Mu, Guangyu; Liu, Ying; Wang, Limin
2015-01-01
The spatial pooling method such as spatial pyramid matching (SPM) is very crucial in the bag of features model used in image classification. SPM partitions the image into a set of regular grids and assumes that the spatial layout of all visual words obey the uniform distribution over these regular grids. However, in practice, we consider that different visual words should obey different spatial layout distributions. To improve SPM, we develop a novel spatial pooling method, namely spatial distribution pooling (SDP). The proposed SDP method uses an extension model of Gauss mixture model to estimate the spatial layout distributions of the visual vocabulary. For each visual word type, SDP can generate a set of flexible grids rather than the regular grids from the traditional SPM. Furthermore, we can compute the grid weights for visual word tokens according to their spatial coordinates. The experimental results demonstrate that SDP outperforms the traditional spatial pooling methods, and is competitive with the state-of-the-art classification accuracy on several challenging image datasets.
2015-01-01
Background Multiscale approaches for integrating submodels of various levels of biological organization into a single model became the major tool of systems biology. In this paper, we have constructed and simulated a set of multiscale models of spatially distributed microbial communities and study an influence of unevenly distributed environmental factors on the genetic diversity and evolution of the community members. Results Haploid Evolutionary Constructor software http://evol-constructor.bionet.nsc.ru/ was expanded by adding the tool for the spatial modeling of a microbial community (1D, 2D and 3D versions). A set of the models of spatially distributed communities was built to demonstrate that the spatial distribution of cells affects both intensity of selection and evolution rate. Conclusion In spatially heterogeneous communities, the change in the direction of the environmental flow might be reflected in local irregular population dynamics, while the genetic structure of populations (frequencies of the alleles) remains stable. Furthermore, in spatially heterogeneous communities, the chemotaxis might dramatically affect the evolution of community members. PMID:25708911
USDA-ARS?s Scientific Manuscript database
Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Song, Xuehang; Ye, Ming
A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less
Bonetti, Marco; Pagano, Marcello
2005-03-15
The topic of this paper is the distribution of the distance between two points distributed independently in space. We illustrate the use of this interpoint distance distribution to describe the characteristics of a set of points within some fixed region. The properties of its sample version, and thus the inference about this function, are discussed both in the discrete and in the continuous setting. We illustrate its use in the detection of spatial clustering by application to a well-known leukaemia data set, and report on the results of a simulation experiment designed to study the power characteristics of the methods within that study region and in an artificial homogenous setting. Copyright (c) 2004 John Wiley & Sons, Ltd.
Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization
D'Agostino, V.; Greene, E.A.; Passarella, G.; Vurro, M.
1998-01-01
Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.Spatial and temporal behavior of hydrochemical parameters in groundwater can be studied using tools provided by geostatistics. The cross-variogram can be used to measure the spatial increments between observations at two given times as a function of distance (spatial structure). Taking into account the existence of such a spatial structure, two different data sets (sampled at two different times), representing concentrations of the same hydrochemical parameter, can be analyzed by cokriging in order to reduce the uncertainty of the estimation. In particular, if one of the two data sets is a subset of the other (that is, an undersampled set), cokriging allows us to study the spatial distribution of the hydrochemical parameter at that time, while also considering the statistical characteristics of the full data set established at a different time. This paper presents an application of cokriging by using temporal subsets to study the spatial distribution of nitrate concentration in the aquifer of the Lucca Plain, central Italy. Three data sets of nitrate concentration in groundwater were collected during three different periods in 1991. The first set was from 47 wells, but the second and the third are undersampled and represent 28 and 27 wells, respectively. Comparing the result of cokriging with ordinary kriging showed an improvement of the uncertainty in terms of reducing the estimation variance. The application of cokriging to the undersampled data sets reduced the uncertainty in estimating nitrate concentration and at the same time decreased the cost of the field sampling and laboratory analysis.
Wu, Jidong; Li, Ying; Li, Ning; Shi, Peijun
2018-01-01
The extent of economic losses due to a natural hazard and disaster depends largely on the spatial distribution of asset values in relation to the hazard intensity distribution within the affected area. Given that statistical data on asset value are collected by administrative units in China, generating spatially explicit asset exposure maps remains a key challenge for rapid postdisaster economic loss assessment. The goal of this study is to introduce a top-down (or downscaling) approach to disaggregate administrative-unit level asset value to grid-cell level. To do so, finding the highly correlated "surrogate" indicators is the key. A combination of three data sets-nighttime light grid, LandScan population grid, and road density grid, is used as ancillary asset density distribution information for spatializing the asset value. As a result, a high spatial resolution asset value map of China for 2015 is generated. The spatial data set contains aggregated economic value at risk at 30 arc-second spatial resolution. Accuracy of the spatial disaggregation reflects redistribution errors introduced by the disaggregation process as well as errors from the original ancillary data sets. The overall accuracy of the results proves to be promising. The example of using the developed disaggregated asset value map in exposure assessment of watersheds demonstrates that the data set offers immense analytical flexibility for overlay analysis according to the hazard extent. This product will help current efforts to analyze spatial characteristics of exposure and to uncover the contributions of both physical and social drivers of natural hazard and disaster across space and time. © 2017 Society for Risk Analysis.
Daniel J. Isaak; Russell F. Thurow
2006-01-01
Spatially continuous sampling designs, when temporally replicated, provide analytical flexibility and are unmatched in their ability to provide a dynamic system view. We have compiled such a data set by georeferencing the network-scale distribution of Chinook salmon (Oncorhynchus tshawytscha) redds across a large wilderness basin (7330 km2) in...
Thompson, Steven K
2006-12-01
A flexible class of adaptive sampling designs is introduced for sampling in network and spatial settings. In the designs, selections are made sequentially with a mixture distribution based on an active set that changes as the sampling progresses, using network or spatial relationships as well as sample values. The new designs have certain advantages compared with previously existing adaptive and link-tracing designs, including control over sample sizes and of the proportion of effort allocated to adaptive selections. Efficient inference involves averaging over sample paths consistent with the minimal sufficient statistic. A Markov chain resampling method makes the inference computationally feasible. The designs are evaluated in network and spatial settings using two empirical populations: a hidden human population at high risk for HIV/AIDS and an unevenly distributed bird population.
Spatial analysis of cities using Renyi entropy and fractal parameters
NASA Astrophysics Data System (ADS)
Chen, Yanguang; Feng, Jian
2017-12-01
The spatial distributions of cities fall into two groups: one is the simple distribution with characteristic scale (e.g. exponential distribution), and the other is the complex distribution without characteristic scale (e.g. power-law distribution). The latter belongs to scale-free distributions, which can be modeled with fractal geometry. However, fractal dimension is not suitable for the former distribution. In contrast, spatial entropy can be used to measure any types of urban distributions. This paper is devoted to generalizing multifractal parameters by means of dual relation between Euclidean and fractal geometries. The main method is mathematical derivation and empirical analysis, and the theoretical foundation is the discovery that the normalized fractal dimension is equal to the normalized entropy. Based on this finding, a set of useful spatial indexes termed dummy multifractal parameters are defined for geographical analysis. These indexes can be employed to describe both the simple distributions and complex distributions. The dummy multifractal indexes are applied to the population density distribution of Hangzhou city, China. The calculation results reveal the feature of spatio-temporal evolution of Hangzhou's urban morphology. This study indicates that fractal dimension and spatial entropy can be combined to produce a new methodology for spatial analysis of city development.
NASA Astrophysics Data System (ADS)
Bertrand, Sophie; Díaz, Erich; Lengaigne, Matthieu
2008-10-01
Peruvian anchovy ( Engraulis ringens) stock abundance is tightly driven by the high and unpredictable variability of the Humboldt Current Ecosystem. Management of the fishery therefore cannot rely on mid- or long-term management policy alone but needs to be adaptive at relatively short time scales. Regular acoustic surveys are performed on the stock at intervals of 2 to 4 times a year, but there is a need for more time continuous monitoring indicators to ensure that management can respond at suitable time scales. Existing literature suggests that spatially explicit data on the location of fishing activities could be used as a proxy for target stock distribution. Spatially explicit commercial fishing data could therefore guide adaptive management decisions at shorter time scales than is possible through scientific stock surveys. In this study we therefore aim to (1) estimate the position of fishing operations for the entire fleet of Peruvian anchovy purse-seiners using the Peruvian satellite vessel monitoring system (VMS), and (2) quantify the extent to which the distribution of purse-seine sets describes anchovy distribution. To estimate fishing set positions from vessel tracks derived from VMS data we developed a methodology based on artificial neural networks (ANN) trained on a sample of fishing trips with known fishing set positions (exact fishing positions are known for approximately 1.5% of the fleet from an at-sea observer program). The ANN correctly identified 83% of the real fishing sets and largely outperformed comparative linear models. This network is then used to forecast fishing operations for those trips where no observers were onboard. To quantify the extent to which fishing set distribution was correlated to stock distribution we compared three metrics describing features of the distributions (the mean distance to the coast, the total area of distribution, and a clustering index) for concomitant acoustic survey observations and fishing set positions identified from VMS. For two of these metrics (mean distance to the coast and clustering index), fishing and survey data were significantly correlated. We conclude that the location of purse-seine fishing sets yields significant and valuable information on the distribution of the Peruvian anchovy stock and ultimately on its vulnerability to the fishery. For example, a high concentration of sets in the near coastal zone could potentially be used as a warning signal of high levels of stock vulnerability and trigger appropriate management measures aimed at reducing fishing effort.
The accuracy of thematic map products is not spatially homogenous, but instead variable across most landscapes. Properly analyzing and representing the spatial distribution (pattern) of thematic map accuracy would provide valuable user information for assessing appropriate applic...
Assessing modelled spatial distributions of ice water path using satellite data
NASA Astrophysics Data System (ADS)
Eliasson, S.; Buehler, S. A.; Milz, M.; Eriksson, P.; John, V. O.
2010-05-01
The climate models used in the IPCC AR4 show large differences in monthly mean cloud ice. The most valuable source of information that can be used to potentially constrain the models is global satellite data. For this, the data sets must be long enough to capture the inter-annual variability of Ice Water Path (IWP). PATMOS-x was used together with ISCCP for the annual cycle evaluation in Fig. 7 while ECHAM-5 was used for the correlation with other models in Table 3. A clear distinction between ice categories in satellite retrievals, as desired from a model point of view, is currently impossible. However, long-term satellite data sets may still be used to indicate the climatology of IWP spatial distribution. We evaluated satellite data sets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, to determine which data sets can be used to evaluate the climate models. IWP data from CloudSat cloud profiling radar provides the most advanced data set on clouds. As CloudSat data are too short to evaluate the model data directly, it was mainly used here to evaluate IWP from the other satellite data sets. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the best of the two. As PATMOS-x extends over more than 25 years and is in fairly close agreement with CloudSat, it was chosen as the reference data set for the model evaluation. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is the GCM from IPCC AR4 closest to satellite observations.
Verifying the Dependence of Fractal Coefficients on Different Spatial Distributions
NASA Astrophysics Data System (ADS)
Gospodinov, Dragomir; Marekova, Elisaveta; Marinov, Alexander
2010-01-01
A fractal distribution requires that the number of objects larger than a specific size r has a power-law dependence on the size N(r) = C/rD∝r-D where D is the fractal dimension. Usually the correlation integral is calculated to estimate the correlation fractal dimension of epicentres. A `box-counting' procedure could also be applied giving the `capacity' fractal dimension. The fractal dimension can be an integer and then it is equivalent to a Euclidean dimension (it is zero of a point, one of a segment, of a square is two and of a cube is three). In general the fractal dimension is not an integer but a fractional dimension and there comes the origin of the term `fractal'. The use of a power-law to statistically describe a set of events or phenomena reveals the lack of a characteristic length scale, that is fractal objects are scale invariant. Scaling invariance and chaotic behavior constitute the base of a lot of natural hazards phenomena. Many studies of earthquakes reveal that their occurrence exhibits scale-invariant properties, so the fractal dimension can characterize them. It has first been confirmed that both aftershock rate decay in time and earthquake size distribution follow a power law. Recently many other earthquake distributions have been found to be scale-invariant. The spatial distribution of both regional seismicity and aftershocks show some fractal features. Earthquake spatial distributions are considered fractal, but indirectly. There are two possible models, which result in fractal earthquake distributions. The first model considers that a fractal distribution of faults leads to a fractal distribution of earthquakes, because each earthquake is characteristic of the fault on which it occurs. The second assumes that each fault has a fractal distribution of earthquakes. Observations strongly favour the first hypothesis. The fractal coefficients analysis provides some important advantages in examining earthquake spatial distribution, which are:—Simple way to quantify scale-invariant distributions of complex objects or phenomena by a small number of parameters.—It is becoming evident that the applicability of fractal distributions to geological problems could have a more fundamental basis. Chaotic behaviour could underlay the geotectonic processes and the applicable statistics could often be fractal. The application of fractal distribution analysis has, however, some specific aspects. It is usually difficult to present an adequate interpretation of the obtained values of fractal coefficients for earthquake epicenter or hypocenter distributions. That is why in this paper we aimed at other goals—to verify how a fractal coefficient depends on different spatial distributions. We simulated earthquake spatial data by generating randomly points first in a 3D space - cube, then in a parallelepiped, diminishing one of its sides. We then continued this procedure in 2D and 1D space. For each simulated data set we calculated the points' fractal coefficient (correlation fractal dimension of epicentres) and then checked for correlation between the coefficients values and the type of spatial distribution. In that way one can obtain a set of standard fractal coefficients' values for varying spatial distributions. These then can be used when real earthquake data is analyzed by comparing the real data coefficients values to the standard fractal coefficients. Such an approach can help in interpreting the fractal analysis results through different types of spatial distributions.
Testing hypotheses on distribution shifts and changes in phenology of imperfectly detectable species
Chambert, Thierry A.; Kendall, William L.; Hines, James E.; Nichols, James D.; Pedrini, Paolo; Waddle, J. Hardin; Tavecchia, Giacomo; Walls, Susan C.; Tenan, Simone
2015-01-01
With ongoing climate change, many species are expected to shift their spatial and temporal distributions. To document changes in species distribution and phenology, detection/non-detection data have proven very useful. Occupancy models provide a robust way to analyse such data, but inference is usually focused on species spatial distribution, not phenology.We present a multi-season extension of the staggered-entry occupancy model of Kendall et al. (2013, Ecology, 94, 610), which permits inference about the within-season patterns of species arrival and departure at sampling sites. The new model presented here allows investigation of species phenology and spatial distribution across years, as well as site extinction/colonization dynamics.We illustrate the model with two data sets on European migratory passerines and one data set on North American treefrogs. We show how to derive several additional phenological parameters, such as annual mean arrival and departure dates, from estimated arrival and departure probabilities.Given the extent of detection/non-detection data that are available, we believe that this modelling approach will prove very useful to further understand and predict species responses to climate change.
NASA Astrophysics Data System (ADS)
Cao, X.; Tian, F.; Telford, R.; Ni, J.; Xu, Q.; Chen, F.; Liu, X.; Stebich, M.; Zhao, Y.; Herzschuh, U.
2017-12-01
Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (Pann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7°N, 100.5°E; north-east Tibetan Plateau), Gonghai Lake (38.9°N, 112.2°E; north China) and Sihailongwan Lake (42.3°N, 126.6°E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to ca. 1000 km in radius because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. Based on our results we conclude that the optimal calibration-set should 1) cover a reasonably large spatial extent with an even distribution of modern pollen samples; 2) possess good model performance as indicated by cross-validation, high analogue quality, and excellent fit with the target fossil pollen spectra; 3) possess high taxonomic resolution, and 4) obey the modern and past distribution ranges of taxa inferred from palaeo-genetic and macrofossil studies.
A Classroom Exercise in Spatial Analysis Using an Imaginary Data Set.
ERIC Educational Resources Information Center
Kopaska-Merkel, David C.
One skill that elementary students need to acquire is the ability to analyze spatially distributed data. In this activity students are asked to complete the following tasks: (1) plot a set of data (related to "mud-sharks"--an imaginary fish) on a map of the state of Alabama, (2) identify trends in the data, (3) make graphs using the data…
Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy
2014-01-16
The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers.
2014-01-01
Background The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Results Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. Conclusions The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers. PMID:24433256
Statistical analysis of content of Cs-137 in soils in Bansko-Razlog region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobilarov, R. G., E-mail: rkobi@tu-sofia.bg
Statistical analysis of the data set consisting of the activity concentrations of {sup 137}Cs in soils in Bansko–Razlog region is carried out in order to establish the dependence of the deposition and the migration of {sup 137}Cs on the soil type. The descriptive statistics and the test of normality show that the data set have not normal distribution. Positively skewed distribution and possible outlying values of the activity of {sup 137}Cs in soils were observed. After reduction of the effects of outliers, the data set is divided into two parts, depending on the soil type. Test of normality of themore » two new data sets shows that they have a normal distribution. Ordinary kriging technique is used to characterize the spatial distribution of the activity of {sup 137}Cs over an area covering 40 km{sup 2} (whole Razlog valley). The result (a map of the spatial distribution of the activity concentration of {sup 137}Cs) can be used as a reference point for future studies on the assessment of radiological risk to the population and the erosion of soils in the study area.« less
NASA Technical Reports Server (NTRS)
Parse, Joseph B.; Wert, J. A.
1991-01-01
Inhomogeneities in the spatial distribution of second phase particles in engineering materials are known to affect certain mechanical properties. Progress in this area has been hampered by the lack of a convenient method for quantitative description of the spatial distribution of the second phase. This study intends to develop a broadly applicable method for the quantitative analysis and description of the spatial distribution of second phase particles. The method was designed to operate on a desktop computer. The Dirichlet tessellation technique (geometrical method for dividing an area containing an array of points into a set of polygons uniquely associated with the individual particles) was selected as the basis of an analysis technique implemented on a PC. This technique is being applied to the production of Al sheet by PM processing methods; vacuum hot pressing, forging, and rolling. The effect of varying hot working parameters on the spatial distribution of aluminum oxide particles in consolidated sheet is being studied. Changes in distributions of properties such as through-thickness near-neighbor distance correlate with hot-working reduction.
Spatial coding-based approach for partitioning big spatial data in Hadoop
NASA Astrophysics Data System (ADS)
Yao, Xiaochuang; Mokbel, Mohamed F.; Alarabi, Louai; Eldawy, Ahmed; Yang, Jianyu; Yun, Wenju; Li, Lin; Ye, Sijing; Zhu, Dehai
2017-09-01
Spatial data partitioning (SDP) plays a powerful role in distributed storage and parallel computing for spatial data. However, due to skew distribution of spatial data and varying volume of spatial vector objects, it leads to a significant challenge to ensure both optimal performance of spatial operation and data balance in the cluster. To tackle this problem, we proposed a spatial coding-based approach for partitioning big spatial data in Hadoop. This approach, firstly, compressed the whole big spatial data based on spatial coding matrix to create a sensing information set (SIS), including spatial code, size, count and other information. SIS was then employed to build spatial partitioning matrix, which was used to spilt all spatial objects into different partitions in the cluster finally. Based on our approach, the neighbouring spatial objects can be partitioned into the same block. At the same time, it also can minimize the data skew in Hadoop distributed file system (HDFS). The presented approach with a case study in this paper is compared against random sampling based partitioning, with three measurement standards, namely, the spatial index quality, data skew in HDFS, and range query performance. The experimental results show that our method based on spatial coding technique can improve the query performance of big spatial data, as well as the data balance in HDFS. We implemented and deployed this approach in Hadoop, and it is also able to support efficiently any other distributed big spatial data systems.
Determining Global Population Distribution: Methods, Applications and Data
Balk, D.L.; Deichmann, U.; Yetman, G.; Pozzi, F.; Hay, S.I.; Nelson, A.
2011-01-01
Evaluating the total numbers of people at risk from infectious disease in the world requires not just tabular population data, but data that are spatially explicit and global in extent at a moderate resolution. This review describes the basic methods for constructing estimates of global population distribution with attention to recent advances in improving both spatial and temporal resolution. To evaluate the optimal resolution for the study of disease, the native resolution of the data inputs as well as that of the resulting outputs are discussed. Assumptions used to produce different population data sets are also described, with their implications for the study of infectious disease. Lastly, the application of these population data sets in studies to assess disease distribution and health impacts is reviewed. The data described in this review are distributed in the accompanying DVD. PMID:16647969
NASA Astrophysics Data System (ADS)
Wegehenkel, M.
In this paper, long-term effects of different afforestation scenarios on landscape wa- ter balance will be analyzed taking into account the results of a regional case study. This analysis is based on using a GIS-coupled simulation model for the the spatially distributed calculation of water balance.For this purpose, the modelling system THE- SEUS with a simple GIS-interface will be used. To take into account the special case of change in forest cover proportion, THESEUS was enhanced with a simple for- est growth model. In the regional case study, model runs will be performed using a detailed spatial data set from North-East Germany. This data set covers a mesoscale catchment located at the moraine landscape of North-East Germany. Based on this data set, the influence of the actual landuse and of different landuse change scenarios on water balance dynamics will be investigated taking into account the spatial distributed modelling results from THESEUS. The model was tested using different experimen- tal data sets from field plots as well as obsverded catchment discharge. Additionally to such convential validation techniques, remote sensing data were used to check the simulated regional distribution of water balance components like evapotranspiration in the catchment.
Spatiotemporal analysis of Quaternary normal faults in the Northern Rocky Mountains, USA
NASA Astrophysics Data System (ADS)
Davarpanah, A.; Babaie, H. A.; Reed, P.
2010-12-01
The mid-Tertiary Basin-and-Range extensional tectonic event developed most of the normal faults that bound the ranges in the northern Rocky Mountains within Montana, Wyoming, and Idaho. The interaction of the thermally induced stress field of the Yellowstone hot spot with the existing Basin-and-Range fault blocks, during the last 15 my, has produced a new, spatially and temporally variable system of normal faults in these areas. The orientation and spatial distribution of the trace of these hot-spot induced normal faults, relative to earlier Basin-and-Range faults, have significant implications for the effect of the temporally varying and spatially propagating thermal dome on the growth of new hot spot related normal faults and reactivation of existing Basin-and-Range faults. Digitally enhanced LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 4 and 5 Thematic Mapper (TM) bands, with spatial resolution of 30 m, combined with analytical GIS and geological techniques helped in determining and analyzing the lineaments and traces of the Quaternary, thermally-induced normal faults in the study area. Applying the color composite (CC) image enhancement technique, the combination of bands 3, 2 and 1 of the ETM+ and TM images was chosen as the best statistical choice to create a color composite for lineament identification. The spatiotemporal analysis of the Quaternary normal faults produces significant information on the structural style, timing, spatial variation, spatial density, and frequency of the faults. The seismic Quaternary normal faults, in the whole study area, are divided, based on their age, into four specific sets, which from oldest to youngest include: Quaternary (>1.6 Ma), middle and late Quaternary (>750 ka), latest Quaternary (>15 ka), and the last 150 years. A density map for the Quaternary faults reveals that most active faults are near the current Yellowstone National Park area (YNP), where most seismically active faults, in the past 1.6 my, are located. The GIS based autocorrelation method, applied to the trace orientation, length, frequency, and spatial distribution for each age-defined fault set, revealed spatial homogeneity for each specific set. The results of the method of Moran`sI and Geary`s C show no spatial autocorrelation among the trend of the fault traces and their location. Our results suggest that while lineaments of similar age define a clustered pattern in each domain, the overall distribution pattern of lineaments with different ages seems to be non-uniform (random). The directional distribution analysis reveals a distinct range of variation for fault traces of different ages (i.e., some displaying ellipsis behavior). Among the Quaternary normal fault sets, the youngest lineament set (i.e., last 150 years) defines the greatest ellipticity (eccentricity) and the least lineaments distribution variation. The frequency rose diagram for the entire Quaternary normal faults, shows four major modes (around 360o, 330o, 300o, and 270o), and two minor modes (around 235 and 205).
Spatial distribution of citizen science casuistic observations for different taxonomic groups.
Tiago, Patrícia; Ceia-Hasse, Ana; Marques, Tiago A; Capinha, César; Pereira, Henrique M
2017-10-16
Opportunistic citizen science databases are becoming an important way of gathering information on species distributions. These data are temporally and spatially dispersed and could have limitations regarding biases in the distribution of the observations in space and/or time. In this work, we test the influence of landscape variables in the distribution of citizen science observations for eight taxonomic groups. We use data collected through a Portuguese citizen science database (biodiversity4all.org). We use a zero-inflated negative binomial regression to model the distribution of observations as a function of a set of variables representing the landscape features plausibly influencing the spatial distribution of the records. Results suggest that the density of paths is the most important variable, having a statistically significant positive relationship with number of observations for seven of the eight taxa considered. Wetland coverage was also identified as having a significant, positive relationship, for birds, amphibians and reptiles, and mammals. Our results highlight that the distribution of species observations, in citizen science projects, is spatially biased. Higher frequency of observations is driven largely by accessibility and by the presence of water bodies. We conclude that efforts are required to increase the spatial evenness of sampling effort from volunteers.
Spatio-Temporal Analysis of Smear-Positive Tuberculosis in the Sidama Zone, Southern Ethiopia
Dangisso, Mesay Hailu; Datiko, Daniel Gemechu; Lindtjørn, Bernt
2015-01-01
Background Tuberculosis (TB) is a disease of public health concern, with a varying distribution across settings depending on socio-economic status, HIV burden, availability and performance of the health system. Ethiopia is a country with a high burden of TB, with regional variations in TB case notification rates (CNRs). However, TB program reports are often compiled and reported at higher administrative units that do not show the burden at lower units, so there is limited information about the spatial distribution of the disease. We therefore aim to assess the spatial distribution and presence of the spatio-temporal clustering of the disease in different geographic settings over 10 years in the Sidama Zone in southern Ethiopia. Methods A retrospective space–time and spatial analysis were carried out at the kebele level (the lowest administrative unit within a district) to identify spatial and space-time clusters of smear-positive pulmonary TB (PTB). Scan statistics, Global Moran’s I, and Getis and Ordi (Gi*) statistics were all used to help analyze the spatial distribution and clusters of the disease across settings. Results A total of 22,545 smear-positive PTB cases notified over 10 years were used for spatial analysis. In a purely spatial analysis, we identified the most likely cluster of smear-positive PTB in 192 kebeles in eight districts (RR= 2, p<0.001), with 12,155 observed and 8,668 expected cases. The Gi* statistic also identified the clusters in the same areas, and the spatial clusters showed stability in most areas in each year during the study period. The space-time analysis also detected the most likely cluster in 193 kebeles in the same eight districts (RR= 1.92, p<0.001), with 7,584 observed and 4,738 expected cases in 2003-2012. Conclusion The study found variations in CNRs and significant spatio-temporal clusters of smear-positive PTB in the Sidama Zone. The findings can be used to guide TB control programs to devise effective TB control strategies for the geographic areas characterized by the highest CNRs. Further studies are required to understand the factors associated with clustering based on individual level locations and investigation of cases. PMID:26030162
Quantifying evenly distributed states in exclusion and nonexclusion processes
NASA Astrophysics Data System (ADS)
Binder, Benjamin J.; Landman, Kerry A.
2011-04-01
Spatial-point data sets, generated from a wide range of physical systems and mathematical models, can be analyzed by counting the number of objects in equally sized bins. We find that the bin counts are related to the Pólya distribution. New measures are developed which indicate whether or not a spatial data set, generated from an exclusion process, is at its most evenly distributed state, the complete spatial randomness (CSR) state. To this end, we define an index in terms of the variance between the bin counts. Limiting values of the index are determined when objects have access to the entire domain and when there are subregions of the domain that are inaccessible to objects. Using three case studies (Lagrangian fluid particles in chaotic laminar flows, cellular automata agents in discrete models, and biological cells within colonies), we calculate the indexes and verify that our theoretical CSR limit accurately predicts the state of the system. These measures should prove useful in many biological applications.
NASA Astrophysics Data System (ADS)
Wang, Jingmei; Gong, Adu; Li, Jing; Chen, Yanling
2017-04-01
Typhoon is a kind of strong weather system formed in tropical or subtropical oceans. China, located on the west side of the Pacific Ocean, is the country affected by the typhoon most frequently and seriously. To provide theoretical support for effectively reducing the damage caused by typhoon, the variation law of typhoon frequency is explored by analyzing the distribution of typhoon path and landing sites, sphere of influence, and the statistical characteristics of typhoon for every 5 years. In this study, the typhoon point data set was formed using the Best Path Data Set (0.1 ° × 0.1 °) compiled by China Meteorological Administration from 1950 to 2014. By using the tool of Point to Line in software ArgGIS, the typhoon paths are produced from the point data set. The influence sphere of typhoon is calculated from Euclidean distance of typhoon, whose threshold is set to 1°.The typhoon landing site was extracted by using the Chinese vector layer provided by the research group. By counting the frequency of typhoons, the landing sites, and the sphere of influence, some conclusions can be drawn as follows. In recent years, the number of typhoons generated has been reduced, typhoon intensity is relatively stable, but the impact of typhoon area has increased. Specific performance can be seen from the typhoon statistical and spatial distribution characteristics in China. In terms of frequency of typhoon landing, the number of typhoons landing in China has increased while the total number of typhoons is reduced. In terms of distribution of landing sites, the range of typhoon landing fluctuates. However, during the process of fluctuation, the range is gradually expanding. For example, in south of China, Hainan Island is affected by typhoon more frequently meanwhile China's northeast region is also gradually affected, which is extremely unusual before. Key words: spatial point model, distribution of typhoon, frequency of typhoon
A spatial scan statistic for survival data based on Weibull distribution.
Bhatt, Vijaya; Tiwari, Neeraj
2014-05-20
The spatial scan statistic has been developed as a geographical cluster detection analysis tool for different types of data sets such as Bernoulli, Poisson, ordinal, normal and exponential. We propose a scan statistic for survival data based on Weibull distribution. It may also be used for other survival distributions, such as exponential, gamma, and log normal. The proposed method is applied on the survival data of tuberculosis patients for the years 2004-2005 in Nainital district of Uttarakhand, India. Simulation studies reveal that the proposed method performs well for different survival distribution functions. Copyright © 2013 John Wiley & Sons, Ltd.
Identifying Aquifer Heterogeneities using the Level Set Method
NASA Astrophysics Data System (ADS)
Lu, Z.; Vesselinov, V. V.; Lei, H.
2016-12-01
Material interfaces between hydrostatigraphic units (HSU) with contrasting aquifer parameters (e.g., strata and facies with different hydraulic conductivity) have a great impact on flow and contaminant transport in subsurface. However, the identification of HSU shape in the subsurface is challenging and typically relies on tomographic approaches where a series of steady-state/transient head measurements at spatially distributed observation locations are analyzed using inverse models. In this study, we developed a mathematically rigorous approach for identifying material interfaces among any arbitrary number of HSUs using the level set method. The approach has been tested first with several synthetic cases, where the true spatial distribution of HSUs was assumed to be known and the head measurements were taken from the flow simulation with the true parameter fields. These synthetic inversion examples demonstrate that the level set method is capable of characterizing the spatial distribution of the heterogeneous. We then applied the methodology to a large-scale problem in which the spatial distribution of pumping wells and observation well screens is consistent with the actual aquifer contamination (chromium) site at the Los Alamos National Laboratory (LANL). In this way, we test the applicability of the methodology at an actual site. We also present preliminary results using the actual LANL site data. We also investigated the impact of the number of pumping/observation wells and the drawdown observation frequencies/intervals on the quality of the inversion results. We also examined the uncertainties associated with the estimated HSU shapes, and the accuracy of the results under different hydraulic-conductivity contrasts between the HSU's.
Ion beam sputtering of Ag - Angular and energetic distributions of sputtered and scattered particles
NASA Astrophysics Data System (ADS)
Feder, René; Bundesmann, Carsten; Neumann, Horst; Rauschenbach, Bernd
2013-12-01
Ion beam sputter deposition (IBD) provides intrinsic features which influence the properties of the growing film, because ion properties and geometrical process conditions generate different energy and spatial distribution of the sputtered and scattered particles. A vacuum deposition chamber is set up to measure the energy and spatial distribution of secondary particles produced by ion beam sputtering of different target materials under variation of geometrical parameters (incidence angle of primary ions and emission angle of secondary particles) and of primary ion beam parameters (ion species and energies).
A Spatio-Temporal Approach for Global Validation and Analysis of MODIS Aerosol Products
NASA Technical Reports Server (NTRS)
Ichoku, Charles; Chu, D. Allen; Mattoo, Shana; Kaufman, Yoram J.; Remer, Lorraine A.; Tanre, Didier; Slutsker, Ilya; Holben, Brent N.; Lau, William K. M. (Technical Monitor)
2001-01-01
With the launch of the MODIS sensor on the Terra spacecraft, new data sets of the global distribution and properties of aerosol are being retrieved, and need to be validated and analyzed. A system has been put in place to generate spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of the MODIS aerosol parameters over more than 100 validation sites spread around the globe. Corresponding statistics are also computed from temporal subsets of AERONET-derived aerosol data. The means and standard deviations of identical parameters from MOMS and AERONET are compared. Although, their means compare favorably, their standard deviations reveal some influence of surface effects on the MODIS aerosol retrievals over land, especially at low aerosol loading. The direction and rate of spatial variation from MODIS are used to study the spatial distribution of aerosols at various locations either individually or comparatively. This paper introduces the methodology for generating and analyzing the data sets used by the two MODIS aerosol validation papers in this issue.
Spatial Inference for Distributed Remote Sensing Data
NASA Astrophysics Data System (ADS)
Braverman, A. J.; Katzfuss, M.; Nguyen, H.
2014-12-01
Remote sensing data are inherently spatial, and a substantial portion of their value for scientific analyses derives from the information they can provide about spatially dependent processes. Geophysical variables such as atmopsheric temperature, cloud properties, humidity, aerosols and carbon dioxide all exhibit spatial patterns, and satellite observations can help us learn about the physical mechanisms driving them. However, remote sensing observations are often noisy and incomplete, so inferring properties of true geophysical fields from them requires some care. These data can also be massive, which is both a blessing and a curse: using more data drives uncertainties down, but also drives costs up, particularly when data are stored on different computers or in different physical locations. In this talk I will discuss a methodology for spatial inference on massive, distributed data sets that does not require moving large volumes of data. The idea is based on a combination of ideas including modeling spatial covariance structures with low-rank covariance matrices, and distributed estimation in sensor or wireless networks.
Smith, Dianna M; Cummins, Steven; Taylor, Mathew; Dawson, John; Marshall, David; Sparks, Leigh; Anderson, Annie S
2010-02-01
The 'deprivation amplification' hypothesis suggests that residents of deprived neighbourhoods have universally poorer access to high-quality food environments, which in turn contributes to the development of spatial inequalities in diet and diet-related chronic disease. This paper presents results from a study that quantified access to grocery stores selling fresh fruit and vegetables in four environmental settings in Scotland, UK. Spatial accessibility, as measured by network travel times, to 457 grocery stores located in 205 neighbourhoods in four environmental settings (island, rural, small town and urban) in Scotland was calculated using Geographical Information Systems. The distribution of accessibility by neighbourhood deprivation in each of these four settings was investigated. Overall, the most deprived neighbourhoods had the best access to grocery stores and grocery stores selling fresh produce. Stratified analysis by environmental setting suggests that the least deprived compared with the most deprived urban neighbourhoods have greater accessibility to grocery stores than their counterparts in island, rural and small town locations. Access to fresh produce is better in more deprived compared with less deprived urban and small town neighbourhoods, but poorest in the most affluent island communities with mixed results for rural settings. The results presented here suggest that the assumption of a universal 'deprivation amplification' hypothesis in studies of the neighbourhood food environment may be misguided. Associations between neighbourhood deprivation and grocery store accessibility vary by environmental setting. Theories and policies aimed at understanding and rectifying spatial inequalities in the distribution of neighbourhood exposures for poor diet need to be context specific.
A Game of Hide and Seek: Expectations of Clumpy Resources Influence Hiding and Searching Patterns
Wilke, Andreas; Minich, Steven; Panis, Megane; Langen, Tom A.; Skufca, Joseph D.; Todd, Peter M.
2015-01-01
Resources are often distributed in clumps or patches in space, unless an agent is trying to protect them from discovery and theft using a dispersed distribution. We uncover human expectations of such spatial resource patterns in collaborative and competitive settings via a sequential multi-person game in which participants hid resources for the next participant to seek. When collaborating, resources were mostly hidden in clumpy distributions, but when competing, resources were hidden in more dispersed (random or hyperdispersed) patterns to increase the searching difficulty for the other player. More dispersed resource distributions came at the cost of higher overall hiding (as well as searching) times, decreased payoffs, and an increased difficulty when the hider had to recall earlier hiding locations at the end of the experiment. Participants’ search strategies were also affected by their underlying expectations, using a win-stay lose-shift strategy appropriate for clumpy resources when searching for collaboratively-hidden items, but moving equally far after finding or not finding an item in competitive settings, as appropriate for dispersed resources. Thus participants showed expectations for clumpy versus dispersed spatial resources that matched the distributions commonly found in collaborative versus competitive foraging settings. PMID:26154661
ERIC Educational Resources Information Center
Cepeda-Cuervo, Edilberto; Núñez-Antón, Vicente
2013-01-01
In this article, a proposed Bayesian extension of the generalized beta spatial regression models is applied to the analysis of the quality of education in Colombia. We briefly revise the beta distribution and describe the joint modeling approach for the mean and dispersion parameters in the spatial regression models' setting. Finally, we motivate…
Validating a spatially distributed hydrological model with soil morphology data
NASA Astrophysics Data System (ADS)
Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.
2013-10-01
Spatially distributed hydrological models are popular tools in hydrology and they are claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time-series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for the transport of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography. Around 40% of the catchment area are artificially drained. We measured weather data, discharge and groundwater levels in 11 piezometers for 1.5 yr. For broadening the spatially distributed data sets that can be used for model calibration and validation, we translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. We used redox-morphology signs for these estimates. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to the groundwater levels in the piezometers and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the accuracy of the groundwater level predictions was not high enough to be used for the prediction of saturated areas. The groundwater level dynamics were not adequately reproduced and the predicted spatial patterns of soil saturation did not correspond to the patterns estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a more complex model. Especially high spatial resolution and very detailed process representations at the boundary between the unsaturated and the saturated zone are expected to be crucial. The data needed for such a detailed model are not generally available. The high computational demand and the complex model setup would require more resources than the direct identification of saturated areas in the field. This severely hampers the practical use of such models despite their usefulness for scientific purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Xuehang; Chen, Xingyuan; Ye, Ming
2015-07-01
This study develops a new framework of facies-based data assimilation for characterizing spatial distribution of hydrofacies and estimating their associated hydraulic properties. This framework couples ensemble data assimilation with transition probability-based geostatistical model via a parameterization based on a level set function. The nature of ensemble data assimilation makes the framework efficient and flexible to be integrated with various types of observation data. The transition probability-based geostatistical model keeps the updated hydrofacies distributions under geological constrains. The framework is illustrated by using a two-dimensional synthetic study that estimates hydrofacies spatial distribution and permeability in each hydrofacies from transient head data.more » Our results show that the proposed framework can characterize hydrofacies distribution and associated permeability with adequate accuracy even with limited direct measurements of hydrofacies. Our study provides a promising starting point for hydrofacies delineation in complex real problems.« less
Mapping the Climate of Puerto Rico, Vieques and Culebra.
CHRISTOPHER DALY; E. H. HELMER; MAYA QUINONES
2003-01-01
Spatially explicit climate data contribute to watershed resource management, mapping vegetation type with satellite imagery, mapping present and hypothetical future ecological zones, and predicting species distributions. The regression based Parameter-elevation Regressions on Independent Slopes Model (PRISM) uses spatial data sets, a knowledge base and expert...
Spatially distributed modal signals of free shallow membrane shell structronic system
NASA Astrophysics Data System (ADS)
Yue, H. H.; Deng, Z. Q.; Tzou, H. S.
2008-11-01
Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last 20 years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of shallow paraboloidal membrane shells are not clearly understood. In this paper, modeling of free flexible paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.
Dorazio, Robert; Karanth, K. Ullas
2017-01-01
MotivationSeveral spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.Model and data analysisWe developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.BenefitsOur approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in cases where spatial covariates of abundance are unknown or unavailable. We illustrated these benefits in the analysis of our data, which allowed us to quantify differences between nocturnal and diurnal activities of tigers and to estimate their spatial distribution and abundance across the study area. Our continuous-time SCR model allows an analyst to specify many of the ecological processes thought to be involved in the distribution, movement, and behavior of animals detected in a spatial trapping array of continuous-time recorders. We plan to extend this model to estimate the population dynamics of animals detected during multiple years of SCR surveys.
NASA Astrophysics Data System (ADS)
Tarasov, D. A.; Buevich, A. G.; Sergeev, A. P.; Shichkin, A. V.; Baglaeva, E. M.
2017-06-01
Forecasting the soil pollution is a considerable field of study in the light of the general concern of environmental protection issues. Due to the variation of content and spatial heterogeneity of pollutants distribution at urban areas, the conventional spatial interpolation models implemented in many GIS packages mostly cannot provide appreciate interpolation accuracy. Moreover, the problem of prediction the distribution of the element with high variability in the concentration at the study site is particularly difficult. The work presents two neural networks models forecasting a spatial content of the abnormally distributed soil pollutant (Cr) at a particular location of the subarctic Novy Urengoy, Russia. A method of generalized regression neural network (GRNN) was compared to a common multilayer perceptron (MLP) model. The proposed techniques have been built, implemented and tested using ArcGIS and MATLAB. To verify the models performances, 150 scattered input data points (pollutant concentrations) have been selected from 8.5 km2 area and then split into independent training data set (105 points) and validation data set (45 points). The training data set was generated for the interpolation using ordinary kriging while the validation data set was used to test their accuracies. The networks structures have been chosen during a computer simulation based on the minimization of the RMSE. The predictive accuracy of both models was confirmed to be significantly higher than those achieved by the geostatistical approach (kriging). It is shown that MLP could achieve better accuracy than both kriging and even GRNN for interpolating surfaces.
Redding, David W; Lucas, Tim C D; Blackburn, Tim M; Jones, Kate E
2017-01-01
Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial autocorrelation in an SDM context and, by taking account of random effects, produce outputs that can better elucidate the role of covariates in predicting species occurrence. Given that it is often unclear what the drivers are behind data clumping in an empirical occurrence dataset, or indeed how geographically restricted these data are, spatially-explicit Bayesian SDMs may be the better choice when modelling the spatial distribution of target species.
NASA Astrophysics Data System (ADS)
Loague, Keith; Kyriakidis, Phaedon C.
1997-12-01
This paper is a continuation of the event-based rainfall-runoff model evaluation study reported by Loague and Freeze [1985[. Here we reevaluate the performance of a quasi-physically based rainfall-runoff model for three large events from the well-known R-5 catchment. Five different statistical criteria are used to quantitatively judge model performance. Temporal variability in the large R-5 infiltration data set [Loague and Gander, 1990] is filtered by working in terms of permeability. The transformed data set is reanalyzed via geostatistical methods to model the spatial distribution of permeability across the R-5 catchment. We present new estimates of the spatial distribution of infiltration that are in turn used in our rainfall-runoff simulations with the Horton rainfall-runoff model. The new rainfall-runoff simulations, complicated by reinfiltration impacts at the smaller scales of characterization, indicate that the near-surface hydrologic response of the R-5 catchment is most probably dominated by a combination of the Horton and Dunne overland flow mechanisms.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2016-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments.
Spatial Signal Characteristics of Shallow Paraboloidal Shell Structronic Systems
NASA Astrophysics Data System (ADS)
Yue, H. H.; Deng, Z. Q.; Tzou, H. S.
Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last twenty years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of thin flexible membrane shells are not clearly understood. In this paper, modeling of free thin paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.
Assessment of Regional Explosion Discriminants Using Data Sets of Unparalleled Spatial Sampling
2012-10-31
Air Force Research Laboratory AFRL ...Final Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Space Vehicles...Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 Approved for public release; distribution
Learning from Massive Distributed Data Sets (Invited)
NASA Astrophysics Data System (ADS)
Kang, E. L.; Braverman, A. J.
2013-12-01
Technologies for remote sensing and ever-expanding computer experiments in climate science are generating massive data sets. Meanwhile, it has been common in all areas of large-scale science to have these 'big data' distributed over multiple different physical locations, and moving large amounts of data can be impractical. In this talk, we will discuss efficient ways for us to summarize and learn from distributed data. We formulate a graphical model to mimic the main characteristics of a distributed-data network, including the size of the data sets and speed of moving data. With this nominal model, we investigate the trade off between prediction accurate and cost of data movement, theoretically and through simulation experiments. We will also discuss new implementations of spatial and spatio-temporal statistical methods optimized for distributed data.
Hayes, Mark A.; Ozenberger, Katharine; Cryan, Paul M.; Wunder, Michael B.
2015-01-01
Bat specimens held in natural history museum collections can provide insights into the distribution of species. However, there are several important sources of spatial error associated with natural history specimens that may influence the analysis and mapping of bat species distributions. We analyzed the importance of geographic referencing and error correction in species distribution modeling (SDM) using occurrence records of hoary bats (Lasiurus cinereus). This species is known to migrate long distances and is a species of increasing concern due to fatalities documented at wind energy facilities in North America. We used 3,215 museum occurrence records collected from 1950–2000 for hoary bats in North America. We compared SDM performance using five approaches: generalized linear models, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy models. We evaluated results using three SDM performance metrics (AUC, sensitivity, and specificity) and two data sets: one comprised of the original occurrence data, and a second data set consisting of these same records after the locations were adjusted to correct for identifiable spatial errors. The increase in precision improved the mean estimated spatial error associated with hoary bat records from 5.11 km to 1.58 km, and this reduction in error resulted in a slight increase in all three SDM performance metrics. These results provide insights into the importance of geographic referencing and the value of correcting spatial errors in modeling the distribution of a wide-ranging bat species. We conclude that the considerable time and effort invested in carefully increasing the precision of the occurrence locations in this data set was not worth the marginal gains in improved SDM performance, and it seems likely that gains would be similar for other bat species that range across large areas of the continent, migrate, and are habitat generalists.
Distribution of indoor radon concentrations in Pennsylvania, 1990-2007
Gross, Eliza L.
2013-01-01
Median indoor radon concentrations aggregated according to geologic units and hydrogeologic settings are useful for drawing general conclusions about the occurrence of indoor radon in specific geologic units and hydrogeologic settings, but the associated data and maps have limitations. The aggregated indoor radon data have testing and spatial accuracy limitations due to lack of available information regarding testing conditions and the imprecision of geocoded test locations. In addition, the associated data describing geologic units and hydrogeologic settings have spatial and interpretation accuracy limitations, which are a result of using statewide data to define conditions at test locations and geologic data that represent a broad interpretation of geologic units across the State. As a result, indoor air radon concentration distributions are not proposed for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for indoor radon concentrations at specific property locations.
Generalized index for spatial data sets as a measure of complete spatial randomness
NASA Astrophysics Data System (ADS)
Hackett-Jones, Emily J.; Davies, Kale J.; Binder, Benjamin J.; Landman, Kerry A.
2012-06-01
Spatial data sets, generated from a wide range of physical systems can be analyzed by counting the number of objects in a set of bins. Previous work has been limited to equal-sized bins, which are inappropriate for some domains (e.g., circular). We consider a nonequal size bin configuration whereby overlapping or nonoverlapping bins cover the domain. A generalized index, defined in terms of a variance between bin counts, is developed to indicate whether or not a spatial data set, generated from exclusion or nonexclusion processes, is at the complete spatial randomness (CSR) state. Limiting values of the index are determined. Using examples, we investigate trends in the generalized index as a function of density and compare the results with those using equal size bins. The smallest bin size must be much larger than the mean size of the objects. We can determine whether a spatial data set is at the CSR state or not by comparing the values of a generalized index for different bin configurations—the values will be approximately the same if the data is at the CSR state, while the values will differ if the data set is not at the CSR state. In general, the generalized index is lower than the limiting value of the index, since objects do not have access to the entire region due to blocking by other objects. These methods are applied to two applications: (i) spatial data sets generated from a cellular automata model of cell aggregation in the enteric nervous system and (ii) a known plant data distribution.
Distributed visualization of gridded geophysical data: the Carbon Data Explorer, version 0.2.3
NASA Astrophysics Data System (ADS)
Endsley, K. A.; Billmire, M. G.
2016-01-01
Due to the proliferation of geophysical models, particularly climate models, the increasing resolution of their spatiotemporal estimates of Earth system processes, and the desire to easily share results with collaborators, there is a genuine need for tools to manage, aggregate, visualize, and share data sets. We present a new, web-based software tool - the Carbon Data Explorer - that provides these capabilities for gridded geophysical data sets. While originally developed for visualizing carbon flux, this tool can accommodate any time-varying, spatially explicit scientific data set, particularly NASA Earth system science level III products. In addition, the tool's open-source licensing and web presence facilitate distributed scientific visualization, comparison with other data sets and uncertainty estimates, and data publishing and distribution.
Validating a spatially distributed hydrological model with soil morphology data
NASA Astrophysics Data System (ADS)
Doppler, T.; Honti, M.; Zihlmann, U.; Weisskopf, P.; Stamm, C.
2014-09-01
Spatially distributed models are popular tools in hydrology claimed to be useful to support management decisions. Despite the high spatial resolution of the computed variables, calibration and validation is often carried out only on discharge time series at specific locations due to the lack of spatially distributed reference data. Because of this restriction, the predictive power of these models, with regard to predicted spatial patterns, can usually not be judged. An example of spatial predictions in hydrology is the prediction of saturated areas in agricultural catchments. These areas can be important source areas for inputs of agrochemicals to the stream. We set up a spatially distributed model to predict saturated areas in a 1.2 km2 catchment in Switzerland with moderate topography and artificial drainage. We translated soil morphological data available from soil maps into an estimate of the duration of soil saturation in the soil horizons. This resulted in a data set with high spatial coverage on which the model predictions were validated. In general, these saturation estimates corresponded well to the measured groundwater levels. We worked with a model that would be applicable for management decisions because of its fast calculation speed and rather low data requirements. We simultaneously calibrated the model to observed groundwater levels and discharge. The model was able to reproduce the general hydrological behavior of the catchment in terms of discharge and absolute groundwater levels. However, the the groundwater level predictions were not accurate enough to be used for the prediction of saturated areas. Groundwater level dynamics were not adequately reproduced and the predicted spatial saturation patterns did not correspond to those estimated from the soil map. Our results indicate that an accurate prediction of the groundwater level dynamics of the shallow groundwater in our catchment that is subject to artificial drainage would require a model that better represents processes at the boundary between the unsaturated and the saturated zone. However, data needed for such a more detailed model are not generally available. This severely hampers the practical use of such models despite their usefulness for scientific purposes.
NASA Astrophysics Data System (ADS)
Lundquist, Jessica D.; Roche, James W.; Forrester, Harrison; Moore, Courtney; Keenan, Eric; Perry, Gwyneth; Cristea, Nicoleta; Henn, Brian; Lapo, Karl; McGurk, Bruce; Cayan, Daniel R.; Dettinger, Michael D.
2016-09-01
Regions of complex topography and remote wilderness terrain have spatially varying patterns of temperature and streamflow, but due to inherent difficulties of access, are often very poorly sampled. Here we present a data set of distributed stream stage, streamflow, stream temperature, barometric pressure, and air temperature from the Tuolumne River Watershed in Yosemite National Park, Sierra Nevada, California, USA, for water years 2002-2015, as well as a quality-controlled hourly meteorological forcing time series for use in hydrologic modeling. We also provide snow data and daily inflow to the Hetch Hetchy Reservoir for 1970-2015. This paper describes data collected using low-visibility and low-impact installations for wilderness locations and can be used alone or as a critical supplement to ancillary data sets collected by cooperating agencies, referenced herein. This data set provides a unique opportunity to understand spatial patterns and scaling of hydroclimatic processes in complex terrain and can be used to evaluate downscaling techniques or distributed modeling. The paper also provides an example methodology and lessons learned in conducting hydroclimatic monitoring in remote wilderness.
Lundquist, Jessica D.; Roche, James W.; Forrester, Harrison; Moore, Courtney; Keenan, Eric; Perry, Gwyneth; Cristea, Nicoleta; Henn, Brian; Lapo, Karl; McGurk, Bruce; Cayan, Daniel R.; Dettinger, Michael D.
2016-01-01
Regions of complex topography and remote wilderness terrain have spatially varying patterns of temperature and streamflow, but due to inherent difficulties of access, are often very poorly sampled. Here we present a data set of distributed stream stage, streamflow, stream temperature, barometric pressure, and air temperature from the Tuolumne River Watershed in Yosemite National Park, Sierra Nevada, California, USA, for water years 2002–2015, as well as a quality-controlled hourly meteorological forcing time series for use in hydrologic modeling. We also provide snow data and daily inflow to the Hetch Hetchy Reservoir for 1970–2015. This paper describes data collected using low-visibility and low-impact installations for wilderness locations and can be used alone or as a critical supplement to ancillary data sets collected by cooperating agencies, referenced herein. This data set provides a unique opportunity to understand spatial patterns and scaling of hydroclimatic processes in complex terrain and can be used to evaluate downscaling techniques or distributed modeling. The paper also provides an example methodology and lessons learned in conducting hydroclimatic monitoring in remote wilderness.
Juang, K W; Lee, D Y; Ellsworth, T R
2001-01-01
The spatial distribution of a pollutant in contaminated soils is usually highly skewed. As a result, the sample variogram often differs considerably from its regional counterpart and the geostatistical interpolation is hindered. In this study, rank-order geostatistics with standardized rank transformation was used for the spatial interpolation of pollutants with a highly skewed distribution in contaminated soils when commonly used nonlinear methods, such as logarithmic and normal-scored transformations, are not suitable. A real data set of soil Cd concentrations with great variation and high skewness in a contaminated site of Taiwan was used for illustration. The spatial dependence of ranks transformed from Cd concentrations was identified and kriging estimation was readily performed in the standardized-rank space. The estimated standardized rank was back-transformed into the concentration space using the middle point model within a standardized-rank interval of the empirical distribution function (EDF). The spatial distribution of Cd concentrations was then obtained. The probability of Cd concentration being higher than a given cutoff value also can be estimated by using the estimated distribution of standardized ranks. The contour maps of Cd concentrations and the probabilities of Cd concentrations being higher than the cutoff value can be simultaneously used for delineation of hazardous areas of contaminated soils.
Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I
NASA Astrophysics Data System (ADS)
Lee, Sang-Il
This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task.
Visualizing Spatially Varying Distribution Data
NASA Technical Reports Server (NTRS)
Kao, David; Luo, Alison; Dungan, Jennifer L.; Pang, Alex; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Box plot is a compact representation that encodes the minimum, maximum, mean, median, and quarters information of a distribution. In practice, a single box plot is drawn for each variable of interest. With the advent of more accessible computing power, we are now facing the problem of visual icing data where there is a distribution at each 2D spatial location. Simply extending the box plot technique to distributions over 2D domain is not straightforward. One challenge is reducing the visual clutter if a box plot is drawn over each grid location in the 2D domain. This paper presents and discusses two general approaches, using parametric statistics and shape descriptors, to present 2D distribution data sets. Both approaches provide additional insights compared to the traditional box plot technique
Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data
Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong
2014-01-01
The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips. PMID:24465849
Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data.
Liu, Yu; Sui, Zhengwei; Kang, Chaogui; Gao, Yong
2014-01-01
The article revisits spatial interaction and distance decay from the perspective of human mobility patterns and spatially-embedded networks based on an empirical data set. We extract nationwide inter-urban movements in China from a check-in data set that covers half a million individuals within 370 cities to analyze the underlying patterns of trips and spatial interactions. By fitting the gravity model, we find that the observed spatial interactions are governed by a power law distance decay effect. The obtained gravity model also closely reproduces the exponential trip displacement distribution. The movement of an individual, however, may not obey the same distance decay effect, leading to an ecological fallacy. We also construct a spatial network where the edge weights denote the interaction strengths. The communities detected from the network are spatially cohesive and roughly consistent with province boundaries. We attribute this pattern to different distance decay parameters between intra-province and inter-province trips.
Drawert, Brian; Trogdon, Michael; Toor, Salman; Petzold, Linda; Hellander, Andreas
2017-01-01
Computational experiments using spatial stochastic simulations have led to important new biological insights, but they require specialized tools and a complex software stack, as well as large and scalable compute and data analysis resources due to the large computational cost associated with Monte Carlo computational workflows. The complexity of setting up and managing a large-scale distributed computation environment to support productive and reproducible modeling can be prohibitive for practitioners in systems biology. This results in a barrier to the adoption of spatial stochastic simulation tools, effectively limiting the type of biological questions addressed by quantitative modeling. In this paper, we present PyURDME, a new, user-friendly spatial modeling and simulation package, and MOLNs, a cloud computing appliance for distributed simulation of stochastic reaction-diffusion models. MOLNs is based on IPython and provides an interactive programming platform for development of sharable and reproducible distributed parallel computational experiments. PMID:28190948
Zimmermann, N.E.; Edwards, T.C.; Moisen, Gretchen G.; Frescino, T.S.; Blackard, J.A.
2007-01-01
1. Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. 2. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. 3. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. 4. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. 5. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. ?? 2007 The Authors.
ZIMMERMANN, N E; EDWARDS, T C; MOISEN, G G; FRESCINO, T S; BLACKARD, J A
2007-01-01
Compared to bioclimatic variables, remote sensing predictors are rarely used for predictive species modelling. When used, the predictors represent typically habitat classifications or filters rather than gradual spectral, surface or biophysical properties. Consequently, the full potential of remotely sensed predictors for modelling the spatial distribution of species remains unexplored. Here we analysed the partial contributions of remotely sensed and climatic predictor sets to explain and predict the distribution of 19 tree species in Utah. We also tested how these partial contributions were related to characteristics such as successional types or species traits. We developed two spatial predictor sets of remotely sensed and topo-climatic variables to explain the distribution of tree species. We used variation partitioning techniques applied to generalized linear models to explore the combined and partial predictive powers of the two predictor sets. Non-parametric tests were used to explore the relationships between the partial model contributions of both predictor sets and species characteristics. More than 60% of the variation explained by the models represented contributions by one of the two partial predictor sets alone, with topo-climatic variables outperforming the remotely sensed predictors. However, the partial models derived from only remotely sensed predictors still provided high model accuracies, indicating a significant correlation between climate and remote sensing variables. The overall accuracy of the models was high, but small sample sizes had a strong effect on cross-validated accuracies for rare species. Models of early successional and broadleaf species benefited significantly more from adding remotely sensed predictors than did late seral and needleleaf species. The core-satellite species types differed significantly with respect to overall model accuracies. Models of satellite and urban species, both with low prevalence, benefited more from use of remotely sensed predictors than did the more frequent core species. Synthesis and applications. If carefully prepared, remotely sensed variables are useful additional predictors for the spatial distribution of trees. Major improvements resulted for deciduous, early successional, satellite and rare species. The ability to improve model accuracy for species having markedly different life history strategies is a crucial step for assessing effects of global change. PMID:18642470
NASA Astrophysics Data System (ADS)
Žukovič, Milan; Hristopulos, Dionissios T.
2009-02-01
A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the Nc-state Potts model, each point is assigned to one of Nc classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of discretization levels, and the initial conditions.
Adjemian, Jennifer C Z; Girvetz, Evan H; Beckett, Laurel; Foley, Janet E
2006-01-01
More than 20 species of fleas in California are implicated as potential vectors of Yersinia pestis. Extremely limited spatial data exist for plague vectors-a key component to understanding where the greatest risks for human, domestic animal, and wildlife health exist. This study increases the spatial data available for 13 potential plague vectors by using the ecological niche modeling system Genetic Algorithm for Rule-Set Production (GARP) to predict their respective distributions. Because the available sample sizes in our data set varied greatly from one species to another, we also performed an analysis of the robustness of GARP by using the data available for flea Oropsylla montana (Baker) to quantify the effects that sample size and the chosen explanatory variables have on the final species distribution map. GARP effectively modeled the distributions of 13 vector species. Furthermore, our analyses show that all of these modeled ranges are robust, with a sample size of six fleas or greater not significantly impacting the percentage of the in-state area where the flea was predicted to be found, or the testing accuracy of the model. The results of this study will help guide the sampling efforts of future studies focusing on plague vectors.
Space, relations, and the learning of science
NASA Astrophysics Data System (ADS)
Roth, Wolff-Michael; Hsu, Pei-Ling
2014-03-01
In the literature on the situated and distributed nature of cognition, the coordination of spatial organization and the structure of human practices and relations is accepted as a fact. To date, science educators have yet to build on such research. Drawing on an ethnographic study of high school students during an internship in a scientific research laboratory, which we understand as a "perspicuous setting" and a "smart setting," in which otherwise invisible dimensions of human practices become evident, we analyze the relationship between spatial configurations of the setting and the nature and temporal organization of knowing and learning in science. Our analyses show that spatial aspects of the laboratory projectively organize how participants act and can serve as resources to help the novices to participate in difficult and unfamiliar tasks. First, existing spatial relations projectively organize the language involving interns and lab members. In particular, spatial relations projectively organize where and when pedagogical language should happen; and there are specific discursive mechanisms that produce cohesion in language across different places in the laboratory. Second, the spatial arrangements projectively organize the temporal dimensions of action. These findings allow science educators to think explicitly about organizing "smart contexts" that help learners participate in and learn complex scientific laboratory practices.
Modeling current climate conditions for forest pest risk assessment
Frank H. Koch; John W. Coulston
2010-01-01
Current information on broad-scale climatic conditions is essential for assessing potential distribution of forest pests. At present, sophisticated spatial interpolation approaches such as the Parameter-elevation Regressions on Independent Slopes Model (PRISM) are used to create high-resolution climatic data sets. Unfortunately, these data sets are based on 30-year...
Heuner, Maike; Weber, Arnd; Schröder, Uwe; Kleinschmit, Birgit; Schröder, Boris
2016-09-15
The European Water Framework Directive requires a good ecological potential for heavily modified water bodies. This standard has not been reached for most large estuaries by 2015. Management plans for estuaries fall short in linking implementations between restoration measures and underlying spatial analyses. The distribution of emergent macrophytes - as an indicator of habitat quality - is here used to assess the ecological potential. Emergent macrophytes are capable of settling on gentle tidal flats where hydrodynamic stress is comparatively low. Analyzing their habitats based on spatial data, we set up species distribution models with 'elevation relative to mean high water', 'mean bank slope', and 'length of bottom friction' from shallow water up to the vegetation belt as key predictors representing hydrodynamic stress. Effects of restoration scenarios on habitats were assessed applying these models. Our findings endorse species distribution models as crucial spatial planning tools for implementing restoration measures in modified estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dunn, S. M.; Lilly, A.
2001-10-01
There are now many examples of hydrological models that utilise the capabilities of Geographic Information Systems to generate spatially distributed predictions of behaviour. However, the spatial variability of hydrological parameters relating to distributions of soils and vegetation can be hard to establish. In this paper, the relationship between a soil hydrological classification Hydrology of Soil Types (HOST) and the spatial parameters of a conceptual catchment-scale model is investigated. A procedure involving inverse modelling using Monte-Carlo simulations on two catchments is developed to identify relative values for soil related parameters of the DIY model. The relative values determine the internal variability of hydrological processes as a function of the soil type. For three out of the four soil parameters studied, the variability between HOST classes was found to be consistent across two catchments when tested independently. Problems in identifying values for the fourth 'fast response distance' parameter have highlighted a potential limitation with the present structure of the model. The present assumption that this parameter can be related simply to soil type rather than topography appears to be inadequate. With the exclusion of this parameter, calibrated parameter sets from one catchment can be converted into equivalent parameter sets for the alternate catchment on the basis of their HOST distributions, to give a reasonable simulation of flow. Following further testing on different catchments, and modifications to the definition of the fast response distance parameter, the technique provides a methodology whereby it is possible to directly derive spatial soil parameters for new catchments.
