Sample records for spatially explicit dynamic

  1. Spatial Patterns in Alternative States and Thresholds: A Missing Link for Management of Landscapes?

    USDA-ARS?s Scientific Manuscript database

    The detection of threshold dynamics (and other dynamics of interest) would benefit from explicit representations of spatial patterns of disturbance, spatial dependence in responses to disturbance, and the spatial structure of feedbacks in the design of monitoring and management strategies. Spatially...

  2. HexSim - A general purpose framework for spatially-explicit, individual-based modeling

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications. This talk will focus on a subset of those ap...

  3. Development and assessment of 30-meter pine density maps for landscape-level modeling of mountain pine beetle dynamics

    Treesearch

    Benjamin A. Crabb; James A. Powell; Barbara J. Bentz

    2012-01-01

    Forecasting spatial patterns of mountain pine beetle (MPB) population success requires spatially explicit information on host pine distribution. We developed a means of producing spatially explicit datasets of pine density at 30-m resolution using existing geospatial datasets of vegetation composition and structure. Because our ultimate goal is to model MPB population...

  4. On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City

    PubMed Central

    Scheuer, Sebastian; Haase, Dagmar; Volk, Martin

    2016-01-01

    A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development. PMID:27490199

  5. On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City.

    PubMed

    Scheuer, Sebastian; Haase, Dagmar; Volk, Martin

    2016-01-01

    A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development.

  6. Spatially explicit modelling of cholera epidemics

    NASA Astrophysics Data System (ADS)

    Finger, F.; Bertuzzo, E.; Mari, L.; Knox, A. C.; Gatto, M.; Rinaldo, A.

    2013-12-01

    Epidemiological models can provide crucial understanding about the dynamics of infectious diseases. Possible applications range from real-time forecasting and allocation of health care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. We apply a spatially explicit model to the cholera epidemic that struck Haiti in October 2010 and is still ongoing. The dynamics of susceptibles as well as symptomatic and asymptomatic infectives are modelled at the scale of local human communities. Dissemination of Vibrio cholerae through hydrological transport and human mobility along the road network is explicitly taken into account, as well as the effect of rainfall as a driver of increasing disease incidence. The model is calibrated using a dataset of reported cholera cases. We further model the long term impact of several types of interventions on the disease dynamics by varying parameters appropriately. Key epidemiological mechanisms and parameters which affect the efficiency of treatments such as antibiotics are identified. Our results lead to conclusions about the influence of different intervention strategies on the overall epidemiological dynamics.

  7. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors.

    PubMed

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H; Gambhir, Manoj; Fu, Joshua S; Liu, Yang; Remais, Justin V

    2013-09-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis , the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001-2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057-2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses-including altered phenology-of disease vectors to altered climate.

  8. Spatially-Explicit Simulation Modeling of Ecological Response to Climate Change: Methodological Considerations in Predicting Shifting Population Dynamics of Infectious Disease Vectors

    PubMed Central

    Dhingra, Radhika; Jimenez, Violeta; Chang, Howard H.; Gambhir, Manoj; Fu, Joshua S.; Liu, Yang; Remais, Justin V.

    2014-01-01

    Poikilothermic disease vectors can respond to altered climates through spatial changes in both population size and phenology. Quantitative descriptors to characterize, analyze and visualize these dynamic responses are lacking, particularly across large spatial domains. In order to demonstrate the value of a spatially explicit, dynamic modeling approach, we assessed spatial changes in the population dynamics of Ixodes scapularis, the Lyme disease vector, using a temperature-forced population model simulated across a grid of 4 × 4 km cells covering the eastern United States, using both modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) climate data. Ten dynamic population features (DPFs) were derived from simulated populations and analyzed spatially to characterize the regional population response to current and future climate across the domain. Each DPF under the current climate was assessed for its ability to discriminate observed Lyme disease risk and known vector presence/absence, using data from the US Centers for Disease Control and Prevention. Peak vector population and month of peak vector population were the DPFs that performed best as predictors of current Lyme disease risk. When examined under baseline and projected climate scenarios, the spatial and temporal distributions of DPFs shift and the seasonal cycle of key questing life stages is compressed under some scenarios. Our results demonstrate the utility of spatial characterization, analysis and visualization of dynamic population responses—including altered phenology—of disease vectors to altered climate. PMID:24772388

  9. Phenology and trend indicators derived from spatially dynamic bi-weekly satellite imagery to support ecosystem monitoring

    Treesearch

    Barron J. Orr; Grant M. Casady; Daniel G. Tuttle; Willem J. D. van Leeuwen; Laura E. Baker; Colleen I. McDonald; Stuart E. Marsh

    2005-01-01

    Ground-based ecosystem monitoring presents some practical challenges to natural resource managers and ecologists tasked with assessing vegetation dynamics across large areas through time. RangeView (http://rangeview.arizona.edu) provides online access to spatially and temporally explicit biweekly vegetation indices derived from satellite data. It also permits side-by-...

  10. [Application of spatially explicit landscape model in soil loss study in Huzhong area].

    PubMed

    Xu, Chonggang; Hu, Yuanman; Chang, Yu; Li, Xiuzhen; Bu, Renchang; He, Hongshi; Leng, Wenfang

    2004-10-01

    Universal Soil Loss Equation (USLE) has been widely used to estimate the average annual soil loss. In most of the previous work on soil loss evaluation on forestland, cover management factor was calculated from the static forest landscape. The advent of spatially explicit forest landscape model in the last decade, which explicitly simulates the forest succession dynamics under natural and anthropogenic disturbances (fire, wind, harvest and so on) on heterogeneous landscape, makes it possible to take into consideration the change of forest cover, and to dynamically simulate the soil loss in different year (e.g. 10 years and 20 years after current year). In this study, we linked a spatially explicit landscape model (LANDIS) with USLE to simulate the soil loss dynamics under two scenarios: fire and no harvest, fire and harvest. We also simulated the soil loss with no fire and no harvest as a control. The results showed that soil loss varied periodically with simulation year, and the amplitude of change was the lowest under the control scenario and the highest under the fire and no harvest scenario. The effect of harvest on soil loss could not be easily identified on the map; however, the cumulative effect of harvest on soil loss was larger than that of fire. Decreasing the harvest area and the percent of bare soil increased by harvest could significantly reduce soil loss, but had no significant effects on the dynamic of soil loss. Although harvest increased the annual soil loss, it tended to decrease the variability of soil loss between different simulation years.

  11. REVIEW OF SIMULATION METHODS FOR SPATIALLY-EXPLICIT POPULATION-LEVEL RISK ASSESSMENT

    EPA Science Inventory

    Factors that significantly impact population dynamics, such as resource availability and exposure to stressors, frequently vary over space and thereby determine the heterogeneous spatial distributions of organisms. Considering this fact, the US Environmental Protection Agency's ...

  12. Harnessing Big Data to Represent 30-meter Spatial Heterogeneity in Earth System Models

    NASA Astrophysics Data System (ADS)

    Chaney, N.; Shevliakova, E.; Malyshev, S.; Van Huijgevoort, M.; Milly, C.; Sulman, B. N.

    2016-12-01

    Terrestrial land surface processes play a critical role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (˜30 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing global environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles. The state-of-the-art Geophysical Fluid Dynamics Laboratory (GFDL) land model is then used to simulate these tiles and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.

  13. Systems Modeling at Multiple Levels of Regulation: Linking Systems and Genetic Networks to Spatially Explicit Plant Populations

    PubMed Central

    Kitchen, James L.; Allaby, Robin G.

    2013-01-01

    Selection and adaptation of individuals to their underlying environments are highly dynamical processes, encompassing interactions between the individual and its seasonally changing environment, synergistic or antagonistic interactions between individuals and interactions amongst the regulatory genes within the individual. Plants are useful organisms to study within systems modeling because their sedentary nature simplifies interactions between individuals and the environment, and many important plant processes such as germination or flowering are dependent on annual cycles which can be disrupted by climate behavior. Sedentism makes plants relevant candidates for spatially explicit modeling that is tied in with dynamical environments. We propose that in order to fully understand the complexities behind plant adaptation, a system that couples aspects from systems biology with population and landscape genetics is required. A suitable system could be represented by spatially explicit individual-based models where the virtual individuals are located within time-variable heterogeneous environments and contain mutable regulatory gene networks. These networks could directly interact with the environment, and should provide a useful approach to studying plant adaptation. PMID:27137364

  14. Accounting for system dynamics in reserve design.

    PubMed

    Leroux, Shawn J; Schmiegelow, Fiona K A; Cumming, Steve G; Lessard, Robert B; Nagy, John

    2007-10-01

    Systematic conservation plans have only recently considered the dynamic nature of ecosystems. Methods have been developed to incorporate climate change, population dynamics, and uncertainty in reserve design, but few studies have examined how to account for natural disturbance. Considering natural disturbance in reserve design may be especially important for the world's remaining intact areas, which still experience active natural disturbance regimes. We developed a spatially explicit, dynamic simulation model, CONSERV, which simulates patch dynamics and fire, and used it to evaluate the efficacy of hypothetical reserve networks in northern Canada. We designed six networks based on conventional reserve design methods, with different conservation targets for woodland caribou habitat, high-quality wetlands, vegetation, water bodies, and relative connectedness. We input the six reserve networks into CONSERV and tracked the ability of each to maintain initial conservation targets through time under an active natural disturbance regime. None of the reserve networks maintained all initial targets, and some over-represented certain features, suggesting that both effectiveness and efficiency of reserve design could be improved through use of spatially explicit dynamic simulation during the planning process. Spatial simulation models of landscape dynamics are commonly used in natural resource management, but we provide the first illustration of their potential use for reserve design. Spatial simulation models could be used iteratively to evaluate competing reserve designs and select targets that have a higher likelihood of being maintained through time. Such models could be combined with dynamic planning techniques to develop a general theory for reserve design in an uncertain world.

  15. SPATIAL EXPLICIT POPULATION MODELS FOR RISK ASSESSMENT: COMMON LOONS AND MERCURY AS A CASE STUDY

    EPA Science Inventory

    Factors that significantly impact population dynamics, such as resource availability and exposure to stressors, frequently vary over space and thereby determine the heterogeneous spatial distributions of organisms. Considering this fact, the US Environmental Protection Agency's ...

  16. AN INDIVIDUAL-BASED MODEL OF COTTUS POPULATION DYNAMICS

    EPA Science Inventory

    We explored population dynamics of a southern Appalachian population of Cottus bairdi using a spatially-explicit, individual-based model. The model follows daily growth, mortality, and spawning of individuals as a function of flow and temperature. We modeled movement of juveniles...

  17. IN-STREAM AND WATERSHED PREDICTORS OF GENETIC DIVERSITY, EFFECTIVE POPULATION SIZE AND IMMIGRATION ACROSS RIVER-STREAM NETWORKS

    EPA Science Inventory

    The influence of spatial processes on population dynamics within river-stream networks is poorly understood. Utilizing spatially explicit analyses of temporal genetic variance, we examined whether persistence of Central Stonerollers (Campostoma anomalum) reflects differences in h...

  18. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  19. Modeling the spatial dynamics of regional land use: the CLUE-S model.

    PubMed

    Verburg, Peter H; Soepboer, Welmoed; Veldkamp, A; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S A

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  20. A DYNAMIC MODEL OF AN ESTUARINE INVASION BY A NON-NATIVE SEAGRASS

    EPA Science Inventory

    Mathematical and simulation models provide an excellent tool for examining and predicting biological invasions in time and space; however, traditional models do not incorporate dynamic rates of population growth, which limits their realism. We developed a spatially explicit simul...

  1. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    USGS Publications Warehouse

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  2. SEARCH: Spatially Explicit Animal Response to Composition of Habitat.

    PubMed

    Pauli, Benjamin P; McCann, Nicholas P; Zollner, Patrick A; Cummings, Robert; Gilbert, Jonathan H; Gustafson, Eric J

    2013-01-01

    Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of SEARCH for a variety of applications and illustrate benefits it can provide for conservation planning.

  3. Modular and Spatially Explicit: A Novel Approach to System Dynamics

    EPA Science Inventory

    The Open Modeling Environment (OME) is an open-source System Dynamics (SD) simulation engine which has been created as a joint project between Oregon State University and the US Environmental Protection Agency. It is designed around a modular implementation, and provides a standa...

  4. Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna

    USDA-ARS?s Scientific Manuscript database

    The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation; interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-year longitudinal study of spatially explicit growth patterns of woody ve...

  5. The effect of area size and predation on the time to extinction of prairie vole populations. simulation studies via SERDYCA: a Spatially-Explicit Individual-Based Model of Rodent Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova, T; Carlsen, T

    2003-11-21

    We present a spatially-explicit individual-based computational model of rodent dynamics, customized for the prairie vole species, M. Ochrogaster. The model is based on trophic relationships and represents important features such as territorial competition, mating behavior, density-dependent predation and dispersal out of the modeled spatial region. Vegetation growth and vole fecundity are dependent on climatic components. The results of simulations show that the model correctly predicts the overall temporal dynamics of the population density. Time-series analysis shows a very good match between the periods corresponding to the peak population density frequencies predicted by the model and the ones reported in themore » literature. The model is used to study the relation between persistence, landscape area and predation. We introduce the notions of average time to extinction (ATE) and persistence frequency to quantify persistence. While the ATE decreases with decrease of area, it is a bell-shaped function of the predation level: increasing for 'small' and decreasing for 'large' predation levels.« less

  6. Exploring complex dynamics in multi agent-based intelligent systems: Theoretical and experimental approaches using the Multi Agent-based Behavioral Economic Landscape (MABEL) model

    NASA Astrophysics Data System (ADS)

    Alexandridis, Konstantinos T.

    This dissertation adopts a holistic and detailed approach to modeling spatially explicit agent-based artificial intelligent systems, using the Multi Agent-based Behavioral Economic Landscape (MABEL) model. The research questions that addresses stem from the need to understand and analyze the real-world patterns and dynamics of land use change from a coupled human-environmental systems perspective. Describes the systemic, mathematical, statistical, socio-economic and spatial dynamics of the MABEL modeling framework, and provides a wide array of cross-disciplinary modeling applications within the research, decision-making and policy domains. Establishes the symbolic properties of the MABEL model as a Markov decision process, analyzes the decision-theoretic utility and optimization attributes of agents towards comprising statistically and spatially optimal policies and actions, and explores the probabilogic character of the agents' decision-making and inference mechanisms via the use of Bayesian belief and decision networks. Develops and describes a Monte Carlo methodology for experimental replications of agent's decisions regarding complex spatial parcel acquisition and learning. Recognizes the gap on spatially-explicit accuracy assessment techniques for complex spatial models, and proposes an ensemble of statistical tools designed to address this problem. Advanced information assessment techniques such as the Receiver-Operator Characteristic curve, the impurity entropy and Gini functions, and the Bayesian classification functions are proposed. The theoretical foundation for modular Bayesian inference in spatially-explicit multi-agent artificial intelligent systems, and the ensembles of cognitive and scenario assessment modular tools build for the MABEL model are provided. Emphasizes the modularity and robustness as valuable qualitative modeling attributes, and examines the role of robust intelligent modeling as a tool for improving policy-decisions related to land use change. Finally, the major contributions to the science are presented along with valuable directions for future research.

  7. On Spatially Explicit Models of Cholera Epidemics: Hydrologic controls, environmental drivers, human-mediated transmissions (Invited)

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.

    2010-12-01

    A recently proposed model for cholera epidemics is examined. The model accounts for local communities of susceptibles and infectives in a spatially explicit arrangement of nodes linked by networks having different topologies. The vehicle of infection (Vibrio cholerae) is transported through the network links which are thought of as hydrological connections among susceptible communities. The mathematical tools used are borrowed from general schemes of reactive transport on river networks acting as the environmental matrix for the circulation and mixing of water-borne pathogens. The results of a large-scale application to the Kwa Zulu (Natal) epidemics of 2001-2002 will be discussed. Useful theoretical results derived in the spatially-explicit context will also be reviewed (like e.g. the exact derivation of the speed of propagation for traveling fronts of epidemics on regular lattices endowed with uniform population density). Network effects will be discussed. The analysis of the limit case of uniformly distributed population density proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. To that extent, it is shown that the ratio between spreading and disease outbreak timescales proves the crucial parameter. The relevance of our results lies in the major differences potentially arising between the predictions of spatially explicit models and traditional compartmental models of the SIR-like type. Our results suggest that in many cases of real-life epidemiological interest timescales of disease dynamics may trigger outbreaks that significantly depart from the predictions of compartmental models. Finally, a view on further developments includes: hydrologically improved aquatic reservoir models for pathogens; human mobility patterns affecting disease propagation; double-peak emergence and seasonality in the spatially explicit epidemic context.

  8. Simulating the effects of the southern pine beetle on regional dynamics 60 years into the future

    Treesearch

    Jennifer K. Costanza; Jiri Hulcr; Frank H. Koch; Todd Earnhardt; Alexa J. McKerrow; Rob R. Dunn; Jaime A. Collazo

    2012-01-01

    We developed a spatially explicit model that simulated future southern pine beetle (Dendroctonus frontalis, SPB) dynamics and pine forest management for a real landscape over 60 years to inform regional forest management. The SPB has a considerable effect on forest dynamics in the Southeastern United States, especially in loblolly pine (...

  9. Five challenges for spatial epidemic models

    PubMed Central

    Riley, Steven; Eames, Ken; Isham, Valerie; Mollison, Denis; Trapman, Pieter

    2015-01-01

    Infectious disease incidence data are increasingly available at the level of the individual and include high-resolution spatial components. Therefore, we are now better able to challenge models that explicitly represent space. Here, we consider five topics within spatial disease dynamics: the construction of network models; characterising threshold behaviour; modelling long-distance interactions; the appropriate scale for interventions; and the representation of population heterogeneity. PMID:25843387

  10. Exploring the role of fire, succession, climate, and weather on landscape dynamics using comparative modeling

    Treesearch

    Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan; Russell A. Parsons; Ian D. Davies; Karen J. King; Chao Li; Ross A. Bradstock; Malcolm Gill

    2013-01-01

    An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide...

  11. Interactive controls of herbivory and fluvial dynamics on landscape vegetation patterns on the Tanana River floodplain, interior Alaska.

    Treesearch

    Lem G. Butler; Knut Kielland; T. Scott Rupp; Thomas A. Hanley

    2007-01-01

    We examined the interactive effects of mammalian herbivory and fluvial dynamics on vegetation dynamics and composition along the Tanana River in interior Alaska between Fairbanks and Manley Hot Springs. We used a spatially explicit model of landscape dynamics (ALFRESCO) to simulate vegetation changes on a 1-year time-step. The model was run for 250 years and was...

  12. Spatially explicit modeling of mixed-severity fire regimes and landscape dynamics

    Treesearch

    Michael C. Wimberly; Rebecca S.H. Kennedy

    2008-01-01

    Simulation models of disturbance and succession are being increasingly applied to characterize landscape composition and dynamics under natural fire regimes, and to evaluate alternative management strategies for ecological restoration and fire hazard reduction. However, we have a limited understanding of how landscapes respond to changes in fire frequency, and about...

  13. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches

    Treesearch

    Scott L. Powell; Warren B. Cohen; Sean P. Healey; Robert E. Kennedy; Gretchen G. Moisen; Kenneth B. Pierce; Janet L. Ohmann

    2010-01-01

    Spatially and temporally explicit knowledge of biomass dynamics at broad scales is critical to understanding how forest disturbance and regrowth processes influence carbon dynamics. We modeled live, aboveground tree biomass using Forest Inventory and Analysis (FIA) field data and applied the models to 20+ year time-series of Landsat satellite imagery to...

  14. Five challenges for spatial epidemic models.

    PubMed

    Riley, Steven; Eames, Ken; Isham, Valerie; Mollison, Denis; Trapman, Pieter

    2015-03-01

    Infectious disease incidence data are increasingly available at the level of the individual and include high-resolution spatial components. Therefore, we are now better able to challenge models that explicitly represent space. Here, we consider five topics within spatial disease dynamics: the construction of network models; characterising threshold behaviour; modelling long-distance interactions; the appropriate scale for interventions; and the representation of population heterogeneity. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Improving predictions of large scale soil carbon dynamics: Integration of fine-scale hydrological and biogeochemical processes, scaling, and benchmarking

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Dwivedi, D.; Ghimire, B.; Hoffman, F. M.; Pau, G. S. H.; Randerson, J. T.; Shen, C.; Tang, J.; Zhu, Q.

    2015-12-01

    Numerical model representations of decadal- to centennial-scale soil-carbon dynamics are a dominant cause of uncertainty in climate change predictions. Recent attempts by some Earth System Model (ESM) teams to integrate previously unrepresented soil processes (e.g., explicit microbial processes, abiotic interactions with mineral surfaces, vertical transport), poor performance of many ESM land models against large-scale and experimental manipulation observations, and complexities associated with spatial heterogeneity highlight the nascent nature of our community's ability to accurately predict future soil carbon dynamics. I will present recent work from our group to develop a modeling framework to integrate pore-, column-, watershed-, and global-scale soil process representations into an ESM (ACME), and apply the International Land Model Benchmarking (ILAMB) package for evaluation. At the column scale and across a wide range of sites, observed depth-resolved carbon stocks and their 14C derived turnover times can be explained by a model with explicit representation of two microbial populations, a simple representation of mineralogy, and vertical transport. Integrating soil and plant dynamics requires a 'process-scaling' approach, since all aspects of the multi-nutrient system cannot be explicitly resolved at ESM scales. I will show that one approach, the Equilibrium Chemistry Approximation, improves predictions of forest nitrogen and phosphorus experimental manipulations and leads to very different global soil carbon predictions. Translating model representations from the site- to ESM-scale requires a spatial scaling approach that either explicitly resolves the relevant processes, or more practically, accounts for fine-resolution dynamics at coarser scales. To that end, I will present recent watershed-scale modeling work that applies reduced order model methods to accurately scale fine-resolution soil carbon dynamics to coarse-resolution simulations. Finally, we contend that creating believable soil carbon predictions requires a robust, transparent, and community-available benchmarking framework. I will present an ILAMB evaluation of several of the above-mentioned approaches in ACME, and attempt to motivate community adoption of this evaluation approach.

  16. Modeling wildlife populations with HexSim

    EPA Science Inventory

    HexSim is a framework for constructing spatially-explicit, individual-based computer models designed for simulating terrestrial wildlife population dynamics and interactions. HexSim is useful for a broad set of modeling applications including population viability analysis for on...

  17. Quantifying spatially and temporally explicit CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shaoqing; Zhuang, Qianlai; Chen, Min

    Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less

  18. Modeling the Impact of Spatial Structure on Growth Dynamics of Invasive Plant Species

    NASA Astrophysics Data System (ADS)

    Murphy, James T.; Johnson, Mark P.; Walshe, Ray

    2013-07-01

    Invasive nonindigenous plant species can have potentially serious detrimental effects on local ecosystems and, as a result, costly control efforts often have to be put in place to protect habitats. An example of an invasive problem on a global scale involves the salt marsh grass species from the genus Spartina. The spread of Spartina anglica in Europe and Asia has drawn much concern due to its ability to convert coastal habitats into cord-grass monocultures and to alter the native food webs. However, the patterns of invasion of Spartina species are amenable to spatially-explicit modeling strategies that take into account both temporal and spatio-temporal processes. In this study, an agent-based model of Spartina growth on a simulated mud flat environment was developed in order to study the effects of spatial pattern and initial seedling placement on the invasion dynamics of the population. The spatial pattern of an invasion plays a key role in the rate of spread of the species and understanding this can lead to significant cost savings when designing efficient control strategies. We present here a model framework that can be used to explicitly represent complex spatial and temporal patterns of invasion in order to be able to predict quantitatively the impact of these factors on invasion dynamics. This would be a useful tool for assessing eradication strategies and choosing optimal control solutions in order to be able to minimize future control costs.

  19. Spatial capture-recapture models allowing Markovian transience or dispersal

    USGS Publications Warehouse

    Royle, J. Andrew; Fuller, Angela K.; Sutherland, Chris

    2016-01-01

    Spatial capture–recapture (SCR) models are a relatively recent development in quantitative ecology, and they are becoming widely used to model density in studies of animal populations using camera traps, DNA sampling and other methods which produce spatially explicit individual encounter information. One of the core assumptions of SCR models is that individuals possess home ranges that are spatially stationary during the sampling period. For many species, this assumption is unlikely to be met and, even for species that are typically territorial, individuals may disperse or exhibit transience at some life stages. In this paper we first conduct a simulation study to evaluate the robustness of estimators of density under ordinary SCR models when dispersal or transience is present in the population. Then, using both simulated and real data, we demonstrate that such models can easily be described in the BUGS language providing a practical framework for their analysis, which allows us to evaluate movement dynamics of species using capture–recapture data. We find that while estimators of density are extremely robust, even to pathological levels of movement (e.g., complete transience), the estimator of the spatial scale parameter of the encounter probability model is confounded with the dispersal/transience scale parameter. Thus, use of ordinary SCR models to make inferences about density is feasible, but interpretation of SCR model parameters in relation to movement should be avoided. Instead, when movement dynamics are of interest, such dynamics should be parameterized explicitly in the model.

  20. Quantifying spatially and temporally explicit CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics

    DOE PAGES

    Liu, Shaoqing; Zhuang, Qianlai; Chen, Min; ...

    2016-07-25

    Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less

  1. Predicted effects of gypsy moth defoliation and climate change on forest carbon dynamics in the New Jersey Pine Barrens

    Treesearch

    Alec M. Kretchun; Robert M. Scheller; Melissa S. Lucash; Kenneth L. Clark; John Hom; Steve Van Tuyl; Michael L. Fine

    2014-01-01

    Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to...

  2. Biomass and fire dynamics in a temperate forest-grassland mosaic: Integrating multi-species herbivory, climate, and fire with the FireBGCv2/GrazeBGC system

    Treesearch

    Robert A. Riggs; Robert E. Keane; Norm Cimon; Rachel Cook; Lisa Holsinger; John Cook; Timothy DelCurto; L.Scott Baggett; Donald Justice; David Powell; Martin Vavra; Bridgett Naylor

    2015-01-01

    Landscape fire succession models (LFSMs) predict spatially-explicit interactions between vegetation succession and disturbance, but these models have yet to fully integrate ungulate herbivory as a driver of their processes. We modified a complex LFSM, FireBGCv2, to include a multi-species herbivory module, GrazeBGC. The system is novel in that it explicitly...

  3. A dynamic spatio-temporal model for spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin; Walsh, Daniel P.

    2017-01-01

    Analyzing spatial data often requires modeling dependencies created by a dynamic spatio-temporal data generating process. In many applications, a generalized linear mixed model (GLMM) is used with a random effect to account for spatial dependence and to provide optimal spatial predictions. Location-specific covariates are often included as fixed effects in a GLMM and may be collinear with the spatial random effect, which can negatively affect inference. We propose a dynamic approach to account for spatial dependence that incorporates scientific knowledge of the spatio-temporal data generating process. Our approach relies on a dynamic spatio-temporal model that explicitly incorporates location-specific covariates. We illustrate our approach with a spatially varying ecological diffusion model implemented using a computationally efficient homogenization technique. We apply our model to understand individual-level and location-specific risk factors associated with chronic wasting disease in white-tailed deer from Wisconsin, USA and estimate the location the disease was first introduced. We compare our approach to several existing methods that are commonly used in spatial statistics. Our spatio-temporal approach resulted in a higher predictive accuracy when compared to methods based on optimal spatial prediction, obviated confounding among the spatially indexed covariates and the spatial random effect, and provided additional information that will be important for containing disease outbreaks.

  4. Spatial and seasonal dynamics of surface soil carbon in the Luquillo Experimental Forest, Puerto Rico.

    Treesearch

    Hongqing Wang; Joseph D. Cornell; Charles A.S. Hall; David P. Marley

    2002-01-01

    We developed a spatially-explicit version of the CENTURY soil model to characterize the storage and flux of soil organic carbon (SOC, 0–30 cm depth) in the Luquillo Experimental Forest (LEF), Puerto Rico as a function of climate, vegetation, and soils. The model was driven by monthly estimates of average air temperature, precipitation, and potential evapotranspiration...

  5. Historical fire and vegetation dynamics in dry forests of the interior Pacific Northwest, USA, and relationships to northern spotted owl (Strix occidentalis caurina) habitat conservation

    Treesearch

    Rebecca S.H. Kennedy; Michael C. Wimberly

    2009-01-01

    Regional conservation planning frequently relies on general assumptions about historical disturbance regimes to inform decisions about landscape restoration, reserve allocations, and landscape management. Spatially explicit simulations of landscape dynamics provide quantitative estimates of landscape structure and allow for the testing of alternative scenarios. We used...

  6. Equilibrium distribution of heavy quarks in fokker-planck dynamics

    PubMed

    Walton; Rafelski

    2000-01-03

    We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein's relation between drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the transverse and longitudinal diffusion for dimension n>1. We provide a complete characterization of the equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis to charm quark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration.

  7. What Do They Have in Common? Physical Drivers of Streamflow Spatial Correlation and Prediction of Flow Regimes at Ungauged Locations in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Betterle, A.; Schirmer, M.; Botter, G.

    2017-12-01

    Streamflow dynamics strongly influence anthropogenic activities and the ecological functions of riverine and riparian habitats. However, the widespread lack of direct discharge measurements often challenges the set-up of conscious and effective decision-making processes, including droughts and floods protection, water resources management and river restoration practices. By characterizing the spatial correlation of daily streamflow timeseries at two arbitrary locations, this study provides a method to evaluate how spatially variable catchment-scale hydrological process affects the resulting streamflow dynamics along and across river systems. In particular, streamflow spatial correlation is described analytically as a function of morphological, climatic and vegetation properties in the contributing catchments, building on a joint probabilistic description of flow dynamics at pairs of outlets. The approach enables an explicit linkage between similarities of flow dynamics and spatial patterns of hydrologically relevant features of climate and landscape. Therefore, the method is suited to explore spatial patterns of streamflow dynamics across geomorphoclimatic gradients. In particular, we show how the streamflow correlation can be used at the continental scale to individuate catchment pairs with similar hydrological dynamics, thereby providing a useful tool for the estimate of flow duration curves in poorly gauged areas.

  8. The evolution of parasite manipulation of host dispersal

    PubMed Central

    Lion, Sébastien; van Baalen, Minus; Wilson, William G

    2006-01-01

    We investigate the evolution of manipulation of host dispersal behaviour by parasites using spatially explicit individual-based simulations. We find that when dispersal is local, parasites always gain from increasing their hosts' dispersal rate, although the evolutionary outcome is determined by the costs-to-benefits ratio. However, when dispersal can be non-local, we show that parasites investing in an intermediate dispersal distance of their hosts are favoured even when the manipulation is not costly, due to the intrinsic spatial dynamics of the host–parasite interaction. Our analysis highlights the crucial importance of ecological spatial dynamics in evolutionary processes and reveals the theoretical possibility that parasites could manipulate their hosts' dispersal. PMID:16600882

  9. IMPORTANCE OF MOVEMENT VARIES IN STATIC AND DYNAMIC LANDSCAPES

    EPA Science Inventory

    The relative sensitivity of spatially explicit population models (SEPMs) to movement parameters is a topic of ongoing debate among theoretical ecologists. In this study, we add additional realism to this debate by examining a SEPM's sensitivity to dispersal ability in static vs....

  10. Social and spatial effects on genetic variation between foraging flocks in a wild bird population.

    PubMed

    Radersma, Reinder; Garroway, Colin J; Santure, Anna W; de Cauwer, Isabelle; Farine, Damien R; Slate, Jon; Sheldon, Ben C

    2017-10-01

    Social interactions are rarely random. In some instances, animals exhibit homophily or heterophily, the tendency to interact with similar or dissimilar conspecifics, respectively. Genetic homophily and heterophily influence the evolutionary dynamics of populations, because they potentially affect sexual and social selection. Here, we investigate the link between social interactions and allele frequencies in foraging flocks of great tits (Parus major) over three consecutive years. We constructed co-occurrence networks which explicitly described the splitting and merging of 85,602 flocks through time (fission-fusion dynamics), at 60 feeding sites. Of the 1,711 birds in those flocks, we genotyped 962 individuals at 4,701 autosomal single nucleotide polymorphisms (SNPs). By combining genomewide genotyping with repeated field observations of the same individuals, we were able to investigate links between social structure and allele frequencies at a much finer scale than was previously possible. We explicitly accounted for potential spatial effects underlying genetic structure at the population level. We modelled social structure and spatial configuration of great tit fission-fusion dynamics with eigenvector maps. Variance partitioning revealed that allele frequencies were strongly affected by group fidelity (explaining 27%-45% of variance) as individuals tended to maintain associations with the same conspecifics. These conspecifics were genetically more dissimilar than expected, shown by genomewide heterophily for pure social (i.e., space-independent) grouping preferences. Genomewide homophily was linked to spatial configuration, indicating spatial segregation of genotypes. We did not find evidence for homophily or heterophily for putative socially relevant candidate genes or any other SNP markers. Together, these results demonstrate the importance of distinguishing social and spatial processes in determining population structure. © 2017 John Wiley & Sons Ltd.

  11. Estimating and interpreting migration of Amazonian forests using spatially implicit and semi-explicit neutral models.

    PubMed

    Pos, Edwin; Guevara Andino, Juan Ernesto; Sabatier, Daniel; Molino, Jean-François; Pitman, Nigel; Mogollón, Hugo; Neill, David; Cerón, Carlos; Rivas-Torres, Gonzalo; Di Fiore, Anthony; Thomas, Raquel; Tirado, Milton; Young, Kenneth R; Wang, Ophelia; Sierra, Rodrigo; García-Villacorta, Roosevelt; Zagt, Roderick; Palacios Cuenca, Walter; Aulestia, Milton; Ter Steege, Hans

    2017-06-01

    With many sophisticated methods available for estimating migration, ecologists face the difficult decision of choosing for their specific line of work. Here we test and compare several methods, performing sanity and robustness tests, applying to large-scale data and discussing the results and interpretation. Five methods were selected to compare for their ability to estimate migration from spatially implicit and semi-explicit simulations based on three large-scale field datasets from South America (Guyana, Suriname, French Guiana and Ecuador). Space was incorporated semi-explicitly by a discrete probability mass function for local recruitment, migration from adjacent plots or from a metacommunity. Most methods were able to accurately estimate migration from spatially implicit simulations. For spatially semi-explicit simulations, estimation was shown to be the additive effect of migration from adjacent plots and the metacommunity. It was only accurate when migration from the metacommunity outweighed that of adjacent plots, discrimination, however, proved to be impossible. We show that migration should be considered more an approximation of the resemblance between communities and the summed regional species pool. Application of migration estimates to simulate field datasets did show reasonably good fits and indicated consistent differences between sets in comparison with earlier studies. We conclude that estimates of migration using these methods are more an approximation of the homogenization among local communities over time rather than a direct measurement of migration and hence have a direct relationship with beta diversity. As betadiversity is the result of many (non)-neutral processes, we have to admit that migration as estimated in a spatial explicit world encompasses not only direct migration but is an ecological aggregate of these processes. The parameter m of neutral models then appears more as an emerging property revealed by neutral theory instead of being an effective mechanistic parameter and spatially implicit models should be rejected as an approximation of forest dynamics.

  12. Modeling spatial variation in avian survival and residency probabilities

    USGS Publications Warehouse

    Saracco, James F.; Royle, J. Andrew; DeSante, David F.; Gardner, Beth

    2010-01-01

    The importance of understanding spatial variation in processes driving animal population dynamics is widely recognized. Yet little attention has been paid to spatial modeling of vital rates. Here we describe a hierarchical spatial autoregressive model to provide spatially explicit year-specific estimates of apparent survival (phi) and residency (pi) probabilities from capture-recapture data. We apply the model to data collected on a declining bird species, Wood Thrush (Hylocichla mustelina), as part of a broad-scale bird-banding network, the Monitoring Avian Productivity and Survivorship (MAPS) program. The Wood Thrush analysis showed variability in both phi and pi among years and across space. Spatial heterogeneity in residency probability was particularly striking, suggesting the importance of understanding the role of transients in local populations. We found broad-scale spatial patterning in Wood Thrush phi and pi that lend insight into population trends and can direct conservation and research. The spatial model developed here represents a significant advance over approaches to investigating spatial pattern in vital rates that aggregate data at coarse spatial scales and do not explicitly incorporate spatial information in the model. Further development and application of hierarchical capture-recapture models offers the opportunity to more fully investigate spatiotemporal variation in the processes that drive population changes.

  13. The importance of spatial fishing behavior for coral reef resilience

    NASA Astrophysics Data System (ADS)

    Rassweiler, A.; Lauer, M.; Holbrook, S. J.

    2016-02-01

    Coral reefs are dynamic systems in which disturbances periodically reduce coral cover but are normally followed by recovery of the coral community. However, human activity may have reduced this resilience to disturbance in many coral reef systems, as an increasing number of reefs have undergone persistent transitions from coral-dominated to macroalgal-dominated community states. Fishing on herbivores may be one cause of reduced reef resilience, as lower herbivory can make it easier for macroalgae to become established after a disturbance. Despite the acknowledged importance of fishing, relatively little attention has been paid to the potential for feedbacks between ecosystem state and fisher behavior. Here we couple methods from environmental anthropology and ecology to explore these feedbacks between small-scale fisheries and coral reefs in Moorea, French Polynesia. We document how aspects of ecological state such as the abundance of macroalgae affect people's preference for fishing in particular lagoon habitats. We then incorporate biases towards fishing in certain ecological states into a spatially explicit bio-economic model of ecological dynamics and fishing in Moorea's lagoons. We find that feedbacks between spatial fishing behavior and ecological state can have critical effects on coral reefs. Presence of these spatial behaviors consistently leads to more coherence across the reef-scape. However, whether this coherence manifests as increased resilience or increased fragility depends on the spatial scales of fisher movement and the magnitudes of disturbance. These results emphasize the potential importance of spatially-explicit fishing behavior for reef resilience, but also the complexity of the feedbacks involved.

  14. Influence of local demography on asymptotic and transient dynamics of a yellow-bellied marmot metapopulation.

    PubMed

    Ozgul, Arpat; Oli, Madan K; Armitage, Kenneth B; Blumstein, Daniel T; Van Vuren, Dirk H

    2009-04-01

    Despite recent advances in biodemography and metapopulation ecology, we still have limited understanding of how local demographic parameters influence short- and long-term metapopulation dynamics. We used long-term data from 17 local populations, along with the recently developed methods of matrix metapopulation modeling and transient sensitivity analysis, to investigate the influence of local demography on long-term (asymptotic) versus short-term (transient) dynamics of a yellow-bellied marmot metapopulation in Colorado. Both long- and short-term dynamics depended primarily on a few colony sites and were highly sensitive to changes in demography at these sites, particularly in survival of reproductive adult females. Interestingly, the relative importance of sites differed between long- and short-term dynamics; the spatial structure and local population sizes, while insignificant for asymptotic dynamics, were influential on transient dynamics. However, considering the spatial structure was uninformative about the relative influence of local demography on metapopulation dynamics. The vital rates that were the most influential on local dynamics were also the most influential on both long- and short-term metapopulation dynamics. Our results show that an explicit consideration of local demography is essential for a complete understanding of the dynamics and persistence of spatially structured populations.

  15. Quantifying the impact of human mobility on malaria

    PubMed Central

    Wesolowski, Amy; Eagle, Nathan; Tatem, Andrew J.; Smith, David L.; Noor, Abdisalan M.; Snow, Robert W.; Buckee, Caroline O.

    2013-01-01

    Human movements contribute to the transmission of malaria on spatial scales that exceed the limits of mosquito dispersal. Identifying the sources and sinks of imported infections due to human travel and locating high-risk sites of parasite importation could greatly improve malaria control programs. Here we use spatially explicit mobile phone data and malaria prevalence information from Kenya to identify the dynamics of human carriers that drive parasite importation between regions. Our analysis identifies specific importation routes that contribute to malaria epidemiology on regional spatial scales. PMID:23066082

  16. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird–prey relationships.

    PubMed

    Santora, Jarrod A; Schroeder, Isaac D; Field, John C; Wells, Brian K; Sydeman, William J

    Studies of predator–prey demographic responses and the physical drivers of such relationships are rare, yet essential for predicting future changes in the structure and dynamics of marine ecosystems. Here, we hypothesize that predator–prey relationships vary spatially in association with underlying physical ocean conditions, leading to observable changes in demographic rates, such as reproduction. To test this hypothesis, we quantified spatio-temporal variability in hydrographic conditions, krill, and forage fish to model predator (seabird) demographic responses over 18 years (1990–2007). We used principal component analysis and spatial correlation maps to assess coherence among ocean conditions, krill, and forage fish, and generalized additive models to quantify interannual variability in seabird breeding success relative to prey abundance. The first principal component of four hydrographic measurements yielded an index that partitioned “warm/weak upwelling” and “cool/strong upwelling” years. Partitioning of krill and forage fish time series among shelf and oceanic regions yielded spatially explicit indicators of prey availability. Krill abundance within the oceanic region was remarkably consistent between years, whereas krill over the shelf showed marked interannual fluctuations in relation to ocean conditions. Anchovy abundance varied on the shelf, and was greater in years of strong stratification, weak upwelling and warmer temperatures. Spatio-temporal variability of juvenile forage fish co-varied strongly with each other and with krill, but was weakly correlated with hydrographic conditions. Demographic responses between seabirds and prey availability revealed spatially variable associations indicative of the dynamic nature of “predator–habitat” relationships. Quantification of spatially explicit demographic responses, and their variability through time, demonstrate the possibility of delineating specific critical areas where the implementation of protective measures could maintain functions and productivity of central place foraging predators.

  17. AN INDIVIDUAL-BASED SIMULATION MODEL FOR MOTTLED SCULPIN (COTTUS BAIRDI) IN A SOUTHERN APPALACHIAN STREAM

    EPA Science Inventory

    We describe and analyze a spatially explicit, individual-based model for the local population dynamics of mottled sculpin (Cottus bairdi). The model simulated daily growth, mortality, movement and spawning of individuals within a reach of stream. Juvenile and adult growth was bas...

  18. Incorporating historical ecosystem diversity into conservation planning efforts in grass and shrub ecosystems

    Treesearch

    Amy C. Ganguli; Johathan B. Haufler; Carolyn A. Mehl; Jimmie D. Chew

    2011-01-01

    Understanding historical ecosystem diversity and wildlife habitat quality can provide a useful reference for managing and restoring rangeland ecosystems. We characterized historical ecosystem diversity using available empirical data, expert opinion, and the spatially explicit vegetation dynamics model SIMPPLLE (SIMulating Vegetative Patterns and Processes at Landscape...

  19. Multi-year mapping of irrigated croplands over the US High Plains Aquifer using satellite data

    NASA Astrophysics Data System (ADS)

    Deines, J.; Kendall, A. D.; Hyndman, D. W.

    2016-12-01

    Irrigated agriculture is the largest consumer of freshwater globally. Effective water management is crucial to support ongoing agricultural intensification to meet increasing demand for food, fuel, and fiber production. Knowledge of where and when irrigation occurs is critical for effective management and hydrological modeling, yet data on patterns of irrigation through time are surprisingly rare. Existing regional datasets in the United States tend to be either aspatial county-level estimates or static, single-year remotely sensed products with relatively low spatial resolution ( 250 m or coarser). Spatially explicit, dynamic maps are needed to understand water use trends, create accurate hydrological models, and inform forecasts of future water availability under projected climate change. In the High Plains Aquifer (HPA), repeat mapping efforts in 2002 and 2007 indicated only 60% of irrigated lands were static between these periods. To better understand annual irrigation dynamics, we used remote sensing to produce annual maps of irrigated cropland across the HPA region from a data fusion of Landsat satellites, annual time series of vegetation indices, and ancillary data such as precipitation, soil properties, and terrain slope. We performed machine learning classification using Google Earth Engine, allowing efficient image processing over a large region for multiple years. We then analyzed maps for water use trends and found that although total irrigated area has increased only slightly, there was substantial variability in the spatial pattern of irrigated lands over time. This dataset will support efforts towards groundwater sustainability by providing consistent, spatially explicit tracking of irrigation dynamics over time.

  20. Spatially explicit dynamic N-mixture models

    USGS Publications Warehouse

    Zhao, Qing; Royle, Andy; Boomer, G. Scott

    2017-01-01

    Knowledge of demographic parameters such as survival, reproduction, emigration, and immigration is essential to understand metapopulation dynamics. Traditionally the estimation of these demographic parameters requires intensive data from marked animals. The development of dynamic N-mixture models makes it possible to estimate demographic parameters from count data of unmarked animals, but the original dynamic N-mixture model does not distinguish emigration and immigration from survival and reproduction, limiting its ability to explain important metapopulation processes such as movement among local populations. In this study we developed a spatially explicit dynamic N-mixture model that estimates survival, reproduction, emigration, local population size, and detection probability from count data under the assumption that movement only occurs among adjacent habitat patches. Simulation studies showed that the inference of our model depends on detection probability, local population size, and the implementation of robust sampling design. Our model provides reliable estimates of survival, reproduction, and emigration when detection probability is high, regardless of local population size or the type of sampling design. When detection probability is low, however, our model only provides reliable estimates of survival, reproduction, and emigration when local population size is moderate to high and robust sampling design is used. A sensitivity analysis showed that our model is robust against the violation of the assumption that movement only occurs among adjacent habitat patches, suggesting wide applications of this model. Our model can be used to improve our understanding of metapopulation dynamics based on count data that are relatively easy to collect in many systems.

  1. Ecohydrologic role of solar radiation on landscape evolution

    NASA Astrophysics Data System (ADS)

    Yetemen, Omer; Istanbulluoglu, Erkan; Flores-Cervantes, J. Homero; Vivoni, Enrique R.; Bras, Rafael L.

    2015-02-01

    Solar radiation has a clear signature on the spatial organization of ecohydrologic fluxes, vegetation patterns and dynamics, and landscape morphology in semiarid ecosystems. Existing landscape evolution models (LEMs) do not explicitly consider spatially explicit solar radiation as model forcing. Here, we improve an existing LEM to represent coupled processes of energy, water, and sediment balance for semiarid fluvial catchments. To ground model predictions, a study site is selected in central New Mexico where hillslope aspect has a marked influence on vegetation patterns and landscape morphology. Model predictions are corroborated using limited field observations in central NM and other locations with similar conditions. We design a set of comparative LEM simulations to investigate the role of spatially explicit solar radiation on landscape ecohydro-geomorphic development under different uplift scenarios. Aspect-control and network-control are identified as the two main drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of these short-term ecohdrologic patterns emerged in modeled landscapes. As north facing slopes (NFS) get steeper by continuing uplift they support erosion-resistant denser vegetation cover which leads to further slope steepening until erosion and uplift attains a dynamic equilibrium. Conversely, on south facing slopes (SFS), as slopes grow with uplift, increased solar radiation exposure with slope supports sparser biomass and shallower slopes. At the landscape scale, these differential erosion processes lead to asymmetric development of catchment forms, consistent with regional observations. Understanding of ecohydrogeomorphic evolution will improve to assess the impacts of past and future climates on landscape response and morphology.

  2. Into the environment of mosquito-borne disease: A spatial analysis of vector distribution using traditional and remotely sensed methods

    NASA Astrophysics Data System (ADS)

    Brown, Heidi E.

    Spatially explicit information is increasingly available for infectious disease modeling. However, such information is reluctantly or inappropriately incorporated. My dissertation research uses spatially explicit data to assess relationships between landscape and mosquito species distribution and discusses challenges regarding accurate predictive risk modeling. The goal of my research is to use remotely sensed environmental information and spatial statistical methods to better understand mosquito-borne disease epidemiology for improvement of public health responses. In addition to reviewing the progress of spatial infectious disease modeling, I present four research projects. I begin by evaluating the biases in surveillance data and build up to predictive modeling of mosquito species presence. In the first study I explore how mosquito surveillance trap types influence estimations of mosquito populations. Then. I use county-based human surveillance data and landscape variables to identify risk factors for West Nile virus disease. The third study uses satellite-based vegetation indices to identify spatial variation among West Nile virus vectors in an urban area and relates the variability to virus transmission dynamics. Finally, I explore how information from three satellite sensors of differing spatial and spectral resolution can be used to identify and distinguish mosquito habitat across central Connecticut wetlands. Analyses presented here constitute improvements to the prediction of mosquito distribution and therefore identification of disease risk factors. Current methods for mosquito surveillance data collection are labor intensive and provide an extremely limited, incomplete picture of the species composition and abundance. Human surveillance data offers additional challenges with respect to reporting bias and resolution, but is nonetheless informative in identifying environmental risk factors and disease transmission dynamics. Remotely sensed imagery supports mosquito and human disease surveillance data by providing spatially explicit, line resolution information about environmental factors relevant to vector-borne disease processes. Together, surveillance and remotely sensed environmental data facilitate improved description and modeling of disease transmission. Remote sensing can be used to develop predictive maps of mosquito distribution in relation to disease risk. This has implications for increased accuracy of mosquito control efforts. The projects presented in this dissertation enhance current public health capacities by examining the applications of spatial modeling with respect to mosquito-borne disease.

  3. Investigating population continuity with ancient DNA under a spatially explicit simulation framework.

    PubMed

    Silva, Nuno Miguel; Rio, Jeremy; Currat, Mathias

    2017-12-15

    Recent advances in sequencing technologies have allowed for the retrieval of ancient DNA data (aDNA) from skeletal remains, providing direct genetic snapshots from diverse periods of human prehistory. Comparing samples taken in the same region but at different times, hereafter called "serial samples", may indicate whether there is continuity in the peopling history of that area or whether an immigration of a genetically different population has occurred between the two sampling times. However, the exploration of genetic relationships between serial samples generally ignores their geographical locations and the spatiotemporal dynamics of populations. Here, we present a new coalescent-based, spatially explicit modelling approach to investigate population continuity using aDNA, which includes two fundamental elements neglected in previous methods: population structure and migration. The approach also considers the extensive temporal and geographical variance that is commonly found in aDNA population samples. We first showed that our spatially explicit approach is more conservative than the previous (panmictic) approach and should be preferred to test for population continuity, especially when small and isolated populations are considered. We then applied our method to two mitochondrial datasets from Germany and France, both including modern and ancient lineages dating from the early Neolithic. The results clearly reject population continuity for the maternal line over the last 7500 years for the German dataset but not for the French dataset, suggesting regional heterogeneity in post-Neolithic migratory processes. Here, we demonstrate the benefits of using a spatially explicit method when investigating population continuity with aDNA. It constitutes an improvement over panmictic methods by considering the spatiotemporal dynamics of genetic lineages and the precise location of ancient samples. The method can be used to investigate population continuity between any pair of serial samples (ancient-ancient or ancient-modern) and to investigate more complex evolutionary scenarios. Although we based our study on mitochondrial DNA sequences, diploid molecular markers of different types (DNA, SNP, STR) can also be simulated with our approach. It thus constitutes a promising tool for the analysis of the numerous aDNA datasets being produced, including genome wide data, in humans but also in many other species.

  4. Representing climate, disturbance, and vegetation interactions in landscape models

    Treesearch

    Robert E. Keane; Donald McKenzie; Donald A. Falk; Erica A.H. Smithwick; Carol Miller; Lara-Karena B. Kellogg

    2015-01-01

    The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special...

  5. Integrated modeling of long-term vegetation and hydrologic dynamics in Rocky Mountain watersheds

    Treesearch

    Robert Steven Ahl

    2007-01-01

    Changes in forest structure resulting from natural disturbances, or managed treatments, can have negative and long lasting impacts on water resources. To facilitate integrated management of forest and water resources, a System for Long-Term Integrated Management Modeling (SLIMM) was developed. By combining two spatially explicit, continuous time models, vegetation...

  6. Tidal Mixing Box Submodel for Tampa Bay: Calibration of Tidal Exchange Flows with the Parameter Estimation Tool (PEST)

    EPA Science Inventory

    In the mid-1990s the Tampa Bay Estuary Program proposed a nutrient reduction strategy focused on improving water clarity to promote seagrass expansion within Tampa Bay. A System Dynamics Model is being developed to evaluate spatially and temporally explicit impacts of nutrient r...

  7. An agent-based approach for modeling dynamics of contagious disease spread

    PubMed Central

    Perez, Liliana; Dragicevic, Suzana

    2009-01-01

    Background The propagation of communicable diseases through a population is an inherent spatial and temporal process of great importance for modern society. For this reason a spatially explicit epidemiologic model of infectious disease is proposed for a greater understanding of the disease's spatial diffusion through a network of human contacts. Objective The objective of this study is to develop an agent-based modelling approach the integrates geographic information systems (GIS) to simulate the spread of a communicable disease in an urban environment, as a result of individuals' interactions in a geospatial context. Methods The methodology for simulating spatiotemporal dynamics of communicable disease propagation is presented and the model is implemented using measles outbreak in an urban environment as a case study. Individuals in a closed population are explicitly represented by agents associated to places where they interact with other agents. They are endowed with mobility, through a transportation network allowing them to move between places within the urban environment, in order to represent the spatial heterogeneity and the complexity involved in infectious diseases diffusion. The model is implemented on georeferenced land use dataset from Metro Vancouver and makes use of census data sets from Statistics Canada for the municipality of Burnaby, BC, Canada study site. Results The results provide insights into the application of the model to calculate ratios of susceptible/infected in specific time frames and urban environments, due to its ability to depict the disease progression based on individuals' interactions. It is demonstrated that the dynamic spatial interactions within the population lead to high numbers of exposed individuals who perform stationary activities in areas after they have finished commuting. As a result, the sick individuals are concentrated in geographical locations like schools and universities. Conclusion The GIS-agent based model designed for this study can be easily customized to study the disease spread dynamics of any other communicable disease by simply adjusting the modeled disease timeline and/or the infection model and modifying the transmission process. This type of simulations can help to improve comprehension of disease spread dynamics and to take better steps towards the prevention and control of an epidemic outbreak. PMID:19656403

  8. Integrating population dynamics into mapping human exposure to seismic hazard

    NASA Astrophysics Data System (ADS)

    Freire, S.; Aubrecht, C.

    2012-11-01

    Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  9. FATE-HD: A spatially and temporally explicit integrated model for predicting vegetation structure and diversity at regional scale

    PubMed Central

    Isabelle, Boulangeat; Damien, Georges; Wilfried, Thuiller

    2014-01-01

    During the last decade, despite strenuous efforts to develop new models and compare different approaches, few conclusions have been drawn on their ability to provide robust biodiversity projections in an environmental change context. The recurring suggestions are that models should explicitly (i) include spatiotemporal dynamics; (ii) consider multiple species in interactions; and (iii) account for the processes shaping biodiversity distribution. This paper presents a biodiversity model (FATE-HD) that meets this challenge at regional scale by combining phenomenological and process-based approaches and using well-defined plant functional groups. FATE-HD has been tested and validated in a French National Park, demonstrating its ability to simulate vegetation dynamics, structure and diversity in response to disturbances and climate change. The analysis demonstrated the importance of considering biotic interactions, spatio-temporal dynamics, and disturbances in addition to abiotic drivers to simulate vegetation dynamics. The distribution of pioneer trees was particularly improved, as were all undergrowth functional groups. PMID:24214499

  10. Frequency response function-based explicit framework for dynamic identification in human-structure systems

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Živanović, Stana

    2018-05-01

    The aim of this paper is to propose a novel theoretical framework for dynamic identification in a structure occupied by a single human. The framework enables the prediction of the dynamics of the human-structure system from the known properties of the individual system components, the identification of human body dynamics from the known dynamics of the empty structure and the human-structure system and the identification of the properties of the structure from the known dynamics of the human and the human-structure system. The novelty of the proposed framework is the provision of closed-form solutions in terms of frequency response functions obtained by curve fitting measured data. The advantages of the framework over existing methods are that there is neither need for nonlinear optimisation nor need for spatial/modal models of the empty structure and the human-structure system. In addition, the second-order perturbation method is employed to quantify the effect of uncertainties in human body dynamics on the dynamic identification of the empty structure and the human-structure system. The explicit formulation makes the method computationally efficient and straightforward to use. A series of numerical examples and experiments are provided to illustrate the working of the method.

  11. A theory of forest dynamics: Spatially explicit models and issues of scale

    NASA Technical Reports Server (NTRS)

    Pacala, S.

    1990-01-01

    Good progress has been made in the first year of DOE grant (number sign) FG02-90ER60933. The purpose of the project is to develop and investigate models of forest dynamics that apply across a range of spatial scales. The grant is one third of a three-part project. The second third was funded by the NSF this year and is intended to provide the empirical data necessary to calibrate and test small-scale (less than or equal to 1000 ha) models. The final third was also funded this year (NASA), and will provide data to calibrate and test the large-scale features of the models.

  12. Linking river management to species conservation using dynamic landscape scale models

    USGS Publications Warehouse

    Freeman, Mary C.; Buell, Gary R.; Hay, Lauren E.; Hughes, W. Brian; Jacobson, Robert B.; Jones, John W.; Jones, S.A.; LaFontaine, Jacob H.; Odom, Kenneth R.; Peterson, James T.; Riley, Jeffrey W.; Schindler, J. Stephen; Shea, C.; Weaver, J.D.

    2013-01-01

    Efforts to conserve stream and river biota could benefit from tools that allow managers to evaluate landscape-scale changes in species distributions in response to water management decisions. We present a framework and methods for integrating hydrology, geographic context and metapopulation processes to simulate effects of changes in streamflow on fish occupancy dynamics across a landscape of interconnected stream segments. We illustrate this approach using a 482 km2 catchment in the southeastern US supporting 50 or more stream fish species. A spatially distributed, deterministic and physically based hydrologic model is used to simulate daily streamflow for sub-basins composing the catchment. We use geographic data to characterize stream segments with respect to channel size, confinement, position and connectedness within the stream network. Simulated streamflow dynamics are then applied to model fish metapopulation dynamics in stream segments, using hypothesized effects of streamflow magnitude and variability on population processes, conditioned by channel characteristics. The resulting time series simulate spatially explicit, annual changes in species occurrences or assemblage metrics (e.g. species richness) across the catchment as outcomes of management scenarios. Sensitivity analyses using alternative, plausible links between streamflow components and metapopulation processes, or allowing for alternative modes of fish dispersal, demonstrate large effects of ecological uncertainty on model outcomes and highlight needed research and monitoring. Nonetheless, with uncertainties explicitly acknowledged, dynamic, landscape-scale simulations may prove useful for quantitatively comparing river management alternatives with respect to species conservation.

  13. A spatially explicit hydro-ecological modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern North America

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Margolis, Hank; Ju, Weimin; Sonnentag, Oliver; Giasson, Marc-André

    2009-04-01

    SummaryA spatially explicit, process-based hydro-ecological model, BEPS-TerrainLab V2.0, was developed to improve the representation of ecophysiological, hydro-ecological and biogeochemical processes of boreal ecosystems in a tightly coupled manner. Several processes unique to boreal ecosystems were implemented including the sub-surface lateral water fluxes, stratification of vegetation into distinct layers for explicit ecophysiological representation, inclusion of novel spatial upscaling strategies and biogeochemical processes. To account for preferential water fluxes common in humid boreal ecosystems, a novel scheme was introduced based on laboratory analyses. Leaf-scale ecophysiological processes were upscaled to canopy-scale by explicitly considering leaf physiological conditions as affected by light and water stress. The modified model was tested with 2 years of continuous measurements taken at the Eastern Old Black Spruce Site of the Fluxnet-Canada Research Network located in a humid boreal watershed in eastern Canada. Comparison of the simulated and measured ET, water-table depth (WTD), volumetric soil water content (VSWC) and gross primary productivity (GPP) revealed that BEPS-TerrainLab V2.0 simulates hydro-ecological processes with reasonable accuracy. The model was able to explain 83% of the ET, 92% of the GPP variability and 72% of the WTD dynamics. The model suggests that in humid ecosystems such as eastern North American boreal watersheds, topographically driven sub-surface baseflow is the main mechanism of soil water partitioning which significantly affects the local-scale hydrological conditions.

  14. Modelling temporal and spatial dynamics of benthic fauna in North-West-European shelf seas

    NASA Astrophysics Data System (ADS)

    Lessin, Gennadi; Bruggeman, Jorn; Artioli, Yuri; Butenschön, Momme; Blackford, Jerry

    2017-04-01

    Benthic zones of shallow shelf seas receive high amounts of organic material. Physical processes such as resuspension, as well as complex transformations mediated by diverse faunal and microbial communities, define fate of this material, which can be returned to the water column, reworked within sediments or ultimately buried. In recent years, numerical models of various complexity and serving different goals have been developed and applied in order to better understand and predict dynamics of benthic processes. ERSEM includes explicit parameterisations of several groups of benthic biota, which makes it particularly applicable for studies of benthic biodiversity, biological interactions within sediments and benthic-pelagic coupling. To assess model skill in reproducing temporal (inter-annual and seasonal) dynamics of major benthic macrofaunal groups, 1D model simulation results were compared with data from the Western Channel Observatory (WCO) benthic survey. The benthic model was forced with organic matter deposition rates inferred from observed phytoplankton abundance and model parameters were subsequently recalibrated. Based on model results and WCO data comparison, deposit-feeders exert clear seasonal variability, while for suspension-feeders inter-annual variability is more pronounced. Spatial distribution of benthic fauna was investigated using results of a full-scale NEMO-ERSEM hindcast simulation of the North-West European Shelf Seas area, covering the period of 1981-2014. Results suggest close relationship between spatial distribution of biomass of benthic faunal functional groups in relation to bathymetry, hydrodynamic conditions and organic matter supply. Our work highlights that it is feasible to construct, implement and validate models that explicitly include functional groups of benthic macrofauna. Moreover, the modelling approach delivers detailed information on benthic biogeochemistry and food-web at spatial and temporal scales that are unavailable through other sources but highly relevant to marine management, planning and policy.

  15. Spatially structured superinfection and the evolution of disease virulence.

    PubMed

    Caraco, Thomas; Glavanakov, Stephan; Li, Shengua; Maniatty, William; Szymanski, Boleslaw K

    2006-06-01

    When pathogen strains differing in virulence compete for hosts, spatial structuring of disease transmission can govern both evolved levels of virulence and patterns in strain coexistence. We develop a spatially detailed model of superinfection, a form of contest competition between pathogen strains; the probability of superinfection depends explicitly on the difference in levels of virulence. We apply methods of adaptive dynamics to address the interplay of spatial dynamics and evolution. The mean-field approximation predicts evolution to criticality; any small increase in virulence capable of dynamical persistence is favored. Both pair approximation and simulation of the detailed model indicate that spatial structure constrains disease virulence. Increased spatial clustering reduces the maximal virulence capable of single-strain persistence and, more importantly, reduces the convergent-stable virulence level under strain competition. The spatially detailed model predicts that increasing the probability of superinfection, for given difference in virulence, increases the likelihood of between-strain coexistence. When strains differing in virulence can coexist ecologically, our results may suggest policies for managing diseases with localized transmission. Comparing equilibrium densities from the pair approximation, we find that introducing a more virulent strain into a host population infected by a less virulent strain can sometimes reduce total host mortality and increase global host density.

  16. Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model.

    PubMed

    Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di

    2016-07-15

    We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.

  17. Remote sensing of ecosystem health: opportunities, challenges, and future perspectives.

    PubMed

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-11-07

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges.

  18. Using dynamic population simulations to extend resource selection analyses and prioritize habitats for conservation

    USGS Publications Warehouse

    Heinrichs, Julie; Aldridge, Cameron L.; O'Donnell, Michael; Schumaker, Nathan

    2017-01-01

    Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population dynamics and movement propensities via spatial simulation modeling frameworks may provide an informative means of predicting long-term habitat use, particularly for fluctuating populations with complex seasonal habitat needs. Importantly, our results indicate the possible need to consider habitat selection models as a starting point rather than the common end point for refining and prioritizing habitats for protection for cyclic and highly variable populations.

  19. Solutions of the Taylor-Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2013-01-01

    A computational fluid dynamics code that solves the compressible Navier-Stokes equations was applied to the Taylor-Green vortex problem to examine the code s ability to accurately simulate the vortex decay and subsequent turbulence. The code, WRLES (Wave Resolving Large-Eddy Simulation), uses explicit central-differencing to compute the spatial derivatives and explicit Low Dispersion Runge-Kutta methods for the temporal discretization. The flow was first studied and characterized using Bogey & Bailley s 13-point dispersion relation preserving (DRP) scheme. The kinetic energy dissipation rate, computed both directly and from the enstrophy field, vorticity contours, and the energy spectra are examined. Results are in excellent agreement with a reference solution obtained using a spectral method and provide insight into computations of turbulent flows. In addition the following studies were performed: a comparison of 4th-, 8th-, 12th- and DRP spatial differencing schemes, the effect of the solution filtering on the results, the effect of large-eddy simulation sub-grid scale models, and the effect of high-order discretization of the viscous terms.

  20. An individual-based simulation model for mottled sculpin (Cottus bairdi) in a southern Appalachian stream

    Treesearch

    Brenda Rashleigh; Gary D. Grossman

    2005-01-01

    We describe and analyze a spatially explicit, individual-based model for the local population dynamics of mottled sculpin (Cottus bairdi). The model simulated daily growth, mortality, movement and spawning of individuals within a reach of stream. Juvenile and adult growth was based on consumption bioenergetics of benthic macroinvertebrate prey;...

  1. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  2. Modelling hen harrier dynamics to inform human-wildlife conflict resolution: a spatially-realistic, individual-based approach.

    PubMed

    Heinonen, Johannes P M; Palmer, Stephen C F; Redpath, Steve M; Travis, Justin M J

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions.

  3. Modelling Hen Harrier Dynamics to Inform Human-Wildlife Conflict Resolution: A Spatially-Realistic, Individual-Based Approach

    PubMed Central

    Heinonen, Johannes P. M.; Palmer, Stephen C. F.; Redpath, Steve M.; Travis, Justin M. J.

    2014-01-01

    Individual-based models have gained popularity in ecology, and enable simultaneous incorporation of spatial explicitness and population dynamic processes to understand spatio-temporal patterns of populations. We introduce an individual-based model for understanding and predicting spatial hen harrier (Circus cyaneus) population dynamics in Great Britain. The model uses a landscape with habitat, prey and game management indices. The hen harrier population was initialised according to empirical census estimates for 1988/89 and simulated until 2030, and predictions for 1998, 2004 and 2010 were compared to empirical census estimates for respective years. The model produced a good qualitative match to overall trends between 1989 and 2010. Parameter explorations revealed relatively high elasticity in particular to demographic parameters such as juvenile male mortality. This highlights the need for robust parameter estimates from empirical research. There are clearly challenges for replication of real-world population trends, but this model provides a useful tool for increasing understanding of drivers of hen harrier dynamics and focusing research efforts in order to inform conflict management decisions. PMID:25405860

  4. From puddles to planet: modeling approaches to vector-borne diseases at varying resolution and scale.

    PubMed

    Eckhoff, Philip A; Bever, Caitlin A; Gerardin, Jaline; Wenger, Edward A; Smith, David L

    2015-08-01

    Since the original Ross-Macdonald formulations of vector-borne disease transmission, there has been a broad proliferation of mathematical models of vector-borne disease, but many of these models retain most to all of the simplifying assumptions of the original formulations. Recently, there has been a new expansion of mathematical frameworks that contain explicit representations of the vector life cycle including aquatic stages, multiple vector species, host heterogeneity in biting rate, realistic vector feeding behavior, and spatial heterogeneity. In particular, there are now multiple frameworks for spatially explicit dynamics with movements of vector, host, or both. These frameworks are flexible and powerful, but require additional data to take advantage of these features. For a given question posed, utilizing a range of models with varying complexity and assumptions can provide a deeper understanding of the answers derived from models. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    USGS Publications Warehouse

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  6. Estimating Biofuel Feedstock Water Footprints Using System Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inman, Daniel; Warner, Ethan; Stright, Dana

    Increased biofuel production has prompted concerns about the environmental tradeoffs of biofuels compared to petroleum-based fuels. Biofuel production in general, and feedstock production in particular, is under increased scrutiny. Water footprinting (measuring direct and indirect water use) has been proposed as one measure to evaluate water use in the context of concerns about depleting rural water supplies through activities such as irrigation for large-scale agriculture. Water footprinting literature has often been limited in one or more key aspects: complete assessment across multiple water stocks (e.g., vadose zone, surface, and ground water stocks), geographical resolution of data, consistent representation of manymore » feedstocks, and flexibility to perform scenario analysis. We developed a model called BioSpatial H2O using a system dynamics modeling and database framework. BioSpatial H2O could be used to consistently evaluate the complete water footprints of multiple biomass feedstocks at high geospatial resolutions. BioSpatial H2O has the flexibility to perform simultaneous scenario analysis of current and potential future crops under alternative yield and climate conditions. In this proof-of-concept paper, we modeled corn grain (Zea mays L.) and soybeans (Glycine max) under current conditions as illustrative results. BioSpatial H2O links to a unique database that houses annual spatially explicit climate, soil, and plant physiological data. Parameters from the database are used as inputs to our system dynamics model for estimating annual crop water requirements using daily time steps. Based on our review of the literature, estimated green water footprints are comparable to other modeled results, suggesting that BioSpatial H2O is computationally sound for future scenario analysis. Our modeling framework builds on previous water use analyses to provide a platform for scenario-based assessment. BioSpatial H2O's system dynamics is a flexible and user-friendly interface for on-demand, spatially explicit, water use scenario analysis for many US agricultural crops. Built-in controls permit users to quickly make modifications to the model assumptions, such as those affecting yield, and to see the implications of those results in real time. BioSpatial H2O's dynamic capabilities and adjustable climate data allow for analyses of water use and management scenarios to inform current and potential future bioenergy policies. The model could also be adapted for scenario analysis of alternative climatic conditions and comparison of multiple crops. The results of such an analysis would help identify risks associated with water use competition among feedstocks in certain regions. Results could also inform research and development efforts that seek to reduce water-related risks of biofuel pathways.« less

  7. Implementation of a Time Series Analysis for the Assessment of the Role of Climate Variability in a Post-Disturbance Savanna System

    NASA Astrophysics Data System (ADS)

    Gibbes, C.; Southworth, J.; Waylen, P. R.

    2013-05-01

    How do climate variability and climate change influence vegetation cover and vegetation change in savannas? A landscape scale investigation of the effect of changes in precipitation on vegetation is undertaken through the employment of a time series analysis. The multi-national study region is located within the Kavango-Zambezi region, and is delineated by the Okavango, Kwando, and Zambezi watersheds. A mean-variance time-series analysis quantifies vegetation dynamics and characterizes vegetation response to climate. The spatially explicit approach used to quantify the persistence of vegetation productivity permits the extraction of information regarding long term climate-landscape dynamics. Results show a pattern of reduced mean annual precipitation and increased precipitation variability across key social and ecological areas within the study region. Despite decreased mean annual precipitation since the mid to late 1970's vegetation trends predominantly indicate increasing biomass. The limited areas which have diminished vegetative cover relate to specific vegetation types, and are associated with declines in precipitation variability. Results indicate that in addition to short term changes in vegetation cover, long term trends in productive biomass are apparent, relate to spatial differences in precipitation variability, and potentially represent shifts vegetation composition. This work highlights the importance of time-series analyses for examining climate-vegetation linkages in a spatially explicit manner within a highly vulnerable region of the world.

  8. CDPOP: A spatially explicit cost distance population genetics program

    Treesearch

    Erin L. Landguth; S. A. Cushman

    2010-01-01

    Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...

  9. The Influence of Visual and Spatial Reasoning in Interpreting Simulated 3D Worlds.

    ERIC Educational Resources Information Center

    Lowrie, Tom

    2002-01-01

    Explores ways in which 6-year-old children make sense of screen-based images on the computer. Uses both static and relatively dynamic software programs in the investigation. Suggests that young children should be exposed to activities that establish explicit links between 2D and 3D objects away from the computer before attempting difficult links…

  10. Simulation modeling of forest landscape disturbances: Where do we go from here?

    Treesearch

    Ajith H. Perera; Brian R. Sturtevant; Lisa J. Buse

    2015-01-01

    It was nearly a quarter-century ago when Turner and Gardner (1991) drew attention to methods of quantifying landscape patterns and processes, including simulation modeling. The many authors who contributed to that seminal text collectively signaled the emergence of a new field—spatially explicit simulation modeling of broad-scale ecosystem dynamics. Of particular note...

  11. Program SPACECAP: software for estimating animal density using spatially explicit capture-recapture models

    USGS Publications Warehouse

    Gopalaswamy, Arjun M.; Royle, J. Andrew; Hines, James E.; Singh, Pallavi; Jathanna, Devcharan; Kumar, N. Samba; Karanth, K. Ullas

    2012-01-01

    1. The advent of spatially explicit capture-recapture models is changing the way ecologists analyse capture-recapture data. However, the advantages offered by these new models are not fully exploited because they can be difficult to implement. 2. To address this need, we developed a user-friendly software package, created within the R programming environment, called SPACECAP. This package implements Bayesian spatially explicit hierarchical models to analyse spatial capture-recapture data. 3. Given that a large number of field biologists prefer software with graphical user interfaces for analysing their data, SPACECAP is particularly useful as a tool to increase the adoption of Bayesian spatially explicit capture-recapture methods in practice.

  12. Ecological and evolutionary consequences of explicit spatial structure in exploiter-victim systems

    NASA Astrophysics Data System (ADS)

    Klopfer, Eric David

    One class of spatial model which has been widely used in ecology has been termed "pseudo-spatial models" and classically employs various types of aggregation in studying the coexistence of competing parasitoids. Yet, little is known about the relative effects of each of these aggregation behaviors. Thus, in Chapter 1 I chose to examine three types of aggregation and explore their relative strengths in promoting coexistence of two competing parasitoids. A striking shortcoming of spatial models in ecology to date is that there is a relative lack of use of spatial models to investigate problems on the evolutionary as opposed to ecological time scale. Consequently, in Chapter 2 I chose to start with a classic problem of evolutionary time scale--the evolution of virulence and predation rates. Debate about this problem has continued through several decades, yet many instances are not adequately explained by current models. In this study I explored the effect of explicit spatial structure on exploitation rates by comparing a cellular automata (CA) exploiter-victim model which incorporates local dynamics to a metapopulation model which does not include such dynamics. One advantage of CA models is that they are defined by simple rules rather than the often complex equations of other types of spatial models. This is an extremely useful attribute when one wants to convey results of models to an audience with an applied bent that is often uncomfortable with hard-to-understand equations. Thus, in Chapter 3, through the use of CA models I show that there are spatial phenomena which alter the impact of introduced predators and that these phenomena are potentially important in the implementation of biocontrol programs. The relatively recent incorporation of spatial models into the ecological literature has left most ecologists and evolutionary biologists without the ability to understand, let alone employ, spatial models in evolutionary problems. In order to give the next generation of potential ecologists a better understanding of these models, in Chapter 4 I present an interactive tutorial in which students are able to explore the most well studied of these models (the evolution of cooperation in a spatial environment).

  13. The land-use legacy effect: Towards a mechanistic understanding of time-lagged water quality responses to land use/cover.

    PubMed

    Martin, Sherry L; Hayes, Daniel B; Kendall, Anthony D; Hyndman, David W

    2017-02-01

    Numerous studies have linked land use/land cover (LULC) to aquatic ecosystem responses, however only a few have included the dynamics of changing LULC in their analysis. In this study, we explicitly recognize changing LULC by linking mechanistic groundwater flow and travel time models to a historical time series of LULC, creating a land-use legacy map. We then illustrate the utility of legacy maps to explore relationships between dynamic LULC and lake water chemistry. We tested two main concepts about mechanisms linking LULC and lake water chemistry: groundwater pathways are an important mechanism driving legacy effects; and, LULC over multiple spatial scales is more closely related to lake chemistry than LULC over a single spatial scale. We applied statistical models to twelve water chemistry variables, ranging from nutrients to relatively conservative ions, to better understand the roles of biogeochemical reactivity and solubility on connections between LULC and aquatic ecosystem response. Our study illustrates how different areas can have long groundwater pathways that represent different LULC than what can be seen on the landscape today. These groundwater pathways delay the arrival of nutrients and other water quality constituents, thus creating a legacy of historic land uses that eventually reaches surface water. We find that: 1) several water chemistry variables are best fit by legacy LULC while others have a stronger link to current LULC, and 2) single spatial scales of LULC analysis performed worse for most variables. Our novel combination of temporal and spatial scales was the best overall model fit for most variables, including SRP where this model explained 54% of the variation. We show that it is important to explicitly account for temporal and spatial context when linking LULC to ecosystem response. Copyright © 2016. Published by Elsevier B.V.

  14. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  15. Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives

    PubMed Central

    Li, Zhaoqin; Xu, Dandan; Guo, Xulin

    2014-01-01

    Maintaining a healthy ecosystem is essential for maximizing sustainable ecological services of the best quality to human beings. Ecological and conservation research has provided a strong scientific background on identifying ecological health indicators and correspondingly making effective conservation plans. At the same time, ecologists have asserted a strong need for spatially explicit and temporally effective ecosystem health assessments based on remote sensing data. Currently, remote sensing of ecosystem health is only based on one ecosystem attribute: vigor, organization, or resilience. However, an effective ecosystem health assessment should be a comprehensive and dynamic measurement of the three attributes. This paper reviews opportunities of remote sensing, including optical, radar, and LiDAR, for directly estimating indicators of the three ecosystem attributes, discusses the main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system, and provides some future perspectives. The main challenges to develop a remote sensing-based spatially-explicit comprehensive ecosystem health system are: (1) scale issue; (2) transportability issue; (3) data availability; and (4) uncertainties in health indicators estimated from remote sensing data. However, the Radarsat-2 constellation, upcoming new optical sensors on Worldview-3 and Sentinel-2 satellites, and improved technologies for the acquisition and processing of hyperspectral, multi-angle optical, radar, and LiDAR data and multi-sensoral data fusion may partly address the current challenges. PMID:25386759

  16. Spatial occupancy models for large data sets

    USGS Publications Warehouse

    Johnson, Devin S.; Conn, Paul B.; Hooten, Mevin B.; Ray, Justina C.; Pond, Bruce A.

    2013-01-01

    Since its development, occupancy modeling has become a popular and useful tool for ecologists wishing to learn about the dynamics of species occurrence over time and space. Such models require presence–absence data to be collected at spatially indexed survey units. However, only recently have researchers recognized the need to correct for spatially induced overdisperison by explicitly accounting for spatial autocorrelation in occupancy probability. Previous efforts to incorporate such autocorrelation have largely focused on logit-normal formulations for occupancy, with spatial autocorrelation induced by a random effect within a hierarchical modeling framework. Although useful, computational time generally limits such an approach to relatively small data sets, and there are often problems with algorithm instability, yielding unsatisfactory results. Further, recent research has revealed a hidden form of multicollinearity in such applications, which may lead to parameter bias if not explicitly addressed. Combining several techniques, we present a unifying hierarchical spatial occupancy model specification that is particularly effective over large spatial extents. This approach employs a probit mixture framework for occupancy and can easily accommodate a reduced-dimensional spatial process to resolve issues with multicollinearity and spatial confounding while improving algorithm convergence. Using open-source software, we demonstrate this new model specification using a case study involving occupancy of caribou (Rangifer tarandus) over a set of 1080 survey units spanning a large contiguous region (108 000 km2) in northern Ontario, Canada. Overall, the combination of a more efficient specification and open-source software allows for a facile and stable implementation of spatial occupancy models for large data sets.

  17. Noise focusing in neuronal tissues: Symmetry breaking and localization in excitable networks with quenched disorder

    NASA Astrophysics Data System (ADS)

    Orlandi, Javier G.; Casademunt, Jaume

    2017-05-01

    We introduce a coarse-grained stochastic model for the spontaneous activity of neuronal cultures to explain the phenomenon of noise focusing, which entails localization of the noise activity in excitable networks with metric correlations. The system is modeled as a continuum excitable medium with a state-dependent spatial coupling that accounts for the dynamics of synaptic connections. The most salient feature is the emergence at the mesoscale of a vector field V (r ) , which acts as an advective carrier of the noise. This entails an explicit symmetry breaking of isotropy and homogeneity that stems from the amplification of the quenched fluctuations of the network by the activity avalanches, concomitant with the excitable dynamics. We discuss the microscopic interpretation of V (r ) and propose an explicit construction of it. The coarse-grained model shows excellent agreement with simulations at the network level. The generic nature of the observed phenomena is discussed.

  18. Developing Spatially Explicit Habitat Models for Grassland Bird Conservation Planning in the Prairie Pothole Region of North Dakota

    Treesearch

    Neal D. Niemuth; Michael E. Estey; Charles R. Loesch

    2005-01-01

    Conservation planning for birds is increasingly focused on landscapes. However, little spatially explicit information is available to guide landscape-level conservation planning for many species of birds. We used georeferenced 1995 Breeding Bird Survey (BBS) data in conjunction with land-cover information to develop a spatially explicit habitat model predicting the...

  19. Landscape Pattern Determines Neighborhood Size and Structure within a Lizard Population

    PubMed Central

    Ryberg, Wade A.; Hill, Michael T.; Painter, Charles W.; Fitzgerald, Lee A.

    2013-01-01

    Although defining population structure according to discrete habitat patches is convenient for metapopulation theories, taking this approach may overlook structure within populations continuously distributed across landscapes. For example, landscape features within habitat patches direct the movement of organisms and define the density distribution of individuals, which can generate spatial structure and localized dynamics within populations as well as among them. Here, we use the neighborhood concept, which describes population structure relative to the scale of individual movements, to illustrate how localized dynamics within a population of lizards (Sceloporus arenicolus) arise in response to variation in landscape pattern within a continuous habitat patch. Our results emphasize links between individual movements at small scales and the emergence of spatial structure within populations which resembles metapopulation dynamics at larger scales. We conclude that population dynamics viewed in a landscape context must consider the explicit distribution and movement of individuals within continuous habitat as well as among habitat patches. PMID:23441217

  20. The impact of resource dependence of the mechanisms of life on the spatial population dynamics of an in silico microbial community

    NASA Astrophysics Data System (ADS)

    Daly, Aisling J.; Baetens, Jan M.; De Baets, Bernard

    2016-12-01

    Biodiversity has a critical impact on ecosystem functionality and stability, and thus the current biodiversity crisis has motivated many studies of the mechanisms that sustain biodiversity, a notable example being non-transitive or cyclic competition. We therefore extend existing microscopic models of communities with cyclic competition by incorporating resource dependence in demographic processes, characteristics of natural systems often oversimplified or overlooked by modellers. The spatially explicit nature of our individual-based model of three interacting species results in the formation of stable spatial structures, which have significant effects on community functioning, in agreement with experimental observations of pattern formation in microbial communities.

  1. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Treesearch

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  2. Measuring crown dynamics of longleaf pine in the sandhills of Eglin Air Force Base

    Treesearch

    Matt Anderson; Greg L. Somers; W. Rick Smith; Mickey Freeland; Donna Ruth

    1998-01-01

    The USDA Forest Service SRS, in cooperation with Auburn University, is developing an individual tree, spatially explicit, and btoiogicaily based growth model for natural iongieaf pine sands at Eglin Air Force Base in Florida. The goal of the growth model is to provide a tool for the land managers to compare silvicultural practices effects on the light and water...

  3. Representing Microbial Dormancy in Soil Decomposition Models Improves Model Performance and Reveals Key Ecosystem Controls on Microbial Activity

    NASA Astrophysics Data System (ADS)

    He, Y.; Yang, J.; Zhuang, Q.; Wang, G.; Liu, Y.

    2014-12-01

    Climate feedbacks from soils can result from environmental change and subsequent responses of plant and microbial communities and nutrient cycling. Explicit consideration of microbial life history traits and strategy may be necessary to predict climate feedbacks due to microbial physiology and community changes and their associated effect on carbon cycling. In this study, we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of dormancy at six temperate forest sites with observed soil efflux ranged from 4 to 10 years across different forest types. We then extrapolated the model to all temperate forests in the Northern Hemisphere (25-50°N) to investigate spatial controls on microbial and soil C dynamics. Both models captured the observed soil heterotrophic respiration (RH), yet no-dormancy model consistently exhibited large seasonal amplitude and overestimation in microbial biomass. Spatially, the total RH from temperate forests based on dormancy model amounts to 6.88PgC/yr, and 7.99PgC/yr based on no-dormancy model. However, no-dormancy model notably overestimated the ratio of microbial biomass to SOC. Spatial correlation analysis revealed key controls of soil C:N ratio on the active proportion of microbial biomass, whereas local dormancy is primarily controlled by soil moisture and temperature, indicating scale-dependent environmental and biotic controls on microbial and SOC dynamics. These developments should provide essential support to modeling future soil carbon dynamics and enhance the avenue for collaboration between empirical soil experiment and modeling in the sense that more microbial physiological measurements are needed to better constrain and evaluate the models.

  4. Characterization of the Dispersal of Non-Domiciliated Triatoma dimidiata through the Selection of Spatially Explicit Models

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2010-01-01

    Background Chagas disease is a major parasitic disease in Latin America, prevented in part by vector control programs that reduce domestic populations of triatomines. However, the design of control strategies adapted to non-domiciliated vectors, such as Triatoma dimidiata, remains a challenge because it requires an accurate description of their spatio-temporal distributions, and a proper understanding of the underlying dispersal processes. Methodology/Principal Findings We combined extensive spatio-temporal data sets describing house infestation dynamics by T. dimidiata within a village, and spatially explicit population dynamics models in a selection model approach. Several models were implemented to provide theoretical predictions under different hypotheses on the origin of the dispersers and their dispersal characteristics, which we compared with the spatio-temporal pattern of infestation observed in the field. The best models fitted the dynamic of infestation described by a one year time-series, and also predicted with a very good accuracy the infestation process observed during a second replicate one year time-series. The parameterized models gave key insights into the dispersal of these vectors. i) About 55% of the triatomines infesting houses came from the peridomestic habitat, the rest corresponding to immigration from the sylvatic habitat, ii) dispersing triatomines were 5–15 times more attracted by houses than by peridomestic area, and iii) the moving individuals spread on average over rather small distances, typically 40–60 m/15 days. Conclusion/Significance Since these dispersal characteristics are associated with much higher abundance of insects in the periphery of the village, we discuss the possibility that spatially targeted interventions allow for optimizing the efficacy of vector control activities within villages. Such optimization could prove very useful in the context of limited resources devoted to vector control. PMID:20689823

  5. Improvement, Verification, and Refinement of Spatially-Explicit Exposure Models in Risk Assessment - FishRand Spatially-Explicit Bioaccumulation Model Demonstration

    DTIC Science & Technology

    2015-08-01

    21  Figure 4. Data-based proportion of DDD , DDE and DDT in total DDx in fish and sediment by... DDD dichlorodiphenyldichloroethane DDE dichlorodiphenyldichloroethylene DDT dichlorodiphenyltrichloroethane DoD Department of Defense ERM... DDD ) at the other site. The spatially-explicit model consistently predicts tissue concentrations that closely match both the average and the

  6. Advanced hierarchical distance sampling

    USGS Publications Warehouse

    Royle, Andy

    2016-01-01

    In this chapter, we cover a number of important extensions of the basic hierarchical distance-sampling (HDS) framework from Chapter 8. First, we discuss the inclusion of “individual covariates,” such as group size, in the HDS model. This is important in many surveys where animals form natural groups that are the primary observation unit, with the size of the group expected to have some influence on detectability. We also discuss HDS integrated with time-removal and double-observer or capture-recapture sampling. These “combined protocols” can be formulated as HDS models with individual covariates, and thus they have a commonality with HDS models involving group structure (group size being just another individual covariate). We cover several varieties of open-population HDS models that accommodate population dynamics. On one end of the spectrum, we cover models that allow replicate distance sampling surveys within a year, which estimate abundance relative to availability and temporary emigration through time. We consider a robust design version of that model. We then consider models with explicit dynamics based on the Dail and Madsen (2011) model and the work of Sollmann et al. (2015). The final major theme of this chapter is relatively newly developed spatial distance sampling models that accommodate explicit models describing the spatial distribution of individuals known as Point Process models. We provide novel formulations of spatial DS and HDS models in this chapter, including implementations of those models in the unmarked package using a hack of the pcount function for N-mixture models.

  7. Dynamics of the Vacuum and Casimir Analogs to the Hydrogen Atom

    NASA Technical Reports Server (NTRS)

    White, Harold; Vera, Jerry; Bailey, Paul; March, Paul; Lawrence, Tim; Sylvester, Andre; Brady, David

    2015-01-01

    This paper will discuss the current viewpoint of the vacuum state and explore the idea of a "natural" vacuum as opposed to immutable, non-degradable vacuum. This concept will be explored for all primary quantum numbers to show consistency with observation at the level of Bohr theory. A comparison with the Casimir force per unit area will be made, and an explicit function for the spatial variation of the vacuum density around the atomic nucleus will be derived. This explicit function will be numerically modeled using the industry multi-physics tool, COMSOL(trademark), and the eigenfrequencies for the n = 1 to n = 7 states will be found and compared to expectation.

  8. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile.

    PubMed

    Inostroza, Luis; Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making.

  9. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile

    PubMed Central

    Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making. PMID:27606592

  10. Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space.

    PubMed

    Leibold, Mathew A; Loeuille, Nicolas

    2015-12-01

    Metacommunity theory indicates that variation in local community structure can be partitioned into components including those related to local environmental conditions vs. spatial effects and that these can be quantified using statistical methods based on variation partitioning. It has been hypothesized that joint associations of community composition with environment and space could be due to patch dynamics involving colonization-extinction processes in environmentally heterogeneous landscapes but this has yet to be theoretically shown. We develop a two-patch, type-two, species competition model in such a "harlequin" landscape (where different patches have different environments) to evaluate how composition is related to environmental and spatial effects as a function of background extinction rate. Using spatially implicit analytical models, we find that the environmental association of community composition declines with extinction rate as expected. Using spatially explicit simulation models, we further find that there is an increase in the spatial structure with extinction due to spatial patterning into clusters that are not related to environmental conditions but that this increase is limited. Natural metacommunities often show both environment and spatial determination even under conditions of relatively high isolation and these could be more easily explained by our model than alternative metacommunity models.

  11. Simple determinant representation for rogue waves of the nonlinear Schrödinger equation.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2013-10-01

    We present a simple representation for arbitrary-order rogue wave solution and a study on the trajectories of them explicitly. We find that the trajectories of two valleys on whole temporal-spatial distribution all look "X" -shaped for rogue waves. Additionally, we present different types of high-order rogue wave structures, which could be helpful towards realizing the complex dynamics of rogue waves.

  12. Modeling the impacts of climate variability and hurricane on carbon sequestration in a coastal forested wetland in South Carolina

    Treesearch

    Zhaohua Dai; Carl C. Trettin; Changsheng Li; Ge Sun; Devendra M. Amatya; Harbin Li

    2013-01-01

    The impacts of hurricane disturbance and climate variability on carbon dynamics in a coastal forested wetland in South Carolina of USA were simulated using the Forest-DNDC model with a spatially explicit approach. The model was validated using the measured biomass before and after Hurricane Hugo and the biomass inventories in 2006 and 2007, showed that the Forest-DNDC...

  13. Damping efficiency of the Tchamwa-Wielgosz explicit dissipative scheme under instantaneous loading conditions

    NASA Astrophysics Data System (ADS)

    Mahéo, Laurent; Grolleau, Vincent; Rio, Gérard

    2009-11-01

    To deal with dynamic and wave propagation problems, dissipative methods are often used to reduce the effects of the spurious oscillations induced by the spatial and time discretization procedures. Among the many dissipative methods available, the Tchamwa-Wielgosz (TW) explicit scheme is particularly useful because it damps out the spurious oscillations occurring in the highest frequency domain. The theoretical study performed here shows that the TW scheme is decentered to the right, and that the damping can be attributed to a nodal displacement perturbation. The FEM study carried out using instantaneous 1-D and 3-D compression loads shows that it is useful to display the damping versus the number of time steps in order to obtain a constant damping efficiency whatever the size of element used for the regular meshing. A study on the responses obtained with irregular meshes shows that the TW scheme is only slightly sensitive to the spatial discretization procedure used. To cite this article: L. Mahéo et al., C. R. Mecanique 337 (2009).

  14. A spatial-temporal method for assessing the energy balance dynamics of partially sealed surfaces.

    NASA Astrophysics Data System (ADS)

    Pipkins, Kyle; Kleinschmit, Birgit; Wessolek, Gerd

    2017-04-01

    The effects of different types of sealed surfaces on the surface energy balance have been well-studied in the past. However, these field studies typically aggregate these surfaces into continuous units. The proposed method seeks to disaggregate such surfaces into paving and seam areas using spatial methods, and to consider the temperature dynamics under wet and dry conditions between these two components. This experimental work is undertaken using a thermal camera to record a time series of images over two lysimeters with differing levels of surface sealing. The images are subsequently decomposed into component materials using object-based image analysis and compared on the basis of both the surface materials as well as the spatial configuration of materials. Finally, a surface energy balance method is used to estimate evaporation rates from the surfaces, both separately for the different surface components as well as using the total surface mean. Results are validated using the output of the weighing lysimeter. Our findings will determine whether the explicitly spatial method is an improvement over the mean aggregate method.

  15. Emergence of chaos in a spatially confined reactive system

    NASA Astrophysics Data System (ADS)

    Voorsluijs, Valérie; De Decker, Yannick

    2016-11-01

    In spatially restricted media, interactions between particles and local fluctuations of density can lead to important deviations of the dynamics from the unconfined, deterministic picture. In this context, we investigated how molecular crowding can affect the emergence of chaos in small reactive systems. We developed to this end an amended version of the Willamowski-Rössler model, where we account for the impenetrability of the reactive species. We analyzed the deterministic kinetics of this model and studied it with spatially-extended stochastic simulations in which the mobility of particles is included explicitly. We show that homogeneous fluctuations can lead to a destruction of chaos through a fluctuation-induced collision between chaotic trajectories and absorbing states. However, an interplay between the size of the system and the mobility of particles can counterbalance this effect so that chaos can indeed be found when particles diffuse slowly. This unexpected effect can be traced back to the emergence of spatial correlations which strongly affect the dynamics. The mobility of particles effectively acts as a new bifurcation parameter, enabling the system to switch from stationary states to absorbing states, oscillations or chaos.

  16. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  17. Persistence of Rift Valley fever virus in East Africa

    NASA Astrophysics Data System (ADS)

    Gachohi, J.; Hansen, F.; Bett, B.; Kitala, P.

    2012-04-01

    Rift Valley fever virus (RVFv) is a mosquito-borne pathogen of livestock, wildlife and humans that causes severe outbreaks in intervals of several years. One of the open questions is how the virus persists between outbreaks. We developed a spatially-explicit, individual-based simulation model of the RVFv transmission dynamics to investigate this question. The model, is based on livestock and mosquito population dynamics. Spatial aspects are explicitly represented by a set of grid cells that represent mosquito breeding sites. A grid cell measures 500 by 500m and the model considers a grid of 100 by 100 grid cells; the model thus operates on the regional scale of 2500km2. Livestock herds move between grid cells, and provide connectivity between the cells. The model is used to explore the spatio-temporal dynamics of RVFv persistence in absence of a wildlife reservoir in an east African semi-arid context. Specifically, the model assesses the importance of local virus persistence in mosquito breeding sites relative to global virus persistence mitigated by movement of hosts. Local persistence is determined by the length of time the virus remains in a mosquito breeding site once introduced. In the model, this is a function of the number of mosquitoes that emerge infected and their lifespan. Global persistence is determined by the level of connectivity between isolated grid cells. Our work gives insights into the ecological and epidemiological conditions under which RVFv persists. The implication for disease surveillance and management are discussed.

  18. USING THE ECLPSS SOFTWARE ENVIRONMENT TO BUILD A SPATIALLY EXPLICIT COMPONENT-BASED MODEL OF OZONE EFFECTS ON FOREST ECOSYSTEMS. (R827958)

    EPA Science Inventory

    We have developed a modeling framework to support grid-based simulation of ecosystems at multiple spatial scales, the Ecological Component Library for Parallel Spatial Simulation (ECLPSS). ECLPSS helps ecologists to build robust spatially explicit simulations of ...

  19. Spatial averaging of a dissipative particle dynamics model for active suspensions

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexander; Hinz, Denis F.; Fried, Eliot

    2018-03-01

    Starting from a fine-scale dissipative particle dynamics (DPD) model of self-motile point particles, we derive meso-scale continuum equations by applying a spatial averaging version of the Irving-Kirkwood-Noll procedure. Since the method does not rely on kinetic theory, the derivation is valid for highly concentrated particle systems. Spatial averaging yields stochastic continuum equations similar to those of Toner and Tu. However, our theory also involves a constitutive equation for the average fluctuation force. According to this equation, both the strength and the probability distribution vary with time and position through the effective mass density. The statistics of the fluctuation force also depend on the fine scale dissipative force equation, the physical temperature, and two additional parameters which characterize fluctuation strengths. Although the self-propulsion force entering our DPD model contains no explicit mechanism for aligning the velocities of neighboring particles, our averaged coarse-scale equations include the commonly encountered cubically nonlinear (internal) body force density.

  20. Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression

    PubMed Central

    Verd, Berta; Crombach, Anton

    2017-01-01

    Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory processes in development. PMID:28158178

  1. Dynamic Maternal Gradients Control Timing and Shift-Rates for Drosophila Gap Gene Expression.

    PubMed

    Verd, Berta; Crombach, Anton; Jaeger, Johannes

    2017-02-01

    Pattern formation during development is a highly dynamic process. In spite of this, few experimental and modelling approaches take into account the explicit time-dependence of the rules governing regulatory systems. We address this problem by studying dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster. Gap genes are involved in segment determination during early embryogenesis. They are activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad). These gradients decay at the same time-scale as the establishment of the antero-posterior gap gene pattern. We use a reverse-engineering approach, based on data-driven regulatory models called gene circuits, to isolate and characterise the explicitly time-dependent effects of changing morphogen concentrations on gap gene regulation. To achieve this, we simulate the system in the presence and absence of dynamic gradient decay. Comparison between these simulations reveals that maternal morphogen decay controls the timing and limits the rate of gap gene expression. In the anterior of the embyro, it affects peak expression and leads to the establishment of smooth spatial boundaries between gap domains. In the posterior of the embryo, it causes a progressive slow-down in the rate of gap domain shifts, which is necessary to correctly position domain boundaries and to stabilise the spatial gap gene expression pattern. We use a newly developed method for the analysis of transient dynamics in non-autonomous (time-variable) systems to understand the regulatory causes of these effects. By providing a rigorous mechanistic explanation for the role of maternal gradient decay in gap gene regulation, our study demonstrates that such analyses are feasible and reveal important aspects of dynamic gene regulation which would have been missed by a traditional steady-state approach. More generally, it highlights the importance of transient dynamics for understanding complex regulatory processes in development.

  2. Wetland fire remote sensing research--The Greater Everglades example

    USGS Publications Warehouse

    Jones, John W.

    2012-01-01

    Fire is a major factor in the Everglades ecosystem. For thousands of years, lightning-strike fires from summer thunderstorms have helped create and maintain a dynamic landscape suited both to withstand fire and recover quickly in the wake of frequent fires. Today, managers in the Everglades National Park are implementing controlled burns to promote healthy, sustainable vegetation patterns and ecosystem functions. The U.S. Geological Survey (USGS) is using remote sensing to improve fire-management databases in the Everglades, gain insights into post-fire land-cover dynamics, and develop spatially and temporally explicit fire-scar data for habitat and hydrologic modeling.

  3. Anthropogenic habitat disturbance and the dynamics of hantavirus using remote sensing, GIS, and a spatially explicit agent-based model

    NASA Astrophysics Data System (ADS)

    Cao, Lina

    Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that population density was one of the most important parameters affecting the SNV dynamics. The results also indicated that habitat disturbance could increase hantavirus transmission likely by increasing the movement and consequently contact rates. However, the model suggested that habitat disturbance had a much stronger effect on prevalence by decreasing population density than by increasing mice movement. Therefore, overall habitat disturbance reduces SNV prevalence.

  4. Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession

    Treesearch

    Hong S. He; David J. Mladenoff

    1999-01-01

    Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...

  5. Natural Human Mobility Patterns and Spatial Spread of Infectious Diseases

    NASA Astrophysics Data System (ADS)

    Belik, Vitaly; Geisel, Theo; Brockmann, Dirk

    2011-08-01

    We investigate a model for spatial epidemics explicitly taking into account bidirectional movements between base and destination locations on individual mobility networks. We provide a systematic analysis of generic dynamical features of the model on regular and complex metapopulation network topologies and show that significant dynamical differences exist to ordinary reaction-diffusion and effective force of infection models. On a lattice we calculate an expression for the velocity of the propagating epidemic front and find that, in contrast to the diffusive systems, our model predicts a saturation of the velocity with an increasing traveling rate. Furthermore, we show that a fully stochastic system exhibits a novel threshold for the attack ratio of an outbreak that is absent in diffusion and force of infection models. These insights not only capture natural features of human mobility relevant for the geographical epidemic spread, they may serve as a starting point for modeling important dynamical processes in human and animal epidemiology, population ecology, biology, and evolution.

  6. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.

    PubMed

    Won, Bo-Yeong; Jiang, Yuhong V

    2015-05-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. (c) 2015 APA, all rights reserved).

  7. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention

    PubMed Central

    Won, Bo-Yeong; Jiang, Yuhong V.

    2014-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460

  8. Functional Resistance to Recurrent Spatially Heterogeneous Disturbances Is Facilitated by Increased Activity of Surviving Bacteria in a Virtual Ecosystem

    PubMed Central

    König, Sara; Worrich, Anja; Banitz, Thomas; Harms, Hauke; Kästner, Matthias; Miltner, Anja; Wick, Lukas Y.; Frank, Karin; Thullner, Martin; Centler, Florian

    2018-01-01

    Bacterial degradation of organic compounds is an important ecosystem function with relevance to, e.g., the cycling of elements or the degradation of organic contaminants. It remains an open question, however, to which extent ecosystems are able to maintain such biodegradation function under recurrent disturbances (functional resistance) and how this is related to the bacterial biomass abundance. In this paper, we use a numerical simulation approach to systematically analyze the dynamic response of a microbial population to recurrent disturbances of different spatial distribution. The spatially explicit model considers microbial degradation, growth, dispersal, and spatial networks that facilitate bacterial dispersal mimicking effects of mycelial networks in nature. We find: (i) There is a certain capacity for high resistance of biodegradation performance to recurrent disturbances. (ii) If this resistance capacity is exceeded, spatial zones of different biodegradation performance develop, ranging from no or reduced to even increased performance. (iii) Bacterial biomass and biodegradation dynamics respond inversely to the spatial fragmentation of disturbances: overall biodegradation performance improves with increasing fragmentation, but bacterial biomass declines. (iv) Bacterial dispersal networks can enhance functional resistance against recurrent disturbances, mainly by reactivating zones in the core of disturbed areas, even though this leads to an overall reduction of bacterial biomass. PMID:29696013

  9. Macroparasite dynamics of migratory host populations.

    PubMed

    Peacock, Stephanie J; Bouhours, Juliette; Lewis, Mark A; Molnár, Péter K

    2018-03-01

    Spatial variability in host density is a key factor affecting disease dynamics of wildlife, and yet there are few spatially explicit models of host-macroparasite dynamics. This limits our understanding of parasitism in migratory hosts, whose densities change considerably in both space and time. In this paper, we develop a model for host-macroparasite dynamics that considers the directional movement of host populations and their associated parasites. We include spatiotemporal changes in the mean and variance in parasite burden per host, as well as parasite-mediated host mortality and parasite-mediated migratory ability. Reduced migratory ability with increasing parasitism results in heavily infested hosts halting their migration, and higher parasite burdens in stationary hosts than in moving hosts. Simulations reveal the potential for positive feedbacks between parasite-reduced migratory ability and increasing parasite burdens at infection hotspots, such as stopover sites, that may lead to parasite-induced migratory stalling. This framework could help understand how global change might influence wildlife disease via changes to migratory patterns and parasite demographic rates. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Infections on the move: how transient phases of host movement influence disease spread

    PubMed Central

    Fenton, A.; Dell, A. I.

    2017-01-01

    Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes. PMID:29263283

  11. Mapping and spatial-temporal modeling of Bromus tectorum invasion in central Utah

    NASA Astrophysics Data System (ADS)

    Jin, Zhenyu

    Cheatgrass, or Downy Brome, is an exotic winter annual weed native to the Mediterranean region. Since its introduction to the U.S., it has become a significant weed and aggressive invader of sagebrush, pinion-juniper, and other shrub communities, where it can completely out-compete native grasses and shrubs. In this research, remotely sensed data combined with field collected data are used to investigate the distribution of the cheatgrass in Central Utah, to characterize the trend of the NDVI time-series of cheatgrass, and to construct a spatially explicit population-based model to simulate the spatial-temporal dynamics of the cheatgrass. This research proposes a method for mapping the canopy closure of invasive species using remotely sensed data acquired at different dates. Different invasive species have their own distinguished phenologies and the satellite images in different dates could be used to capture the phenology. The results of cheatgrass abundance prediction have a good fit with the field data for both linear regression and regression tree models, although the regression tree model has better performance than the linear regression model. To characterize the trend of NDVI time-series of cheatgrass, a novel smoothing algorithm named RMMEH is presented in this research to overcome some drawbacks of many other algorithms. By comparing the performance of RMMEH in smoothing a 16-day composite of the MODIS NDVI time-series with that of two other methods, which are the 4253EH, twice and the MVI, we have found that RMMEH not only keeps the original valid NDVI points, but also effectively removes the spurious spikes. The reconstructed NDVI time-series of different land covers are of higher quality and have smoother temporal trend. To simulate the spatial-temporal dynamics of cheatgrass, a spatially explicit population-based model is built applying remotely sensed data. The comparison between the model output and the ground truth of cheatgrass closure demonstrates that the model could successfully simulate the spatial-temporal dynamics of cheatgrass in a simple cheatgrass-dominant environment. The simulation of the functional response of different prescribed fire rates also shows that this model is helpful to answer management questions like, "What are the effects of prescribed fire to invasive species?" It demonstrates that a medium fire rate of 10% can successfully prevent cheatgrass invasion.

  12. The influence of interspecific interactions on species range expansion rates

    USGS Publications Warehouse

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E.M.S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.

  13. The influence of interspecific interactions on species range expansion rates.

    PubMed

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D; Schurr, Frank M; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H; Dullinger, Stefan; Edwards, Thomas C; Hickler, Thomas; Higgins, Steven I; Nabel, Julia E M S; Pagel, Jörn; Normand, Signe

    2014-12-01

    Ongoing and predicted global change makes understanding and predicting species' range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species.

  14. The influence of interspecific interactions on species range expansion rates

    PubMed Central

    Svenning, Jens-Christian; Gravel, Dominique; Holt, Robert D.; Schurr, Frank M.; Thuiller, Wilfried; Münkemüller, Tamara; Schiffers, Katja H.; Dullinger, Stefan; Edwards, Thomas C.; Hickler, Thomas; Higgins, Steven I.; Nabel, Julia E. M. S.; Pagel, Jörn; Normand, Signe

    2014-01-01

    Ongoing and predicted global change makes understanding and predicting species’ range shifts an urgent scientific priority. Here, we provide a synthetic perspective on the so far poorly understood effects of interspecific interactions on range expansion rates. We present theoretical foundations for how interspecific interactions may modulate range expansion rates, consider examples from empirical studies of biological invasions and natural range expansions as well as process-based simulations, and discuss how interspecific interactions can be more broadly represented in process-based, spatiotemporally explicit range forecasts. Theory tells us that interspecific interactions affect expansion rates via alteration of local population growth rates and spatial displacement rates, but also via effects on other demographic parameters. The best empirical evidence for interspecific effects on expansion rates comes from studies of biological invasions. Notably, invasion studies indicate that competitive dominance and release from specialized enemies can enhance expansion rates. Studies of natural range expansions especially point to the potential for competition from resident species to reduce expansion rates. Overall, it is clear that interspecific interactions may have important consequences for range dynamics, but also that their effects have received too little attention to robustly generalize on their importance. We then discuss how interspecific interactions effects can be more widely incorporated in dynamic modeling of range expansions. Importantly, models must describe spatiotemporal variation in both local population dynamics and dispersal. Finally, we derive the following guidelines for when it is particularly important to explicitly represent interspecific interactions in dynamic range expansion forecasts: if most interacting species show correlated spatial or temporal trends in their effects on the target species, if the number of interacting species is low, and if the abundance of one or more strongly interacting species is not closely linked to the abundance of the target species. PMID:25722537

  15. A spatio-temporal model of Notch signalling in the zebrafish segmentation clock: conditions for synchronised oscillatory dynamics.

    PubMed

    Terry, Alan J; Sturrock, Marc; Dale, J Kim; Maroto, Miguel; Chaplain, Mark A J

    2011-02-28

    In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explicitly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes.

  16. Modeling trends from North American Breeding Bird Survey data: a spatially explicit approach

    USGS Publications Warehouse

    Bled, Florent; Sauer, John R.; Pardieck, Keith L.; Doherty, Paul; Royle, J. Andy

    2013-01-01

    Population trends, defined as interval-specific proportional changes in population size, are often used to help identify species of conservation interest. Efficient modeling of such trends depends on the consideration of the correlation of population changes with key spatial and environmental covariates. This can provide insights into causal mechanisms and allow spatially explicit summaries at scales that are of interest to management agencies. We expand the hierarchical modeling framework used in the North American Breeding Bird Survey (BBS) by developing a spatially explicit model of temporal trend using a conditional autoregressive (CAR) model. By adopting a formal spatial model for abundance, we produce spatially explicit abundance and trend estimates. Analyses based on large-scale geographic strata such as Bird Conservation Regions (BCR) can suffer from basic imbalances in spatial sampling. Our approach addresses this issue by providing an explicit weighting based on the fundamental sample allocation unit of the BBS. We applied the spatial model to three species from the BBS. Species have been chosen based upon their well-known population change patterns, which allows us to evaluate the quality of our model and the biological meaning of our estimates. We also compare our results with the ones obtained for BCRs using a nonspatial hierarchical model (Sauer and Link 2011). Globally, estimates for mean trends are consistent between the two approaches but spatial estimates provide much more precise trend estimates in regions on the edges of species ranges that were poorly estimated in non-spatial analyses. Incorporating a spatial component in the analysis not only allows us to obtain relevant and biologically meaningful estimates for population trends, but also enables us to provide a flexible framework in order to obtain trend estimates for any area.

  17. Scale-up of ecological experiments: Density variation in the mobile bivalve Macomona liliana

    USGS Publications Warehouse

    Schneider, Davod C.; Walters, R.; Thrush, S.; Dayton, P.

    1997-01-01

    At present the problem of scaling up from controlled experiments (necessarily at a small spatial scale) to questions of regional or global importance is perhaps the most pressing issue in ecology. Most of the proposed techniques recommend iterative cycling between theory and experiment. We present a graphical technique that facilitates this cycling by allowing the scope of experiments, surveys, and natural history observations to be compared to the scope of models and theory. We apply the scope analysis to the problem of understanding the population dynamics of a bivalve exposed to environmental stress at the scale of a harbour. Previous lab and field experiments were found not to be 1:1 scale models of harbour-wide processes. Scope analysis allowed small scale experiments to be linked to larger scale surveys and to a spatially explicit model of population dynamics.

  18. Latin hypercube sampling and geostatistical modeling of spatial uncertainty in a spatially explicit forest landscape model simulation

    Treesearch

    Chonggang Xu; Hong S. He; Yuanman Hu; Yu Chang; Xiuzhen Li; Rencang Bu

    2005-01-01

    Geostatistical stochastic simulation is always combined with Monte Carlo method to quantify the uncertainty in spatial model simulations. However, due to the relatively long running time of spatially explicit forest models as a result of their complexity, it is always infeasible to generate hundreds or thousands of Monte Carlo simulations. Thus, it is of great...

  19. Spatially explicit modeling in ecology: A review

    USGS Publications Warehouse

    DeAngelis, Donald L.; Yurek, Simeon

    2017-01-01

    The use of spatially explicit models (SEMs) in ecology has grown enormously in the past two decades. One major advancement has been that fine-scale details of landscapes, and of spatially dependent biological processes, such as dispersal and invasion, can now be simulated with great precision, due to improvements in computer technology. Many areas of modeling have shifted toward a focus on capturing these fine-scale details, to improve mechanistic understanding of ecosystems. However, spatially implicit models (SIMs) have played a dominant role in ecology, and arguments have been made that SIMs, which account for the effects of space without specifying spatial positions, have an advantage of being simpler and more broadly applicable, perhaps contributing more to understanding. We address this debate by comparing SEMs and SIMs in examples from the past few decades of modeling research. We argue that, although SIMs have been the dominant approach in the incorporation of space in theoretical ecology, SEMs have unique advantages for addressing pragmatic questions concerning species populations or communities in specific places, because local conditions, such as spatial heterogeneities, organism behaviors, and other contingencies, produce dynamics and patterns that usually cannot be incorporated into simpler SIMs. SEMs are also able to describe mechanisms at the local scale that can create amplifying positive feedbacks at that scale, creating emergent patterns at larger scales, and therefore are important to basic ecological theory. We review the use of SEMs at the level of populations, interacting populations, food webs, and ecosystems and argue that SEMs are not only essential in pragmatic issues, but must play a role in the understanding of causal relationships on landscapes.

  20. Food web dynamics in a seasonally varying wetland

    USGS Publications Warehouse

    DeAngelis, D.L.; Trexler, J.C.; Donalson, D.D.

    2008-01-01

    A spatially explicit model is developed to simulate the small fish community and its underlying food web, in the freshwater marshes of the Everglades. The community is simplified to a few small fish species feeding on periphyton and invertebrates. Other compartments are detritus, crayfish, and a piscivorous fish species. This unit food web model is applied to each of the 10,000 spatial cells on a 100 x 100 pixel landscape. Seasonal variation in water level is assumed and rules are assigned for fish movement in response to rising and falling water levels, which can cause many spatial cells to alternate between flooded and dry conditions. It is shown that temporal variations of water level on a spatially heterogeneous landscape can maintain at least three competing fish species. In addition, these environmental factors can strongly affect the temporal variation of the food web caused by top-down control from the piscivorous fish.

  1. Distinct spatiotemporal activity in principal neurons of the mouse olfactory bulb in anesthetized and awake states

    PubMed Central

    Blauvelt, David G.; Sato, Tomokazu F.; Wienisch, Martin; Murthy, Venkatesh N.

    2013-01-01

    The acquisition of olfactory information and its early processing in mammals are modulated by brain states through sniffing behavior and neural feedback. We imaged the spatiotemporal pattern of odor-evoked activity in a population of output neurons (mitral/tufted cells, MTCs) in the olfactory bulb (OB) of head-restrained mice expressing a genetically-encoded calcium indicator. The temporal dynamics of MTC population activity were relatively simple in anesthetized animals, but were highly variable in awake animals. However, the apparently irregular activity in awake animals could be predicted well using sniff timing measured externally, or inferred through fluctuations in the global responses of MTC population even without explicit knowledge of sniff times. The overall spatial pattern of activity was conserved across states, but odor responses had a diffuse spatial component in anesthetized mice that was less prominent during wakefulness. Multi-photon microscopy indicated that MTC lateral dendrites were the likely source of spatially disperse responses in the anesthetized animal. Our data demonstrate that the temporal and spatial dynamics of MTCs can be significantly modulated by behavioral state, and that the ensemble activity of MTCs can provide information about sniff timing to downstream circuits to help decode odor responses. PMID:23543674

  2. Isogeometric Collocation for Elastostatics and Explicit Dynamics

    DTIC Science & Technology

    2012-01-25

    ICES REPORT 12-07 January 2012 Isogeometric collocation for elastostatics and explicit dynamics by F. Auricchio, L. Beirao da Veiga , T.J.R. Hughes, A...Auricchio, L. Beirao da Veiga , T.J.R. Hughes, A. Reali, G. Sangalli, Isogeometric collocation for elastostatics and explicit dynamics, ICES REPORT 12-07...Isogeometric collocation for elastostatics and explicit dynamics F. Auricchio a,c, L. Beirão da Veiga b,c, T.J.R. Hughes d, A. Reali a,c,∗, G

  3. Role of seasonality on predator-prey-subsidy population dynamics.

    PubMed

    Levy, Dorian; Harrington, Heather A; Van Gorder, Robert A

    2016-05-07

    The role of seasonality on predator-prey interactions in the presence of a resource subsidy is examined using a system of non-autonomous ordinary differential equations (ODEs). The problem is motivated by the Arctic, inhabited by the ecological system of arctic foxes (predator), lemmings (prey), and seal carrion (subsidy). We construct two nonlinear, nonautonomous systems of ODEs named the Primary Model, and the n-Patch Model. The Primary Model considers spatial factors implicitly, and the n-Patch Model considers space explicitly as a "Stepping Stone" system. We establish the boundedness of the dynamics, as well as the necessity of sufficiently nutritional food for the survival of the predator. We investigate the importance of including the resource subsidy explicitly in the model, and the importance of accounting for predator mortality during migration. We find a variety of non-equilibrium dynamics for both systems, obtaining both limit cycles and chaotic oscillations. We were then able to discuss relevant implications for biologically interesting predator-prey systems including subsidy under seasonal effects. Notably, we can observe the extinction or persistence of a species when the corresponding autonomous system might predict the opposite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A dynamic landscape model for fish in the Everglades and its application to restoration

    USGS Publications Warehouse

    Gaff, H.D.; DeAngelis, D.L.; Gross, L.J.; Salinas, R.; Shorrosh, M.

    2000-01-01

    A model (ALFISH) for fish functional groups in freshwater marshes of the greater Everglades area of southern Florida has been developed. Its main objective is to assess the spatial pattern of fish densities through time across freshwater marshes. This model has the capability of providing a dynamic measure of the spatially-explicit food resources available to wading birds. ALFISH simulates two functional groups, large and small fish, where the larger ones can prey on the small fish type. Both functional groups are size-structured. The marsh landscape is modeled as 500×500 m spatial cells on a grid across southern Florida. A hydrology model predicts water levels in the spatial cells on 5-day time steps. Fish populations spread across the marsh during flooded conditions and either retreat into refugia (alligator ponds), move to other spatial cells, or die if their cell dries out. ALFISH has been applied to the evaluation of alternative water regulation scenarios under the Central and South Florida Comprehensive Project Review Study. The objective of this Review Study is to compare alternative methods for restoring historical ecological conditions in southern Florida. ALFISH has provided information on which plans are most are likely to increase fish biomass and its availability to wading bird populations.

  5. Importance of spatial autocorrelation in modeling bird distributions at a continental scale

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.

  6. Forecasting climate change impacts on plant populations over large spatial extents

    DOE PAGES

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; ...

    2016-10-24

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less

  7. Forecasting climate change impacts on plant populations over large spatial extents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. Here, we overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates inmore » the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Finally, our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.« less

  8. Forecasting climate change impacts on plant populations over large spatial extents

    USGS Publications Warehouse

    Tredennick, Andrew T.; Hooten, Mevin B.; Aldridge, Cameron L.; Homer, Collin G.; Kleinhesselink, Andrew R.; Adler, Peter B.

    2016-01-01

    Plant population models are powerful tools for predicting climate change impacts in one location, but are difficult to apply at landscape scales. We overcome this limitation by taking advantage of two recent advances: remotely sensed, species-specific estimates of plant cover and statistical models developed for spatiotemporal dynamics of animal populations. Using computationally efficient model reparameterizations, we fit a spatiotemporal population model to a 28-year time series of sagebrush (Artemisia spp.) percent cover over a 2.5 × 5 km landscape in southwestern Wyoming while formally accounting for spatial autocorrelation. We include interannual variation in precipitation and temperature as covariates in the model to investigate how climate affects the cover of sagebrush. We then use the model to forecast the future abundance of sagebrush at the landscape scale under projected climate change, generating spatially explicit estimates of sagebrush population trajectories that have, until now, been impossible to produce at this scale. Our broadscale and long-term predictions are rooted in small-scale and short-term population dynamics and provide an alternative to predictions offered by species distribution models that do not include population dynamics. Our approach, which combines several existing techniques in a novel way, demonstrates the use of remote sensing data to model population responses to environmental change that play out at spatial scales far greater than the traditional field study plot.

  9. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations

    PubMed Central

    Fox, Randal E; Zhong, Xue; Krone, Stephen M; Top, Eva M

    2008-01-01

    In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are poorly understood. Through a joint experimental/theoretical approach, we tested the hypothesis that self-transmissible IncP-1 plasmids can invade a bacterial population in the absence of selection when initially very rare, but only in spatially structured habitats and when nutrients are regularly replenished. Using protocols that differed in the degree of spatial structure and nutrient levels, the invasiveness of plasmid pB10 in Escherichia coli was monitored during at least 15 days, with an initial fraction of plasmid-bearing (p+) cells as low as 10−7. To further explore the mechanisms underlying plasmid dynamics, we developed a spatially explicit mathematical model. When cells were grown on filters and transferred to fresh medium daily, the p+ fraction increased to 13%, whereas almost complete invasion occurred when the population structure was disturbed daily. The plasmid was unable to invade in liquid. When carbon source levels were lower or not replenished, plasmid invasion was hampered. Simulations of the mathematical model closely matched the experimental results and produced estimates of the effects of alternative experimental parameters. This allowed us to isolate the likely mechanisms most responsible for the observations. In conclusion, spatial structure and nutrient availability can be key determinants in the invasiveness of plasmids. PMID:18528415

  10. Integration of airborne LiDAR data and voxel-based ray tracing to determine high-resolution solar radiation dynamics at the forest floor: implications for improving stand-scale distributed snowmelt models

    NASA Astrophysics Data System (ADS)

    Musselman, K. N.; Molotch, N. P.; Margulis, S. A.

    2012-12-01

    Forest architecture dictates sub-canopy solar irradiance and the resulting patterns can vary seasonally and over short spatial distances. These radiation dynamics are thought to have significant implications on snowmelt processes, regional hydrology, and remote sensing signatures. The variability calls into question many assumptions inherent in traditional canopy models (e.g. Beer's Law) when applied at high resolution (i.e. 1 m). We present a method of estimating solar canopy transmissivity using airborne LiDAR data. The canopy structure is represented in 3-D voxel space (i.e. a cubic discretization of a 3-D domain analogous to a pixel representation of a 2-D space). The solar direct beam canopy transmissivity (DBT) is estimated with a ray-tracing algorithm and the diffuse component is estimated from LiDAR-derived effective LAI. Results from one year at five-minute temporal and 1 m spatial resolutions are presented from Sequoia National Park. Compared to estimates from 28 hemispherical photos, the ray-tracing model estimated daily mean DBT with a 10% average error, while the errors from a Beer's-type DBT estimate exceeded 20%. Compared to the ray-tracing estimates, the Beer's-type transmissivity method was unable to resolve complex spatial patterns resulting from canopy gaps, individual tree canopies and boles, and steep variable terrain. The snowmelt model SNOWPACK was applied at locations of ultrasonic snow depth sensors. Two scenarios were tested; 1) a nominal case where canopy model parameters were obtained from hemispherical photographs, and 2) an explicit scenario where the model was modified to accept LiDAR-derived time-variant DBT. The bulk canopy treatment was generally unable to simulate the sub-canopy snowmelt dynamics observed at the depth sensor locations. The explicit treatment reduced error in the snow disappearance date by one week and both positive and negative melt-season SWE biases were reduced. The results highlight the utility of LiDAR canopy measurements and physically based snowmelt models to simulate spatially distributed stand- and slope-scale snowmelt dynamics at resolutions necessary to capture the inherent underlying variability.iDAR-derived solar direct beam canopy transmissivity computed as the daily average for March 1st and May 1st.

  11. Spatiotemporal dynamics of soil phosphorus and crop uptake in global cropland during the 20th century

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Beusen, Arthur H. W.; Van Apeldoorn, Dirk F.; Mogollón, José M.; Yu, Chaoqing; Bouwman, Alexander F.

    2017-04-01

    Phosphorus (P) plays a vital role in global crop production and food security. In this study, we investigate the changes in soil P pool inventories calibrated from historical countrywide crop P uptake, using a 0.5-by-0.5° spatially explicit model for the period 1900-2010. Globally, the total P pool per hectare increased rapidly between 1900 and 2010 in soils of Europe (+31 %), South America (+2 %), North America (+15 %), Asia (+17 %), and Oceania (+17 %), while it has been stable in Africa. Simulated crop P uptake is influenced by both soil properties (available P and the P retention potential) and crop characteristics (maximum uptake). Until 1950, P fertilizer application had a negligible influence on crop uptake, but recently it has become a driving factor for food production in industrialized countries and a number of transition countries like Brazil, Korea, and China. This comprehensive and spatially explicit model can be used to assess how long surplus P fertilization is needed or how long depletions of built-up surplus P can continue without affecting crop yield.

  12. Analyzing historical land use changes using a Historical Land Use Reconstruction Model: a case study in Zhenlai County, northeastern China

    PubMed Central

    Yang, Yuanyuan; Zhang, Shuwen; Liu, Yansui; Xing, Xiaoshi; de Sherbinin, Alex

    2017-01-01

    Historical land use information is essential to understanding the impact of anthropogenic modification of land use/cover on the temporal dynamics of environmental and ecological issues. However, due to a lack of spatial explicitness, complete thematic details and the conversion types for historical land use changes, the majority of historical land use reconstructions do not sufficiently meet the requirements for an adequate model. Considering these shortcomings, we explored the possibility of constructing a spatially-explicit modeling framework (HLURM: Historical Land Use Reconstruction Model). Then a three-map comparison method was adopted to validate the projected reconstruction map. The reconstruction suggested that the HLURM model performed well in the spatial reconstruction of various land-use categories, and had a higher figure of merit (48.19%) than models used in other case studies. The largest land use/cover type in the study area was determined to be grassland, followed by arable land and wetland. Using the three-map comparison, we noticed that the major discrepancies in land use changes among the three maps were as a result of inconsistencies in the classification of land-use categories during the study period, rather than as a result of the simulation model. PMID:28134342

  13. Validating spatiotemporal predictions of an important pest of small grains.

    PubMed

    Merrill, Scott C; Holtzer, Thomas O; Peairs, Frank B; Lester, Philip J

    2015-01-01

    Arthropod pests are typically managed using tactics applied uniformly to the whole field. Precision pest management applies tactics under the assumption that within-field pest pressure differences exist. This approach allows for more precise and judicious use of scouting resources and management tactics. For example, a portion of a field delineated as attractive to pests may be selected to receive extra monitoring attention. Likely because of the high variability in pest dynamics, little attention has been given to developing precision pest prediction models. Here, multimodel synthesis was used to develop a spatiotemporal model predicting the density of a key pest of wheat, the Russian wheat aphid, Diuraphis noxia (Kurdjumov). Spatially implicit and spatially explicit models were synthesized to generate spatiotemporal pest pressure predictions. Cross-validation and field validation were used to confirm model efficacy. A strong within-field signal depicting aphid density was confirmed with low prediction errors. Results show that the within-field model predictions will provide higher-quality information than would be provided by traditional field scouting. With improvements to the broad-scale model component, the model synthesis approach and resulting tool could improve pest management strategy and provide a template for the development of spatially explicit pest pressure models. © 2014 Society of Chemical Industry.

  14. Explicit symplectic algorithms based on generating functions for charged particle dynamics.

    PubMed

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H(x,p)=p_{i}f(x) or H(x,p)=x_{i}g(p). Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  15. Explicit symplectic algorithms based on generating functions for charged particle dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Qin, Hong; Tang, Yifa; Liu, Jian; He, Yang; Xiao, Jianyuan

    2016-07-01

    Dynamics of a charged particle in the canonical coordinates is a Hamiltonian system, and the well-known symplectic algorithm has been regarded as the de facto method for numerical integration of Hamiltonian systems due to its long-term accuracy and fidelity. For long-term simulations with high efficiency, explicit symplectic algorithms are desirable. However, it is generally believed that explicit symplectic algorithms are only available for sum-separable Hamiltonians, and this restriction limits the application of explicit symplectic algorithms to charged particle dynamics. To overcome this difficulty, we combine the familiar sum-split method and a generating function method to construct second- and third-order explicit symplectic algorithms for dynamics of charged particle. The generating function method is designed to generate explicit symplectic algorithms for product-separable Hamiltonian with form of H (x ,p ) =pif (x ) or H (x ,p ) =xig (p ) . Applied to the simulations of charged particle dynamics, the explicit symplectic algorithms based on generating functions demonstrate superiorities in conservation and efficiency.

  16. Towards more accurate isoscapes encouraging results from wine, water and marijuana data/model and model/model comparisons.

    NASA Astrophysics Data System (ADS)

    West, J. B.; Ehleringer, J. R.; Cerling, T.

    2006-12-01

    Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across landscapes.

  17. Current capabilities for simulating the extreme distortion of thin structures subjected to severe impacts

    NASA Technical Reports Server (NTRS)

    Key, Samuel W.

    1993-01-01

    The explicit transient dynamics technology in use today for simulating the impact and subsequent transient dynamic response of a structure has its origins in the 'hydrocodes' dating back to the late 1940's. The growth in capability in explicit transient dynamics technology parallels the growth in speed and size of digital computers. Computer software for simulating the explicit transient dynamic response of a structure is characterized by algorithms that use a large number of small steps. In explicit transient dynamics software there is a significant emphasis on speed and simplicity. The finite element technology used to generate the spatial discretization of a structure is based on a compromise between completeness of the representation for the physical processes modelled and speed in execution. That is, since it is expected in every calculation that the deformation will be finite and the material will be strained beyond the elastic range, the geometry and the associated gradient operators must be reconstructed, as well as complex stress-strain models evaluated at every time step. As a result, finite elements derived for explicit transient dynamics software use the simplest and barest constructions possible for computational efficiency while retaining an essential representation of the physical behavior. The best example of this technology is the four-node bending quadrilateral derived by Belytschko, Lin and Tsay. Today, the speed, memory capacity and availability of computer hardware allows a number of the previously used algorithms to be 'improved.' That is, it is possible with today's computing hardware to modify many of the standard algorithms to improve their representation of the physical process at the expense of added complexity and computational effort. The purpose is to review a number of these algorithms and identify the improvements possible. In many instances, both the older, faster version of the algorithm and the improved and somewhat slower version of the algorithm are found implemented together in software. Specifically, the following seven algorithmic items are examined: the invariant time derivatives of stress used in material models expressed in rate form; incremental objectivity and strain used in the numerical integration of the material models; the use of one-point element integration versus mean quadrature; shell elements used to represent the behavior of thin structural components; beam elements based on stress-resultant plasticity versus cross-section integration; the fidelity of elastic-plastic material models in their representation of ductile metals; and the use of Courant subcycling to reduce computational effort.

  18. Analytical approximations for spatial stochastic gene expression in single cells and tissues

    PubMed Central

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2016-01-01

    Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction–diffusion master equation (RDME) describing stochastic reaction–diffusion processes, we here derive expressions for the approximate steady-state mean concentrations which are explicit functions of the dimensionality of space, rate constants and diffusion coefficients. The expressions have a simple closed form when the system consists of one effective species. These formulae show that, even for spatially homogeneous systems, mean concentrations can depend on diffusion coefficients: this contradicts the predictions of deterministic reaction–diffusion processes, thus highlighting the importance of intrinsic noise. We confirm our theory by comparison with stochastic simulations, using the RDME and Brownian dynamics, of two models of stochastic and spatial gene expression in single cells and tissues. PMID:27146686

  19. The spatial spread of schistosomiasis: A multidimensional network model applied to Saint-Louis region, Senegal

    NASA Astrophysics Data System (ADS)

    Ciddio, Manuela; Mari, Lorenzo; Sokolow, Susanne H.; De Leo, Giulio A.; Casagrandi, Renato; Gatto, Marino

    2017-10-01

    Schistosomiasis is a parasitic, water-related disease that is prevalent in tropical and subtropical areas of the world, causing severe and chronic consequences especially among children. Here we study the spatial spread of this disease within a network of connected villages in the endemic region of the Lower Basin of the Senegal River, in Senegal. The analysis is performed by means of a spatially explicit metapopulation model that couples local-scale eco-epidemiological dynamics with spatial mechanisms related to human mobility (estimated from anonymized mobile phone records), snail dispersal and hydrological transport of schistosome larvae along the main water bodies of the region. Results show that the model produces epidemiological patterns consistent with field observations, and point out the key role of spatial connectivity on the spread of the disease. These findings underline the importance of considering different transport pathways in order to elaborate disease control strategies that can be effective within a network of connected populations.

  20. Dynamic protein assembly by programmable DNA strand displacement.

    PubMed

    Chen, Rebecca P; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-04-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  1. Dynamic protein assembly by programmable DNA strand displacement

    NASA Astrophysics Data System (ADS)

    Chen, Rebecca P.; Blackstock, Daniel; Sun, Qing; Chen, Wilfred

    2018-03-01

    Inspired by the remarkable ability of natural protein switches to sense and respond to a wide range of environmental queues, here we report a strategy to engineer synthetic protein switches by using DNA strand displacement to dynamically organize proteins with highly diverse and complex logic gate architectures. We show that DNA strand displacement can be used to dynamically control the spatial proximity and the corresponding fluorescence resonance energy transfer between two fluorescent proteins. Performing Boolean logic operations enabled the explicit control of protein proximity using multi-input, reversible and amplification architectures. We further demonstrate the power of this technology beyond sensing by achieving dynamic control of an enzyme cascade. Finally, we establish the utility of the approach as a synthetic computing platform that drives the dynamic reconstitution of a split enzyme for targeted prodrug activation based on the sensing of cancer-specific miRNAs.

  2. Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis

    NASA Astrophysics Data System (ADS)

    Wang, Jianping; Wang, Mingxin

    2018-06-01

    This paper concerns the reaction-diffusion systems modeling the population dynamics of two predators and one prey with nonlinear prey-taxis. We first investigate the global existence and boundedness of the unique classical solution for the general model. Then, we study the global stabilities of nonnegative spatially homogeneous equilibria for an explicit system with type I functional responses and density-dependent death rates for the predators and logistic growth for the prey. Moreover, the convergence rates are also established.

  3. Elucidating the interaction between light competition and herbivore feeding patterns using functional–structural plant modelling

    PubMed Central

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-01

    Abstract Background and Aims Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant’s competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. Methods To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional–structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Key Results Our results indicate that there is indeed a strong interaction between levels of plant–plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Conclusions Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant–plant–herbivore interactions. PMID:29373660

  4. Integrating Ecosystem Carbon Dynamics into State-and-Transition Simulation Models of Land Use/Land Cover Change

    NASA Astrophysics Data System (ADS)

    Sleeter, B. M.; Daniel, C.; Frid, L.; Fortin, M. J.

    2016-12-01

    State-and-transition simulation models (STSMs) provide a general approach for incorporating uncertainty into forecasts of landscape change. Using a Monte Carlo approach, STSMs generate spatially-explicit projections of the state of a landscape based upon probabilistic transitions defined between states. While STSMs are based on the basic principles of Markov chains, they have additional properties that make them applicable to a wide range of questions and types of landscapes. A current limitation of STSMs is that they are only able to track the fate of discrete state variables, such as land use/land cover (LULC) classes. There are some landscape modelling questions, however, for which continuous state variables - for example carbon biomass - are also required. Here we present a new approach for integrating continuous state variables into spatially-explicit STSMs. Specifically we allow any number of continuous state variables to be defined for each spatial cell in our simulations; the value of each continuous variable is then simulated forward in discrete time as a stochastic process based upon defined rates of change between variables. These rates can be defined as a function of the realized states and transitions of each cell in the STSM, thus providing a connection between the continuous variables and the dynamics of the landscape. We demonstrate this new approach by (1) developing a simple IPCC Tier 3 compliant model of ecosystem carbon biomass, where the continuous state variables are defined as terrestrial carbon biomass pools and the rates of change as carbon fluxes between pools, and (2) integrating this carbon model with an existing LULC change model for the state of Hawaii, USA.

  5. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  6. The organisation of spatial and temporal relations in memory.

    PubMed

    Rondina, Renante; Curtiss, Kaitlin; Meltzer, Jed A; Barense, Morgan D; Ryan, Jennifer D

    2017-04-01

    Episodic memories are comprised of details of "where" and "when"; spatial and temporal relations, respectively. However, evidence from behavioural, neuropsychological, and neuroimaging studies has provided mixed interpretations about how memories for spatial and temporal relations are organised-they may be hierarchical, fully interactive, or independent. In the current study, we examined the interaction of memory for spatial and temporal relations. Using explicit reports and eye-tracking, we assessed younger and older adults' memory for spatial and temporal relations of objects that were presented singly across time in unique spatial locations. Explicit change detection of spatial relations was affected by a change in temporal relations, but explicit change detection of temporal relations was not affected by a change in spatial relations. Younger and older adults showed eye movement evidence of incidental memory for temporal relations, but only younger adults showed eye movement evidence of incidental memory for spatial relations. Together, these findings point towards a hierarchical organisation of relational memory. The implications of these findings are discussed in the context of the neural mechanisms that may support such a hierarchical organisation of memory.

  7. An extended patch-dynamic framework for food chains in fragmented landscapes

    PubMed Central

    Liao, Jinbao; Chen, Jiehong; Ying, Zhixia; Hiebeler, David E.; Nijs, Ivan

    2016-01-01

    Habitat destruction, a key determinant of species loss, can be characterized by two components, patch loss and patch fragmentation, where the former refers to the reduction in patch availability, and the latter to the division of the remaining patches. Classical metacommunity models have recently explored how food web dynamics respond to patch loss, but the effects of patch fragmentation have largely been overlooked. Here we develop an extended patch-dynamic model that tracks the patch occupancy of the various trophic links subject to colonization-extinction-predation dynamics by incorporating species dispersal with patch connectivity. We found that, in a simple food chain, species at higher trophic level become extinct sooner with increasing patch loss and fragmentation due to the constraint in resource availability, confirming the trophic rank hypothesis. Yet, effects of fragmentation on species occupancy are largely determined by patch loss, with maximal fragmentation effects occurring at intermediate patch loss. Compared to the spatially explicit simulations that we also performed, the current model with pair approximation generates similar community patterns especially in spatially clustered landscapes. Overall, our extended framework can be applied to model more complex food webs in fragmented landscapes, broadening the scope of existing metacommunity theory. PMID:27608823

  8. CONSTRUCTING, PERTURBATION ANALYSIIS AND TESTING OF A MULTI-HABITAT PERIODIC MATRIX POPULATION MODEL

    EPA Science Inventory

    We present a matrix model that explicitly incorporates spatial habitat structure and seasonality and discuss preliminary results from a landscape level experimental test. Ecological risk to populations is often modeled without explicit treatment of spatially or temporally distri...

  9. Combining multiple approaches and optimized data resolution for an improved understanding of stream temperature dynamics of a forested headwater basin in the Southern Appalachians

    NASA Astrophysics Data System (ADS)

    Belica, L.; Mitasova, H.; Caldwell, P.; McCarter, J. B.; Nelson, S. A. C.

    2017-12-01

    Thermal regimes of forested headwater streams continue to be an area of active research as climatic, hydrologic, and land cover changes can influence water temperature, a key aspect of aquatic ecosystems. Widespread monitoring of stream temperatures have provided an important data source, yielding insights on the temporal and spatial patterns and the underlying processes that influence stream temperature. However, small forested streams remain challenging to model due to the high spatial and temporal variability of stream temperatures and the climatic and hydrologic conditions that drive them. Technological advances and increased computational power continue to provide new tools and measurement methods and have allowed spatially explicit analyses of dynamic natural systems at greater temporal resolutions than previously possible. With the goal of understanding how current stream temperature patterns and processes may respond to changing landcover and hydroclimatoligical conditions, we combined high-resolution, spatially explicit geospatial modeling with deterministic heat flux modeling approaches using data sources that ranged from traditional hydrological and climatological measurements to emerging remote sensing techniques. Initial analyses of stream temperature monitoring data revealed that high temporal resolution (5 minutes) and measurement resolutions (<0.1°C) were needed to adequately describe diel stream temperature patterns and capture the differences between paired 1st order and 4th order forest streams draining north and south facing slopes. This finding along with geospatial models of subcanopy solar radiation and channel morphology were used to develop hypotheses and guide field data collection for further heat flux modeling. By integrating multiple approaches and optimizing data resolution for the processes being investigated, small, but ecologically significant differences in stream thermal regimes were revealed. In this case, multi-approach research contributed to the identification of the dominant mechanisms driving stream temperature in the study area and advanced our understanding of the current thermal fluxes and how they may change as environmental conditions change in the future.

  10. Time for a change: dynamic urban ecology.

    PubMed

    Ramalho, Cristina E; Hobbs, Richard J

    2012-03-01

    Contemporary cities are expanding rapidly in a spatially complex, non-linear manner. However, this form of expansion is rarely taken into account in the way that urbanization is classically assessed in ecological studies. An explicit consideration of the temporal dynamics, although frequently missing, is crucial in order to understand the effects of urbanization on biodiversity and ecosystem functioning in rapidly urbanizing landscapes. In particular, a temporal perspective highlights the importance of land-use legacies and transient dynamics in the response of biodiversity to environmental change. Here, we outline the essential elements of an emerging framework for urban ecology that incorporates the characteristics of contemporary urbanization and thus empowers ecologists to understand and intervene in the planning and management of cities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Do walleye pollock exhibit flexibility in where or when they spawn based on variability in water temperature?

    NASA Astrophysics Data System (ADS)

    Bacheler, Nathan M.; Ciannelli, Lorenzo; Bailey, Kevin M.; Bartolino, Valerio

    2012-06-01

    Environmental variability is increasingly recognized as a primary determinant of year-class strength of marine fishes by directly or indirectly influencing egg and larval development, growth, and survival. Here we examined the role of annual water temperature variability in determining when and where walleye pollock (Theragra chalcogramma) spawn in the eastern Bering Sea. Walleye pollock spawning was examined using both long-term ichthyoplankton data (N=19 years), as well as with historical spatially explicit, foreign-reported, commercial catch data occurring during the primary walleye pollock spawning season (February-May) each year (N=22 years in total). We constructed variable-coefficient generalized additive models (GAMs) to relate the spatially explicit egg or adult catch-per-unit-effort (CPUE) to predictor variables including spawning stock biomass, season, position, and water temperature. The adjusted R2 value was 63.1% for the egg CPUE model and 35.5% for the adult CPUE model. Both egg and adult GAMs suggest that spawning progresses seasonally from Bogoslof Island in February and March to Outer Domain waters between the Pribilof and Unimak Islands by May. Most importantly, walleye pollock egg and adult CPUE was predicted to generally increase throughout the study area as mean annual water temperature increased. These results suggest low interannual variability in the spatial and temporal dynamics of walleye pollock spawning regardless of changes in environmental conditions, at least at the spatial scale examined in this study and within the time frame of decades.

  12. DEFINING RECOVERY GOALS AND STRATEGIES FOR ENDANGERED SPECIES USING SPATIALLY-EXPLICIT POPULATION MODELS

    EPA Science Inventory

    We used a spatially explicit population model of wolves (Canis lupus) to propose a framework for defining rangewide recovery priorities and finer-scale strategies for regional reintroductions. The model predicts that Yellowstone and central Idaho, where wolves have recently been ...

  13. Spatially explicit simulation of hydrologically controlled carbon and nitrogen cycles and associated feedback mechanisms in a boreal ecosystem

    NASA Astrophysics Data System (ADS)

    Govind, Ajit; Chen, Jing Ming; Ju, Weimin

    2009-06-01

    Ecosystem models that simulate biogeochemical processes usually ignore hydrological controls that govern them. It is quite possible that topographically driven water fluxes significantly influence the spatial distribution of C sources and sinks because of their large contribution to the local water balance. To investigate this, we simulated biogeochemical processes along with the associated feedback mechanisms in a boreal ecosystem using a spatially explicit hydroecological model, boreal ecosystem productivity simulator (BEPS)-TerrainLab V2.0, that has a tight coupling of ecophysiological, hydrological, and biogeochemical processes. First, the simulated dynamics of snowpack, soil temperature, net ecosystem productivity (NEP), and total ecosystem respiration (TER) were validated with high-frequency measurements for 2 years. The model was able to explain 80% of the variability in NEP and 84% of the variability in TER. Further, we investigated the influence of topographically driven subsurface base flow on soil C and N cycling and on the spatiotemporal patterns of C sources and sinks using three hydrological modeling scenarios that differed in hydrological conceptualizations. In general, the scenarios that had nonexplicit hydrological representation overestimated NEP, as opposed to the scenario that had an explicit (realistic) representation. The key processes controlling the NEP differences were attributed to the combined effects of variations in photosynthesis (due to changes in stomatal conductance and nitrogen (N) availability), heterotrophic respiration, and autotrophic respiration, all of which occur simultaneously affecting NEP. Feedback relationships were also found to exacerbate the differences. We identified six types of NEP differences (biases), of which the most commonly found was due to an underestimation of the existing C sources, highlighting the vulnerability of regional-scale ecosystem models that ignore hydrological processes.

  14. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Treesearch

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  15. Spatially Explicit Simulation of Mesotopographic Controls on Peatland Hydrology and Carbon Fluxes

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Chen, J. M.; Roulet, N. T.

    2006-12-01

    A number of field carbon flux measurements, paleoecological records, and model simulations have acknowledged the importance of northern peatlands in terrestrial carbon cycling and methane emissions. An important parameter in peatlands that influences both net primary productivity, the net gain of carbon through photosynthesis, and decomposition under aerobic and anaerobic conditions, is the position of the water table. Biological and physical processes involved in peatland carbon dynamics and their hydrological controls operate at different spatial scales. The highly variable hydraulic characteristics of the peat profile and the overall shape of the peat body as defined by its surface topography at the mesoscale (104 m2) are of major importance for peatland water table dynamics. Common types of peatlands include bogs with a slightly domed centre. As a result of the convex profile, their water supply is restricted to atmospheric inputs, and water is mainly shed by shallow subsurface flow. From a modelling perspective the influence of mesotopographic controls on peatland hydrology and thus carbon balance requires that process-oriented models that examine the links between peatland hydrology, ecosystem functioning, and climate must incorporate some form of lateral subsurface flow consideration. Most hydrological and ecological modelling studies in complex terrain explicitly account for the topographic controls on lateral subsurface flow through digital elevation models. However, modelling studies in peatlands often employ simple empirical parameterizations of lateral subsurface flow, neglecting the influence of peatlands low relief mesoscale topography. Our objective is to explicitly simulate the mesotopographic controls on peatland hydrology and carbon fluxes using the Boreal Ecosystem Productivity Simulator (BEPS) adapted to northern peatlands. BEPS is a process-oriented ecosystem model in a remote sensing framework that takes into account peatlands multi-layer canopy through vertically stratified mapped leaf area index. Model outputs are validated against multi-year measurements taken at an eddy-covariance flux tower located within Mer Bleue bog, a typical raised bog near Ottawa, Ontario, Canada. Model results for seasonal water table dynamics and evapotranspiration at daily time steps in 2003 are in good agreement with measurements with R2=0.74 and R2=0.79, respectively, and indicate the suitability of our pursued approach.

  16. Analysis of the spatio-temporal and semantic aspects of land-cover/use change dynamics 1991-2001 in Albania at national and district levels.

    PubMed

    Jansen, Louisa J M; Carrai, Giancarlo; Morandini, Luca; Cerutti, Paolo O; Spisni, Andrea

    2006-08-01

    In the turmoil of a rapidly changing economy the Albanian government needs accurate and timely information for management of their natural resources and formulation of land-use policies. The transformation of the forestry sector has required major changes in the legal, regulatory and management framework. The World Bank financed Albanian National Forest Inventory project provides an analysis of spatially explicit land-cover/use change dynamics in the period 1991-2001 using the FAO/UNEP Land Cover Classification System for codification of classes, satellite remote sensing and field survey for data collection and elements of the object-oriented geo-database approach to handle changes as an evolution of land-cover/use objects, i.e. polygons, over time to facilitate change dynamics analysis. Analysis results at national level show the trend of natural resources depletion in the form of modifications and conversions that lead to a gradual shift from land-cover/use types with a tree cover to less dense tree covers or even a complete removal of trees. Policy failure (e.g., corruption, lack of law enforcement) is seen as the underlying cause. Another major trend is urbanisation of areas near large urban centres that change urban-rural linkages. Furthermore, after privatisation agricultural areas increased in the hills where environmental effects may be detrimental, while prime agricultural land in the plains is lost to urbanisation. At district level, the local variability of spatially explicit land-cover/use changes shows different types of natural resources depletion. The distribution of changes indicates a regional prevalence, thus a decentralised approach to the natural resources management could be advocated.

  17. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity.

    PubMed

    Bustamante, Mercedes M C; Roitman, Iris; Aide, T Mitchell; Alencar, Ane; Anderson, Liana O; Aragão, Luiz; Asner, Gregory P; Barlow, Jos; Berenguer, Erika; Chambers, Jeffrey; Costa, Marcos H; Fanin, Thierry; Ferreira, Laerte G; Ferreira, Joice; Keller, Michael; Magnusson, William E; Morales-Barquero, Lucia; Morton, Douglas; Ometto, Jean P H B; Palace, Michael; Peres, Carlos A; Silvério, Divino; Trumbore, Susan; Vieira, Ima C G

    2016-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks and biodiversity due to degradation and recovery of tropical forests, focusing on three main areas: (1) the combination of field surveys and remote sensing; (2) evaluation of biodiversity and carbon values under a unified strategy; and (3) research efforts needed to understand and quantify forest degradation and recovery. The improvement of models and estimates of changes of forest carbon can foster process-oriented monitoring of forest dynamics, including different variables and using spatially explicit algorithms that account for regional and local differences, such as variation in climate, soil, nutrient content, topography, biodiversity, disturbance history, recovery pathways, and socioeconomic factors. Generating the data for these models requires affordable large-scale remote-sensing tools associated with a robust network of field plots that can generate spatially explicit information on a range of variables through time. By combining ecosystem models, multiscale remote sensing, and networks of field plots, we will be able to evaluate forest degradation and recovery and their interactions with biodiversity and carbon cycling. Improving monitoring strategies will allow a better understanding of the role of forest dynamics in climate-change mitigation, adaptation, and carbon cycle feedbacks, thereby reducing uncertainties in models of the key processes in the carbon cycle, including their impacts on biodiversity, which are fundamental to support forest governance policies, such as Reducing Emissions from Deforestation and Forest Degradation. © 2015 John Wiley & Sons Ltd.

  18. Spatially explicit watershed modeling: tracking water, mercury and nitrogen in multiple systems under diverse conditions

    EPA Science Inventory

    Environmental decision-making and the influences of various stressors, such as landscape and climate changes on water quantity and quality, requires the application of environmental modeling. Spatially explicit environmental and watershed-scale models using GIS as a base framewor...

  19. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  20. Using stylized agent-based models for population-environment research: A case study from the Galápagos Islands

    PubMed Central

    Miller, Brian W.; Breckheimer, Ian; McCleary, Amy L.; Guzmán-Ramirez, Liza; Caplow, Susan C.; Jones-Smith, Jessica C.; Walsh, Stephen J.

    2010-01-01

    Agent Based Models (ABMs) are powerful tools for population-environment research but are subject to trade-offs between model complexity and abstraction. This study strikes a compromise between abstract and highly specified ABMs by designing a spatially explicit, stylized ABM and using it to explore policy scenarios in a setting that is facing substantial conservation and development challenges. Specifically, we present an ABM that reflects key Land Use / Land Cover (LULC) dynamics and livelihood decisions on Isabela Island in the Galápagos Archipelago of Ecuador. We implement the model using the NetLogo software platform, a free program that requires relatively little programming experience. The landscape is composed of a satellite-derived distribution of a problematic invasive species (common guava) and a stylized representation of the Galápagos National Park, the community of Puerto Villamil, the agricultural zone, and the marine area. The agent module is based on publicly available data and household interviews, and represents the primary livelihoods of the population in the Galápagos Islands – tourism, fisheries, and agriculture. We use the model to enact hypothetical agricultural subsidy scenarios aimed at controlling invasive guava and assess the resulting population and land cover dynamics. Findings suggest that spatially explicit, stylized ABMs have considerable utility, particularly during preliminary stages of research, as platforms for (1) sharpening conceptualizations of population-environment systems, (2) testing alternative scenarios, and (3) uncovering critical data gaps. PMID:20539752

  1. Individual-Based Spatially-Explicit Model of an Herbivore and Its Resource: The Effect of Habitat Reduction and Fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova, T; Carlsen, T; Kercher, J

    2002-06-17

    We present an individual-based, spatially-explicit model of the dynamics of a small mammal and its resource. The life histories of each individual animal are modeled separately. The individuals can have the status of residents or wanderers and belong to behaviorally differing groups of juveniles or adults and males or females. Their territory defending and monogamous behavior is taken into consideration. The resource, green vegetation, grows depending on seasonal climatic characteristics and is diminished due to the herbivore's grazing. Other specifics such as a varying personal energetic level due to feeding and starvation of the individuals, mating preferences, avoidance of competitors,more » dispersal of juveniles, as a result of site overgrazing, etc. are included in the model. We determined model parameters from real data for the species Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat without predators or other species competitors. The goal of the study is to find the relation between size of habitat and population persistence. The experiments with the model show the populations go extinct due to severe overgrazing, but that the length of population persistence depends on the area of the habitat as well as on the presence of fragmentation. Additionally, the total population size of the vole population obtained during the simulations exhibits yearly fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one observed in prairie vole field studies.« less

  2. Cholera in the Lake Kivu region (DRC): Integrating remote sensing and spatially explicit epidemiological modeling

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2014-07-01

    Mathematical models of cholera dynamics can not only help in identifying environmental drivers and processes that influence disease transmission, but may also represent valuable tools for the prediction of the epidemiological patterns in time and space as well as for the allocation of health care resources. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. They have been ravaging the shore of Lake Kivu in the east of the country repeatedly during the last decades. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of the lake. Remotely sensed data sets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multiyear data set of reported cholera cases. The best fourteen models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via proper cross validation. Among these, the one accounting for seasonality, El Niño Southern Oscillation, precipitation and human mobility outperforms the others in cross validation. Some drivers (such as human mobility and rainfall) are retained only by a few models, possibly indicating that the mechanisms through which they influence cholera dynamics in the area will have to be investigated further.

  3. Using stylized agent-based models for population-environment research: A case study from the Galápagos Islands.

    PubMed

    Miller, Brian W; Breckheimer, Ian; McCleary, Amy L; Guzmán-Ramirez, Liza; Caplow, Susan C; Jones-Smith, Jessica C; Walsh, Stephen J

    2010-05-01

    Agent Based Models (ABMs) are powerful tools for population-environment research but are subject to trade-offs between model complexity and abstraction. This study strikes a compromise between abstract and highly specified ABMs by designing a spatially explicit, stylized ABM and using it to explore policy scenarios in a setting that is facing substantial conservation and development challenges. Specifically, we present an ABM that reflects key Land Use / Land Cover (LULC) dynamics and livelihood decisions on Isabela Island in the Galápagos Archipelago of Ecuador. We implement the model using the NetLogo software platform, a free program that requires relatively little programming experience. The landscape is composed of a satellite-derived distribution of a problematic invasive species (common guava) and a stylized representation of the Galápagos National Park, the community of Puerto Villamil, the agricultural zone, and the marine area. The agent module is based on publicly available data and household interviews, and represents the primary livelihoods of the population in the Galápagos Islands - tourism, fisheries, and agriculture. We use the model to enact hypothetical agricultural subsidy scenarios aimed at controlling invasive guava and assess the resulting population and land cover dynamics. Findings suggest that spatially explicit, stylized ABMs have considerable utility, particularly during preliminary stages of research, as platforms for (1) sharpening conceptualizations of population-environment systems, (2) testing alternative scenarios, and (3) uncovering critical data gaps.

  4. Explicit Global Simulation of Gravity Waves up to the Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Becker, E.

    2016-12-01

    At least for short-term simulations, middle atmosphere general circulation models (GCMs) can be run with sufficiently high resolution in order to describe a good part of the gravity wave spectrum explicitly. Nevertheless, the parameterization of unresolved dynamical scales remains an issue, especially when the scales of parameterized gravity waves (GWs) and resolved GWs become comparable. In addition, turbulent diffusion must always be parameterized along with other subgrid-scale dynamics. A practical solution to the combined closure problem for GWs and turbulent diffusion is to dispense with a parameterization of GWs, apply a high spatial resolution, and to represent the unresolved scales by a macro-turbulent diffusion scheme that gives rise to wave damping in a self-consistent fashion. This is the approach of a few GCMs that extend from the surface to the lower thermosphere and simulate a realistic GW drag and summer-to-winter-pole residual circulation in the upper mesosphere. In this study we describe a new version of the Kuehlungsborn Mechanistic general Circulation Model (KMCM), which includes explicit (though idealized) computations of radiative transfer and the tropospheric moisture cycle. Particular emphasis is spent on 1) the turbulent diffusion scheme, 2) the attenuation of resolved GWs at critical levels, 3) the generation of GWs in the middle atmosphere from body forces, and 4) GW-tidal interactions (including the energy deposition of GWs and tides).

  5. Phase transitions in coupled map lattices and in associated probabilistic cellular automata.

    PubMed

    Just, Wolfram

    2006-10-01

    Analytical tools are applied to investigate piecewise linear coupled map lattices in terms of probabilistic cellular automata. The so-called disorder condition of probabilistic cellular automata is closely related with attracting sets in coupled map lattices. The importance of this condition for the suppression of phase transitions is illustrated by spatially one-dimensional systems. Invariant densities and temporal correlations are calculated explicitly. Ising type phase transitions are found for one-dimensional coupled map lattices acting on repelling sets and for a spatially two-dimensional Miller-Huse-like system with stable long time dynamics. Critical exponents are calculated within a finite size scaling approach. The relevance of detailed balance of the resulting probabilistic cellular automaton for the critical behavior is pointed out.

  6. Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems

    NASA Astrophysics Data System (ADS)

    Randhir, Timothy O.; Tsvetkova, Olga

    2011-06-01

    SummaryLand use change is influenced by spatial and temporal factors that interact with watershed resources. Modeling these changes is critical to evaluate emerging land use patterns and to predict variation in water quantity and quality. The objective of this study is to model the nature and emergence of spatial patterns in land use and water resource impacts using a spatially explicit and dynamic landscape simulation. Temporal changes are predicted using a probabilistic Markovian process and spatial interaction through cellular automation. The MCMC (Monte Carlo Markov Chain) analysis with cellular automation is linked to hydrologic equations to simulate landscape patterns and processes. The spatiotemporal watershed dynamics (SWD) model is applied to a subwatershed in the Blackstone River watershed of Massachusetts to predict potential land use changes and expected runoff and sediment loading. Changes in watershed land use and water resources are evaluated over 100 years at a yearly time step. Results show high potential for rapid urbanization that could result in lowering of groundwater recharge and increased storm water peaks. The watershed faces potential decreases in agricultural and forest area that affect open space and pervious cover of the watershed system. Water quality deteriorated due to increased runoff which can also impact stream morphology. While overland erosion decreased, instream erosion increased from increased runoff from urban areas. Use of urban best management practices (BMPs) in sensitive locations, preventive strategies, and long-term conservation planning will be useful in sustaining the watershed system.

  7. From water use to water scarcity footprinting in environmentally extended input-output analysis.

    PubMed

    Ridoutt, Bradley George; Hadjikakou, Michalis; Nolan, Martin; Bryan, Brett A

    2018-05-18

    Environmentally extended input-output analysis (EEIOA) supports environmental policy by quantifying how demand for goods and services leads to resource use and emissions across the economy. However, some types of resource use and emissions require spatially-explicit impact assessment for meaningful interpretation, which is not possible in conventional EEIOA. For example, water use in locations of scarcity and abundance is not environmentally equivalent. Opportunities for spatially-explicit impact assessment in conventional EEIOA are limited because official input-output tables tend to be produced at the scale of political units which are not usually well aligned with environmentally relevant spatial units. In this study, spatially-explicit water scarcity factors and a spatially disaggregated Australian water use account were used to develop water scarcity extensions that were coupled with a multi-regional input-output model (MRIO). The results link demand for agricultural commodities to the problem of water scarcity in Australia and globally. Important differences were observed between the water use and water scarcity footprint results, as well as the relative importance of direct and indirect water use, with significant implications for sustainable production and consumption-related policies. The approach presented here is suggested as a feasible general approach for incorporating spatially-explicit impact assessment in EEIOA.

  8. Exploring the effect of the spatial scale of fishery management.

    PubMed

    Takashina, Nao; Baskett, Marissa L

    2016-02-07

    For any spatially explicit management, determining the appropriate spatial scale of management decisions is critical to success at achieving a given management goal. Specifically, managers must decide how much to subdivide a given managed region: from implementing a uniform approach across the region to considering a unique approach in each of one hundred patches and everything in between. Spatially explicit approaches, such as the implementation of marine spatial planning and marine reserves, are increasingly used in fishery management. Using a spatially explicit bioeconomic model, we quantify how the management scale affects optimal fishery profit, biomass, fishery effort, and the fraction of habitat in marine reserves. We find that, if habitats are randomly distributed, the fishery profit increases almost linearly with the number of segments. However, if habitats are positively autocorrelated, then the fishery profit increases with diminishing returns. Therefore, the true optimum in management scale given cost to subdivision depends on the habitat distribution pattern. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts

    NASA Astrophysics Data System (ADS)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.

  10. Dispersal responses override density effects on genetic diversity during post-disturbance succession

    PubMed Central

    Landguth, Erin L.; Bull, C. Michael; Banks, Sam C.; Gardner, Michael G.; Driscoll, Don A.

    2016-01-01

    Dispersal fundamentally influences spatial population dynamics but little is known about dispersal variation in landscapes where spatial heterogeneity is generated predominantly by disturbance and succession. We tested the hypothesis that habitat succession following fire inhibits dispersal, leading to declines over time in genetic diversity in the early successional gecko Nephrurus stellatus. We combined a landscape genetics field study with a spatially explicit simulation experiment to determine whether successional patterns in genetic diversity were driven by habitat-mediated dispersal or demographic effects (declines in population density leading to genetic drift). Initial increases in genetic structure following fire were likely driven by direct mortality and rapid population expansion. Subsequent habitat succession increased resistance to gene flow and decreased dispersal and genetic diversity in N. stellatus. Simulated changes in population density alone did not reproduce these results. Habitat-mediated reductions in dispersal, combined with changes in population density, were essential to drive the field-observed patterns. Our study provides a framework for combining demographic, movement and genetic data with simulations to discover the relative influence of demography and dispersal on patterns of landscape genetic structure. Our results suggest that succession can inhibit connectivity among individuals, opening new avenues for understanding how disturbance regimes influence spatial population dynamics. PMID:27009225

  11. Emergence of increased frequency and severity of multiple infections by viruses due to spatial clustering of hosts

    NASA Astrophysics Data System (ADS)

    Taylor, Bradford P.; Penington, Catherine J.; Weitz, Joshua S.

    2016-12-01

    Multiple virus particles can infect a target host cell. Such multiple infections (MIs) have significant and varied ecological and evolutionary consequences for both virus and host populations. Yet, the in situ rates and drivers of MIs in virus-microbe systems remain largely unknown. Here, we develop an individual-based model (IBM) of virus-microbe dynamics to probe how spatial interactions drive the frequency and nature of MIs. In our IBMs, we identify increasingly spatially correlated clusters of viruses given sufficient decreases in viral movement. We also identify increasingly spatially correlated clusters of viruses and clusters of hosts given sufficient increases in viral infectivity. The emergence of clusters is associated with an increase in multiply infected hosts as compared to expectations from an analogous mean field model. We also observe long-tails in the distribution of the multiplicity of infection in contrast to mean field expectations that such events are exponentially rare. We show that increases in both the frequency and severity of MIs occur when viruses invade a cluster of uninfected microbes. We contend that population-scale enhancement of MI arises from an aggregate of invasion dynamics over a distribution of microbe cluster sizes. Our work highlights the need to consider spatially explicit interactions as a potentially key driver underlying the ecology and evolution of virus-microbe communities.

  12. Graph-based analysis of connectivity in spatially-explicit population models: HexSim and the Connectivity Analysis Toolkit

    EPA Science Inventory

    Background / Question / Methods Planning for the recovery of threatened species is increasingly informed by spatially-explicit population models. However, using simulation model results to guide land management decisions can be difficult due to the volume and complexity of model...

  13. Tropical forest landscape dynamics: Population consequences for neotropical lianas, genus Passiflora

    NASA Astrophysics Data System (ADS)

    Plowes, Robert Merrick

    Treefall gaps in rainforest landscapes play a crucial role in providing opportunities for establishment and growth of rare, light-demanding plants such as Passifora vines in Corcovado rainforests, Costa Rica. This study considers the interplay of landscape dynamics with plant life history traits and strategies in an ephemeral patch network. In Chapter One, I show how patch quality dynamics and propagule dispersal affect colonization of treefall gaps by Passifora vitifolia. Recruitment required high patch quality, exceeding 3 hours of sunlight and patches closed after about 6 years. Colonization by seed dispersal (80%) was constrained by patch quality and isolation, while clonal growth from dormant plants (20%) was limited to rare adjacent patches. Since patch turnover is critical in these systems, Chapter Two is focused on factors affecting canopy structure. I showed that prior landuse altered the dynamics of frequent, small-scale disturbances during succession following a single, large deforestation event. Here, I used Landsat subpixel analysis, aerial photographs and field surveys to demonstrate major changes in dynamics of regenerating canopies following release from agricultural activity in 1975. Little work has considered the role of life history traits in persistence of patchy populations, and so in Chapter Three I asked what life history strategies are used by 9 Passiflora species that occur in these transient forest gaps. Although Passiflora species exhibited differences in dormancy or dispersal strategies, abundance was not associated with any one strategy. Elasticities of vital rates (stasis, growth and fecundity) of P. vitifolia differed empirically in old growth and regenerating forests. To explore population responses to changes in landscape parameters or life history strategies, I created a spatially-explicit individual-based model. Simulations indicate that plant types with a dormancy phase have a greater suite of responses since they persist after patch extinction with potential to contribute later through both sexual and asexual dispersal. Plants that rely only on high dispersal were extinction prone in low connectivity landscapes. This novel approach of jointly analyzing spatially-explicit patch parameters and life history traits offers a comprehensive framework for further understanding the effects of patch dynamics on populations.

  14. The role of spatial dynamics in modulating metabolic interactions in biofilm development

    NASA Astrophysics Data System (ADS)

    Bocci, Federico; Lu, Mingyang; Suzuki, Yoko; Onuchic, Jose

    Cell phenotypic expression is substantially affected by the presence of environmental stresses and cell-cell communication mechanisms. We study the metabolic interactions of the glutamate synthesis pathway to explain the oscillation of growth rate observed in a B. Subtilis colony. Previous modelling schemes had failed in fully reproducing quantitative experimental observations as they did not explicitly address neither the diffusion of small metabolites nor the spatial distribution of phenotypically distinct bacteria inside the colony. We introduce a continuous space-temporal framework to explain how biofilm development dynamics is influenced by the metabolic interplay between two bacterial phenotypes composing the interior and the peripheral layer of the biofilm. Growth oscillations endorse the preservation of a high level of nutrients in the interior through diffusion and colony expansion in the periphery altogether. Our findings point out that perturbations of environmental conditions can result in the interruption of the interplay between cell populations and advocate alternative approaches to biofilm control strategies.

  15. Tumor evolution in space: the effects of competition colonization tradeoffs on tumor invasion dynamics.

    PubMed

    Orlando, Paul A; Gatenby, Robert A; Brown, Joel S

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.

  16. Tumor Evolution in Space: The Effects of Competition Colonization Tradeoffs on Tumor Invasion Dynamics

    PubMed Central

    Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.

    2013-01-01

    We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890

  17. Synchronous parallel spatially resolved stochastic cluster dynamics

    DOE PAGES

    Dunn, Aaron; Dingreville, Rémi; Martínez, Enrique; ...

    2016-04-23

    In this work, a spatially resolved stochastic cluster dynamics (SRSCD) model for radiation damage accumulation in metals is implemented using a synchronous parallel kinetic Monte Carlo algorithm. The parallel algorithm is shown to significantly increase the size of representative volumes achievable in SRSCD simulations of radiation damage accumulation. Additionally, weak scaling performance of the method is tested in two cases: (1) an idealized case of Frenkel pair diffusion and annihilation, and (2) a characteristic example problem including defect cluster formation and growth in α-Fe. For the latter case, weak scaling is tested using both Frenkel pair and displacement cascade damage.more » To improve scaling of simulations with cascade damage, an explicit cascade implantation scheme is developed for cases in which fast-moving defects are created in displacement cascades. For the first time, simulation of radiation damage accumulation in nanopolycrystals can be achieved with a three dimensional rendition of the microstructure, allowing demonstration of the effect of grain size on defect accumulation in Frenkel pair-irradiated α-Fe.« less

  18. Land-use change, deforestation, and peasant farm systems: A case study of Mexico's Southern Yucatan Peninsular Region

    NASA Astrophysics Data System (ADS)

    Vance, Colin James

    This dissertation develops spatially explicit econometric models by linking Thematic Mapper (TM) satellite imagery with household survey data to test behavioral propositions of semi-subsistence farmers in the Southern Yucatan Peninsular Region (SYPR) of Mexico. Covering 22,000 km2, this agricultural frontier contains one of the largest and oldest expanses of tropical forests in the Americas outside of Amazonia. Over the past 30 years, the SYPR has undergone significant land-use change largely owing to the construction of a highway through the region's center in 1967. These landscape dynamics are modeled by exploiting a spatial database linking a time series of TM imagery with socio-economic and geo-referenced land-use data collected from a random sample of 188 farm households. The dissertation moves beyond the existing literature on deforestation in three principal respects. Theoretically, the study develops a non-separable model of land-use that relaxes the assumption of profit maximization almost exclusively invoked in studies of the deforestation issue. The model is derived from a utility-maximizing framework that explicitly incorporates the interdependency of the household's production and consumption choices as these affect the allocation of resources. Methodologically, the study assembles a spatial database that couples satellite imagery with household-level socio-economic data. The field survey protocol recorded geo-referenced land-use data through the use of a geographic positioning system and the creation of sketch maps detailing the location of different uses observed within individual plots. Empirically, the study estimates spatially explicit econometric models of land-use change using switching regressions and duration analysis. A distinguishing feature of these models is that they link the dependent and independent variables at the level of the decision unit, the land manager, thereby capturing spatial and temporal heterogeneity that is otherwise obscured in studies using data aggregated to higher scales of analysis. The empirical findings suggest the potential of various policy initiatives to impede or otherwise alter the pattern of land-cover conversions. In this regard, the study reveals that consideration of missing or thin markets is critical to understanding how farmers in the SYPR reach subsistence and commercial cropping decisions.

  19. A formalized approach to making effective natural resource management decisions for Alaska National Parks

    USGS Publications Warehouse

    MacCluskie, Margaret C.; Romito, Angela; Peterson, James T.; Lawler, James P.

    2015-01-01

    A fundamental goal of the National Park Service (NPS) is the long-term protection and management of resources in the National Park System. Reaching this goal requires multiple approaches, including the conservation of essential habitats and the identification and elimination of potential threats to biota and habitats. To accomplish these goals, the NPS has implemented the Alaska Region Vital Signs Inventory and Monitoring (I&M) Program to monitor key biological, chemical, and physical components of ecosystems at more than 270 national parks. The Alaska Region has four networks—Arctic, Central, Southeast, and Southwest. By monitoring vital signs over large spatial and temporal scales, park managers are provided with information on the status and trajectory of park resources as well as a greater understanding and insight into the ecosystem dynamics. While detecting and quantifying change is important to conservation efforts, to be useful for formulating remedial actions, monitoring data must explicitly relate to management objectives and be collected in such a manner as to resolve key uncertainties about the dynamics of the system (Nichols and Williams 2006). Formal decision making frameworks (versus more traditional processes described below) allow for the explicit integration of monitoring data into decision making processes to improve the understanding of system dynamics, thereby improving future decisions (Williams 2011).

  20. Non-hydrostatic general circulation model of the Venus atmosphere

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander V.; Mingalev, Igor; Orlov, Konstantin; Ignatiev, Nikolay

    We present the first non-hydrostatic global circulation model of the Venus atmosphere based on the complete set of gas dynamics equations. The model employs a spatially uniform triangular mesh that allows to avoid artificial damping of the dynamical processes in the polar regions, with altitude as a vertical coordinate. Energy conversion from the solar flux into atmospheric motion is described via explicitly specified heating and cooling rates or, alternatively, with help of the radiation block based on comprehensive treatment of the Venus atmosphere spectroscopy, including line mixing effects in CO2 far wing absorption. Momentum equations are integrated using the semi-Lagrangian explicit scheme that provides high accuracy of mass and energy conservation. Due to high vertical grid resolution required by gas dynamics calculations, the model is integrated on the short time step less than one second. The model reliably repro-duces zonal superrotation, smoothly extending far below the cloud layer, tidal patterns at the cloud level and above, and non-rotating, sun-synchronous global convective cell in the upper atmosphere. One of the most interesting features of the model is the development of the polar vortices resembling those observed by Venus Express' VIRTIS instrument. Initial analysis of the simulation results confirms the hypothesis that it is thermal tides that provides main driver for the superrotation.

  1. Functional Nonlinear Mixed Effects Models For Longitudinal Image Data

    PubMed Central

    Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu

    2015-01-01

    Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453

  2. Nonparametric Bayesian Segmentation of a Multivariate Inhomogeneous Space-Time Poisson Process.

    PubMed

    Ding, Mingtao; He, Lihan; Dunson, David; Carin, Lawrence

    2012-12-01

    A nonparametric Bayesian model is proposed for segmenting time-evolving multivariate spatial point process data. An inhomogeneous Poisson process is assumed, with a logistic stick-breaking process (LSBP) used to encourage piecewise-constant spatial Poisson intensities. The LSBP explicitly favors spatially contiguous segments, and infers the number of segments based on the observed data. The temporal dynamics of the segmentation and of the Poisson intensities are modeled with exponential correlation in time, implemented in the form of a first-order autoregressive model for uniformly sampled discrete data, and via a Gaussian process with an exponential kernel for general temporal sampling. We consider and compare two different inference techniques: a Markov chain Monte Carlo sampler, which has relatively high computational complexity; and an approximate and efficient variational Bayesian analysis. The model is demonstrated with a simulated example and a real example of space-time crime events in Cincinnati, Ohio, USA.

  3. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media.

    PubMed

    Sonter, Laura J; Watson, Keri B; Wood, Spencer A; Ricketts, Taylor H

    2016-01-01

    Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18-20.2 at 95% confidence) to Vermont's tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making.

  4. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    PubMed Central

    Betti, Matthew; LeClair, Josh; Wahl, Lindi M.; Zamir, Mair

    2017-01-01

    We present a model and associated simulation package (www.beeplusplus.ca) to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites) have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++) and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers. PMID:28287445

  5. Spatially explicit modeling of greater sage-grouse (Centrocercus urophasianus) habitat in Nevada and northeastern California: a decision-support tool for management

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Brussee, Brianne E.; Ricca, Mark A.; Gustafson, K. Benjamin; Overton, Cory T.; Sanchez-Chopitea, Erika; Kroger, Travis; Mauch, Kimberly; Niell, Lara; Howe, Kristy; Gardner, Scott; Espinosa, Shawn; Delehanty, David J.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus, hereafter referred to as “sage-grouse”) populations are declining throughout the sagebrush (Artemisia spp.) ecosystem, including millions of acres of potential habitat across the West. Habitat maps derived from empirical data are needed given impending listing decisions that will affect both sage-grouse population dynamics and human land-use restrictions. This report presents the process for developing spatially explicit maps describing relative habitat suitability for sage-grouse in Nevada and northeastern California. Maps depicting habitat suitability indices (HSI) values were generated based on model-averaged resource selection functions informed by more than 31,000 independent telemetry locations from more than 1,500 radio-marked sage-grouse across 12 project areas in Nevada and northeastern California collected during a 15-year period (1998–2013). Modeled habitat covariates included land cover composition, water resources, habitat configuration, elevation, and topography, each at multiple spatial scales that were relevant to empirically observed sage-grouse movement patterns. We then present an example of how the HSI can be delineated into categories. Specifically, we demonstrate that the deviation from the mean can be used to classify habitat suitability into three categories of habitat quality (high, moderate, and low) and one non-habitat category. The classification resulted in an agreement of 93–97 percent for habitat versus non-habitat across a suite of independent validation datasets. Lastly, we provide an example of how space use models can be integrated with habitat models to help inform conservation planning. In this example, we combined probabilistic breeding density with a non-linear probability of occurrence relative to distance to nearest lek (traditional breeding ground) using count data to calculate a composite space use index (SUI). The SUI was then classified into two categories of use (high and low-to-no) and intersected with the HSI categories to create potential management prioritization scenarios based oninformation about sage-grouse occupancy coupled with habitat suitability. This provided an example of a conservation planning application that uses the intersection of the spatially-explicit HSI and empirically-based SUI to identify potential spatially explicit strategies for sage-grouse management. Importantly, the reported categories for the HSI and SUI can be reclassified relatively easily to employ alternative conservation thresholds that may be identified through decision-making processes with stake-holders, managers, and biologists. Moreover, the HSI/SUI interface map can be updated readily as new data become available.

  6. A Watershed-based spatially-explicit demonstration of an Integrated Environmental Modeling Framework for Ecosystem Services in the Coal River Basin (WV, USA)

    EPA Science Inventory

    We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quant...

  7. Spatially explicit shallow landslide susceptibility mapping over large areas

    Treesearch

    Dino Bellugi; William E. Dietrich; Jonathan Stock; Jim McKean; Brian Kazian; Paul Hargrove

    2011-01-01

    Recent advances in downscaling climate model precipitation predictions now yield spatially explicit patterns of rainfall that could be used to estimate shallow landslide susceptibility over large areas. In California, the United States Geological Survey is exploring community emergency response to the possible effects of a very large simulated storm event and to do so...

  8. Evaluating spatially explicit burn probabilities for strategic fire management planning

    Treesearch

    C. Miller; M.-A. Parisien; A. A. Ager; M. A. Finney

    2008-01-01

    Spatially explicit information on the probability of burning is necessary for virtually all strategic fire and fuels management planning activities, including conducting wildland fire risk assessments, optimizing fuel treatments, and prevention planning. Predictive models providing a reliable estimate of the annual likelihood of fire at each point on the landscape have...

  9. Empirical methods for modeling landscape change, ecosystem services, and biodiversity

    Treesearch

    David Lewis; Ralph Alig

    2009-01-01

    The purpose of this paper is to synthesize recent economics research aimed at integrating discrete-choice econometric models of land-use change with spatially-explicit landscape simulations and quantitative ecology. This research explicitly models changes in the spatial pattern of landscapes in two steps: 1) econometric estimation of parcel-scale transition...

  10. SPATIALLY EXPLICIT MICRO-LEVEL MODELLING OF LAND USE CHANGE AT THE RURAL-URBAN INTERFACE. (R828012)

    EPA Science Inventory

    This paper describes micro-economic models of land use change applicable to the rural–urban interface in the US. Use of a spatially explicit micro-level modelling approach permits the analysis of regional patterns of land use as the aggregate outcomes of many, disparate...

  11. Implementation of a 3D mixing layer code on parallel computers

    NASA Technical Reports Server (NTRS)

    Roe, K.; Thakur, R.; Dang, T.; Bogucz, E.

    1995-01-01

    This paper summarizes our progress and experience in the development of a Computational-Fluid-Dynamics code on parallel computers to simulate three-dimensional spatially-developing mixing layers. In this initial study, the three-dimensional time-dependent Euler equations are solved using a finite-volume explicit time-marching algorithm. The code was first programmed in Fortran 77 for sequential computers. The code was then converted for use on parallel computers using the conventional message-passing technique, while we have not been able to compile the code with the present version of HPF compilers.

  12. Generating Within-Plant Spatial Distributions of an Insect Herbivore Based on Aggregation Patterns and Per-Node Infestation Probabilities.

    PubMed

    Rincon, Diego F; Hoy, Casey W; Cañas, Luis A

    2015-04-01

    Most predator-prey models extrapolate functional responses from small-scale experiments assuming spatially uniform within-plant predator-prey interactions. However, some predators focus their search in certain plant regions, and herbivores tend to select leaves to balance their nutrient uptake and exposure to plant defenses. Individual-based models that account for heterogeneous within-plant predator-prey interactions can be used to scale-up functional responses, but they would require the generation of explicit prey spatial distributions within-plant architecture models. The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a significant pest of tomato crops worldwide that exhibits highly aggregated populations at several spatial scales, including within the plant. As part of an analytical framework to understand predator-silverleaf whitefly interactions, the objective of this research was to develop an algorithm to generate explicit spatial counts of silverleaf whitefly nymphs within tomato plants. The algorithm requires the plant size and the number of silverleaf whitefly individuals to distribute as inputs, and includes models that describe infestation probabilities per leaf nodal position and the aggregation pattern of the silverleaf whitefly within tomato plants and leaves. The output is a simulated number of silverleaf whitefly individuals for each leaf and leaflet on one or more plants. Parameter estimation was performed using nymph counts per leaflet censused from 30 artificially infested tomato plants. Validation revealed a substantial agreement between algorithm outputs and independent data that included the distribution of counts of both eggs and nymphs. This algorithm can be used in simulation models that explore the effect of local heterogeneity on whitefly-predator dynamics. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Spatially Explicit Modeling Reveals Cephalopod Distributions Match Contrasting Trophic Pathways in the Western Mediterranean Sea

    PubMed Central

    Puerta, Patricia; Hunsicker, Mary E.; Quetglas, Antoni; Álvarez-Berastegui, Diego; Esteban, Antonio; González, María; Hidalgo, Manuel

    2015-01-01

    Populations of the same species can experience different responses to the environment throughout their distributional range as a result of spatial and temporal heterogeneity in habitat conditions. This highlights the importance of understanding the processes governing species distribution at local scales. However, research on species distribution often averages environmental covariates across large geographic areas, missing variability in population-environment interactions within geographically distinct regions. We used spatially explicit models to identify interactions between species and environmental, including chlorophyll a (Chla) and sea surface temperature (SST), and trophic (prey density) conditions, along with processes governing the distribution of two cephalopods with contrasting life-histories (octopus and squid) across the western Mediterranean Sea. This approach is relevant for cephalopods, since their population dynamics are especially sensitive to variations in habitat conditions and rarely stable in abundance and location. The regional distributions of the two cephalopod species matched two different trophic pathways present in the western Mediterranean Sea, associated with the Gulf of Lion upwelling and the Ebro river discharges respectively. The effects of the studied environmental and trophic conditions were spatially variant in both species, with usually stronger effects along their distributional boundaries. We identify areas where prey availability limited the abundance of cephalopod populations as well as contrasting effects of temperature in the warmest regions. Despite distributional patterns matching productive areas, a general negative effect of Chla on cephalopod densities suggests that competition pressure is common in the study area. Additionally, results highlight the importance of trophic interactions, beyond other common environmental factors, in shaping the distribution of cephalopod populations. Our study presents a valuable approach for understanding the spatially variant ecology of cephalopod populations, which is important for fisheries and ecosystem management. PMID:26201075

  14. Spatial issues in user interface design from a graphic design perspective

    NASA Technical Reports Server (NTRS)

    Marcus, Aaron

    1989-01-01

    The user interface of a computer system is a visual display that provides information about the status of operations on data within the computer and control options to the user that enable adjustments to these operations. From the very beginning of computer technology the user interface was a spatial display, although its spatial features were not necessarily complex or explicitly recognized by the users. All text and nonverbal signs appeared in a virtual space generally thought of as a single flat plane of symbols. Current technology of high performance workstations permits any element of the display to appear as dynamic, multicolor, 3-D signs in a virtual 3-D space. The complexity of appearance and the user's interaction with the display provide significant challenges to the graphic designer of current and future user interfaces. In particular, spatial depiction provides many opportunities for effective communication of objects, structures, processes, navigation, selection, and manipulation. Issues are presented that are relevant to the graphic designer seeking to optimize the user interface's spatial attributes for effective visual communication.

  15. Spreading of Cholera through Surface Water

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2009-12-01

    Cholera epidemics are still a major public health concern to date in many areas of the world. In order to understand and forecast cholera outbreaks, one of the most important factors is the role played by the environmental matrix in which the disease spreads. We study how river networks, acting as environmental corridors for pathogens, affect the spreading of cholera epidemics. The environmental matrix in which the disease spreads is constituted by different human communities and their hydrologic interconnections. Each community is characterized by its spatial position, population size, water resources availability and hygiene conditions. By implementing a spatially explicit cholera model we seek the effects on epidemic dynamics of: i) the topology and metrics of the pathogens pathways that connect different communities; ii) the spatial distribution of the population size; and iii) the spatial distributions and quality of surface water resources and public health conditions, and how they vary with population size. The model has been applied to study the space-time evolution of a well documented cholera epidemic occurred in the KwaZulu-Natal province of South Africa. The epidemic lasted for two years and involved about 140,000 confirmed cholera cases. The model does well in reproducing the distribution of the cholera cases during the two outbreaks as well as their spatial spreading. We further extend the model by deriving the speed of propagation of traveling fronts in the case of uniformly distributed systems for different topologies: one and two dimensional lattices and river networks. The derivation of the spreading celerity proves instrumental in establishing the overall conditions for the relevance of spatially explicit models. The conditions are sought by comparison between spreading and disease timescales. Consider a cholera epidemic that starts from a point and spreads throughout a finite size system, it is possible to identify two different timescales: i) the spreading timescale, that is the time needed for the disease to spread and involve all the communities in the system; and ii) the epidemic timescale, defined by the duration of the epidemic in a single community. Our results suggest that in many cases of real-life epidemiological interest, timescales of disease dynamics may trigger outbreaks that significantly depart from the predictions of classical space-implicit compartmental models.

  16. Integrating continuous stocks and flows into state-and-transition simulation models of landscape change

    USGS Publications Warehouse

    Daniel, Colin J.; Sleeter, Benjamin M.; Frid, Leonardo; Fortin, Marie-Josée

    2018-01-01

    State-and-transition simulation models (STSMs) provide a general framework for forecasting landscape dynamics, including projections of both vegetation and land-use/land-cover (LULC) change. The STSM method divides a landscape into spatially-referenced cells and then simulates the state of each cell forward in time, as a discrete-time stochastic process using a Monte Carlo approach, in response to any number of possible transitions. A current limitation of the STSM method, however, is that all of the state variables must be discrete.Here we present a new approach for extending a STSM, in order to account for continuous state variables, called a state-and-transition simulation model with stocks and flows (STSM-SF). The STSM-SF method allows for any number of continuous stocks to be defined for every spatial cell in the STSM, along with a suite of continuous flows specifying the rates at which stock levels change over time. The change in the level of each stock is then simulated forward in time, for each spatial cell, as a discrete-time stochastic process. The method differs from the traditional systems dynamics approach to stock-flow modelling in that the stocks and flows can be spatially-explicit, and the flows can be expressed as a function of the STSM states and transitions.We demonstrate the STSM-SF method by integrating a spatially-explicit carbon (C) budget model with a STSM of LULC change for the state of Hawai'i, USA. In this example, continuous stocks are pools of terrestrial C, while the flows are the possible fluxes of C between these pools. Importantly, several of these C fluxes are triggered by corresponding LULC transitions in the STSM. Model outputs include changes in the spatial and temporal distribution of C pools and fluxes across the landscape in response to projected future changes in LULC over the next 50 years.The new STSM-SF method allows both discrete and continuous state variables to be integrated into a STSM, including interactions between them. With the addition of stocks and flows, STSMs provide a conceptually simple yet powerful approach for characterizing uncertainties in projections of a wide range of questions regarding landscape change.

  17. Finite element dynamic analysis on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  18. The assessment of mangrove biomass and carbon in West Africa: a spatially explicit analytical framework

    Treesearch

    Wenwu Tang; Wenpeng Feng; Meijuan Jia; Jiyang Shi; Huifang Zuo; Carl C. Trettin

    2015-01-01

    Mangrove forests are highly productive and have large carbon sinks while also providing numerous goods and ecosystem services. However, effective management and conservation of the mangrove forests are often dependent on spatially explicit assessments of the resource. Given the remote and highly dispersed nature of mangroves, estimation of biomass and carbon...

  19. Implicit and Explicit Gender Beliefs in Spatial Ability: Stronger Stereotyping in Boys than Girls.

    PubMed

    Vander Heyden, Karin M; van Atteveldt, Nienke M; Huizinga, Mariette; Jolles, Jelle

    2016-01-01

    Sex differences in spatial ability are a seriously debated topic, given the importance of spatial ability for success in the fields of science, technology, engineering, and mathematics (STEM) and girls' underrepresentation in these domains. In the current study we investigated the presence of stereotypic gender beliefs on spatial ability (i.e., "spatial ability is for boys") in 10- and 12-year-old children. We used both an explicit measure (i.e., a self-report questionnaire) and an implicit measure (i.e., a child IAT). Results of the explicit measure showed that both sexes associated spatial ability with boys, with boys holding more male stereotyped attitudes than girls. On the implicit measure, boys associated spatial ability with boys, while girls were gender-neutral. In addition, we examined the effects of gender beliefs on spatial performance, by experimentally activating gender beliefs within a pretest-instruction-posttest design. We compared three types of instruction: boys are better, girls are better, and no sex differences. No effects of these gender belief instructions were found on children's spatial test performance (i.e., mental rotation and paper folding). The finding that children of this age already have stereotypic beliefs about the spatial capacities of their own sex is important, as these beliefs may influence children's choices for spatial leisure activities and educational tracks in the STEM domain.

  20. Implicit and Explicit Gender Beliefs in Spatial Ability: Stronger Stereotyping in Boys than Girls

    PubMed Central

    Vander Heyden, Karin M.; van Atteveldt, Nienke M.; Huizinga, Mariette; Jolles, Jelle

    2016-01-01

    Sex differences in spatial ability are a seriously debated topic, given the importance of spatial ability for success in the fields of science, technology, engineering, and mathematics (STEM) and girls' underrepresentation in these domains. In the current study we investigated the presence of stereotypic gender beliefs on spatial ability (i.e., “spatial ability is for boys”) in 10- and 12-year-old children. We used both an explicit measure (i.e., a self-report questionnaire) and an implicit measure (i.e., a child IAT). Results of the explicit measure showed that both sexes associated spatial ability with boys, with boys holding more male stereotyped attitudes than girls. On the implicit measure, boys associated spatial ability with boys, while girls were gender-neutral. In addition, we examined the effects of gender beliefs on spatial performance, by experimentally activating gender beliefs within a pretest—instruction—posttest design. We compared three types of instruction: boys are better, girls are better, and no sex differences. No effects of these gender belief instructions were found on children's spatial test performance (i.e., mental rotation and paper folding). The finding that children of this age already have stereotypic beliefs about the spatial capacities of their own sex is important, as these beliefs may influence children's choices for spatial leisure activities and educational tracks in the STEM domain. PMID:27507956

  1. Local disturbance cycles and the maintenance of heterogeneity across scales in marine metapopulations.

    PubMed

    Gouhier, Tarik C; Guichard, Frédéric

    2007-03-01

    In marine systems, the occurrence and implications of disturbance-recovery cycles have been revealed at the landscape level, but only in demographically open or closed systems where landscape-level dynamics are assumed to have no feedback effect on regional dynamics. We present a mussel metapopulation model to elucidate the role of landscape-level disturbance cycles for regional response of mussel populations to onshore productivity and larval transport. Landscape dynamics are generated through spatially explicit rules, and each landscape is connected to its neighbor through unidirectional larval dispersal. The role of landscape disturbance cycles in the regional system behavior is elucidated (1) in demographically open vs. demographically coupled systems, in relation to (2) onshore reproductive output and (3) the temporal scale of landscape disturbance dynamics. By controlling for spatial structure at the landscape and metapopulation levels, we first demonstrate the interaction between landscape and oceanographic connectivity. The temporal scale of disturbance cycles, as controlled by mussel colonization rate, plays a critical role in the regional behavior of the system. Indeed, fast disturbance cycles are responsible for regional synchrony in relation to onshore reproductive output. Slow disturbance cycles, however, lead to increased robustness to changes in productivity and to demographic coupling. These testable predictions indicate that the occurrence and temporal scale of local disturbance-recovery dynamics can drive large-scale variability in demographically open systems, and the response of metapopulations to changes in nearshore productivity.

  2. Issues and prospects for the next generation of the spatial data transfer standard (SDTS)

    USGS Publications Warehouse

    Arctur, D.; Hair, D.; Timson, G.; Martin, E.P.; Fegeas, R.

    1998-01-01

    The Spatial Data Transfer Standard (SDTS) was designed to be capable of representing virtually any data model, rather than being a prescription for a single data model. It has fallen short of this ambitious goal for a number of reasons, which this paper investigates. In addition to issues that might have been anticipated in its design, a number of new issues have arisen since its initial development. These include the need to support explicit feature definitions, incremental update, value-added extensions, and change tracking within large, national databases. It is time to consider the next stage of evolution for SDTS. This paper suggests development of an Object Profile for SDTS that would integrate concepts for a dynamic schema structure, OpenGIS interface, and CORBA IDL.

  3. At the Interface: Dynamic Interactions of Explicit and Implicit Language Knowledge

    ERIC Educational Resources Information Center

    Ellis, Nick C.

    2005-01-01

    This paper considers how implicit and explicit knowledge are dissociable but cooperative. It reviews various psychological and neurobiological processes by which explicit knowledge of form-meaning associations impacts upon implicit language learning. The interface is dynamic: It happens transiently during conscious processing, but the influence…

  4. Irruptive dynamics of introduced caribou on Adak Island, Alaska: an evaluation of Riney-Caughley model predictions

    USGS Publications Warehouse

    Ricca, Mark A.; Van Vuren, Dirk H.; Weckerly, Floyd W.; Williams, Jeffrey C.; Miles, A. Keith

    2014-01-01

    Large mammalian herbivores introduced to islands without predators are predicted to undergo irruptive population and spatial dynamics, but only a few well-documented case studies support this paradigm. We used the Riney-Caughley model as a framework to test predictions of irruptive population growth and spatial expansion of caribou (Rangifer tarandus granti) introduced to Adak Island in the Aleutian archipelago of Alaska in 1958 and 1959. We utilized a time series of spatially explicit counts conducted on this population intermittently over a 54-year period. Population size increased from 23 released animals to approximately 2900 animals in 2012. Population dynamics were characterized by two distinct periods of irruptive growth separated by a long time period of relative stability, and the catalyst for the initial irruption was more likely related to annual variation in hunting pressure than weather conditions. An unexpected pattern resembling logistic population growth occurred between the peak of the second irruption in 2005 and the next survey conducted seven years later in 2012. Model simulations indicated that an increase in reported harvest alone could not explain the deceleration in population growth, yet high levels of unreported harvest combined with increasing density-dependent feedbacks on fecundity and survival were the most plausible explanation for the observed population trend. No studies of introduced island Rangifer have measured a time series of spatial use to the extent described in this study. Spatial use patterns during the post-calving season strongly supported Riney-Caughley model predictions, whereby high-density core areas expanded outwardly as population size increased. During the calving season, caribou displayed marked site fidelity across the full range of population densities despite availability of other suitable habitats for calving. Finally, dispersal and reproduction on neighboring Kagalaska Island represented a new dispersal front for irruptive dynamics and a new challenge for resource managers. The future demography of caribou on both islands is far from certain, yet sustained and significant hunting pressure should be a vital management tool.

  5. SPREADING SPEEDS AND TRAVELING WAVES FOR NON-COOPERATIVE INTEGRO-DIFFERENCE SYSTEMS

    PubMed Central

    Wang, Haiyan; Castillo-Chavez, Carlos

    2014-01-01

    The study of spatially explicit integro-difference systems when the local population dynamics are given in terms of discrete-time generations models has gained considerable attention over the past two decades. These nonlinear systems arise naturally in the study of the spatial dispersal of organisms. The brunt of the mathematical research on these systems, particularly, when dealing with cooperative systems, has focused on the study of the existence of traveling wave solutions and the characterization of their spreading speed. Here, we characterize the minimum propagation (spreading) speed, via the convergence of initial data to wave solutions, for a large class of non cooperative nonlinear systems of integro-difference equations. The spreading speed turns out to be the slowest speed from a family of non-constant traveling wave solutions. The applicability of these theoretical results is illustrated through the explicit study of an integro-difference system with local population dynamics governed by Hassell and Comins’ non-cooperative competition model (1976). The corresponding integro-difference nonlinear systems that results from the redistribution of individuals via a dispersal kernel is shown to satisfy conditions that guarantee the existence of minimum speeds and traveling waves. This paper is dedicated to Avner Friedman as we celebrate his immense contributions to the fields of partial differential equations, integral equations, mathematical biology, industrial mathematics and applied mathematics in general. His leadership in the mathematical sciences and his mentorship of students and friends over several decades has made a huge difference in the personal and professional lives of many, including both of us. PMID:24899868

  6. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services.

    PubMed

    Arbault, Damien; Rivière, Mylène; Rugani, Benedetto; Benetto, Enrico; Tiruta-Barna, Ligia

    2014-02-15

    Despite the increasing awareness of our dependence on Ecosystem Services (ES), Life Cycle Impact Assessment (LCIA) does not explicitly and fully assess the damages caused by human activities on ES generation. Recent improvements in LCIA focus on specific cause-effect chains, mainly related to land use changes, leading to Characterization Factors (CFs) at the midpoint assessment level. However, despite the complexity and temporal dynamics of ES, current LCIA approaches consider the environmental mechanisms underneath ES to be independent from each other and devoid of dynamic character, leading to constant CFs whose representativeness is debatable. This paper takes a step forward and is aimed at demonstrating the feasibility of using an integrated earth system dynamic modeling perspective to retrieve time- and scenario-dependent CFs that consider the complex interlinkages between natural processes delivering ES. The GUMBO (Global Unified Metamodel of the Biosphere) model is used to quantify changes in ES production in physical terms - leading to midpoint CFs - and changes in human welfare indicators, which are considered here as endpoint CFs. The interpretation of the obtained results highlights the key methodological challenges to be solved to consider this approach as a robust alternative to the mainstream rationale currently adopted in LCIA. Further research should focus on increasing the granularity of environmental interventions in the modeling tools to match current standards in LCA and on adapting the conceptual approach to a spatially-explicit integrated model. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Multiscale Cloud System Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  8. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    NASA Astrophysics Data System (ADS)

    He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, Anthony D.; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong

    2015-12-01

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr-1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil RH with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  9. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yujie; Yang, Jinyan; Zhuang, Qianlai

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here in this study we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbialmore » dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO 2 efflux (R H) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil R H (7.5 ± 2.4 PgCyr -1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4-0.6) in the simulated spatial pattern of soil R H with both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = -0.43 to -0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.« less

  10. Incorporating microbial dormancy dynamics into soil decomposition models to improve quantification of soil carbon dynamics of northern temperate forests

    USGS Publications Warehouse

    He, Yujie; Yang, Jinyan; Zhuang, Qianlai; Harden, Jennifer W.; McGuire, A. David; Liu, Yaling; Wang, Gangsheng; Gu, Lianhong

    2015-01-01

    Soil carbon dynamics of terrestrial ecosystems play a significant role in the global carbon cycle. Microbial-based decomposition models have seen much growth recently for quantifying this role, yet dormancy as a common strategy used by microorganisms has not usually been represented and tested in these models against field observations. Here we developed an explicit microbial-enzyme decomposition model and examined model performance with and without representation of microbial dormancy at six temperate forest sites of different forest types. We then extrapolated the model to global temperate forest ecosystems to investigate biogeochemical controls on soil heterotrophic respiration and microbial dormancy dynamics at different temporal-spatial scales. The dormancy model consistently produced better match with field-observed heterotrophic soil CO2 efflux (RH) than the no dormancy model. Our regional modeling results further indicated that models with dormancy were able to produce more realistic magnitude of microbial biomass (<2% of soil organic carbon) and soil RH (7.5 ± 2.4 Pg C yr−1). Spatial correlation analysis showed that soil organic carbon content was the dominating factor (correlation coefficient = 0.4–0.6) in the simulated spatial pattern of soil RHwith both models. In contrast to strong temporal and local controls of soil temperature and moisture on microbial dormancy, our modeling results showed that soil carbon-to-nitrogen ratio (C:N) was a major regulating factor at regional scales (correlation coefficient = −0.43 to −0.58), indicating scale-dependent biogeochemical controls on microbial dynamics. Our findings suggest that incorporating microbial dormancy could improve the realism of microbial-based decomposition models and enhance the integration of soil experiments and mechanistically based modeling.

  11. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1982-01-01

    By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated.

  12. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1982-01-01

    The etiology of motion sickness is now usually explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behavior.

  13. A heuristic mathematical model for the dynamics of sensory conflict and motion sickness

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1980-01-01

    The etiology of motion sickness is explained in terms of a qualitatively formulated sensory conflict hypothesis. By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstances, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviors.

  14. Simulation of Drought-induced Tree Mortality Using a New Individual and Hydraulic Trait-based Model (S-TEDy)

    NASA Astrophysics Data System (ADS)

    Sinha, T.; Gangodagamage, C.; Ale, S.; Frazier, A. G.; Giambelluca, T. W.; Kumagai, T.; Nakai, T.; Sato, H.

    2017-12-01

    Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rainforests, where severe droughts are projected to occur more frequently, especially under El Niño conditions. To provide a useful tool for projecting the tropical rainforest dynamics under climate change conditions, we developed the Spatially Explicit Individual-Based (SEIB) Dynamic Global Vegetation Model (DGVM) applicable to simulating mechanistic tree mortality induced by the climatic impacts via individual-tree-scale ecophysiology such as hydraulic failure and carbon starvation. In this study, we present the new model, SEIB-originated Terrestrial Ecosystem Dynamics (S-TEDy) model, and the computation results were compared with observations collected at a field site in a Bornean tropical rainforest. Furthermore, after validating the model's performance, numerical experiments addressing a future of the tropical rainforest were conducted using some global climate model (GCM) simulation outputs.

  15. A Multiscale Simulation Framework to Investigate Hydrobiogeochemical Processes in the Groundwater-Surface Water Interaction Zone

    NASA Astrophysics Data System (ADS)

    Scheibe, T. D.; Yang, X.; Song, X.; Chen, X.; Hammond, G. E.; Song, H. S.; Hou, Z.; Murray, C. J.; Tartakovsky, A. M.; Tartakovsky, G.; Yang, X.; Zachara, J. M.

    2016-12-01

    Drought-related tree mortality at a regional scale causes drastic shifts in carbon and water cycling in Southeast Asian tropical rainforests, where severe droughts are projected to occur more frequently, especially under El Niño conditions. To provide a useful tool for projecting the tropical rainforest dynamics under climate change conditions, we developed the Spatially Explicit Individual-Based (SEIB) Dynamic Global Vegetation Model (DGVM) applicable to simulating mechanistic tree mortality induced by the climatic impacts via individual-tree-scale ecophysiology such as hydraulic failure and carbon starvation. In this study, we present the new model, SEIB-originated Terrestrial Ecosystem Dynamics (S-TEDy) model, and the computation results were compared with observations collected at a field site in a Bornean tropical rainforest. Furthermore, after validating the model's performance, numerical experiments addressing a future of the tropical rainforest were conducted using some global climate model (GCM) simulation outputs.

  16. Increasing connectivity between metapopulation ecology and landscape ecology.

    PubMed

    Howell, Paige E; Muths, Erin; Hossack, Blake R; Sigafus, Brent H; Chandler, Richard B

    2018-05-01

    Metapopulation ecology and landscape ecology aim to understand how spatial structure influences ecological processes, yet these disciplines address the problem using fundamentally different modeling approaches. Metapopulation models describe how the spatial distribution of patches affects colonization and extinction, but often do not account for the heterogeneity in the landscape between patches. Models in landscape ecology use detailed descriptions of landscape structure, but often without considering colonization and extinction dynamics. We present a novel spatially explicit modeling framework for narrowing the divide between these disciplines to advance understanding of the effects of landscape structure on metapopulation dynamics. Unlike previous efforts, this framework allows for statistical inference on landscape resistance to colonization using empirical data. We demonstrate the approach using 11 yr of data on a threatened amphibian in a desert ecosystem. Occupancy data for Lithobates chiricahuensis (Chiricahua leopard frog) were collected on the Buenos Aires National Wildlife Refuge (BANWR), Arizona, USA from 2007 to 2017 following a reintroduction in 2003. Results indicated that colonization dynamics were influenced by both patch characteristics and landscape structure. Landscape resistance increased with increasing elevation and distance to the nearest streambed. Colonization rate was also influenced by patch quality, with semi-permanent and permanent ponds contributing substantially more to the colonization of neighboring ponds relative to intermittent ponds. Ponds that only hold water intermittently also had the highest extinction rate. Our modeling framework can be widely applied to understand metapopulation dynamics in complex landscapes, particularly in systems in which the environment between habitat patches influences the colonization process. © 2018 by the Ecological Society of America.

  17. Spatial and Temporal Dynamics and Value of Nature-Based Recreation, Estimated via Social Media

    PubMed Central

    Watson, Keri B.; Wood, Spencer A.; Ricketts, Taylor H.

    2016-01-01

    Conserved lands provide multiple ecosystem services, including opportunities for nature-based recreation. Managing this service requires understanding the landscape attributes underpinning its provision, and how changes in land management affect its contribution to human wellbeing over time. However, evidence from both spatially explicit and temporally dynamic analyses is scarce, often due to data limitations. In this study, we investigated nature-based recreation within conserved lands in Vermont, USA. We used geotagged photographs uploaded to the photo-sharing website Flickr to quantify visits by in-state and out-of-state visitors, and we multiplied visits by mean trip expenditures to show that conserved lands contributed US $1.8 billion (US $0.18–20.2 at 95% confidence) to Vermont’s tourism industry between 2007 and 2014. We found eight landscape attributes explained the pattern of visits to conserved lands; visits were higher in larger conserved lands, with less forest cover, greater trail density and more opportunities for snow sports. Some of these attributes differed from those found in other locations, but all aligned with our understanding of recreation in Vermont. We also found that using temporally static models to inform conservation decisions may have perverse outcomes for nature-based recreation. For example, static models suggest conserved land with less forest cover receive more visits, but temporally dynamic models suggest clearing forests decreases, rather than increases, visits to these sites. Our results illustrate the importance of understanding both the spatial and temporal dynamics of ecosystem services for conservation decision-making. PMID:27611325

  18. Allowing macroalgae growth forms to emerge: Use of an agent-based model to understand the growth and spread of macroalgae in Florida coral reefs, with emphasis on Halimeda tuna

    USGS Publications Warehouse

    Yniguez, A.T.; McManus, J.W.; DeAngelis, D.L.

    2008-01-01

    The growth patterns of macroalgae in three-dimensional space can provide important information regarding the environments in which they live, and insights into changes that may occur when those environments change due to anthropogenic and/or natural causes. To decipher these patterns and their attendant mechanisms and influencing factors, a spatially explicit model has been developed. The model SPREAD (SPatially-explicit Reef Algae Dynamics), which incorporates the key morphogenetic characteristics of clonality and morphological plasticity, is used to investigate the influences of light, temperature, nutrients and disturbance on the growth and spatial occupancy of dominant macroalgae in the Florida Reef Tract. The model species, Halimeda and Dictyota spp., are modular organisms, with an 'individual' being made up of repeating structures. These species can also propagate asexually through clonal fragmentation. These traits lead to potentially indefinite growth and plastic morphology that can respond to environmental conditions in various ways. The growth of an individual is modeled as the iteration of discrete macroalgal modules whose dynamics are affected by the light, temperature, and nutrient regimes. Fragmentation is included as a source of asexual reproduction and/or mortality. Model outputs are the same metrics that are obtained in the field, thus allowing for easy comparison. The performance of SPREAD was tested through sensitivity analysis and comparison with independent field data from four study sites in the Florida Reef Tract. Halimeda tuna was selected for initial model comparisons because the relatively untangled growth form permits detailed characterization in the field. Differences in the growth patterns of H. tuna were observed among these reefs. SPREAD was able to closely reproduce these variations, and indicate the potential importance of light and nutrient variations in producing these patterns. ?? 2008 Elsevier B.V.

  19. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin

    NASA Astrophysics Data System (ADS)

    Du, Liuying; Rajib, Adnan; Merwade, Venkatesh

    2018-07-01

    Looking only at climate change impacts provides partial information about a changing hydrologic regime. Understanding the spatio-temporal nature of change in hydrologic processes, and the explicit contributions from both climate and land use drivers, holds more practical value for water resources management and policy intervention. This study presents a comprehensive assessment on the spatio-temporal trend of Blue Water (BW) and Green Water (GW) in a 490,000 km2 temperate mid-latitude basin (Ohio River Basin) over the past 80 years (1935-2014), and from thereon, quantifies the combined as well as relative contributions of climate and land use changes. The Soil and Water Assessment Tool (SWAT) is adopted to simulate hydrologic fluxes. Mann-Kendall and Theil-Sen statistical tests are performed on the modeled outputs to detect respectively the trend and magnitude of changes at three different spatial scales - the entire basin, regional level, and sub-basin level. Despite the overall volumetric increase of both BW and GW in the entire basin, changes in their annual average values during the period of simulation reveal a distinctive spatial pattern. GW has increased significantly in the upper and lower parts of the basin, which can be related to the prominent land use change in those areas. BW has increased significantly only in the lower part, likely being associated with the notable precipitation change there. Furthermore, the simulation under a time-varying climate but constant land use scenario identifies climate change in the Ohio River Basin to be influential on BW, while the impact is relatively nominal on GW; whereas, land use change increases GW remarkably, but is counterproductive on BW. The approach to quantify combined/relative effects of climate and land use change as shown in this study can be replicated to understand BW-GW dynamics in similar large basins around the globe.

  20. Elucidating the interaction between light competition and herbivore feeding patterns using functional-structural plant modelling.

    PubMed

    de Vries, Jorad; Poelman, Erik H; Anten, Niels; Evers, Jochem B

    2018-01-24

    Plants usually compete with neighbouring plants for resources such as light as well as defend themselves against herbivorous insects. This requires investment of limiting resources, resulting in optimal resource distribution patterns and trade-offs between growth- and defence-related traits. A plant's competitive success is determined by the spatial distribution of its resources in the canopy. The spatial distribution of herbivory in the canopy in turn differs between herbivore species as the level of herbivore specialization determines their response to the distribution of resources and defences in the canopy. Here, we investigated to what extent competition for light affects plant susceptibility to herbivores with different feeding preferences. To quantify interactions between herbivory and competition, we developed and evaluated a 3-D spatially explicit functional-structural plant model for Brassica nigra that mechanistically simulates competition in a dynamic light environment, and also explicitly models leaf area removal by herbivores with different feeding preferences. With this novel approach, we can quantitatively explore the extent to which herbivore feeding location and light competition interact in their effect on plant performance. Our results indicate that there is indeed a strong interaction between levels of plant-plant competition and herbivore feeding preference. When plants did not compete, herbivory had relatively small effects irrespective of feeding preference. Conversely, when plants competed, herbivores with a preference for young leaves had a strong negative effect on the competitiveness and subsequent performance of the plant, whereas herbivores with a preference for old leaves did not. Our study predicts how plant susceptibility to herbivory depends on the composition of the herbivore community and the level of plant competition, and highlights the importance of considering the full range of dynamics in plant-plant-herbivore interactions. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. Demographic consequences of climate change and land cover help explain a history of extirpations and range contraction in a declining snake species.

    PubMed

    Pomara, Lars Y; LeDee, Olivia E; Martin, Karl J; Zuckerberg, Benjamin

    2014-07-01

    Developing conservation strategies for threatened species increasingly requires understanding vulnerabilities to climate change, in terms of both demographic sensitivities to climatic and other environmental factors, and exposure to variability in those factors over time and space. We conducted a range-wide, spatially explicit climate change vulnerability assessment for Eastern Massasauga (Sistrurus catenatus), a declining endemic species in a region showing strong environmental change. Using active season and winter adult survival estimates derived from 17 data sets throughout the species' range, we identified demographic sensitivities to winter drought, maximum precipitation during the summer, and the proportion of the surrounding landscape dominated by agricultural and urban land cover. Each of these factors was negatively associated with active season adult survival rates in binomial generalized linear models. We then used these relationships to back-cast adult survival with dynamic climate variables from 1950 to 2008 using spatially explicit demographic models. Demographic models for 189 population locations predicted known extant and extirpated populations well (AUC = 0.75), and models based on climate and land cover variables were superior to models incorporating either of those effects independently. These results suggest that increasing frequencies and severities of extreme events, including drought and flooding, have been important drivers of the long-term spatiotemporal variation in a demographic rate. We provide evidence that this variation reflects nonadaptive sensitivity to climatic stressors, which are contributing to long-term demographic decline and range contraction for a species of high-conservation concern. Range-wide demographic modeling facilitated an understanding of spatial shifts in climatic suitability and exposure, allowing the identification of important climate refugia for a dispersal-limited species. Climate change vulnerability assessment provides a framework for linking demographic and distributional dynamics to environmental change, and can thereby provide unique information for conservation planning and management. © 2013 John Wiley & Sons Ltd.

  2. MPDATA: Third-order accuracy for variable flows

    NASA Astrophysics Data System (ADS)

    Waruszewski, Maciej; Kühnlein, Christian; Pawlowska, Hanna; Smolarkiewicz, