares with reality should be made.

  9. Parameter uncertainty and nonstationarity in regional extreme rainfall frequency analysis in Qu River Basin, East China

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Xu, Y. P.; Gu, H.

    2014-12-01

    Traditionally, regional frequency analysis methods were developed for stationary environmental conditions. Nevertheless, recent studies have identified significant changes in hydrological records, leading to the 'death' of stationarity. Besides, uncertainty in hydrological frequency analysis is persistent. This study aims to investigate the impact of one of the most important uncertainty sources, parameter uncertainty, together with nonstationarity, on design rainfall depth in Qu River Basin, East China. A spatial bootstrap is first proposed to analyze the uncertainty of design rainfall depth estimated by regional frequency analysis based on L-moments and estimated on at-site scale. Meanwhile, a method combining the generalized additive models with 30-year moving window is employed to analyze non-stationarity existed in the extreme rainfall regime. The results show that the uncertainties of design rainfall depth with 100-year return period under stationary conditions estimated by regional spatial bootstrap can reach 15.07% and 12.22% with GEV and PE3 respectively. On at-site scale, the uncertainties can reach 17.18% and 15.44% with GEV and PE3 respectively. In non-stationary conditions, the uncertainties of maximum rainfall depth (corresponding to design rainfall depth) with 0.01 annual exceedance probability (corresponding to 100-year return period) are 23.09% and 13.83% with GEV and PE3 respectively. Comparing the 90% confidence interval, the uncertainty of design rainfall depth resulted from parameter uncertainty is less than that from non-stationarity frequency analysis with GEV, however, slightly larger with PE3. This study indicates that the spatial bootstrap can be successfully applied to analyze the uncertainty of design rainfall depth on both regional and at-site scales. And the non-stationary analysis shows that the differences between non-stationary quantiles and their stationary equivalents are important for decision makes of water resources management and risk management.

  10. Soil erosion predictions from a landscape evolution model - An assessment of a post-mining landform using spatial climate change analogues.

    PubMed

    Hancock, G R; Verdon-Kidd, D; Lowry, J B C

    2017-12-01

    Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  11. Evaluating rainfall errors in global climate models through cloud regimes

    NASA Astrophysics Data System (ADS)

    Tan, Jackson; Oreopoulos, Lazaros; Jakob, Christian; Jin, Daeho

    2017-07-01

    Global climate models suffer from a persistent shortcoming in their simulation of rainfall by producing too much drizzle and too little intense rain. This erroneous distribution of rainfall is a result of deficiencies in the representation of underlying processes of rainfall formation. In the real world, clouds are precursors to rainfall and the distribution of clouds is intimately linked to the rainfall over the area. This study examines the model representation of tropical rainfall using the cloud regime concept. In observations, these cloud regimes are derived from cluster analysis of joint-histograms of cloud properties retrieved from passive satellite measurements. With the implementation of satellite simulators, comparable cloud regimes can be defined in models. This enables us to contrast the rainfall distributions of cloud regimes in 11 CMIP5 models to observations and decompose the rainfall errors by cloud regimes. Many models underestimate the rainfall from the organized convective cloud regime, which in observation provides half of the total rain in the tropics. Furthermore, these rainfall errors are relatively independent of the model's accuracy in representing this cloud regime. Error decomposition reveals that the biases are compensated in some models by a more frequent occurrence of the cloud regime and most models exhibit substantial cancellation of rainfall errors from different regimes and regions. Therefore, underlying relatively accurate total rainfall in models are significant cancellation of rainfall errors from different cloud types and regions. The fact that a good representation of clouds does not lead to appreciable improvement in rainfall suggests a certain disconnect in the cloud-precipitation processes of global climate models.

  12. Estimating rainfall time series and model parameter distributions using model data reduction and inversion techniques

    NASA Astrophysics Data System (ADS)

    Wright, Ashley J.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.

    2017-08-01

    Floods are devastating natural hazards. To provide accurate, precise, and timely flood forecasts, there is a need to understand the uncertainties associated within an entire rainfall time series, even when rainfall was not observed. The estimation of an entire rainfall time series and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of entire rainfall input time series to be considered when estimating model parameters, and provides the ability to improve rainfall estimates from poorly gauged catchments. Current methods to estimate entire rainfall time series from streamflow records are unable to adequately invert complex nonlinear hydrologic systems. This study aims to explore the use of wavelets in the estimation of rainfall time series from streamflow records. Using the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia, it is shown that model parameter distributions and an entire rainfall time series can be estimated. Including rainfall in the estimation process improves streamflow simulations by a factor of up to 1.78. This is achieved while estimating an entire rainfall time series, inclusive of days when none was observed. It is shown that the choice of wavelet can have a considerable impact on the robustness of the inversion. Combining the use of a likelihood function that considers rainfall and streamflow errors with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.

  13. Scaling of hydrologic and erosion parameters derived from rainfall simulation

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; Lane, Patrick; Noske, Philip; Sherwin, Christopher

    2010-05-01

    Rainfall simulation experiments conducted at the temporal scale of minutes and the spatial scale of meters are often used to derive parameters for erosion and water quality models that operate at much larger temporal and spatial scales. While such parameterization is convenient, there has been little effort to validate this approach via nested experiments across these scales. In this paper we first review the literature relevant to some of these long acknowledged issues. We then present rainfall simulation and erosion plot data from a range of sources, including mining, roading, and forestry, to explore the issues associated with the scaling of parameters such as infiltration properties and erodibility coefficients.

  14. An early warning system for flash floods in Egypt

    NASA Astrophysics Data System (ADS)

    Cools, J.; Abdelkhalek, A.; El Sammany, M.; Fahmi, A. H.; Bauwens, W.; Huygens, M.

    2009-09-01

    This paper describes the development of the Flash Flood Manager, abbreviated as FlaFloM. The Flash Flood Manager is an early warning system for flash floods which is developed under the EU LIFE project FlaFloM. It is applied to Wadi Watier located in the Sinai peninsula (Egypt) and discharges in the Red Sea at the local economic and tourist hub of Nuweiba city. FlaFloM consists of a chain of four modules: 1) Data gathering module, 2) Forecasting module, 3) Decision support module or DSS and 4) Warning module. Each module processes input data and consequently send the output to the following module. In case of a flash flood emergency, the final outcome of FlaFloM is a flood warning which is sent out to decision-makers. The ‘data gathering module’ collects input data from different sources, validates the input, visualise data and exports it to other modules. Input data is provided ideally as water stage (h), discharge (Q) and rainfall (R) through real-time field measurements and external forecasts. This project, however, as occurs in many arid flash flood prone areas, was confronted with a scarcity of data, and insufficient insight in the characteristics that release a flash flood. Hence, discharge and water stage data were not available. Although rainfall measurements are available through classical off line rain gauges, the sparse rain gauges network couldn’t catch the spatial and temporal characteristics of rainfall events. To overcome this bottleneck, we developed rainfall intensity raster maps (mm/hr) with an hourly time step and raster cell of 1*1km. These maps are derived through downscaling from two sources of global instruments: the weather research and forecasting model (WRF) and satellite estimates from the Tropical Rainfall Measuring Mission (TRMM). The ‘forecast module’ comprises three numerical models that, using data from the gathering module performs simulations on command: a rainfall-runoff model, a river flow model, and a flood model. A rainfall-runoff model transforms the (forecasted) rainfall into a runoff volume (m³) and consequently a time-dependent discharge (m³/s) for each of the subwadis which is then routed through the main channel. The flood model then converts the discharges into water stages and generates a spatially-distributed flood map. The rainfall-runoff model is developed in Matlab-Simulink. The latter two models are implemented in Infoworks and Floodworks (both Wallingford Software), which allows an automatic feed into the warning module. The ‘warning module’ has two tasks: 1) to generate specific flags when modelling results exceed pre-established thresholds for rainfall, discharge, water stage, volumes, etc… 2) to communicate the given flags as warning signals to operators and/or stakeholders. The ‘decision support module’ or DSS finally gives to the user the capability of performing alternative analysis in order to have a better idea of the reliability of the forecasts by means of the comparison of already made forecasts with new data and a sensitivity analysis. Although FlaFloM is now able to send out warnings, the forecasts of this first version are expected to be insufficiently accurate which may lead to false warnings and loss of trust with decision-makers if not communicated well. When new insights and data are available, the model will be updated which improves the forecast accuracy. At this moment, we see two major fields of improvement: 1) better rainfall forecasts and 2) better insights of the response of an arid area to storm events. Firstly, the rainfall maps provided better insights in the spatial and temporal extent of a rainfall event, though absolute rainfall values are not considered accurate. The major reason behind is the fact that both global systems are insufficiently parameterized for arid areas. New data from an improved rain gauge network is expected to add value. Secondly, better insights need to be gained on the response of the Wadi to rainfall. The calibration of the hydrological models is currently based on literature and a geological surface map from which we derived infiltration rates. Modelled discharges or flood volumes can only be assessed qualitatively based on the field knowledge of local Bedouins inhabitants. To reduce uncertainty on forecasts and to guide on new data to be collected, a sensitivity analysis with rainfall scenarios is performed.

  15. Dynamical Downscaling of Seasonal Climate Prediction over Nordeste Brazil with ECHAM3 and NCEP's Regional Spectral Models at IRI.

    NASA Astrophysics Data System (ADS)

    Nobre, Paulo; Moura, Antonio D.; Sun, Liqiang

    2001-12-01

    This study presents an evaluation of a seasonal climate forecast done with the International Research Institute for Climate Prediction (IRI) dynamical forecast system (regional model nested into a general circulation model) over northern South America for January-April 1999, encompassing the rainy season over Brazil's Nordeste. The one-way nesting is one in two tiers: first the NCEP's Regional Spectral Model (RSM) runs with an 80-km grid mesh forced by the ECHAM3 atmospheric general circulation model (AGCM) outputs; then the RSM runs with a finer grid mesh (20 km) forced by the forecasts generated by the RSM-80. An ensemble of three realizations is done. Lower boundary conditions over the oceans for both ECHAM and RSM model runs are sea surface temperature forecasts over the tropical oceans. Soil moisture is initialized by ECHAM's inputs. The rainfall forecasts generated by the regional model are compared with those of the AGCM and observations. It is shown that the regional model at 80-km resolution improves upon the AGCM rainfall forecast, reducing both seasonal bias and root-mean-square error. On the other hand, the RSM-20 forecasts presented larger errors, with spatial patterns that resemble those of local topography. The better forecast of the position and width of the intertropical convergence zone (ITCZ) over the tropical Atlantic by the RSM-80 model is one of the principal reasons for better-forecast scores of the RSM-80 relative to the AGCM. The regional model improved the spatial as well as the temporal details of rainfall distribution, and also presenting the minimum spread among the ensemble members. The statistics of synoptic-scale weather variability on seasonal timescales were best forecast with the regional 80-km model over the Nordeste. The possibility of forecasting the frequency distribution of dry and wet spells within the rainy season is encouraging.

  16. Rain-fed fig yield as affected by rainfall distribution

    NASA Astrophysics Data System (ADS)

    Bagheri, Ensieh; Sepaskhah, Ali Reza

    2014-08-01

    Variable annual rainfall and its uneven distribution are the major uncontrolled inputs in rain-fed fig production and possibly the main cause of yield fluctuation in Istahban region of Fars Province, I.R. of Iran. This introduces a considerable risk in rain-fed fig production. The objective of this study was to find relationships between seasonal rainfall distribution and rain-fed fig production in Istahban region to determine the critical rainfall periods for rain-fed fig production and supplementary irrigation water application. Further, economic analysis for rain-fed fig production was considered in this region to control the risk of production. It is concluded that the monthly, seasonal and annual rainfall indices are able to show the effects of rainfall and its distribution on the rain-fed fig yield. Fig yield with frequent occurrence of 80 % is 374 kg ha-1. The internal rates of return for interest rate of 4, 8 and 12 % are 21, 58 and 146 %, respectively, that are economically feasible. It is concluded that the rainfall in spring especially in April and in December has negatively affected fig yield due to its interference with the life cycle of Blastophaga bees for pollination. Further, it is concluded that when the rainfall is limited, supplementary irrigation can be scheduled in March.

  17. PRESSCA: A regional operative Early Warning System for landslides risk scenario assessment

    NASA Astrophysics Data System (ADS)

    Ponziani, Francesco; Stelluti, Marco; Berni, Nicola; Brocca, Luca; Moramarco, Tommaso

    2013-04-01

    The Italian national alert system for the hydraulic and hydrogeological risk is ensured by the National Civil Protection Department, through the "Functional Centres" Network, together with scientific/technical Support Centres, named "Competence Centres". The role of the Functional Centres is to alert regional/national civil protection network, to manage the prediction and the monitoring phases, thus ensuring the flow of data for the management of the emergency. The Umbria regional alerting procedure is based on three increasing warning levels of criticality for 6 sub-areas (~1200 km²). Specifically, for each duration (from 1 to 48 hours), three criticality levels are assigned to the rainfall values corresponding to a recurrence interval of 2, 5, and 10 years. In order to improve confidence on the daily work for hydrogeological risk assessment and management, a simple and operational early warning system for the prediction of shallow landslide triggering on regional scale was implemented. The system is primarily based on rainfall thresholds, which represent the main element of evaluation for the early-warning procedures of the Italian Civil Protection system. Following previous studies highlighting that soil moisture conditions play a key role on landslide triggering, a continuous physically-based soil water balance model was implemented for the estimation of soil moisture conditions over the whole regional territory. In fact, a decreasing trend between the cumulated rainfall values over 24, 36 and 48 hours and the soil moisture conditions prior to past landslide events was observed. This trend provides an easy-to-use tool to dynamically adjust the operational rainfall thresholds with the soil moisture conditions simulated by the soil water balance model prior to rainfall events. The application of this procedure allowed decreasing the uncertainties tied to the application of the rainfall thresholds only. The system is actually operational in real-time and it was recently coupled with quantitative rainfall and temperature forecasts (given by the COSMO ME local scale models for Umbria) to extend the prediction up to 72 hours forecast. The main output is constituted by four spatially distributed early warning indicators (normal, caution, warning, alarm), in compliance with national and regional law, based on the comparison between the observed (forecasted) rainfall and the dynamic thresholds. The early warning indicators, calculated over the whole regional territory, are combined with susceptibility and vulnerability layers using a WEB-GIS platform, in order to build a near real time risk scenario. The main outcome of the system is a spatially distributed landslide hazard map with the highlight of areas where local risk situations may arise due to landslides induced by the interaction between meteorological forcing and the presence of vulnerability elements. The System is inclusive of specific sections dedicated to areas with specific risks (as debris flows prone areas), with specific thresholds. The main purpose of this study is firstly to describe the operational early warning system. Then, the integration of near real-time soil moisture data obtained through the satellite sensor ASCAT (Advanced SCATterometer) within the system is shown. This could allow enhancing the reliability of the modelled soil moisture data over the regional territory. The recent rainfall event of 11-14 November 2012 is used as case study. Reported triggered landslides are studied and used in order to check/refine the early warning system.

  18. Evaluation of a spatial rainfall generator and an interpolation methods for the creation of future gridded data sets over complex terrains

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Bruggeman, Adriana; Hadjinicolaou, Panos; Michaelides, Silas; Lange, Manfred A.

    2015-04-01

    Space-time variability of precipitation plays a key role as a driver of many processes in different environmental fields like hydrology, ecology, biology, agriculture, and natural hazards. The objective of this study was to compare two approaches for statistical downscaling of precipitation from climate models. The study was applied to the island of Cyprus, an orographically complex terrain. The first approach makes use of a spatial temporal Neyman-Scott Rectangular Pulses (NSRP) model and a previously tested interpolation scheme (Camera et al., 2014). The second approach is based on the use of the single site NSRP model and a simplified gridded scheme based on scaling coefficients obtained from past observations. The rainfall generators were evaluated on the period 1980-2010. Both approaches were subsequently used to downscale three RCMs from the EU ENSEMBLE project to calculate climate projections (2020-2050). The main advantage of the spatial-temporal approach is that it allows creating spatially consistent daily maps of precipitation. On the other hand, due to the assumptions made using a stochastic generator based on homogeneous Poisson processes, it shows a smoothing out of all the rainfall statistics (except mean and variance) all over the study area. This leads to high errors when analyzing indices related to extremes. Examples are the number of days with rainfall over 50 mm (R50 - mean error 65%), the 95th percentile value of rainy days (RT95 - mean error 19%), and the mean annual rainfall recorded on days with rainfall above the 95th percentile (RA95 - mean error 22%). The single site approach excludes the possibility of using the created gridded data sets for case studies involving spatial connection between grid cells (e.g. hydrologic modelling), but it leads to a better reproduction of rainfall statistics and properties. The errors for the extreme indices are in fact much lower: 17% for R50, 4% for RT95, and 2% for RA95. Future projections show a decrease of the mean annual rainfall (for both approaches) over the study area between 70 mm (≈15%) and 5 mm (≈1%), in comparison to the reference period 1980-2010. Regarding extremes, calculated only with the single site approach, the projections show a decrease of the R50 index between 25% and 7%, and of the RT95 between 8% and 0%. Thus, these projections indicate that a slight reduction in the number and intensity of extremes can be expected. Further research will be done to adapt and evaluate the use of a spatial-temporal generator with nonhomogeneous spatial activation of raincells (Burton et al., 2010) to the study area. Burton, A., Fowler, H.J., Kilsby, C.G., O'Connell, P. E., 2010a. A stochastic model for the spatial-temporal simulation of non-homogeneous rainfall occurrence and amounts, Water Resour. Res. 46, W11501. DOI: 10.1029/2009WR008884 Camera, C., Bruggeman, A., Hadjinicolaou, P., Pashiardis, S., Lange, M. A., 2014. Evaluation of interpolation techniques for the creation of gridded daily precipitation (1 × 1 km2); Cyprus, 1980-2010. J. Geophys. Res. Atmos., 119, 693-712. DOI: 10.1002/2013JD020611.

  19. Encounter risk analysis of rainfall and reference crop evapotranspiration in the irrigation district

    NASA Astrophysics Data System (ADS)

    Zhang, Jinping; Lin, Xiaomin; Zhao, Yong; Hong, Yang

    2017-09-01

    Rainfall and reference crop evapotranspiration are random but mutually affected variables in the irrigation district, and their encounter situation can determine water shortage risks under the contexts of natural water supply and demand. However, in reality, the rainfall and reference crop evapotranspiration may have different marginal distributions and their relations are nonlinear. In this study, based on the annual rainfall and reference crop evapotranspiration data series from 1970 to 2013 in the Luhun irrigation district of China, the joint probability distribution of rainfall and reference crop evapotranspiration are developed with the Frank copula function. Using the joint probability distribution, the synchronous-asynchronous encounter risk, conditional joint probability, and conditional return period of different combinations of rainfall and reference crop evapotranspiration are analyzed. The results show that the copula-based joint probability distributions of rainfall and reference crop evapotranspiration are reasonable. The asynchronous encounter probability of rainfall and reference crop evapotranspiration is greater than their synchronous encounter probability, and the water shortage risk associated with meteorological drought (i.e. rainfall variability) is more prone to appear. Compared with other states, there are higher conditional joint probability and lower conditional return period in either low rainfall or high reference crop evapotranspiration. For a specifically high reference crop evapotranspiration with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is increased with the decrease in frequency. For a specifically low rainfall with a certain frequency, the encounter risk of low rainfall and high reference crop evapotranspiration is decreased with the decrease in frequency. When either the high reference crop evapotranspiration exceeds a certain frequency or low rainfall does not exceed a certain frequency, the higher conditional joint probability and lower conditional return period of various combinations likely cause a water shortage, but the water shortage is not severe.

  20. Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan, provides visible, infrared, and microwave observations of tropical and subtropical rain systems.The satellite observations are complemented by ground radar and rain gauge measurements to validate satellite rain estimation techniques. Goddard Space Flight Center's involvement includes the observatory, four instruments, integration and testing of the observatory, data processing and distribution, and satellite operations. TRMM has a design lifetime of three years. Data generated from TRMM and archived at the GDAAC are useful not only for hydrologists, atmospheric scientists, and climatologists, but also for the health community studying infectious diseases, the ocean research community, and the agricultural community.

Top