Experimental study on secondary electron emission characteristics of Cu
NASA Astrophysics Data System (ADS)
Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang
2018-02-01
Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.
Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A
2015-08-01
Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence. © 2015 John Wiley & Sons Ltd.
X. Li; S. Zhong; X. Bian; W.E. Heilman
2010-01-01
The climate and climate variability of low-level winds over the Great Lakes region of the United States is examined using 30 year (1979-2008) wind records from the recently released North American Regional Reanalysis (NARR), a three-dimensional, high-spatial and temporal resolution, and dynamically consistent climate data set. The analyses focus on spatial distribution...
Solidification of a binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.
1982-01-01
The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.
Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng
2015-03-01
Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency.
NASA Astrophysics Data System (ADS)
Tang, Wei; Liao, Mingsheng; Zhang, Lu; Li, Wei; Yu, Weimin
2016-09-01
A high spatial and temporal resolution of the precipitable water vapour (PWV) in the atmosphere is a key requirement for the short-scale weather forecasting and climate research. The aim of this work is to derive temporally differenced maps of the spatial distribution of PWV by analysing the tropospheric delay "noise" in interferometric synthetic aperture radar (InSAR). Time series maps of differential PWV were obtained by processing a set of ENVISAT ASAR (Advanced Synthetic Aperture Radar) images covering the area of southern California, USA from 6 October 2007 to 29 November 2008. To get a more accurate PWV, the component of hydrostatic delay was calculated and subtracted by using ERA-Interim reanalysis products. In addition, the ERA-Interim was used to compute the conversion factors required to convert the zenith wet delay to water vapour. The InSAR-derived differential PWV maps were calibrated by means of the GPS PWV measurements over the study area. We validated our results against the measurements of PWV derived from the Medium Resolution Imaging Spectrometer (MERIS) which was located together with the ASAR sensor on board the ENVISAT satellite. Our comparative results show strong spatial correlations between the two data sets. The difference maps have Gaussian distributions with mean values close to zero and standard deviations below 2 mm. The advantage of the InSAR technique is that it provides water vapour distribution with a spatial resolution as fine as 20 m and an accuracy of ˜ 2 mm. Such high-spatial-resolution maps of PWV could lead to much greater accuracy in meteorological understanding and quantitative precipitation forecasts. With the launch of Sentinel-1A and Sentinel-1B satellites, every few days (6 days) new SAR images can be acquired with a wide swath up to 250 km, enabling a unique operational service for InSAR-based water vapour maps with unprecedented spatial and temporal resolution.
Spatial distribution of arable and abandoned land across former Soviet Union countries
NASA Astrophysics Data System (ADS)
Lesiv, Myroslava; Schepaschenko, Dmitry; Moltchanova, Elena; Bun, Rostyslav; Dürauer, Martina; Prishchepov, Alexander V.; Schierhorn, Florian; Estel, Stephan; Kuemmerle, Tobias; Alcántara, Camilo; Kussul, Natalia; Shchepashchenko, Maria; Kutovaya, Olga; Martynenko, Olga; Karminov, Viktor; Shvidenko, Anatoly; Havlik, Petr; Kraxner, Florian; See, Linda; Fritz, Steffen
2018-04-01
Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus, Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90±2%, 84±2%, 92±1%, 78±3%, 95±1%, 83±2%, respectively. This new product can be used for numerous applications including the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem services and land-use potentials (e.g., agricultural production), among others.
Spatial distribution of arable and abandoned land across former Soviet Union countries.
Lesiv, Myroslava; Schepaschenko, Dmitry; Moltchanova, Elena; Bun, Rostyslav; Dürauer, Martina; Prishchepov, Alexander V; Schierhorn, Florian; Estel, Stephan; Kuemmerle, Tobias; Alcántara, Camilo; Kussul, Natalia; Shchepashchenko, Maria; Kutovaya, Olga; Martynenko, Olga; Karminov, Viktor; Shvidenko, Anatoly; Havlik, Petr; Kraxner, Florian; See, Linda; Fritz, Steffen
2018-04-03
Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus, Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90±2%, 84±2%, 92±1%, 78±3%, 95±1%, 83±2%, respectively. This new product can be used for numerous applications including the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem services and land-use potentials (e.g., agricultural production), among others.
Spatial distribution of arable and abandoned land across former Soviet Union countries
Lesiv, Myroslava; Schepaschenko, Dmitry; Moltchanova, Elena; Bun, Rostyslav; Dürauer, Martina; Prishchepov, Alexander V.; Schierhorn, Florian; Estel, Stephan; Kuemmerle, Tobias; Alcántara, Camilo; Kussul, Natalia; Shchepashchenko, Maria; Kutovaya, Olga; Martynenko, Olga; Karminov, Viktor; Shvidenko, Anatoly; Havlik, Petr; Kraxner, Florian; See, Linda; Fritz, Steffen
2018-01-01
Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus, Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90±2%, 84±2%, 92±1%, 78±3%, 95±1%, 83±2%, respectively. This new product can be used for numerous applications including the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem services and land-use potentials (e.g., agricultural production), among others. PMID:29611843
Hugelius, G.; Bockheim, James G.; Camill, P.; Elberling, B.; Grosse, G.; Harden, J.W.; Johnson, Kevin; Jorgenson, T.; Koven, C.D.; Kuhry, P.; Michaelson, G.; Mishra, U.; Palmtag, J.; Ping, C.-L.; O'Donnell, J.; Schirrmeister, L.; Schuur, E.A.G.; Sheng, Y.; Smith, L.C.; Strauss, J.; Yu, Z.
2013-01-01
High-latitude terrestrial ecosystems are key components in the global carbon cycle. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify stocks of soil organic carbon (SOC) in the northern circumpolar permafrost region (a total area of 18.7 × 106 km2). The NCSCD is a geographical information system (GIS) data set that has been constructed using harmonized regional soil classification maps together with pedon data from the northern permafrost region. Previously, the NCSCD has been used to calculate SOC storage to the reference depths 0–30 cm and 0–100 cm (based on 1778 pedons). It has been shown that soils of the northern circumpolar permafrost region also contain significant quantities of SOC in the 100–300 cm depth range, but there has been no circumpolar compilation of pedon data to quantify this deeper SOC pool and there are no spatially distributed estimates of SOC storage below 100 cm depth in this region. Here we describe the synthesis of an updated pedon data set for SOC storage (kg C m-2) in deep soils of the northern circumpolar permafrost regions, with separate data sets for the 100–200 cm (524 pedons) and 200–300 cm (356 pedons) depth ranges. These pedons have been grouped into the North American and Eurasian sectors and the mean SOC storage for different soil taxa (subdivided into Gelisols including the sub-orders Histels, Turbels, Orthels, permafrost-free Histosols, and permafrost-free mineral soil orders) has been added to the updated NCSCDv2. The updated version of the data set is freely available online in different file formats and spatial resolutions that enable spatially explicit applications in GIS mapping and terrestrial ecosystem models. While this newly compiled data set adds to our knowledge of SOC in the 100–300 cm depth range, it also reveals that large uncertainties remain. Identified data gaps include spatial coverage of deep (> 100 cm) pedons in many regions as well as the spatial extent of areas with thin soils overlying bedrock and the quantity and distribution of massive ground ice. An open access data-portal for the pedon data set and the GIS-data sets is available online at http://bolin.su.se/data/ncscd/.
Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian
2013-01-01
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere. PMID:22686347
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arutyunyan, R.V.; Bol`shov, L.A.; Vasil`ev, S.K.
1994-06-01
The objective of this study was to clarify a number of issues related to the spatial distribution of contaminants from the Chernobyl accident. The effects of local statistics were addressed by collecting and analyzing (for Cesium 137) soil samples from a number of regions, and it was found that sample activity differed by a factor of 3-5. The effect of local non-uniformity was estimated by modeling the distribution of the average activity of a set of five samples for each of the regions, with the spread in the activities for a {+-}2 range being equal to 25%. The statistical characteristicsmore » of the distribution of contamination were then analyzed and found to be a log-normal distribution with the standard deviation being a function of test area. All data for the Bryanskaya Oblast area were analyzed statistically and were adequately described by a log-normal function.« less
Distributed Bragg Reflectors With Reduced Optical Absorption
Klem, John F.
2005-08-16
A new class of distributed Bragg reflectors has been developed. These distributed Bragg reflectors comprise interlayers positioned between sets of high-index and low-index quarter-wave plates. The presence of these interlayers is to reduce photon absorption resulting from spatially indirect photon-assisted electronic transitions between the high-index and low-index quarter wave plates. The distributed Bragg reflectors have applications for use in vertical-cavity surface-emitting lasers for use at 1.55 .mu.m and at other wavelengths of interest.
Assessing the Spatial Scale Effect of Anthropogenic Factors on Species Distribution
Mangiacotti, Marco; Scali, Stefano; Sacchi, Roberto; Bassu, Lara; Nulchis, Valeria; Corti, Claudia
2013-01-01
Patch context is a way to describe the effect that the surroundings exert on a landscape patch. Despite anthropogenic context alteration may affect species distributions by reducing the accessibility to suitable patches, species distribution modelling have rarely accounted for its effects explicitly. We propose a general framework to statistically detect the occurrence and the extent of such a factor, by combining presence-only data, spatial distribution models and information-theoretic model selection procedures. After having established the spatial resolution of the analysis on the basis of the species characteristics, a measure of anthropogenic alteration that can be quantified at increasing distance from each patch has to be defined. Then the distribution of the species is modelled under competing hypotheses: H0, assumes that the distribution is uninfluenced by the anthropogenic variables; H1, assumes the effect of alteration at the species scale (resolution); and H2, H3 … Hn add the effect of context alteration at increasing radii. Models are compared using the Akaike Information Criterion to establish the best hypothesis, and consequently the occurrence (if any) and the spatial scale of the anthropogenic effect. As a study case we analysed the distribution data of two insular lizards (one endemic and one naturalised) using four alternative hypotheses: no alteration (H0), alteration at the species scale (H1), alteration at two context scales (H2 and H3). H2 and H3 performed better than H0 and H1, highlighting the importance of context alteration. H2 performed better than H3, setting the spatial scale of the context at 1 km. The two species respond differently to context alteration, the introduced lizard being more tolerant than the endemic one. The proposed approach supplies reliably and interpretable results, uses easily available data on species distribution, and allows the assessing of the spatial scale at which human disturbance produces the heaviest effects. PMID:23825669
Rubin, Ilan N; Ellner, Stephen P; Kessler, André; Morrell, Kimberly A
2015-09-01
1. Plant induced resistance to herbivory affects the spatial distribution of herbivores, as well as their performance. In recent years, theories regarding the benefit to plants of induced resistance have shifted from ideas of optimal resource allocation towards a more eclectic set of theories that consider spatial and temporal plant variability and the spatial distribution of herbivores among plants. However, consensus is lacking on whether induced resistance causes increased herbivore aggregation or increased evenness, as both trends have been experimentally documented. 2. We created a spatial individual-based model that can describe many plant-herbivore systems with induced resistance, in order to analyse how different aspects of induced resistance might affect herbivore distribution, and the total damage to a plant population, during a growing season. 3. We analyse the specific effects on herbivore aggregation of informed herbivore movement (preferential movement to less-damaged plants) and of information transfer between plants about herbivore attacks, in order to identify mechanisms driving both aggregation and evenness. We also investigate how the resulting herbivore distributions affect the total damage to plants and aggregation of damage. 4. Even, random and aggregated herbivore distributions can all occur in our model with induced resistance. Highest levels of aggregation occurred in the models with informed herbivore movement, and the most even distributions occurred when the average number of herbivores per plant was low. With constitutive resistance, only random distributions occur. Damage to plants was spatially correlated, unless plants recover very quickly from damage; herbivore spatial autocorrelation was always weak. 5. Our model and results provide a simple explanation for the apparent conflict between experimental results, indicating that both increased aggregation and increased evenness of herbivores can result from induced resistance. We demonstrate that information transfer from plants to herbivores, and from plants to neighbouring plants, can both be major factors in determining non-random herbivore distributions. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Wei, C. J.; Yan, L.; Chi, T. H.; Wu, X. B.; Xiao, C. S.
2006-03-01
After the outbreak of highly pathogenic Avian Influenza (HPAI) in South Korea in the end of year 2003, estimates of the impact of HPAI in affected countries vary greatly, the total direct losses are about 3 billion US dollars, and it caused 15 million birds and poultry flocks death. It is significant to understand the spatial distribution and transmission characters of HPAI for its prevention and control. According to 50 outbreak cases for HPAI in Chinese mainland during 2004, this paper introduces the approach of spatial distribution and transmission characters for HPAI and its results. Its approach is based on remote sensing and GIS techniques. Its supporting data set involves normalized difference vegetation index (NDVI) and land surface temperature (Ts) derived from a time-series of remote sensing data of 1 kilometer-resolution NOAA/AVHRR, birds' migration routes, topology geographic map, lake and wetland maps, and meteorological observation data. In order to analyze synthetically using these data, a supporting platform for analysis Avian Influenza epidemic situation (SPAS/AI) was developed. Supporting by SPAS/AI, the integrated information from multi-sources can be easily used to the analysis of the spatial distribution and transmission character of HPAI. The results show that the range of spatial distribution and transmission of HPAI in China during 2004 connected to environment factors NDVI, Ts and the distributions of lake and wetland, and especially to bird migration routes. To some extent, the results provide some suggestions for the macro-decision making for the prevention and control of HPAI in the areas of potential risk and reoccurrence.
NASA Astrophysics Data System (ADS)
Savran, W. H.; Louie, J. N.; Pullammanappallil, S.; Pancha, A.
2011-12-01
When deterministically modeling the propagation of seismic waves, shallow shear-wave velocity plays a crucial role in predicting shaking effects such as peak ground velocity (PGV). The Clark County Parcel Map provides us with a data set of geotechnical velocities in Las Vegas Valley, at an unprecedented level of detail. Las Vegas Valley is a basin with similar geologic properties to some areas of Southern California. We analyze elementary spatial statistical properties of the Parcel Map, along with calculating its spatial variability. We then investigate these spatial statistics from the PGV results computed from two geotechnical models that incorporate the Parcel Map as parameters. Plotting a histogram of the Parcel Map 30-meter depth-averaged shear velocity (Vs30) values shows the data to approximately fit a bimodal normal distribution with μ1 = 400 m/s, σ1 = 76 m/s, μ2 = 790 m/s, σ2 = 149 m/s, and p = 0.49., where μ is the mean, σ is standard deviation, and p is the probability mixing factor for the bimodal distribution. Based on plots of spatial power spectra, the Parcel Map appears to be fractal over the second and third decades, in kilometers. The spatial spectra possess the same fractal dimension in the N-S and the E-W directions, indicating isotropic scale invariance. We configured finite-difference wave propagation models at 0.5 Hz with LLNL's E3D code, utilizing the Parcel Map as input parameters to compute a PGV data set from a scenario earthquake (Black Hills M6.5). The resulting PGV is fractal over the same spatial frequencies as the Vs30 data sets associated with their respective models. The fractal dimension is systematically lower in all of the PGV maps as opposed to the Vs30 maps, showing that the PGV maps are richer in higher spatial frequencies. This is potentially caused by a lens focusing effects on seismic waves due to spatial heterogeneity in site conditions.
VIEWCACHE: An incremental pointer-based access method for autonomous interoperable databases
NASA Technical Reports Server (NTRS)
Roussopoulos, N.; Sellis, Timos
1992-01-01
One of biggest problems facing NASA today is to provide scientists efficient access to a large number of distributed databases. Our pointer-based incremental database access method, VIEWCACHE, provides such an interface for accessing distributed data sets and directories. VIEWCACHE allows database browsing and search performing inter-database cross-referencing with no actual data movement between database sites. This organization and processing is especially suitable for managing Astrophysics databases which are physically distributed all over the world. Once the search is complete, the set of collected pointers pointing to the desired data are cached. VIEWCACHE includes spatial access methods for accessing image data sets, which provide much easier query formulation by referring directly to the image and very efficient search for objects contained within a two-dimensional window. We will develop and optimize a VIEWCACHE External Gateway Access to database management systems to facilitate distributed database search.
Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data
Wikle, C.K.; Royle, J. Andrew
2005-01-01
Many ecological processes exhibit spatial structure that changes over time in a coherent, dynamical fashion. This dynamical component is often ignored in the design of spatial monitoring networks. Furthermore, ecological variables related to processes such as habitat are often non-Gaussian (e.g. Poisson or log-normal). We demonstrate that a simulation-based design approach can be used in settings where the data distribution is from a spatio-temporal exponential family. The key random component in the conditional mean function from this distribution is then a spatio-temporal dynamic process. Given the computational burden of estimating the expected utility of various designs in this setting, we utilize an extended Kalman filter approximation to facilitate implementation. The approach is motivated by, and demonstrated on, the problem of selecting sampling locations to estimate July brood counts in the prairie pothole region of the U.S.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Lee, Jae N.; Iredell, Lena
2014-01-01
In this presentation, we will briefly describe the significant improvements made in the AIRS Version-6 retrieval algorithm, especially as to how they affect retrieved surface skin and surface air temperatures. The global distribution of seasonal 1:30 AM and 1:30 PM local time 12 year climatologies of Ts,a will be presented for the first time. We will also present the spatial distribution of short term 12 year anomaly trends of Ts,a at 1:30 AM and 1:30 PM, as well as the spatial distribution of temporal correlations of Ts,a with the El Nino Index. It will be shown that there are significant differences between the behavior of 1:30 AM and 1:30 PM Ts,a anomalies in some arid land areas.
Okami, Suguru; Kohtake, Naohiko
2016-01-01
The disease burden of malaria has decreased as malaria elimination efforts progress. The mapping approach that uses spatial risk distribution modeling needs some adjustment and reinvestigation in accordance with situational changes. Here we applied a mathematical modeling approach for standardized morbidity ratio (SMR) calculated by annual parasite incidence using routinely aggregated surveillance reports, environmental data such as remote sensing data, and non-environmental anthropogenic data to create fine-scale spatial risk distribution maps of western Cambodia. Furthermore, we incorporated a combination of containment status indicators into the model to demonstrate spatial heterogeneities of the relationship between containment status and risks. The explanatory model was fitted to estimate the SMR of each area (adjusted Pearson correlation coefficient R2 = 0.774; Akaike information criterion AIC = 149.423). A Bayesian modeling framework was applied to estimate the uncertainty of the model and cross-scale predictions. Fine-scale maps were created by the spatial interpolation of estimated SMRs at each village. Compared with geocoded case data, corresponding predicted values showed conformity [Spearman’s rank correlation r = 0.662 in the inverse distance weighed interpolation and 0.645 in ordinal kriging (95% confidence intervals of 0.414–0.827 and 0.368–0.813, respectively), Welch’s t-test; Not significant]. The proposed approach successfully explained regional malaria risks and fine-scale risk maps were created under low-to-moderate malaria transmission settings where reinvestigations of existing risk modeling approaches were needed. Moreover, different representations of simulated outcomes of containment status indicators for respective areas provided useful insights for tailored interventional planning, considering regional malaria endemicity. PMID:27415623
SimAlba: A Spatial Microsimulation Approach to the Analysis of Health Inequalities
Campbell, Malcolm; Ballas, Dimitris
2016-01-01
This paper presents applied geographical research based on a spatial microsimulation model, SimAlba, aimed at estimating geographically sensitive health variables in Scotland. SimAlba has been developed in order to answer a variety of “what-if” policy questions pertaining to health policy in Scotland. Using the SimAlba model, it is possible to simulate the distributions of previously unknown variables at the small area level such as smoking, alcohol consumption, mental well-being, and obesity. The SimAlba microdataset has been created by combining Scottish Health Survey and Census data using a deterministic reweighting spatial microsimulation algorithm developed for this purpose. The paper presents SimAlba outputs for Scotland’s largest city, Glasgow, and examines the spatial distribution of the simulated variables for small geographical areas in Glasgow as well as the effects on individuals of different policy scenario outcomes. In simulating previously unknown spatial data, a wealth of new perspectives can be examined and explored. This paper explores a small set of those potential avenues of research and shows the power of spatial microsimulation modeling in an urban context. PMID:27818989
Evaluating a Satellite-derived Time Series of Inundation Dynamics
NASA Astrophysics Data System (ADS)
Matthews, E.; Papa, F.; Prigent, C.; McDonald, K.
2006-12-01
A new data set of inundation dynamics derived from a suite of satellites (Prigent et al.; Papa et al.) provides the first global, multi-year observations of monthly inundation extent. Initial global and regional evaluation of the data set using data on wetland/vegetation distributions from traditional and remote-sensing sources, GCPC rainfall, and altimeter-derived river heights indicates reasonable spatial distributions and seasonality. We extend the evaluation of this new data set - using independent multi-date, high-resolution satellite observations of inundated ecosystems and freeze-thaw dynamics, as well as climate data - focusing on a variety of boreal and tropical ecosystems representative of global wetlands. The goal is to investigate the strengths of the new data set, and develop strategies for improving weaknesses where identified.
Li, Xiao Ling; Xiu, Chun Liang; Cheng, Lin; Wang, Nyu Ying
2016-11-18
Urban shelter parks as one of the important urban elements are a main form of emergency shelters for a city. This study evaluated the spatial distribution of urban parks in Changchun City with the proximal area method based on disaster prevention goal. Results showed that the spatial distribution of urban shelter parks was unbalanced, with high concentration in the northwest and low concentration in the southeast. The spatial distribution of urban shelter parks of the same grade was concentrated, but the different grades were scattered. The validity of urban shelter parks was low. More than 50% of the park's per capita refuge area was insufficient. For nearly 40% of the parks, their accessibility was longer than the longest evacuation time. There were significant differences in effectiveness for urban parks of different grades. The urban shelter parks for central disaster prevention were the best, followed by the designated urban shelter parks, whereas urban shelter parks for emergency disaster prevention were the least effective. In view of the layout unreasonable situation of disaster prevention parks in Changchun City, we made following recommendations: the spatial distribution of nesting urban shelter parks with different grades should be used; standards set for urban shelter parks should evolve with population; and the construction of urban shelter parks for emergency disaster prevention should be strengthened.
Spatial competition and price formation
NASA Astrophysics Data System (ADS)
Nagel, Kai; Shubik, Martin; Paczuski, Maya; Bak, Per
2000-12-01
We look at price formation in a retail setting, that is, companies set prices, and consumers either accept prices or go someplace else. In contrast to most other models in this context, we use a two-dimensional spatial structure for information transmission, that is, consumers can only learn from nearest neighbors. Many aspects of this can be understood in terms of generalized evolutionary dynamics. In consequence, we first look at spatial competition and cluster formation without price. This leads to establishement size distributions, which we compare to reality. After some theoretical considerations, which at least heuristically explain our simulation results, we finally return to price formation, where we demonstrate that our simple model with nearly no organized planning or rationality on the part of any of the agents indeed leads to an economically plausible price.
Shah, Tayyab Ikram; Bell, Scott; Wilson, Kathi
2016-01-01
Urban environments can influence many aspects of health and well-being and access to health care is one of them. Access to primary health care (PHC) in urban settings is a pressing research and policy issue in Canada. Most research on access to healthcare is focused on national and provincial levels in Canada; there is a need to advance current understanding to local scales such as neighbourhoods. This study examines spatial accessibility to family physicians using the Three-Step Floating Catchment Area (3SFCA) method to identify neighbourhoods with poor geographical access to PHC services and their spatial patterning across 14 Canadian urban settings. An index of spatial access to PHC services, representing an accessibility score (physicians-per-1000 population), was calculated for neighborhoods using a 3km road network distance. Information about primary health care providers (this definition does not include mobile services such as health buses or nurse practitioners or less distributed services such as emergency rooms) used in this research was gathered from publicly available and routinely updated sources (i.e. provincial colleges of physicians and surgeons). An integrated geocoding approach was used to establish PHC locations. The results found that the three methods, Simple Ratio, Neighbourhood Simple Ratio, and 3SFCA that produce City level access scores are positively correlated with each other. Comparative analyses were performed both within and across urban settings to examine disparities in distributions of PHC services. It is found that neighbourhoods with poor accessibility scores in the main urban settings across Canada have further disadvantages in relation to population high health care needs. The results of this study show substantial variations in geographical accessibility to PHC services both within and among urban areas. This research enhances our understanding of spatial accessibility to health care services at the neighbourhood level. In particular, the results show that the low access neighbourhoods tend to be clustered in the neighbourhoods at the urban periphery and immediately surrounding the downtown area.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Fei; Zhang, Shengkai; Zhu, Tingting
2017-04-01
Synthetic Aperture Radar (SAR) is significantly important for polar remote sensing since it can provide continuous observations in all days and all weather. SAR can be used for extracting the surface roughness information characterized by the variance of dielectric properties and different polarization channels, which make it possible to observe different ice types and surface structure for deformation analysis. In November, 2016, Chinese National Antarctic Research Expedition (CHINARE) 33rd cruise has set sails in sea ice zone in Antarctic. Accurate leads spatial distribution in sea ice zone for routine planning of ship navigation is essential. In this study, the semantic relationship between leads and sea ice categories has been described by the Conditional Random Fields (CRF) model, and leads characteristics have been modeled by statistical distributions in SAR imagery. In the proposed algorithm, a mixture statistical distribution based CRF is developed by considering the contexture information and the statistical characteristics of sea ice for improving leads detection in Sentinel-1A dual polarization SAR imagery. The unary potential and pairwise potential in CRF model is constructed by integrating the posteriori probability estimated from statistical distributions. For mixture statistical distribution parameter estimation, Method of Logarithmic Cumulants (MoLC) is exploited for single statistical distribution parameters estimation. The iteration based Expectation Maximal (EM) algorithm is investigated to calculate the parameters in mixture statistical distribution based CRF model. In the posteriori probability inference, graph-cut energy minimization method is adopted in the initial leads detection. The post-processing procedures including aspect ratio constrain and spatial smoothing approaches are utilized to improve the visual result. The proposed method is validated on Sentinel-1A SAR C-band Extra Wide Swath (EW) Ground Range Detected (GRD) imagery with a pixel spacing of 40 meters near Prydz Bay area, East Antarctica. Main work is listed as follows: 1) A mixture statistical distribution based CRF algorithm has been developed for leads detection from Sentinel-1A dual polarization images. 2) The assessment of the proposed mixture statistical distribution based CRF method and single distribution based CRF algorithm has been presented. 3) The preferable parameters sets including statistical distributions, the aspect ratio threshold and spatial smoothing window size have been provided. In the future, the proposed algorithm will be developed for the operational Sentinel series data sets processing due to its less time consuming cost and high accuracy in leads detection.
Khachatryan, Vardan
2015-04-24
Our search is presented for quark contact interactions and extra spatial dimensions in proton–proton collisions at √s=8TeVusing dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7fb -1collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7)TeV formore » destructive (constructive) interference at 95% confidence level. Finally, lower limits between 5.9 and 8.4TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed–Dimopoulos–Dvali model of extra spatial dimensions.« less
An automated system for the study of ionospheric spatial structures
NASA Astrophysics Data System (ADS)
Belinskaya, I. V.; Boitman, O. N.; Vugmeister, B. O.; Vyborova, V. M.; Zakharov, V. N.; Laptev, V. A.; Mamchenko, M. S.; Potemkin, A. A.; Radionov, V. V.
The system is designed for the study of the vertical distribution of electron density and the parameters of medium-scale ionospheric irregularities over the sounding site as well as the reconstruction of the spatial distribution of electron density within the range of up to 300 km from the sounding location. The system comprises an active central station as well as passive companion stations. The central station is equipped with the digital ionosonde ``Basis'', the measuring-and-computing complex IVK-2, and the receiver-recorder PRK-3M. The companion stations are equipped with receivers-recorders PRK-3. The automated comlex software system includes 14 subsystems. Data transfer between them is effected using magnetic disk data sets. The system is operated in both ionogram mode and Doppler shift and angle-of-arrival mode. Using data obtained in these two modes, the reconstruction of the spatial distribution of electron density in the region is carried out. Reconstruction is checked for accuracy using data from companion stations.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Mora Herrera, C.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zou, W.; Avila, C.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P., III; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Vuosalo, C.; Woods, N.
2015-06-01
A search is presented for quark contact interactions and extra spatial dimensions in proton-proton collisions at √{ s} = 8 TeV using dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7 fb-1 collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7) TeV for destructive (constructive) interference at 95% confidence level. Lower limits between 5.9 and 8.4 TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed-Dimopoulos-Dvali model of extra spatial dimensions.
Location of Road Emergency Stations in Fars Province, Using Spatial Multi-Criteria Decision Making.
Goli, Ali; Ansarizade, Najmeh; Barati, Omid; Kavosi, Zahra
2015-01-01
To locate the road emergency stations in Fars province based on using spatial multi-criteria decision making (Delphi method). In this study, the criteria affecting the location of road emergency stations have been identified through Delphi method and their importance was determined using Analytical Hierarchical Process (AHP). With regard to the importance of the criteria and by using Geographical Information System (GIS), the appropriateness of the existing stations with the criteria and the way of their distribution has been explored, and the appropriate arenas for creating new emergency stations were determined. In order to investigate the spatial distribution pattern of the stations, Moran's Index was used. The accidents (0.318), placement position (0.235), time (0.198), roads (0.160), and population (0.079) were introduced as the main criteria in location road emergency stations. The findings showed that the distribution of the existing stations was clustering (Moran's I=0.3). Three priorities were introduced for establishing new stations. Some arenas including Abade, north of Eghlid and Khoram bid, and small parts of Shiraz, Farashband, Bavanat, and Kazeroon were suggested as the first priority. GIS is a useful and applicable tool in investigating spatial distribution and geographical accessibility to the setting that provide health care, including emergency stations.
NASA Astrophysics Data System (ADS)
Reglero, Patricia; Santos, Maria; Balbín, Rosa; Laíz-Carrión, Raul; Alvarez-Berastegui, Diego; Ciannelli, Lorenzo; Jiménez, Elisa; Alemany, Francisco
2017-06-01
Tuna spawning habitats are traditionally characterized using data sets of larvae or gonads from mature adults and concurrent environmental variables. Data on egg distributions have never previously been used since molecular analyses are mandatory to identify tuna eggs to species level. However, in this study we use molecularly derived egg distribution data, in addition to larval data, to characterize hydrographic and biological drivers of the spatial distribution of eggs and larvae of bluefin Thunnus thynnus and albacore tuna Thunnus alalunga in the Balearic Sea, a main spawning area of these species in the Mediterranean. The effects of the hydrography, characterized by salinity, temperature and geostrophic velocity, on the spatial distributions of the eggs and larvae are investigated. Three biological variables are used to describe the productivity in the area: chlorophyll a in the mixed layer, chlorophyll a in the deep chlorophyll maximum and mesozooplankton biomass in the mixed layer. Our results point to the importance of salinity fronts and temperatures above a minimum threshold in shaping the egg and larval distribution of both species. The spatial distribution of the biotic variables was very scattered, and they did not emerge as significant variables in the presence-absence models. However, they became significant when modeling egg and larval abundances. The lack of correlation between the three biotic variables challenges the use of chlorophyll a to describe trophic scenarios for the larvae and suggests that the spatial distribution of resources is not persistent in time. The different patterns in relation to biotic variables across species and stages found in this and other studies indicate a still elusive understanding of the link between trophic levels involving tuna early larval stages. Our ability to improve short-term forecasting and long-term predictions of climate effects on the egg and larval distributions is discussed based on the consistency of the environmentally driven spatial patterns for the two species.
Ecology and geography of human monkeypox case occurrences across Africa.
Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre
2012-04-01
As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.
NASA Astrophysics Data System (ADS)
Braud, Isabelle; Roux, Hélène; Anquetin, Sandrine; Maubourguet, Marie-Madeleine; Manus, Claire; Viallet, Pierre; Dartus, Denis
2010-11-01
SummaryThis paper presents a detailed analysis of the September 8-9, 2002 flash flood event in the Gard region (southern France) using two distributed hydrological models: CVN built within the LIQUID® hydrological platform and MARINE. The models differ in terms of spatial discretization, infiltration and water redistribution representation, and river flow transfer. MARINE can also account for subsurface lateral flow. Both models are set up using the same available information, namely a DEM and a pedology map. They are forced with high resolution radar rainfall data over a set of 18 sub-catchments ranging from 2.5 to 99 km2 and are run without calibration. To begin with, models simulations are assessed against post field estimates of the time of peak and the maximum peak discharge showing a fair agreement for both models. The results are then discussed in terms of flow dynamics, runoff coefficients and soil saturation dynamics. The contribution of the subsurface lateral flow is also quantified using the MARINE model. This analysis highlights that rainfall remains the first controlling factor of flash flood dynamics. High rainfall peak intensities are very influential of the maximum peak discharge for both models, but especially for the CVN model which has a simplified overland flow transfer. The river bed roughness also influences the peak intensity and time. Soil spatial representation is shown to have a significant role on runoff coefficients and on the spatial variability of saturation dynamics. Simulated soil saturation is found to be strongly related with soil depth and initial storage deficit maps, due to a full saturation of most of the area at the end of the event. When activated, the signature of subsurface lateral flow is also visible in the spatial patterns of soil saturation with higher values concentrating along the river network. However, the data currently available do not allow the assessment of both patterns. The paper concludes with a set of recommendations for enhancing field observations in order to progress in process understanding and gather a larger set of data to improve the realism of distributed models.
Spatial modelling of disease using data- and knowledge-driven approaches.
Stevens, Kim B; Pfeiffer, Dirk U
2011-09-01
The purpose of spatial modelling in animal and public health is three-fold: describing existing spatial patterns of risk, attempting to understand the biological mechanisms that lead to disease occurrence and predicting what will happen in the medium to long-term future (temporal prediction) or in different geographical areas (spatial prediction). Traditional methods for temporal and spatial predictions include general and generalized linear models (GLM), generalized additive models (GAM) and Bayesian estimation methods. However, such models require both disease presence and absence data which are not always easy to obtain. Novel spatial modelling methods such as maximum entropy (MAXENT) and the genetic algorithm for rule set production (GARP) require only disease presence data and have been used extensively in the fields of ecology and conservation, to model species distribution and habitat suitability. Other methods, such as multicriteria decision analysis (MCDA), use knowledge of the causal factors of disease occurrence to identify areas potentially suitable for disease. In addition to their less restrictive data requirements, some of these novel methods have been shown to outperform traditional statistical methods in predictive ability (Elith et al., 2006). This review paper provides details of some of these novel methods for mapping disease distribution, highlights their advantages and limitations, and identifies studies which have used the methods to model various aspects of disease distribution. Copyright © 2011. Published by Elsevier Ltd.
Some considerations on the use of ecological models to predict species' geographic distributions
Peterjohn, B.G.
2001-01-01
Peterson (2001) used Genetic Algorithm for Rule-set Prediction (GARP) models to predict distribution patterns from Breeding Bird Survey (BBS) data. Evaluations of these models should consider inherent limitations of BBS data: (1) BBS methods may not sample species and habitats equally; (2) using BBS data for both model development and testing may overlook poor fit of some models; and (3) BBS data may not provide the desired spatial resolution or capture temporal changes in species distributions. The predictive value of GARP models requires additional study, especially comparisons with distribution patterns from independent data sets. When employed at appropriate temporal and geographic scales, GARP models show considerable promise for conservation biology applications but provide limited inferences concerning processes responsible for the observed patterns.
NASA Astrophysics Data System (ADS)
Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten
2016-09-01
For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.
Is a matrix exponential specification suitable for the modeling of spatial correlation structures?
Strauß, Magdalena E.; Mezzetti, Maura; Leorato, Samantha
2018-01-01
This paper investigates the adequacy of the matrix exponential spatial specifications (MESS) as an alternative to the widely used spatial autoregressive models (SAR). To provide as complete a picture as possible, we extend the analysis to all the main spatial models governed by matrix exponentials comparing them with their spatial autoregressive counterparts. We propose a new implementation of Bayesian parameter estimation for the MESS model with vague prior distributions, which is shown to be precise and computationally efficient. Our implementations also account for spatially lagged regressors. We further allow for location-specific heterogeneity, which we model by including spatial splines. We conclude by comparing the performances of the different model specifications in applications to a real data set and by running simulations. Both the applications and the simulations suggest that the spatial splines are a flexible and efficient way to account for spatial heterogeneities governed by unknown mechanisms. PMID:29492375
Atlas of the global distribution of atmospheric heating during the global weather experiment
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Johnson, Donald R.
1991-01-01
Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.
Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures
Zavodszky, Maria I.
2017-01-01
Background Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. Results The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. Conclusions MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information). PMID:29190747
Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian
2013-02-01
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Uncertainty in determining extreme precipitation thresholds
NASA Astrophysics Data System (ADS)
Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili
2013-10-01
Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method are more reasonable and applicable for the Pearl River Basin.
Hugelius, Gustaf; Bockheim, J. G.; Camill, P.; ...
2013-12-23
High-latitude terrestrial ecosystems are key components in the global carbon cycle. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify stocks of soil organic carbon (SOC) in the northern circumpolar permafrost region (a total area of 18.7 × 10 6 km 2). The NCSCD is a geographical information system (GIS) data set that has been constructed using harmonized regional soil classification maps together with pedon data from the northern permafrost region. Previously, the NCSCD has been used to calculate SOC storage to the reference depths 0–30 cm and 0–100 cm (based on 1778 pedons). It has been shownmore » that soils of the northern circumpolar permafrost region also contain significant quantities of SOC in the 100–300 cm depth range, but there has been no circumpolar compilation of pedon data to quantify this deeper SOC pool and there are no spatially distributed estimates of SOC storage below 100 cm depth in this region. Here we describe the synthesis of an updated pedon data set for SOC storage (kg C m -2) in deep soils of the northern circumpolar permafrost regions, with separate data sets for the 100–200 cm (524 pedons) and 200–300 cm (356 pedons) depth ranges. These pedons have been grouped into the North American and Eurasian sectors and the mean SOC storage for different soil taxa (subdivided into Gelisols including the sub-orders Histels, Turbels, Orthels, permafrost-free Histosols, and permafrost-free mineral soil orders) has been added to the updated NCSCDv2. The updated version of the data set is freely available online in different file formats and spatial resolutions that enable spatially explicit applications in GIS mapping and terrestrial ecosystem models. While this newly compiled data set adds to our knowledge of SOC in the 100–300 cm depth range, it also reveals that large uncertainties remain. In conclusion, identified data gaps include spatial coverage of deep (> 100 cm) pedons in many regions as well as the spatial extent of areas with thin soils overlying bedrock and the quantity and distribution of massive ground ice.« less
Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew
2006-01-01
Background To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May – 31 October 1906 – 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. Results The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. Conclusion The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century. PMID:16566830
Hinman, Sarah E; Blackburn, Jason K; Curtis, Andrew
2006-03-27
To better understand the distribution of typhoid outbreaks in Washington, D.C., the U.S. Public Health Service (PHS) conducted four investigations of typhoid fever. These studies included maps of cases reported between 1 May - 31 October 1906 - 1909. These data were entered into a GIS database and analyzed using Ripley's K-function followed by the Gi* statistic in yearly intervals to evaluate spatial clustering, the scale of clustering, and the temporal stability of these clusters. The Ripley's K-function indicated no global spatial autocorrelation. The Gi* statistic indicated clustering of typhoid at multiple scales across the four year time period, refuting the conclusions drawn in all four PHS reports concerning the distribution of cases. While the PHS reports suggested an even distribution of the disease, this study quantified both areas of localized disease clustering, as well as mobile larger regions of clustering. Thus, indicating both highly localized and periodic generalized sources of infection within the city. The methodology applied in this study was useful for evaluating the spatial distribution and annual-level temporal patterns of typhoid outbreaks in Washington, D.C. from 1906 to 1909. While advanced spatial analyses of historical data sets must be interpreted with caution, this study does suggest that there is utility in these types of analyses and that they provide new insights into the urban patterns of typhoid outbreaks during the early part of the twentieth century.
Shield Fields Within the Nemesis Tessera Quadrangle, Venus
NASA Technical Reports Server (NTRS)
Polit, A. T.; Koch, N. A.; Grosfils, E. B.; Reinen, L. A.
2002-01-01
Here we study small edifice concentrations in parts of Nemesis Tessera to quantify their spatial distribution and density. Does this affect shield field size, and do specific density values characterize different tectonic settings? Additional information is contained in the original extended abstract.
NASA Technical Reports Server (NTRS)
Feinstein, S. P.; Girard, M. A.
1979-01-01
An automated technique for measuring particle diameters and their spatial coordinates from holographic reconstructions is being developed. Preliminary tests on actual cold-flow holograms of impinging jets indicate that a suitable discriminant algorithm consists of a Fourier-Gaussian noise filter and a contour thresholding technique. This process identifies circular as well as noncircular objects. The desired objects (in this case, circular or possibly ellipsoidal) are then selected automatically from the above set and stored with their parametric representations. From this data, dropsize distributions as a function of spatial coordinates can be generated and combustion effects due to hardware and/or physical variables studied.
A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring.
Takahashi, Kunihiko; Kulldorff, Martin; Tango, Toshiro; Yih, Katherine
2008-04-11
Early detection of disease outbreaks enables public health officials to implement disease control and prevention measures at the earliest possible time. A time periodic geographical disease surveillance system based on a cylindrical space-time scan statistic has been used extensively for disease surveillance along with the SaTScan software. In the purely spatial setting, many different methods have been proposed to detect spatial disease clusters. In particular, some spatial scan statistics are aimed at detecting irregularly shaped clusters which may not be detected by the circular spatial scan statistic. Based on the flexible purely spatial scan statistic, we propose a flexibly shaped space-time scan statistic for early detection of disease outbreaks. The performance of the proposed space-time scan statistic is compared with that of the cylindrical scan statistic using benchmark data. In order to compare their performances, we have developed a space-time power distribution by extending the purely spatial bivariate power distribution. Daily syndromic surveillance data in Massachusetts, USA, are used to illustrate the proposed test statistic. The flexible space-time scan statistic is well suited for detecting and monitoring disease outbreaks in irregularly shaped areas.
Mapping Agricultural Fields in Sub-Saharan Africa with a Computer Vision Approach
NASA Astrophysics Data System (ADS)
Debats, S. R.; Luo, D.; Estes, L. D.; Fuchs, T.; Caylor, K. K.
2014-12-01
Sub-Saharan Africa is an important focus for food security research, because it is experiencing unprecedented population growth, agricultural activities are largely dominated by smallholder production, and the region is already home to 25% of the world's undernourished. One of the greatest challenges to monitoring and improving food security in this region is obtaining an accurate accounting of the spatial distribution of agriculture. Households are the primary units of agricultural production in smallholder communities and typically rely on small fields of less than 2 hectares. Field sizes are directly related to household crop productivity, management choices, and adoption of new technologies. As population and agriculture expand, it becomes increasingly important to understand both the distribution of field sizes as well as how agricultural communities are spatially embedded in the landscape. In addition, household surveys, a common tool for tracking agricultural productivity in Sub-Saharan Africa, would greatly benefit from spatially explicit accounting of fields. Current gridded land cover data sets do not provide information on individual agricultural fields or the distribution of field sizes. Therefore, we employ cutting edge approaches from the field of computer vision to map fields across Sub-Saharan Africa, including semantic segmentation, discriminative classifiers, and automatic feature selection. Our approach aims to not only improve the binary classification accuracy of cropland, but also to isolate distinct fields, thereby capturing crucial information on size and geometry. Our research focuses on the development of descriptive features across scales to increase the accuracy and geographic range of our computer vision algorithm. Relevant data sets include high-resolution remote sensing imagery and Landsat (30-m) multi-spectral imagery. Training data for field boundaries is derived from hand-digitized data sets as well as crowdsourcing.
Knopp, Stefanie; Mohammed, Khalfan A; Simba Khamis, I; Mgeni, Ali F; Stothard, J Russell; Rollinson, David; Marti, Hanspeter; Utzinger, Jürg
2008-11-01
A programme periodically distributing anthelminthic drugs to school-aged children for the control of soiltransmitted helminthiasis was launched in Zanzibar in the early 1990s. We investigated the spatial distribution of soiltransmitted helminth infections, including Strongyloides stercoralis, in 336 children from six districts in Unguja, Zanzibar, in 2007. One stool sample per child was examined with the Kato-Katz, Koga agar plate and Baermann methods. The point prevalence of the different helminth infections was compared to the geological characteristics of the study sites. The observed prevalences for Trichuris trichiura, Ascaris lumbricoides, hookworm and S. stercoralis were 35.5%, 12.2%, 11.9% and 2.2%, respectively, with considerable spatial heterogeneity. Whilst T. trichiura and hookworm infections were found in all six districts, no A. lumbricoides infections were recorded in the urban setting and only a low prevalence (2.2%) was observed in the South district. S. stercoralis infections were found in four districts with the highest prevalence (4.0%) in the West district. The prevalence of infection with any soil-transmitted helminth was highest in the North A district (69.6%) and lowest in the urban setting (22.4%). A. lumbricoides, hookworm and, with the exception of the North B district, S. stercoralis infections were observed to be more prevalent in the settings north of Zanzibar Town, which are characterized by alluvial clayey soils, moist forest regions and a higher precipitation. After a decade of large-scale administration of anthelminthic drugs, the prevalence of soil-transmitted helminth infections across Unguja is still considerable. Hence, additional measures, such as improving access to adequate sanitation and clean water and continued health education, are warranted to successfully control soil-transmitted helminthiasis in Zanzibar.
Machine learning for predicting soil classes in three semi-arid landscapes
Brungard, Colby W.; Boettinger, Janis L.; Duniway, Michael C.; Wills, Skye A.; Edwards, Thomas C.
2015-01-01
Mapping the spatial distribution of soil taxonomic classes is important for informing soil use and management decisions. Digital soil mapping (DSM) can quantitatively predict the spatial distribution of soil taxonomic classes. Key components of DSM are the method and the set of environmental covariates used to predict soil classes. Machine learning is a general term for a broad set of statistical modeling techniques. Many different machine learning models have been applied in the literature and there are different approaches for selecting covariates for DSM. However, there is little guidance as to which, if any, machine learning model and covariate set might be optimal for predicting soil classes across different landscapes. Our objective was to compare multiple machine learning models and covariate sets for predicting soil taxonomic classes at three geographically distinct areas in the semi-arid western United States of America (southern New Mexico, southwestern Utah, and northeastern Wyoming). All three areas were the focus of digital soil mapping studies. Sampling sites at each study area were selected using conditioned Latin hypercube sampling (cLHS). We compared models that had been used in other DSM studies, including clustering algorithms, discriminant analysis, multinomial logistic regression, neural networks, tree based methods, and support vector machine classifiers. Tested machine learning models were divided into three groups based on model complexity: simple, moderate, and complex. We also compared environmental covariates derived from digital elevation models and Landsat imagery that were divided into three different sets: 1) covariates selected a priori by soil scientists familiar with each area and used as input into cLHS, 2) the covariates in set 1 plus 113 additional covariates, and 3) covariates selected using recursive feature elimination. Overall, complex models were consistently more accurate than simple or moderately complex models. Random forests (RF) using covariates selected via recursive feature elimination was consistently the most accurate, or was among the most accurate, classifiers between study areas and between covariate sets within each study area. We recommend that for soil taxonomic class prediction, complex models and covariates selected by recursive feature elimination be used. Overall classification accuracy in each study area was largely dependent upon the number of soil taxonomic classes and the frequency distribution of pedon observations between taxonomic classes. Individual subgroup class accuracy was generally dependent upon the number of soil pedon observations in each taxonomic class. The number of soil classes is related to the inherent variability of a given area. The imbalance of soil pedon observations between classes is likely related to cLHS. Imbalanced frequency distributions of soil pedon observations between classes must be addressed to improve model accuracy. Solutions include increasing the number of soil pedon observations in classes with few observations or decreasing the number of classes. Spatial predictions using the most accurate models generally agree with expected soil–landscape relationships. Spatial prediction uncertainty was lowest in areas of relatively low relief for each study area.
NASA Astrophysics Data System (ADS)
Le Pichon, C.; Belliard, J.; Talès, E.; Gorges, G.; Clément, F.
2009-12-01
Most of the rivers of the Ile de France region, intimately linked with the megalopolis of Paris, are severely altered and freshwater fishes are exposed to habitat alteration, reduced connectivity and pollution. Several species thus present fragmented distributions and decreasing densities. In this context, the European Water Framework Directive (2000) has goals of hydrosystems rehabilitation and no further damage. In particular, the preservation and restoration of ecological connectivity of river networks is a key element for fish populations. These goals require the identification of natural and anthropological factors which influence the spatial distribution of species. We have proposed a riverscape approach, based on landscape ecology concepts, combined with a set of spatial analysis methods to assess the multiscale relationships between the spatial pattern of fish habitats and processes depending on fish movements. In particular, we used this approach to test the relative roles of spatial arrangement of fish habitats and the presence of physical barriers in explaining fish spatial distributions in a small rural watershed (106 km2). We performed a spatially continuous analysis of fish-habitat relationships. Fish habitats and physical barriers were mapped along the river network (33 km) with a GPS and imported into a GIS. In parallel, a longitudinal electrofishing survey of the distribution and abundance of fishes was made using a point abundance sampling scheme. Longitudinal arrangement of fish habitats were evaluated using spatial analysis methods: patch/distance metrics and moving window analysis. Explanatory models were developed to test the relative contribution of local environmental variables and spatial context in explaining fish presence. We have recorded about 100 physical barriers, on average one every 330 meters; most artificial barriers were road pipe culverts, falls associated with ponds and sluice gates. Contrasted fish communities and densities were observed in the different areas of the watershed, related to various land use (riparian forest or agriculture). The first results of fish-habitat association analysis on a 5 km stream are that longitudinal distribution of fish species was mainly impacted by falls associated with ponds. The impact was both due to the barrier effect and to the modification of aquatic habitats. Abundance distribution of Salmo trutta and Cottus gobio was particularly affected. Spatially continuous analysis of fish-habitat relationships allowed us to identify the relative impacts of habitat alteration and presence of physical barriers to fish movements. These techniques could help prioritize preservation and restoration policies in human-impacted watersheds, in particular, identifying the key physical barriers to remove.
Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh
NASA Astrophysics Data System (ADS)
Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.
2017-12-01
Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three thresholds. The probability of a well with iron content higher than 5mg/L to contain greater than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be more than 91%, 85% and 51%, respectively, while the probability of a well from depth more than 160m to contain more than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be less than 38%, 25% and 14%, respectively.
2012-09-01
Feasibility (MT Modeling ) a. Continuum of mixture distributions interpolated b. Mixture infeasibilities calculated for each pixel c. Valid detections...Visible/Infrared Imaging Spectrometer BRDF Bidirectional Reflectance Distribution Function CASI Compact Airborne Spectrographic Imager CCD...filtering (MTMF), and was designed by Healey and Slater (1999) to use “a physical model to generate the set of sensor spectra for a target that will be
Pinto, Ameet J.; Schroeder, Joanna; Lunn, Mary; Sloan, William
2014-01-01
ABSTRACT Bacterial communities migrate continuously from the drinking water treatment plant through the drinking water distribution system and into our built environment. Understanding bacterial dynamics in the distribution system is critical to ensuring that safe drinking water is being supplied to customers. We present a 15-month survey of bacterial community dynamics in the drinking water system of Ann Arbor, MI. By sampling the water leaving the treatment plant and at nine points in the distribution system, we show that the bacterial community spatial dynamics of distance decay and dispersivity conform to the layout of the drinking water distribution system. However, the patterns in spatial dynamics were weaker than those for the temporal trends, which exhibited seasonal cycling correlating with temperature and source water use patterns and also demonstrated reproducibility on an annual time scale. The temporal trends were driven by two seasonal bacterial clusters consisting of multiple taxa with different networks of association within the larger drinking water bacterial community. Finally, we show that the Ann Arbor data set robustly conforms to previously described interspecific occupancy abundance models that link the relative abundance of a taxon to the frequency of its detection. Relying on these insights, we propose a predictive framework for microbial management in drinking water systems. Further, we recommend that long-term microbial observatories that collect high-resolution, spatially distributed, multiyear time series of community composition and environmental variables be established to enable the development and testing of the predictive framework. PMID:24865557
Kumar, S.; Spaulding, S.A.; Stohlgren, T.J.; Hermann, K.A.; Schmidt, T.S.; Bahls, L.L.
2009-01-01
The diatom Didymosphenia geminata is a single-celled alga found in lakes, streams, and rivers. Nuisance blooms of D geminata affect the diversity, abundance, and productivity of other aquatic organisms. Because D geminata can be transported by humans on waders and other gear, accurate spatial prediction of habitat suitability is urgently needed for early detection and rapid response, as well as for evaluation of monitoring and control programs. We compared four modeling methods to predict D geminata's habitat distribution; two methods use presence-absence data (logistic regression and classification and regression tree [CART]), and two involve presence data (maximum entropy model [Maxent] and genetic algorithm for rule-set production [GARP]). Using these methods, we evaluated spatially explicit, bioclimatic and environmental variables as predictors of diatom distribution. The Maxent model provided the most accurate predictions, followed by logistic regression, CART, and GARP. The most suitable habitats were predicted to occur in the western US, in relatively cool sites, and at high elevations with a high base-flow index. The results provide insights into the factors that affect the distribution of D geminata and a spatial basis for the prediction of nuisance blooms. ?? The Ecological Society of America.
Particle size distribution of the stratospheric aerosol from SCIAMACHY limb measurements
NASA Astrophysics Data System (ADS)
Rozanov, Alexei; Malinina, Elizaveta; Bovensmann, Heinrich; Burrows, John
2017-04-01
A crucial role of the stratospheric aerosols for the radiative budget of the Earth's atmosphere and the consequences for the climate change are widely recognized. A reliable knowledge on physical and optical properties of the stratospheric aerosols as well as on their vertical and spatial distributing is a key issue to assure a proper initialization and running conditions for climate models. On a global scale this information can only be gained from space borne measurements. While a series of past, present and future instruments provide extensive date sets of such aerosol characteristics as extinction coefficient or backscattering ratio, information on a size distribution of the stratospheric aerosols is sparse. One of the important sources on vertically and spatially resolved information on the particle size distribution of stratospheric aerosols is provided by space borne measurements of the scattered solar light in limb viewing geometry performed in visible, near-infrared and short-wave infrared spectral ranges. SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument operated on the European satellite Envisat from 2002 to 2102 was capable of providing spectral information needed to retrieve parameters of aerosol particle size distributions. In this presentation we discuss the retrieval method, present first validation results with SAGE II data and analyze first data sets of stratospheric aerosol particle size distribution parameters obtained from SCIAMACHY limb measurements. The research work was performed in the framework of ROMIC (Role of the middle atmosphere in climate) project.
Mapping local and global variability in plant trait distributions
Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc; ...
2017-12-01
Accurate trait-environment relationships and global maps of plant trait distributions represent a needed stepping stone in global biogeography and are critical constraints of key parameters for land models. Here, we use a global data set of plant traits to map trait distributions closely coupled to photosynthesis and foliar respiration: specific leaf area (SLA), and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm); We propose two models to extrapolate geographically sparse point data to continuous spatial surfaces. The first is a categorical model using species mean trait values, categorized into plant functional types (PFTs) and extrapolating to PFT occurrencemore » ranges identified by remote sensing. The second is a Bayesian spatial model that incorporates information about PFT, location and environmental covariates to estimate trait distributions. Both models are further stratified by varying the number of PFTs; The performance of the models was evaluated based on their explanatory and predictive ability. The Bayesian spatial model leveraging the largest number of PFTs produced the best maps; The interpolation of full trait distributions enables a wider diversity of vegetation to be represented across the land surface. These maps may be used as input to Earth System Models and to evaluate other estimates of functional diversity.« less
NASA Astrophysics Data System (ADS)
Rakovec, O.; Weerts, A. H.; Hazenberg, P.; Torfs, P. J. J. F.; Uijlenhoet, R.
2012-09-01
This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model. The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty.
Mapping local and global variability in plant trait distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc
Accurate trait-environment relationships and global maps of plant trait distributions represent a needed stepping stone in global biogeography and are critical constraints of key parameters for land models. Here, we use a global data set of plant traits to map trait distributions closely coupled to photosynthesis and foliar respiration: specific leaf area (SLA), and dry mass-based concentrations of leaf nitrogen (Nm) and phosphorus (Pm); We propose two models to extrapolate geographically sparse point data to continuous spatial surfaces. The first is a categorical model using species mean trait values, categorized into plant functional types (PFTs) and extrapolating to PFT occurrencemore » ranges identified by remote sensing. The second is a Bayesian spatial model that incorporates information about PFT, location and environmental covariates to estimate trait distributions. Both models are further stratified by varying the number of PFTs; The performance of the models was evaluated based on their explanatory and predictive ability. The Bayesian spatial model leveraging the largest number of PFTs produced the best maps; The interpolation of full trait distributions enables a wider diversity of vegetation to be represented across the land surface. These maps may be used as input to Earth System Models and to evaluate other estimates of functional diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ling; Harley, Robert A.; Brown, Nancy J.
Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels inmore » different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.« less
A high-performance spatial database based approach for pathology imaging algorithm evaluation
Wang, Fusheng; Kong, Jun; Gao, Jingjing; Cooper, Lee A.D.; Kurc, Tahsin; Zhou, Zhengwen; Adler, David; Vergara-Niedermayr, Cristobal; Katigbak, Bryan; Brat, Daniel J.; Saltz, Joel H.
2013-01-01
Background: Algorithm evaluation provides a means to characterize variability across image analysis algorithms, validate algorithms by comparison with human annotations, combine results from multiple algorithms for performance improvement, and facilitate algorithm sensitivity studies. The sizes of images and image analysis results in pathology image analysis pose significant challenges in algorithm evaluation. We present an efficient parallel spatial database approach to model, normalize, manage, and query large volumes of analytical image result data. This provides an efficient platform for algorithm evaluation. Our experiments with a set of brain tumor images demonstrate the application, scalability, and effectiveness of the platform. Context: The paper describes an approach and platform for evaluation of pathology image analysis algorithms. The platform facilitates algorithm evaluation through a high-performance database built on the Pathology Analytic Imaging Standards (PAIS) data model. Aims: (1) Develop a framework to support algorithm evaluation by modeling and managing analytical results and human annotations from pathology images; (2) Create a robust data normalization tool for converting, validating, and fixing spatial data from algorithm or human annotations; (3) Develop a set of queries to support data sampling and result comparisons; (4) Achieve high performance computation capacity via a parallel data management infrastructure, parallel data loading and spatial indexing optimizations in this infrastructure. Materials and Methods: We have considered two scenarios for algorithm evaluation: (1) algorithm comparison where multiple result sets from different methods are compared and consolidated; and (2) algorithm validation where algorithm results are compared with human annotations. We have developed a spatial normalization toolkit to validate and normalize spatial boundaries produced by image analysis algorithms or human annotations. The validated data were formatted based on the PAIS data model and loaded into a spatial database. To support efficient data loading, we have implemented a parallel data loading tool that takes advantage of multi-core CPUs to accelerate data injection. The spatial database manages both geometric shapes and image features or classifications, and enables spatial sampling, result comparison, and result aggregation through expressive structured query language (SQL) queries with spatial extensions. To provide scalable and efficient query support, we have employed a shared nothing parallel database architecture, which distributes data homogenously across multiple database partitions to take advantage of parallel computation power and implements spatial indexing to achieve high I/O throughput. Results: Our work proposes a high performance, parallel spatial database platform for algorithm validation and comparison. This platform was evaluated by storing, managing, and comparing analysis results from a set of brain tumor whole slide images. The tools we develop are open source and available to download. Conclusions: Pathology image algorithm validation and comparison are essential to iterative algorithm development and refinement. One critical component is the support for queries involving spatial predicates and comparisons. In our work, we develop an efficient data model and parallel database approach to model, normalize, manage and query large volumes of analytical image result data. Our experiments demonstrate that the data partitioning strategy and the grid-based indexing result in good data distribution across database nodes and reduce I/O overhead in spatial join queries through parallel retrieval of relevant data and quick subsetting of datasets. The set of tools in the framework provide a full pipeline to normalize, load, manage and query analytical results for algorithm evaluation. PMID:23599905
NASA Astrophysics Data System (ADS)
Xiao, B.; Haslauer, C. P.; Bohling, G. C.; Bárdossy, A.
2017-12-01
The spatial arrangement of hydraulic conductivity (K) determines water flow and solute transport behaviour in groundwater systems. This presentation demonstrates three advances over commonly used geostatistical methods by integrating measurements from novel measurement techniques and novel multivariate non-Gaussian dependence models: The spatial dependence structure of K was analysed using both data sets of K. Previously encountered similarities were confirmed in low-dimensional dependence. These similarities become less stringent and deviate more from symmetric Gaussian dependence in dimensions larger than two. Measurements of small and large K values are more uncertain than medium K values due to decreased sensitivity of the measurement devices at both ends of the K scale. Nevertheless, these measurements contain useful information that we include in the estimation of the marginal distribution and the spatial dependence structure as ``censored measurements'' that are estimated jointly without the common assumption of independence. The spatial dependence structure of the two data sets and their cross-covariances are used to infer the spatial dependence and the amount of the bias between the two data sets. By doing so, one spatial model for K is constructed that is used for simulation and that reflects the characteristics of both measurement techniques. The concept of the presented methodology is to use all available information for the estimation of a stochastic model of the primary parameter (K) at the highly heterogeneous Macrodispersion Experiment (MADE) site. The primary parameter has been measured by two independent measurement techniques whose sets of locations do not overlap. This site offers the unique opportunity of large quantities of measurements of K (31123 direct push injection logging based measurements and 2611 flowmeter based measurements). This improved dependence structure of K will be included into the estimated non-Gaussian dependence models and is expected to reproduce observed solute concentrations at the site better than existing dependence models of K.
Mutel, Christopher L; Pfister, Stephan; Hellweg, Stefanie
2012-01-17
We describe a new methodology for performing regionalized life cycle assessment and systematically choosing the spatial scale of regionalized impact assessment methods. We extend standard matrix-based calculations to include matrices that describe the mapping from inventory to impact assessment spatial supports. Uncertainty in inventory spatial data is modeled using a discrete spatial distribution function, which in a case study is derived from empirical data. The minimization of global spatial autocorrelation is used to choose the optimal spatial scale of impact assessment methods. We demonstrate these techniques on electricity production in the United States, using regionalized impact assessment methods for air emissions and freshwater consumption. Case study results show important differences between site-generic and regionalized calculations, and provide specific guidance for future improvements of inventory data sets and impact assessment methods.
The seven sisters DANCe. III. Projected spatial distribution
NASA Astrophysics Data System (ADS)
Olivares, J.; Moraux, E.; Sarro, L. M.; Bouy, H.; Berihuete, A.; Barrado, D.; Huelamo, N.; Bertin, E.; Bouvier, J.
2018-04-01
Context. Membership analyses of the DANCe and Tycho + DANCe data sets provide the largest and least contaminated sample of Pleiades candidate members to date. Aims: We aim at reassessing the different proposals for the number surface density of the Pleiades in the light of the new and most complete list of candidate members, and inferring the parameters of the most adequate model. Methods: We compute the Bayesian evidence and Bayes Factors for variations of the classical radial models. These include elliptical symmetry, and luminosity segregation. As a by-product of the model comparison, we obtain posterior distributions for each set of model parameters. Results: We find that the model comparison results depend on the spatial extent of the region used for the analysis. For a circle of 11.5 parsecs around the cluster centre (the most homogeneous and complete region), we find no compelling reason to abandon King's model, although the Generalised King model introduced here has slightly better fitting properties. Furthermore, we find strong evidence against radially symmetric models when compared to the elliptic extensions. Finally, we find that including mass segregation in the form of luminosity segregation in the J band is strongly supported in all our models. Conclusions: We have put the question of the projected spatial distribution of the Pleiades cluster on a solid probabilistic framework, and inferred its properties using the most exhaustive and least contaminated list of Pleiades candidate members available to date. Our results suggest however that this sample may still lack about 20% of the expected number of cluster members. Therefore, this study should be revised when the completeness and homogeneity of the data can be extended beyond the 11.5 parsecs limit. Such a study will allow for more precise determination of the Pleiades spatial distribution, its tidal radius, ellipticity, number of objects and total mass.
Arbitrary numbers counter fair decisions: trails of markedness in card distribution.
Schroeder, Philipp A; Pfister, Roland
2015-01-01
Converging evidence from controlled experiments suggests that the mere processing of a number and its attributes such as value or parity might affect free choice decisions between different actions. For example the spatial numerical associations of response codes (SNARC) effect indicates the magnitude of a digit to be associated with a spatial representation and might therefore affect spatial response choices (i.e., decisions between a "left" and a "right" option). At the same time, other (linguistic) features of a number such as parity are embedded into space and might likewise prime left or right responses through feature words [odd or even, respectively; markedness association of response codes (MARC) effect]. In this experiment we aimed at documenting such influences in a natural setting. We therefore assessed number-space and parity-space association effects by exposing participants to a fair distribution task in a card playing scenario. Participants drew cards, read out loud their number values, and announced their response choice, i.e., dealing it to a left vs. right player, indicated by Playmobil characters. Not only did participants prefer to deal more cards to the right player, the card's digits also affected response choices and led to a slightly but systematically unfair distribution, supported by a regular SNARC effect and counteracted by a reversed MARC effect. The experiment demonstrates the impact of SNARC- and MARC-like biases in free choice behavior through verbal and visual numerical information processing even in a setting with high external validity.
NASA Astrophysics Data System (ADS)
Gong, Maozhen
Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.
a Landmark Extraction Method Associated with Geometric Features and Location Distribution
NASA Astrophysics Data System (ADS)
Zhang, W.; Li, J.; Wang, Y.; Xiao, Y.; Liu, P.; Zhang, S.
2018-04-01
Landmark plays an important role in spatial cognition and spatial knowledge organization. Significance measuring model is the main method of landmark extraction. It is difficult to take account of the spatial distribution pattern of landmarks because that the significance of landmark is built in one-dimensional space. In this paper, we start with the geometric features of the ground object, an extraction method based on the target height, target gap and field of view is proposed. According to the influence region of Voronoi Diagram, the description of target gap is established to the geometric representation of the distribution of adjacent targets. Then, segmentation process of the visual domain of Voronoi K order adjacent is given to set up target view under the multi view; finally, through three kinds of weighted geometric features, the landmarks are identified. Comparative experiments show that this method has a certain coincidence degree with the results of traditional significance measuring model, which verifies the effectiveness and reliability of the method and reduces the complexity of landmark extraction process without losing the reference value of landmark.
Relation between the chord length distribution of an infinitely long cylinder and that of its base
NASA Astrophysics Data System (ADS)
Sukiasian, H. S.; Gille, Wilfried
2007-05-01
Chord length distributions are defined for planar and spatial geometric figures. There exist connections between the planar and the spatial cases: The chord length distribution densities (CLDs) of a cylinder B and its base S (the cylinder's orthogonal cross section) are interrelated by a simple, surveyable integral transformation. From this transformation, it was concluded that the odd moments of the CLD f(x ) of S define the leading asymptotic terms of the CLD Aμ(r) of B. The power series of Aμ(r) at r =0 can be traced back to the derivatives of f(x ) in the origin. As a general conclusion, there exist different geometric bodies B in R3 with the same CLD Aμ(r). An exact recognition of B via its CLD is not possible. CLDs do not characterize spatial sets. This result is of importance in materials science in order to avoid wrong interpretations in structure research. The new CLD integral transformation has been illustrated in connection with the transitions triangle→triangular rod and rectangle→rectangular rod.
Study of the marine environment of the northern Gulf of California
NASA Technical Reports Server (NTRS)
Hendrickson, J. R. (Principal Investigator)
1972-01-01
The author has identified the following significant results. Preliminary analysis of the first three months of ERTS-1 imagery have revealed that the MSS images have particular utility for study of turbidity patterns, current phenomena, and bathymetry throughout the test area. Early indications are that well defined spatial distributions of turbidity exist in the northern Gulf of California, and that for any one point in time, these distributions vary with depth. From a single set of images, as many as 3 turbidity maps may be generated, each indicating a vertical spatial relationship of the turbidity masses. The spatial distribution of turbidity masses depend partially upon the coincident currents. In the band of deepest penetration, a map can be gathered which roughly corresponds to the bathymetry of the area. The extreme tides in the northern Gulf of California result in vast areas which can be classified as intertidal mud flats. Information on the amount of exposure at the varying tidal states is important in analysis of these mud flat areas as nursery ground for Mexican commercial fisheries.
spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets.
Dellicour, Simon; Mardulyn, Patrick
2014-05-01
SPADS 1.0 (for 'Spatial and Population Analysis of DNA Sequences') is a population genetic toolbox for characterizing genetic variability within and among populations from DNA sequences. In view of the drastic increase in genetic information available through sequencing methods, spads was specifically designed to deal with multilocus data sets of DNA sequences. It computes several summary statistics from populations or groups of populations, performs input file conversions for other population genetic programs and implements locus-by-locus and multilocus versions of two clustering algorithms to study the genetic structure of populations. The toolbox also includes two MATLAB and r functions, GDISPAL and GDIVPAL, to display differentiation and diversity patterns across landscapes. These functions aim to generate interpolating surfaces based on multilocus distance and diversity indices. In the case of multiple loci, such surfaces can represent a useful alternative to multiple pie charts maps traditionally used in phylogeography to represent the spatial distribution of genetic diversity. These coloured surfaces can also be used to compare different data sets or different diversity and/or distance measures estimated on the same data set. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dukhovskoy, D. S.; Bourassa, M. A.
2016-12-01
The study compares and analyses the characteristics of synoptic storms in the Subpolar North Atlantic over the time period from 2000 through 2009 derived from reanalysis data sets and scatterometer-based gridded wind products. The analysis is performed for ocean 10-m winds derived from the following wind data sets: NCEP/DOE AMIP-II reanalysis (NCEPR2), NCAR/CFSR, Arctic System Reanalysis (ASR) version 1, Cross-Calibrated Multi-Platform (CCMP) wind product versions 1.1 and recently released version 2.0 prepared by the Remote Sensing Systems, and QuikSCAT. A cyclone tracking algorithm employed in this study for storm identification is based on average vorticity fields derived from the wind data. The study discusses storm characteristics such as storm counts, trajectories, intensity, integrated kinetic energy, spatial scale. Interannal variability of these characteristics in the data sets is compared. The analyses demonstrates general agreement among the wind data products on the characteristics of the storms, their spatial distribution and trajectories. On average, the NCEPR2 storms are more energetic mostly due to large spatial scales and stronger winds. There is noticeable interannual variability in the storm characteristics, yet no obvious trend in storms is observed in the data sets.
Shah, Tayyab Ikram; Bell, Scott; Wilson, Kathi
2016-01-01
Background Urban environments can influence many aspects of health and well-being and access to health care is one of them. Access to primary health care (PHC) in urban settings is a pressing research and policy issue in Canada. Most research on access to healthcare is focused on national and provincial levels in Canada; there is a need to advance current understanding to local scales such as neighbourhoods. Methods This study examines spatial accessibility to family physicians using the Three-Step Floating Catchment Area (3SFCA) method to identify neighbourhoods with poor geographical access to PHC services and their spatial patterning across 14 Canadian urban settings. An index of spatial access to PHC services, representing an accessibility score (physicians-per-1000 population), was calculated for neighborhoods using a 3km road network distance. Information about primary health care providers (this definition does not include mobile services such as health buses or nurse practitioners or less distributed services such as emergency rooms) used in this research was gathered from publicly available and routinely updated sources (i.e. provincial colleges of physicians and surgeons). An integrated geocoding approach was used to establish PHC locations. Results The results found that the three methods, Simple Ratio, Neighbourhood Simple Ratio, and 3SFCA that produce City level access scores are positively correlated with each other. Comparative analyses were performed both within and across urban settings to examine disparities in distributions of PHC services. It is found that neighbourhoods with poor accessibility scores in the main urban settings across Canada have further disadvantages in relation to population high health care needs. Conclusions The results of this study show substantial variations in geographical accessibility to PHC services both within and among urban areas. This research enhances our understanding of spatial accessibility to health care services at the neighbourhood level. In particular, the results show that the low access neighbourhoods tend to be clustered in the neighbourhoods at the urban periphery and immediately surrounding the downtown area. PMID:27997577
Dalla Libera, Nico; Fabbri, Paolo; Mason, Leonardo; Piccinini, Leonardo; Pola, Marco
2017-11-15
The Natural Background Level (NBL), suggested by UE BRIDGE project, is suited for spatially distributed datasets providing a regional value that could be higher than the Threshold Value (TV) set by every country. In hydro-geochemically dis-homogeneous areas, the use of a unique regional NBL, higher than TV, could arise problems to distinguish between natural occurrences and anthropogenic contaminant sources. Hence, the goal of this study is to improve the NBL definition employing a geostatistical approach, which reconstructs the contaminant spatial structure accounting geochemical and hydrogeological relationships. This integrated mapping is fundamental to evaluate the contaminant's distribution impact on the NBL, giving indications to improve it. We decided to test this method on the Drainage Basin of Venice Lagoon (DBVL, NE Italy), where the existing NBL is seven times higher than the TV. This area is notoriously affected by naturally occurring arsenic contamination. An available geochemical dataset collected by 50 piezometers was used to reconstruct the spatial distribution of arsenic in the densely populated area of the DBVL. A cokriging approach was applied exploiting the geochemical relationships among As, Fe and NH4+. The obtained spatial predictions of arsenic concentrations were divided into three different zones: i) areas with an As concentration lower than the TV, ii) areas with an As concentration between the TV and the median of the values higher than the TV, and iii) areas with an As concentration higher than the median. Following the BRIDGE suggestions, where enough samples were available, the 90th percentile for each zone was calculated to obtain a local NBL (LNBL). Differently from the original NBL, this local value gives more detailed water quality information accounting the hydrogeological and geochemical setting, and contaminant spatial variation. Hence, the LNBL could give more indications about the distinction between natural occurrence and anthropogenic contamination. Copyright © 2017 Elsevier B.V. All rights reserved.
GSHR-Tree: a spatial index tree based on dynamic spatial slot and hash table in grid environments
NASA Astrophysics Data System (ADS)
Chen, Zhanlong; Wu, Xin-cai; Wu, Liang
2008-12-01
Computation Grids enable the coordinated sharing of large-scale distributed heterogeneous computing resources that can be used to solve computationally intensive problems in science, engineering, and commerce. Grid spatial applications are made possible by high-speed networks and a new generation of Grid middleware that resides between networks and traditional GIS applications. The integration of the multi-sources and heterogeneous spatial information and the management of the distributed spatial resources and the sharing and cooperative of the spatial data and Grid services are the key problems to resolve in the development of the Grid GIS. The performance of the spatial index mechanism is the key technology of the Grid GIS and spatial database affects the holistic performance of the GIS in Grid Environments. In order to improve the efficiency of parallel processing of a spatial mass data under the distributed parallel computing grid environment, this paper presents a new grid slot hash parallel spatial index GSHR-Tree structure established in the parallel spatial indexing mechanism. Based on the hash table and dynamic spatial slot, this paper has improved the structure of the classical parallel R tree index. The GSHR-Tree index makes full use of the good qualities of R-Tree and hash data structure. This paper has constructed a new parallel spatial index that can meet the needs of parallel grid computing about the magnanimous spatial data in the distributed network. This arithmetic splits space in to multi-slots by multiplying and reverting and maps these slots to sites in distributed and parallel system. Each sites constructs the spatial objects in its spatial slot into an R tree. On the basis of this tree structure, the index data was distributed among multiple nodes in the grid networks by using large node R-tree method. The unbalance during process can be quickly adjusted by means of a dynamical adjusting algorithm. This tree structure has considered the distributed operation, reduplication operation transfer operation of spatial index in the grid environment. The design of GSHR-Tree has ensured the performance of the load balance in the parallel computation. This tree structure is fit for the parallel process of the spatial information in the distributed network environments. Instead of spatial object's recursive comparison where original R tree has been used, the algorithm builds the spatial index by applying binary code operation in which computer runs more efficiently, and extended dynamic hash code for bit comparison. In GSHR-Tree, a new server is assigned to the network whenever a split of a full node is required. We describe a more flexible allocation protocol which copes with a temporary shortage of storage resources. It uses a distributed balanced binary spatial tree that scales with insertions to potentially any number of storage servers through splits of the overloaded ones. The application manipulates the GSHR-Tree structure from a node in the grid environment. The node addresses the tree through its image that the splits can make outdated. This may generate addressing errors, solved by the forwarding among the servers. In this paper, a spatial index data distribution algorithm that limits the number of servers has been proposed. We improve the storage utilization at the cost of additional messages. The structure of GSHR-Tree is believed that the scheme of this grid spatial index should fit the needs of new applications using endlessly larger sets of spatial data. Our proposal constitutes a flexible storage allocation method for a distributed spatial index. The insertion policy can be tuned dynamically to cope with periods of storage shortage. In such cases storage balancing should be favored for better space utilization, at the price of extra message exchanges between servers. This structure makes a compromise in the updating of the duplicated index and the transformation of the spatial index data. Meeting the needs of the grid computing, GSHRTree has a flexible structure in order to satisfy new needs in the future. The GSHR-Tree provides the R-tree capabilities for large spatial datasets stored over interconnected servers. The analysis, including the experiments, confirmed the efficiency of our design choices. The scheme should fit the needs of new applications of spatial data, using endlessly larger datasets. Using the system response time of the parallel processing of spatial scope query algorithm as the performance evaluation factor, According to the result of the simulated the experiments, GSHR-Tree is performed to prove the reasonable design and the high performance of the indexing structure that the paper presented.
Spatial analysis and characteristics of pig farming in Thailand.
Thanapongtharm, Weerapong; Linard, Catherine; Chinson, Pornpiroon; Kasemsuwan, Suwicha; Visser, Marjolein; Gaughan, Andrea E; Epprech, Michael; Robinson, Timothy P; Gilbert, Marius
2016-10-06
In Thailand, pig production intensified significantly during the last decade, with many economic, epidemiological and environmental implications. Strategies toward more sustainable future developments are currently investigated, and these could be informed by a detailed assessment of the main trends in the pig sector, and on how different production systems are geographically distributed. This study had two main objectives. First, we aimed to describe the main trends and geographic patterns of pig production systems in Thailand in terms of pig type (native, breeding, and fattening pigs), farm scales (smallholder and large-scale farming systems) and type of farming systems (farrow-to-finish, nursery, and finishing systems) based on a very detailed 2010 census. Second, we aimed to study the statistical spatial association between these different types of pig farming distribution and a set of spatial variables describing access to feed and markets. Over the last decades, pig population gradually increased, with a continuously increasing number of pigs per holder, suggesting a continuing intensification of the sector. The different pig-production systems showed very contrasted geographical distributions. The spatial distribution of large-scale pig farms corresponds with that of commercial pig breeds, and spatial analysis conducted using Random Forest distribution models indicated that these were concentrated in lowland urban or peri-urban areas, close to means of transportation, facilitating supply to major markets such as provincial capitals and the Bangkok Metropolitan region. Conversely the smallholders were distributed throughout the country, with higher densities located in highland, remote, and rural areas, where they supply local rural markets. A limitation of the study was that pig farming systems were defined from the number of animals per farm, resulting in their possible misclassification, but this should have a limited impact on the main patterns revealed by the analysis. The very contrasted distribution of different pig production systems present opportunities for future regionalization of pig production. More specifically, the detailed geographical analysis of the different production systems will be used to spatially-inform planning decisions for pig farming accounting for the specific health, environment and economical implications of the different pig production systems.
Vergara, María; Basto, Mafalda P.; Madeira, María José; Gómez-Moliner, Benjamín J.; Santos-Reis, Margarida; Fernandes, Carlos; Ruiz-González, Aritz
2015-01-01
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species. PMID:26222680
Vergara, María; Basto, Mafalda P; Madeira, María José; Gómez-Moliner, Benjamín J; Santos-Reis, Margarida; Fernandes, Carlos; Ruiz-González, Aritz
2015-01-01
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species.
Phelps, G.A.
2008-01-01
This report describes some simple spatial statistical methods to explore the relationships of scattered points to geologic or other features, represented by points, lines, or areas. It also describes statistical methods to search for linear trends and clustered patterns within the scattered point data. Scattered points are often contained within irregularly shaped study areas, necessitating the use of methods largely unexplored in the point pattern literature. The methods take advantage of the power of modern GIS toolkits to numerically approximate the null hypothesis of randomly located data within an irregular study area. Observed distributions can then be compared with the null distribution of a set of randomly located points. The methods are non-parametric and are applicable to irregularly shaped study areas. Patterns within the point data are examined by comparing the distribution of the orientation of the set of vectors defined by each pair of points within the data with the equivalent distribution for a random set of points within the study area. A simple model is proposed to describe linear or clustered structure within scattered data. A scattered data set of damage to pavement and pipes, recorded after the 1989 Loma Prieta earthquake, is used as an example to demonstrate the analytical techniques. The damage is found to be preferentially located nearer a set of mapped lineaments than randomly scattered damage, suggesting range-front faulting along the base of the Santa Cruz Mountains is related to both the earthquake damage and the mapped lineaments. The damage also exhibit two non-random patterns: a single cluster of damage centered in the town of Los Gatos, California, and a linear alignment of damage along the range front of the Santa Cruz Mountains, California. The linear alignment of damage is strongest between 45? and 50? northwest. This agrees well with the mean trend of the mapped lineaments, measured as 49? northwest.
NASA Astrophysics Data System (ADS)
Elsas, José Hugo; Szalay, Alexander S.; Meneveau, Charles
2018-04-01
Motivated by interest in the geometry of high intensity events of turbulent flows, we examine the spatial correlation functions of sets where turbulent events are particularly intense. These sets are defined using indicator functions on excursion and iso-value sets. Their geometric scaling properties are analysed by examining possible power-law decay of their radial correlation function. We apply the analysis to enstrophy, dissipation and velocity gradient invariants Q and R and their joint spatial distributions, using data from a direct numerical simulation of isotropic turbulence at Reλ ≈ 430. While no fractal scaling is found in the inertial range using box-counting in the finite Reynolds number flow considered here, power-law scaling in the inertial range is found in the radial correlation functions. Thus, a geometric characterisation in terms of these sets' correlation dimension is possible. Strong dependence on the enstrophy and dissipation threshold is found, consistent with multifractal behaviour. Nevertheless, the lack of scaling of the box-counting analysis precludes direct quantitative comparisons with earlier work based on multifractal formalism. Surprising trends, such as a lower correlation dimension for strong dissipation events compared to strong enstrophy events, are observed and interpreted in terms of spatial coherence of vortices in the flow.
A space-time multiscale modelling of Earth's gravity field variations
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
Uncertainty in gridded CO 2 emissions estimates
Hogue, Susannah; Marland, Eric; Andres, Robert J.; ...
2016-05-19
We are interested in the spatial distribution of fossil-fuel-related emissions of CO 2 for both geochemical and geopolitical reasons, but it is important to understand the uncertainty that exists in spatially explicit emissions estimates. Working from one of the widely used gridded data sets of CO 2 emissions, we examine the elements of uncertainty, focusing on gridded data for the United States at the scale of 1° latitude by 1° longitude. Uncertainty is introduced in the magnitude of total United States emissions, the magnitude and location of large point sources, the magnitude and distribution of non-point sources, and from themore » use of proxy data to characterize emissions. For the United States, we develop estimates of the contribution of each component of uncertainty. At 1° resolution, in most grid cells, the largest contribution to uncertainty comes from how well the distribution of the proxy (in this case population density) represents the distribution of emissions. In other grid cells, the magnitude and location of large point sources make the major contribution to uncertainty. Uncertainty in population density can be important where a large gradient in population density occurs near a grid cell boundary. Uncertainty is strongly scale-dependent with uncertainty increasing as grid size decreases. In conclusion, uncertainty for our data set with 1° grid cells for the United States is typically on the order of ±150%, but this is perhaps not excessive in a data set where emissions per grid cell vary over 8 orders of magnitude.« less
Geostatistical Sampling Methods for Efficient Uncertainty Analysis in Flow and Transport Problems
NASA Astrophysics Data System (ADS)
Liodakis, Stylianos; Kyriakidis, Phaedon; Gaganis, Petros
2015-04-01
In hydrogeological applications involving flow and transport of in heterogeneous porous media the spatial distribution of hydraulic conductivity is often parameterized in terms of a lognormal random field based on a histogram and variogram model inferred from data and/or synthesized from relevant knowledge. Realizations of simulated conductivity fields are then generated using geostatistical simulation involving simple random (SR) sampling and are subsequently used as inputs to physically-based simulators of flow and transport in a Monte Carlo framework for evaluating the uncertainty in the spatial distribution of solute concentration due to the uncertainty in the spatial distribution of hydraulic con- ductivity [1]. Realistic uncertainty analysis, however, calls for a large number of simulated concentration fields; hence, can become expensive in terms of both time and computer re- sources. A more efficient alternative to SR sampling is Latin hypercube (LH) sampling, a special case of stratified random sampling, which yields a more representative distribution of simulated attribute values with fewer realizations [2]. Here, term representative implies realizations spanning efficiently the range of possible conductivity values corresponding to the lognormal random field. In this work we investigate the efficiency of alternative methods to classical LH sampling within the context of simulation of flow and transport in a heterogeneous porous medium. More precisely, we consider the stratified likelihood (SL) sampling method of [3], in which attribute realizations are generated using the polar simulation method by exploring the geometrical properties of the multivariate Gaussian distribution function. In addition, we propose a more efficient version of the above method, here termed minimum energy (ME) sampling, whereby a set of N representative conductivity realizations at M locations is constructed by: (i) generating a representative set of N points distributed on the surface of a M-dimensional, unit radius hyper-sphere, (ii) relocating the N points on a representative set of N hyper-spheres of different radii, and (iii) transforming the coordinates of those points to lie on N different hyper-ellipsoids spanning the multivariate Gaussian distribution. The above method is applied in a dimensionality reduction context by defining flow-controlling points over which representative sampling of hydraulic conductivity is performed, thus also accounting for the sensitivity of the flow and transport model to the input hydraulic conductivity field. The performance of the various stratified sampling methods, LH, SL, and ME, is compared to that of SR sampling in terms of reproduction of ensemble statistics of hydraulic conductivity and solute concentration for different sample sizes N (numbers of realizations). The results indicate that ME sampling constitutes an equally if not more efficient simulation method than LH and SL sampling, as it can reproduce to a similar extent statistics of the conductivity and concentration fields, yet with smaller sampling variability than SR sampling. References [1] Gutjahr A.L. and Bras R.L. Spatial variability in subsurface flow and transport: A review. Reliability Engineering & System Safety, 42, 293-316, (1993). [2] Helton J.C. and Davis F.J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81, 23-69, (2003). [3] Switzer P. Multiple simulation of spatial fields. In: Heuvelink G, Lemmens M (eds) Proceedings of the 4th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Coronet Books Inc., pp 629?635 (2000).
NASA Astrophysics Data System (ADS)
Wilschut, L. I.; Addink, E. A.; Heesterbeek, J. A. P.; Dubyanskiy, V. M.; Davis, S. A.; Laudisoit, A.; Begon, M.; Burdelov, L. A.; Atshabar, B. B.; de Jong, S. M.
2013-08-01
Plague is a zoonotic infectious disease present in great gerbil populations in Kazakhstan. Infectious disease dynamics are influenced by the spatial distribution of the carriers (hosts) of the disease. The great gerbil, the main host in our study area, lives in burrows, which can be recognized on high resolution satellite imagery. In this study, using earth observation data at various spatial scales, we map the spatial distribution of burrows in a semi-desert landscape. The study area consists of various landscape types. To evaluate whether identification of burrows by classification is possible in these landscape types, the study area was subdivided into eight landscape units, on the basis of Landsat 7 ETM+ derived Tasselled Cap Greenness and Brightness, and SRTM derived standard deviation in elevation. In the field, 904 burrows were mapped. Using two segmented 2.5 m resolution SPOT-5 XS satellite scenes, reference object sets were created. Random Forests were built for both SPOT scenes and used to classify the images. Additionally, a stratified classification was carried out, by building separate Random Forests per landscape unit. Burrows were successfully classified in all landscape units. In the ‘steppe on floodplain’ areas, classification worked best: producer's and user's accuracy in those areas reached 88% and 100%, respectively. In the ‘floodplain’ areas with a more heterogeneous vegetation cover, classification worked least well; there, accuracies were 86 and 58% respectively. Stratified classification improved the results in all landscape units where comparison was possible (four), increasing kappa coefficients by 13, 10, 9 and 1%, respectively. In this study, an innovative stratification method using high- and medium resolution imagery was applied in order to map host distribution on a large spatial scale. The burrow maps we developed will help to detect changes in the distribution of great gerbil populations and, moreover, serve as a unique empirical data set which can be used as input for epidemiological plague models. This is an important step in understanding the dynamics of plague.
Research on tobacco enterprise spatial decision support system based on GIS
NASA Astrophysics Data System (ADS)
Mei, Xin; Cui, Weihong
2006-10-01
Tobacco enterprise is a special enterprise, which has strong correlation to regional geography. But in the past research and application, the combination between tobacco and GIS is limited to use digital maps to assist cigarette distribution. How to comprehensively import 3S technique taking GIS as representation to construct spatial decision support system of tobacco enterprise is the main research aspect in this paper. The paper concretely analyzes the GIS requirements in tobacco enterprise for planning location of production, monitoring production management and product sale at the beginning. Then holistic solution is presented and frame design for tobacco enterprise spatial decision is given. At last the example of tobacco enterprise spatial CRM (client relation management) system is set up.
Wallace, C.S.A.; Marsh, S.E.
2005-01-01
Our study used geostatistics to extract measures that characterize the spatial structure of vegetated landscapes from satellite imagery for mapping endangered Sonoran pronghorn habitat. Fine spatial resolution IKONOS data provided information at the scale of individual trees or shrubs that permitted analysis of vegetation structure and pattern. We derived images of landscape structure by calculating local estimates of the nugget, sill, and range variogram parameters within 25 ?? 25-m image windows. These variogram parameters, which describe the spatial autocorrelation of the 1-m image pixels, are shown in previous studies to discriminate between different species-specific vegetation associations. We constructed two independent models of pronghorn landscape preference by coupling the derived measures with Sonoran pronghorn sighting data: a distribution-based model and a cluster-based model. The distribution-based model used the descriptive statistics for variogram measures at pronghorn sightings, whereas the cluster-based model used the distribution of pronghorn sightings within clusters of an unsupervised classification of derived images. Both models define similar landscapes, and validation results confirm they effectively predict the locations of an independent set of pronghorn sightings. Such information, although not a substitute for field-based knowledge of the landscape and associated ecological processes, can provide valuable reconnaissance information to guide natural resource management efforts. ?? 2005 Taylor & Francis Group Ltd.
Welhan, J.A.; Reed, M.F.
1997-01-01
The regional spatial correlation structure of bulk horizontal hydraulic conductivity (Kb) estimated from published transmissivity data from 79 open boreholes in the fractured basalt aquifer of the eastern Snake River Plain was analyzed with geostatistical methods. The two-dimensional spatial correlation structure of In Kb shows a pronounced 4:1 range anisotropy, with a maximum correlation range in the north-northwest- south-southeast direction of about 6 km. The maximum variogram range of In Kb is similar to the mean length of flow groups exposed at the surface. The In Kb range anisotropy is similar to the mean width/length ratio of late Quaternary and Holocene basalt lava flows and the orientations of the major volcanic structural features on the eastern Snake River Plain. The similarity between In Kb correlation scales and basalt flow dimensions and between basalt flow orientations and correlation range anisotropy suggests that the spatial distribution of zones of high hydraulic conductivity may be controlled by the lateral dimensions, spatial distribution, and interconnection between highly permeable zones which are known to occur between lava flows within flow groups. If hydraulic conductivity and lithology are eventually shown to be cross correlative in this geologic setting, it may be possible to stochastically simulate hydraulic conductivity distributions, which are conditional on a knowledge of volcanic stratigraphy.
NASA Astrophysics Data System (ADS)
Meixner, J.; Grimmer, J. C.; Becker, A.; Schill, E.; Kohl, T.
2018-03-01
GIS-based remote sensing techniques and lineament mapping provide additional information on the spatial arrangement of faults and fractures in large areas with variable outcrop conditions. Due to inherent censoring and truncation bias mapping of lineaments is still a challenging task. In this study we show how statistical evaluations help to improve the reliability of lineament mappings by comparing two digital elevation models (ASTER, LIDAR) and satellite imagery data sets in the seismically active southern Black Forest. A statistical assessment of the orientation, average length, and the total length of mapped lineaments reveals an impact of the different resolutions of the data sets that allow to define maximum (censoring bias) and minimum (truncation bias) observable lineament length for each data set. The increase of the spatial resolution of the digital elevation model from 30 m × 30 m to 5 m × 5 m results in a decrease of total lineament length by about 40% whereby the average lineament lengths decrease by about 60%. Lineament length distributions of both data sets follow a power law distribution as documented elsewhere for fault and fracture systems. Predominant NE-, N-, NNW-, and NW-directions of the lineaments are observed in all data sets and correlate with well-known, mappable large-scale structures in the southern Black Forest. Therefore, mapped lineaments can be correlated with faults and hence display geological significance. Lineament density in the granite-dominated areas is apparently higher than in the gneiss-dominated areas. Application of a slip- and dilation tendency analysis on the fault pattern reveals largest reactivation potentials for WNW-ESE and N-S striking faults as strike-slip faults whereas normal faulting may occur along NW-striking faults within the ambient stress field. Remote sensing techniques in combination with highly resolved digital elevation models and a slip- and dilation tendency analysis thus can be used to quickly get first order results of the spatial arrangement of critically stressed faults in crystalline basement rocks.
NASA Astrophysics Data System (ADS)
Wang, J.; Cai, X.
2007-12-01
A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.
A global approach to estimate irrigated areas - a comparison between different data and statistics
NASA Astrophysics Data System (ADS)
Meier, Jonas; Zabel, Florian; Mauser, Wolfram
2018-02-01
Agriculture is the largest global consumer of water. Irrigated areas constitute 40 % of the total area used for agricultural production (FAO, 2014a) Information on their spatial distribution is highly relevant for regional water management and food security. Spatial information on irrigation is highly important for policy and decision makers, who are facing the transition towards more efficient sustainable agriculture. However, the mapping of irrigated areas still represents a challenge for land use classifications, and existing global data sets differ strongly in their results. The following study tests an existing irrigation map based on statistics and extends the irrigated area using ancillary data. The approach processes and analyzes multi-temporal normalized difference vegetation index (NDVI) SPOT-VGT data and agricultural suitability data - both at a spatial resolution of 30 arcsec - incrementally in a multiple decision tree. It covers the period from 1999 to 2012. The results globally show a 18 % larger irrigated area than existing approaches based on statistical data. The largest differences compared to the official national statistics are found in Asia and particularly in China and India. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated. The validation with global and regional products shows the large divergence of existing data sets with respect to size and distribution of irrigated areas caused by spatial resolution, the considered time period and the input data and assumption made.
Shifts of environmental and phytoplankton variables in a regulated river: A spatial-driven analysis.
Sabater-Liesa, Laia; Ginebreda, Antoni; Barceló, Damià
2018-06-18
The longitudinal structure of the environmental and phytoplankton variables was investigated in the Ebro River (NE Spain), which is heavily affected by water abstraction and regulation. A first exploration indicated that the phytoplankton community did not resist the impact of reservoirs and barely recovered downstream of them. The spatial analysis showed that the responses of the phytoplankton and environmental variables were not uniform. The two set of variables revealed spatial variability discontinuities and river fragmentation upstream and downstream from the reservoirs. Reservoirs caused the replacement of spatially heterogeneous habitats by homogeneous spatially distributed water bodies, these new environmental conditions downstream benefiting the opportunist and cosmopolitan algal taxa. The application of a spatial auto-regression model to algal biomass (chlorophyll-a) permitted to capture the relevance and contribution of extra-local influences in the river ecosystem. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Santhana Vannan, S.; Cook, R. B.; Wilson, B. E.; Wei, Y.
2010-12-01
Terrestrial ecology data sets are produced from diverse data sources such as model output, field data collection, laboratory analysis and remote sensing observation. These data sets can be created, distributed, and consumed in diverse ways as well. However, this diversity can hinder the usability of the data, and limit data users’ abilities to validate and reuse data for science and application purposes. Geospatial web services, such as those described in this paper, are an important means of reducing this burden. Terrestrial ecology researchers generally create the data sets in diverse file formats, with file and data structures tailored to the specific needs of their project, possibly as tabular data, geospatial images, or documentation in a report. Data centers may reformat the data to an archive-stable format and distribute the data sets through one or more protocols, such as FTP, email, and WWW. Because of the diverse data preparation, delivery, and usage patterns, users have to invest time and resources to bring the data into the format and structure most useful for their analysis. This time-consuming data preparation process shifts valuable resources from data analysis to data assembly. To address these issues, the ORNL DAAC, a NASA-sponsored terrestrial ecology data center, has utilized geospatial Web service technology, such as Open Geospatial Consortium (OGC) Web Map Service (WMS) and OGC Web Coverage Service (WCS) standards, to increase the usability and availability of terrestrial ecology data sets. Data sets are standardized into non-proprietary file formats and distributed through OGC Web Service standards. OGC Web services allow the ORNL DAAC to store data sets in a single format and distribute them in multiple ways and formats. Registering the OGC Web services through search catalogues and other spatial data tools allows for publicizing the data sets and makes them more available across the Internet. The ORNL DAAC has also created a Web-based graphical user interface called Spatial Data Access Tool (SDAT) that utilizes OGC Web services standards and allows data distribution and consumption for users not familiar with OGC standards. SDAT also allows for users to visualize the data set prior to download. Google Earth visualizations of the data set are also provided through SDAT. The use of OGC Web service standards at the ORNL DAAC has enabled an increase in data consumption. In one case, a data set had ~10 fold increase in download through OGC Web service in comparison to the conventional FTP and WWW method of access. The increase in download suggests that users are not only finding the data sets they need but also able to consume them readily in the format they need.
NASA Technical Reports Server (NTRS)
Dong, D.; Fang, P.; Bock, F.; Webb, F.; Prawirondirdjo, L.; Kedar, S.; Jamason, P.
2006-01-01
Spatial filtering is an effective way to improve the precision of coordinate time series for regional GPS networks by reducing so-called common mode errors, thereby providing better resolution for detecting weak or transient deformation signals. The commonly used approach to regional filtering assumes that the common mode error is spatially uniform, which is a good approximation for networks of hundreds of kilometers extent, but breaks down as the spatial extent increases. A more rigorous approach should remove the assumption of spatially uniform distribution and let the data themselves reveal the spatial distribution of the common mode error. The principal component analysis (PCA) and the Karhunen-Loeve expansion (KLE) both decompose network time series into a set of temporally varying modes and their spatial responses. Therefore they provide a mathematical framework to perform spatiotemporal filtering.We apply the combination of PCA and KLE to daily station coordinate time series of the Southern California Integrated GPS Network (SCIGN) for the period 2000 to 2004. We demonstrate that spatially and temporally correlated common mode errors are the dominant error source in daily GPS solutions. The spatial characteristics of the common mode errors are close to uniform for all east, north, and vertical components, which implies a very long wavelength source for the common mode errors, compared to the spatial extent of the GPS network in southern California. Furthermore, the common mode errors exhibit temporally nonrandom patterns.
Alvarez-Hernández, G; Lara-Valencia, F; Reyes-Castro, P A; Rascón-Pacheco, R A
2010-06-01
The city of Hermosillo, in Northwest Mexico, has a higher incidence of tuberculosis (TB) than the national average. However, the intra-urban TB distribution, which could limit the effectiveness of preventive strategies and control, is unknown. Using geographic information systems (GIS) and spatial analysis, we characterized the geographical distribution of TB by basic geostatistical area (BGA), and compared it with a social deprivation index. Univariate and bivariate techniques were used to detect risk areas. Globally, TB in the city of Hermosillo is not spatially auto-correlated, but local clusters with high incidence and mortality rates were identified in the northwest, central-east and southwest sections of the city. BGAs with high social deprivation had an excess risk of TB. GIS and spatial analysis are useful tools to detect high TB risk areas in the city of Hermosillo. Such areas may be vulnerable due to low socio-economic status. The study of small geographical areas in urban settings similar to Hermosillo could indicate the best course of action to be taken for TB prevention and control.
Bartlein, P.J.; Hostetler, S.W.; Shafer, S.L.; Holman, J.O.; Solomon, A.M.
2008-01-01
The temporal and spatial structure of 332 404 daily fire-start records from the western United States for the period 1986 through 1996 is illustrated using several complimentary visualisation techniques. We supplement maps and time series plots with Hovmo??ller diagrams that reduce the spatial dimensionality of the daily data in order to reveal the underlying space?time structure. The mapped distributions of all lightning- and human-started fires during the 11-year interval show similar first-order patterns that reflect the broad-scale distribution of vegetation across the West and the annual cycle of climate. Lightning-started fires are concentrated in the summer half-year and occur in widespread outbreaks that last a few days and reflect coherent weather-related controls. In contrast, fires started by humans occur throughout the year and tend to be concentrated in regions surrounding large-population centres or intensive-agricultural areas. Although the primary controls of human-started fires are their location relative to burnable fuel and the level of human activity, spatially coherent, weather-related variations in their incidence can also be noted. ?? IAWF 2008.
Impact of urban built environment on urban short-distance taxi travel: the case of Shanghai
NASA Astrophysics Data System (ADS)
Wu, Zhuoye; Zhuo, Jian
2018-05-01
The excessive individual motorized transport is the main cause of urban congestion and generates negative consequences on urban environmental quality, energy consumption, infrastructure supply and urban security. Bicycle can compete effectively with automobile for short-distance travels within 3km. If we take action to encourage the rider to shift from automobile to bike for the short-distance travels, it leaves us a great chance to reduce the modal share of individual motorized mode. This paper focus on the spatial impact of built environment on short-distance taxi riders’ travel behaviour. The data sources include taxi trajectory data for a week, demographic data of the Sixth National Census, POI data. In this paper, we figure out the volumes and spatial distribution of short-distance taxi travel in the central city of Shanghai. We build a multiple regression model to quantitative analyze the impact of urban built environment on urban short-distance taxi travel. The findings explain the spatial distribution short-distance taxi travel. In the conclusion, some advice are provided on how planners change the spatial settings to discourage short-distance individual motorized travel.
Complementary Density Measurements for the 200W Busek Hall Thruster (PREPRINT)
2006-07-12
Hall thruster are presented. Both a Faraday probe and microwave interferometry system are used to examine the density distribution of the thruster plasma at regular spatial intervals. Both experiments are performed in situ under the same conditions. The resulting density distributions obtained from both experiments are presented. Advantages and uncertainties of both methods are presented, as well as how comparison between the two data sets can account for the uncertainties of each method
Doherty, Kevin E.; Evans, Jeffrey S.; Walker, Johann; Devries, James H.; Howerter, David W.
2015-01-01
We used publically available data on duck breeding distribution and recently compiled geospatial data on upland habitat and environmental conditions to develop a spatially explicit model of breeding duck populations across the entire Prairie Pothole Region (PPR). Our spatial population models were able to identify key areas for duck conservation across the PPR and predict between 62.1 – 79.1% (68.4% avg.) of the variation in duck counts by year from 2002 – 2010. The median difference in observed vs. predicted duck counts at a transect segment level was 4.6 ducks. Our models are the first seamless spatially explicit models of waterfowl abundance across the entire PPR and represent an initial step toward joint conservation planning between Prairie Pothole and Prairie Habitat Joint Ventures. Our work demonstrates that when spatial and temporal variation for highly mobile birds is incorporated into conservation planning it will likely increase the habitat area required to support defined population goals. A major goal of the current North American Waterfowl Management Plan and subsequent action plan is the linking of harvest and habitat management. We contend incorporation of spatial aspects will increase the likelihood of coherent joint harvest and habitat management decisions. Our results show at a minimum, it is possible to produce spatially explicit waterfowl abundance models that when summed across survey strata will produce similar strata level population estimates as the design-based Waterfowl Breeding Pair and Habitat Survey (r2 = 0.977). This is important because these design-based population estimates are currently used to set duck harvest regulations and to set duck population and habitat goals for the North American Waterfowl Management Plan. We hope this effort generates discussion on the important linkages between spatial and temporal variation in population size, and distribution relative to habitat quantity and quality when linking habitat and population goals across this important region. PMID:25714747
NASA Astrophysics Data System (ADS)
Li, J.
2017-12-01
Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.
Spatial Aspects of Multi-Sensor Data Fusion: Aerosol Optical Thickness
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Zubko, V.; Gopalan, A.
2007-01-01
The Goddard Earth Sciences Data and Information Services Center (GES DISC) investigated the applicability and limitations of combining multi-sensor data through data fusion, to increase the usefulness of the multitude of NASA remote sensing data sets, and as part of a larger effort to integrate this capability in the GES-DISC Interactive Online Visualization and Analysis Infrastructure (Giovanni). This initial study focused on merging daily mean Aerosol Optical Thickness (AOT), as measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Terra and Aqua satellites, to increase spatial coverage and produce complete fields to facilitate comparison with models and station data. The fusion algorithm used the maximum likelihood technique to merge the pixel values where available. The algorithm was applied to two regional AOT subsets (with mostly regular and irregular gaps, respectively) and a set of AOT fields that differed only in the size and location of artificially created gaps. The Cumulative Semivariogram (CSV) was found to be sensitive to the spatial distribution of gap areas and, thus, useful for assessing the sensitivity of the fused data to spatial gaps.
N-mixture models for estimating population size from spatially replicated counts
Royle, J. Andrew
2004-01-01
Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, i describe a class of models (n-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, n, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for n. Carroll and lombard (1985, journal of american statistical association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on n that is exploited by the n-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the n-mixture estimator compared to the caroll and lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.
Yang, Liping; Mei, Kun; Liu, Xingmei; Wu, Laosheng; Zhang, Minghua; Xu, Jianming; Wang, Fan
2013-08-01
Water quality degradation in river systems has caused great concerns all over the world. Identifying the spatial distribution and sources of water pollutants is the very first step for efficient water quality management. A set of water samples collected bimonthly at 12 monitoring sites in 2009 and 2010 were analyzed to determine the spatial distribution of critical parameters and to apportion the sources of pollutants in Wen-Rui-Tang (WRT) river watershed, near the East China Sea. The 12 monitoring sites were divided into three administrative zones of urban, suburban, and rural zones considering differences in land use and population density. Multivariate statistical methods [one-way analysis of variance, principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) methods] were used to investigate the spatial distribution of water quality and to apportion the pollution sources. Results showed that most water quality parameters had no significant difference between the urban and suburban zones, whereas these two zones showed worse water quality than the rural zone. Based on PCA and APCS-MLR analysis, urban domestic sewage and commercial/service pollution, suburban domestic sewage along with fluorine point source pollution, and agricultural nonpoint source pollution with rural domestic sewage pollution were identified to the main pollution sources in urban, suburban, and rural zones, respectively. Understanding the water pollution characteristics of different administrative zones could put insights into effective water management policy-making especially in the area across various administrative zones.
Taking a(c)count of eye movements: Multiple mechanisms underlie fixations during enumeration.
Paul, Jacob M; Reeve, Robert A; Forte, Jason D
2017-03-01
We habitually move our eyes when we enumerate sets of objects. It remains unclear whether saccades are directed for numerosity processing as distinct from object-oriented visual processing (e.g., object saliency, scanning heuristics). Here we investigated the extent to which enumeration eye movements are contingent upon the location of objects in an array, and whether fixation patterns vary with enumeration demands. Twenty adults enumerated random dot arrays twice: first to report the set cardinality and second to judge the perceived number of subsets. We manipulated the spatial location of dots by presenting arrays at 0°, 90°, 180°, and 270° orientations. Participants required a similar time to enumerate the set or the perceived number of subsets in the same array. Fixation patterns were systematically shifted in the direction of array rotation, and distributed across similar locations when the same array was shown on multiple occasions. We modeled fixation patterns and dot saliency using a simple filtering model and show participants judged groups of dots in close proximity (2°-2.5° visual angle) as distinct subsets. Modeling results are consistent with the suggestion that enumeration involves visual grouping mechanisms based on object saliency, and specific enumeration demands affect spatial distribution of fixations. Our findings highlight the importance of set computation, rather than object processing per se, for models of numerosity processing.
Duarte, F; Calvo, M V; Borges, A; Scatoni, I B
2015-08-01
The oriental fruit moth, Grapholita molesta (Busck), is the most serious pest in peach, and several insecticide applications are required to reduce crop damage to acceptable levels. Geostatistics and Geographic Information Systems (GIS) are employed to measure the range of spatial correlation of G. molesta in order to define the optimum sampling distance for performing spatial analysis and to determine the current distribution of the pest in peach orchards of southern Uruguay. From 2007 to 2010, 135 pheromone traps per season were installed and georeferenced in peach orchards distributed over 50,000 ha. Male adult captures were recorded weekly from September to April. Structural analysis of the captures was performed, yielding 14 semivariograms for the accumulated captures analyzed by generation and growing season. Two sets of maps were constructed to describe the pest distribution. Nine significant models were obtained in the 14 evaluated periods. The range estimated for the correlation was from 908 to 6884 m. Three hot spots of high population level and some areas with comparatively low populations were constant over the 3-year period, while there is a greater variation in the size of the population in different generations and years in other areas.
Macchi, Edoardo Gino; Tosi, Daniele; Braschi, Giovanni; Gallati, Mario; Cigada, Alfredo; Busca, Giorgio; Lewis, Elfed
2014-01-01
Radiofrequency thermal ablation (RFTA) induces a high-temperature field in a biological tissue having steep spatial (up to 6°C∕mm) and temporal (up to 1°C∕s) gradients. Applied in cancer care, RFTA produces a localized heating, cytotoxic for tumor cells, and is able to treat tumors with sizes up to 3 to 5 cm in diameter. The online measurement of temperature distribution at the RFTA point of care has been previously carried out with miniature thermocouples and optical fiber sensors, which exhibit problems of size, alteration of RFTA pattern, hysteresis, and sensor density worse than 1 sensor∕cm. In this work, we apply a distributed temperature sensor (DTS) with a submillimeter spatial resolution for the monitoring of RFTA in porcine liver tissue. The DTS demodulates the chaotic Rayleigh backscattering pattern with an interferometric setup to obtain the real-time temperature distribution. A measurement chamber has been set up with the fiber crossing the tissue along different diameters. Several experiments have been carried out measuring the space-time evolution of temperature during RFTA. The present work showcases the temperature monitoring in RFTA with an unprecedented spatial resolution and is exportable to in vivo measurement; the acquired data can be particularly useful for the validation of RFTA computational models.
Meléndez, María José; Báez, José Carlos; Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David
2017-01-01
Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea.
Map scale effects on estimating the number of undiscovered mineral deposits
Singer, D.A.; Menzie, W.D.
2008-01-01
Estimates of numbers of undiscovered mineral deposits, fundamental to assessing mineral resources, are affected by map scale. Where consistently defined deposits of a particular type are estimated, spatial and frequency distributions of deposits are linked in that some frequency distributions can be generated by processes randomly in space whereas others are generated by processes suggesting clustering in space. Possible spatial distributions of mineral deposits and their related frequency distributions are affected by map scale and associated inclusions of non-permissive or covered geological settings. More generalized map scales are more likely to cause inclusion of geologic settings that are not really permissive for the deposit type, or that include unreported cover over permissive areas, resulting in the appearance of deposit clustering. Thus, overly generalized map scales can cause deposits to appear clustered. We propose a model that captures the effects of map scale and the related inclusion of non-permissive geologic settings on numbers of deposits estimates, the zero-inflated Poisson distribution. Effects of map scale as represented by the zero-inflated Poisson distribution suggest that the appearance of deposit clustering should diminish as mapping becomes more detailed because the number of inflated zeros would decrease with more detailed maps. Based on observed worldwide relationships between map scale and areas permissive for deposit types, mapping at a scale with twice the detail should cut permissive area size of a porphyry copper tract to 29% and a volcanic-hosted massive sulfide tract to 50% of their original sizes. Thus some direct benefits of mapping an area at a more detailed scale are indicated by significant reductions in areas permissive for deposit types, increased deposit density and, as a consequence, reduced uncertainty in the estimate of number of undiscovered deposits. Exploration enterprises benefit from reduced areas requiring detailed and expensive exploration, and land-use planners benefit from reduced areas of concern. ?? 2008 International Association for Mathematical Geology.
NASA Astrophysics Data System (ADS)
Freire, J.; González-Gurriarán, E.; Olaso, I.
1992-12-01
Geostatistical methodology was used to analyse spatial structure and distribution of the epibenthic crustaceans Munida intermedia and M. sarsi within sets of data which had been collected during three survey cruises carried out on the Galician continental shelf (1983 and 1984). This study investigates the feasibility of using geostatistics for data collected according to traditional methods and of enhancing such methodology. The experimental variograms were calculated (pooled variance minus spatial covariance between samples taken one pair at a time vs. distance) and fitted to a 'spherical' model. The spatial structure model was used to estimate the abundance and distribution of the populations studied using the technique of kriging. The species display spatial structures, which are well marked during high density periods and in some areas (especially northern shelf). Geostatistical analysis allows identification of the density gradients in space as well as the patch grain along the continental shelf of 16-25 km diameter for M. intermedia and 12-20 km for M. sarsi. Patches of both species have a consistent location throughout the different cruises. As in other geographical areas, M. intermedia and M. sarsi usually appear at depths ranging from 200 to 500 m, with the highest densities in the continental shelf area located between Fisterra and Estaca de Bares. Althouh sampling was not originally designed specifically for geostatistics, this assay provides a measurement of spatial covariance, and shows variograms with variable structure depending on population density and geographical area. These ideas are useful in improving the design of future sampling cruises.
NASA Astrophysics Data System (ADS)
Haslauer, Claus; Bohling, Geoff
2013-04-01
Hydraulic conductivity (K) is a fundamental parameter that influences groundwater flow and solute transport. Measurements of K are limited and uncertain. Moreover, the spatial structure of K, which impacts the groundwater velocity field and hence directly influences the advective spreading of a solute migrating in the subsurface, is commonly described by approaches using second order moments. Spatial copulas have in the recent past been applied successfully to model the spatial dependence structure of heterogeneous subsurface datasets. At the MADE site, hydraulic conductivity (K) has been measured in exceptional detail. Two independently collected data-sets were used for this study: (1) ~2000 flowmeter based K measurements, and (2) ~20,000 direct-push based K measurements. These datasets exhibit a very heterogeneous (Var[ln(K)]>2) spatially distributed K field. A copula analysis reveals that the spatial dependence structure of the flowmeter and direct-push datasets are essentially the same. A spatial copula analysis factors out the influence of the marginal distribution of the property under investigation. This independence from the marginal distributions allows the copula analysis to reveal the underlying similarity between the spatial dependence structures of the flowmeter and direct-push datasets despite two complicating factors: 1) an overall offset between the datasets, with direct-push K values being, on average, roughly a factor of five lower than flowmeter K values, due at least in part to opposite biases between the two measurement techniques, and 2) the presence of some anomalously high K values in the direct-push dataset due to a lower limit on accurately measureable pressure responses in high-K zones. In addition, the vertical resolution of the direct-push dataset is ten times finer than that of the flowmeter dataset. Upscaling the direct-push data to compensate for this difference resulted in little change to the spatial structure. The objective of the presented work is to use multidimensional spatial copulas to describe and model the spatial dependence of the spatial structure of K at the heterogeneous MADE site, and evaluate the effects of this multidimensional description on solute transport.
Alcala-Canto, Yazmin; Figueroa-Castillo, Juan Antonio; Ibarra-Velarde, Froylán; Vera-Montenegro, Yolanda; Cervantes-Valencia, María Eugenia; Salem, Abdelfattah Z M; Cuéllar-Ordaz, Jorge Alfredo
2018-05-07
The tick genus Ripicephalus (Boophilus), particularly R. microplus, is one of the most important ectoparasites that affects livestock health and considered an epidemiological risk because it causes significant economic losses due, mainly, to restrictions in the export of infested animals to several countries. Its spatial distribution has been tied to environmental factors, mainly warm temperatures and high relative humidity. In this work, we integrated a dataset consisting of 5843 records of Rhipicephalus spp., in Mexico covering close to 50 years to know which environmental variables mostly influence this ticks' distribution. Occurrences were georeferenced using the software DIVA-GIS and the potential current distribution was modelled using the maximum entropy method (Maxent). The algorithm generated a map of high predictive capability (Area under the curve = 0.942), providing the various contribution and permutation importance of the tested variables. Precipitation seasonality, particularly in March, and isothermality were found to be the most significant climate variables in determining the probability of spatial distribution of Rhipicephalus spp. in Mexico (15.7%, 36.0% and 11.1%, respectively). Our findings demonstrate that Rhipicephalus has colonized Mexico widely, including areas characterized by different types of climate. We conclude that the Maxent distribution model using Rhipicephalus records and a set of environmental variables can predict the extent of the tick range in this country, information that should support the development of integrated control strategies.
Revisiting crash spatial heterogeneity: A Bayesian spatially varying coefficients approach.
Xu, Pengpeng; Huang, Helai; Dong, Ni; Wong, S C
2017-01-01
This study was performed to investigate the spatially varying relationships between crash frequency and related risk factors. A Bayesian spatially varying coefficients model was elaborately introduced as a methodological alternative to simultaneously account for the unstructured and spatially structured heterogeneity of the regression coefficients in predicting crash frequencies. The proposed method was appealing in that the parameters were modeled via a conditional autoregressive prior distribution, which involved a single set of random effects and a spatial correlation parameter with extreme values corresponding to pure unstructured or pure spatially correlated random effects. A case study using a three-year crash dataset from the Hillsborough County, Florida, was conducted to illustrate the proposed model. Empirical analysis confirmed the presence of both unstructured and spatially correlated variations in the effects of contributory factors on severe crash occurrences. The findings also suggested that ignoring spatially structured heterogeneity may result in biased parameter estimates and incorrect inferences, while assuming the regression coefficients to be spatially clustered only is probably subject to the issue of over-smoothness. Copyright © 2016 Elsevier Ltd. All rights reserved.
Werb, D; Strathdee, SA; Vera, A; Arredondo, J; Beletsky, L; Gonzalez-Zuniga, P; Gaines, T
2016-01-01
Aims In the context of a public health-oriented drug policy reform in Mexico, we assessed the spatial distribution of police encounters among people who inject drugs (PWID) in Tijuana; determined the association between these encounters and the location of addiction treatment centers; and explored the association between police encounters and treatment access. Design Geographically weighted regression (GWR) and logistic regression analysis using prospective spatial data from a community-recruited cohort of PWID in Tijuana and official geographic arrest data from the Tijuana Municipal Police Department. Setting Tijuana, Mexico. Participants 608 participants (median age 37; 28.4% female) in the prospective Proyecto El Cuete cohort study recruited between January and December 2011. Measurements We compared the mean distance of police encounters and a randomly distributed set of events to treatment centers. GWR was undertaken to model the spatial relationship between police interactions and treatment centers. Logistic regression analysis was used to investigate factors associated with reporting police interactions. Findings During the study period, 27.5% of police encounters occurred within 500 meters of treatment centers. The GWR model suggested spatial correlation between encounters and treatment centers (Global R2 = 0.53). Reporting a need for addiction treatment was associated with reporting arrest and police assault (Adjusted Odds Ratio = 2.74, 95% Confidence Interval [CI]: 1.25–6.02, p = 0.012). Conclusions A geospatial analysis suggests that in Mexico, people who inject drugs are at greater risk of being a victim of police violence if they consider themselves in need of addiction treatment, and their interactions with police appear to be more frequent around treatment centres. PMID:26879179
Casalegno, Stefano; Bennie, Jonathan J; Inger, Richard; Gaston, Kevin J
2014-01-01
Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.
Casalegno, Stefano; Bennie, Jonathan J.; Inger, Richard; Gaston, Kevin J.
2014-01-01
Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services. PMID:25250775
Validating a large geophysical data set: Experiences with satellite-derived cloud parameters
NASA Technical Reports Server (NTRS)
Kahn, Ralph; Haskins, Robert D.; Knighton, James E.; Pursch, Andrew; Granger-Gallegos, Stephanie
1992-01-01
We are validating the global cloud parameters derived from the satellite-borne HIRS2 and MSU atmospheric sounding instrument measurements, and are using the analysis of these data as one prototype for studying large geophysical data sets in general. The HIRS2/MSU data set contains a total of 40 physical parameters, filling 25 MB/day; raw HIRS2/MSU data are available for a period exceeding 10 years. Validation involves developing a quantitative sense for the physical meaning of the derived parameters over the range of environmental conditions sampled. This is accomplished by comparing the spatial and temporal distributions of the derived quantities with similar measurements made using other techniques, and with model results. The data handling needed for this work is possible only with the help of a suite of interactive graphical and numerical analysis tools. Level 3 (gridded) data is the common form in which large data sets of this type are distributed for scientific analysis. We find that Level 3 data is inadequate for the data comparisons required for validation. Level 2 data (individual measurements in geophysical units) is needed. A sampling problem arises when individual measurements, which are not uniformly distributed in space or time, are used for the comparisons. Standard 'interpolation' methods involve fitting the measurements for each data set to surfaces, which are then compared. We are experimenting with formal criteria for selecting geographical regions, based upon the spatial frequency and variability of measurements, that allow us to quantify the uncertainty due to sampling. As part of this project, we are also dealing with ways to keep track of constraints placed on the output by assumptions made in the computer code. The need to work with Level 2 data introduces a number of other data handling issues, such as accessing data files across machine types, meeting large data storage requirements, accessing other validated data sets, processing speed and throughput for interactive graphical work, and problems relating to graphical interfaces.
Spatial Distribution of the Coefficient of Variation for the Paleo-Earthquakes in Japan
NASA Astrophysics Data System (ADS)
Nomura, S.; Ogata, Y.
2015-12-01
Renewal processes, point prccesses in which intervals between consecutive events are independently and identically distributed, are frequently used to describe this repeating earthquake mechanism and forecast the next earthquakes. However, one of the difficulties in applying recurrent earthquake models is the scarcity of the historical data. Most studied fault segments have few, or only one observed earthquake that often have poorly constrained historic and/or radiocarbon ages. The maximum likelihood estimate from such a small data set can have a large bias and error, which tends to yield high probability for the next event in a very short time span when the recurrence intervals have similar lengths. On the other hand, recurrence intervals at a fault depend on the long-term slip rate caused by the tectonic motion in average. In addition, recurrence times are also fluctuated by nearby earthquakes or fault activities which encourage or discourage surrounding seismicity. These factors have spatial trends due to the heterogeneity of tectonic motion and seismicity. Thus, this paper introduces a spatial structure on the key parameters of renewal processes for recurrent earthquakes and estimates it by using spatial statistics. Spatial variation of mean and variance parameters of recurrence times are estimated in Bayesian framework and the next earthquakes are forecasted by Bayesian predictive distributions. The proposal model is applied for recurrent earthquake catalog in Japan and its result is compared with the current forecast adopted by the Earthquake Research Committee of Japan.
NASA Astrophysics Data System (ADS)
Condon, L. E.; Maxwell, R. M.; Kollet, S. J.; Maher, K.; Haggerty, R.; Forrester, M. M.
2016-12-01
Although previous studies have demonstrated fractal residence time distributions in small watersheds, analyzing residence time scaling over large spatial areas is difficult with existing observational methods. For this study we use a fully integrated groundwater surface water simulation combined with Lagrangian particle tracking to evaluate connections between residence time distributions and watershed characteristics such as geology, topography and climate. Our simulation spans more than six million square kilometers of the continental US, encompassing a broad range of watershed sizes and physiographic settings. Simulated results demonstrate power law residence time distributions with peak age rages from 1.5 to 10.5 years. These ranges agree well with previous observational work and demonstrate the feasibility of using integrated models to simulate residence times. Comparing behavior between eight major watersheds, we show spatial variability in both the peak and the variance of the residence time distributions that can be related to model inputs. Peak age is well correlated with basin averaged hydraulic conductivity and the semi-variance corresponds to aridity. While power law age distributions have previously been attributed to fractal topography, these results illustrate the importance of subsurface characteristics and macro climate as additional controls on groundwater configuration and residence times.
Bayesian spatial transformation models with applications in neuroimaging data
Miranda, Michelle F.; Zhu, Hongtu; Ibrahim, Joseph G.
2013-01-01
Summary The aim of this paper is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. Our STMs include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov Random Field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. PMID:24128143
Ammenwerth, Elske; Hackl, Werner O
2017-01-01
Learning as a constructive process works best in interaction with other learners. Support of social interaction processes is a particular challenge within online learning settings due to the spatial and temporal distribution of participants. It should thus be carefully monitored. We present structural network analysis and related indicators to analyse and visualize interaction patterns of participants in online learning settings. We validate this approach in two online courses and show how the visualization helps to monitor interaction and to identify activity profiles of learners. Structural network analysis is a feasible approach for an analysis of the intensity and direction of interaction in online learning settings.
The Fifth Calibration/Data Product Validation Panel Meeting
NASA Technical Reports Server (NTRS)
1992-01-01
The minutes and associated documents prepared from presentations and meetings at the Fifth Calibration/Data Product Validation Panel meeting in Boulder, Colorado, April 8 - 10, 1992, are presented. Key issues include (1) statistical characterization of data sets: finding statistics that characterize key attributes of the data sets, and defining ways to characterize the comparisons among data sets; (2) selection of specific intercomparison exercises: selecting characteristic spatial and temporal regions for intercomparisons, and impact of validation exercises on the logistics of current and planned field campaigns and model runs; and (3) preparation of data sets for intercomparisons: characterization of assumptions, transportable data formats, labeling data files, content of data sets, and data storage and distribution (EOSDIS interface).
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Preusse, Peter; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Riese, Martin
2018-04-01
Gravity waves are one of the main drivers of atmospheric dynamics. The spatial resolution of most global atmospheric models, however, is too coarse to properly resolve the small scales of gravity waves, which range from tens to a few thousand kilometers horizontally, and from below 1 km to tens of kilometers vertically. Gravity wave source processes involve even smaller scales. Therefore, general circulation models (GCMs) and chemistry climate models (CCMs) usually parametrize the effect of gravity waves on the global circulation. These parametrizations are very simplified. For this reason, comparisons with global observations of gravity waves are needed for an improvement of parametrizations and an alleviation of model biases. We present a gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE). GRACILE is a global data set of gravity wave distributions observed in the stratosphere and the mesosphere by the infrared limb sounding satellite instruments High Resolution Dynamics Limb Sounder (HIRDLS) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). Typical distributions (zonal averages and global maps) of gravity wave vertical wavelengths and along-track horizontal wavenumbers are provided, as well as gravity wave temperature variances, potential energies and absolute momentum fluxes. This global data set captures the typical seasonal variations of these parameters, as well as their spatial variations. The GRACILE data set is suitable for scientific studies, and it can serve for comparison with other instruments (ground-based, airborne, or other satellite instruments) and for comparison with gravity wave distributions, both resolved and parametrized, in GCMs and CCMs. The GRACILE data set is available as supplementary data at https://doi.org/10.1594/PANGAEA.879658.
Improving Access to MODIS Biophysical Science Products for NACP Investigators
NASA Technical Reports Server (NTRS)
Wolfe, Robert E.; Gao, Feng; Morisette, Jeffrey T.; Ederer, Gregory A.; Pedelty, Jeffrey A.
2007-01-01
MODIS 4 NACP is a NASA-funded project supporting the North American Carbon Program (NACP). The purpose of this Advancing Collaborative Connections for Earth-Sun System Science (ACCESS) project is to provide researchers with Moderate Resolution Imaging Spectroradiometer (MODIS) biophysical data products that are custom tailored for use in NACP model studies. Standard MODIS biophysical products provide used to improve our understanding on the climate and ecosystem changes. However, direct uses of the MODIS biophysical parameters are constrained by retrieval quality and cloud contamination. Another challenge that NACP users face is acquiring MODIS data in formats and at spatial-temporal resolutions consistent with other data sets they use. We have been working closely with key NACP users to tailor the MODIS products to fit their needs. First, we provide new temporally smoothed and spatially continuous MODIS biophysical data sets. Second, we are distributing MODIS data at suitable spatial-temporal resolutions and in formats consistent with other data integration into model studies.
The Filtered Abel Transform and Its Application in Combustion Diagnostics
NASA Technical Reports Server (NTRS)
Simons, Stephen N. (Technical Monitor); Yuan, Zeng-Guang
2003-01-01
Many non-intrusive combustion diagnosis methods generate line-of-sight projections of a flame field. To reconstruct the spatial field of the measured properties, these projections need to be deconvoluted. When the spatial field is axisymmetric, commonly used deconvolution method include the Abel transforms, the onion peeling method and the two-dimensional Fourier transform method and its derivatives such as the filtered back projection methods. This paper proposes a new approach for performing the Abel transform method is developed, which possesses the exactness of the Abel transform and the flexibility of incorporating various filters in the reconstruction process. The Abel transform is an exact method and the simplest among these commonly used methods. It is evinced in this paper that all the exact reconstruction methods for axisymmetric distributions must be equivalent to the Abel transform because of its uniqueness and exactness. Detailed proof is presented to show that the two dimensional Fourier methods when applied to axisymmetric cases is identical to the Abel transform. Discrepancies among various reconstruction method stem from the different approximations made to perform numerical calculations. An equation relating the spectrum of a set of projection date to that of the corresponding spatial distribution is obtained, which shows that the spectrum of the projection is equal to the Abel transform of the spectrum of the corresponding spatial distribution. From the equation, if either the projection or the distribution is bandwidth limited, the other is also bandwidth limited, and both have the same bandwidth. If the two are not bandwidth limited, the Abel transform has a bias against low wave number components in most practical cases. This explains why the Abel transform and all exact deconvolution methods are sensitive to high wave number noises. The filtered Abel transform is based on the fact that the Abel transform of filtered projection data is equal to an integral transform of the original projection data with the kernel function being the Abel transform of the filtering function. The kernel function is independent of the projection data and can be obtained separately when the filtering function is selected. Users can select the best filtering function for a particular set of experimental data. When the kernal function is obtained, it can be used repeatedly to a number of projection data sets (rovs) from the same experiment. When an entire flame image that contains a large number of projection lines needs to be processed, the new approach significantly reduces computational effort in comparison with the conventional approach in which each projection data set is deconvoluted separately. Computer codes have been developed to perform the filter Abel transform for an entire flame field. Measured soot volume fraction data of a jet diffusion flame are processed as an example.
Understanding the spatial complexity of surface hoar from slope to range scale
NASA Astrophysics Data System (ADS)
Hendrikx, J.
2015-12-01
Surface hoar, once buried, is a common weak layer type in avalanche accidents in continental and intermountain snowpacks around the World. Despite this, there is still limited understanding of the spatial variability in both the formation of, and eventual burial of, surface hoar at spatial scales which are of critical importance to avalanche forecasters. While it is relatively well understood that aspect plays an important role in the spatial location of the formation, and burial of these grain forms, due to the unequal distribution of incoming radiation, this factor alone does not explain the complex and often confusing spatial pattern of these grains forms throughout the landscape at different spatial scales. In this paper we present additional data from a unique data set including over two hundred days of manual observations of surface hoar at sixteen locations on Pioneer Mountain at the Yellowstone Club in southwestern Montana. Using this wealth of observational data located on different aspects, elevations and exposures, coupled with detailed meteorological observations, and detailed slope scale observation, we examine the spatial variability of surface hoar at this scale, and examine the factors that control its spatial distribution. Our results further supports our preliminary work, which shows that small-scale slope conditions, meteorological differences, and local scale lapse rates, can greatly influence the spatial variability of surface hoar, over and above that which aspect alone can explain. These results highlight our incomplete understanding of the processes at both the slope and range scale, and are likely to have implications for both regional and local scale avalanche forecasting in environments where surface hoar cause ongoing instabilities.
Are fractal dimensions of the spatial distribution of mineral deposits meaningful?
Raines, G.L.
2008-01-01
It has been proposed that the spatial distribution of mineral deposits is bifractal. An implication of this property is that the number of deposits in a permissive area is a function of the shape of the area. This is because the fractal density functions of deposits are dependent on the distance from known deposits. A long thin permissive area with most of the deposits in one end, such as the Alaskan porphyry permissive area, has a major portion of the area far from known deposits and consequently a low density of deposits associated with most of the permissive area. On the other hand, a more equi-dimensioned permissive area, such as the Arizona porphyry permissive area, has a more uniform density of deposits. Another implication of the fractal distribution is that the Poisson assumption typically used for estimating deposit numbers is invalid. Based on datasets of mineral deposits classified by type as inputs, the distributions of many different deposit types are found to have characteristically two fractal dimensions over separate non-overlapping spatial scales in the range of 5-1000 km. In particular, one typically observes a local dimension at spatial scales less than 30-60 km, and a regional dimension at larger spatial scales. The deposit type, geologic setting, and sample size influence the fractal dimensions. The consequence of the geologic setting can be diminished by using deposits classified by type. The crossover point between the two fractal domains is proportional to the median size of the deposit type. A plot of the crossover points for porphyry copper deposits from different geologic domains against median deposit sizes defines linear relationships and identifies regions that are significantly underexplored. Plots of the fractal dimension can also be used to define density functions from which the number of undiscovered deposits can be estimated. This density function is only dependent on the distribution of deposits and is independent of the definition of the permissive area. Density functions for porphyry copper deposits appear to be significantly different for regions in the Andes, Mexico, United States, and western Canada. Consequently, depending on which regional density function is used, quite different estimates of numbers of undiscovered deposits can be obtained. These fractal properties suggest that geologic studies based on mapping at scales of 1:24,000 to 1:100,000 may not recognize processes that are important in the formation of mineral deposits at scales larger than the crossover points at 30-60 km. ?? 2008 International Association for Mathematical Geology.
NASA Technical Reports Server (NTRS)
Over, Thomas, M.; Gupta, Vijay K.
1994-01-01
Under the theory of independent and identically distributed random cascades, the probability distribution of the cascade generator determines the spatial and the ensemble properties of spatial rainfall. Three sets of radar-derived rainfall data in space and time are analyzed to estimate the probability distribution of the generator. A detailed comparison between instantaneous scans of spatial rainfall and simulated cascades using the scaling properties of the marginal moments is carried out. This comparison highlights important similarities and differences between the data and the random cascade theory. Differences are quantified and measured for the three datasets. Evidence is presented to show that the scaling properties of the rainfall can be captured to the first order by a random cascade with a single parameter. The dependence of this parameter on forcing by the large-scale meteorological conditions, as measured by the large-scale spatial average rain rate, is investigated for these three datasets. The data show that this dependence can be captured by a one-to-one function. Since the large-scale average rain rate can be diagnosed from the large-scale dynamics, this relationship demonstrates an important linkage between the large-scale atmospheric dynamics and the statistical cascade theory of mesoscale rainfall. Potential application of this research to parameterization of runoff from the land surface and regional flood frequency analysis is briefly discussed, and open problems for further research are presented.
High resolution Cerenkov light imaging of induced positron distribution in proton therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki
2014-11-01
Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, theymore » conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The authors conclude that Cerenkov light imaging of proton-induced positron is promising for proton therapy.« less
Spatial variability of soil moisture retrieved by SMOS satellite
NASA Astrophysics Data System (ADS)
Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy
2015-04-01
Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies ergodicity and quasi-stationarity assumptions, required for geostatistical analysis. The semivariograms examinations revealed that spatial dependences occurring in the surface soil moisture distributions for the selected area were more or less 200 km. The exception was the driest of the studied days, when the spatial correlations of soil moisture were not disturbed for a long time by any rainfall. Spatial correlation length on that day was about 400 km. Because of zonal character of frost, the spatial dependences in the examined surface soil moisture distributions during freezing/thawing found to be disturbed. Probably, the amount of water remains the same, but it is not detected by SMOS, hence analysing dielectric constant instead of soil moisture would be more appropriate. Some spatial relations of soil moisture and freezing distribution with existing maps of soil granulometric fractions and soil specific surface area for Poland have also been found. The work was partially funded under the ELBARA_PD (Penetration Depth) project No. 4000107897/13/NL/KML. ELBARA_PD project is funded by the Government of Poland through an ESA (European Space Agency) Contract under the PECS (Plan for European Cooperating States).
Garland, Alexis; Beran, Michael J; McIntyre, Joseph; Low, Jason
2014-08-01
Quantity discrimination for items spread across spatial arrays was investigated in chimpanzees (Pan troglodytes) and North Island New Zealand robins (Petroica longipes), with the aim of examining the role of spatial separation on the ability of these 2 species to sum and compare nonvisible quantities which are both temporally and spatially separated, and to assess the likely mechanism supporting such summation performance. Birds and chimpanzees compared 2 sets of discrete quantities of items that differed in number. Six quantity comparisons were presented to both species: 1v2, 1v3, 1v5, 2v3, 2v4, and 2v5. Each was distributed 1 at a time across 2 7-location arrays. Every individual item was viewed 1 at a time and hidden, with no more than a single item in each location of an array, in contrast to a format where all items were placed together into 2 single locations. Subjects responded by selecting 1 of the 2 arrays and received the entire quantity of food items hidden within that array. Both species performed better than chance levels. The ratio of items between sets was a significant predictor of performance in the chimpanzees, but it was not significant for robins. Instead, the absolute value of the smaller quantity of items presented was the significant factor in robin responses. These results suggest a species difference for this task when considering various dimensions such as ratio or total number of items in quantity comparisons distributed across discrete 7-location arrays.
NASA Astrophysics Data System (ADS)
Sütterlin, M.; Stöckli, R.; Schaaf, C. B.; Wunderle, S.
2016-07-01
Satellite-based, long-term records of surface albedo characterization that accurately capture spatial and temporal patterns are essential to develop climate models and to monitor the impact of land use changes on the terrestrial energy and water balance. This study presents the first Bidirectional Reflectance Distribution Function (BRDF) and albedo data set derived from the Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage reflectance data acquired on board National Oceanic and Atmospheric Administration and Meteorological Operational platforms from 1990 to 2014 over Europe. The objectives of this paper are to describe the data set's surface albedo climatology and anomalies in the visible, near-infrared, and shortwave broadbands for the growing season months of May to September in order to facilitate utilization of the data by the climate modeling communities. The results demonstrate that the AVHRR BRDF and albedo data have temporal and spatial patterns that are appropriate for the underlying predominant land cover type and accurately reflect the associated climate variation. Visible and near-infrared broadband albedo anomalies are found to be contrasting in most years, and their spatial distributions depict responses of vegetation to climate events (e.g., heat waves). Visible albedo of crops and near-infrared albedo of pastures show a higher interannual variation than respective albedos of other snow-free land covers, while the interannual standard deviations are found to be lower than 0.015. Our findings indicate the importance of taking into account the spectrally distinct variability of surface albedo when analyzing its complex spatiotemporal dynamics in climate-related research.
Measuring forest landscape patterns in the Cascade Range of Oregon, USA
NASA Technical Reports Server (NTRS)
Ripple, William J.; Bradshaw, G. A.; Spies, Thomas A.
1995-01-01
This paper describes the use of a set of spatial statistics to quantify the landscape pattern caused by the patchwork of clearcuts made over a 15-year period in the western Cascades of Oregon. Fifteen areas were selected at random to represent a diversity of landscape fragmentation patterns. Managed forest stands (patches) were digitized and analyzed to produce both tabular and mapped information describing patch size, shape, abundance and spacing, and matrix characteristics of a given area. In addition, a GIS fragmentation index was developed which was found to be sensitive to patch abundance and to the spatial distribution of patches. Use of the GIS-derived index provides an automated method of determining the level of forest fragmentation and can be used to facilitate spatial analysis of the landscape for later coordination with field and remotely sensed data. A comparison of the spatial statistics calculated for the two years indicates an increase in forest fragmentation as characterized by an increase in mean patch abundance and a decrease in interpatch distance, amount of interior natural forest habitat, and the GIS fragmentation index. Such statistics capable of quantifying patch shape and spatial distribution may prove important in the evaluation of the changing character of interior and edge habitats for wildlife.
Russell, Brook T; Wang, Dewei; McMahan, Christopher S
2017-08-01
Fine particulate matter (PM 2.5 ) poses a significant risk to human health, with long-term exposure being linked to conditions such as asthma, chronic bronchitis, lung cancer, atherosclerosis, etc. In order to improve current pollution control strategies and to better shape public policy, the development of a more comprehensive understanding of this air pollutant is necessary. To this end, this work attempts to quantify the relationship between certain meteorological drivers and the levels of PM 2.5 . It is expected that the set of important meteorological drivers will vary both spatially and within the conditional distribution of PM 2.5 levels. To account for these characteristics, a new local linear penalized quantile regression methodology is developed. The proposed estimator uniquely selects the set of important drivers at every spatial location and for each quantile of the conditional distribution of PM 2.5 levels. The performance of the proposed methodology is illustrated through simulation, and it is then used to determine the association between several meteorological drivers and PM 2.5 over the Eastern United States (US). This analysis suggests that the primary drivers throughout much of the Eastern US tend to differ based on season and geographic location, with similarities existing between "typical" and "high" PM 2.5 levels.
Integrating biological and social values when prioritizing places for biodiversity conservation.
Whitehead, Amy L; Kujala, Heini; Ives, Christopher D; Gordon, Ascelin; Lentini, Pia E; Wintle, Brendan A; Nicholson, Emily; Raymond, Christopher M
2014-08-01
The consideration of information on social values in conjunction with biological data is critical for achieving both socially acceptable and scientifically defensible conservation planning outcomes. However, the influence of social values on spatial conservation priorities has received limited attention and is poorly understood. We present an approach that incorporates quantitative data on social values for conservation and social preferences for development into spatial conservation planning. We undertook a public participation GIS survey to spatially represent social values and development preferences and used species distribution models for 7 threatened fauna species to represent biological values. These spatially explicit data were simultaneously included in the conservation planning software Zonation to examine how conservation priorities changed with the inclusion of social data. Integrating spatially explicit information about social values and development preferences with biological data produced prioritizations that differed spatially from the solution based on only biological data. However, the integrated solutions protected a similar proportion of the species' distributions, indicating that Zonation effectively combined the biological and social data to produce socially feasible conservation solutions of approximately equivalent biological value. We were able to identify areas of the landscape where synergies and conflicts between different value sets are likely to occur. Identification of these synergies and conflicts will allow decision makers to target communication strategies to specific areas and ensure effective community engagement and positive conservation outcomes. © 2014 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Dalla Libera, Nico; Fabbri, Paolo; Mason, Leonardo; Piccinini, Leonardo; Pola, Marco
2017-04-01
Arsenic groundwater contamination affects worldwide shallower groundwater bodies. Starting from the actual knowledges around arsenic origin into groundwater, we know that the major part of dissolved arsenic is naturally occurring through the dissolution of As-bearing minerals and ores. Several studies on the shallow aquifers of both the regional Venetian Plain (NE Italy) and the local Drainage Basin to the Venice Lagoon (DBVL) show local high arsenic concentration related to peculiar geochemical conditions, which drive arsenic mobilization. The uncertainty of arsenic spatial distribution makes difficult both the evaluation of the processes involved in arsenic mobilization and the stakeholders' decision about environmental management. Considering the latter aspect, the present study treats the problem of the Natural Background Level (NBL) definition as the threshold discriminating the natural contamination from the anthropogenic pollution. Actually, the UE's Directive 2006/118/EC suggests the procedures and criteria to set up the water quality standards guaranteeing a healthy status and reversing any contamination trends. In addition, the UE's BRIDGE project proposes some criteria, based on the 90th percentile of the contaminant's concentrations dataset, to estimate the NBL. Nevertheless, these methods provides just a statistical NBL for the whole area without considering the spatial variation of the contaminant's concentration. In this sense, we would reinforce the NBL concept using a geostatistical approach, which is able to give some detailed information about the distribution of arsenic concentrations and unveiling zones with high concentrations referred to the Italian drinking water standard (IDWS = 10 µg/liter). Once obtained the spatial information about arsenic distribution, we can apply the 90th percentile methods to estimate some Local NBL referring to every zones with arsenic higher than IDWS. The indicator kriging method was considered because it estimates the spatial distribution of the exceedance probabilities respect some pre-defined thresholds. This approach is largely mentioned in literature to face similar environmental problems. To test the validity of the procedure, we used the dataset from "A.Li.Na" project (founded by the Regional Environmental Agency) that defined regional NBLs of As, Fe, Mn and NH4+ into DBVL's groundwater. Primarily, we defined two thresholds corresponding respectively to the IDWS and the median of the data over the IDWS. These values were decided basing on the dataset's statistical structure and the quality criteria of the GWD 2006/118/EC. Subsequently, we evaluated the spatial distribution of the probability to exceed the defined thresholds using the Indicator kriging. The results highlight different zones with high exceedance probability ranging from 75% to 95% respect both the IDWS and the median value. Considering the geological setting of the DBVL, these probability values correspond with the occurrence of both organic matter and reducing conditions. In conclusion, the spatial prediction of the exceedance probability could be useful to define the areas in which estimate the local NBLs, enhancing the procedure of NBL definition. In that way, the NBL estimation could be more realistic because it considers the spatial distribution of the studied contaminant, distinguishing areas with high natural concentrations from polluted ones.
NASA Astrophysics Data System (ADS)
Yatheendradas, S.; Vivoni, E.
2007-12-01
A common practice in distributed hydrological modeling is to assign soil hydraulic properties based on coarse textural datasets. For semiarid regions with poor soil information, the performance of a model can be severely constrained due to the high model sensitivity to near-surface soil characteristics. Neglecting the uncertainty in soil hydraulic properties, their spatial variation and their naturally-occurring horizonation can potentially affect the modeled hydrological response. In this study, we investigate such effects using the TIN-based Real-time Integrated Basin Simulator (tRIBS) applied to the mid-sized (100 km2) Sierra Los Locos watershed in northern Sonora, Mexico. The Sierra Los Locos basin is characterized by complex mountainous terrain leading to topographic organization of soil characteristics and ecosystem distributions. We focus on simulations during the 2004 North American Monsoon Experiment (NAME) when intensive soil moisture measurements and aircraft- based soil moisture retrievals are available in the basin. Our experiments focus on soil moisture comparisons at the point, topographic transect and basin scales using a range of different soil characterizations. We compare the distributed soil moisture estimates obtained using (1) a deterministic simulation based on soil texture from coarse soil maps, (2) a set of ensemble simulations that capture soil parameter uncertainty and their spatial distribution, and (3) a set of simulations that conditions the ensemble on recent soil profile measurements. Uncertainties considered in near-surface soil characterization provide insights into their influence on the modeled uncertainty, into the value of soil profile observations, and into effective use of on-going field observations for constraining the soil moisture response uncertainty.
Bellinger, M Renee; Banks, Michael A; Bates, Sarah J; Crandall, Eric D; Garza, John Carlos; Sylvia, Gil; Lawson, Peter W
2015-01-01
Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory distributions of fish.
Bellinger, M. Renee; Banks, Michael A.; Bates, Sarah J.; Crandall, Eric D.; Garza, John Carlos; Sylvia, Gil; Lawson, Peter W.
2015-01-01
Understanding seasonal migration and localized persistence of populations is critical for effective species harvest and conservation management. Pacific salmon (genus Oncorhynchus) forecasting models predict stock composition, abundance, and distribution during annual assessments of proposed fisheries impacts. Most models, however, fail to account for the influence of biophysical factors on year-to-year fluctuations in migratory distributions and stock-specific survival. In this study, the ocean distribution and relative abundance of Chinook salmon (O. tshawytscha) stocks encountered in the California Current large marine ecosystem, U.S.A were inferred using catch-per-unit effort (CPUE) fisheries and genetic stock identification data. In contrast to stock distributions estimated through coded-wire-tag recoveries (typically limited to hatchery salmon), stock-specific CPUE provides information for both wild and hatchery fish. Furthermore, in contrast to stock composition results, the stock-specific CPUE metric is independent of other stocks and is easily interpreted over multiple temporal or spatial scales. Tests for correlations between stock-specific CPUE and stock composition estimates revealed these measures diverged once proportional contributions of locally rare stocks were excluded from data sets. A novel aspect of this study was collection of data both in areas closed to commercial fisheries and during normal, open commercial fisheries. Because fishing fleet efficiency influences catch rates, we tested whether CPUE differed between closed area (non-retention) and open area (retention) data sets. A weak effect was indicated for some, but not all, analyzed cases. Novel visualizations produced from stock-specific CPUE-based ocean abundance facilitates consideration of how highly refined, spatial and genetic information could be incorporated in ocean fisheries management systems and for investigations of biogeographic factors that influence migratory distributions of fish. PMID:26200779
NASA Technical Reports Server (NTRS)
Tilton, J. C.; Swain, P. H. (Principal Investigator); Vardeman, S. B.
1981-01-01
A key input to a statistical classification algorithm, which exploits the tendency of certain ground cover classes to occur more frequently in some spatial context than in others, is a statistical characterization of the context: the context distribution. An unbiased estimator of the context distribution is discussed which, besides having the advantage of statistical unbiasedness, has the additional advantage over other estimation techniques of being amenable to an adaptive implementation in which the context distribution estimate varies according to local contextual information. Results from applying the unbiased estimator to the contextual classification of three real LANDSAT data sets are presented and contrasted with results from non-contextual classifications and from contextual classifications utilizing other context distribution estimation techniques.
Effects of ignition location models on the burn patterns of simulated wildfires
Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2011-01-01
Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.
BOREAS TE-9 NSA Photosynthetic Capacity and Foliage Nitrogen Data
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Dang, Qinglai; Margolis, Hank; Coyea, Marie
2000-01-01
The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-9 (Terrestrial Ecology) team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. This data set describes the spatial and temporal relationship between foliage nitrogen concentration and photosynthetic capacity in the canopies of black spruce, jack pine, and aspen located within the Northern Study Area (NSA). The data were collected from June to September 1994 and are useful for modeling the vertical distribution of carbon fixation for different forest types in the boreal forest. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Hydrologic extremes - an intercomparison of multiple gridded statistical downscaling methods
NASA Astrophysics Data System (ADS)
Werner, Arelia T.; Cannon, Alex J.
2016-04-01
Gridded statistical downscaling methods are the main means of preparing climate model data to drive distributed hydrological models. Past work on the validation of climate downscaling methods has focused on temperature and precipitation, with less attention paid to the ultimate outputs from hydrological models. Also, as attention shifts towards projections of extreme events, downscaling comparisons now commonly assess methods in terms of climate extremes, but hydrologic extremes are less well explored. Here, we test the ability of gridded downscaling models to replicate historical properties of climate and hydrologic extremes, as measured in terms of temporal sequencing (i.e. correlation tests) and distributional properties (i.e. tests for equality of probability distributions). Outputs from seven downscaling methods - bias correction constructed analogues (BCCA), double BCCA (DBCCA), BCCA with quantile mapping reordering (BCCAQ), bias correction spatial disaggregation (BCSD), BCSD using minimum/maximum temperature (BCSDX), the climate imprint delta method (CI), and bias corrected CI (BCCI) - are used to drive the Variable Infiltration Capacity (VIC) model over the snow-dominated Peace River basin, British Columbia. Outputs are tested using split-sample validation on 26 climate extremes indices (ClimDEX) and two hydrologic extremes indices (3-day peak flow and 7-day peak flow). To characterize observational uncertainty, four atmospheric reanalyses are used as climate model surrogates and two gridded observational data sets are used as downscaling target data. The skill of the downscaling methods generally depended on reanalysis and gridded observational data set. However, CI failed to reproduce the distribution and BCSD and BCSDX the timing of winter 7-day low-flow events, regardless of reanalysis or observational data set. Overall, DBCCA passed the greatest number of tests for the ClimDEX indices, while BCCAQ, which is designed to more accurately resolve event-scale spatial gradients, passed the greatest number of tests for hydrologic extremes. Non-stationarity in the observational/reanalysis data sets complicated the evaluation of downscaling performance. Comparing temporal homogeneity and trends in climate indices and hydrological model outputs calculated from downscaled reanalyses and gridded observations was useful for diagnosing the reliability of the various historical data sets. We recommend that such analyses be conducted before such data are used to construct future hydro-climatic change scenarios.
Nationwide assessment of nonpoint source threats to water quality
Thomas C. Brown; Pamela Froemke
2012-01-01
Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...
Modifying Student Behavior in an Open Classroom through Changes in the Physical Design
ERIC Educational Resources Information Center
Weinstein, Carol S.
1977-01-01
Spatial distribution of activity in a second-third grade open classroom was observed before and after a change in the physical design, to test the hypothesis that minor changes in the physical setting would produce predictable, desirable changes in student behavior. In most cases the desired behavior changes were produced. (Author/MV)
NASA Astrophysics Data System (ADS)
Guan, Fada
Monte Carlo method has been successfully applied in simulating the particles transport problems. Most of the Monte Carlo simulation tools are static and they can only be used to perform the static simulations for the problems with fixed physics and geometry settings. Proton therapy is a dynamic treatment technique in the clinical application. In this research, we developed a method to perform the dynamic Monte Carlo simulation of proton therapy using Geant4 simulation toolkit. A passive-scattering treatment nozzle equipped with a rotating range modulation wheel was modeled in this research. One important application of the Monte Carlo simulation is to predict the spatial dose distribution in the target geometry. For simplification, a mathematical model of a human body is usually used as the target, but only the average dose over the whole organ or tissue can be obtained rather than the accurate spatial dose distribution. In this research, we developed a method using MATLAB to convert the medical images of a patient from CT scanning into the patient voxel geometry. Hence, if the patient voxel geometry is used as the target in the Monte Carlo simulation, the accurate spatial dose distribution in the target can be obtained. A data analysis tool---root was used to score the simulation results during a Geant4 simulation and to analyze the data and plot results after simulation. Finally, we successfully obtained the accurate spatial dose distribution in part of a human body after treating a patient with prostate cancer using proton therapy.
NASA Astrophysics Data System (ADS)
Seraphin, Pierre; Gonçalvès, Julio; Vallet-Coulomb, Christine; Champollion, Cédric
2018-06-01
Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards' equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9- 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.
NASA Astrophysics Data System (ADS)
Seraphin, Pierre; Gonçalvès, Julio; Vallet-Coulomb, Christine; Champollion, Cédric
2018-03-01
Spatially distributed values of the specific yield, a fundamental parameter for transient groundwater mass balance calculations, were obtained by means of three independent methods for the Crau plain, France. In contrast to its traditional use to assess recharge based on a given specific yield, the water-table fluctuation (WTF) method, applied using major recharging events, gave a first set of reference values. Then, large infiltration processes recorded by monitored boreholes and caused by major precipitation events were interpreted in terms of specific yield by means of a one-dimensional vertical numerical model solving Richards' equations within the unsaturated zone. Finally, two gravity field campaigns, at low and high piezometric levels, were carried out to assess the groundwater mass variation and thus alternative specific yield values. The range obtained by the WTF method for this aquifer made of alluvial detrital material was 2.9- 26%, in line with the scarce data available so far. The average spatial value of specific yield by the WTF method (9.1%) is consistent with the aquifer scale value from the hydro-gravimetric approach. In this investigation, an estimate of the hitherto unknown spatial distribution of the specific yield over the Crau plain was obtained using the most reliable method (the WTF method). A groundwater mass balance calculation over the domain using this distribution yielded similar results to an independent quantification based on a stable isotope-mixing model. This agreement reinforces the relevance of such estimates, which can be used to build a more accurate transient hydrogeological model.
NASA Astrophysics Data System (ADS)
Harrison, T. W.; Polagye, B. L.
2016-02-01
Coastal ecosystems are characterized by spatially and temporally varying hydrodynamics. In marine renewable energy applications, these variations strongly influence project economics and in oceanographic studies, they impact accuracy of biological transport and pollutant dispersion models. While stationary point or profile measurements are relatively straight forward, spatial representativeness of point measurements can be poor due to strong gradients. Moving platforms, such as AUVs or surface vessels, offer better coverage, but suffer from energetic constraints (AUVs) and resolvable scales (vessels). A system of sub-surface, drifting sensor packages is being developed to provide spatially distributed, synoptic data sets of coastal hydrodynamics with meter-scale resolution over a regional extent of a kilometer. Computational investigation has informed system parameters such as drifter size and shape, necessary position accuracy, number of drifters, and deployment methods. A hydrodynamic domain with complex flow features was created using a computational fluid dynamics code. A simple model of drifter dynamics propagate the drifters through the domain in post-processing. System parameters are evaluated relative to their ability to accurately recreate domain hydrodynamics. Implications of these results for an inexpensive, depth-controlled Lagrangian drifter system is presented.
Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates
NASA Astrophysics Data System (ADS)
Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.
2016-10-01
Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.
Complementary aspects of spatial resolution and signal-to-noise ratio in computational imaging
NASA Astrophysics Data System (ADS)
Gureyev, T. E.; Paganin, D. M.; Kozlov, A.; Nesterets, Ya. I.; Quiney, H. M.
2018-05-01
A generic computational imaging setup is considered which assumes sequential illumination of a semitransparent object by an arbitrary set of structured coherent illumination patterns. For each incident illumination pattern, all transmitted light is collected by a photon-counting bucket (single-pixel) detector. The transmission coefficients measured in this way are then used to reconstruct the spatial distribution of the object's projected transmission. It is demonstrated that the square of the spatial resolution of such a setup is usually equal to the ratio of the image area to the number of linearly independent illumination patterns. If the noise in the measured transmission coefficients is dominated by photon shot noise, then the ratio of the square of the mean signal to the noise variance is proportional to the ratio of the mean number of registered photons to the number of illumination patterns. The signal-to-noise ratio in a reconstructed transmission distribution is always lower if the illumination patterns are nonorthogonal, because of spatial correlations in the measured data. Examples of imaging methods relevant to the presented analysis include conventional imaging with a pixelated detector, computational ghost imaging, compressive sensing, super-resolution imaging, and computed tomography.
Worker Personality and Its Association with Spatially Structured Division of Labor
Pamminger, Tobias; Foitzik, Susanne; Kaufmann, Katharina C.; Schützler, Natalie; Menzel, Florian
2014-01-01
Division of labor is a defining characteristic of social insects and fundamental to their ecological success. Many of the numerous tasks essential for the survival of the colony must be performed at a specific location. Consequently, spatial organization is an integral aspect of division of labor. The mechanisms organizing the spatial distribution of workers, separating inside and outside workers without central control, is an essential, but so far neglected aspect of division of labor. In this study, we investigate the behavioral mechanisms governing the spatial distribution of individual workers and its physiological underpinning in the ant Myrmica rubra. By investigating worker personalities we uncover position-associated behavioral syndromes. This context-independent and temporally stable set of correlated behaviors (positive association between movements and attraction towards light) could promote the basic separation between inside (brood tenders) and outside workers (foragers). These position-associated behavior syndromes are coupled with a high probability to perform tasks, located at the defined position, and a characteristic cuticular hydrocarbon profile. We discuss the potentially physiological causes for the observed behavioral syndromes and highlight how the study of animal personalities can provide new insights for the study of division of labor and self-organized processes in general. PMID:24497911
[Temporal-spatial analysis of bacillary dysentery in the Three Gorges Area of China, 2005-2016].
Zhang, P; Zhang, J; Chang, Z R; Li, Z J
2018-01-10
Objective: To analyze the spatial and temporal distributions of bacillary dysentery in Chongqing, Yichang and Enshi (the Three Gorges Area) from 2005 to 2016, and provide evidence for the disease prevention and control. Methods: The incidence data of bacillary dysentery in the Three Gorges Area during this period were collected from National Notifiable Infectious Disease Reporting System. The spatial-temporal scan statistic was conducted with software SaTScan 9.4 and bacillary dysentery clusters were visualized with software ArcGIS 10.3. Results: A total of 126 196 cases were reported in the Three Gorges Area during 2005-2016, with an average incidence rate of 29.67/100 000. The overall incidence was in a downward trend, with an average annual decline rate of 4.74%. Cases occurred all the year round but with an obvious seasonal increase between May and October. Among the reported cases, 44.71% (56 421/126 196) were children under 5-year-old, the cases in children outside child care settings accounted for 41.93% (52 918/126 196) of the total. The incidence rates in districts of Yuzhong, Dadukou, Jiangbei, Shapingba, Jiulongpo, Nanan, Yubei, Chengkou of Chongqing and districts of Xiling and Wujiagang of Yichang city of Hubei province were high, ranging from 60.20/100 000 to 114.81/100 000. Spatial-temporal scan statistic for the spatial and temporal distributions of bacillary dysentery during this period revealed that the temporal distribution was during May-October, and there were 12 class Ⅰ clusters, 35 class Ⅱ clusters, and 9 clusters without statistical significance in counties with high incidence. All the class Ⅰ clusters were in urban area of Chongqing (Yuzhong, Dadukou, Jiangbei, Shapingba, Jiulongpo, Nanan, Beibei, Yubei, Banan) and surrounding counties, and the class Ⅱ clusters transformed from concentrated distribution to scattered distribution. Conclusions: Temporal and spatial cluster of bacillary dysentery incidence existed in the three gorges area during 2005-2016. It is necessary to strengthen the bacillary dysentery prevention and control in urban areas of Chongqing and Yichang.
Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany
NASA Astrophysics Data System (ADS)
Lam, Q. D.; Schmalz, B.; Fohrer, N.
2012-05-01
SummaryThe pollution of rivers and streams with agro-chemical contaminants has become one of the most crucial environmental problems in the world. The assessment of spatial and temporal variations of water quality influenced by point and diffuse source pollution is necessary to manage the environment sustainably in various watershed scales. The overall objectives of this study were to assess the transferability of parameter sets between lowland catchments on different scales using the ecohydrological model SWAT (Soil and Water Assessment Tool) and to evaluate the temporal and spatial patterns of water quality in the whole catchments before and after implementation of best management practices (BMPs). The study area Kielstau catchment is located in Northern Germany as typical example of lowland - flood plain landscape. Sandy, loamy and peat soils are characteristic for this area. Land use is dominated by arable land and pasture. In this study we examined two catchment areas including Kielstau catchment 50 km2 and its subcatchment, namely Moorau, with the area of 7.6 km2. The water quality of these catchments is not only influenced by diffuse sources from agricultural areas but also by point sources from municipal wastewater treatment plants (WWTPs). Diffuse sources as well as punctual entries from the WWTPs are considered in the model set-up. For this study, the calibration and validation of the model were carried out in a daily time step for flow and nutrients. The results indicate that the parameter sets could be transferred in lowland catchments with similar environmental conditions. Shallow groundwater is the major contributor to total nitrate load in the stream accounting for about 93% of the total nitrate load, while only about 7% originates in surface runoff and lateral flow. The study also indicates that applying a spatially distributed modeling approach was an appropriate method to generate source maps showing the spatial distribution of TN load from hydrologic response units (HRUs) as well as from subbasins and to identify the crucial pollution areas within a watershed whose management practices can be improved to control more effectively nitrogen loading to water bodies.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)
2000-01-01
The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.
Can we improve streamflow simulation by using higher resolution rainfall information?
NASA Astrophysics Data System (ADS)
Lobligeois, Florent; Andréassian, Vazken; Perrin, Charles
2013-04-01
The catchment response to rainfall is the interplay between space-time variability of precipitation, catchment characteristics and antecedent hydrological conditions. Precipitation dominates the high frequency hydrological response, and its simulation is thus dependent on the way rainfall is represented. One of the characteristics which distinguishes distributed from lumped models is their ability to represent explicitly the spatial variability of precipitation and catchment characteristics. The sensitivity of runoff hydrographs to the spatial variability of forcing data has been a major concern of researchers over the last three decades. However, although the literature on the relationship between spatial rainfall and runoff response is abundant, results are contrasted and sometimes contradictory. Several studies concluded that including information on rainfall spatial distribution improves discharge simulation (e.g. Ajami et al., 2004, among others) whereas other studies showed the lack of significant improvement in simulations with better information on rainfall spatial pattern (e.g. Andréassian et al., 2004, among others). The difficulties to reach a clear consensus is mainly due to the fact that each modeling study is implemented only on a few catchments whereas the impact of the spatial distribution of rainfall on runoff is known to be catchment and event characteristics-dependent. Many studies are virtual experiments and only compare flow simulations, which makes it difficult to reach conclusions transposable to real-life case studies. Moreover, the hydrological rainfall-runoff models differ between the studies and the parameterization strategies sometimes tend to advantage the distributed approach (or the lumped one). Recently, Météo-France developed a rainfall reanalysis over the whole French territory at the 1-kilometer resolution and the hourly time step over a 10-year period combining radar data and raingauge measurements: weather radar data were corrected and adjusted with both hourly and daily raingauge data. Based on this new high resolution product, we propose a framework to evaluate the improvements in streamflow simulation by using higher resolution rainfall information. Semi-distributed modelling is performed for different spatial resolution of precipitation forcing: from lumped to semi-distributed simulations. Here we do not work on synthetic (simulated) streamflow, but with actual measurements, on a large set of 181 French catchments representing a variety of size and climate. The rainfall-runoff model is re-calibrated for each resolution of rainfall spatial distribution over a 5-year sub-period and evaluated on the complementary sub-period in validation mode. The results are analysed by catchment classes based on catchment area and for various types of rainfall events based on the spatial variability of precipitation. References Ajami, N. K., Gupta, H. V, Wagener, T. & Sorooshian, S. (2004) Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology 298(1-4), 112-135. Andréassian, V., Oddos, A., Michel, C., Anctil, F., Perrin, C. & Loumagne, C. (2004) Impact of spatial aggregation of inputs and parameters on the efficiency of rainfall-runoff models: A theoretical study using chimera watersheds. Water Resources Research 40(5), 1-9.
Nebel, Silke; Lank, David B.; O'Hara, Patrick D.; Fernandez, Guillermo; Haase, Ben; Delgado, Francisco; Estela, Felipe A.; Evans Ogden, Lesley J.; Harrington, Brian A.; Kus, Barbara E.; Lyons, James E.; Mercier, Francine; Ortego, Brent; Takekawa, John Y.; Warnock, Nils; Warnock, Sarah E.
2002-01-01
The nonbreeding distribution of Western Sandpipers (Calidris mauri) was documented using 19 data sets from 13 sites along the Pacific and Atlantic coasts of the Americas. Western Sandpipers showed latitudinal segregation with regard to sex and age. Females wintered farther south than males. A “U” shaped pattern was found with respect to age, with juveniles occurring at higher proportions at both the northern and southern ends of the range. Distribution of sexes might be affected by differences in bill length and a latitudinal trend in depth distribution of prey. For age class distribution, two different life-history tactics of juveniles might exist that are related to the higher cost of feather wear for juveniles compared to adults. Most juveniles complete three long-distance migrations on one set of flight feathers whereas adults complete two. Juveniles may winter either far north, thereby reducing feather wear induced by ultraviolet light, migration, or both, or far south and spend the summer on the nonbreeding area.
Probabilistic measures of persistence and extinction in measles (meta)populations.
Gunning, Christian E; Wearing, Helen J
2013-08-01
Persistence and extinction are fundamental processes in ecological systems that are difficult to accurately measure due to stochasticity and incomplete observation. Moreover, these processes operate on multiple scales, from individual populations to metapopulations. Here, we examine an extensive new data set of measles case reports and associated demographics in pre-vaccine era US cities, alongside a classic England & Wales data set. We first infer the per-population quasi-continuous distribution of log incidence. We then use stochastic, spatially implicit metapopulation models to explore the frequency of rescue events and apparent extinctions. We show that, unlike critical community size, the inferred distributions account for observational processes, allowing direct comparisons between metapopulations. The inferred distributions scale with population size. We use these scalings to estimate extinction boundary probabilities. We compare these predictions with measurements in individual populations and random aggregates of populations, highlighting the importance of medium-sized populations in metapopulation persistence. © 2013 John Wiley & Sons Ltd/CNRS.
NASA Technical Reports Server (NTRS)
Fennessey, N. M.; Eagleson, P. S.; Qinliang, W.; Rodriguez-Iturbe, I.
1986-01-01
The parameters of the conceptual model are evaluated from the analysis of eight years of summer rainstorm data from the dense raingage network in the Walnut Gulch catchment near Tucson, Arizona. The occurrence of measurable rain at any one of the 93 gages during a noon to noon day defined a storm. The total rainfall at each of the gages during a storm day constituted the data set for a single storm. The data are interpolated onto a fine grid and analyzed to obtain: an isohyetal plot at 2 mm intervals, the first three moments of point storm depth, the spatial correlation function, the spatial variance function, and the spatial distribution of the total storm depth. The description of the data analysis and the computer programs necessary to read the associated data tapes are presented.
Bayesian spatial transformation models with applications in neuroimaging data.
Miranda, Michelle F; Zhu, Hongtu; Ibrahim, Joseph G
2013-12-01
The aim of this article is to develop a class of spatial transformation models (STM) to spatially model the varying association between imaging measures in a three-dimensional (3D) volume (or 2D surface) and a set of covariates. The proposed STM include a varying Box-Cox transformation model for dealing with the issue of non-Gaussian distributed imaging data and a Gaussian Markov random field model for incorporating spatial smoothness of the imaging data. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. Simulations and real data analysis demonstrate that the STM significantly outperforms the voxel-wise linear model with Gaussian noise in recovering meaningful geometric patterns. Our STM is able to reveal important brain regions with morphological changes in children with attention deficit hyperactivity disorder. © 2013, The International Biometric Society.
Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network
NASA Astrophysics Data System (ADS)
Cao, Xiangyong; Zhou, Feng; Xu, Lin; Meng, Deyu; Xu, Zongben; Paisley, John
2018-05-01
This paper presents a new supervised classification algorithm for remotely sensed hyperspectral image (HSI) which integrates spectral and spatial information in a unified Bayesian framework. First, we formulate the HSI classification problem from a Bayesian perspective. Then, we adopt a convolutional neural network (CNN) to learn the posterior class distributions using a patch-wise training strategy to better use the spatial information. Next, spatial information is further considered by placing a spatial smoothness prior on the labels. Finally, we iteratively update the CNN parameters using stochastic gradient decent (SGD) and update the class labels of all pixel vectors using an alpha-expansion min-cut-based algorithm. Compared with other state-of-the-art methods, the proposed classification method achieves better performance on one synthetic dataset and two benchmark HSI datasets in a number of experimental settings.
Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David
2017-01-01
Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea. PMID:28406963
Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marre, O.; El Boustani, S.; Fregnac, Y.
We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial correlations. This increase of predictability was also observed on experimental data recorded in parietal cortex during slow-wave sleep. This approach can also be used to generate surrogatesmore » that reproduce the spatial and temporal correlations of a given data set.« less
Spagnolo, Daniel M; Gyanchandani, Rekha; Al-Kofahi, Yousef; Stern, Andrew M; Lezon, Timothy R; Gough, Albert; Meyer, Dan E; Ginty, Fiona; Sarachan, Brion; Fine, Jeffrey; Lee, Adrian V; Taylor, D Lansing; Chennubhotla, S Chakra
2016-01-01
Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME) are key contributors to heterogeneity. We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI) and visually represent heterogeneity with a two-dimensional map. We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI), which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different components within the TME. We hypothesize that PMI will uncover key spatial interactions in the TME that contribute to disease proliferation and progression.
Turner, Kevin W.; Hunter, Fiona F.
2018-01-01
The purpose of this study was to establish geospatial and seasonal distributions of West Nile virus vectors in southern Ontario, Canada using historical surveillance data from 2002 to 2014. We set out to produce mosquito abundance prediction surfaces for each of Ontario’s thirteen West Nile virus vectors. We also set out to determine whether elevation and proximity to conservation areas and provincial parks, wetlands, and population centres could be used to improve our model. Our results indicated that the data sets for Anopheles quadrimaculatus, Anopheles punctipennis, Anopheles walkeri, Culex salinarius, Culex tarsalis, Ochlerotatus stimulans, and Ochlerotatus triseriatus were not suitable for geospatial modelling because they are randomly distributed throughout Ontario. Spatial prediction surfaces were created for Aedes japonicus and proximity to wetlands, Aedes vexans and proximity to population centres, Culex pipiens/restuans and proximity to population centres, Ochlerotatus canadensis and elevation, and Ochlerotatus trivittatus and proximity to population centres using kriging. Seasonal distributions are presented for all thirteen species. We have identified both when and where vector species are most abundant in southern Ontario. These data have the potential to contribute to a more efficient and focused larvicide program and West Nile virus awareness campaigns. PMID:29597256
NASA Astrophysics Data System (ADS)
Zhang, Bowen; Tian, Hanqin; Lu, Chaoqun; Chen, Guangsheng; Pan, Shufen; Anderson, Christopher; Poulter, Benjamin
2017-09-01
A wide range of estimates on global wetland methane (CH4) fluxes has been reported during the recent two decades. This gives rise to urgent needs to clarify and identify the uncertainty sources, and conclude a reconciled estimate for global CH4 fluxes from wetlands. Most estimates by using bottom-up approach rely on wetland data sets, but these data sets show largely inconsistent in terms of both wetland extent and spatiotemporal distribution. A quantitative assessment of uncertainties associated with these discrepancies among wetland data sets has not been well investigated yet. By comparing the five widely used global wetland data sets (GISS, GLWD, Kaplan, GIEMS and SWAMPS-GLWD), it this study, we found large differences in the wetland extent, ranging from 5.3 to 10.2 million km2, as well as their spatial and temporal distributions among the five data sets. These discrepancies in wetland data sets resulted in large bias in model-estimated global wetland CH4 emissions as simulated by using the Dynamic Land Ecosystem Model (DLEM). The model simulations indicated that the mean global wetland CH4 emissions during 2000-2007 were 177.2 ± 49.7 Tg CH4 yr-1, based on the five different data sets. The tropical regions contributed the largest portion of estimated CH4 emissions from global wetlands, but also had the largest discrepancy. Among six continents, the largest uncertainty was found in South America. Thus, the improved estimates of wetland extent and CH4 emissions in the tropical regions and South America would be a critical step toward an accurate estimate of global CH4 emissions. This uncertainty analysis also reveals an important need for our scientific community to generate a global scale wetland data set with higher spatial resolution and shorter time interval, by integrating multiple sources of field and satellite data with modeling approaches, for cross-scale extrapolation.
Polarization characterization of an LCTV with a Mueller matrix imaging polarimeter
NASA Astrophysics Data System (ADS)
Pezzaniti, J. Larry; Chipman, Russell A.; Gregory, Don A.
1993-10-01
The polarization properties of a TVT-6000 LCTV have been investigated. Mueller matrices of multiple ray paths through the TVT-6000 were measured for a single (typical) pixel, and through several pixels, using an imaging polarimeter. The TVT-6000 was characterized as a function of applied voltage and angle of incidence. From the Mueller matrices, the spatially dependent retardance, diattenuation, and depolarization are calculated and displayed as topographic maps. In another set of measurements, the LCTV is illuminated with a plane wave, and the spatial distribution of polarization in the Far Field Diffraction Pattern is measured in Mueller matrix form.
Spatiotemporal database of US congressional elections, 1896–2014
Wolf, Levi John
2017-01-01
High-quality historical data about US Congressional elections has long provided common ground for electoral studies. However, advances in geographic information science have recently made it efficient to compile, distribute, and analyze large spatio-temporal data sets on the structure of US Congressional districts. A single spatio-temporal data set that relates US Congressional election results to the spatial extent of the constituencies has not yet been developed. To address this, existing high-quality data sets of elections returns were combined with a spatiotemporal data set on Congressional district boundaries to generate a new spatio-temporal database of US Congressional election results that are explicitly linked to the geospatial data about the districts themselves. PMID:28809849
Van der Heyden, H; Dutilleul, P; Brodeur, L; Carisse, O
2014-06-01
Spatial distribution of single-nucleotide polymorphisms (SNPs) related to fungicide resistance was studied for Botrytis cinerea populations in vineyards and for B. squamosa populations in onion fields. Heterogeneity in this distribution was characterized by performing geostatistical analyses based on semivariograms and through the fitting of discrete probability distributions. Two SNPs known to be responsible for boscalid resistance (H272R and H272Y), both located on the B subunit of the succinate dehydrogenase gene, and one SNP known to be responsible for dicarboximide resistance (I365S) were chosen for B. cinerea in grape. For B. squamosa in onion, one SNP responsible for dicarboximide resistance (I365S homologous) was chosen. One onion field was sampled in 2009 and another one was sampled in 2010 for B. squamosa, and two vineyards were sampled in 2011 for B. cinerea, for a total of four sampled sites. Cluster sampling was carried on a 10-by-10 grid, each of the 100 nodes being the center of a 10-by-10-m quadrat. In each quadrat, 10 samples were collected and analyzed by restriction fragment length polymorphism polymerase chain reaction (PCR) or allele specific PCR. Mean SNP incidence varied from 16 to 68%, with an overall mean incidence of 43%. In the geostatistical analyses, omnidirectional variograms showed spatial autocorrelation characterized by ranges of 21 to 1 m. Various levels of anisotropy were detected, however, with variograms computed in four directions (at 0°, 45°, 90°, and 135° from the within-row direction used as reference), indicating that spatial autocorrelation was prevalent or characterized by a longer range in one direction. For all eight data sets, the β-binomial distribution was found to fit the data better than the binomial distribution. This indicates local aggregation of fungicide resistance among sampling units, as supported by estimates of the parameter θ of the β-binomial distribution of 0.09 to 0.23 (overall median value = 0.20). On the basis of the observed spatial distribution patterns of SNP incidence, sampling curves were computed for different levels of reliability, emphasizing the importance of sample size for the detection of mutation incidence below the risk threshold for control failure.
Predicting active-layer soil thickness using topographic variables at a small watershed scale
Li, Aidi; Tan, Xing; Wu, Wei; Liu, Hongbin; Zhu, Jie
2017-01-01
Knowledge about the spatial distribution of active-layer (AL) soil thickness is indispensable for ecological modeling, precision agriculture, and land resource management. However, it is difficult to obtain the details on AL soil thickness by using conventional soil survey method. In this research, the objective is to investigate the possibility and accuracy of mapping the spatial distribution of AL soil thickness through random forest (RF) model by using terrain variables at a small watershed scale. A total of 1113 soil samples collected from the slope fields were randomly divided into calibration (770 soil samples) and validation (343 soil samples) sets. Seven terrain variables including elevation, aspect, relative slope position, valley depth, flow path length, slope height, and topographic wetness index were derived from a digital elevation map (30 m). The RF model was compared with multiple linear regression (MLR), geographically weighted regression (GWR) and support vector machines (SVM) approaches based on the validation set. Model performance was evaluated by precision criteria of mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Comparative results showed that RF outperformed MLR, GWR and SVM models. The RF gave better values of ME (0.39 cm), MAE (7.09 cm), and RMSE (10.85 cm) and higher R2 (62%). The sensitivity analysis demonstrated that the DEM had less uncertainty than the AL soil thickness. The outcome of the RF model indicated that elevation, flow path length and valley depth were the most important factors affecting the AL soil thickness variability across the watershed. These results demonstrated the RF model is a promising method for predicting spatial distribution of AL soil thickness using terrain parameters. PMID:28877196
NASA Astrophysics Data System (ADS)
Henn, Brian; Painter, Thomas H.; Bormann, Kat J.; McGurk, Bruce; Flint, Alan L.; Flint, Lorraine E.; White, Vince; Lundquist, Jessica D.
2018-02-01
Hydrologic variables such as evapotranspiration (ET) and soil water storage are difficult to observe across spatial scales in complex terrain. Streamflow and lidar-derived snow observations provide information about distributed hydrologic processes such as snowmelt, infiltration, and storage. We use a distributed streamflow data set across eight basins in the upper Tuolumne River region of Yosemite National Park in the Sierra Nevada mountain range, and the NASA Airborne Snow Observatory (ASO) lidar-derived snow data set over 3 years (2013-2015) during a prolonged drought in California, to estimate basin-scale water balance components. We compare snowmelt and cumulative precipitation over periods from the ASO flight to the end of the water year against cumulative streamflow observations. The basin water balance residual term (snow melt plus precipitation minus streamflow) is calculated for each basin and year. Using soil moisture observations and hydrologic model simulations, we show that the residual term represents short-term changes in basin water storage over the snowmelt season, but that over the period from peak snow water equivalent (SWE) to the end of summer, it represents cumulative basin-mean ET. Warm-season ET estimated from this approach is 168 (85-252 at 95% confidence), 162 (0-326) and 191 (48-334) mm averaged across the basins in 2013, 2014, and 2015, respectively. These values are lower than previous full-year and point ET estimates in the Sierra Nevada, potentially reflecting reduced ET during drought, the effects of spatial variability, and the part-year time period. Using streamflow and ASO snow observations, we quantify spatially-distributed hydrologic processes otherwise difficult to observe.
Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.
2008-01-01
Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Rakovec, O.; Weerts, A.; Hazenberg, P.; Torfs, P.; Uijlenhoet, R.
2012-12-01
This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model (Rakovec et al., 2012a). The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. The uncertain precipitation model forcings were obtained using a time-dependent multivariate spatial conditional simulation method (Rakovec et al., 2012b), which is further made conditional on preceding simulations. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty. Rakovec, O., Weerts, A. H., Hazenberg, P., Torfs, P. J. J. F., and Uijlenhoet, R.: State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy, Hydrol. Earth Syst. Sci. Discuss., 9, 3961-3999, doi:10.5194/hessd-9-3961-2012, 2012a. Rakovec, O., Hazenberg, P., Torfs, P. J. J. F., Weerts, A. H., and Uijlenhoet, R.: Generating spatial precipitation ensembles: impact of temporal correlation structure, Hydrol. Earth Syst. Sci. Discuss., 9, 3087-3127, doi:10.5194/hessd-9-3087-2012, 2012b.
Epistemic uncertainty in the location and magnitude of earthquakes in Italy from Macroseismic data
Bakun, W.H.; Gomez, Capera A.; Stucchi, M.
2011-01-01
Three independent techniques (Bakun and Wentworth, 1997; Boxer from Gasperini et al., 1999; and Macroseismic Estimation of Earthquake Parameters [MEEP; see Data and Resources section, deliverable D3] from R.M.W. Musson and M.J. Jimenez) have been proposed for estimating an earthquake location and magnitude from intensity data alone. The locations and magnitudes obtained for a given set of intensity data are almost always different, and no one technique is consistently best at matching instrumental locations and magnitudes of recent well-recorded earthquakes in Italy. Rather than attempting to select one of the three solutions as best, we use all three techniques to estimate the location and the magnitude and the epistemic uncertainties among them. The estimates are calculated using bootstrap resampled data sets with Monte Carlo sampling of a decision tree. The decision-tree branch weights are based on goodness-of-fit measures of location and magnitude for recent earthquakes. The location estimates are based on the spatial distribution of locations calculated from the bootstrap resampled data. The preferred source location is the locus of the maximum bootstrap location spatial density. The location uncertainty is obtained from contours of the bootstrap spatial density: 68% of the bootstrap locations are within the 68% confidence region, and so on. For large earthquakes, our preferred location is not associated with the epicenter but with a location on the extended rupture surface. For small earthquakes, the epicenters are generally consistent with the location uncertainties inferred from the intensity data if an epicenter inaccuracy of 2-3 km is allowed. The preferred magnitude is the median of the distribution of bootstrap magnitudes. As with location uncertainties, the uncertainties in magnitude are obtained from the distribution of bootstrap magnitudes: the bounds of the 68% uncertainty range enclose 68% of the bootstrap magnitudes, and so on. The instrumental magnitudes for large and small earthquakes are generally consistent with the confidence intervals inferred from the distribution of bootstrap resampled magnitudes.
Distributed-feedback Terahertz Quantum-cascade Lasers with Laterally Corrugated Metal Waveguides
NASA Technical Reports Server (NTRS)
Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.
2005-01-01
We report the demonstration of distributed-feedback terahertz quantum-cascade lasers based on a first-order grating fabricated via a lateral corrugation in a double-sided metal ridge waveguide. The phase of the facet reflection was precisely set by lithographically defined facets by dry etching. Single-mode emission was observed at low to moderate injection currents, although multimode emission was observed far beyond threshold owing to spatial hole burning. Finite-element simulations were used to calculate the modal and threshold characteristics for these devices, with results in good agreement with experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dmitriy Morozov, Tom Peterka
2014-07-29
Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets. As the scale of simulations and observations surpasses billions of particles, a distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this software is a distributed-memory parallel Delaunay and Voronoi tessellation algorithm based on existing serial computational geometry libraries that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include the addition of periodic and wall boundary conditions.
NASA Astrophysics Data System (ADS)
Gallen, Sean; Clark, Marin; Godt, Jonathan; Lowe, Katherine
2016-04-01
The material strength of rock is known to be a fundamental property in setting landscape form and geomorphic process rates as it acts to modulate feedbacks between earth surface processes, tectonics, and climate. Despite the long recognition of its importance in landscape evolution, a quantitative understanding of the role of rock strength in affecting geomorphic processes lags our knowledge of the influence of tectonics and climate. This gap stems largely from the fact that it remains challenging to quantify rock strength at the hillslope scale. Rock strength is strongly scale dependent because the number, size, spacing, and aperture of fractures sets the upper limit on rock strength, making it difficult to extrapolate laboratory measurements to landscape-scale interpretations. Here we present a method to determine near-surface rock strength at the hillslope-scale, relying on earthquake-triggered landslides as a regional-scale "shear strength" test. We define near-surface strength as the average strength of rock sample by the landslides, which is typically < 10 m. Based on a Newmark sliding block model, which approximates slope stability during an earthquake assuming a material with frictional and cohesive strength, we developed a coseismic landslide model that is capable of reproducing statistical characteristics of the distribution of earthquake-triggered landslides. We present results from two well-documented case-studies of earthquakes that caused widespread mass-wasting; the 2008 Mw 7.9 Wenchuan Earthquake, Sichuan Province, China and the 1994 Mw. 6.8 Northridge Earthquake, CA, USA. We show how this model can be used to determine near-surface rock strength and reproduce mapped landslide patterns provided the spatial distribution of local hillslope gradient, earthquake peak ground acceleration (PGA), and coseismic landsliding are well constrained. Results suggest that near-surface rock strength in these tectonically active settings is much lower than that obtained using typical laboratory shear strength measurements on intact rock samples. Furthermore, the near-surface material strength is similar between the study areas despite differences in tectonic, climatic, and lithologic conditions. Variations in near-surface strength within each setting appear to be more strongly associated with factors contributing to the weakening rock through chemical or physical weathering, such as mean annual precipitation and distance to active faults (a proxy for rock shattering intensity), rather than intrinsic lithologic properties. We hypothesize that the shattering of rock through long-term permanent strain accumulation and by repeated earthquakes is an important mechanism that can explain low rock strength values among the different study sites and the spatial pattern of rock strength within each location. These findings emphasize the potential role of factors other than lithology in controlling the spatial distribution of near-surface rock strength in high-relief, tectonically active settings, which has important implications for understanding the evolution of landscapes, interpreting tectonic and climatic signals from topography, critical zone processes, and natural hazard assessment.
Moussawi, A; Derzsy, N; Lin, X; Szymanski, B K; Korniss, G
2017-09-15
Cascading failures are a critical vulnerability of complex information or infrastructure networks. Here we investigate the properties of load-based cascading failures in real and synthetic spatially-embedded network structures, and propose mitigation strategies to reduce the severity of damages caused by such failures. We introduce a stochastic method for optimal heterogeneous distribution of resources (node capacities) subject to a fixed total cost. Additionally, we design and compare the performance of networks with N-stable and (N-1)-stable network-capacity allocations by triggering cascades using various real-world node-attack and node-failure scenarios. We show that failure mitigation through increased node protection can be effectively achieved against single-node failures. However, mitigating against multiple node failures is much more difficult due to the combinatorial increase in possible sets of initially failing nodes. We analyze the robustness of the system with increasing protection, and find that a critical tolerance exists at which the system undergoes a phase transition, and above which the network almost completely survives an attack. Moreover, we show that cascade-size distributions measured in this region exhibit a power-law decay. Finally, we find a strong correlation between cascade sizes induced by individual nodes and sets of nodes. We also show that network topology alone is a weak predictor in determining the progression of cascading failures.
aGEM: an integrative system for analyzing spatial-temporal gene-expression information
Jiménez-Lozano, Natalia; Segura, Joan; Macías, José Ramón; Vega, Juanjo; Carazo, José María
2009-01-01
Motivation: The work presented here describes the ‘anatomical Gene-Expression Mapping (aGEM)’ Platform, a development conceived to integrate phenotypic information with the spatial and temporal distributions of genes expressed in the mouse. The aGEM Platform has been built by extending the Distributed Annotation System (DAS) protocol, which was originally designed to share genome annotations over the WWW. DAS is a client-server system in which a single client integrates information from multiple distributed servers. Results: The aGEM Platform provides information to answer three main questions. (i) Which genes are expressed in a given mouse anatomical component? (ii) In which mouse anatomical structures are a given gene or set of genes expressed? And (iii) is there any correlation among these findings? Currently, this Platform includes several well-known mouse resources (EMAGE, GXD and GENSAT), hosting gene-expression data mostly obtained from in situ techniques together with a broad set of image-derived annotations. Availability: The Platform is optimized for Firefox 3.0 and it is accessed through a friendly and intuitive display: http://agem.cnb.csic.es Contact: natalia@cnb.csic.es Supplementary information: Supplementary data are available at http://bioweb.cnb.csic.es/VisualOmics/aGEM/home.html and http://bioweb.cnb.csic.es/VisualOmics/index_VO.html and Bioinformatics online. PMID:19592395
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation.
Dong, Yingying; Luo, Ruisen; Feng, Haikuan; Wang, Jihua; Zhao, Jinling; Zhu, Yining; Yang, Guijun
2014-01-01
Differences exist among analysis results of agriculture monitoring and crop production based on remote sensing observations, which are obtained at different spatial scales from multiple remote sensors in same time period, and processed by same algorithms, models or methods. These differences can be mainly quantitatively described from three aspects, i.e. multiple remote sensing observations, crop parameters estimation models, and spatial scale effects of surface parameters. Our research proposed a new method to analyse and correct the differences between multi-source and multi-scale spatial remote sensing surface reflectance datasets, aiming to provide references for further studies in agricultural application with multiple remotely sensed observations from different sources. The new method was constructed on the basis of physical and mathematical properties of multi-source and multi-scale reflectance datasets. Theories of statistics were involved to extract statistical characteristics of multiple surface reflectance datasets, and further quantitatively analyse spatial variations of these characteristics at multiple spatial scales. Then, taking the surface reflectance at small spatial scale as the baseline data, theories of Gaussian distribution were selected for multiple surface reflectance datasets correction based on the above obtained physical characteristics and mathematical distribution properties, and their spatial variations. This proposed method was verified by two sets of multiple satellite images, which were obtained in two experimental fields located in Inner Mongolia and Beijing, China with different degrees of homogeneity of underlying surfaces. Experimental results indicate that differences of surface reflectance datasets at multiple spatial scales could be effectively corrected over non-homogeneous underlying surfaces, which provide database for further multi-source and multi-scale crop growth monitoring and yield prediction, and their corresponding consistency analysis evaluation. PMID:25405760
A Mixed Methods Comparison of Urban and Rural Retail Corner Stores.
McGuirt, Jared T; Pitts, Stephanie B Jilcott; Ammerman, Alice; Prelip, Michael; Hillstrom, Kathryn; Garcia, Rosa Elena; McCarthy, William J
2015-01-01
Efforts to transform corner stores to better meet community dietary needs have mostly occurred in urban areas but are also needed in rural areas. Given important contextual differences between urban and rural areas, it is important to increase our understanding of the elements that might translate successfully to similar interventions involving stores in more rural areas. Thus, an in-depth examination and comparison of corner stores in each setting is needed. A mixed methods approach, including windshield tours, spatial visualization with analysis of frequency distribution, and spatial regression techniques were used to compare a rural North Carolina and large urban (Los Angeles) food environment. Important similarities and differences were seen between the two settings in regards to food environment context, spatial distribution of stores, food products available, and the factors predicting corner store density. Urban stores were more likely to have fresh fruits (Pearson chi2 = 27.0423; p < 0.001) and vegetables (Pearson chi2 = 27.0423; p < 0.001). In the urban setting, corner stores in high income areas were more likely to have fresh fruit (Pearson chi2 = 6.00; p = 0.014), while in the rural setting, there was no difference between high and low income area in terms of fresh fruit availability. For the urban area, total population, no vehicle and Hispanic population were significantly positively associated ( p < 0.05), and median household income ( p < 0.001) and Percent Minority ( p < 0.05) were significantly negatively associated with corner store count. For the rural area, total population ( p < 0.05) and supermarket count were positively associated ( p < 0.001), and median household income negatively associated ( P < 0.001), with corner store count. Translational efforts should be informed by these findings, which might influence the success of future interventions and policies in both rural and urban contexts.
NASA Astrophysics Data System (ADS)
Chen, Guangsheng; Pan, Shufen; Hayes, Daniel J.; Tian, Hanqin
2017-08-01
Plantation forest area in the conterminous United States (CONUS) ranked second among the world's nations in the land area apportioned to forest plantation. As compared to the naturally regenerated forests, plantation forests demonstrate significant differences in biophysical characteristics, and biogeochemical and hydrological cycles as a result of more intensive management practices. Inventory data have been reported for multiple time periods on plot, state, and regional scales across the CONUS, but the requisite annual and spatially explicit plantation data set over a long-term period for analysis of the role of plantation management on regional or national scales is lacking. Through synthesis of multiple inventory data sources, this study developed methods to spatialize the time series plantation forest and tree species distribution data for the CONUS over the 1928-2012 time period. According to this new data set, plantation forest area increased from near zero in the 1930s to 268.27 thousand km2 in 2012, accounting for 8.65 % of the total forestland area in the CONUS. Regionally, the South contained the highest proportion of plantation forests, accounting for about 19.34 % of total forestland area in 2012. This time series and gridded data set developed here can be readily applied in regional Earth system modeling frameworks for assessing the impacts of plantation management practices on forest productivity, carbon and nitrogen stocks, and greenhouse gases (e.g., CO2, CH4, and N2O) and water fluxes on regional or national scales. The gridded plantation distribution and tree species maps, and the interpolated state-level annual tree planting area and plantation area during 1928-2012, are available from https://doi.org/10.1594/PANGAEA.873558.
A Mixed Methods Comparison of Urban and Rural Retail Corner Stores
McGuirt, Jared T; Pitts, Stephanie B. Jilcott; Ammerman, Alice; Prelip, Michael; Hillstrom, Kathryn; Garcia, Rosa Elena; McCarthy, William J.
2015-01-01
Efforts to transform corner stores to better meet community dietary needs have mostly occurred in urban areas but are also needed in rural areas. Given important contextual differences between urban and rural areas, it is important to increase our understanding of the elements that might translate successfully to similar interventions involving stores in more rural areas. Thus, an in-depth examination and comparison of corner stores in each setting is needed. A mixed methods approach, including windshield tours, spatial visualization with analysis of frequency distribution, and spatial regression techniques were used to compare a rural North Carolina and large urban (Los Angeles) food environment. Important similarities and differences were seen between the two settings in regards to food environment context, spatial distribution of stores, food products available, and the factors predicting corner store density. Urban stores were more likely to have fresh fruits (Pearson chi2 = 27.0423; p < 0.001) and vegetables (Pearson chi2 = 27.0423; p < 0.001). In the urban setting, corner stores in high income areas were more likely to have fresh fruit (Pearson chi2 = 6.00; p = 0.014), while in the rural setting, there was no difference between high and low income area in terms of fresh fruit availability. For the urban area, total population, no vehicle and Hispanic population were significantly positively associated (p < 0.05), and median household income (p < 0.001) and Percent Minority (p < 0.05) were significantly negatively associated with corner store count. For the rural area, total population (p < 0.05) and supermarket count were positively associated (p < 0.001), and median household income negatively associated (P < 0.001), with corner store count. Translational efforts should be informed by these findings, which might influence the success of future interventions and policies in both rural and urban contexts. PMID:29546125
Quiet geomagnetic field representation for all days and latitudes
Campbell, W.H.; Schiffmacher, E.R.; Arora, B.R.
1992-01-01
Describes a technique for obtaining the quiet-time geomagnetic field variation expected for all days of the year and distribution of latitudes from a limited set of selected quiet days within a year at a discrete set of locations. A data set of observatories near 75??E longitude was used as illustration. The method relies upon spatial smoothing of the decomposed spectral components. An evaluation of the fidelity of the resulting model shows correlation coefficients usually above 0.9 at the lower latitudes and near 0.7 at the higher latitudes with variations identified as dependent upon season and field element. -from Authors
Characterization and Remediation of Contaminated Sites:Modeling, Measurement and Assessment
NASA Astrophysics Data System (ADS)
Basu, N. B.; Rao, P. C.; Poyer, I. C.; Christ, J. A.; Zhang, C. Y.; Jawitz, J. W.; Werth, C. J.; Annable, M. D.; Hatfield, K.
2008-05-01
The complexity of natural systems makes it impossible to estimate parameters at the required level of spatial and temporal detail. Thus, it becomes necessary to transition from spatially distributed parameters to spatially integrated parameters that are capable of adequately capturing the system dynamics, without always accounting for local process behavior. Contaminant flux across the source control plane is proposed as an integrated metric that captures source behavior and links it to plume dynamics. Contaminant fluxes were measured using an innovative technology, the passive flux meter at field sites contaminated with dense non-aqueous phase liquids or DNAPLs in the US and Australia. Flux distributions were observed to be positively or negatively correlated with the conductivity distribution, depending on the source characteristics of the site. The impact of partial source depletion on the mean contaminant flux and flux architecture was investigated in three-dimensional complex heterogeneous settings using the multiphase transport code UTCHEM and the reactive transport code ISCO3D. Source mass depletion reduced the mean contaminant flux approximately linearly, while the contaminant flux standard deviation reduced proportionally with the mean (i.e., coefficient of variation of flux distribution is constant with time). Similar analysis was performed using data from field sites, and the results confirmed the numerical simulations. The linearity of the mass depletion-flux reduction relationship indicates the ability to design remediation systems that deplete mass to achieve target reduction in source strength. Stability of the flux distribution indicates the ability to characterize the distributions in time once the initial distribution is known. Lagrangian techniques were used to predict contaminant flux behavior during source depletion in terms of the statistics of the hydrodynamic and DNAPL distribution. The advantage of the Lagrangian techniques lies in their small computation time and their inclusion of spatially integrated parameters that can be measured in the field using tracer tests. Analytical models that couple source depletion to plume transport were used for optimization of source and plume treatment. These models are being used for the development of decision and management tools (for DNAPL sites) that consider uncertainty assessments as an integral part of the decision-making process for contaminated site remediation.
Oak decline in central hardwood forests: frequency, spatial extent, and scale
Steven W Oak; Marty Spetich; Randall S. Morin
2015-01-01
Oak decline is a widely distributed disease that results from an interacting set of factors in the Central Hardwood Region. Episodes of decline have been reported since before the turn of the twentieth century and from every state in the region. It is a stress-mediated disease that results from the interactions of physiologically mature trees, abiotic and biotic...
Modeling the spatially dynamic distribution of humans in the Oregon (USA) coast range.
Jeffrey D. Kline; David L. Azuma; Alissa Moses
2003-01-01
A common approach to land use change analyses in multidisciplinary landscape-level studies is to delineate discrete forest and non-forest or urban and non-urban land use categories to serve as inputs into sets of integrated sub-models describing socioeconomic and ecological processes. Such discrete land use categories, however, may be inappropriate when the...
NASA Astrophysics Data System (ADS)
Shimoni, M.; Haelterman, R.; Lodewyckx, P.
2016-05-01
Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are commonly retrieved from thermal hyperspectral imaging. However, their retrieval is not a straightforward procedure because the mathematical problem is ill-posed. This procedure becomes more challenging in an urban area where the spatial distribution of temperature varies substantially in space and time. For assessing the influence of several spatial variances on the deviation of the temperature in the scene, a statistical model is created. The model was tested using several images from various times in the day and was validated using in-situ measurements. The results highlight the importance of the geometry of the scene and its setting relative to the position of the sun during day time. It also shows that when the position of the sun is in zenith, the main contribution to the thermal distribution in the scene is the thermal capacity of the landcover materials. In this paper we propose a new Temperature and Emissivity Separation (TES) method which integrates 3D surface and landcover information from LIDAR and VNIR hyperspectral imaging data in an attempt to improve the TES procedure for a thermal hyperspectral scene. The experimental results prove the high accuracy of the proposed method in comparison to another conventional TES model.
Evolution of Spatial pH Distribution in Aqueous Solution induced by Atmospheric Pressure Plasma
NASA Astrophysics Data System (ADS)
Takahashi, Shigenori; Mano, Kakeru; Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu
2016-09-01
Discharge plasma at gas-liquid interface produces some active species, and then they affect chemical reactions in aqueous solution, where pH of aqueous solution is changed due to redox species. The pH change of aqueous solution is an important factor for chemical reactions. However, spatial pH distribution in a reactor during the discharge has not been clarified yet. Thus, this work focused on spatial pH distribution of aqueous solution when pulsed discharge plasma was generated from a copper electrode in gas phase to aqueous solution in a reactor. Experiments were conducted using positive unipolar pulsed power. The unipolar pulsed voltage at +8.0 kV was applied to the copper electrode and the bottom of the reactor was grounded. The size of the reactor was 80 mm wide, 10 mm deep, and 40 mm high. The electrode was set at distance of 2 mm from the solution surface. Anthocyanins were contained in the aqueous solution as a pH indicator. The change pH solution spread horizontally, and low pH region of 10 mm in depth was formed. After discharge for 10 minutes, the low pH region was diffused toward the bottom of the reactor. After discharge for 60 minutes, the pH of the whole solution decreased.
Spatial Distribution of Oak Mistletoe as It Relates to Habits of Oak Woodland Frugivores
Wilson, Ethan A.; Sullivan, Patrick J.; Dickinson, Janis L.
2014-01-01
This study addresses the underlying spatial distribution of oak mistletoe, Phoradendron villosum, a hemi-parasitic plant that provides a continuous supply of berries for frugivorous birds overwintering the oak savanna habitat of California's outer coast range. As the winter community of birds consuming oak mistletoe varies from group-living territorial species to birds that roam in flocks, we asked if mistletoe volume was spatially autocorrelated at the scale of persistent territories or whether the patterns predicted by long-term territory use by western bluebirds are overcome by seed dispersal by more mobile bird species. The abundance of mistletoe was mapped on trees within a 700 ha study site in Carmel Valley, California. Spatial autocorrelation of mistletoe volume was analyzed using the variogram method and spatial distribution of oak mistletoe trees was analyzed using Ripley's K and O-ring statistics. On a separate set of 45 trees, mistletoe volume was highly correlated with the volume of female, fruit-bearing plants, indicating that overall mistletoe volume is a good predictor of fruit availability. Variogram analysis showed that mistletoe volume was spatially autocorrelated up to approximately 250 m, a distance consistent with persistent territoriality of western bluebirds and philopatry of sons, which often breed next door to their parents and are more likely to remain home when their parents have abundant mistletoe. Using Ripley's K and O-ring analyses, we showed that mistletoe trees were aggregated for distances up to 558 m, but for distances between 558 to 724 m the O-ring analysis deviated from Ripley's K in showing repulsion rather than aggregation. While trees with mistletoe were aggregated at larger distances, mistletoe was spatially correlated at a smaller distance, consistent with what is expected based on persistent group territoriality of western bluebirds in winter and the extreme philopatry of their sons. PMID:25389971
Macharelli, Carlos Alberto; Schellini, Silvana Artioli; Opromolla, Paula Araujo; Dalben, Ivete
2013-01-01
The objective of this study was to analyze the spatial behavior of the occurrence of trachoma cases detected in the City of Bauru, State of São Paulo, Brazil, in 2006 in order to use the information collected to set priority areas for optimization of health resources. the trachoma cases identified in 2006 were georeferenced. The data evaluated were: schools where the trachoma cases studied, data from the 2000 Census, census tract, type of housing, water supply conditions, distribution of income and levels of education of household heads. In the Google Earth® software and TerraView® were made descriptive spatial analysis and estimates of the Kernel. Each area was studied by interpolation of the density surfaces exposing events to facilitate to recognize the clusters. Of the 66 cases detected, only one (1.5%) was not a resident of the city's outskirts. A positive association was detected of trachoma cases and the percentage of heads of household with income below three minimum wages and schooling under eight years of education. The recognition of the spatial distribution of trachoma cases coincided with the areas of greatest social inequality in Bauru city. The micro-areas identified are those that should be prioritized in the rationalization of health resources. There is the possibility of using the trachoma cases detected as an indicator of performance of micro priority health programs.
Shallow plumbing systems inferred from spatial analysis of pockmark arrays
NASA Astrophysics Data System (ADS)
Maia, A.; Cartwright, J. A.; Andersen, E.
2016-12-01
This study describes and analyses an extraordinary array of pockmarks at the modern seabed of the Lower Congo Basin (offshore Angola), in order to understand the fluid migration routes and shallow plumbing system of the area. The 3D seismic visualization of feeding conduits (pipes) allowed the identification of the source interval for the fluids expelled during pockmark formation. Spatial statistics are used to show the relationship between the underlying (polarised) polygonal fault (PPFs) patterns and seabed pockmarks distributions. Our results show PPFs control the linear arrangement of pockmarks and feeder pipes along fault strike, but faults do not act as conduits. Spatial statistics also revealed pockmark occurrence is not considered to be random, especially at short distances to nearest neighbours (<200m) where anti-clustering distributions suggest the presence of an exclusion zone around each pockmark in which no other pockmark will form. The results of this study are relevant for the understanding of shallow fluid plumbing systems in offshore settings, with implications on our current knowledge of overall fluid flow systems in hydrocarbon-rich continental margins.
The HTM Spatial Pooler-A Neocortical Algorithm for Online Sparse Distributed Coding.
Cui, Yuwei; Ahmad, Subutai; Hawkins, Jeff
2017-01-01
Hierarchical temporal memory (HTM) provides a theoretical framework that models several key computational principles of the neocortex. In this paper, we analyze an important component of HTM, the HTM spatial pooler (SP). The SP models how neurons learn feedforward connections and form efficient representations of the input. It converts arbitrary binary input patterns into sparse distributed representations (SDRs) using a combination of competitive Hebbian learning rules and homeostatic excitability control. We describe a number of key properties of the SP, including fast adaptation to changing input statistics, improved noise robustness through learning, efficient use of cells, and robustness to cell death. In order to quantify these properties we develop a set of metrics that can be directly computed from the SP outputs. We show how the properties are met using these metrics and targeted artificial simulations. We then demonstrate the value of the SP in a complete end-to-end real-world HTM system. We discuss the relationship with neuroscience and previous studies of sparse coding. The HTM spatial pooler represents a neurally inspired algorithm for learning sparse representations from noisy data streams in an online fashion.
2012-01-01
The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models. Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites. In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial demographic data focusing on low income regions where such data are often sparse and highlight the value of incorporating these through a set of examples of their application in disease studies. Moreover, the importance of acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a strategy for building an open-access database of spatial demographic data that is tailored to epidemiological applications is put forward. PMID:22591595
NASA Astrophysics Data System (ADS)
Golmohammadi, A.; Jafarpour, B.; M Khaninezhad, M. R.
2017-12-01
Calibration of heterogeneous subsurface flow models leads to ill-posed nonlinear inverse problems, where too many unknown parameters are estimated from limited response measurements. When the underlying parameters form complex (non-Gaussian) structured spatial connectivity patterns, classical variogram-based geostatistical techniques cannot describe the underlying connectivity patterns. Modern pattern-based geostatistical methods that incorporate higher-order spatial statistics are more suitable for describing such complex spatial patterns. Moreover, when the underlying unknown parameters are discrete (geologic facies distribution), conventional model calibration techniques that are designed for continuous parameters cannot be applied directly. In this paper, we introduce a novel pattern-based model calibration method to reconstruct discrete and spatially complex facies distributions from dynamic flow response data. To reproduce complex connectivity patterns during model calibration, we impose a feasibility constraint to ensure that the solution follows the expected higher-order spatial statistics. For model calibration, we adopt a regularized least-squares formulation, involving data mismatch, pattern connectivity, and feasibility constraint terms. Using an alternating directions optimization algorithm, the regularized objective function is divided into a continuous model calibration problem, followed by mapping the solution onto the feasible set. The feasibility constraint to honor the expected spatial statistics is implemented using a supervised machine learning algorithm. The two steps of the model calibration formulation are repeated until the convergence criterion is met. Several numerical examples are used to evaluate the performance of the developed method.
Variability of the raindrop size distribution at small spatial scales
NASA Astrophysics Data System (ADS)
Berne, A.; Jaffrain, J.
2010-12-01
Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.
Nonuniformity of the chemical composition of a capillary discharge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharyan, A. E.; Bobrova, N. A.; Sasorov, P. V.
A steady-state distribution of the concentration of two ion species in a capillary discharge plasma is studied using MHD equations for a plasma with a spatially nonuniform, time-dependent chemical composition. In our case, the set of equations is significantly simplified because of the steady-state character and symmetry of the problem. Even with such simplification, however, some results could be obtained only by numerical integration. The factors affecting the distribution of heavy ions are studied. It is shown that the distribution of the heavy impurity over the discharge cross section can be much more nonuniform than the distribution of the mainmore » component (hydrogen). A simple criterion for such a nonuniformity is obtained.« less
Estimating the effective spatial resolution of an AVHRR time series
Meyer, D.J.
1996-01-01
A method is proposed to estimate the spatial degradation of geometrically rectified AVHRR data resulting from misregistration and off-nadir viewing, and to infer the cumulative effect of these degradations over time. Misregistrations are measured using high resolution imagery as a geometric reference, and pixel sizes are computed directly from satellite zenith angles. The influence or neighbouring features on a nominal 1 km by 1 km pixel over a given site is estimated from the above information, and expressed as a spatial distribution whose spatial frequency response is used to define an effective field-of-view (EFOV) for a time series. In a demonstration of the technique applied to images from the Conterminous U.S. AVHRR data set, an EFOV of 3·1km in the east-west dimension and 19 km in the north-south dimension was estimated for a time series accumulated over a grasslands test site.
Quasi-parton distribution functions: A study in the diquark spectator model
Gamberg, Leonard; Kang, Zhong -Bo; Vitev, Ivan; ...
2015-02-12
A set of quasi-parton distribution functions (quasi-PDFs) have been recently proposed by Ji. Defined as the matrix elements of equal-time spatial correlations, they can be computed on the lattice and should reduce to the standard PDFs when the proton momentum P z is very large. Since taking the P z → ∞ limit is not feasible in lattice simulations, it is essential to provide guidance for which values of P z the quasi-PDFs are good approximations of standard PDFs. Within the framework of the spectator diquark model, we evaluate both the up and down quarks' quasi-PDFs and standard PDFs formore » all leading-twist distributions (unpolarized distribution f₁, helicity distribution g₁, and transversity distribution h₁). We find that, for intermediate parton momentum fractions x , quasi-PDFs are good approximations to standard PDFs (within 20–30%) when P z ≳ 1.5–2 GeV. On the other hand, for large x~1 much larger P z > 4 GeV is necessary to obtain a satisfactory agreement between the two sets. We further test the Soffer positivity bound, and find that it does not hold in general for quasi-PDFs.« less
Temporal and spatial variations of rainfall erosivity in Southern Taiwan
NASA Astrophysics Data System (ADS)
Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang
2014-05-01
Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.
Spatio-temporal analysis of annual rainfall in Crete, Greece
NASA Astrophysics Data System (ADS)
Varouchakis, Emmanouil A.; Corzo, Gerald A.; Karatzas, George P.; Kotsopoulou, Anastasia
2018-03-01
Analysis of rainfall data from the island of Crete, Greece was performed to identify key hydrological years and return periods as well as to analyze the inter-annual behavior of the rainfall variability during the period 1981-2014. The rainfall spatial distribution was also examined in detail to identify vulnerable areas of the island. Data analysis using statistical tools and spectral analysis were applied to investigate and interpret the temporal course of the available rainfall data set. In addition, spatial analysis techniques were applied and compared to determine the rainfall spatial distribution on the island of Crete. The analysis presented that in contrast to Regional Climate Model estimations, rainfall rates have not decreased, while return periods vary depending on seasonality and geographic location. A small but statistical significant increasing trend was detected in the inter-annual rainfall variations as well as a significant rainfall cycle almost every 8 years. In addition, statistically significant correlation of the island's rainfall variability with the North Atlantic Oscillation is identified for the examined period. On the other hand, regression kriging method combining surface elevation as secondary information improved the estimation of the annual rainfall spatial variability on the island of Crete by 70% compared to ordinary kriging. The rainfall spatial and temporal trends on the island of Crete have variable characteristics that depend on the geographical area and on the hydrological period.
NASA Astrophysics Data System (ADS)
Liu, Yong-Yang; Xu, Yu-Liang; Liu, Zhong-Qiang; Li, Jing; Wang, Chun-Yang; Kong, Xiang-Mu
2018-07-01
Employing the correlation matrix technique, the spatial distribution of thermal energy in two-dimensional triangular lattices in equilibrium, interacting with linear springs, is studied. It is found that the spatial distribution of thermal energy varies with the included angle of the springs. In addition, the average thermal energy of the longer springs is lower. Springs with different included angle and length will lead to an inhomogeneous spatial distribution of thermal energy. This suggests that the spatial distribution of thermal energy is affected by the geometrical structure of the system: the more asymmetric the geometrical structure of the system is, the more inhomogeneous is the spatial distribution of thermal energy.
Mapping water table depth using geophysical and environmental variables.
Buchanan, S; Triantafilis, J
2009-01-01
Despite its importance, accurate representation of the spatial distribution of water table depth remains one of the greatest deficiencies in many hydrological investigations. Historically, both inverse distance weighting (IDW) and ordinary kriging (OK) have been used to interpolate depths. These methods, however, have major limitations: namely they require large numbers of measurements to represent the spatial variability of water table depth and they do not represent the variation between measurement points. We address this issue by assessing the benefits of using stepwise multiple linear regression (MLR) with three different ancillary data sets to predict the water table depth at 100-m intervals. The ancillary data sets used are Electromagnetic (EM34 and EM38), gamma radiometric: potassium (K), uranium (eU), thorium (eTh), total count (TC), and morphometric data. Results show that MLR offers significant precision and accuracy benefits over OK and IDW. Inclusion of the morphometric data set yielded the greatest (16%) improvement in prediction accuracy compared with IDW, followed by the electromagnetic data set (5%). Use of the gamma radiometric data set showed no improvement. The greatest improvement, however, resulted when all data sets were combined (37% increase in prediction accuracy over IDW). Significantly, however, the use of MLR also allows for prediction in variations in water table depth between measurement points, which is crucial for land management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less
Global biogeography of human infectious diseases.
Murray, Kris A; Preston, Nicholas; Allen, Toph; Zambrana-Torrelio, Carlos; Hosseini, Parviez R; Daszak, Peter
2015-10-13
The distributions of most infectious agents causing disease in humans are poorly resolved or unknown. However, poorly known and unknown agents contribute to the global burden of disease and will underlie many future disease risks. Existing patterns of infectious disease co-occurrence could thus play a critical role in resolving or anticipating current and future disease threats. We analyzed the global occurrence patterns of 187 human infectious diseases across 225 countries and seven epidemiological classes (human-specific, zoonotic, vector-borne, non-vector-borne, bacterial, viral, and parasitic) to show that human infectious diseases exhibit distinct spatial grouping patterns at a global scale. We demonstrate, using outbreaks of Ebola virus as a test case, that this spatial structuring provides an untapped source of prior information that could be used to tighten the focus of a range of health-related research and management activities at early stages or in data-poor settings, including disease surveillance, outbreak responses, or optimizing pathogen discovery. In examining the correlates of these spatial patterns, among a range of geographic, epidemiological, environmental, and social factors, mammalian biodiversity was the strongest predictor of infectious disease co-occurrence overall and for six of the seven disease classes examined, giving rise to a striking congruence between global pathogeographic and "Wallacean" zoogeographic patterns. This clear biogeographic signal suggests that infectious disease assemblages remain fundamentally constrained in their distributions by ecological barriers to dispersal or establishment, despite the homogenizing forces of globalization. Pathogeography thus provides an overarching context in which other factors promoting infectious disease emergence and spread are set.
New analytical solutions to the two-phase water faucet problem
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-06-17
Here, the one-dimensional water faucet problem is one of the classical benchmark problems originally proposed by Ransom to study the two-fluid two-phase flow model. With certain simplifications, such as massless gas phase and no wall and interfacial frictions, analytical solutions had been previously obtained for the transient liquid velocity and void fraction distribution. The water faucet problem and its analytical solutions have been widely used for the purposes of code assessment, benchmark and numerical verifications. In our previous study, the Ransom’s solutions were used for the mesh convergence study of a high-resolution spatial discretization scheme. It was found that, atmore » the steady state, an anticipated second-order spatial accuracy could not be achieved, when compared to the existing Ransom’s analytical solutions. A further investigation showed that the existing analytical solutions do not actually satisfy the commonly used two-fluid single-pressure two-phase flow equations. In this work, we present a new set of analytical solutions of the water faucet problem at the steady state, considering the gas phase density’s effect on pressure distribution. This new set of analytical solutions are used for mesh convergence studies, from which anticipated second-order of accuracy is achieved for the 2nd order spatial discretization scheme. In addition, extended Ransom’s transient solutions for the gas phase velocity and pressure are derived, with the assumption of decoupled liquid and gas pressures. Numerical verifications on the extended Ransom’s solutions are also presented.« less
Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.
2016-01-01
This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.
Calvetti, Daniela; Cheng, Yougan; Somersalo, Erkki
2016-12-01
Identifying feasible steady state solutions of a brain energy metabolism model is an inverse problem that allows infinitely many solutions. The characterization of the non-uniqueness, or the uncertainty quantification of the flux balance analysis, is tantamount to identifying the degrees of freedom of the solution. The degrees of freedom of multi-compartment mathematical models for energy metabolism of a neuron-astrocyte complex may offer a key to understand the different ways in which the energetic needs of the brain are met. In this paper we study the uncertainty in the solution, using techniques of linear algebra to identify the degrees of freedom in a lumped model, and Markov chain Monte Carlo methods in its extension to a spatially distributed case. The interpretation of the degrees of freedom in metabolic terms, more specifically, glucose and oxygen partitioning, is then leveraged to derive constraints on the free parameters to guarantee that the model is energetically feasible. We demonstrate how the model can be used to estimate the stoichiometric energy needs of the cells as well as the household energy based on the measured oxidative cerebral metabolic rate of glucose and glutamate cycling. Moreover, our analysis shows that in the lumped model the net direction of lactate dehydrogenase (LDH) in the cells can be deduced from the glucose partitioning between the compartments. The extension of the lumped model to a spatially distributed multi-compartment setting that includes diffusion fluxes from capillary to tissue increases the number of degrees of freedom, requiring the use of statistical sampling techniques. The analysis of the distributed model reveals that some of the conclusions valid for the spatially lumped model, e.g., concerning the LDH activity and glucose partitioning, may no longer hold.
Subgrid spatial variability of soil hydraulic functions for hydrological modelling
NASA Astrophysics Data System (ADS)
Kreye, Phillip; Meon, Günter
2016-07-01
State-of-the-art hydrological applications require a process-based, spatially distributed hydrological model. Runoff characteristics are demanded to be well reproduced by the model. Despite that, the model should be able to describe the processes at a subcatchment scale in a physically credible way. The objective of this study is to present a robust procedure to generate various sets of parameterisations of soil hydraulic functions for the description of soil heterogeneity on a subgrid scale. Relations between Rosetta-generated values of saturated hydraulic conductivity (Ks) and van Genuchten's parameters of soil hydraulic functions were statistically analysed. An universal function that is valid for the complete bandwidth of Ks values could not be found. After concentrating on natural texture classes, strong correlations were identified for all parameters. The obtained regression results were used to parameterise sets of hydraulic functions for each soil class. The methodology presented in this study is applicable on a wide range of spatial scales and does not need input data from field studies. The developments were implemented into a hydrological modelling system.
CD-ROM technology at the EROS data center
Madigan, Michael E.; Weinheimer, Mary C.
1993-01-01
The vast amount of digital spatial data often required by a single user has created a demand for media alternatives to 1/2" magnetic tape. One such medium that has been recently adopted at the U.S. Geological Survey's EROS Data Center is the compact disc (CD). CD's are a versatile, dynamic, and low-cost method for providing a variety of data on a single media device and are compatible with various computer platforms. CD drives are available for personal computers, UNIX workstations, and mainframe systems, either directly connected, or through a network. This medium furnishes a quick method of reproducing and distributing large amounts of data on a single CD. Several data sets are already available on CD's, including collections of historical Landsat multispectral scanner data and biweekly composites of Advanced Very High Resolution Radiometer data for the conterminous United States. The EROS Data Center intends to provide even more data sets on CD's. Plans include specific data sets on a customized disc to fulfill individual requests, and mass production of unique data sets for large-scale distribution. Requests for a single compact disc-read only memory (CD-ROM) containing a large volume of data either for archiving or for one-time distribution can be addressed with a CD-write once (CD-WO) unit. Mass production and large-scale distribution will require CD-ROM replication and mastering.
Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models
NASA Astrophysics Data System (ADS)
Terzago, Silvia; von Hardenberg, Jost; Palazzi, Elisa; Provenzale, Antonello
2017-07-01
The estimate of the current and future conditions of snow resources in mountain areas would require reliable, kilometre-resolution, regional-observation-based gridded data sets and climate models capable of properly representing snow processes and snow-climate interactions. At the moment, the development of such tools is hampered by the sparseness of station-based reference observations. In past decades passive microwave remote sensing and reanalysis products have mainly been used to infer information on the snow water equivalent distribution. However, the investigation has usually been limited to flat terrains as the reliability of these products in mountain areas is poorly characterized.This work considers the available snow water equivalent data sets from remote sensing and from reanalyses for the greater Alpine region (GAR), and explores their ability to provide a coherent view of the snow water equivalent distribution and climatology in this area. Further we analyse the simulations from the latest-generation regional and global climate models (RCMs, GCMs), participating in the Coordinated Regional Climate Downscaling Experiment over the European domain (EURO-CORDEX) and in the Fifth Coupled Model Intercomparison Project (CMIP5) respectively. We evaluate their reliability in reproducing the main drivers of snow processes - near-surface air temperature and precipitation - against the observational data set EOBS, and compare the snow water equivalent climatology with the remote sensing and reanalysis data sets previously considered. We critically discuss the model limitations in the historical period and we explore their potential in providing reliable future projections.The results of the analysis show that the time-averaged spatial distribution of snow water equivalent and the amplitude of its annual cycle are reproduced quite differently by the different remote sensing and reanalysis data sets, which in fact exhibit a large spread around the ensemble mean. We find that GCMs at spatial resolutions equal to or finer than 1.25° longitude are in closer agreement with the ensemble mean of satellite and reanalysis products in terms of root mean square error and standard deviation than lower-resolution GCMs. The set of regional climate models from the EURO-CORDEX ensemble provides estimates of snow water equivalent at 0.11° resolution that are locally much larger than those indicated by the gridded data sets, and only in a few cases are these differences smoothed out when snow water equivalent is spatially averaged over the entire Alpine domain. ERA-Interim-driven RCM simulations show an annual snow cycle that is comparable in amplitude to those provided by the reference data sets, while GCM-driven RCMs present a large positive bias. RCMs and higher-resolution GCM simulations are used to provide an estimate of the snow reduction expected by the mid-21st century (RCP 8.5 scenario) compared to the historical climatology, with the main purpose of highlighting the limits of our current knowledge and the need for developing more reliable snow simulations.
Global Night-Time Lights for Observing Human Activity
NASA Technical Reports Server (NTRS)
Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc
2011-01-01
We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.
Experimental evaluation of fluctuating density and radiated noise from a high temperature jet
NASA Technical Reports Server (NTRS)
Massier, P. F.; Parthasarathy, S. P.; Cuffel, R. F.
1973-01-01
An experimental investigation has been conducted to characterize the fluctuating density within a high-temperature (1100 K) subsonic jet and to characterize by the noise radiated to the surroundings. Cross correlations obtained by introducing time delay to the signals detected from spatially separated crossed laser beams set up as a Schlieren system were used to determine radial and axial distributions of the convection velocity of the moving noise sources (eddies). In addition, the autocorrelation of the fluctuating density was evaluated in the moving frame of reference of the eddies. Also, the autocorrelation of the radiated noise in the moving reference frame was evaluated from cross correlations by introducing time delay to the signals detected by spatially separated pairs of microphones. Radial distributions of the mean velocity were obtained from measurements of the stagnation temperature, and stagnation and static pressures with the use of probes.
Evidence for hubs in human functional brain networks
Power, Jonathan D; Schlaggar, Bradley L; Lessov-Schlaggar, Christina N; Petersen, Steven E
2013-01-01
Summary Hubs integrate and distribute information in powerful ways due to the number and positioning of their contacts in a network. Several resting state functional connectivity MRI reports have implicated regions of the default mode system as brain hubs; we demonstrate that previous degree-based approaches to hub identification may have identified portions of large brain systems rather than critical nodes of brain networks. We utilize two methods to identify hub-like brain regions: 1) finding network nodes that participate in multiple sub-networks of the brain, and 2) finding spatial locations where several systems are represented within a small volume. These methods converge on a distributed set of regions that differ from previous reports on hubs. This work identifies regions that support multiple systems, leading to spatially constrained predictions about brain function that may be tested in terms of lesions, evoked responses, and dynamic patterns of activity. PMID:23972601
Scalable parallel distance field construction for large-scale applications
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less
Scalable Parallel Distance Field Construction for Large-Scale Applications.
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
The effects of oil spills on marine fish: Implications of spatial variation in natural mortality.
Langangen, Ø; Olsen, E; Stige, L C; Ohlberger, J; Yaragina, N A; Vikebø, F B; Bogstad, B; Stenseth, N C; Hjermann, D Ø
2017-06-15
The effects of oil spills on marine biological systems are of great concern, especially in regions with high biological production of harvested resources such as in the Northeastern Atlantic. The scientific studies of the impact of oil spills on fish stocks tend to ignore that spatial patterns of natural mortality may influence the magnitude of the impact over time. Here, we first illustrate how spatial variation in natural mortality may affect the population impact by considering a thought experiment. Second, we consider an empirically based example of Northeast Arctic cod to extend the concept to a realistic setting. Finally, we present a scenario-based investigation of how the degree of spatial variation in natural mortality affects the impact over a gradient of oil spill sizes. Including the effects of spatial variations in natural mortality tends to widen the impact distribution, hence increasing the probability of both high and low impact events. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?
Torres, Leigh G; Read, Andrew J; Halpin, Patrick
2008-10-01
Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.
Volcanic forcing for climate modeling: a new microphysics-based data set covering years 1600-present
NASA Astrophysics Data System (ADS)
Arfeuille, F.; Weisenstein, D.; Mack, H.; Rozanov, E.; Peter, T.; Brönnimann, S.
2014-02-01
As the understanding and representation of the impacts of volcanic eruptions on climate have improved in the last decades, uncertainties in the stratospheric aerosol forcing from large eruptions are now linked not only to visible optical depth estimates on a global scale but also to details on the size, latitude and altitude distributions of the stratospheric aerosols. Based on our understanding of these uncertainties, we propose a new model-based approach to generating a volcanic forcing for general circulation model (GCM) and chemistry-climate model (CCM) simulations. This new volcanic forcing, covering the 1600-present period, uses an aerosol microphysical model to provide a realistic, physically consistent treatment of the stratospheric sulfate aerosols. Twenty-six eruptions were modeled individually using the latest available ice cores aerosol mass estimates and historical data on the latitude and date of eruptions. The evolution of aerosol spatial and size distribution after the sulfur dioxide discharge are hence characterized for each volcanic eruption. Large variations are seen in hemispheric partitioning and size distributions in relation to location/date of eruptions and injected SO2 masses. Results for recent eruptions show reasonable agreement with observations. By providing these new estimates of spatial distributions of shortwave and long-wave radiative perturbations, this volcanic forcing may help to better constrain the climate model responses to volcanic eruptions in the 1600-present period. The final data set consists of 3-D values (with constant longitude) of spectrally resolved extinction coefficients, single scattering albedos and asymmetry factors calculated for different wavelength bands upon request. Surface area densities for heterogeneous chemistry are also provided.
Boente, C; Albuquerque, M T D; Fernández-Braña, A; Gerassis, S; Sierra, C; Gallego, J R
2018-08-01
When considering complex scenarios involving several attributes, such as in environmental characterization, a clearer picture of reality can be achieved through the dimensional reduction of data. In this context, maps facilitate the visualization of spatial patterns of contaminant distribution and the identification of enriched areas. A set, of 15 Potentially Toxic Elements (PTEs) - (As, Ba, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn), was measured in soil, collected in Langreo's municipality (80km 2 ), Spain. Relative enrichment (RE) is introduced here to refer to the proportion of elements present in a given context. Indeed, a novel approach is provided for research into PTE fate. This method involves studying the variability of PTE proportions throughout the study area, thereby allowing the identification of dissemination trends. Traditional geostatistical approaches commonly use raw data (concentrations) accepting that the elements analyzed make up the entirety of the soil. However, in geochemical studies the analyzed elements are just a fraction of the total soil composition. Therefore, considering compositional data is pivotal. The spatial characterization of PTEs considering raw and compositional data together allowed a broad discussion about, not only the PTEs concentration's distribution but also to reckon possible trends of relative enrichment (RE). Transformations to open closed data are widely used for this purpose. Spatial patterns have an indubitable interest. In this study, the Centered Log-ratio transformation (clr) was used, followed by its back-transformation, to build a set of compositional data that, combined with raw data, allowed to establish the sources of the PTEs and trends of spatial dissemination. Based on the obtained findings it was possible to conclude that the Langreo area is deeply affected by its industrial and mining legacy. City center is highly enriched in Pb and Hg and As shows enrichment in a northwesterly direction. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Smith, Lesley Jane
2011-09-01
Spatial data and imagery generators are set to become tomorrow's key players in the information society. This is why satellite owners and operators are examining new revenue-producing models for developing space-related products and services. The use and availability of broadband internet width and satellite data-based services will continue to increase in the future. With the capacity to deliver real time precision downstream data, space agencies and the satellite industry can respond to the demand for high resolution digital space information which, with the appropriate technology, can be integrated into a variety of web-based applications. At a time when the traditional roles of space agencies are becoming more hybrid, largely as a result of the greater drive towards commercial markets, new value-added markets for space-related information products are continuing to attract attention. This paper discusses whether traditional data policies on space data access and IP licensing schemes stand to remain the feasible prototype for distributing and marketing space data, and how this growth market might benefit from looking at an 'up and running' global IP management system already operating to manage end user digital demand. PrefaceThe terminology describing the various types of spatial data and space-based information is not uniformly used within the various principles, laws and policies that govern space data. For convenience only this paper refers to primary or raw data gathered by the space-based industry as spatial or raw data, and the data as processed and sold on or distributed by ground-based companies as space information products and services. In practise, spatial data range from generic to specific data sets, digital topography, through to pictures and imagery services at various resolutions, with 3-D perspectives underway. The paper addresses general IP considerations relating to spatial data, with some reference to remote sensing itself. Exact IP details will depend at all times on the final product and service in question.
Water quality modeling in the dead end sections of drinking water distribution networks.
Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim
2016-02-01
Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated concentration profiles showed significant dependence on the spatial distribution of the flow demands compared to temporal variation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abu-Rustum, Reem S; Ziade, M Fouad; Abu-Rustum, Sameer E
2012-09-01
Our study aims at investigating the spatial relationships between eight anatomic planes in the 11+6 to 13+6 weeks fetus. This is a retrospective pilot study where three-dimensional and four-dimensional stored data sets were manipulated to retrieve eight anatomic planes starting from the midsagittal plane of the fetus. Standardization of volumes was performed at the level of the transverse abdominal circumference plane. Parallel shift was utilized and the spatial relationships between eight anatomic planes were established. The median and the range were calculated for each of the planes, and they were evaluated as a function of the fetal crown-rump length. P < 0.05 was considered statistically significant. A total of 63 volume data sets were analyzed. The eight anatomic planes were found to adhere to normal distribution curves, and most of the planes were in a definable relationship to each other with statistically significant correlations. To our knowledge, this is the first study to describe the possible spatial relationships between eight two-dimensional anatomic planes in the 11+6 to 13+6 weeks fetus, utilizing a standardized approach. Defining these spatial relationships may serve as the first step for the potential future development of automation software for fetal anatomic assessment at 11+6 to 13+6 weeks. © 2012 John Wiley & Sons, Ltd.
Theory of a Quantum Scanning Microscope for Cold Atoms
NASA Astrophysics Data System (ADS)
Yang, D.; Laflamme, C.; Vasilyev, D. V.; Baranov, M. A.; Zoller, P.
2018-03-01
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
Theory of a Quantum Scanning Microscope for Cold Atoms.
Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P
2018-03-30
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
NASA Astrophysics Data System (ADS)
Ueta, T.; Ladjal, D.; Exter, K. M.; Otsuka, M.; Szczerba, R.; Siódmiak, N.; Aleman, I.; van Hoof, P. A. M.; Kastner, J. H.; Montez, R.; McDonald, I.; Wittkowski, M.; Sandin, C.; Ramstedt, S.; De Marco, O.; Villaver, E.; Chu, Y.-H.; Vlemmings, W.; Izumiura, H.; Sahai, R.; Lopez, J. A.; Balick, B.; Zijlstra, A.; Tielens, A. G. G. M.; Rattray, R. E.; Behar, E.; Blackman, E. G.; Hebden, K.; Hora, J. L.; Murakawa, K.; Nordhaus, J.; Nordon, R.; Yamamura, I.
2014-05-01
Context. This is the first of a series of investigations into far-IR characteristics of 11 planetary nebulae (PNe) under the Herschel Space Observatory open time 1 program, Herschel Planetary Nebula Survey (HerPlaNS). Aims: Using the HerPlaNS data set, we look into the PN energetics and variations of the physical conditions within the target nebulae. In the present work, we provide an overview of the survey, data acquisition and processing, and resulting data products. Methods: We performed (1) PACS/SPIRE broadband imaging to determine the spatial distribution of the cold dust component in the target PNe and (2) PACS/SPIRE spectral-energy-distribution and line spectroscopy to determine the spatial distribution of the gas component in the target PNe. Results: For the case of NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbon-rich dust shell and the surrounding halo having temperatures of 26-40 K. The PACS/SPIRE multiposition spectra show spatial variations of far-IR lines that reflect the physical stratification of the nebula. We demonstrate that spatially resolved far-IR line diagnostics yield the (Te, ne) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allows to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 ± 110. The present analysis yields estimates of the total mass of the shell to be 0.86 M⊙, consisting of 0.54 M⊙ of ionized gas, 0.12 M⊙ of atomic gas, 0.2 M⊙ of molecular gas, and 4 × 10-3 M⊙ of dust grains. These estimates also suggest that the central star of about 1.5 M⊙ initial mass is terminating its PN evolution onto the white dwarf cooling track. Conclusions: The HerPlaNS data provide various diagnostics for both the dust and gas components in a spatially resolved manner. In the forthcoming papers of the HerPlaNS series we will explore the HerPlaNS data set fully for the entire sample of 11 PNe. Herschel is an ESA Space Observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Table 2 and appendices are available in electronic form at http://www.aanda.org
Benitez, Aline do Nascimento; Martins, Felippe Danyel Cardoso; Mareze, Marcelle; Nino, Beatriz de Souza Lima; Caldart, Eloiza Teles; Ferreira, Fernanda Pinto; Mitsuka-Breganó, Regina; Freire, Roberta Lemos; Galhardo, Juliana Arena; Martins, Camila Marinelli; Biondo, Alexander Welker; Navarro, Italmar Teodorico
2018-06-01
Although leishmaniasis has been described as a classic example of a zoonosis requiring a comprehensive approach for control, to date, no study has been conducted on the spatial distribution of simultaneous Leishmania spp. seroprevalence in dog owners and dogs from randomly selected households in urban settings. Accordingly, the present study aimed to simultaneously identify the seroprevalence, spatial distribution and associated factors of infection with Leishmania spp. in dog owners and their dogs in the city of Londrina, a county seat in southern Brazil with a population of half a million people and ranked 18th in population and 145th in the human development index (HDI) out of 5570 Brazilian cities. Overall, 564 households were surveyed and included 597 homeowners and their 729 dogs. Anti-Leishmania spp. antibodies were detected by ELISA in 9/597 (1.50%) dog owners and in 32/729 (4.38%) dogs, with significantly higher prevalence (p = 0.0042) in dogs. Spatial analysis revealed associations between seropositive dogs and households located up to 500 m from the local railway. No clusters were found for either owner or dog case distributions. In summary, the seroepidemiological and spatial results collectively show a lack of association of the factors for infection, and the results demonstrated higher exposure for dogs than their owners. However, railway areas may provide favorable conditions for the maintenance of infected phlebotomines, thereby causing infection in nearby domiciled dogs. In such an urban scenario, local sanitary barriers should be focused on the terrestrial routes of people and surrounding areas, particularly railways, via continuous vector surveillance and identification of phlebotomines infected by Leishmania spp. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu
2018-01-01
Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.
Analysis of brain patterns using temporal measures
Georgopoulos, Apostolos
2015-08-11
A set of brain data representing a time series of neurophysiologic activity acquired by spatially distributed sensors arranged to detect neural signaling of a brain (such as by the use of magnetoencephalography) is obtained. The set of brain data is processed to obtain a dynamic brain model based on a set of statistically-independent temporal measures, such as partial cross correlations, among groupings of different time series within the set of brain data. The dynamic brain model represents interactions between neural populations of the brain occurring close in time, such as with zero lag, for example. The dynamic brain model can be analyzed to obtain the neurophysiologic assessment of the brain. Data processing techniques may be used to assess structural or neurochemical brain pathologies.
Spatial distribution of traffic in a cellular mobile data network
NASA Astrophysics Data System (ADS)
Linnartz, J. P. M. G.
1987-02-01
The use of integral transforms of the probability density function for the received power to analyze the relation between the spatial distributions of offered and throughout packet traffic in a mobile radio network with Rayleigh fading channels and ALOHA multiple access was assessed. A method to obtain the spatial distribution of throughput traffic from a prescribed spatial distribution of offered traffic is presented. Incoherent and coherent addition of interference signals is considered. The channel behavior for heavy traffic loads is studied. In both the incoherent and coherent case, the spatial distribution of offered traffic required to ensure a prescribed spatially uniform throughput is synthesized numerically.
Isaak, Daniel J; Wenger, Seth J; Young, Michael K
2017-04-01
Temperature profoundly affects ecology, a fact ever more evident as the ability to measure thermal environments increases and global changes alter these environments. The spatial structure of thermalscapes is especially relevant to the distribution and abundance of ectothermic organisms, but the ability to describe biothermal relationships at extents and grains relevant to conservation planning has been limited by small or sparse data sets. Here, we combine a large occurrence database of >23 000 aquatic species surveys with stream microclimate scenarios supported by an equally large temperature database for a 149 000-km mountain stream network to describe thermal relationships for 14 fish and amphibian species. Species occurrence probabilities peaked across a wide range of temperatures (7.0-18.8°C) but distinct warm- or cold-edge distribution boundaries were apparent for all species and represented environments where populations may be most sensitive to thermal changes. Warm-edge boundary temperatures for a native species of conservation concern were used with geospatial data sets and a habitat occupancy model to highlight subsets of the network where conservation measures could benefit local populations by maintaining cool temperatures. Linking that strategic approach to local estimates of habitat impairment remains a key challenge but is also an opportunity to build relationships and develop synergies between the research, management, and regulatory communities. As with any data mining or species distribution modeling exercise, care is required in analysis and interpretation of results, but the use of large biological data sets with accurate microclimate scenarios can provide valuable information about the thermal ecology of many ectotherms and a spatially explicit way of guiding conservation investments. © 2017 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Ripamonti, Giancarlo; Lacaita, Andrea L.
1993-03-01
The extreme sensitivity and time resolution of Geiger-mode avalanche photodiodes (GM- APDs) have already been exploited for optical time domain reflectometry (OTDR). Better than 1 cm spatial resolution in Rayleigh scattering detection was demonstrated. Distributed and quasi-distributed optical fiber sensors can take advantage of the capabilities of GM-APDs. Extensive studies have recently disclosed the main characteristics and limitations of silicon devices, both commercially available and developmental. In this paper we report an analysis of the performance of these detectors. The main characteristics of GM-APDs of interest for distributed optical fiber sensors are briefly reviewed. Command electronics (active quenching) is then introduced. The detector timing performance sets the maximum spatial resolution in experiments employing OTDR techniques. We highlight that the achievable time resolution depends on the physics of the avalanche spreading over the device area. On the basis of these results, trade-off between the important parameters (quantum efficiency, time resolution, background noise, and afterpulsing effects) is considered. Finally, we show first results on Germanium devices, capable of single photon sensitivity at 1.3 and 1.5 micrometers with sub- nanosecond time resolution.
Statistical analysis of dendritic spine distributions in rat hippocampal cultures
2013-01-01
Background Dendritic spines serve as key computational structures in brain plasticity. Much remains to be learned about their spatial and temporal distribution among neurons. Our aim in this study was to perform exploratory analyses based on the population distributions of dendritic spines with regard to their morphological characteristics and period of growth in dissociated hippocampal neurons. We fit a log-linear model to the contingency table of spine features such as spine type and distance from the soma to first determine which features were important in modeling the spines, as well as the relationships between such features. A multinomial logistic regression was then used to predict the spine types using the features suggested by the log-linear model, along with neighboring spine information. Finally, an important variant of Ripley’s K-function applicable to linear networks was used to study the spatial distribution of spines along dendrites. Results Our study indicated that in the culture system, (i) dendritic spine densities were "completely spatially random", (ii) spine type and distance from the soma were independent quantities, and most importantly, (iii) spines had a tendency to cluster with other spines of the same type. Conclusions Although these results may vary with other systems, our primary contribution is the set of statistical tools for morphological modeling of spines which can be used to assess neuronal cultures following gene manipulation such as RNAi, and to study induced pluripotent stem cells differentiated to neurons. PMID:24088199
Gbm.auto: A software tool to simplify spatial modelling and Marine Protected Area planning
Officer, Rick; Clarke, Maurice; Reid, David G.; Brophy, Deirdre
2017-01-01
Boosted Regression Trees. Excellent for data-poor spatial management but hard to use Marine resource managers and scientists often advocate spatial approaches to manage data-poor species. Existing spatial prediction and management techniques are either insufficiently robust, struggle with sparse input data, or make suboptimal use of multiple explanatory variables. Boosted Regression Trees feature excellent performance and are well suited to modelling the distribution of data-limited species, but are extremely complicated and time-consuming to learn and use, hindering access for a wide potential user base and therefore limiting uptake and usage. BRTs automated and simplified for accessible general use with rich feature set We have built a software suite in R which integrates pre-existing functions with new tailor-made functions to automate the processing and predictive mapping of species abundance data: by automating and greatly simplifying Boosted Regression Tree spatial modelling, the gbm.auto R package suite makes this powerful statistical modelling technique more accessible to potential users in the ecological and modelling communities. The package and its documentation allow the user to generate maps of predicted abundance, visualise the representativeness of those abundance maps and to plot the relative influence of explanatory variables and their relationship to the response variables. Databases of the processed model objects and a report explaining all the steps taken within the model are also generated. The package includes a previously unavailable Decision Support Tool which combines estimated escapement biomass (the percentage of an exploited population which must be retained each year to conserve it) with the predicted abundance maps to generate maps showing the location and size of habitat that should be protected to conserve the target stocks (candidate MPAs), based on stakeholder priorities, such as the minimisation of fishing effort displacement. Gbm.auto for management in various settings By bridging the gap between advanced statistical methods for species distribution modelling and conservation science, management and policy, these tools can allow improved spatial abundance predictions, and therefore better management, decision-making, and conservation. Although this package was built to support spatial management of a data-limited marine elasmobranch fishery, it should be equally applicable to spatial abundance modelling, area protection, and stakeholder engagement in various scenarios. PMID:29216310
Cooperation and age structure in spatial games
NASA Astrophysics Data System (ADS)
Wang, Zhen; Wang, Zhen; Zhu, Xiaodan; Arenzon, Jeferson J.
2012-01-01
We study the evolution of cooperation in evolutionary spatial games when the payoff correlates with the increasing age of players (the level of correlation is set through a single parameter, α). The demographic heterogeneous age distribution, directly affecting the outcome of the game, is thus shown to be responsible for enhancing the cooperative behavior in the population. In particular, moderate values of α allow cooperators not only to survive but to outcompete defectors, even when the temptation to defect is large and the ageless, standard α=0 model does not sustain cooperation. The interplay between age structure and noise is also considered, and we obtain the conditions for optimal levels of cooperation.
Interannual variability of monthly Southern Ocean sea ice distributions
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1992-01-01
The interannual variability of the Southern-Ocean sea-ice distributions was mapped and analyzed using data from Nimbus-5 ESMR and Nimbus-7 SMMR, collected from 1973 to 1987. The set of 12 monthly maps obtained reveals many details on spatial variability that are unobtainable from time series of ice extents. These maps can be used as baseline maps for comparisons against future Southern Ocean sea ice distributions. The maps are supplemented by more detailed maps of the frequency of ice coverage, presented in this paper for one month within each of the four seasons, and by the breakdown of these results to the periods covered individually by each of the two passive-microwave imagers.
NASA Technical Reports Server (NTRS)
Schieldge, John
2000-01-01
Wavelet and fractal analyses have been used successfully to analyze one-dimensional data sets such as time series of financial, physical, and biological parameters. These techniques have been applied to two-dimensional problems in some instances, including the analysis of remote sensing imagery. In this respect, these techniques have not been widely used by the remote sensing community, and their overall capabilities as analytical tools for use on satellite and aircraft data sets is not well known. Wavelet and fractal analyses have the potential to provide fresh insight into the characterization of surface properties such as temperature and emissivity distributions, and surface processes such as the heat and water vapor exchange between the surface and the lower atmosphere. In particular, the variation of sensible heat flux density as a function of the change In scale of surface properties Is difficult to estimate, but - in general - wavelets and fractals have proved useful in determining the way a parameter varies with changes in scale. We present the results of a limited study on the relationship between spatial variations in surface temperature distribution and sensible heat flux distribution as determined by separate wavelet and fractal analyses. We analyzed aircraft imagery obtained in the thermal infrared (IR) bands from the multispectral TIMS and hyperspectral MASTER airborne sensors. The thermal IR data allows us to estimate the surface kinetic temperature distribution for a number of sites in the Midwestern and Southwestern United States (viz., San Pedro River Basin, Arizona; El Reno, Oklahoma; Jornada, New Mexico). The ground spatial resolution of the aircraft data varied from 5 to 15 meters. All sites were instrumented with meteorological and hydrological equipment including surface layer flux measuring stations such as Bowen Ratio systems and sonic anemometers. The ground and aircraft data sets provided the inputs for the wavelet and fractal analyses, and the validation of the results.
Mourad W Gabriel; Leslie W. Woods; Robert Poppenga; Rick A. Sweitzer; Craig Thompson; Sean M. Matthews; J. Mark Higley; Stefan M. Keller; Kathryn Purcell; Reginald H. Barrett; Greta M. Wengert; Benjamin N. Sacks; Deanna L. Clifford
2012-01-01
Anticoagulant rodenticide (AR) poisoning has emerged as a significant concern for conservation and management of nontarget wildlife. The purpose for these toxicants is to suppress pest populations in agricultural or urban settings. The potential of direct and indirect exposures and illicit use of ARs on public and community forest lands have recently raised concern for...
Zachary A. Holden; Alan Swanson; Anna E. Klene; John T. Abatzoglou; Solomon Z. Dobrowski; Samuel A. Cushman; John Squires; Gretchen G. Moisen; Jared W. Oyler
2016-01-01
Gridded temperature data sets are typically produced at spatial resolutions that cannot fully resolve fine-scale variation in surface air temperature in regions of complex topography. These data limitations have become increasingly important as scientists and managers attempt to understand and plan for potential climate change impacts. Here, we describe the...
NASA Astrophysics Data System (ADS)
Wang, Y. L.; Yeh, T. C. J.; Wen, J. C.
2017-12-01
This study is to investigate the ability of river stage tomography to estimate the spatial distribution of hydraulic transmissivity (T), storage coefficient (S), and diffusivity (D) in groundwater basins using information of groundwater level variations induced by periodic variations of stream stage, and infiltrated flux from the stream boundary. In order to accomplish this objective, the sensitivity and correlation of groundwater heads with respect to the hydraulic properties is first conducted to investigate the spatial characteristics of groundwater level in response to the stream variations at different frequencies. Results of the analysis show that the spatial distributions of the sensitivity of heads at an observation well in response to periodic river stage variations are highly correlated despite different frequencies. On the other hand, the spatial patterns of the sensitivity of the observed head to river flux boundaries at different frequencies are different. Specifically, the observed head is highly correlated with T at the region between the stream and observation well when the high-frequency periodic flux is considered. On the other hand, it is highly correlated with T at the region between monitoring well and the boundary opposite to the stream when the low-frequency periodic flux is prescribed to the stream. We also find that the spatial distributions of the sensitivity of observed head to S variation are highly correlated with all frequencies in spite of heads or fluxes stream boundary. Subsequently, the differences of the spatial correlations of the observed heads to the hydraulic properties under the head and flux boundary conditions are further investigated by an inverse model (i.e., successive stochastic linear estimator). This investigation uses noise-free groundwater and stream data of a synthetic aquifer, where aquifer heterogeneity is known exactly. The ability of river stage tomography is then tested with these synthetic data sets to estimate T, S, and D distribution. The results reveal that boundary flux variations with different frequencies contain different information about the aquifer characteristics while the head boundary does not.
J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE
2013-01-01
Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...
[Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].
Yuan, Zheming; Fu, Wei; Li, Fangyi
2004-04-01
Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.
Importance of spatial autocorrelation in modeling bird distributions at a continental scale
Bahn, V.; O'Connor, R.J.; Krohn, W.B.
2006-01-01
Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.
Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bootsma, G. J.; Verhaegen, F.; Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4
2013-11-15
Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6more » cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1°, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup −1} and 7/(2π) rad{sup −1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and π/7 rad (∼25°) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.« less
Distributed modelling of hydrologic regime at three subcatchments of Kopaninský tok catchment
NASA Astrophysics Data System (ADS)
Žlábek, Pavel; Tachecí, Pavel; Kaplická, Markéta; Bystřický, Václav
2010-05-01
Kopaninský tok catchment is situated in crystalline area of Bohemo-Moravian highland hilly region, with cambisol cover and prevailing agricultural land use. It is a subject of long term (since 1980's) observation. Time series (discharge, precipitation, climatic parameters...) are nowadays available in 10 min. time step, water quality average daily composit samples plus samples during events are available. Soil survey resulting in reference soil hydraulic properties for horizons and vegetation cover survey incl. LAI measurement has been done. All parameters were analysed and used for establishing of distributed mathematical models of P6, P52 and P53 subcatchments, using MIKE SHE 2009 WM deterministic hydrologic modelling system. The aim is to simulate long-term hydrologic regime as well as rainfall-runoff events, serving the base for modelling of nitrate regime and agricultural management influence in the next step. Mentioned subcatchments differs in ratio of artificial drainage area, soil types, land use and slope angle. The models are set-up in a regular computational grid of 2 m size. Basic time step was set to 2 hrs, total simulated period covers 3 years. Runoff response and moisture regime is compared using spatially distributed simulation results. Sensitivity analysis revealed most important parameters influencing model response. Importance of spatial distribution of initial conditions was underlined. Further on, different runoff components in terms of their origin, flow paths and travel time were separated using a combination of two runoff separation techniques (a digital filter and a simple conceptual model GROUND) in 12 subcatchments of Kopaninský tok catchment. These two methods were chosen based on a number of methods testing. Ordinations diagrams performed with Canoco software were used to evaluate influence of different catchment parameters on different runoff components. A canonical ordination method analyses (RDA) was used to explain one data set (runoff components - either volumes of each runoff component or occurence of baseflow) with another data set (catchment parameters - proportion of arable land, proportion of forest, proportion of vulnerable zones with high infiltration capacity, average slope, topographic index and runoff coefficient). The influence was analysed both for long-term runoff balance and selected rainfall-runoff events. Keywords: small catchment, water balance modelling, rainfall-runoff modelling, distributed deterministic model, runoff separation, sensitivity analysis
KeyWare: an open wireless distributed computing environment
NASA Astrophysics Data System (ADS)
Shpantzer, Isaac; Schoenfeld, Larry; Grindahl, Merv; Kelman, Vladimir
1995-12-01
Deployment of distributed applications in the wireless domain lack equivalent tools, methodologies, architectures, and network management that exist in LAN based applications. A wireless distributed computing environment (KeyWareTM) based on intelligent agents within a multiple client multiple server scheme was developed to resolve this problem. KeyWare renders concurrent application services to wireline and wireless client nodes encapsulated in multiple paradigms such as message delivery, database access, e-mail, and file transfer. These services and paradigms are optimized to cope with temporal and spatial radio coverage, high latency, limited throughput and transmission costs. A unified network management paradigm for both wireless and wireline facilitates seamless extensions of LAN- based management tools to include wireless nodes. A set of object oriented tools and methodologies enables direct asynchronous invocation of agent-based services supplemented by tool-sets matched to supported KeyWare paradigms. The open architecture embodiment of KeyWare enables a wide selection of client node computing platforms, operating systems, transport protocols, radio modems and infrastructures while maintaining application portability.
Larkin, J D; Publicover, N G; Sutko, J L
2011-01-01
In photon event distribution sampling, an image formation technique for scanning microscopes, the maximum likelihood position of origin of each detected photon is acquired as a data set rather than binning photons in pixels. Subsequently, an intensity-related probability density function describing the uncertainty associated with the photon position measurement is applied to each position and individual photon intensity distributions are summed to form an image. Compared to pixel-based images, photon event distribution sampling images exhibit increased signal-to-noise and comparable spatial resolution. Photon event distribution sampling is superior to pixel-based image formation in recognizing the presence of structured (non-random) photon distributions at low photon counts and permits use of non-raster scanning patterns. A photon event distribution sampling based method for localizing single particles derived from a multi-variate normal distribution is more precise than statistical (Gaussian) fitting to pixel-based images. Using the multi-variate normal distribution method, non-raster scanning and a typical confocal microscope, localizations with 8 nm precision were achieved at 10 ms sampling rates with acquisition of ~200 photons per frame. Single nanometre precision was obtained with a greater number of photons per frame. In summary, photon event distribution sampling provides an efficient way to form images when low numbers of photons are involved and permits particle tracking with confocal point-scanning microscopes with nanometre precision deep within specimens. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.
Cooperative inversion of magnetotelluric and seismic data sets
NASA Astrophysics Data System (ADS)
Markovic, M.; Santos, F.
2012-04-01
Cooperative inversion of magnetotelluric and seismic data sets Milenko Markovic,Fernando Monteiro Santos IDL, Faculdade de Ciências da Universidade de Lisboa 1749-016 Lisboa Inversion of single geophysical data has well-known limitations due to the non-linearity of the fields and non-uniqueness of the model. There is growing need, both in academy and industry to use two or more different data sets and thus obtain subsurface property distribution. In our case ,we are dealing with magnetotelluric and seismic data sets. In our approach,we are developing algorithm based on fuzzy-c means clustering technique, for pattern recognition of geophysical data. Separate inversion is performed on every step, information exchanged for model integration. Interrelationships between parameters from different models is not required in analytical form. We are investigating how different number of clusters, affects zonation and spatial distribution of parameters. In our study optimization in fuzzy c-means clustering (for magnetotelluric and seismic data) is compared for two cases, firstly alternating optimization and then hybrid method (alternating optimization+ Quasi-Newton method). Acknowledgment: This work is supported by FCT Portugal
Rudolph, David L.; Kachanoski , R. Gary; Celia, Michael A.; LeBlanc, Denis R.; Stevens, Jonathon H.
1996-01-01
A series of infiltration and tracer experiments was conducted in unsaturated sand and gravel deposits on Cape Cod, Massachusetts. A network of 112 porous cup lysimeters and 168 time domain reflectometry (TDR) probes was deployed at depths from 0.25 to 2.0 m below ground surface along the centerline of a 2-m by 10-m test plot. The test plot was irrigated at rates ranging from 7.9 to 37.0 cm h−1 through a sprinkler system. Transient and steady state water content distributions were monitored with the TDR probes and spatial properties of water content distributions were determined from the TDR data. The spatial variance of the water content tended to increase as the average water content increased. In addition, estimated horizontal correlation length scales for water content were significantly smaller than those estimated by previous investigators for saturated hydraulic conductivity. Under steady state flow conditions at each irrigation rate, a sodium chloride solution was released as a tracer at ground surface and tracked with both the lysimeter and TDR networks. Transect-averaged breakthrough curves at each monitoring depth were constructed both from solute concentrations measured in the water samples and flux concentrations inferred from the TDR measurements. Transport properties, including apparent solute velocities, dispersion coefficients, and total mass balances, were determined independently from both sets of breakthrough curves. The dispersion coefficients tended to increase with depth, reaching a constant value with the lysimeter data and appearing to increase continually with the TDR data. The variations with depth of the solute transport parameters, along with observations of water and solute mass balance and spatial distributions of water content, provide evidence of significant three-dimensional flow during the irrigation experiments. The TDR methods are shown to efficiently provide dense spatial and temporal data sets for both flow and solute transport in unsaturated sediments with minimal sediment and flow field disturbance. Combined implementation of lysimeters and TDR probes can enhance data interpretation particularly when three-dimensional flow conditions are anticipated.
Spatial cluster detection using dynamic programming.
Sverchkov, Yuriy; Jiang, Xia; Cooper, Gregory F
2012-03-25
The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm.
Spatial cluster detection using dynamic programming
2012-01-01
Background The task of spatial cluster detection involves finding spatial regions where some property deviates from the norm or the expected value. In a probabilistic setting this task can be expressed as finding a region where some event is significantly more likely than usual. Spatial cluster detection is of interest in fields such as biosurveillance, mining of astronomical data, military surveillance, and analysis of fMRI images. In almost all such applications we are interested both in the question of whether a cluster exists in the data, and if it exists, we are interested in finding the most accurate characterization of the cluster. Methods We present a general dynamic programming algorithm for grid-based spatial cluster detection. The algorithm can be used for both Bayesian maximum a-posteriori (MAP) estimation of the most likely spatial distribution of clusters and Bayesian model averaging over a large space of spatial cluster distributions to compute the posterior probability of an unusual spatial clustering. The algorithm is explained and evaluated in the context of a biosurveillance application, specifically the detection and identification of Influenza outbreaks based on emergency department visits. A relatively simple underlying model is constructed for the purpose of evaluating the algorithm, and the algorithm is evaluated using the model and semi-synthetic test data. Results When compared to baseline methods, tests indicate that the new algorithm can improve MAP estimates under certain conditions: the greedy algorithm we compared our method to was found to be more sensitive to smaller outbreaks, while as the size of the outbreaks increases, in terms of area affected and proportion of individuals affected, our method overtakes the greedy algorithm in spatial precision and recall. The new algorithm performs on-par with baseline methods in the task of Bayesian model averaging. Conclusions We conclude that the dynamic programming algorithm performs on-par with other available methods for spatial cluster detection and point to its low computational cost and extendability as advantages in favor of further research and use of the algorithm. PMID:22443103
Regional-scale drivers of marine nematode distribution in Southern Ocean continental shelf sediments
NASA Astrophysics Data System (ADS)
Hauquier, Freija; Verleyen, Elie; Tytgat, Bjorn; Vanreusel, Ann
2018-07-01
Many marine meiofauna taxa seem to possess cosmopolitan species distributions, despite their endobenthic lifestyle and restricted long-distance dispersal capacities. In light of this paradox we used a metacommunity framework to study spatial turnover in free-living nematode distribution and assess the importance of local environmental conditions in explaining differences between communities in surface and subsurface sediments of the Southern Ocean continental shelf. We analysed nematode community structure in two sediment layers (0-3 cm and 3-5 cm) of locations maximum 2400 km apart. We first focused on a subset of locations to evaluate whether the genus level is sufficiently taxonomically fine-grained to study large-scale patterns in nematode community structure. We subsequently used redundancy and variation partitioning analyses to quantify the unique and combined effects of local environmental conditions and spatial descriptors on genus-level community composition. Macroecological patterns in community structure were highly congruent at the genus and species level. Nematode community composition was highly divergent between both depth strata, likely as a result of local abiotic conditions. Variation in community structure between the different regions largely stemmed from turnover (i.e. genus/species replacement) rather than nestedness (i.e. genus/species loss). The level of turnover among communities increased with geographic distance and was more pronounced in subsurface layers compared to surface sediments. Variation partitioning analysis revealed that both environmental and spatial predictors significantly explained variation in community structure. Moreover, the shared fraction of both sets of variables was high, which suggested a substantial amount of spatially structured environmental variation. Additionally, the effect of space independent of environment was much higher than the effect of environment independent of space, which shows the importance of including spatial descriptors in meiofauna and nematode community ecology. Large-scale assessment of free-living nematode diversity and abundance in the Southern Ocean shelf zone revealed strong horizontal and vertical spatial structuring in response to local environmental conditions, in combination with (most likely) dispersal limitation.
Guillaumot, Charlène; Martin, Alexis; Fabri-Ruiz, Salomé; Eléaume, Marc; Saucède, Thomas
2016-01-01
The present dataset provides a case study for species distribution modelling (SDM) and for model testing in a poorly documented marine region. The dataset includes spatially-explicit data for echinoid (Echinodermata: Echinoidea) distribution. Echinoids were collected during oceanographic campaigns led around the Kerguelen Plateau (+63°/+81°E; -46°/-56°S) since 1872. In addition to the identification of collection specimens from historical cruises, original data from the recent campaigns POKER II (2010) and PROTEKER 2 to 4 (2013-2015) are also provided. In total, five families, ten genera, and 12 echinoid species are recorded in the region of the Kerguelen Plateau. The dataset is complemented with environmental descriptors available and relevant for echinoid ecology and SDM. The environmental data was compiled from different sources and was modified to suit the geographic extent of the Kerguelen Plateau, using scripts developed with the R language (R Core Team 2015). Spatial resolution was set at a common 0.1° pixel resolution. Mean seafloor and sea surface temperatures, salinity and their amplitudes, all derived from the World Ocean Database (Boyer et al. 2013) are made available for the six following decades: 1955-1964, 1965-1974, 1975-1984, 1985-1994, 1995-2004, 2005-2012. Future projections are provided for several parameters: they were modified from the Bio-ORACLE database (Tyberghein et al. 2012). They are based on three IPCC scenarii (B1, AIB, A2) for years 2100 and 2200 (IPCC, 4 th report).
Seascape models reveal places to focus coastal fisheries management.
Stamoulis, Kostantinos A; Delevaux, Jade M S; Williams, Ivor D; Poti, Matthew; Lecky, Joey; Costa, Bryan; Kendall, Matthew S; Pittman, Simon J; Donovan, Mary K; Wedding, Lisa M; Friedlander, Alan M
2018-06-01
To design effective marine reserves and support fisheries, more information on fishing patterns and impacts for targeted species is needed, as well as better understanding of their key habitats. However, fishing impacts vary geographically and are difficult to disentangle from other factors that influence targeted fish distributions. We developed a set of fishing effort and habitat layers at high resolution and employed machine learning techniques to create regional-scale seascape models and predictive maps of biomass and body length of targeted reef fishes for the main Hawaiian Islands. Spatial patterns of fishing effort were shown to be highly variable and seascape models indicated a low threshold beyond which targeted fish assemblages were severely impacted. Topographic complexity, exposure, depth, and wave power were identified as key habitat variables that influenced targeted fish distributions and defined productive habitats for reef fisheries. High targeted reef fish biomass and body length were found in areas not easily accessed by humans, while model predictions when fishing effort was set to zero showed these high values to be more widely dispersed among suitable habitats. By comparing current targeted fish distributions with those predicted when fishing effort was removed, areas with high recovery potential on each island were revealed, with average biomass recovery of 517% and mean body length increases of 59% on Oahu, the most heavily fished island. Spatial protection of these areas would aid recovery of nearshore coral reef fisheries. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Endo, N.; Eltahir, E. A. B.
2015-12-01
Malaria transmission is closely linked to climatology, hydrology, environment, and the biology of local vectors. These factors interact with each other and non-linearly influence malaria transmission dynamics, making prediction and prevention challenging. Our work attempts to find a universality in the multi-dimensional system of malaria transmission and to develop a theory to predict emergence of malaria given a limited set of environmental and biological inputs.A credible malaria transmission dynamics model, HYDREMATS (Bomblies et al., 2008), was used under hypothetical settings to investigate the role of spatial and temporal distribution of vector breeding pools. HYDREMATS is a mechanistic model and capable of simulating the basic reproduction rate (Ro) without bold assumptions even under dynamic conditions. The spatial distribution of pools is mainly governed by hydrological factors; the impact of pool persistence and rainy season length on malaria transmission were investigated. Also analyzed was the impact of the temporal distribution of pools relative to human houses. We developed non-dimensional variables combining the hydrological and biological parameters. Simulated values of Ro from HYDREMATS are presented in a newly-introduced non-dimensional plane, which leads to a some-what universal theory describing the condition for sustainable malaria transmission. The findings were tested against observations both from the West Africa and the Ethiopian Highland, representing diverse hydroclimatological conditions. Predicated Ro values from the theory over the two regions are in good agreement with the observed malaria transmission data.
Movement is the glue connecting home ranges and habitat selection.
Van Moorter, Bram; Rolandsen, Christer M; Basille, Mathieu; Gaillard, Jean-Michel
2016-01-01
Animal space use has been studied by focusing either on geographic (e.g. home ranges, species' distribution) or on environmental (e.g. habitat use and selection) space. However, all patterns of space use emerge from individual movements, which are the primary means by which animals change their environment. Individuals increase their use of a given area by adjusting two key movement components: the duration of their visit and/or the frequency of revisits. Thus, in spatially heterogeneous environments, animals exploit known, high-quality resource areas by increasing their residence time (RT) in and/or decreasing their time to return (TtoR) to these areas. We expected that spatial variation in these two movement properties should lead to observed patterns of space use in both geographic and environmental spaces. We derived a set of nine predictions linking spatial distribution of movement properties to emerging space-use patterns. We predicted that, at a given scale, high variation in RT and TtoR among habitats leads to strong habitat selection and that long RT and short TtoR result in a small home range size. We tested these predictions using moose (Alces alces) GPS tracking data. We first modelled the relationship between landscape characteristics and movement properties. Then, we investigated how the spatial distribution of predicted movement properties (i.e. spatial autocorrelation, mean, and variance of RT and TtoR) influences home range size and hierarchical habitat selection. In landscapes with high spatial autocorrelation of RT and TtoR, a high variation in both RT and TtoR occurred in home ranges. As expected, home range location was highly selective in such landscapes (i.e. second-order habitat selection); RT was higher and TtoR lower within the selected home range than outside, and moose home ranges were small. Within home ranges, a higher variation in both RT and TtoR was associated with higher selectivity among habitat types (i.e. third-order habitat selection). Our findings show how patterns of geographic and environmental space use correspond to the two sides of a coin, linked by movement responses of individuals to environmental heterogeneity. By demonstrating the potential to assess the consequences of altering RT or TtoR (e.g. through human disturbance or climatic changes) on home range size and habitat selection, our work sets the basis for new theoretical and methodological advances in movement ecology. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network
NASA Astrophysics Data System (ADS)
Zhang, Z.; Glaser, S.; Bales, R.; Conklin, M.; Rice, R.; Marks, D.
2017-08-01
A spatially distributed wireless-sensor network, installed across the 2154 km2 portion of the 5311 km2 American River basin above 1500 m elevation, provided spatial measurements of temperature, relative humidity, and snow depth in the Sierra Nevada, California. The network consisted of 10 sensor clusters, each with 10 measurement nodes, distributed to capture the variability in topography and vegetation cover. The sensor network captured significant spatial heterogeneity in rain versus snow precipitation for water-year 2014, variability that was not apparent in the more limited operational data. Using daily dew-point temperature to track temporal elevational changes in the rain-snow transition, the amount of snow accumulation at each node was used to estimate the fraction of rain versus snow. This resulted in an underestimate of total precipitation below the 0°C dew-point elevation, which averaged 1730 m across 10 precipitation events, indicating that measuring snow does not capture total precipitation. We suggest blending lower elevation rain gauge data with higher-elevation sensor-node data for each event to estimate total precipitation. Blended estimates were on average 15-30% higher than using either set of measurements alone. Using data from the current operational snow-pillow sites gives even lower estimates of basin-wide precipitation. Given the increasing importance of liquid precipitation in a warming climate, a strategy that blends distributed measurements of both liquid and solid precipitation will provide more accurate basin-wide precipitation estimates, plus spatial and temporal patters of snow accumulation and melt in a basin.
NASA Astrophysics Data System (ADS)
Becker, R.; Usman, M.
2017-12-01
A SWAT (Soil Water Assessment Tool) model is applied in the semi-arid Punjab region in Pakistan. The physically based hydrological model is set up to simulate hydrological processes and water resources demands under future land use, climate change and irrigation management scenarios. In order to successfully run the model, detailed focus is laid on the calibration procedure of the model. The study deals with the following calibration issues:i. lack of reliable calibration/validation data, ii. difficulty to accurately model a highly managed system with a physically based hydrological model and iii. use of alternative and spatially distributed data sets for model calibration. In our study area field observations are rare and the entirely human controlled irrigation system renders central calibration parameters (e.g. runoff/curve number) unsuitable, as it can't be assumed that they represent the natural behavior of the hydrological system. From evapotranspiration (ET) however principal hydrological processes can still be inferred. Usman et al. (2015) derived satellite based monthly ET data for our study area based on SEBAL (Surface Energy Balance Algorithm) and created a reliable ET data set which we use in this study to calibrate our SWAT model. The initial SWAT model performance is evaluated with respect to the SEBAL results using correlation coefficients, RMSE, Nash-Sutcliffe efficiencies and mean differences. Particular focus is laid on the spatial patters, investigating the potential of a spatially differentiated parameterization instead of just using spatially uniform calibration data. A sensitivity analysis reveals the most sensitive parameters with respect to changes in ET, which are then selected for the calibration process.Using the SEBAL-ET product we calibrate the SWAT model for the time period 2005-2006 using a dynamically dimensioned global search algorithm to minimize RMSE. The model improvement after the calibration procedure is finally evaluated based on the previously chosen evaluation criteria for the time period 2007-2008. The study reveals the sensitivity of SWAT model parameters to changes in ET in a semi-arid and human controlled system and the potential of calibrating those parameters using satellite derived ET data.
NASA Technical Reports Server (NTRS)
Mah, G. R.; Myers, J.
1993-01-01
The U.S. Government has initiated the Global Change Research program, a systematic study of the Earth as a complete system. NASA's contribution of the Global Change Research Program is the Earth Observing System (EOS), a series of orbital sensor platforms and an associated data processing and distribution system. The EOS Data and Information System (EOSDIS) is the archiving, production, and distribution system for data collected by the EOS space segment and uses a multilayer architecture for processing, archiving, and distributing EOS data. The first layer consists of the spacecraft ground stations and processing facilities that receive the raw data from the orbiting platforms and then separate the data by individual sensors. The second layer consists of Distributed Active Archive Centers (DAAC) that process, distribute, and archive the sensor data. The third layer consists of a user science processing network. The EOSDIS is being developed in a phased implementation. The initial phase, Version 0, is a prototype of the operational system. Version 0 activities are based upon existing systems and are designed to provide an EOSDIS-like capability for information management and distribution. An important science support task is the creation of simulated data sets for EOS instruments from precursor aircraft or satellite data. The Land Processes DAAC, at the EROS Data Center (EDC), is responsible for archiving and processing EOS precursor data from airborne instruments such as the Thermal Infrared Multispectral Scanner (TIMS), the Thematic Mapper Simulator (TMS), and Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). AVIRIS, TIMS, and TMS are flown by the NASA-Ames Research Center ARC) on an ER-2. The ER-2 flies at 65000 feet and can carry up to three sensors simultaneously. Most jointly collected data sets are somewhat boresighted and roughly registered. The instrument data are being used to construct data sets that simulate the spectral and spatial characteristics of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument scheduled to be flown on the first EOS-AM spacecraft. The ASTER is designed to acquire 14 channels of land science data in the visible and near-IR (VNIR), shortwave-IR (SWIR), and thermal-IR (TIR) regions from 0.52 micron to 11.65 micron at high spatial resolutions of 15 m to 90 m. Stereo data will also be acquired in the VNIR region in a single band. The AVIRIS and TMS cover the ASTER VNIR and SWIR bands, and the TIMS covers the TIR bands. Simulated ASTER data sets have been generated over Death Valley, California, Cuprite, Nevada, and the Drum Mountains, Utah using a combination of AVIRIS, TIMS, amd TMS data, and existing digital elevation models (DEM) for the topographic information.
NASA Astrophysics Data System (ADS)
Carranza, V.; Frausto-Vicencio, I.; Rafiq, T.; Verhulst, K. R.; Hopkins, F. M.; Rao, P.; Duren, R. M.; Miller, C. E.
2016-12-01
Atmospheric methane (CH4) is the second most prevalent anthropogenic greenhouse gas. Improved estimates of CH4 emissions from cities is essential for carbon cycle science and climate mitigation efforts. Development of spatially-resolved carbon emissions data sets may offer significant advances in understanding and managing carbon emissions from cities. Urban CH4 emissions in particular require spatially resolved emission maps to help resolve uncertainties in the CH4 budget. This study presents a Geographic Information System (GIS)-based approach to mapping CH4 emissions using locations of infrastructure known to handle and emit methane. We constrain the spatial distribution of sources to the facility level for the major CH4 emitting sources in the South Coast Air Basin. GIS spatial modeling was combined with publicly available datasets to determine the distribution of potential CH4 sources. The datasets were processed and validated to ensure accuracy in the location of individual sources. This information was then used to develop the Vista emissions prior, which is a one-year long, spatially-resolved CH4 emissions estimate. Methane emissions were calculated and spatially allocated to produce 1 km x 1 km gridded CH4 emission map spanning the Los Angeles Basin. In future work, the Vista CH4 emissions prior will be compared with existing, coarser-resolution emissions estimates and will be evaluated in inverse modeling studies using atmospheric observations. The Vista CH4 emissions inventory presents the first detailed spatial maps of CH4 sources and emissions estimates in the Los Angeles Basin and is a critical step towards sectoral attribution of CH4 emissions at local to regional scales.
Spatial frequency performance limitations of radiation dose optimization and beam positioning
NASA Astrophysics Data System (ADS)
Stewart, James M. P.; Stapleton, Shawn; Chaudary, Naz; Lindsay, Patricia E.; Jaffray, David A.
2018-06-01
The flexibility and sophistication of modern radiotherapy treatment planning and delivery methods have advanced techniques to improve the therapeutic ratio. Contemporary dose optimization and calculation algorithms facilitate radiotherapy plans which closely conform the three-dimensional dose distribution to the target, with beam shaping devices and image guided field targeting ensuring the fidelity and accuracy of treatment delivery. Ultimately, dose distribution conformity is limited by the maximum deliverable dose gradient; shallow dose gradients challenge techniques to deliver a tumoricidal radiation dose while minimizing dose to surrounding tissue. In this work, this ‘dose delivery resolution’ observation is rigorously formalized for a general dose delivery model based on the superposition of dose kernel primitives. It is proven that the spatial resolution of a delivered dose is bounded by the spatial frequency content of the underlying dose kernel, which in turn defines a lower bound in the minimization of a dose optimization objective function. In addition, it is shown that this optimization is penalized by a dose deposition strategy which enforces a constant relative phase (or constant spacing) between individual radiation beams. These results are further refined to provide a direct, analytic method to estimate the dose distribution arising from the minimization of such an optimization function. The efficacy of the overall framework is demonstrated on an image guided small animal microirradiator for a set of two-dimensional hypoxia guided dose prescriptions.
Trends in 1970-2010 southern California surface maximum temperatures: extremes and heat waves
NASA Astrophysics Data System (ADS)
Ghebreegziabher, Amanuel T.
Daily maximum temperatures from 1970-2010 were obtained from the National Climatic Data Center (NCDC) for 28 South Coast Air Basin (SoCAB) Cooperative Network (COOP) sites. Analyses were carried out on the entire data set, as well as on the 1970-1974 and 2006-2010 sub-periods, including construction of spatial distributions and time-series trends of both summer-average and annual-maximum values and of the frequency of two and four consecutive "daytime" heat wave events. Spatial patterns of average and extreme values showed three areas consistent with climatological SoCAB flow patterns: cold coastal, warm inland low-elevation, and cool further-inland mountain top. Difference (2006-2010 minus 1970-1974) distributions of both average and extreme-value trends were consistent with the shorter period (1970-2005) study of previous study, as they showed the expected inland regional warming and a "reverse-reaction" cooling in low elevation coastal and inland areas open to increasing sea breeze flows. Annual-extreme trends generally showed cooling at sites below 600 m and warming at higher elevations. As the warming trends of the extremes were larger than those of the averages, regional warming thus impacts extremes more than averages. Spatial distributions of hot-day frequencies showed expected maximum at inland low-elevation sites. Regional warming again thus induced increases at both elevated-coastal areas, but low-elevation areas showed reverse-reaction decreases.
NASA Astrophysics Data System (ADS)
Sergeev, A. P.; Tarasov, D. A.; Buevich, A. G.; Shichkin, A. V.; Tyagunov, A. G.; Medvedev, A. N.
2017-06-01
Modeling of spatial distribution of pollutants in the urbanized territories is difficult, especially if there are multiple emission sources. When monitoring such territories, it is often impossible to arrange the necessary detailed sampling. Because of this, the usual methods of analysis and forecasting based on geostatistics are often less effective. Approaches based on artificial neural networks (ANNs) demonstrate the best results under these circumstances. This study compares two models based on ANNs, which are multilayer perceptron (MLP) and generalized regression neural networks (GRNNs) with the base geostatistical method - kriging. Models of the spatial dust distribution in the snow cover around the existing copper quarry and in the area of emissions of a nickel factory were created. To assess the effectiveness of the models three indices were used: the mean absolute error (MAE), the root-mean-square error (RMSE), and the relative root-mean-square error (RRMSE). Taking into account all indices the model of GRNN proved to be the most accurate which included coordinates of the sampling points and the distance to the likely emission source as input parameters for the modeling. Maps of spatial dust distribution in the snow cover were created in the study area. It has been shown that the models based on ANNs were more accurate than the kriging, particularly in the context of a limited data set.
Parental genomes mix in mule and human cell nuclei.
Hepperger, Claudia; Mayer, Andreas; Merz, Julia; Vanderwall, Dirk K; Dietzel, Steffen
2009-06-01
Whether chromosome sets inherited from father and mother occupy separate spaces in the cell nucleus is a question first asked over 110 years ago. Recently, the nuclear organization of the genome has come increasingly into focus as an important level of epigenetic regulation. In this context, it is indispensable to know whether or not parental genomes are spatially separated. Genome separation had been demonstrated for plant hybrids and for the early mammalian embryo. Conclusive studies for somatic mammalian cell nuclei are lacking because homologous chromosomes from the two parents cannot be distinguished within a species. We circumvented this problem by investigating the three-dimensional distribution of chromosomes in mule lymphocytes and fibroblasts. Genomic DNA of horse and donkey was used as probes in fluorescence in situ hybridization under conditions where only tandem repetitive sequences were detected. We thus could determine the distribution of maternal and paternal chromosome sets in structurally preserved interphase nuclei for the first time. In addition, we investigated the distribution of several pairs of chromosomes in human bilobed granulocytes. Qualitative and quantitative image evaluation did not reveal any evidence for the separation of parental genomes. On the contrary, we observed mixing of maternal and paternal chromosome sets.
The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass
Reuchlin-Hugenholtz, Emilie
2015-01-01
The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. PMID:25789624
Spatially explicit modeling of particulate nutrient flux in Large global rivers
NASA Astrophysics Data System (ADS)
Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.
2017-12-01
Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.
Design and implementation of a distributed large-scale spatial database system based on J2EE
NASA Astrophysics Data System (ADS)
Gong, Jianya; Chen, Nengcheng; Zhu, Xinyan; Zhang, Xia
2003-03-01
With the increasing maturity of distributed object technology, CORBA, .NET and EJB are universally used in traditional IT field. However, theories and practices of distributed spatial database need farther improvement in virtue of contradictions between large scale spatial data and limited network bandwidth or between transitory session and long transaction processing. Differences and trends among of CORBA, .NET and EJB are discussed in details, afterwards the concept, architecture and characteristic of distributed large-scale seamless spatial database system based on J2EE is provided, which contains GIS client application, web server, GIS application server and spatial data server. Moreover the design and implementation of components of GIS client application based on JavaBeans, the GIS engine based on servlet, the GIS Application server based on GIS enterprise JavaBeans(contains session bean and entity bean) are explained.Besides, the experiments of relation of spatial data and response time under different conditions are conducted, which proves that distributed spatial database system based on J2EE can be used to manage, distribute and share large scale spatial data on Internet. Lastly, a distributed large-scale seamless image database based on Internet is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchill, R. Michael
Apache Spark is explored as a tool for analyzing large data sets from the magnetic fusion simulation code XGCI. Implementation details of Apache Spark on the NERSC Edison supercomputer are discussed, including binary file reading, and parameter setup. Here, an unsupervised machine learning algorithm, k-means clustering, is applied to XGCI particle distribution function data, showing that highly turbulent spatial regions do not have common coherent structures, but rather broad, ring-like structures in velocity space.
NASA Technical Reports Server (NTRS)
1984-01-01
Rectifications of multispectral scanner and thematic mapper data sets for full and subscene areas, analyses of planimetric errors, assessments of the number and distribution of ground control points required to minimize errors, and factors contributing to error residual are examined. Other investigations include the generation of three dimensional terrain models and the effects of spatial resolution on digital classification accuracies.
Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate.
Stige, Leif Christian; Yaragina, Natalia A; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr; Ottersen, Geir
2017-02-07
Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment-temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959-1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts.
Species Distribution Modelling of Aedes aegypti in two dengue-endemic regions of Pakistan.
Fatima, Syeda Hira; Atif, Salman; Rasheed, Syed Basit; Zaidi, Farrah; Hussain, Ejaz
2016-03-01
Statistical tools are effectively used to determine the distribution of mosquitoes and to make ecological inferences about the vector-borne disease dynamics. In this study, we utilised species distribution models to understand spatial patterns of Aedes aegypti in two dengue-prevalent regions of Pakistan, Lahore and Swat. Species distribution models can potentially indicate the probability of suitability of Ae. aegypti once introduced to new regions like Swat, where invasion of this species is a recent phenomenon. The distribution of Ae. aegypti was determined by applying the MaxEnt algorithm on a set of potential environmental factors and species sample records. The ecological dependency of species on each environmental variable was analysed using response curves. We quantified the statistical performance of the models based on accuracy assessment and spatial predictions. Our results suggest that Ae. aegypti is widely distributed in Lahore. Human population density and urban infrastructure are primarily responsible for greater probability of mosquito occurrence in this region. In Swat, Ae. aegypti has clumped distribution, where urban patches provide refuge to the species in an otherwise hostile heterogeneous environment and road networks are assumed to have facilitated in passive-mediated dispersal of species. In Pakistan, Ae. aegypti is expanding its range northwards; this could be associated with rapid urbanisation, trade and travel. The main implication of this expansion is that more people are at risk of dengue fever in the northern highlands of Pakistan. © 2016 John Wiley & Sons Ltd.
Cassini UVIS Observations of Saturn during the Grand Finale Orbits
NASA Astrophysics Data System (ADS)
Pryor, W. R.; Esposito, L. W.; West, R. A.; Jouchoux, A.; Radioti, A.; Grodent, D. C.; Gerard, J. C. M. C.; Gustin, J.; Lamy, L.; Badman, S. V.
2017-12-01
In 2016 and 2017, the Cassini Saturn orbiter executed a final series of high inclination, low-periapsis orbits ideal for studies of Saturn's polar regions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) obtained an extensive set of auroral images, some at the highest spatial resolution obtained during Cassini's long orbital mission (2004-2017). In some cases, two or three spacecraft slews at right angles to the long slit of the spectrograph were required to cover the entire auroral region to form auroral images. We will present selected images from this set showing narrow arcs of emission, more diffuse auroral emissions, multiple auroral arcs in a single image, discrete spots of emission, small scale vortices, large-scale spiral forms, and parallel linear features that appear to cross in places like twisted wires. Some shorter features are transverse to the main auroral arcs, like barbs on a wire. UVIS observations were in some cases simultaneous with auroral observations from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) that will also be presented. UVIS polar images also contain spectral information suitable for studies of the auroral electron energy distribution. The long wavelength part of the UVIS polar images contains a signal from reflected sunlight containing absorption signatures of acetylene and other Saturn hydrocarbons. The hydrocarbon spatial distribution will also be examined.
Assessment of Global Mercury Deposition through Litterfall.
Wang, Xun; Bao, Zhengduo; Lin, Che-Jen; Yuan, Wei; Feng, Xinbin
2016-08-16
There is a large uncertainty in the estimate of global dry deposition of atmospheric mercury (Hg). Hg deposition through litterfall represents an important input to terrestrial forest ecosystems via cumulative uptake of atmospheric Hg (most Hg(0)) to foliage. In this study, we estimate the quantity of global Hg deposition through litterfall using statistical modeling (Monte Carlo simulation) of published data sets of litterfall biomass production, tree density, and Hg concentration in litter samples. On the basis of the model results, the global annual Hg deposition through litterfall is estimated to be 1180 ± 710 Mg yr(-1), more than two times greater than the estimate by GEOS-Chem. Spatial distribution of Hg deposition through litterfall suggests that deposition flux decreases spatially from tropical to temperate and boreal regions. Approximately 70% of global Hg(0) dry deposition occurs in the tropical and subtropical regions. A major source of uncertainty in this study is the heterogeneous geospatial distribution of available data. More observational data in regions (Southeast Asia, Africa, and South America) where few data sets exist will greatly improve the accuracy of the current estimate. Given that the quantity of global Hg deposition via litterfall is typically 2-6 times higher than Hg(0) evasion from forest floor, global forest ecosystems represent a strong Hg(0) sink.
Spagnolo, Daniel M.; Gyanchandani, Rekha; Al-Kofahi, Yousef; Stern, Andrew M.; Lezon, Timothy R.; Gough, Albert; Meyer, Dan E.; Ginty, Fiona; Sarachan, Brion; Fine, Jeffrey; Lee, Adrian V.; Taylor, D. Lansing; Chennubhotla, S. Chakra
2016-01-01
Background: Measures of spatial intratumor heterogeneity are potentially important diagnostic biomarkers for cancer progression, proliferation, and response to therapy. Spatial relationships among cells including cancer and stromal cells in the tumor microenvironment (TME) are key contributors to heterogeneity. Methods: We demonstrate how to quantify spatial heterogeneity from immunofluorescence pathology samples, using a set of 3 basic breast cancer biomarkers as a test case. We learn a set of dominant biomarker intensity patterns and map the spatial distribution of the biomarker patterns with a network. We then describe the pairwise association statistics for each pattern within the network using pointwise mutual information (PMI) and visually represent heterogeneity with a two-dimensional map. Results: We found a salient set of 8 biomarker patterns to describe cellular phenotypes from a tissue microarray cohort containing 4 different breast cancer subtypes. After computing PMI for each pair of biomarker patterns in each patient and tumor replicate, we visualize the interactions that contribute to the resulting association statistics. Then, we demonstrate the potential for using PMI as a diagnostic biomarker, by comparing PMI maps and heterogeneity scores from patients across the 4 different cancer subtypes. Estrogen receptor positive invasive lobular carcinoma patient, AL13-6, exhibited the highest heterogeneity score among those tested, while estrogen receptor negative invasive ductal carcinoma patient, AL13-14, exhibited the lowest heterogeneity score. Conclusions: This paper presents an approach for describing intratumor heterogeneity, in a quantitative fashion (via PMI), which departs from the purely qualitative approaches currently used in the clinic. PMI is generalizable to highly multiplexed/hyperplexed immunofluorescence images, as well as spatial data from complementary in situ methods including FISSEQ and CyTOF, sampling many different components within the TME. We hypothesize that PMI will uncover key spatial interactions in the TME that contribute to disease proliferation and progression. PMID:27994939
Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang
2017-01-01
Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation. PMID:28603535
2010-01-01
Background Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. Results A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. Conclusion MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases. PMID:20167090
Foley, Desmond H; Wilkerson, Richard C; Birney, Ian; Harrison, Stanley; Christensen, Jamie; Rueda, Leopoldo M
2010-02-18
Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC) was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.
Chen, Yun; Niu, Shuai; Li, Peikun; Jia, Hongru; Wang, Hailiang; Ye, Yongzhong; Yuan, Zhiliang
2017-01-01
Elucidating the major drivers of bryophyte distribution is the first step to protecting bryophyte diversity. Topography, forest, substrates (ground, tree trunks, roots, rocks, and rotten wood), and spatial factor, which factors are the major drivers of bryophyte distribution? In this study, 53 plots were set in 400 m 2 along the elevation gradient in Xiaoqinling, China. All bryophytes in the plots were collected and identified. Regression analysis was used to examine the relationship between bryophyte and substrate diversity. We compared the patterns of overall bryophyte diversity and diversity of bryophytes found on the ground, tree, and rock along elevational gradients. Canonical correspondence analysis was applied to relate species composition to selected environmental variables. The importance of topography, forest, substrates, and spatial factors was determined by variance partitioning. A total of 1378 bryophyte specimens were collected, and 240 species were identified. Bryophyte diversity was closely related to substrate diversity. The overall bryophyte diversity significantly increased with elevation; however, the response varied among ground, tree, and rock bryophytes. Tree diversity and herb layer were considered important environmental factors in determining bryophyte distribution. Species abundance was best explained by stand structure (17%), and species diversity was best explained by stand structure (35%) and substrate (40%). Results directly indicated that substrate diversity can improve bryophyte species diversity. The effects of micro-habitat formed by stand structure and substrate diversity were higher than those of spatial processes and topography factors on bryophyte distribution. This study proved that the determinant factors influencing bryophyte diversity reflect the trends in recent forest management, providing a real opportunity to improve forest biodiversity conservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lin; Gong, Huili; Dai, Zhenxue
Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity ( K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log 10( K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain,more » China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. Lastly, the results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of K in alluvial fans.« less
Zhu, Lin; Gong, Huili; Dai, Zhenxue; ...
2017-02-03
Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity ( K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log 10( K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain,more » China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. Lastly, the results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of K in alluvial fans.« less
Kruse, Gordon H.; Dorn, Martin W.
2016-01-01
Catch quotas for walleye pollock Gadus chalcogrammus, the dominant species in the groundfish fishery off Alaska, are set by applying harvest control rules to annual estimates of spawning stock biomass (SSB) from age-structured stock assessments. Adult walleye pollock abundance and maturity status have been monitored in early spring in Shelikof Strait in the Gulf of Alaska for almost three decades. The sampling strategy for maturity status is largely characterized as targeted, albeit opportunistic, sampling of trawl tows made during hydroacoustic surveys. Trawl sampling during pre-spawning biomass surveys, which do not adequately account for spatial patterns in the distribution of immature and mature fish, can bias estimated maturity ogives from which SSB is calculated. Utilizing these maturity data, we developed mixed-effects generalized additive models to examine spatial and temporal patterns in walleye pollock maturity and the influence of these patterns on estimates of SSB. Current stock assessment practice is to estimate SSB as the product of annual estimates of numbers at age, weight at age, and mean maturity at age for 1983-present. In practice, we found this strategy to be conservative for a time period from 2003–2013 as, on average, it underestimates SSB by a 4.7 to 11.9% difference when compared to our estimates of SSB that account for spatial structure or both temporal and spatial structure. Inclusion of spatially explicit information for walleye pollock maturity has implications for understanding stock reproductive biology and thus the setting of sustainable harvest rates used to manage this valuable fishery. PMID:27736982
Grundel, R.; Pavlovic, N.B.
2007-01-01
Determination of which aspects of habitat quality and habitat spatial arrangement best account for variation in a species’ distribution can guide management for organisms such as the Karner blue butterfly (Lycaeides melissa samuelis), a federally endangered subspecies inhabiting savannas of Midwest and Eastern United States. We examined the extent to which three sets of predictors, (1) larval host plant (Lupinus perennis, wild lupine) availability, (2) characteristics of the matrix surrounding host plant patches, and (3) factors affecting a patch’s thermal environment, accounted for variation in lupine patch use by Karner blues at Indiana Dunes National Lakeshore, Indiana and Fort McCoy, Wisconsin, USA. Each predictor set accounted for 7–13% of variation in patch occupancy by Karner blues at both sites and in larval feeding activity among patches at Indiana Dunes. Patch area, an indicator of host plant availability, was an exception, accounting for 30% of variation in patch occupancy at Indiana Dunes. Spatially structured patterns of patch use across the landscape accounted for 9–16% of variation in patch use and explained more variation in larval feeding activity than did spatial autocorrelation between neighboring patches. Because of this broader spatial trend across sites, a given management action may be more effective in promoting patch use in some portions of the landscape than in others. Spatial trend, resource availability, matrix quality, and microclimate, in general, accounted for similar amounts of variation in patch use and each should be incorporated into habitat management planning for the Karner blue butterfly.
NASA Astrophysics Data System (ADS)
Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.
2015-12-01
Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.
NASA Technical Reports Server (NTRS)
Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki
2016-01-01
Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)- based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by approximately 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty reduction, indicating its representativeness level.
Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models
NASA Astrophysics Data System (ADS)
Haslauer, C. P.; Bárdossy, A.
2017-12-01
A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.
A method to map errors in the deformable registration of 4DCT images1
Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.
2010-01-01
Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288
NASA Astrophysics Data System (ADS)
Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.
2012-02-01
The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996-2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54-0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.
Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.
2012-01-01
The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996–2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54–0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.
Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Y Churmakov, D.; Meglinski, I. V.; Piletsky, S. A.; Greenhalgh, D. A.
2003-07-01
A novel Monte Carlo technique of simulation of spatial fluorescence distribution within the human skin is presented. The computational model of skin takes into account the spatial distribution of fluorophores, which would arise due to the structure of collagen fibres, compared to the epidermis and stratum corneum where the distribution of fluorophores is assumed to be homogeneous. The results of simulation suggest that distribution of auto-fluorescence is significantly suppressed in the near-infrared spectral region, whereas the spatial distribution of fluorescence sources within a sensor layer embedded in the epidermis is localized at an `effective' depth.
Gijsen, Frank J.; Marquering, Henk; van Ooij, Pim; vanBavel, Ed; Wentzel, Jolanda J.; Nederveen, Aart J.
2016-01-01
Introduction Wall shear stress (WSS) and oscillatory shear index (OSI) are associated with atherosclerotic disease. Both parameters are derived from blood velocities, which can be measured with phase-contrast MRI (PC-MRI). Limitations in spatiotemporal resolution of PC-MRI are known to affect these measurements. Our aim was to investigate the effect of spatiotemporal resolution using a carotid artery phantom. Methods A carotid artery phantom was connected to a flow set-up supplying pulsatile flow. MRI measurement planes were placed at the common carotid artery (CCA) and internal carotid artery (ICA). Two-dimensional PC-MRI measurements were performed with thirty different spatiotemporal resolution settings. The MRI flow measurement was validated with ultrasound probe measurements. Mean flow, peak flow, flow waveform, WSS and OSI were compared for these spatiotemporal resolutions using regression analysis. The slopes of the regression lines were reported in %/mm and %/100ms. The distribution of low and high WSS and OSI was compared between different spatiotemporal resolutions. Results The mean PC-MRI CCA flow (2.5±0.2mL/s) agreed with the ultrasound probe measurements (2.7±0.02mL/s). Mean flow (mL/s) depended only on spatial resolution (CCA:-13%/mm, ICA:-49%/mm). Peak flow (mL/s) depended on both spatial (CCA:-13%/mm, ICA:-17%/mm) and temporal resolution (CCA:-19%/100ms, ICA:-24%/100ms). Mean WSS (Pa) was in inverse relationship only with spatial resolution (CCA:-19%/mm, ICA:-33%/mm). OSI was dependent on spatial resolution for CCA (-26%/mm) and temporal resolution for ICA (-16%/100ms). The regions of low and high WSS and OSI matched for most of the spatiotemporal resolutions (CCA:30/30, ICA:28/30 cases for WSS; CCA:23/30, ICA:29/30 cases for OSI). Conclusion We show that both mean flow and mean WSS are independent of temporal resolution. Peak flow and OSI are dependent on both spatial and temporal resolution. However, the magnitude of mean and peak flow, WSS and OSI, and the spatial distribution of OSI and WSS did not exhibit a strong dependency on spatiotemporal resolution. PMID:27669568
Passalent, Laura; Borsy, Emily; Landry, Michel D; Cott, Cheryl
2013-09-01
To illustrate the application of geographic information systems (GIS) as a tool to assess rehabilitation service delivery by presenting results from research recently conducted to assess demand and provision for community rehabilitation service delivery in Ontario, Canada. Secondary analysis of data obtained from existing sources was used to establish demand and provision profiles for community rehabilitation services. These data were integrated using GIS software. A number of descriptive maps were produced that show the geographical distribution of service provision variables (location of individual rehabilitation health care providers and location of private and publicly funded community rehabilitation clinics) in relation to the distribution of demand variables (location of the general population; location of specific populations (i.e., residents age 65 and older) and distribution of household income). GIS provides a set of tools for describing and understanding the spatial organization of the health of populations and the distribution of health services that can aid the development of health policy and answer key research questions with respect to rehabilitation health services delivery. Implications for Rehabilitation It is important to seek out alternative and innovative methods to examine rehabilitation service delivery. GIS is a computer-based program that takes any data linked to a geographically referenced location and processes it through a software system that manages, analyses and displays the data in the form of a map, allowing for an alternative level of analysis. GIS provides a set of tools for describing and understanding the spatial organization of population health and health services that can aid the development of health policy and answer key research questions with respect to rehabilitation health services delivery.
NASA Astrophysics Data System (ADS)
Hutton, C.; Wagener, T.; Freer, J. E.; Duffy, C.; Han, D.
2015-12-01
Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models may contain a large number of model parameters which are computationally expensive to calibrate. Even when calibration is possible, insufficient data can result in model parameter and structural equifinality. In order to help reduce the space of feasible models and supplement traditional outlet discharge calibration data, semi-quantitative information (e.g. knowledge of relative groundwater levels), may also be used to identify behavioural models when applied to constrain spatially distributed predictions of states and fluxes. The challenge is to combine these different sources of information together to identify a behavioural region of state-space, and efficiently search a large, complex parameter space to identify behavioural parameter sets that produce predictions that fall within this behavioural region. Here we present a methodology to incorporate different sources of data to efficiently calibrate distributed catchment models. Metrics of model performance may be derived from multiple sources of data (e.g. perceptual understanding and measured or regionalised hydrologic signatures). For each metric, an interval or inequality is used to define the behaviour of the catchment system, accounting for data uncertainties. These intervals are then combined to produce a hyper-volume in state space. The state space is then recast as a multi-objective optimisation problem, and the Borg MOEA is applied to first find, and then populate the hyper-volume, thereby identifying acceptable model parameter sets. We apply the methodology to calibrate the PIHM model at Plynlimon, UK by incorporating perceptual and hydrologic data into the calibration problem. Furthermore, we explore how to improve calibration efficiency through search initialisation from shorter model runs.
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min; ...
2016-07-25
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
NASA Astrophysics Data System (ADS)
Méar, Y.; Poizot, E.; Murat, A.; Lesueur, P.; Thomas, M.
2006-12-01
The eastern Bay of the Seine (English Channel) was the subject in 1991 of a sampling survey of superficial sediments. Geostatistic tools were used to examine the complexity of the spatial distribution of the fine-grained fraction (<50 μm). A central depocentre of fine sediments (i.e. content up to 50%) oriented in a NW-SE direction in a muddy coastal strip, in a very high energy hydrodynamical situation due to storm swells and its megatidal setting, is for the first time recognised and discussed. Within this sedimentary unit, the distribution of the fine fraction is very heterogeneous, with mud patches of less than 4000 m diameter; the boundary between these mud patches and their substratum is very sharp. The distribution of this fine fraction appears to be controlled by an anticyclonic eddy located off the Pays de Caux. Under the influence of this, the suspended material expelled from the Seine estuary moves along the coast and swings off Antifer harbour, towards the NW. It is trapped within this eddy because of the settling of suspended particulate matter. Both at a general scale and a local scale the morphology (whether inherited or due to modern processes) has a strong influence on the spatial distribution of the fine fraction. At the general scale, the basin-like shape of the area facilitates the silting, and the presence of the submarine dunes, called "Ridins d'Antifer", clearly determines the northern limit of the muddy zone. At a local scale, the same influence is obvious: paleovalleys trap the fine sediments, whereas isolated sand dunes and ripples limit the silting. This duality of role of the morphology is therefore one of the reasons why the muddy surface is extremely heterogeneous spatially. The presence of an important population of suspension feeding echinoderm, the brittle-star Ophiothrix fragilis Abildgaard, has led to a local increase in the silting, and to the modification of the physicochemical and sedimentological parameters. A complex relationship is shown to occur between the amount of fine fraction and the number of brittle-stars (ind. m -2). Classical statistical methods are not appropriate to study the spatial distribution of the mud fraction, because the spatial component of the percentage of the distribution is not integrated in the analysis. On the other hand, this is the main property of the geostatistic concepts. The use of geostatistic tools within a strict and clearly identified procedure enables the proposal of an accurate cartography. Further application of the proposed protocol (based on a semivariographic study and a conditional simulation interpolation) for surficial sediments mapping will help explain spatial and temporal variations of fine-grained fraction. Then assessments of sedimentation and erosion stages allow highlighting signature of environmental processes.
Interpolating Non-Parametric Distributions of Hourly Rainfall Intensities Using Random Mixing
NASA Astrophysics Data System (ADS)
Mosthaf, Tobias; Bárdossy, András; Hörning, Sebastian
2015-04-01
The correct spatial interpolation of hourly rainfall intensity distributions is of great importance for stochastical rainfall models. Poorly interpolated distributions may lead to over- or underestimation of rainfall and consequently to wrong estimates of following applications, like hydrological or hydraulic models. By analyzing the spatial relation of empirical rainfall distribution functions, a persistent order of the quantile values over a wide range of non-exceedance probabilities is observed. As the order remains similar, the interpolation weights of quantile values for one certain non-exceedance probability can be applied to the other probabilities. This assumption enables the use of kernel smoothed distribution functions for interpolation purposes. Comparing the order of hourly quantile values over different gauges with the order of their daily quantile values for equal probabilities, results in high correlations. The hourly quantile values also show high correlations with elevation. The incorporation of these two covariates into the interpolation is therefore tested. As only positive interpolation weights for the quantile values assure a monotonically increasing distribution function, the use of geostatistical methods like kriging is problematic. Employing kriging with external drift to incorporate secondary information is not applicable. Nonetheless, it would be fruitful to make use of covariates. To overcome this shortcoming, a new random mixing approach of spatial random fields is applied. Within the mixing process hourly quantile values are considered as equality constraints and correlations with elevation values are included as relationship constraints. To profit from the dependence of daily quantile values, distribution functions of daily gauges are used to set up lower equal and greater equal constraints at their locations. In this way the denser daily gauge network can be included in the interpolation of the hourly distribution functions. The applicability of this new interpolation procedure will be shown for around 250 hourly rainfall gauges in the German federal state of Baden-Württemberg. The performance of the random mixing technique within the interpolation is compared to applicable kriging methods. Additionally, the interpolation of kernel smoothed distribution functions is compared with the interpolation of fitted parametric distributions.
NASA Astrophysics Data System (ADS)
Kihm, Seoneui; Seo, Seongu; Yoon, Suk-jin
2018-01-01
The presence of "anisotropic satellite distribution (ASD)" around massive galaxies is often taken as evidence against the ΛCDM cosmology. To address whether such anisotropy can be reconciled with the standard cosmology, we examine the spatial distributions of satellites around central galaxies in the hydrodynamic cosmological simulation, Illustris. In an attempt to understand the ASD of our Galaxy, we limit our analysis to the systems consisting of a MW-sized host and at least 11 satellites. We find that ASDs are rather a common feature in the simulation and that ASD systems tend to possess a larger fraction of recently accreted satellites than isotropy systems. We discuss a possible link of ASD formation to the surrounding environment in the ΛCDM setting.
Liu, Lei; Zhao, Jing
2014-01-01
An efficient location-based query algorithm of protecting the privacy of the user in the distributed networks is given. This algorithm utilizes the location indexes of the users and multiple parallel threads to search and select quickly all the candidate anonymous sets with more users and their location information with more uniform distribution to accelerate the execution of the temporal-spatial anonymous operations, and it allows the users to configure their custom-made privacy-preserving location query requests. The simulated experiment results show that the proposed algorithm can offer simultaneously the location query services for more users and improve the performance of the anonymous server and satisfy the anonymous location requests of the users. PMID:24790579
Zhong, Cheng; Liu, Lei; Zhao, Jing
2014-01-01
An efficient location-based query algorithm of protecting the privacy of the user in the distributed networks is given. This algorithm utilizes the location indexes of the users and multiple parallel threads to search and select quickly all the candidate anonymous sets with more users and their location information with more uniform distribution to accelerate the execution of the temporal-spatial anonymous operations, and it allows the users to configure their custom-made privacy-preserving location query requests. The simulated experiment results show that the proposed algorithm can offer simultaneously the location query services for more users and improve the performance of the anonymous server and satisfy the anonymous location requests of the users.
NASA Astrophysics Data System (ADS)
Ajami, H.; Sharma, A.; Lakshmi, V.
2017-12-01
Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.
NASA Astrophysics Data System (ADS)
Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; von der Heydt, Anna; Damsté, Jaap Sinninghe; Reichart, Gert-Jan
2010-09-01
Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.
NASA Technical Reports Server (NTRS)
Hassler, B.; Petropavlovskikh, I.; Staehelin, J.; August, T.; Bhartia, P. K.; Clerbaux, C.; Degenstein, D.; Maziere, M. De; Dinelli, B. M.; Dudhia, A.;
2014-01-01
Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.
Esposito, Fabrizio; Singer, Neomi; Podlipsky, Ilana; Fried, Itzhak; Hendler, Talma; Goebel, Rainer
2013-02-01
Linking regional metabolic changes with fluctuations in the local electromagnetic fields directly on the surface of the human cerebral cortex is of tremendous importance for a better understanding of detailed brain processes. Functional magnetic resonance imaging (fMRI) and intra-cranial electro-encephalography (iEEG) measure two technically unrelated but spatially and temporally complementary sets of functional descriptions of human brain activity. In order to allow fine-grained spatio-temporal human brain mapping at the population-level, an effective comparative framework for the cortex-based inter-subject analysis of iEEG and fMRI data sets is needed. We combined fMRI and iEEG recordings of the same patients with epilepsy during alternated intervals of passive movie viewing and music listening to explore the degree of local spatial correspondence and temporal coupling between blood oxygen level dependent (BOLD) fMRI changes and iEEG spectral power modulations across the cortical surface after cortex-based inter-subject alignment. To this purpose, we applied a simple model of the iEEG activity spread around each electrode location and the cortex-based inter-subject alignment procedure to transform discrete iEEG measurements into cortically distributed group patterns by establishing a fine anatomic correspondence of many iEEG cortical sites across multiple subjects. Our results demonstrate the feasibility of a multi-modal inter-subject cortex-based distributed analysis for combining iEEG and fMRI data sets acquired from multiple subjects with the same experimental paradigm but with different iEEG electrode coverage. The proposed iEEG-fMRI framework allows for improved group statistics in a common anatomical space and preserves the dynamic link between the temporal features of the two modalities. Copyright © 2012 Elsevier Inc. All rights reserved.
Characterization and Upscaling of Pore Scale Hydrodynamic Mass Transfer
NASA Astrophysics Data System (ADS)
Gouze, P.; Roubinet, D.; Dentz, M.; Planes, V.; Russian, A.
2017-12-01
Imaging reservoir rocks in 3D using X-ray microtomography with spatial resolution ranging from about 1 to 10 mm provides us a unique opportunity not only to characterize pore space geometry but also for simulating hydrodynamical processes. Yet, pores and throats displaying sizes smaller than the resolution cannot be distinguished on the images and must be assigned to a so called microporous phase during the process of image segmentation. Accordingly one simulated mass transfers caused by advection and diffusion in the connected pores (mobile domain) and diffusion in the microporous clusters (immobile domain) using Time Domain Random Walk (TDRW) and developed a set of metrics that can be used to monitor the different mechanisms of transport in the sample, the final objective being of proposing a simple but accurate upscaled 1D model in which the particle travel times in the mobile and immobile domain and the number of mobile-immobile transfer events (called trapping events) are independently distributed random variables characterized by PDFs. For TDRW the solute concentration is represented by the density distribution of non-interacting point-like solute particles which move due to advection and dispersion. The set of metrics derives from different spatial and temporal statistical analyses of the particle motion, and is used for characterizing the particles transport (i) in the mobile domain in relation with the velocity field properties, (ii) in the immobile domain in relation with the structure and the properties of microporous phase and at the mobile-immobile interface. We specifically focused on how to model the trapping frequency and rate into the immobile domain in relation with the structure and the spatial distribution of the mobile-immobile domain interface. This thorough analysis of the particle motion for both simple artificial structures and real rock images allowed us to derive the parametrization of the upscaled 1D model.
ENKI - An Open Source environmental modelling platfom
NASA Astrophysics Data System (ADS)
Kolberg, S.; Bruland, O.
2012-04-01
The ENKI software framework for implementing spatio-temporal models is now released under the LGPL license. Originally developed for evaluation and comparison of distributed hydrological model compositions, ENKI can be used for simulating any time-evolving process over a spatial domain. The core approach is to connect a set of user specified subroutines into a complete simulation model, and provide all administrative services needed to calibrate and run that model. This includes functionality for geographical region setup, all file I/O, calibration and uncertainty estimation etc. The approach makes it easy for students, researchers and other model developers to implement, exchange, and test single routines and various model compositions in a fixed framework. The open-source license and modular design of ENKI will also facilitate rapid dissemination of new methods to institutions engaged in operational water resource management. ENKI uses a plug-in structure to invoke separately compiled subroutines, separately built as dynamic-link libraries (dlls). The source code of an ENKI routine is highly compact, with a narrow framework-routine interface allowing the main program to recognise the number, types, and names of the routine's variables. The framework then exposes these variables to the user within the proper context, ensuring that distributed maps coincide spatially, time series exist for input variables, states are initialised, GIS data sets exist for static map data, manually or automatically calibrated values for parameters etc. By using function calls and memory data structures to invoke routines and facilitate information flow, ENKI provides good performance. For a typical distributed hydrological model setup in a spatial domain of 25000 grid cells, 3-4 time steps simulated per second should be expected. Future adaptation to parallel processing may further increase this speed. New modifications to ENKI include a full separation of API and user interface, making it possible to run ENKI from GIS programs and other software environments. ENKI currently compiles under Windows and Visual Studio only, but ambitions exist to remove the platform and compiler dependencies.
Distributed condition monitoring techniques of optical fiber composite power cable in smart grid
NASA Astrophysics Data System (ADS)
Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu
2011-11-01
Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.
Implications of the spatial dynamics of fire spread for the bistability of savanna and forest.
Schertzer, E; Staver, A C; Levin, S A
2015-01-01
The role of fire in expanding the global distribution of savanna is well recognized. Empirical observations and modeling suggest that fire spread has a threshold response to fuel-layer continuity, which sets up a positive feedback that maintains savanna-forest bistability. However, modeling has so far failed to examine fire spread as a spatial process that interacts with vegetation. Here, we use simple, well-supported assumptions about fire spread as an infection process and its effects on trees to ask whether spatial dynamics qualitatively change the potential for savanna-forest bistability. We show that the spatial effects of fire spread are the fundamental reason that bistability is possible: because fire spread is an infection process, it exhibits a threshold response to fuel continuity followed by a rapid increase in fire size. Other ecological processes affecting fire spread may also contribute including temporal variability in demography or fire spread. Finally, including the potential for spatial aggregation increases the potential both for savanna-forest bistability and for savanna and forest to coexist in a landscape mosaic.
Measuring Spatial Dependence for Infectious Disease Epidemiology
Grabowski, M. Kate; Cummings, Derek A. T.
2016-01-01
Global spatial clustering is the tendency of points, here cases of infectious disease, to occur closer together than expected by chance. The extent of global clustering can provide a window into the spatial scale of disease transmission, thereby providing insights into the mechanism of spread, and informing optimal surveillance and control. Here the authors present an interpretable measure of spatial clustering, τ, which can be understood as a measure of relative risk. When biological or temporal information can be used to identify sets of potentially linked and likely unlinked cases, this measure can be estimated without knowledge of the underlying population distribution. The greater our ability to distinguish closely related (i.e., separated by few generations of transmission) from more distantly related cases, the more closely τ will track the true scale of transmission. The authors illustrate this approach using examples from the analyses of HIV, dengue and measles, and provide an R package implementing the methods described. The statistic presented, and measures of global clustering in general, can be powerful tools for analysis of spatially resolved data on infectious diseases. PMID:27196422
Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics
Breckels, Lisa M.; Holden, Sean B.; Wojnar, David; Mulvey, Claire M.; Christoforou, Andy; Groen, Arnoud; Trotter, Matthew W. B.; Kohlbacher, Oliver; Lilley, Kathryn S.; Gatto, Laurent
2016-01-01
Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis. PMID:27175778
A statistical evaluation of non-ergodic variogram estimators
Curriero, F.C.; Hohn, M.E.; Liebhold, A.M.; Lele, S.R.
2002-01-01
Geostatistics is a set of statistical techniques that is increasingly used to characterize spatial dependence in spatially referenced ecological data. A common feature of geostatistics is predicting values at unsampled locations from nearby samples using the kriging algorithm. Modeling spatial dependence in sampled data is necessary before kriging and is usually accomplished with the variogram and its traditional estimator. Other types of estimators, known as non-ergodic estimators, have been used in ecological applications. Non-ergodic estimators were originally suggested as a method of choice when sampled data are preferentially located and exhibit a skewed frequency distribution. Preferentially located samples can occur, for example, when areas with high values are sampled more intensely than other areas. In earlier studies the visual appearance of variograms from traditional and non-ergodic estimators were compared. Here we evaluate the estimators' relative performance in prediction. We also show algebraically that a non-ergodic version of the variogram is equivalent to the traditional variogram estimator. Simulations, designed to investigate the effects of data skewness and preferential sampling on variogram estimation and kriging, showed the traditional variogram estimator outperforms the non-ergodic estimators under these conditions. We also analyzed data on carabid beetle abundance, which exhibited large-scale spatial variability (trend) and a skewed frequency distribution. Detrending data followed by robust estimation of the residual variogram is demonstrated to be a successful alternative to the non-ergodic approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershenzon, Naum I.; Soltanian, Mohamad Reza; Ritzi, Robert W.
Understanding multi-phase fluid flow and transport processes within aquifers, candidate reservoirs for CO 2 sequestration, and petroleum reservoirs requires understanding a diverse set of geologic properties of the aquifer or reservoir, over a wide range of spatial and temporal scales. We focus on multiphase flow dynamics with wetting (e.g., water) and non-wetting (e.g., gas or oil) fluids, with one invading another. This problem is of general interest in a number of fields and is illustrated here by considering the sweep efficiency of oil during a waterflood. Using a relatively fine-resolution grid throughout a relatively large domain in these simulations andmore » probing the results with advanced scientific visualization tools (Reservoir Visualization Analysis [RVA]/ ParaView software) promote a better understanding of how smaller-scale features affect the aggregate behavior at larger scales. We studied the effects on oil-sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. We further analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. As expected, the effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound- bars. As a result, oil-sweep efficiency critically depends on the direction of the pressure gradient. However, contrary to expectations, the total amount of trapped oil due to the effect of capillary trapping does not depend on the magnitude of the pressure gradient within the examined range. Hence the pressure difference between production and injection wells does not affect sweep efficiency; although the spatial distribution of oil remaining in the reservoir depends on this value. Whether or not clusters of connected OFC span the domain affects only the absolute rate of oil production—not sweep efficiency.« less
Altomare, Cristina; Guglielmann, Raffaella; Riboldi, Marco; Bellazzi, Riccardo; Baroni, Guido
2015-02-01
In high precision photon radiotherapy and in hadrontherapy, it is crucial to minimize the occurrence of geometrical deviations with respect to the treatment plan in each treatment session. To this end, point-based infrared (IR) optical tracking for patient set-up quality assessment is performed. Such tracking depends on external fiducial points placement. The main purpose of our work is to propose a new algorithm based on simulated annealing and augmented Lagrangian pattern search (SAPS), which is able to take into account prior knowledge, such as spatial constraints, during the optimization process. The SAPS algorithm was tested on data related to head and neck and pelvic cancer patients, and that were fitted with external surface markers for IR optical tracking applied for patient set-up preliminary correction. The integrated algorithm was tested considering optimality measures obtained with Computed Tomography (CT) images (i.e. the ratio between the so-called target registration error and fiducial registration error, TRE/FRE) and assessing the marker spatial distribution. Comparison has been performed with randomly selected marker configuration and with the GETS algorithm (Genetic Evolutionary Taboo Search), also taking into account the presence of organs at risk. The results obtained with SAPS highlight improvements with respect to the other approaches: (i) TRE/FRE ratio decreases; (ii) marker distribution satisfies both marker visibility and spatial constraints. We have also investigated how the TRE/FRE ratio is influenced by the number of markers, obtaining significant TRE/FRE reduction with respect to the random configurations, when a high number of markers is used. The SAPS algorithm is a valuable strategy for fiducial configuration optimization in IR optical tracking applied for patient set-up error detection and correction in radiation therapy, showing that taking into account prior knowledge is valuable in this optimization process. Further work will be focused on the computational optimization of the SAPS algorithm toward fast point-of-care applications. Copyright © 2014 Elsevier Inc. All rights reserved.
Gershenzon, Naum I.; Soltanian, Mohamad Reza; Ritzi, Robert W.; ...
2015-10-23
Understanding multi-phase fluid flow and transport processes within aquifers, candidate reservoirs for CO 2 sequestration, and petroleum reservoirs requires understanding a diverse set of geologic properties of the aquifer or reservoir, over a wide range of spatial and temporal scales. We focus on multiphase flow dynamics with wetting (e.g., water) and non-wetting (e.g., gas or oil) fluids, with one invading another. This problem is of general interest in a number of fields and is illustrated here by considering the sweep efficiency of oil during a waterflood. Using a relatively fine-resolution grid throughout a relatively large domain in these simulations andmore » probing the results with advanced scientific visualization tools (Reservoir Visualization Analysis [RVA]/ ParaView software) promote a better understanding of how smaller-scale features affect the aggregate behavior at larger scales. We studied the effects on oil-sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. We further analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. As expected, the effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound- bars. As a result, oil-sweep efficiency critically depends on the direction of the pressure gradient. However, contrary to expectations, the total amount of trapped oil due to the effect of capillary trapping does not depend on the magnitude of the pressure gradient within the examined range. Hence the pressure difference between production and injection wells does not affect sweep efficiency; although the spatial distribution of oil remaining in the reservoir depends on this value. Whether or not clusters of connected OFC span the domain affects only the absolute rate of oil production—not sweep efficiency.« less
A nonlinear circuit architecture for magnetoencephalographic signal analysis.
Bucolo, M; Fortuna, L; Frasca, M; La Rosa, M; Virzì, M C; Shannahoff-Khalsa, D
2004-01-01
The objective of this paper was to face the complex spatio-temporal dynamics shown by Magnetoencephalography (MEG) data by applying a nonlinear distributed approach for the Blind Sources Separation. The effort was to characterize and differ-entiate the phases of a yogic respiratory exercise used in the treatment of obsessive compulsive disorders. The patient performed a precise respiratory protocol, at one breath per minute for 31 minutes, with 10 minutes resting phase before and after. The two steps of classical Independent Component Approach have been performed by using a Cellular Neural Network with two sets of templates. The choice of the couple of suitable templates has been carried out using genetic algorithm optimization techniques. Performing BSS with a nonlinear distributed approach, the outputs of the CNN have been compared to the ICA ones. In all the protocol phases, the main components founded with CNN have similar trends compared with that ones obtained with ICA. Moreover, using this distributed approach, a spatial location has been associated to each component. To underline the spatio-temporal and the nonlinearly of the neural process a distributed nonlinear architecture has been proposed. This strategy has been designed in order to overcome the hypothesis of linear combination among the sources signals, that is characteristic of the ICA approach, taking advantage of the spatial information.
Dorazio, Robert M.
2012-01-01
Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.
Quantifying Diffuse Contamination: Method and Application to Pb in Soil.
Fabian, Karl; Reimann, Clemens; de Caritat, Patrice
2017-06-20
A new method for detecting and quantifying diffuse contamination at the continental to regional scale is based on the analysis of cumulative distribution functions (CDFs). It uses cumulative probability (CP) plots for spatially representative data sets, preferably containing >1000 determinations. Simulations demonstrate how different types of contamination influence elemental CDFs of different sample media. It is found that diffuse contamination is characterized by a distinctive shift of the low-concentration end of the distribution of the studied element in its CP plot. Diffuse contamination can be detected and quantified via either (1) comparing the distribution of the contaminating element to that of an element with a geochemically comparable behavior but no contamination source (e.g., Pb vs Rb), or (2) comparing the top soil distribution of an element to the distribution of the same element in subsoil samples from the same area, taking soil forming processes into consideration. Both procedures are demonstrated for geochemical soil data sets from Europe, Australia, and the U.S.A. Several different data sets from Europe deliver comparable results at different scales. Diffuse Pb contamination in surface soil is estimated to be <0.5 mg/kg for Australia, 1-3 mg/kg for Europe, and 1-2 mg/kg, or at least <5 mg/kg, for the U.S.A. The analysis presented here also allows recognition of local contamination sources and can be used to efficiently monitor diffuse contamination at the continental to regional scale.
,
2008-01-01
This report documents the computer program INFIL3.0, which is a grid-based, distributed-parameter, deterministic water-balance watershed model that calculates the temporal and spatial distribution of daily net infiltration of water across the lower boundary of the root zone. The bottom of the root zone is the estimated maximum depth below ground surface affected by evapotranspiration. In many field applications, net infiltration below the bottom of the root zone can be assumed to equal net recharge to an underlying water-table aquifer. The daily water balance simulated by INFIL3.0 includes precipitation as either rain or snow; snowfall accumulation, sublimation, and snowmelt; infiltration into the root zone; evapotranspiration from the root zone; drainage and water-content redistribution within the root-zone profile; surface-water runoff from, and run-on to, adjacent grid cells; and net infiltration across the bottom of the root zone. The water-balance model uses daily climate records of precipitation and air temperature and a spatially distributed representation of drainage-basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The model does not simulate streamflow originating as ground-water discharge. Drainage-basin characteristics are represented in the model by a set of spatially distributed input variables uniquely assigned to each grid cell of a model grid. The report provides a description of the conceptual model of net infiltration on which the INFIL3.0 computer code is based and a detailed discussion of the methods by which INFIL3.0 simulates the net-infiltration process. The report also includes instructions for preparing input files necessary for an INFIL3.0 simulation, a description of the output files that are created as part of an INFIL3.0 simulation, and a sample problem that illustrates application of the code to a field setting. Brief descriptions of the main program routine and of each of the modules and subroutines of the INFIL3.0 code, as well as definitions of the variables used in each subroutine, are provided in an appendix.
An x ray archive on your desk: The Einstein CD-ROM's
NASA Technical Reports Server (NTRS)
Prestwich, A.; Mcdowell, J.; Plummer, D.; Manning, K.; Garcia, M.
1992-01-01
Data from the Einstein Observatory imaging proportional counter (IPC) and high resolution imager (HRI) were released on several CD-ROM sets. The sets released so far include pointed IPC and HRI observations in both simple image and detailed photon event list format, as well as the IPC slew survey. With the data on these CD-ROMS's the user can perform spatial analysis (e.g., surface brightness distributions), spectral analysis (with the IPC event lists), and timing analysis (with the IPC and HRI event lists). The next CD-ROM set will contain IPC unscreened data, allowing the user to perform custom screening to recover, for instance, data during times of lost aspect data or high particle background rates.
A geometric theory for Lévy distributions
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2014-08-01
Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts of the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT.
A geometric theory for Lévy distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il
2014-08-15
Lévy distributions are of prime importance in the physical sciences, and their universal emergence is commonly explained by the Generalized Central Limit Theorem (CLT). However, the Generalized CLT is a geometry-less probabilistic result, whereas physical processes usually take place in an embedding space whose spatial geometry is often of substantial significance. In this paper we introduce a model of random effects in random environments which, on the one hand, retains the underlying probabilistic structure of the Generalized CLT and, on the other hand, adds a general and versatile underlying geometric structure. Based on this model we obtain geometry-based counterparts ofmore » the Generalized CLT, thus establishing a geometric theory for Lévy distributions. The theory explains the universal emergence of Lévy distributions in physical settings which are well beyond the realm of the Generalized CLT.« less
[Spatial distribution pattern of Pontania dolichura larvae and sampling technique].
Zhang, Feng; Chen, Zhijie; Zhang, Shulian; Zhao, Huiyan
2006-03-01
In this paper, the spatial distribution pattern of Pontania dolichura larvae was analyzed with Taylor's power law, Iwao's distribution function, and six aggregation indexes. The results showed that the spatial distribution pattern of P. dolichura larvae was of aggregated, and the basic component of the distribution was individual colony, with the aggregation intensity increased with density. On branches, the aggregation was caused by the adult behavior of laying eggs and the spatial position of leaves, while on leaves, the aggregation was caused by the spatial position of news leaves in spring when m < 2.37, and by the spatial position of news leaves in spring and the behavior of eclosion and laying eggs when m > 2.37. By using the parameters alpha and beta in Iwao's m * -m regression equation, the optimal and sequential sampling numbers were determined.
BOREAS HYD-3 Tree Measurements
NASA Technical Reports Server (NTRS)
Hardy, Janet P.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); David Robert E.; Smith, David E. (Technical Monitor)
2000-01-01
The BOREAS HYD-3 team collected several data sets related to the hydrology of forested areas. This data set contains measurements of canopy density (closure), stem density, and DBH from a variety of sites. Canopy density measurements were made during the FFC-W and FFC-T 1994 in both the SSA and the NSA. Stem density measurements were made during FFC-W 1996 in the SSA only. Canopy density measurements were made using a forest densiometer, while measurements of stem density and DBH were made using standard techniques. This study was undertaken to predict spatial distributions of energy transfer, snow properties important to the hydrology, remote sensing signatures, and transmissivity of gases through the snow and their relation to forests in boreal ecosystems. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
OpenMC In Situ Source Convergence Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldrich, Garrett Allen; Dutta, Soumya; Woodring, Jonathan Lee
2016-05-07
We designed and implemented an in situ version of particle source convergence for the OpenMC particle transport simulator. OpenMC is a Monte Carlo based-particle simulator for neutron criticality calculations. For the transport simulation to be accurate, source particles must converge on a spatial distribution. Typically, convergence is obtained by iterating the simulation by a user-settable, fixed number of steps, and it is assumed that convergence is achieved. We instead implement a method to detect convergence, using the stochastic oscillator for identifying convergence of source particles based on their accumulated Shannon Entropy. Using our in situ convergence detection, we are ablemore » to detect and begin tallying results for the full simulation once the proper source distribution has been confirmed. Our method ensures that the simulation is not started too early, by a user setting too optimistic parameters, or too late, by setting too conservative a parameter.« less
Inner membrane fusion mediates spatial distribution of axonal mitochondria
Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge
2016-01-01
In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817
NASA Astrophysics Data System (ADS)
Catelli, Emilio; Randeberg, Lise Lyngsnes; Alsberg, Bjørn Kåre; Gebremariam, Kidane Fanta; Bracci, Silvano
2017-04-01
Hyperspectral imaging (HSI) is a fast non-invasive imaging technology recently applied in the field of art conservation. With the help of chemometrics, important information about the spectral properties and spatial distribution of pigments can be extracted from HSI data. With the intent of expanding the applications of chemometrics to the interpretation of hyperspectral images of historical documents, and, at the same time, to study the colorants and their spatial distribution on ancient illuminated manuscripts, an explorative chemometric approach is here presented. The method makes use of chemometric tools for spectral de-noising (minimum noise fraction (MNF)) and image analysis (multivariate image analysis (MIA) and iterative key set factor analysis (IKSFA)/spectral angle mapper (SAM)) which have given an efficient separation, classification and mapping of colorants from visible-near-infrared (VNIR) hyperspectral images of an ancient illuminated fragment. The identification of colorants was achieved by extracting and interpreting the VNIR spectra as well as by using a portable X-ray fluorescence (XRF) spectrometer.
Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images.
Rajan, Jeny; Veraart, Jelle; Van Audekerke, Johan; Verhoye, Marleen; Sijbers, Jan
2012-12-01
Effective denoising is vital for proper analysis and accurate quantitative measurements from magnetic resonance (MR) images. Even though many methods were proposed to denoise MR images, only few deal with the estimation of true signal from MR images acquired with phased-array coils. If the magnitude data from phased array coils are reconstructed as the root sum of squares, in the absence of noise correlations and subsampling, the data is assumed to follow a non central-χ distribution. However, when the k-space is subsampled to increase the acquisition speed (as in GRAPPA like methods), noise becomes spatially varying. In this note, we propose a method to denoise multiple-coil acquired MR images. Both the non central-χ distribution and the spatially varying nature of the noise is taken into account in the proposed method. Experiments were conducted on both simulated and real data sets to validate and to demonstrate the effectiveness of the proposed method. Copyright © 2012 Elsevier Inc. All rights reserved.
Optimized growth and reorientation of anisotropic material based on evolution equations
NASA Astrophysics Data System (ADS)
Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus
2018-07-01
Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.
Fickler, Robert; Lapkiewicz, Radek; Huber, Marcus; Lavery, Martin P J; Padgett, Miles J; Zeilinger, Anton
2014-07-30
Photonics has become a mature field of quantum information science, where integrated optical circuits offer a way to scale the complexity of the set-up as well as the dimensionality of the quantum state. On photonic chips, paths are the natural way to encode information. To distribute those high-dimensional quantum states over large distances, transverse spatial modes, like orbital angular momentum possessing Laguerre Gauss modes, are favourable as flying information carriers. Here we demonstrate a quantum interface between these two vibrant photonic fields. We create three-dimensional path entanglement between two photons in a nonlinear crystal and use a mode sorter as the quantum interface to transfer the entanglement to the orbital angular momentum degree of freedom. Thus our results show a flexible way to create high-dimensional spatial mode entanglement. Moreover, they pave the way to implement broad complex quantum networks where high-dimensionally entangled states could be distributed over distant photonic chips.
Contributions to Climate Research Using the AIRS Science Team Version-5 Products
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula; Iredell, Lena
2011-01-01
This paper compares recent spatial anomaly time series of OLR (Outgoing Longwave Radiation) and OLRCLR (Clear Sky OLR) as determined using CERES and AIRS observations over the time period September 2002 through June 2010. We find excellent agreement in OLR anomaly time series of both data sets in almost every detail, down to the 1 x 1 spatial grid point level. This extremely close agreement of OLR anomaly time series derived from observations by two different instruments implies that both sets of results must be highly stable. This agreement also validates to some extent the anomaly time series of the AIRS derived products used in the computation of the AIRS OLR product. The paper then examines anomaly time series of AIRS derived products over the extended time period September 2002 through April 2011. We show that OLR anomalies during this period are closely in phase with those of an El Nino index, and that recent global and tropical mean decreases in OLR and OLR(sub CLR) are a result of a transition from an El Nino condition at the beginning of the data record to La Nina conditions toward the end of the data period. This relationship can be explained by temporal changes of the distribution of mid-tropospheric water vapor and cloud cover in two spatial regions that are in direct response to El Nino/La Nina activity which occurs outside these spatial regions
Very high elevation water ice clouds on Mars: Their morphology and temporal behavior
NASA Technical Reports Server (NTRS)
Jaquin, Fred
1988-01-01
Quantitative analysis of Viking images of the martian planetary limb has uncovered the existence and temporal behavior of water ice clouds that form between 50 and 90 km elevation. These clouds show a seasonal behavior that may be correlated with lower atmosphere dynamics. Enhanced vertical mixing of the atmosphere as Mars nears perihelion is hypothesized as the cause of the seasonal dependence, and the diurnal dependence is explained by the temporal behavior of the martian diurnal thermal tide. Viking images also provide a data set of the vertical distribution of aerosols in the martian atmosphere. The temporal and spatial distribution of aerosols are characterized.
Poincaré recurrence statistics as an indicator of chaos synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boev, Yaroslav I., E-mail: boev.yaroslav@gmail.com; Vadivasova, Tatiana E., E-mail: vadivasovate@yandex.ru; Anishchenko, Vadim S., E-mail: wadim@info.sgu.ru
The dynamics of the autonomous and non-autonomous Rössler system is studied using the Poincaré recurrence time statistics. It is shown that the probability distribution density of Poincaré recurrences represents a set of equidistant peaks with the distance that is equal to the oscillation period and the envelope obeys an exponential distribution. The dimension of the spatially uniform Rössler attractor is estimated using Poincaré recurrence times. The mean Poincaré recurrence time in the non-autonomous Rössler system is locked by the external frequency, and this enables us to detect the effect of phase-frequency synchronization.
2011-03-01
electromagnetic spectrum. With the availability of multispectral and hyperspectral systems, both spatial and spectral information for a scene are...an image. The boundary conditions for NDGRI and NDSI are set from diffuse spectral reflectance values for the range of skin types determined in [28...wearing no standard uniform and blending into the urban population. To assist with enemy detection and tracking, imaging systems that acquire spectral
Effects of errors and gaps in spatial data sets on assessment of conservation progress.
Visconti, P; Di Marco, M; Álvarez-Romero, J G; Januchowski-Hartley, S R; Pressey, R L; Weeks, R; Rondinini, C
2013-10-01
Data on the location and extent of protected areas, ecosystems, and species' distributions are essential for determining gaps in biodiversity protection and identifying future conservation priorities. However, these data sets always come with errors in the maps and associated metadata. Errors are often overlooked in conservation studies, despite their potential negative effects on the reported extent of protection of species and ecosystems. We used 3 case studies to illustrate the implications of 3 sources of errors in reporting progress toward conservation objectives: protected areas with unknown boundaries that are replaced by buffered centroids, propagation of multiple errors in spatial data, and incomplete protected-area data sets. As of 2010, the frequency of protected areas with unknown boundaries in the World Database on Protected Areas (WDPA) caused the estimated extent of protection of 37.1% of the terrestrial Neotropical mammals to be overestimated by an average 402.8% and of 62.6% of species to be underestimated by an average 10.9%. Estimated level of protection of the world's coral reefs was 25% higher when using recent finer-resolution data on coral reefs as opposed to globally available coarse-resolution data. Accounting for additional data sets not yet incorporated into WDPA contributed up to 6.7% of additional protection to marine ecosystems in the Philippines. We suggest ways for data providers to reduce the errors in spatial and ancillary data and ways for data users to mitigate the effects of these errors on biodiversity assessments. © 2013 Society for Conservation Biology.
Modelling the distribution of domestic ducks in Monsoon Asia
Van Bockel, Thomas P.; Prosser, Diann; Franceschini, Gianluca; Biradar, Chandra; Wint, William; Robinson, Tim; Gilbert, Marius
2011-01-01
Domestic ducks are considered to be an important reservoir of highly pathogenic avian influenza (HPAI), as shown by a number of geospatial studies in which they have been identified as a significant risk factor associated with disease presence. Despite their importance in HPAI epidemiology, their large-scale distribution in Monsoon Asia is poorly understood. In this study, we created a spatial database of domestic duck census data in Asia and used it to train statistical distribution models for domestic duck distributions at a spatial resolution of 1km. The method was based on a modelling framework used by the Food and Agriculture Organisation to produce the Gridded Livestock of the World (GLW) database, and relies on stratified regression models between domestic duck densities and a set of agro-ecological explanatory variables. We evaluated different ways of stratifying the analysis and of combining the prediction to optimize the goodness of fit of the predictions. We found that domestic duck density could be predicted with reasonable accuracy (mean RMSE and correlation coefficient between log-transformed observed and predicted densities being 0.58 and 0.80, respectively), using a stratification based on livestock production systems. We tested the use of artificially degraded data on duck distributions in Thailand and Vietnam as training data, and compared the modelled outputs with the original high-resolution data. This showed, for these two countries at least, that these approaches could be used to accurately disaggregate provincial level (administrative level 1) statistical data to provide high resolution model distributions.
Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David
2015-01-01
Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.
Scribner, Kim T.; Lowe, Winsor H.; Landguth, Erin L.; Luikart, Gordon; Infante, Dana M.; Whelan, Gary; Muhlfeld, Clint C.
2015-01-01
Environmental variation and landscape features affect ecological processes in fluvial systems; however, assessing effects at management-relevant temporal and spatial scales is challenging. Genetic data can be used with landscape models and traditional ecological assessment data to identify biodiversity hotspots, predict ecosystem responses to anthropogenic effects, and detect impairments to underlying processes. We show that by combining taxonomic, demographic, and genetic data of species in complex riverscapes, managers can better understand the spatial and temporal scales over which environmental processes and disturbance influence biodiversity. We describe how population genetic models using empirical or simulated genetic data quantify effects of environmental processes affecting species diversity and distribution. Our summary shows that aquatic assessment initiatives that use standardized data sets to direct management actions can benefit from integration of genetic data to improve the predictability of disturbance–response relationships of river fishes and their habitats over a broad range of spatial and temporal scales.
NASA Astrophysics Data System (ADS)
Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; Xiao, Kai; Ma, Ying-Zhong
2016-03-01
This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps (DAAMs) that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the data set comprising 68 time-resolved images into four DAAMs. These maps offer a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.
The Application of NASA Technology to Public Health
NASA Technical Reports Server (NTRS)
Rickman, Douglas L.; Watts, C.
2007-01-01
NASA scientists have a history of applying technologies created to handle satellite data to human health at various spatial scales. Scientists are now engaged in multiple public health application projects that integrate NASA satellite data with measures of public health. Such integration requires overcoming disparities between the environmental and the health data. Ground based sensors, satellite imagery, model outputs and other environmental sources have inconsistent spatial and temporal distributions. The MSFC team has recognized the approach used by environmental scientists to fill in the empty places can also be applied to outcomes, exposures and similar data. A revisit to the classic epidemiology study of 1854 using modern day surface modeling and GIS technology, demonstrates how spatial technology can enhance and change the future of environmental epidemiology. Thus, NASA brings to public health, not just a set of data, but an innovative way of thinking about the data.
Spatial patterns of phylogenetic diversity.
Morlon, Hélène; Schwilk, Dylan W; Bryant, Jessica A; Marquet, Pablo A; Rebelo, Anthony G; Tauss, Catherine; Bohannan, Brendan J M; Green, Jessica L
2011-02-01
Ecologists and conservation biologists have historically used species-area and distance-decay relationships as tools to predict the spatial distribution of biodiversity and the impact of habitat loss on biodiversity. These tools treat each species as evolutionarily equivalent, yet the importance of species' evolutionary history in their ecology and conservation is becoming increasingly evident. Here, we provide theoretical predictions for phylogenetic analogues of the species-area and distance-decay relationships. We use a random model of community assembly and a spatially explicit flora dataset collected in four Mediterranean-type regions to provide theoretical predictions for the increase in phylogenetic diversity - the total phylogenetic branch-length separating a set of species - with increasing area and the decay in phylogenetic similarity with geographic separation. These developments may ultimately provide insights into the evolution and assembly of biological communities, and guide the selection of protected areas. © 2010 Blackwell Publishing Ltd/CNRS.
NASA Technical Reports Server (NTRS)
Glick, B. J.
1985-01-01
Techniques for classifying objects into groups or clases go under many different names including, most commonly, cluster analysis. Mathematically, the general problem is to find a best mapping of objects into an index set consisting of class identifiers. When an a priori grouping of objects exists, the process of deriving the classification rules from samples of classified objects is known as discrimination. When such rules are applied to objects of unknown class, the process is denoted classification. The specific problem addressed involves the group classification of a set of objects that are each associated with a series of measurements (ratio, interval, ordinal, or nominal levels of measurement). Each measurement produces one variable in a multidimensional variable space. Cluster analysis techniques are reviewed and methods for incuding geographic location, distance measures, and spatial pattern (distribution) as parameters in clustering are examined. For the case of patterning, measures of spatial autocorrelation are discussed in terms of the kind of data (nominal, ordinal, or interval scaled) to which they may be applied.
Wen, Lu; Dong, Shi Kui; Li, Yuan Yuan; Sherman, Ruth; Shi, Jian Jun; Liu, De Mei; Wang, Yan Long; Ma, Yu Shou; Zhu, Lei
2013-10-01
Understanding the complex effects of biotic and abiotic factors on the composition of vegetation is very important for developing and implementing strategies for promoting sustainable grassland development. The vegetation-disturbance-environment relationship was examined in degraded alpine grasslands in the headwater areas of three rivers on the Qinghai-Tibet Plateau in this study. The investigated hypotheses were that (1) the heterogeneity of the vegetation of the alpine grassland is due to a combination of biotic and abiotic factors and that (2) at a small scale, biotic factors are more important for the distribution of alpine vegetation. On this basis, four transects were set along altitudinal gradients from 3,770 to 3,890 m on a sunny slope, and four parallel transects were set along altitudinal gradients on a shady slope in alpine grasslands in Guoluo Prefecture of Qinghai Province, China. It was found that biological disturbances were the major forces driving the spatial heterogeneity of the alpine grassland vegetation and abiotic factors were of secondary importance. Heavy grazing and intensive rat activity resulted in increases in unpalatable and poisonous weeds and decreased fine forages in the form of sedges, forbs, and grasses in the vegetation composition. Habitat degradation associated with biological disturbances significantly affected the spatial variation of the alpine grassland vegetation, i.e., more pioneer plants of poisonous or unpalatable weed species, such as Ligularia virgaurea and Euphorbia fischeriana, were found in bare patches. Environmental/abiotic factors were less important than biological disturbances in affecting the spatial distribution of the alpine grassland vegetation at a small scale. It was concluded that rat control and light grazing should be applied first in implementing restoration strategies. The primary vegetation in lightly grazed and less rat-damaged sites should be regarded as a reference for devising vegetation restoration measures in alpine pastoral regions.
Zhang, Zhenming; Zhou, Yunchao; Wang, Shijie
2018-01-01
Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS) technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km2, 4.50 km2, and 1.87 km2, respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content. PMID:29652811
Zhang, Zhenming; Zhou, Yunchao; Wang, Shijie; Huang, Xianfei
2018-04-13
Karst areas are typical ecologically fragile areas, and stony desertification has become the most serious ecological and economic problems in these areas worldwide as well as a source of disasters and poverty. A reasonable sampling scale is of great importance for research on soil science in karst areas. In this paper, the spatial distribution of stony desertification characteristics and its influencing factors in karst areas are studied at different sampling scales using a grid sampling method based on geographic information system (GIS) technology and geo-statistics. The rock exposure obtained through sampling over a 150 m × 150 m grid in the Houzhai River Basin was utilized as the original data, and five grid scales (300 m × 300 m, 450 m × 450 m, 600 m × 600 m, 750 m × 750 m, and 900 m × 900 m) were used as the subsample sets. The results show that the rock exposure does not vary substantially from one sampling scale to another, while the average values of the five subsamples all fluctuate around the average value of the entire set. As the sampling scale increases, the maximum value and the average value of the rock exposure gradually decrease, and there is a gradual increase in the coefficient of variability. At the scale of 150 m × 150 m, the areas of minor stony desertification, medium stony desertification, and major stony desertification in the Houzhai River Basin are 7.81 km², 4.50 km², and 1.87 km², respectively. The spatial variability of stony desertification at small scales is influenced by many factors, and the variability at medium scales is jointly influenced by gradient, rock content, and rock exposure. At large scales, the spatial variability of stony desertification is mainly influenced by soil thickness and rock content.
NASA Astrophysics Data System (ADS)
Chaney, N.; Wood, E. F.
2014-12-01
The increasing accessibility of high-resolution land data (< 100 m) and high performance computing allows improved parameterizations of subgrid hydrologic processes in macroscale land surface models. Continental scale fully distributed modeling at these spatial scales is possible; however, its practicality for operational use is still unknown due to uncertainties in input data, model parameters, and storage requirements. To address these concerns, we propose a modeling framework that provides the spatial detail of a fully distributed model yet maintains the benefits of a semi-distributed model. In this presentation we will introduce DTOPLATS-MP, a coupling between the NOAH-MP land surface model and the Dynamic TOPMODEL hydrologic model. This new model captures a catchment's spatial heterogeneity by clustering high-resolution land datasets (soil, topography, and land cover) into hundreds of hydrologic similar units (HSUs). A prior DEM analysis defines the connections between each HSU. At each time step, the 1D land surface model updates each HSU; the HSUs then interact laterally via the subsurface and surface. When compared to the fully distributed form of the model, this framework allows a significant decrease in computation and storage while providing most of the same information and enabling parameter transferability. As a proof of concept, we will show how this new modeling framework can be run over CONUS at a 30-meter spatial resolution. For each catchment in the WBD HUC-12 dataset, the model is run between 2002 and 2012 using available high-resolution continental scale land and meteorological datasets over CONUS (dSSURGO, NLCD, NED, and NCEP Stage IV). For each catchment, the model is run with 1000 model parameter sets obtained from a Latin hypercube sample. This exercise will illustrate the feasibility of running the model operationally at continental scales while accounting for model parameter uncertainty.
Ersoy, Adem; Yunsel, Tayfun Yusuf; Atici, Umit
2008-02-01
Abandoned mine workings can undoubtedly cause varying degrees of contamination of soil with heavy metals such as lead and zinc has occurred on a global scale. Exposure to these elements may cause to harm human health and environment. In the study, a total of 269 soil samples were collected at 1, 5, and 10 m regular grid intervals of 100 x 100 m area of Carsington Pasture in the UK. Cell declustering technique was applied to the data set due to no statistical representativity. Directional experimental semivariograms of the elements for the transformed data showed that both geometric and zonal anisotropy exists in the data. The most evident spatial dependence structure of the continuity for the directional experimental semivariogram, characterized by spherical and exponential models of Pb and Zn were obtained. This study reports the spatial distribution and uncertainty of Pb and Zn concentrations in soil at the study site using a probabilistic approach. The approach was based on geostatistical sequential Gaussian simulation (SGS), which is used to yield a series of conditional images characterized by equally probable spatial distributions of the heavy elements concentrations across the area. Postprocessing of many simulations allowed the mapping of contaminated and uncontaminated areas, and provided a model for the uncertainty in the spatial distribution of element concentrations. Maps of the simulated Pb and Zn concentrations revealed the extent and severity of contamination. SGS was validated by statistics, histogram, variogram reproduction, and simulation errors. The maps of the elements might be used in the remediation studies, help decision-makers and others involved in the abandoned heavy metal mining site in the world.
Precipitation From a Multiyear Database of Convection-Allowing WRF Simulations
NASA Astrophysics Data System (ADS)
Goines, D. C.; Kennedy, A. D.
2018-03-01
Convection-allowing models (CAMs) have become frequently used for operational forecasting and, more recently, have been utilized for general circulation model downscaling. CAM forecasts have typically been analyzed for a few case studies or over short time periods, but this limits the ability to judge the overall skill of deterministic simulations. Analysis over long time periods can yield a better understanding of systematic model error. Four years of warm season (April-August, 2010-2013)-simulated precipitation has been accumulated from two Weather Research and Forecasting (WRF) models with 4 km grid spacing. The simulations were provided by the National Center for Environmental Prediction (NCEP) and the National Severe Storms Laboratory (NSSL), each with different dynamic cores and parameterization schemes. These simulations are evaluated against the NCEP Stage-IV precipitation data set with similar 4 km grid spacing. The spatial distribution and diurnal cycle of precipitation in the central United States are analyzed using Hovmöller diagrams, grid point correlations, and traditional verification skill scoring (i.e., ETS; Equitable Threat Score). Although NCEP-WRF had a high positive error in total precipitation, spatial characteristics were similar to observations. For example, the spatial distribution of NCEP-WRF precipitation correlated better than NSSL-WRF for the Northern Plains. Hovmöller results exposed a delay in initiation and decay of diurnal precipitation by NCEP-WRF while both models had difficulty in reproducing the timing and location of propagating precipitation. ETS was highest for NSSL-WRF in all domains at all times. ETS was also higher in areas of propagating precipitation compared to areas of unorganized diurnal scattered precipitation. Monthly analysis identified unique differences between the two models in their abilities to correctly simulate the spatial distribution and zonal motion of precipitation through the warm season.
Automated delineation and characterization of drumlins using a localized contour tree approach
NASA Astrophysics Data System (ADS)
Wang, Shujie; Wu, Qiusheng; Ward, Dylan
2017-10-01
Drumlins are ubiquitous landforms in previously glaciated regions, formed through a series of complex subglacial processes operating underneath the paleo-ice sheets. Accurate delineation and characterization of drumlins are essential for understanding the formation mechanism of drumlins as well as the flow behaviors and basal conditions of paleo-ice sheets. Automated mapping of drumlins is particularly important for examining the distribution patterns of drumlins across large spatial scales. This paper presents an automated vector-based approach to mapping drumlins from high-resolution light detection and ranging (LiDAR) data. The rationale is to extract a set of concentric contours by building localized contour trees and establishing topological relationships. This automated method can overcome the shortcomings of previously manual and automated methods for mapping drumlins, for instance, the azimuthal biases during the generation of shaded relief images. A case study was carried out over a portion of the New York Drumlin Field. Overall 1181 drumlins were identified from the LiDAR-derived DEM across the study region, which had been underestimated in previous literature. The delineation results were visually and statistically compared to the manual digitization results. The morphology of drumlins was characterized by quantifying the length, width, elongation ratio, height, area, and volume. Statistical and spatial analyses were conducted to examine the distribution pattern and spatial variability of drumlin size and form. The drumlins and the morphologic characteristics exhibit significant spatial clustering rather than randomly distributed patterns. The form of drumlins varies from ovoid to spindle shapes towards the downstream direction of paleo ice flows, along with the decrease in width, area, and volume. This observation is in line with previous studies, which may be explained by the variations in sediment thickness and/or the velocity increases of ice flows towards ice front.
ESSG-based global spatial reference frame for datasets interrelation
NASA Astrophysics Data System (ADS)
Yu, J. Q.; Wu, L. X.; Jia, Y. J.
2013-10-01
To know well about the highly complex earth system, a large volume of, as well as a large variety of, datasets on the planet Earth are being obtained, distributed, and shared worldwide everyday. However, seldom of existing systems concentrates on the distribution and interrelation of different datasets in a common Global Spatial Reference Frame (GSRF), which holds an invisble obstacle to the data sharing and scientific collaboration. Group on Earth Obeservation (GEO) has recently established a new GSRF, named Earth System Spatial Grid (ESSG), for global datasets distribution, sharing and interrelation in its 2012-2015 WORKING PLAN.The ESSG may bridge the gap among different spatial datasets and hence overcome the obstacles. This paper is to present the implementation of the ESSG-based GSRF. A reference spheroid, a grid subdvision scheme, and a suitable encoding system are required to implement it. The radius of ESSG reference spheroid was set to the double of approximated Earth radius to make datasets from different areas of earth system science being covered. The same paramerters of positioning and orienting as Earth Centred Earth Fixed (ECEF) was adopted for the ESSG reference spheroid to make any other GSRFs being freely transformed into the ESSG-based GSRF. Spheroid degenerated octree grid with radius refiment (SDOG-R) and its encoding method were taken as the grid subdvision and encoding scheme for its good performance in many aspects. A triple (C, T, A) model is introduced to represent and link different datasets based on the ESSG-based GSRF. Finally, the methods of coordinate transformation between the ESSGbased GSRF and other GSRFs were presented to make ESSG-based GSRF operable and propagable.
Metabolic Flexibility as a Major Predictor of Spatial Distribution in Microbial Communities
Carbonero, Franck; Oakley, Brian B.; Purdy, Kevin J.
2014-01-01
A better understand the ecology of microbes and their role in the global ecosystem could be achieved if traditional ecological theories can be applied to microbes. In ecology organisms are defined as specialists or generalists according to the breadth of their niche. Spatial distribution is often used as a proxy measure of niche breadth; generalists have broad niches and a wide spatial distribution and specialists a narrow niche and spatial distribution. Previous studies suggest that microbial distribution patterns are contrary to this idea; a microbial generalist genus (Desulfobulbus) has a limited spatial distribution while a specialist genus (Methanosaeta) has a cosmopolitan distribution. Therefore, we hypothesise that this counter-intuitive distribution within generalist and specialist microbial genera is a common microbial characteristic. Using molecular fingerprinting the distribution of four microbial genera, two generalists, Desulfobulbus and the methanogenic archaea Methanosarcina, and two specialists, Methanosaeta and the sulfate-reducing bacteria Desulfobacter were analysed in sediment samples from along a UK estuary. Detected genotypes of both generalist genera showed a distinct spatial distribution, significantly correlated with geographic distance between sites. Genotypes of both specialist genera showed no significant differential spatial distribution. These data support the hypothesis that the spatial distribution of specialist and generalist microbes does not match that seen with specialist and generalist large organisms. It may be that generalist microbes, while having a wider potential niche, are constrained, possibly by intrageneric competition, to exploit only a small part of that potential niche while specialists, with far fewer constraints to their niche, are more capable of filling their potential niche more effectively, perhaps by avoiding intrageneric competition. We suggest that these counter-intuitive distribution patterns may be a common feature of microbes in general and represent a distinct microbial principle in ecology, which is a real challenge if we are to develop a truly inclusive ecology. PMID:24465487
Distribution and nature of UV absorbers on Trition's surface
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1995-01-01
Substantial evidence suggests that a UV (ultraviolet) Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.
Distribution and nature of UV absorbers on Triton's surface
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1995-01-01
Substantial evidence suggests that a UV spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAMs exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SaM material. We hope to determine if UV-SAMs on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAMs has been determined, further constraints on their composition cable made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.
Distribution and nature of UV absorbers on Triton's surface
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1994-01-01
Substantial evidence suggests that a UV Spectrally Absorbing Material (UV-SAM) exists on Triton's surface. This evidence is found in the positive slope in Triton's spectrum from the UV to the near-IR, and the increasing contrast in Triton's light curve in the blue and UV. Although it is now widely-thought that UV-SAM's exist on Triton, little is known about their distribution and spectral properties. The goal of this NDAP Project is to determine the spatial distribution and geological context of the UV-SAM material. We hope to determine if UV-SAM's on Triton are correlated with geologic wind streaks, craters, calderas, geomorphic/topographic units, regions containing (or lacking) volatile frosts, or some other process (e.g., magnetospheric interactions). Once the location and distribution of UV-SAM's has been determined, further constraints on their composition can be made by analyzing the spectrographic data set. To accomplish these goals, various data sets will be used, including Voyager 2 UV and visible images of Triton's surface, IUE and HST spectra of Triton, and a geologic map of the surface based on Voyager 2 and spectrophotometric data. The results of this research will be published in the planetary science literature.
The spatial distribution of cropland carbon transfer in Jilin province during 2014
NASA Astrophysics Data System (ADS)
Cai, Xintong; Meng, Jian; Li, Qiuhui; Gao, Shuang; Zhu, Xianjin
2018-01-01
Cropland carbon transfer (CCT, gC yr-1) is an important component in the carbon budget of terrestrial ecosystems. Analyzing the value of CCT and its spatial variation would provide a data basis for assessing the regional carbon balance. Based on the data from Jilin statistical yearbook 2015, we investigated the spatial variation of CCT in Jilin province during 2014. Results suggest that the CCT of Jilin province was 30.83 TgC, which exhibited a decreasing trend from the centre to the border but the west side was higher than the east. The magnitude of carbon transfer per area (MCT), which showed a similar spatial distribution with CCT, was the dominating component of CCT spatial distribution. The spatial distribution of MCT was jointly affected by that of the ratio of planting area to regional area (RPR) and carbon transfer per planting area (CTP), where RPR and CTP contributed 65.55% and 34.5% of MCT spatial distribution, respectively. Therefore, CCT in Jilin province spatially varied, which made it highly needed to consider the difference in CCT among regions when we assessing the regional carbon budget.
Search for new physics with dijet angular distributions in proton-proton collisions at √{s}=13 TeV
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Bakhshiansohi, H.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Tsiakkouri, D.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; SchoernerSadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Poehlsen, J.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Ali, M. A. B. Md; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Alexakhin, V.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Chistov, R.; Polikarpov, S.; Zhemchugov, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Duarte, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Jung, K.; Sandoval Gonzalez, I. D.; Varelas, N.; Wang, H.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Kenny, R. P.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Takaki, J. D. Tapia; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Kumar, A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Shi, X.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Elayavalli, R. Kunnawalkam; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.
2017-07-01
A search is presented for extra spatial dimensions, quantum black holes, and quark contact interactions in measurements of dijet angular distributions in proton-proton collisions at √{s}=13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 2.6 fb-1. The distributions are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Limits for different contact interaction models are obtained. In a benchmark model, valid to next-to-leading order in QCD and in which only left-handed quarks participate, quark contact interactions are excluded up to a scale of 11.5 and 14.7 TeV for destructive or constructive interference, respectively. The production of quantum black holes is excluded for masses below 7.8 or 5.3 TeV, depending on the model. The lower limits for the scales of virtual graviton exchange in the Arkani-Hamed-Dimopoulos-Dvali model of extra spatial dimensions are in the range 7.9-11.2 TeV, and are the most stringent set of limits available.
Sirunyan, Albert M.
2017-07-05
A search is presented for extra spatial dimensions, quantum black holes, and quark contact interactions in measurements of dijet angular distributions in proton-proton collisions at √s = 13 TeV. The data were collected with the CMS detector at the LHC and correspond to an integrated luminosity of 2.6 fb –1. The distributions are found to be in agreement with predictions from perturbative quantum chromodynamics that include electroweak corrections. Limits for different contact interaction models are obtained in a benchmark model, valid to next-to-leading order in QCD, in which only left-handed quarks participate, with quark contact interactions excluded up to amore » scale of 11.5 or 14.7 TeV for destructive or constructive interference, respectively. The production of quantum black holes is excluded for masses below 7.8 or 5.3 TeV, depending on the model. Finally, the lower limits for the scales of virtual graviton exchange in the Arkani-Hamed--Dimopoulos--Dvali model of extra spatial dimensions are in the range 7.9-11.2 TeV, and are the most stringent set of limits available.« less
Characteristic and intermingled neocortical circuits encode different visual object discriminations.
Zhang, Guo-Rong; Zhao, Hua; Cook, Nathan; Svestka, Michael; Choi, Eui M; Jan, Mary; Cook, Robert G; Geller, Alfred I
2017-07-28
Synaptic plasticity and neural network theories hypothesize that the essential information for advanced cognitive tasks is encoded in specific circuits and neurons within distributed neocortical networks. However, these circuits are incompletely characterized, and we do not know if a specific discrimination is encoded in characteristic circuits among multiple animals. Here, we determined the spatial distribution of active neurons for a circuit that encodes some of the essential information for a cognitive task. We genetically activated protein kinase C pathways in several hundred spatially-grouped glutamatergic and GABAergic neurons in rat postrhinal cortex, a multimodal associative area that is part of a distributed circuit that encodes visual object discriminations. We previously established that this intervention enhances accuracy for specific discriminations. Moreover, the genetically-modified, local circuit in POR cortex encodes some of the essential information, and this local circuit is preferentially activated during performance, as shown by activity-dependent gene imaging. Here, we mapped the positions of the active neurons, which revealed that two image sets are encoded in characteristic and different circuits. While characteristic circuits are known to process sensory information, in sensory areas, this is the first demonstration that characteristic circuits encode specific discriminations, in a multimodal associative area. Further, the circuits encoding the two image sets are intermingled, and likely overlapping, enabling efficient encoding. Consistent with reconsolidation theories, intermingled and overlapping encoding could facilitate formation of associations between related discriminations, including visually similar discriminations or discriminations learned at the same time or place. Copyright © 2017 Elsevier B.V. All rights reserved.
Turner, D.P.; Dodson, R.; Marks, D.
1996-01-01
Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the study of the potential impacts of climate change.
Robust geostatistical analysis of spatial data
NASA Astrophysics Data System (ADS)
Papritz, A.; Künsch, H. R.; Schwierz, C.; Stahel, W. A.
2012-04-01
Most of the geostatistical software tools rely on non-robust algorithms. This is unfortunate, because outlying observations are rather the rule than the exception, in particular in environmental data sets. Outlying observations may results from errors (e.g. in data transcription) or from local perturbations in the processes that are responsible for a given pattern of spatial variation. As an example, the spatial distribution of some trace metal in the soils of a region may be distorted by emissions of local anthropogenic sources. Outliers affect the modelling of the large-scale spatial variation, the so-called external drift or trend, the estimation of the spatial dependence of the residual variation and the predictions by kriging. Identifying outliers manually is cumbersome and requires expertise because one needs parameter estimates to decide which observation is a potential outlier. Moreover, inference after the rejection of some observations is problematic. A better approach is to use robust algorithms that prevent automatically that outlying observations have undue influence. Former studies on robust geostatistics focused on robust estimation of the sample variogram and ordinary kriging without external drift. Furthermore, Richardson and Welsh (1995) [2] proposed a robustified version of (restricted) maximum likelihood ([RE]ML) estimation for the variance components of a linear mixed model, which was later used by Marchant and Lark (2007) [1] for robust REML estimation of the variogram. We propose here a novel method for robust REML estimation of the variogram of a Gaussian random field that is possibly contaminated by independent errors from a long-tailed distribution. It is based on robustification of estimating equations for the Gaussian REML estimation. Besides robust estimates of the parameters of the external drift and of the variogram, the method also provides standard errors for the estimated parameters, robustified kriging predictions at both sampled and unsampled locations and kriging variances. The method has been implemented in an R package. Apart from presenting our modelling framework, we shall present selected simulation results by which we explored the properties of the new method. This will be complemented by an analysis of the Tarrawarra soil moisture data set [3].
NASA Astrophysics Data System (ADS)
Linderman, Marc Alan
We examined an approach to classifying understory bamboo, the staple food of the giant panda (Ailuropoda melanoleuca), from remote sensing imagery in the Wolong Nature Reserve, China. We also used these data to estimate the landscape-scale distribution of giant panda habitat, and model the human effects on forest cover and the spatio-temporal dynamics of bamboo and the resulting implications for giant panda habitat. The spatial distribution of understory bamboo was mapped using an artificial neural network and leaf-on remote sensing data. Training on a limited set of ground truth data and using widely available Landsat TM data as input, a non-linear artificial neural network achieved a classification accuracy of 80% despite the presence of co-occurring mid-story and understory vegetation. Using information on the spatial distribution of bamboo in Wolong, we compared the results of giant panda habitat analyses with and without bamboo information. Total amount of habitat decreased by 29--56% and overall habitat patch size decreased by 16--48% after bamboo information was incorporated into the analyses. The decreases in the quantity of panda habitat and increases in habitat fragmentation resulted in decreases of 41--60% in carrying capacity. Using a spatio-temporal model of bamboo dynamics and human activities, we found that local fuelwood collection and household creation will likely reduce secondary habitat relied upon by pandas. Human impacts would likely contribute up to an additional 16% loss of habitat. Furthermore, these impacts primarily occur in the habitat relied upon by giant pandas during past bamboo die-offs. Decreased total area of habitat and increased fragmentation from human activities will likely make giant pandas increasingly sensitive to natural disturbances such as cyclical bamboo die-offs. Our studies suggest that it is necessary to further examine approaches to monitor understory vegetation and incorporate understory information into wildlife habitat research and management. The success here to map bamboo has important implications for giant panda conservation and provides a good foundation for developing methods to map the spatial distributions of understory plant species. Knowledge of the spatial distribution of bamboo is necessary to accurately measure the quantity and landscape characteristics of giant panda habitat. (Abstract shortened by UMI.)
Diversity and distribution of deep-sea shrimps in the Ross Sea region of Antarctica.
Basher, Zeenatul; Bowden, David A; Costello, Mark J
2014-01-01
Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be considered both in the use of species distribution models.
Diversity and Distribution of Deep-Sea Shrimps in the Ross Sea Region of Antarctica
Basher, Zeenatul; Bowden, David A.; Costello, Mark J.
2014-01-01
Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be considered both in the use of species distribution models. PMID:25051333
NASA Astrophysics Data System (ADS)
Morgavi, D.; Ielpo, M.; Valentini, L.; Laeger, K.; Paredes, J.; Petrelli, M.; Costa, A.; Perugini, D.
2015-12-01
The Secche di Lazzaro formation (7 Ka) is a phreatomagmatic deposit in the south-western part of the island of Stromboli (Aeolian Archipelago, Italy). The volcanic sequence is constituted by three main sub-units. In two of them abundant accretionary lapilli are present. We performed granulometric analysis to describe the spatial arrangement and the grain-size distribution of the lapilli inside the deposit. Lapilli were characterized by SEM investigations (BSE images). EMPA and LA-ICP-MS analyses of major and trace elements on glasses and minerals were performed. Although BSE images provide accurate morphological information, they do not allow the real 3D microstructure to be accessed. Therefore, non-invasive 3D imaging of the lapilli was performed by X-ray micro-tomography (X-mCT). The results of the X-mCT measurements provided a set of 2D cross-sectional slices stacked along the vertical axis, with a voxel size varying between 2.7 and 4.1 mm, depending on the size of the sample. The X-mCT images represent a mapping of X-ray attenuation, which in turn depends on the density of the phases distributed within the sample. This technique helped us to better constrain the particle and crystal distribution inside the accretionary lapilli. The recognized phases are: glass, clinopyroxene, plagioclase and Ti-Fe minerals. We discover also a high concentration of Na, Cl and SO3 in the ash matrix. This evidence is ubiquitous in all the accretionary lapilli. The work presented here could define a new route for future studies in the field of physical volcanology as X-ray micro-tomography could be a useful, non destructive technique to better characterize the internal structure of accretionary lapilli helping us to describe grain-size distribution of component particles and their spatial distribution within aggregates.
NASA Astrophysics Data System (ADS)
Betterle, A.; Radny, D.; Schirmer, M.; Botter, G.
2017-12-01
The spatial correlation of daily streamflows represents a statistical index encapsulating the similarity between hydrographs at two arbitrary catchment outlets. In this work, a process-based analytical framework is utilized to investigate the hydrological drivers of streamflow spatial correlation through an extensive application to 78 pairs of stream gauges belonging to 13 unregulated catchments in the eastern United States. The analysis provides insight on how the observed heterogeneity of the physical processes that control flow dynamics ultimately affect streamflow correlation and spatial patterns of flow regimes. Despite the variability of recession properties across the study catchments, the impact of heterogeneous drainage rates on the streamflow spatial correlation is overwhelmed by the spatial variability of frequency and intensity of effective rainfall events. Overall, model performances are satisfactory, with root mean square errors between modeled and observed streamflow spatial correlation below 10% in most cases. We also propose a method for estimating streamflow correlation in the absence of discharge data, which proves useful to predict streamflow regimes in ungauged areas. The method consists in setting a minimum threshold on the modeled flow correlation to individuate hydrologically similar sites. Catchment outlets that are most correlated (ρ>0.9) are found to be characterized by analogous streamflow distributions across a broad range of flow regimes.
Hahn, D.C.; O'Connor, R.J.; Scott, J. Michael; Heglund, Patricia J.; Morrison, Michael L.; Haufler, Jonathan B.; Wall, William A.
2002-01-01
Avian species distributions are typically regarded as constrained by spatially extensive variables such as climate, habitat, spatial patchiness, and microhabitat attributes. We hypothesized that the distribution of a brood parasite depends as strongly on host distribution patterns as on biophysical factors and examined this hypothesis with respect to the national distribution of the Brown-headed Cowbird (Molothrus ater). We applied a classification and regression (CART) analysis to data from the Breeding Bird Survey (BBS) and the Christmas Bird Count (CBC) and derived hierarchically organized statistical models of the influence of climate and weather, cropping and land use, and host abundance and distribution on the distribution of the Brown-headed Cowbird within the conterminous United States. The model accounted for 47.2% of the variation in cowbird incidence, and host abundance was the top predictor with an R2 of 18.9%. The other predictors identified by the model (crops 15.7%, weather and climate 14.3%, and region 9.6%) fit the ecological profile of this cowbird. We showed that host abundance was independent of these environmental predictors of cowbird distribution. At the regional scale host abundance played a very strong role in determining cowbird abundance in the cowbird?s colonized range east and west of their ancestral range in the Great Plains (26.6%). Crops were not a major predictor for cowbirds in their ancestral range, although they are the most important predictive factor (33%) for the grassland passerines that are the cowbird?s ancestral hosts. Consequently our findings suggest that the distribution of hosts does indeed take precedence over habitat attributes in shaping the cowbird?s distribution at a national scale, within an envelope of constraint set by biophysical factors.
Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions
NASA Astrophysics Data System (ADS)
Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.
2017-04-01
We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.
NASA Astrophysics Data System (ADS)
Stieglitz, T. C.; Burnett, W. C.; Rapaglia, J.
2008-12-01
Submarine groundwater discharge (SGD) is now increasingly recognized as an important component in the water balance, water quality and ecology of the coastal zone. A multitude of methods are currently employed to study SGD, ranging from point flux measurements with seepage meters to methods integrating over various spatial and temporal scales such as hydrological models, geophysical techniques or surface water tracer approaches. From studies in a large variety of hydrogeological settings, researchers in this field have come to expect that SGD is rarely uniformly distributed. Here we discuss the application of: (a) the mapping of subsurface electrical conductivity in a discharge zone on a beach; and (b) the large-scale mapping of radon in coastal surface water to improving our understanding of SGD and its spatial variability. On a beach scale, as part of intercomparison studies of a UNESCO/IAEA working group, mapping of subsurface electrical conductivity in a beach face have elucidated the non-uniform distribution of SGD associated with rock fractures, volcanic settings and man-made structures (e.g., piers, jetties). Variations in direct point measurements of SGD flux with seepage meters were linked to the subsurface conductivity distribution. We demonstrate how the combination of these two techniques may complement one another to better constrain SGD measurements. On kilometer to hundred kilometer scales, the spatial distribution and regional importance of SGD can be investigated by mapping relevant tracers in the coastal ocean. The radon isotope Rn-222 is a commonly used tracer for SGD investigations due to its significant enrichment in groundwater, and continuous mapping of this tracer, in combination with ocean water salinity, can be used to efficiently infer locations of SGD along a coastline on large scales. We use a surface-towed, continuously recording multi-detector setup installed on a moving vessel. This tool was used in various coastal environments, e.g. in Florida, Brazil, Mauritius and Australia's Great Barrier Reef lagoon. From shore-parallel transects along the Central Great Barrier Reef coastline, numerous processes and locations of SGD were identified, including terrestrially-derived fresh SGD and the recirculation of seawater in mangrove forests, as well as riverine sources. From variations in the inverse relationship of the two tracers radon and salinity, some aspects of regional freshwater input into the lagoon during the tropical wet season could be assessed. Such surveys on coastal scales can be a useful tool to obtain an overview of locations and processes of SGD on an unknown coastline.
Development and relationship of monogenetic and polygenetic volcanic fields in time and space.
NASA Astrophysics Data System (ADS)
Germa, Aurelie; Connor, Chuck; Connor, Laura; Malservisi, Rocco
2013-04-01
The classification of volcanic systems, developed by G. P. L. Walker and colleagues, relates volcano morphology to magma transport and eruption processes. In general, distributed monogenetic volcanic fields are characterized by infrequent eruptions, low average output rate, and a low spatial intensity of the eruptive vents. In contrast, central-vent-dominated systems, such as stratovolcanoes, central volcanoes and lava shields are characterized by frequent eruptions, higher average flux rates, and higher spatial intensity of eruptive vents. However, it has been observed that a stratovolcano is often associated to parasitic monogenetic vents on its flanks, related to the central silicic systems, and surrounded by an apron of monogenetic edifices that are part of the volcanic field but independent from the principal central system. It appears from spatial distribution and time-volume relationships that surface area of monogenetic fields reflects the lateral extent of the magma source region and the lack of magma focusing mechanisms. In contrast, magma is focused through a unique conduit system for polygenetic volcanoes, provided by a thermally and mechanically favorable pathway toward the surface that is maintained by frequent and favorable stress conditions. We plan to relate surface observations of spatio-temporal location of eruptive vents and evolution of the field area through time to processes that control magma focusing during ascent and storage in the crust. We choose to study fields that range from dispersed to central-vent dominated, through transitional fields (central felsic system with peripheral field of monogenetic vents independent from the rhyolitic system). We investigate different well-studied volcanic fields in the Western US and Western Europe in order to assess influence of the geodynamic setting and tectonic stress on the spatial distribution of magmatism. In summary, incremental spatial intensity maps should reveal how fast a central conduit is created during the development of a volcanic field, and how this could influence the outbreak of dispersed monogenetic volcanoes that are not geochemically linked to the central system.
NASA Astrophysics Data System (ADS)
Du, Y.; Fan, X.; He, Z.; Su, F.; Zhou, C.; Mao, H.; Wang, D.
2011-06-01
In this paper, a rough set theory is introduced to represent spatial-temporal relationships and extract the corresponding rules from typical mesoscale-eddy states in the South China Sea (SCS). Three decision attributes are adopted in this study, which make the approach flexible in retrieving spatial-temporal rules with different features. Spatial-temporal rules of typical states in the SCS are extracted as three decision attributes, which then are confirmed by the previous works. The results demonstrate that this approach is effective in extracting spatial-temporal rules from typical mesoscale-eddy states, and therefore provides a powerful approach to forecasts in the future. Spatial-temporal rules in the SCS indicate that warm eddies following the rules are generally in the southeastern and central SCS around 2000 m isobaths in winter. Their intensity and vorticity are weaker than those of cold eddies. They usually move a shorter distance. By contrast, cold eddies are in 2000 m-deeper regions of the southwestern and northeastern SCS in spring and fall. Their intensity and vorticity are strong. Usually they move a long distance. In winter, a few rules are followed by cold eddies in the northern tip of the basin and southwest of Taiwan Island rather than warm eddies, indicating cold eddies may be well-regulated in the region. Several warm-eddy rules are achieved west of Luzon Island, indicating warm eddies may be well-regulated in the region as well. Otherwise, warm and cold eddies are distributed not only in the jet flow off southern Vietnam induced by intraseasonal wind stress in summer-fall, but also in the northern shallow water, which should be a focus of future study.
Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric
2016-01-01
Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance hierarchy are related to spatial positions in primates. PMID:27199845
Naud, Alexandre; Chailleux, Eloise; Kestens, Yan; Bret, Céline; Desjardins, Dominic; Petit, Odile; Ngoubangoye, Barthélémy; Sueur, Cédric
2016-01-01
Although there exist advantages to group-living in comparison to a solitary lifestyle, costs and gains of group-living may be unequally distributed among group members. Predation risk, vigilance levels and food intake may be unevenly distributed across group spatial geometry and certain within-group spatial positions may be more or less advantageous depending on the spatial distribution of these factors. In species characterized with dominance hierarchy, high-ranking individuals are commonly observed in advantageous spatial position. However, in complex social systems, individuals can develop affiliative relationships that may balance the effect of dominance relationships in individual's spatial distribution. The objective of the present study is to investigate how the group spatial distribution of a semi-free ranging colony of Mandrills relates to its social organization. Using spatial observations in an area surrounding the feeding zone, we tested the three following hypothesis: (1) does dominance hierarchy explain being observed in proximity or far from a food patch? (2) Do affiliative associations also explain being observed in proximity or far from a food patch? (3) Do the differences in rank in the group hierarchy explain being co-observed in proximity of a food patch? Our results showed that high-ranking individuals were more observed in proximity of the feeding zone while low-ranking individuals were more observed at the boundaries of the observation area. Furthermore, we observed that affiliative relationships were also associated with individual spatial distributions and explain more of the total variance of the spatial distribution in comparison with dominance hierarchy. Finally, we found that individuals observed at a same moment in proximity of the feeding zone were more likely to be distant in the hierarchy while controlling for maternal kinship, age and sex similarity. This study brings some elements about how affiliative networks and dominance hierarchy are related to spatial positions in primates.
Comparing two tools for ecosystem service assessments regarding water resources decisions.
Dennedy-Frank, P James; Muenich, Rebecca Logsdon; Chaubey, Indrajeet; Ziv, Guy
2016-07-15
We present a comparison of two ecohydrologic models commonly used for planning land management to assess the production of hydrologic ecosystem services: the Soil and Water Assessment Tool (SWAT) and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) annual water yield model. We compare these two models at two distinct sites in the US: the Wildcat Creek Watershed in Indiana and the Upper Upatoi Creek Watershed in Georgia. The InVEST and SWAT models provide similar estimates of the spatial distribution of water yield in Wildcat Creek, but very different estimates of the spatial distribution of water yield in Upper Upatoi Creek. The InVEST model may do a poor job estimating the spatial distribution of water yield in the Upper Upatoi Creek Watershed because baseflow provides a significant portion of the site's total water yield, which means that storage dynamics which are not modeled by InVEST may be important. We also compare the ability of these two models, as well as one newly developed set of ecosystem service indices, to deliver useful guidance for land management decisions focused on providing hydrologic ecosystem services in three particular decision contexts: environmental flow ecosystem services, ecosystem services for potable water supply, and ecosystem services for rainfed irrigation. We present a simple framework for selecting models or indices to evaluate hydrologic ecosystem services as a way to formalize where models deliver useful guidance. Copyright © 2016 Elsevier Ltd. All rights reserved.
Estimating recharge at Yucca Mountain, Nevada, USA: Comparison of methods
Flint, A.L.; Flint, L.E.; Kwicklis, E.M.; Fabryka-Martin, J. T.; Bodvarsson, G.S.
2002-01-01
Obtaining values of net infiltration, groundwater travel time, and recharge is necessary at the Yucca Mountain site, Nevada, USA, in order to evaluate the expected performance of a potential repository as a containment system for high-level radioactive waste. However, the geologic complexities of this site, its low precipitation and net infiltration, with numerous mechanisms operating simultaneously to move water through the system, provide many challenges for the estimation of the spatial distribution of recharge. A variety of methods appropriate for arid environments has been applied, including water-balance techniques, calculations using Darcy's law in the unsaturated zone, a soil-physics method applied to neutron-hole water-content data, inverse modeling of thermal profiles in boreholes extending through the thick unsaturated zone, chloride mass balance, atmospheric radionuclides, and empirical approaches. These methods indicate that near-surface infiltration rates at Yucca Mountain are highly variable in time and space, with local (point) values ranging from zero to several hundred millimeters per year. Spatially distributed net-infiltration values average 5 mm/year, with the highest values approaching 20 mm/year near Yucca Crest. Site-scale recharge estimates range from less than 1 to about 12 mm/year. These results have been incorporated into a site-scale model that has been calibrated using these data sets that reflect infiltration processes acting on highly variable temporal and spatial scales. The modeling study predicts highly non-uniform recharge at the water table, distributed significantly differently from the non-uniform infiltration pattern at the surface.
A new vehicle emission inventory for China with high spatial and temporal resolution
NASA Astrophysics Data System (ADS)
Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.
2013-12-01
This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions (CO, NMHC, NOx, and PM2.5) for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.
Bryan, Brett Anthony; Raymond, Christopher Mark; Crossman, Neville David; King, Darran
2011-02-01
Consideration of the social values people assign to relatively undisturbed native ecosystems is critical for the success of science-based conservation plans. We used an interview process to identify and map social values assigned to 31 ecosystem services provided by natural areas in an agricultural landscape in southern Australia. We then modeled the spatial distribution of 12 components of ecological value commonly used in setting spatial conservation priorities. We used the analytical hierarchy process to weight these components and used multiattribute utility theory to combine them into a single spatial layer of ecological value. Social values assigned to natural areas were negatively correlated with ecological values overall, but were positively correlated with some components of ecological value. In terms of the spatial distribution of values, people valued protected areas, whereas those natural areas underrepresented in the reserve system were of higher ecological value. The habitats of threatened animal species were assigned both high ecological value and high social value. Only small areas were assigned both high ecological value and high social value in the study area, whereas large areas of high ecological value were of low social value, and vice versa. We used the assigned ecological and social values to identify different conservation strategies (e.g., information sharing, community engagement, incentive payments) that may be effective for specific areas. We suggest that consideration of both ecological and social values in selection of conservation strategies can enhance the success of science-based conservation planning. ©2010 Society for Conservation Biology.
Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate
Stige, Leif Christian; Yaragina, Natalia A.; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr.; Ottersen, Geir
2017-01-01
Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment–temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959−1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts. PMID:28115694
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; Berk, H. L.; Guo, Zehua; McDevitt, C. J.
2014-03-01
Across a transition layer of disparate plasma temperatures, the high energy tail of the plasma distribution can have appreciable deviations from the local Maxwellian distribution due to the Knudson layer effect. The Fokker-Planck equation for the tail particle population can be simplified in a series of practically useful limiting cases. The first is the approximation of background Maxwellian distribution for linearizing the collision operator. The second is the supra-thermal particle speed ordering of vTi ≪ v ≪ vTe for the tail ions and vTi ≪ vTe ≪ v for the tail electrons. Keeping both the collisional drag and energy scattering is essential for the collision operator to produce a Maxwellian tail distribution. The Fokker-Planck model for following the tail ion distribution for a given background plasma profile is explicitly worked out for systems of one spatial dimension, in both slab and spherical geometry. A third simplification is an expansion of the tail particle distribution using the spherical harmonics, which are eigenfunctions of the pitch angle scattering operator. This produces a set of coupled Fokker-Planck equations that contain energy-dependent spatial diffusion terms in two coordinates (position and energy), which originate from pitch angle scattering in the original Fokker-Planck equation. It is shown that the well-known diffusive Fokker-Planck model is a poor approximation of the two-mode truncation model, which itself has fundamental deficiency compared with the three-mode truncation model. The cause is the lack of even-symmetry representation in pitch dependence in the two-mode truncation model.
NASA Astrophysics Data System (ADS)
Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami
2012-03-01
There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (<0.3 mm shell length, indicative of settlement patterns) in relation to physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.
NASA Astrophysics Data System (ADS)
Kwon, Jihun; Sutherland, Kenneth; Hashimoto, Takayuki; Shirato, Hiroki; Date, Hiroyuki
2016-10-01
Gold nanoparticles (GNPs) have been recognized as a promising candidate for a radiation sensitizer. A proton beam incident on a GNP can produce secondary electrons, resulting in an enhancement of the dose around the GNP. However, little is known about the spatial distribution of dose enhancement around the GNP, especially in the direction along the incident proton. The purpose of this study is to determine the spatial distribution of dose enhancement by taking the incident direction into account. Two steps of calculation were conducted using the Geant4 Monte Carlo simulation toolkit. First, the energy spectra of 100 and 195 MeV protons colliding with a GNP were calculated at the Bragg peak and three other depths around the peak in liquid water. Second, the GNP was bombarded by protons with the obtained energy spectra. Radial dose distributions were computed along the incident beam direction. The spatial distributions of the dose enhancement factor (DEF) and subtracted dose (Dsub) were then evaluated. The spatial DEF distributions showed hot spots in the distal radial region from the proton beam axis. The spatial Dsub distribution isotropically spread out around the GNP. Low energy protons caused higher and wider dose enhancement. The macroscopic dose enhancement in clinical applications was also evaluated. The results suggest that the consideration of the spatial distribution of GNPs in treatment planning will maximize the potential of GNPs.
Spatial Distribution of Surface Soil Moisture in a Small Forested Catchment
Predicting the spatial distribution of soil moisture is an important hydrological question. We measured the spatial distribution of surface soil moisture (upper 6 cm) using an Amplitude Domain Reflectometry sensor at the plot scale (2 × 2 m) and small catchment scale (0.84 ha) in...
Chen, Lyu Feng; Zhu, Guo Ping
2018-03-01
Based on Antarctic krill fishery and marine environmental data collected by scientific observers, using geographically weighted regression (GWR) model, we analyzed the effects of the factors with spatial attributes, i.e., depth of krill swarm (DKS) and distance from fishing position to shore (DTS), and sea surface temperature (SST), on the spatial distribution of fishing ground in the northern South Shetland Islands. The results showed that there was no significant aggregation in spatial distribution of catch per unit fishing effort (CPUE). Spatial autocorrelations (positive) among three factors were observed in 2010 and 2013, but were not in 2012 and 2016. Results from GWR model showed that the extent for the impacts on spatial distribution of CPUEs varied among those three factors, following the order DKS>SST>DTS. Compared to the DKS and DTS, the impact of SST on the spatial distribution of CPUEs presented adverse trend in the eastern and western parts of the South Shetland Islands. Negative correlations occurred for the spatial effects of DKS and DTS on distribution of CPUEs, though with inter-annual and regional variation. Our results provide metho-dological reference for researches on the underlying mechanism for fishing ground formation for Antarctic krill fishery.
Muška, Milan; Tušer, Michal; Frouzová, Jaroslava; Mrkvička, Tomáš; Ricard, Daniel; Seďa, Jaromír; Morelli, Federico; Kubečka, Jan
2018-03-29
Understanding spatial distribution of organisms in heterogeneous environment remains one of the chief issues in ecology. Spatial organization of freshwater fish was investigated predominantly on large-scale, neglecting important local conditions and ecological processes. However, small-scale processes are of an essential importance for individual habitat preferences and hence structuring trophic cascades and species coexistence. In this work, we analysed the real-time spatial distribution of pelagic freshwater fish in the Římov Reservoir (Czechia) observed by hydroacoustics in relation to important environmental predictors during 48 hours at 3-h interval. Effect of diurnal cycle was revealed of highest significance in all spatial models with inverse trends between fish distribution and predictors in day and night in general. Our findings highlighted daytime pelagic fish distribution as highly aggregated, with general fish preferences for central, deep and highly illuminated areas, whereas nighttime distribution was more disperse and fish preferred nearshore steep sloped areas with higher depth. This turnover suggests prominent movements of significant part of fish assemblage between pelagic and nearshore areas on a diel basis. In conclusion, hydroacoustics, GIS and spatial modelling proved as valuable tool for predicting local fish distribution and elucidate its drivers, which has far reaching implications for understanding freshwater ecosystem functioning.
Rojas, Kristians Diaz; Montero, Maria L.; Yao, Jorge; Messing, Edward; Fazili, Anees; Joseph, Jean; Ou, Yangming; Rubens, Deborah J.; Parker, Kevin J.; Davatzikos, Christos; Castaneda, Benjamin
2015-01-01
Abstract. A methodology to study the relationship between clinical variables [e.g., prostate specific antigen (PSA) or Gleason score] and cancer spatial distribution is described. Three-dimensional (3-D) models of 216 glands are reconstructed from digital images of whole mount histopathological slices. The models are deformed into one prostate model selected as an atlas using a combination of rigid, affine, and B-spline deformable registration techniques. Spatial cancer distribution is assessed by counting the number of tumor occurrences among all glands in a given position of the 3-D registered atlas. Finally, a difference between proportions is used to compare different spatial distributions. As a proof of concept, we compare spatial distributions from patients with PSA greater and less than 5 ng/ml and from patients older and younger than 60 years. Results suggest that prostate cancer has a significant difference in the right zone of the prostate between populations with PSA greater and less than 5 ng/ml. Age does not have any impact in the spatial distribution of the disease. The proposed methodology can help to comprehend prostate cancer by understanding its spatial distribution and how it changes according to clinical parameters. Finally, this methodology can be easily adapted to other organs and pathologies. PMID:26236756
Yourganov, Grigori; Schmah, Tanya; Churchill, Nathan W; Berman, Marc G; Grady, Cheryl L; Strother, Stephen C
2014-08-01
The field of fMRI data analysis is rapidly growing in sophistication, particularly in the domain of multivariate pattern classification. However, the interaction between the properties of the analytical model and the parameters of the BOLD signal (e.g. signal magnitude, temporal variance and functional connectivity) is still an open problem. We addressed this problem by evaluating a set of pattern classification algorithms on simulated and experimental block-design fMRI data. The set of classifiers consisted of linear and quadratic discriminants, linear support vector machine, and linear and nonlinear Gaussian naive Bayes classifiers. For linear discriminant, we used two methods of regularization: principal component analysis, and ridge regularization. The classifiers were used (1) to classify the volumes according to the behavioral task that was performed by the subject, and (2) to construct spatial maps that indicated the relative contribution of each voxel to classification. Our evaluation metrics were: (1) accuracy of out-of-sample classification and (2) reproducibility of spatial maps. In simulated data sets, we performed an additional evaluation of spatial maps with ROC analysis. We varied the magnitude, temporal variance and connectivity of simulated fMRI signal and identified the optimal classifier for each simulated environment. Overall, the best performers were linear and quadratic discriminants (operating on principal components of the data matrix) and, in some rare situations, a nonlinear Gaussian naïve Bayes classifier. The results from the simulated data were supported by within-subject analysis of experimental fMRI data, collected in a study of aging. This is the first study that systematically characterizes interactions between analysis model and signal parameters (such as magnitude, variance and correlation) on the performance of pattern classifiers for fMRI. Copyright © 2014 Elsevier Inc. All rights reserved.
Welhan, John A.; Farabaugh, Renee L.; Merrick, Melissa J.; Anderson, Steven R.
2007-01-01
The spatial distribution of sediment in the eastern Snake River Plain aquifer was evaluated and modeled to improve the parameterization of hydraulic conductivity (K) for a subregional-scale ground-water flow model being developed by the U.S. Geological Survey. The aquifer is hosted within a layered series of permeable basalts within which intercalated beds of fine-grained sediment constitute local confining units. These sediments have K values as much as six orders of magnitude lower than the most permeable basalt, and previous flow-model calibrations have shown that hydraulic conductivity is sensitive to the proportion of intercalated sediment. Stratigraphic data in the form of sediment thicknesses from 333 boreholes in and around the Idaho National Laboratory were evaluated as grouped subsets of lithologic units (composite units) corresponding to their relative time-stratigraphic position. The results indicate that median sediment abundances of the stratigraphic units below the water table are statistically invariant (stationary) in a spatial sense and provide evidence of stationarity across geologic time, as well. Based on these results, the borehole data were kriged as two-dimensional spatial data sets representing the sediment content of the layers that discretize the ground-water flow model in the uppermost 300 feet of the aquifer. Multiple indicator kriging (mIK) was used to model the geographic distribution of median sediment abundance within each layer by defining the local cumulative frequency distribution (CFD) of sediment via indicator variograms defined at multiple thresholds. The mIK approach is superior to ordinary kriging because it provides a statistically best estimate of sediment abundance (the local median) drawn from the distribution of local borehole data, independent of any assumption of normality. A methodology is proposed for delineating and constraining the assignment of hydraulic conductivity zones for parameter estimation, based on the locally estimated CFDs and relative kriging uncertainty. A kriging-based methodology improves the spatial resolution of hydraulic property zones that can be considered during parameter estimation and should improve calibration performance and sensitivity by more accurately reflecting the nuances of sediment distribution within the aquifer.
Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea.
Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas
2012-01-01
This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool.
Spatial and Temporal Influences on Carbon Storage in Hydric Soils of the Conterminous United States
NASA Astrophysics Data System (ADS)
Sundquist, E. T.; Ackerman, K.; Bliss, N.; Griffin, R.; Waltman, S.; Windham-Myers, L.
2016-12-01
Defined features of hydric soils persist over extensive areas of the conterminous United States (CUS) long after their hydric formation conditions have been altered by historical changes in land and water management. These legacy hydric features may represent previous wetland environments in which soil carbon storage was significantly higher before the influence of human activities. We hypothesize that historical alterations of hydric soil carbon storage can be approximated using carefully selected estimates of carbon storage in currently identified hydric soils. Using the Soil Survey Geographic (SSURGO) database, we evaluate carbon storage in identified hydric soil components that are subject to discrete ranges of current or recent conditions of flooding, ponding, and other indicators of hydric and non-hydric soil associations. We check our evaluations and, where necessary, adjust them using independently published soil data. We compare estimates of soil carbon storage under various hydric and non-hydric conditions within proximal landscapes and similar biophysical settings and ecosystems. By combining these setting- and ecosystem-constrained comparisons with the spatial distribution and attributes of wetlands in the National Wetlands Inventory, we impute carbon storage estimates for soils that occur in current wetlands and for hydric soils that are not associated with current wetlands. Using historical data on land use and water control structures, we map the spatial and temporal distribution of past changes in land and water management that have affected hydric soils. We combine these maps with our imputed carbon storage estimates to calculate ranges of values for historical and present-day carbon storage in hydric soils throughout the CUS. These estimates may provide useful constraints for projections of potential carbon storage in hydric soils under future conditions.
Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure
Skvortsova, Elena B.; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity. PMID:26010779
Universal spatial correlation functions for describing and reconstructing soil microstructure.
Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification, pore-scale modelling of soil properties, soil degradation monitoring, and description of spatial dynamics of soil microbial activity.
Fractal analysis of earthquake swarms of Vogtland/NW-Bohemia intraplate seismicity
NASA Astrophysics Data System (ADS)
Mittag, Reinhard J.
2003-03-01
The special type of intraplate microseismicity with swarm-like occurrence of earthquakes within the Vogtland/NW-Bohemian Region is analysed to reveal the nature and the origin of the seismogenic regime. The long-term data set of continuous seismic monitoring since 1962, including more than 26000 events within a range of about 5 units of local magnitude, provides an unique database for statistical investigations. Most earthquakes occur in narrow hypocentral volumes (clusters) within the lower part of the upper crust, but also single event occurrence outside of spatial clusters is observed. Temporal distribution of events is concentrated in clusters (swarms), which last some days until few month in dependence of intensity. Since 1962 three strong swarms occurred (1962, 1985/86, 2000), including two seismic cycles. Spatial clusters are distributed along a fault system of regional extension (Leipzig-Regensburger Störung), which is supposed to act as the joint tectonic fracture zone for the whole seismogenic region. Seismicity is analysed by fractal analysis, suggesting a unifractal behaviour of seismicity and uniform character of seismotectonic regime for the whole region. A tendency of decreasing fractal dimension values is observed for temporal distribution of earthquakes, indicating an increasing degree of temporal clustering from swarm to swarm. Following the idea of earthquake triggering by magma intrusions and related fluid and gas release into the tectonically pre-stressed parts of the crust, a steady increased intensity of intrusion and/or fluid and gas release might account for that observation. Additionally, seismic parameters for Vogtland/NW-Bohemia intraplate seismicity are compared with an adequate data set of mining-induced seismicity in a nearby mine of Lubin/Poland and with synthetic data sets to evaluate parameter estimation. Due to different seismogenic regime of tectonic and induced seismicity, significant differences between b-values and temporal dimension values are observed. Most significant for intraplate seismicity are relatively low fractal dimension values for temporal distribution. That observation reflects the strong degree of temporal earthquake clustering, which might explain the episodic character of earthquake swarms and support the idea of push-like triggering of earthquake avalanches by intruding magma.
Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.
2003-01-01
This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp
Corte, Guilherme N; Gonçalves-Souza, Thiago; Checon, Helio H; Siegle, Eduardo; Coleman, Ross A; Amaral, A Cecília Z
2018-05-01
Community ecology has traditionally assumed that the distribution of species is mainly influenced by environmental processes. There is, however, growing evidence that environmental (habitat characteristics and biotic interactions) and spatial processes (factors that affect a local assemblage regardless of environmental conditions - typically related to dispersal and movement of species) interactively shape biological assemblages. A metacommunity, which is a set of local assemblages connected by dispersal of individuals, is spatial in nature and can be used as a straightforward approach for investigating the interactive and independent effects of both environmental and spatial processes. Here, we examined (i) how environmental and spatial processes affect the metacommunity organization of marine macroinvertebrates inhabiting the intertidal sediments of a biodiverse coastal ecosystem; (ii) whether the influence of these processes is constant through time or is affected by extreme weather events (storms); and (iii) whether the relative importance of these processes depends on the dispersal abilities of organisms. We found that macrobenthic assemblages are influenced by each of environmental and spatial variables; however, spatial processes exerted a stronger role. We also found that this influence changes through time and is modified by storms. Moreover, we observed that the influence of environmental and spatial processes varies according to the dispersal capabilities of organisms. More effective dispersers (i.e., species with planktonic larvae) are more affected by spatial processes whereas environmental variables had a stronger effect on weaker dispersers (i.e. species with low motility in larval and adult stages). These findings highlight that accounting for spatial processes and differences in species life histories is essential to improve our understanding of species distribution and coexistence patterns in intertidal soft-sediments. Furthermore, it shows that storms modify the structure of coastal assemblages. Given that the influence of spatial and environmental processes is not consistent through time, it is of utmost importance that future studies replicate sampling over different periods so the influence of temporal and stochastic factors on macrobenthic metacommunities can be better understood. Copyright © 2018 Elsevier Ltd. All rights reserved.
Validating modelled variable surface saturation in the riparian zone with thermal infrared images
NASA Astrophysics Data System (ADS)
Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa
2015-04-01
Variable contributing areas and hydrological connectivity have become prominent new concepts for hydrologic process understanding in recent years. The dynamic connectivity within the hillslope-riparian-stream (HRS) system is known to have a first order control on discharge generation and especially the riparian zone functions as runoff buffering or producing zone. However, despite their importance, the highly dynamic processes of contraction and extension of saturation within the riparian zone and its impact on runoff generation still remain not fully understood. In this study, we analysed the potential of a distributed, fully coupled and physically based model (HydroGeoSphere) to represent the spatial and temporal water flux dynamics of a forested headwater HRS system (6 ha) in western Luxembourg. The model was set up and parameterised under consideration of experimentally-derived knowledge of catchment structure and was run for a period of four years (October 2010 to August 2014). For model evaluation, we especially focused on the temporally varying spatial patterns of surface saturation. We used ground-based thermal infrared (TIR) imagery to map surface saturation with a high spatial and temporal resolution and collected 20 panoramic snapshots of the riparian zone (ca. 10 by 20 m) under different hydrologic conditions. These TIR panoramas were used in addition to several classical discharge and soil moisture time series for a spatially-distributed model validation. In a manual calibration process we optimised model parameters (e.g. porosity, saturated hydraulic conductivity, evaporation depth) to achieve a better agreement between observed and modelled discharges and soil moistures. The subsequent validation of surface saturation patterns by a visual comparison of processed TIR panoramas and corresponding model output panoramas revealed an overall good accordance for all but one region that was always too dry in the model. However, quantitative comparisons of modelled and observed saturated pixel percentages and of their modelled and measured relationships to concurrent discharges revealed remarkable similarities. During the calibration process we observed that surface saturation patterns were mostly affected by changing the soil properties of the topsoil in the riparian zone, but that the discharge behaviour did not change substantially at the same time. This effect of various spatial patterns occurring concomitant to a nearly unchanged integrated response demonstrates the importance of spatially distributed validation data. Our study clearly benefited from using different kinds of data - spatially integrated and distributed, temporally continuous and discrete - for the model evaluation procedure.
Mining and Integration of Environmental Data
NASA Astrophysics Data System (ADS)
Tran, V.; Hluchy, L.; Habala, O.; Ciglan, M.
2009-04-01
The project ADMIRE (Advanced Data Mining and Integration Research for Europe) is a 7th FP EU ICT project aims to deliver a consistent and easy-to-use technology for extracting information and knowledge. The project is motivated by the difficulty of extracting meaningful information by data mining combinations of data from multiple heterogeneous and distributed resources. It will also provide an abstract view of data mining and integration, which will give users and developers the power to cope with complexity and heterogeneity of services, data and processes. The data sets describing phenomena from domains like business, society, and environment often contain spatial and temporal dimensions. Integration of spatio-temporal data from different sources is a challenging task due to those dimensions. Different spatio-temporal data sets contain data at different resolutions (e.g. size of the spatial grid) and frequencies. This heterogeneity is the principal challenge of geo-spatial and temporal data sets integration - the integrated data set should hold homogeneous data of the same resolution and frequency. Thus, to integrate heterogeneous spatio-temporal data from distinct source, transformation of one or more data sets is necessary. Following transformation operation are required: • transformation to common spatial and temporal representation - (e.g. transformation to common coordinate system), • spatial and/or temporal aggregation - data from detailed data source are aggregated to match the resolution of other resources involved in the integration process, • spatial and/or temporal record decomposition - records from source with lower resolution data are decomposed to match the granularity of the other data source. This operation decreases data quality (e.g. transformation of data from 50km grid to 10 km grid) - data from lower resolution data set in the integrated schema are imprecise, but it allows us to preserve higher resolution data. We can decompose the spatio-temporal data integration to following phases: • pre-integration data processing - different data set can be physically stored in different formats (e.g. relational databases, text files); it might be necessary to pre-process the data sets to be integrated, • identification of transformation operations necessary to integrate data in spatio-temporal dimensions, • identification of transformation operations to be performed on non-spatio-temporal attributes and • output data schema and set generation - given prepared data and the set of transformation, operations, the final integrated schema is produces. Spatio-temporal dimension brings its specifics also to the problem of mining spatio-temporal data sets. Spatio-temporal relationships exist among records in (s-t) data sets and those relationships should be considered in mining operation. This means that when analyzing a record in spatio-temporal data set, the records in its spatial and/or temporal proximity should be taken into account. In addition, the relationships discovered in spatio-temporal data can be different when mining the same data on different scales (e.g. mining the same data sets on 50 km grid with daily data vs. 10 km grid with hourly data). To be able to do effective data mining, we first needed to gather a sufficient amount of environmental data covering similar area and time span. For this purpose we have engaged in cooperation with several organizations working in the environmental domain in Slovakia, some of which are also our partners from previous research efforts. The organizations which volunteered some of their data are the Slovak Hydro-meteorological Institute (SHMU), the Slovak Water Enterprise (SVP), the Soil Science and Conservation Institute (VUPOP), and the Institute of Hydrology of the Slovak Academy of Sciences (UHSAV). We have prepared scenarios from general meteorology, as well as specialized in hydrology and soil protection.
Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J
2009-01-01
Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590
NASA Astrophysics Data System (ADS)
Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Pidkamin, L. Y.; Soltys, I. V.; Zhytaryuk, V. G.; Pavlyukovich, N.
2016-09-01
A model of generalized optical anisotropy of polycrystalline networks of albumin and globulin of human brain liquor has been suggested. The polarization-phase method of spatial and frequency differentiation of linear and circular birefringence coordinate distributions have been analytically substantiated. A set of criteria of the dynamics of necrotic changes of polarization-phase images of liquor polycrystalline films for determination of death coming prescription has been detected and substantiated.
Compressive Feedback Control Design for Spatially Distributed Systems
2017-01-03
NecSys 2015 & 2016 Abstract The goal of this research is the development of new fundamental insights and methodologies to exploit structural properties of...Measures One of the simplest class of dynamical networks that our proposed methodology can be explained in a simple setting is the class of first–order...developed a novel methodology to obtain tight lower and upper bounds for the class of systemic measures. In the following, some of the key ideas behind our
Bolotetskiĭ, N M; Kodolova, O P
2002-01-01
Distribution of frequencies alleles of polymorphous loci of peroxidase (Pox), leucineaminopeptidase (Lap), phosphoglucomutase (Pgm) and octanoldehydrogenase (Odh) were studied by electrophoresis in polyacrylamide gel in 22 local samples of Esenia foetida in Russia (European part), Ukraine, Kazakhstan and Kirghizia. The samples form two spatial groups--"northern" and "southern", distinguished by set of alleles in every studied locus. The "northern" groups is formed by local populations of European Russia from Murmansk region on the north to Smolensk region on the south, and also by cultivated population of selection line "red California hybrid". The "southern" group is formed by local populations on the territory of Russia from middle Volga to the North Caucasus, Ukraine, Kazakhstan, Kirghizia, cultivated populations from Kirghizia and Portugal. High degree of genetic difference between samples and independence of alleles frequencies distribution from geographical location and habitat allows to consider almost all studied groups as separate populations. Statistical processing of Nei genetic distances (Nei, 1972) revealed reliable differences between averages of within- and intergroup distances. Besides, discrete differences between intervals of significance of genetic distances were revealed. The results indicate that on the studied territory E. foetida has hierarchical two level structure. The first level is formed by local populations differed by frequency of the same alleles. The second level is formed by local populations, united into spatial groups, that are qualitatively distinguished by the set of alleles in the same loci.
NASA Astrophysics Data System (ADS)
Nazarian, Negin; Martilli, Alberto; Kleissl, Jan
2018-03-01
As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less dependent on the detailed heating of urban facets.
Turbulent transport with intermittency: Expectation of a scalar concentration.
Rast, Mark Peter; Pinton, Jean-François; Mininni, Pablo D
2016-04-01
Scalar transport by turbulent flows is best described in terms of Lagrangian parcel motions. Here we measure the Eulerian distance travel along Lagrangian trajectories in a simple point vortex flow to determine the probabilistic impulse response function for scalar transport in the absence of molecular diffusion. As expected, the mean squared Eulerian displacement scales ballistically at very short times and diffusively for very long times, with the displacement distribution at any given time approximating that of a random walk. However, significant deviations in the displacement distributions from Rayleigh are found. The probability of long distance transport is reduced over inertial range time scales due to spatial and temporal intermittency. This can be modeled as a series of trapping events with durations uniformly distributed below the Eulerian integral time scale. The probability of long distance transport is, on the other hand, enhanced beyond that of the random walk for both times shorter than the Lagrangian integral time and times longer than the Eulerian integral time. The very short-time enhancement reflects the underlying Lagrangian velocity distribution, while that at very long times results from the spatial and temporal variation of the flow at the largest scales. The probabilistic impulse response function, and with it the expectation value of the scalar concentration at any point in space and time, can be modeled using only the evolution of the lowest spatial wave number modes (the mean and the lowest harmonic) and an eddy based constrained random walk that captures the essential velocity phase relations associated with advection by vortex motions. Preliminary examination of Lagrangian tracers in three-dimensional homogeneous isotropic turbulence suggests that transport in that setting can be similarly modeled.
Soil organic carbon - a large scale paired catchment assessment
NASA Astrophysics Data System (ADS)
Kunkel, V.; Hancock, G. R.; Wells, T.
2016-12-01
Soil organic carbon (SOC) concentration can vary both spatially and temporally driven by differences in soil properties, topography and climate. However most studies have focused on point scale data sets with a paucity of studies examining larger scale catchments. Here we examine the spatial and temporal distribution of SOC for two large catchments. The Krui (575 km2) and Merriwa River (675km2) catchments (New South Wales, Australia). Both have similar shape, soils, topography and orientation. We show that SOC distribution is very similar for both catchments and that elevation (and associated increase in soil moisture) is a major influence on SOC. We also show that there is little change in SOC from the initial assessment in 2006 to 2015 despite a major drought from 2003 to 2010 and extreme rainfall events in 2007 and 2010 -therefore SOC concentration appears robust. However, we found significant relationships between erosion and deposition patterns (as quantified using 137Cs) and SOC for both catchments again demonstrating a strong geomorphic relationship. Vegetation across the catchments was assessed using remote sensing (Landsat and MODIS). Vegetation patterns were temporally consistent with above ground biomass increasing with elevation. SOC could be predicted using both these low and high resolution remote sensing platforms. Results indicate that, although moderate resolution (250 m) allows for reasonable prediction of the spatial distribution of SOC, the higher resolution (30 m) improved the strength of the SOC-NDVI relationship. The relationship between SOC and 137Cs, as a surrogate for the erosion and deposition of SOC, suggested that sediment transport and deposition influences the distribution of SOC within the catchment. The findings demonstrate that over the large catchment scale and at the decadal time scale that SOC is relatively constant and can largely be predicted by topography.
Mondrinos, Mark J.; Knight, Linda C.; Kennedy, Paul A.; Wu, Jichuan; Kauffman, Matthew; Baker, Sandy T.; Wolfson, Marla R.
2015-01-01
Sepsis and sepsis-induced lung injury remain a leading cause of death in intensive care units. We identified protein kinase C-δ (PKCδ) as a critical regulator of the acute inflammatory response and demonstrated that PKCδ inhibition was lung-protective in a rodent sepsis model, suggesting that targeting PKCδ is a potential strategy for preserving pulmonary function in the setting of indirect lung injury. In this study, whole-body organ biodistribution and pulmonary cellular distribution of a transactivator of transcription (TAT)–conjugated PKCδ inhibitory peptide (PKCδ-TAT) was determined following intratracheal (IT) delivery in control and septic [cecal ligation and puncture (CLP)] rats to ascertain the impact of disease pathology on biodistribution and efficacy. There was negligible lung uptake of radiolabeled peptide upon intravenous delivery [<1% initial dose (ID)], whereas IT administration resulted in lung retention of >65% ID with minimal uptake in liver or kidney (<2% ID). IT delivery of a fluorescent-tagged (tetramethylrhodamine-PKCδ-TAT) peptide demonstrated uniform spatial distribution and cellular uptake throughout the peripheral lung. IT delivery of PKCδ-TAT at the time of CLP surgery significantly reduced PKCδ activation (tyrosine phosphorylation, nuclear translocation and cleavage) and acute lung inflammation, resulting in improved lung function and gas exchange. Importantly, peptide efficacy was similar when delivered at 4 hours post-CLP, demonstrating therapeutic relevance. Conversely, spatial lung distribution and efficacy were significantly impaired at 8 hours post-CLP, which corresponded to marked histopathological progression of lung injury. These studies establish a functional connection between peptide spatial distribution, inflammatory histopathology in the lung, and efficacy of this anti-inflammatory peptide. PMID:26243739
3D shape representation with spatial probabilistic distribution of intrinsic shape keypoints
NASA Astrophysics Data System (ADS)
Ghorpade, Vijaya K.; Checchin, Paul; Malaterre, Laurent; Trassoudaine, Laurent
2017-12-01
The accelerated advancement in modeling, digitizing, and visualizing techniques for 3D shapes has led to an increasing amount of 3D models creation and usage, thanks to the 3D sensors which are readily available and easy to utilize. As a result, determining the similarity between 3D shapes has become consequential and is a fundamental task in shape-based recognition, retrieval, clustering, and classification. Several decades of research in Content-Based Information Retrieval (CBIR) has resulted in diverse techniques for 2D and 3D shape or object classification/retrieval and many benchmark data sets. In this article, a novel technique for 3D shape representation and object classification has been proposed based on analyses of spatial, geometric distributions of 3D keypoints. These distributions capture the intrinsic geometric structure of 3D objects. The result of the approach is a probability distribution function (PDF) produced from spatial disposition of 3D keypoints, keypoints which are stable on object surface and invariant to pose changes. Each class/instance of an object can be uniquely represented by a PDF. This shape representation is robust yet with a simple idea, easy to implement but fast enough to compute. Both Euclidean and topological space on object's surface are considered to build the PDFs. Topology-based geodesic distances between keypoints exploit the non-planar surface properties of the object. The performance of the novel shape signature is tested with object classification accuracy. The classification efficacy of the new shape analysis method is evaluated on a new dataset acquired with a Time-of-Flight camera, and also, a comparative evaluation on a standard benchmark dataset with state-of-the-art methods is performed. Experimental results demonstrate superior classification performance of the new approach on RGB-D dataset and depth data.
FRESHEM - Fresh-saline groundwater distribution in Zeeland (NL) derived from airborne EM
NASA Astrophysics Data System (ADS)
Siemon, Bernhard; van Baaren, Esther; Dabekaussen, Willem; Delsman, Joost; Gunnik, Jan; Karaoulis, Marios; de Louw, Perry; Oude Essink, Gualbert; Pauw, Pieter; Steuer, Annika; Meyer, Uwe
2017-04-01
In a setting of predominantly saline surface waters, the availability of fresh water for agricultural purposes is not obvious in Zeeland, The Netherlands. Canals and ditches are mainly brackish to saline due to saline seepage, which originates from old marine deposits and salt-water transgressions during historical times. The only available fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh groundwater is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing this fresh groundwater properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labour-intensive, airborne electromagnetics (AEM), which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO started FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in October 2014. Within 3x2 weeks of the first project year, the entire area of about 2000 km2 was surveyed using BGR's helicopter-borne geophysical system totalling to about 10,000 line-km. The HEM datasets of 17 subareas were carefully processed using advanced BGR in-house software and inverted to 2.5 Million resistivity-depth models. Ground truthing demonstrated that the large-scale HEM results fit very well with small-scale ground EM data (ECPT). Based on this spatial resistivity distribution, a 3D voxel model for Chloride concentration was derived for the entire province taking into account geological model data (GeoTOP) for the lithology correction and local in-situ groundwater measurements for the translation of water conductivity to Chloride concentration. The 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.
Distribution of randomly diffusing particles in inhomogeneous media
NASA Astrophysics Data System (ADS)
Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A.
2017-09-01
Diffusion can be conceptualized, at microscopic scales, as the random hopping of particles between neighboring lattice sites. In the case of diffusion in inhomogeneous media, distinct spatial domains in the system may yield distinct particle hopping rates. Starting from the master equations (MEs) governing diffusion in inhomogeneous media we derive here, for arbitrary spatial dimensions, the deterministic lattice equations (DLEs) specifying the average particle number at each lattice site for randomly diffusing particles in inhomogeneous media. We consider the case of free (Fickian) diffusion with no steric constraints on the maximum particle number per lattice site as well as the case of diffusion under steric constraints imposing a maximum particle concentration. We find, for both transient and asymptotic regimes, excellent agreement between the DLEs and kinetic Monte Carlo simulations of the MEs. The DLEs provide a computationally efficient method for predicting the (average) distribution of randomly diffusing particles in inhomogeneous media, with the number of DLEs associated with a given system being independent of the number of particles in the system. From the DLEs we obtain general analytic expressions for the steady-state particle distributions for free diffusion and, in special cases, diffusion under steric constraints in inhomogeneous media. We find that, in the steady state of the system, the average fraction of particles in a given domain is independent of most system properties, such as the arrangement and shape of domains, and only depends on the number of lattice sites in each domain, the particle hopping rates, the number of distinct particle species in the system, and the total number of particles of each particle species in the system. Our results provide general insights into the role of spatially inhomogeneous particle hopping rates in setting the particle distributions in inhomogeneous media.
Sea Ice Pressure Ridge Height Distributions for the Arctic Ocean in Winter, Just Prior to Melt
NASA Astrophysics Data System (ADS)
Duncan, K.; Farrell, S. L.; Richter-Menge, J.; Hutchings, J.; Dominguez, R.; Connor, L. N.
2016-12-01
Pressure ridges are one of the most dominant morphological features of the Arctic sea ice pack. An impediment to navigation, pressure ridges are also of climatological interest since they impact the mass, energy and momentum transfer budgets for the Arctic Ocean. Understanding the regional and seasonal distributions of ridge sail heights, and their variability, is important for quantifying total sea ice mass, and for improved treatment of sea ice dynamics in high-resolution numerical models. Observations of sail heights from airborne and ship-based platforms have been documented in previous studies, however studies with both high spatial and temporal resolution, across multiple regions of the Arctic, are only recently possible with the advent of dedicated airborne surveys of the Arctic Ocean. In this study we present results from the high-resolution Digital Mapping System (DMS), flown as part of NASA's Operation IceBridge missions. We use DMS imagery to calculate ridge sail heights, derived from the shadows they cast combined with the solar elevation angle and the known pixel size of each image. Our analyses describe sea ice conditions at the end of winter, during the months of March and April, over a period spanning seven years, from 2010 to 2016. The high spatial resolution (0.1m) and temporal extent (seven years) of the DMS data set provides, for the first time, the full sail-height distributions of both first-year and multi-year sea ice. We present the inter-annual variability in sail height distributions for both the Central Arctic and the Beaufort and Chukchi Seas. We validate our results via comparison with spatially coincident high-resolution SAR imagery and airborne laser altimeter elevations.
Rasdaman for Big Spatial Raster Data
NASA Astrophysics Data System (ADS)
Hu, F.; Huang, Q.; Scheele, C. J.; Yang, C. P.; Yu, M.; Liu, K.
2015-12-01
Spatial raster data have grown exponentially over the past decade. Recent advancements on data acquisition technology, such as remote sensing, have allowed us to collect massive observation data of various spatial resolution and domain coverage. The volume, velocity, and variety of such spatial data, along with the computational intensive nature of spatial queries, pose grand challenge to the storage technologies for effective big data management. While high performance computing platforms (e.g., cloud computing) can be used to solve the computing-intensive issues in big data analysis, data has to be managed in a way that is suitable for distributed parallel processing. Recently, rasdaman (raster data manager) has emerged as a scalable and cost-effective database solution to store and retrieve massive multi-dimensional arrays, such as sensor, image, and statistics data. Within this paper, the pros and cons of using rasdaman to manage and query spatial raster data will be examined and compared with other common approaches, including file-based systems, relational databases (e.g., PostgreSQL/PostGIS), and NoSQL databases (e.g., MongoDB and Hive). Earth Observing System (EOS) data collected from NASA's Atmospheric Scientific Data Center (ASDC) will be used and stored in these selected database systems, and a set of spatial and non-spatial queries will be designed to benchmark their performance on retrieving large-scale, multi-dimensional arrays of EOS data. Lessons learnt from using rasdaman will be discussed as well.
What are the Shapes of Response Time Distributions in Visual Search?
Palmer, Evan M.; Horowitz, Todd S.; Torralba, Antonio; Wolfe, Jeremy M.
2011-01-01
Many visual search experiments measure reaction time (RT) as their primary dependent variable. Analyses typically focus on mean (or median) RT. However, given enough data, the RT distribution can be a rich source of information. For this paper, we collected about 500 trials per cell per observer for both target-present and target-absent displays in each of three classic search tasks: feature search, with the target defined by color; conjunction search, with the target defined by both color and orientation; and spatial configuration search for a 2 among distractor 5s. This large data set allows us to characterize the RT distributions in detail. We present the raw RT distributions and fit several psychologically motivated functions (ex-Gaussian, ex-Wald, Gamma, and Weibull) to the data. We analyze and interpret parameter trends from these four functions within the context of theories of visual search. PMID:21090905
Bringing modeling to the masses: A web based system to predict potential species distributions
Graham, Jim; Newman, Greg; Kumar, Sunil; Jarnevich, Catherine S.; Young, Nick; Crall, Alycia W.; Stohlgren, Thomas J.; Evangelista, Paul
2010-01-01
Predicting current and potential species distributions and abundance is critical for managing invasive species, preserving threatened and endangered species, and conserving native species and habitats. Accurate predictive models are needed at local, regional, and national scales to guide field surveys, improve monitoring, and set priorities for conservation and restoration. Modeling capabilities, however, are often limited by access to software and environmental data required for predictions. To address these needs, we built a comprehensive web-based system that: (1) maintains a large database of field data; (2) provides access to field data and a wealth of environmental data; (3) accesses values in rasters representing environmental characteristics; (4) runs statistical spatial models; and (5) creates maps that predict the potential species distribution. The system is available online at www.niiss.org, and provides web-based tools for stakeholders to create potential species distribution models and maps under current and future climate scenarios.
Spatial and temporal distribution of trunk-injected imidacloprid in apple tree canopies.
Aćimović, Srđan G; VanWoerkom, Anthony H; Reeb, Pablo D; Vandervoort, Christine; Garavaglia, Thomas; Cregg, Bert M; Wise, John C
2014-11-01
Pesticide use in orchards creates drift-driven pesticide losses which contaminate the environment. Trunk injection of pesticides as a target-precise delivery system could greatly reduce pesticide losses. However, pesticide efficiency after trunk injection is associated with the underinvestigated spatial and temporal distribution of the pesticide within the tree crown. This study quantified the spatial and temporal distribution of trunk-injected imidacloprid within apple crowns after trunk injection using one, two, four or eight injection ports per tree. The spatial uniformity of imidacloprid distribution in apple crowns significantly increased with more injection ports. Four ports allowed uniform spatial distribution of imidacloprid in the crown. Uniform and non-uniform spatial distributions were established early and lasted throughout the experiment. The temporal distribution of imidacloprid was significantly non-uniform. Upper and lower crown positions did not significantly differ in compound concentration. Crown concentration patterns indicated that imidacloprid transport in the trunk occurred through radial diffusion and vertical uptake with a spiral pattern. By showing where and when a trunk-injected compound is distributed in the apple tree canopy, this study addresses a key knowledge gap in terms of explaining the efficiency of the compound in the crown. These findings allow the improvement of target-precise pesticide delivery for more sustainable tree-based agriculture. © 2014 Society of Chemical Industry.
Techniques for spatio-temporal analysis of vegetation fires in the topical belt of Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brivio, P.A.; Ober, G.; Koffi, B.
1995-12-31
Biomass burning of forests and savannas is a phenomenon of continental or even global proportions, capable of causing large scale environmental changes. Satellite space observations, in particular from NOAA-AVHRR GAC data, are the only source of information allowing one to document burning patterns at regional and continental scale and over long periods of time. This paper presents some techniques, such as clustering and rose-diagram, useful in the spatial-temporal analysis of satellite derived fires maps to characterize the evolution of spatial patterns of vegetation fires at regional scale. An automatic clustering approach is presented which enables one to describe and parameterizemore » spatial distribution of fire patterns at different scales. The problem of geographical distribution of vegetation fires with respect to some location of interest, point or line, is also considered and presented. In particular rose-diagrams are used to relate fires patterns to some reference point, as experimental sites of tropospheric chemistry measurements. Different temporal data-sets in the tropical belt of Africa, covering both Northern and Southern Hemisphere dry seasons, using these techniques were analyzed and showed very promising results when compared with data from rain chemistry studies at different sampling sites in the equatorial forest.« less
NASA Astrophysics Data System (ADS)
Devaraj, Arun; Vijayakumar, Murugesan; Bao, Jie; Guo, Mond F.; Derewinski, Miroslaw A.; Xu, Zhijie; Gray, Michel J.; Prodinger, Sebastian; Ramasamy, Karthikeyan K.
2016-11-01
The formation of carbonaceous deposits (coke) in zeolite pores during catalysis leads to temporary deactivation of catalyst, necessitating regeneration steps, affecting throughput, and resulting in partial permanent loss of catalytic efficiency. Yet, even to date, the coke molecule distribution is quite challenging to study with high spatial resolution from surface to bulk of the catalyst particles at a single particle level. To address this challenge we investigated the coke molecules in HZSM-5 catalyst after ethanol conversion treatment by a combination of C K-edge X-ray absorption spectroscopy (XAS), 13C Cross polarization-magic angle spinning nuclear magnetic resonance (CP-MAS NMR) spectroscopy, and atom probe tomography (APT). XAS and NMR highlighted the aromatic character of coke molecules. APT permitted the imaging of the spatial distribution of hydrocarbon molecules located within the pores of spent HZSM-5 catalyst from surface to bulk at a single particle level. 27Al NMR results and APT results indicated association of coke molecules with Al enriched regions within the spent HZSM-5 catalyst particles. The experimental results were additionally validated by a level-set-based APT field evaporation model. These results provide a new approach to investigate catalytic deactivation due to hydrocarbon coking or poisoning of zeolites at an unprecedented spatial resolution.
Li, Tianxin; Zhou, Xing Chen; Ikhumhen, Harrison Odion; Difei, An
2018-05-01
In recent years, with the significant increase in urban development, it has become necessary to optimize the current air monitoring stations to reflect the quality of air in the environment. Highlighting the spatial representation of some air monitoring stations using Beijing's regional air monitoring station data from 2012 to 2014, the monthly mean particulate matter concentration (PM10) in the region was calculated and through the IDW interpolation method and spatial grid statistical method using GIS, the spatial distribution of PM10 concentration in the whole region was deduced. The spatial distribution variation of districts in Beijing using the gridding model was performed, and through the 3-year spatial analysis, PM10 concentration data including the variation and spatial overlay (1.5 km × 1.5 km cell resolution grid), the spatial distribution result obtained showed that the total PM10 concentration frequency variation exceeded the standard. It is very important to optimize the layout of the existing air monitoring stations by combining the concentration distribution of air pollutants with the spatial region using GIS.
Rijal, Jhalendra P; Wilson, Rob; Godfrey, Larry D
2016-02-01
Twospotted spider mite, Tetranychus urticae Koch, is an important pest of peppermint in California, USA. Spider mite feeding on peppermint leaves causes physiological changes in the plant, which coupling with the favorable environmental condition can lead to increased mite infestations. Significant yield loss can occur in absence of pest monitoring and timely management. Understating the within-field spatial distribution of T. urticae is critical for the development of reliable sampling plan. The study reported here aims to characterize the spatial distribution of mite infestation in four commercial peppermint fields in northern California using spatial techniques, variogram and Spatial Analysis by Distance IndicEs (SADIE). Variogram analysis revealed that there was a strong evidence for spatially dependent (aggregated) mite population in 13 of 17 sampling dates and the physical distance of the aggregation reached maximum to 7 m in peppermint fields. Using SADIE, 11 of 17 sampling dates showed aggregated distribution pattern of mite infestation. Combining results from variogram and SADIE analysis, the spatial aggregation of T. urticae was evident in all four fields for all 17 sampling dates evaluated. Comparing spatial association using SADIE, ca. 62% of the total sampling pairs showed a positive association of mite spatial distribution patterns between two consecutive sampling dates, which indicates a strong spatial and temporal stability of mite infestation in peppermint fields. These results are discussed in relation to behavior of spider mite distribution within field, and its implications for improving sampling guidelines that are essential for effective pest monitoring and management.
Thematic and spatial resolutions affect model-based predictions of tree species distribution.
Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.
Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution
Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei
2013-01-01
Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828
High-resolution mapping of vehicle emissions in China in 2008
NASA Astrophysics Data System (ADS)
Zheng, B.; Huo, H.; Zhang, Q.; Yao, Z. L.; Wang, X. T.; Yang, X. F.; Liu, H.; He, K. B.
2014-09-01
This study is the first in a series of papers that aim to develop high-resolution emission databases for different anthropogenic sources in China. Here we focus on on-road transportation. Because of the increasing impact of on-road transportation on regional air quality, developing an accurate and high-resolution vehicle emission inventory is important for both the research community and air quality management. This work proposes a new inventory methodology to improve the spatial and temporal accuracy and resolution of vehicle emissions in China. We calculate, for the first time, the monthly vehicle emissions for 2008 in 2364 counties (an administrative unit one level lower than city) by developing a set of approaches to estimate vehicle stock and monthly emission factors at county-level, and technology distribution at provincial level. We then introduce allocation weights for the vehicle kilometers traveled to assign the county-level emissions onto 0.05° × 0.05° grids based on the China Digital Road-network Map (CDRM). The new methodology overcomes the common shortcomings of previous inventory methods, including neglecting the geographical differences between key parameters and using surrogates that are weakly related to vehicle activities to allocate vehicle emissions. The new method has great advantages over previous methods in depicting the spatial distribution characteristics of vehicle activities and emissions. This work provides a better understanding of the spatial representation of vehicle emissions in China and can benefit both air quality modeling and management with improved spatial accuracy.
Generalized reproduction numbers and the prediction of patterns in waterborne disease
Gatto, Marino; Mari, Lorenzo; Bertuzzo, Enrico; Casagrandi, Renato; Righetto, Lorenzo; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea
2012-01-01
Understanding, predicting, and controlling outbreaks of waterborne diseases are crucial goals of public health policies, but pose challenging problems because infection patterns are influenced by spatial structure and temporal asynchrony. Although explicit spatial modeling is made possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is still lacking. Here we show that the requirement that all the local reproduction numbers be larger than unity is neither necessary nor sufficient for outbreaks to occur when local settlements are connected by networks of primary and secondary infection mechanisms. To determine onset conditions, we derive general analytical expressions for a reproduction matrix , explicitly accounting for spatial distributions of human settlements and pathogen transmission via hydrological and human mobility networks. At disease onset, a generalized reproduction number (the dominant eigenvalue of ) must be larger than unity. We also show that geographical outbreak patterns in complex environments are linked to the dominant eigenvector and to spectral properties of . Tests against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation networks, demonstrate that eigenvectors of provide a synthetic and effective tool for predicting the disease course in space and time. Networked connectivity models, describing the interplay between hydrology, epidemiology, and social behavior sustaining human mobility, thus prove to be key tools for emergency management of waterborne infections. PMID:23150538
Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia
Cook, R.R.; Angermeier, P.L.; Finn, D.S.; Poff, N.L.; Krueger, K.L.
2004-01-01
Nestedness of faunal assemblages is a multiscale phenomenon, potentially influenced by a variety of factors. Prior small-scale studies have found freshwater fish species assemblages to be nested along stream courses as a result of either selective colonization or extinction. However, within-stream gradients in temperature and other factors are correlated with the distributions of many fish species and may also contribute to nestedness. At a regional level, strongly nested patterns would require a consistent set of structuring mechanisms across streams, and correlation among species' tolerances of the environmental factors that influence distribution. Thus, nestedness should be negatively associated with the spatial extent of the region analyzed and positively associated with elevational gradients (a correlate of temperature and other environmental factors). We examined these relationships for the freshwater fishes of Virginia. Regions were defined within a spatial hierarchy and included whole river drainages, portions of drainages within physiographic provinces, and smaller subdrainages. In most cases, nestedness was significantly stronger in regions of smaller spatial extent and in regions characterized by greater topographic relief. Analysis of hydrologic variability and patterns of faunal turnover provided no evidence that interannual colonization/extinction dynamics contributed to elevational differences in nestedness. These results suggest that, at regional scales, nestedness is influenced by interactions between biotic and abiotic factors, and that the strongest nestedness is likely to occur where a small number of organizational processes predominate, i.e., over small spatial extents and regions exhibiting strong environmental gradients. ?? Springer-Verlag 2004.
Vegetation function and non-uniqueness of the hydrological response
NASA Astrophysics Data System (ADS)
Ivanov, V. Y.; Fatichi, S.; Kampf, S. K.; Caporali, E.
2012-04-01
Through local moisture uptake vegetation exerts seasonal and longer-term impacts on the watershed hydrological response. However, the role of vegetation may go beyond the conventionally implied and well-understood "sink" function in the basin soil moisture storage equation. We argue that vegetation function imposes a "homogenizing" effect on pre-event soil moisture spatial storage, decreasing the likelihood that a rainfall event will result in a topographically-driven redistribution of soil water and the consequent formation of variable source areas. In combination with vegetation temporal dynamics, this may lead to the non-uniqueness of the hydrological response with respect to the mean basin wetness. This study designs a set of relevant numerical experiments carried out with two physically-based models; one of the models, HYDRUS, resolves variably saturated subsurface flow using a fully three-dimensional formulation, while the other model, tRIBS+VEGGIE, uses a one-dimensional formulation applied in a quasi-three-dimensional framework in combination with the model of vegetation dynamics. We demonstrate that (1) vegetation function modifies spatial heterogeneity in moisture spatial storage by imposing different degrees of subsurface flow connectivity; explore mechanistically (2) how and why a basin with the same mean soil moisture can have distinctly different spatial soil moisture distributions; and demonstrate (2) how these distinct moisture distributions result in a hysteretic runoff response to precipitation. Furthermore, the study argues that near-surface soil moisture is an insufficient indicator of the initial moisture state of a catchment with the implication of its limited effect on hydrological predictability.
NASA Astrophysics Data System (ADS)
Boldina, Inna; Beninger, Peter G.
2014-04-01
Despite its ubiquity and its role as an ecosystem engineer on temperate intertidal mudflats, little is known of the spatial ecology of the lugworm Arenicola marina. We estimated lugworm densities and analyzed the spatial distribution of A. marina on a French Atlantic mudflat subjected to long-term clam digging activities, and compared these to a nearby pristine reference mudflat, using a combination of geostatistical techniques: point-pattern analysis, autocorrelation, and wavelet analysis. Lugworm densities were an order of magnitude greater at the reference site. Although A. marina showed an aggregative spatial distribution at both sites, the characteristics and intensity of aggregation differed markedly between sites. The reference site showed an inhibition process (regular distribution) at distances <7.5 cm, whereas the impacted site showed a random distribution at this scale. At distances from 15 cm to several tens of meters, the spatial distribution of A. marina was clearly aggregated at both sites; however, the autocorrelation strength was much weaker at the impacted site. In addition, the non-impacted site presented multi-scale spatial distribution, which was not evident at the impacted site. The differences observed between the spatial distributions of the fishing-impacted vs. the non-impacted site reflect similar findings for other components of these two mudflat ecosystems, suggesting common community-level responses to prolonged mechanical perturbation: a decrease in naturally-occurring aggregation. This change may have consequences for basic biological characteristics such as reproduction, recruitment, growth, and feeding.
Anthropocene rockfalls travel farther than prehistoric predecessors
Borella, Josh Walter; Quigley, Mark; Vick, Louise
2016-01-01
Human modification of natural landscapes has influenced surface processes in many settings on Earth. Quantitative data comparing the distribution and behavior of geologic phenomena before and after human arrival are sparse but urgently required to evaluate possible anthropogenic influences on geologic hazards. We conduct field and imagery-based mapping, statistical analysis, and numerical modeling of rockfall boulders triggered by the fatal 2011 Christchurch earthquakes (n = 285) and newly identified prehistoric (Holocene and Pleistocene) boulders (n = 1049). Prehistoric and modern boulders are lithologically equivalent, derived from the same source cliff, and yield consistent power-law frequency-volume distributions. However, a significant population of modern boulders (n = 26) traveled farther downslope (>150 m) than their most-traveled prehistoric counterparts, causing extensive damage to residential dwellings at the foot of the hillslope. Replication of prehistoric boulder distributions using three-dimensional rigid-body numerical models that incorporate lidar-derived digital topography and realistic boulder trajectories and volumes requires the application of a drag coefficient, attributed to moderate to dense slope vegetation, to account for their spatial distribution. Incorporating a spatially variable native forest into the models successfully predicts prehistoric rockfall distributions. Radiocarbon dating provides evidence for 17th to early 20th century deforestation at the study site during Polynesian and European colonization and after emplacement of prehistoric rockfall. Anthropocene deforestation enabled modern rockfalls to exceed the limits of their prehistoric predecessors, highlighting a shift in the geologic expression of rockfalls due to anthropogenic activity. Reforestation of hillslopes by mature native vegetation could help reduce future rockfall hazard. PMID:27652344
Graffiti for science: Qualitative detection of erosional patterns through bedrock erosion painting
NASA Astrophysics Data System (ADS)
Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.
2016-04-01
Bedrock erosion is a crucial constraint on stream channel incision, and hence whole landscape evolution, in steep mountainous terrain and tectonically active regions. Several interacting processes lead to bedrock erosion in stream channels, with hydraulic shear detachment, plucking, and abrasion due to sediment impacts generally being the most efficient. Bedrock topography, together with the sediment tools and cover effects, regulate the rate and spatial pattern of in situ surface change. Measurements of natural bedrock erosion rates are valuable for understanding the underlying process physics, as well as for modelling landscape evolution and designing engineered structures. However, quantifying spatially distributed bedrock erosion rates in natural settings is challenging and few such measurements exist. We studied spatial bedrock erosion in a 30m-long bedrock gorge in the Gornera, a glacial meltwater stream above Zermatt. This stream is flushed episodically with sediment-laden streamflow due to hydropower operations upstream, with negligible discharge in the gorge in between these flushing events. We coated several bedrock surface patches with environmentally safe, and water-insoluble outdoor paint to document the spatial pattern of surface abrasion, or to be more precise, to document its driving forces. During four consecutive years, the change of the painted areas was recorded repeatedly with photographs before the painting was renewed. These photographs visually documented the spatial patterns of vertical erosion (channel incision), of lateral erosion (channel widening) and of downstream-directed erosion (channel clearance). The observed qualitative patterns were verified through comparison to quantitative change detection analyses based on annual high-resolution terrestrial laser scanning surveys of the bedrock surfaces. Comparison of repeated photographs indicated a temporal cover effect and a general height limit of the tools effect above the streambed during flushing events. Further, the photographs clearly show the erosional development of a UFCS (upstream-facing convex surface) feature with an upstream-facing surface full of impact marks, a sharp crest-line, and an adjacent downstream-facing surface preserved from sediment impacts. This pilot study documents that bedrock erosion painting provides an easy, cost-efficient and clear qualitative method for detecting the spatial distribution of bedrock erosion and inferring its controlling factors. Our results show that the susceptibility of a painted surface to abrasion is controlled by its position in the channel and its spatial orientation relative to the sediment-laden flow. Erosion painting is a scientifically useful form of graffiti that could be widely applied in both natural and laboratory settings, providing insight into patterns and processes of erosion.
The Cortex Transform as an image preprocessor for sparse distributed memory: An initial study
NASA Technical Reports Server (NTRS)
Olshausen, Bruno; Watson, Andrew
1990-01-01
An experiment is described which was designed to evaluate the use of the Cortex Transform as an image processor for Sparse Distributed Memory (SDM). In the experiment, a set of images were injected with Gaussian noise, preprocessed with the Cortex Transform, and then encoded into bit patterns. The various spatial frequency bands of the Cortex Transform were encoded separately so that they could be evaluated based on their ability to properly cluster patterns belonging to the same class. The results of this study indicate that by simply encoding the low pass band of the Cortex Transform, a very suitable input representation for the SDM can be achieved.
Abscisic acid and other plant hormones: Methods to visualize distribution and signaling
Waadt, Rainer; Hsu, Po-Kai; Schroeder, Julian I.
2015-01-01
The exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution. Here, we describe a set of biological instruments (reporters) for the analysis of the distribution and signaling of various plant hormones. Furthermore, we provide examples of their utility for gaining novel insights into plant hormone action with a deeper focus on the drought hormone abscisic acid. PMID:26577078
Conditional probability of rainfall extremes across multiple durations
NASA Astrophysics Data System (ADS)
Le, Phuong Dong; Leonard, Michael; Westra, Seth
2017-04-01
The conditional probability that extreme rainfall will occur at one location given that it is occurring at another location is critical in engineering design and management circumstances including planning of evacuation routes and the sitting of emergency infrastructure. A challenge with this conditional simulation is that in many situations the interest is not so much the conditional distributions of rainfall of the same duration at two locations, but rather the conditional distribution of flooding in two neighbouring catchments, which may be influenced by rainfall of different critical durations. To deal with this challenge, a model that can consider both spatial and duration dependence of extremes is required. The aim of this research is to develop a model that can take account both spatial dependence and duration dependence into the dependence structure of extreme rainfalls. To achieve this aim, this study is a first attempt at combining extreme rainfall for multiple durations within a spatial extreme model framework based on max-stable process theory. Max-stable processes provide a general framework for modelling multivariate extremes with spatial dependence for just a single duration extreme rainfall. To achieve dependence across multiple timescales, this study proposes a new approach that includes addition elements representing duration dependence of extremes to the covariance matrix of max-stable model. To improve the efficiency of calculation, a re-parameterization proposed by Koutsoyiannis et al. (1998) is used to reduce the number of parameters necessary to be estimated. This re-parameterization enables the GEV parameters to be represented as a function of timescale. A stepwise framework has been adopted to achieve the overall aims of this research. Firstly, the re-parameterization is used to define a new set of common parameters for marginal distribution across multiple durations. Secondly, spatial interpolation of the new parameter set is used to estimate marginal parameters across the full spatial domain. Finally, spatial interpolation result is used as initial condition to estimate dependence parameters via a likelihood function of max-stable model for multiple durations. The Hawkesbury-Nepean catchment near Sydney in Australia was selected as case study for this research. This catchment has 25 sub-daily rain gauges with the minimum record length of 24 years over a region of 300 km × 300 km area. The re-parameterization was applied for each station for durations from 1 hour to 24 hours and then is evaluated by comparing with the at-site fitted GEV. The evaluation showed that the average R2 for all station is around 0.80 with the range from 0.26 to 1.0. The output of re-parameterization then was used to construct the spatial surface based on covariates including longitude, latitude, and elevation. The dependence model showed good agreements between empirical extremal coefficient and theoretical extremal coefficient for multiple durations. For the overall model, a leave-one-out cross-validation for all stations showed it works well for 20 out of 25 stations. The potential application of this model framework was illustrated through a conditional map of return period and return level across multiple durations, both of which are important for engineering design and management.
High northern latitude temperature extremes, 1400-1999
NASA Astrophysics Data System (ADS)
Tingley, M. P.; Huybers, P.; Hughen, K. A.
2009-12-01
There is often an interest in determining which interval features the most extreme value of a reconstructed climate field, such as the warmest year or decade in a temperature reconstruction. Previous approaches to this type of question have not fully accounted for the spatial and temporal covariance in the climate field when assessing the significance of extreme values. Here we present results from applying BARSAT, a new, Bayesian approach to reconstructing climate fields, to a 600 year multiproxy temperature data set that covers land areas between 45N and 85N. The end result of the analysis is an ensemble of spatially and temporally complete realizations of the temperature field, each of which is consistent with the observations and the estimated values of the parameters that define the assumed spatial and temporal covariance functions. In terms of the spatial average temperature, 1990-1999 was the warmest decade in the 1400-1999 interval in each of 2000 ensemble members, while 1995 was the warmest year in 98% of the ensemble members. A similar analysis at each node of a regular 5 degree grid gives insight into the spatial distribution of warm temperatures, and reveals that 1995 was anomalously warm in Eurasia, whereas 1998 featured extreme warmth in North America. In 70% of the ensemble members, 1601 featured the coldest spatial average, indicating that the eruption of Huaynaputina in Peru in 1600 (with a volcanic explosivity index of 6) had a major cooling impact on the high northern latitudes. Repeating this analysis at each node reveals the varying impacts of major volcanic eruptions on the distribution of extreme cooling. Finally, we use the ensemble to investigate extremes in the time evolution of centennial temperature trends, and find that in more than half the ensemble members, the greatest rate of change in the spatial mean time series was a cooling centered at 1600. The largest rate of centennial scale warming, however, occurred in the 20th Century in more than 98% of the ensemble members.
Fulton, James L.
1992-01-01
Spatial data analysis has become an integral component in many surface and sub-surface hydrologic investigations within the U.S. Geological Survey (USGS). Currently, one of the largest costs in applying spatial data analysis is the cost of developing the needed spatial data. Therefore, guidelines and standards are required for the development of spatial data in order to allow for data sharing and reuse; this eliminates costly redevelopment. In order to attain this goal, the USGS is expanding efforts to identify guidelines and standards for the development of spatial data for hydrologic analysis. Because of the variety of project and database needs, the USGS has concentrated on developing standards for documenting spatial sets to aid in the assessment of data set quality and compatibility of different data sets. An interim data set documentation standard (1990) has been developed that provides a mechanism for associating a wide variety of information with a data set, including data about source material, data automation and editing procedures used, projection parameters, data statistics, descriptions of features and feature attributes, information on organizational contacts lists of operations performed on the data, and free-form comments and notes about the data, made at various times in the evolution of the data set. The interim data set documentation standard has been automated using a commercial geographic information system (GIS) and data set documentation software developed by the USGS. Where possible, USGS developed software is used to enter data into the data set documentation file automatically. The GIS software closely associates a data set with its data set documentation file; the documentation file is retained with the data set whenever it is modified, copied, or transferred to another computer system. The Water Resources Division of the USGS is continuing to develop spatial data and data processing standards, with emphasis on standards needed to support hydrologic analysis, hydrologic data processing, and publication of hydrologic thermatic maps. There is a need for the GIS vendor community to develop data set documentation tools similar to those developed by the USGS, or to incorporate USGS developed tools in their software.
NASA Technical Reports Server (NTRS)
Sharma, P. K.; Knuth, E. L.
1977-01-01
Spatial and energy distributions of helium atoms scattered from an anodized 1235-0 aluminum surface as well as the tangential and normal momentum accommodation coefficients calculated from these distributions are reported. A procedure for calculating drag coefficients from measured values of spatial and energy distributions is given. The drag coefficient calculated for a 6061 T-6 aluminum sphere is included.
Tsiknia, Myrto; Paranychianakis, Nikolaos V; Varouchakis, Emmanouil A; Moraetis, Daniel; Nikolaidis, Nikolaos P
2014-10-01
Data on soil microbial community distribution at large scales are limited despite the important information that could be drawn with regard to their function and the influence of environmental factors on nutrient cycling and ecosystem services. This study investigates the distribution of Archaea, Bacteria and Fungi as well as the dominant bacterial phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes), and classes of Proteobacteria (Alpha- and Betaproteobacteria) across the Koiliaris watershed by qPCR and associate them with environmental variables. Predictive maps of microorganisms distribution at watershed scale were generated by co-kriging, using the most significant predictors. Our findings showed that 31-79% of the spatial variation in microbial taxa abundance could be explained by the parameters measured, with total organic carbon and pH being identified as the most important. Moreover, strong correlations were set between microbial groups and their inclusion on variance explanation improved the prediction power of the models. The spatial autocorrelation of microbial groups ranged from 309 to 2.226 m, and geographic distance, by itself, could explain a high proportion of their variation. Our findings shed light on the factors shaping microbial communities at a high taxonomic level and provide evidence for ecological coherence and syntrophic interactions at the watershed scale. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Blandford's argument: The strongest continuous gravitational wave signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knispel, Benjamin; Allen, Bruce
2008-08-15
For a uniform population of neutron stars whose spin-down is dominated by the emission of gravitational radiation, an old argument of Blandford states that the expected gravitational-wave amplitude of the nearest source is independent of the deformation and rotation frequency of the objects. Recent work has improved and extended this argument to set upper limits on the expected amplitude from neutron stars that also emit electromagnetic radiation. We restate these arguments in a more general framework, and simulate the evolution of such a population of stars in the gravitational potential of our galaxy. The simulations allow us to test themore » assumptions of Blandford's argument on a realistic model of our galaxy. We show that the two key assumptions of the argument (two dimensionality of the spatial distribution and a steady-state frequency distribution) are in general not fulfilled. The effective scaling dimension D of the spatial distribution of neutron stars is significantly larger than two, and for frequencies detectable by terrestrial instruments the frequency distribution is not in a steady state unless the ellipticity is unrealistically large. Thus, in the cases of most interest, the maximum expected gravitational-wave amplitude does have a strong dependence on the deformation and rotation frequency of the population. The results strengthen the previous upper limits on the expected gravitational-wave amplitude from neutron stars by a factor of 6 for realistic values of ellipticity.« less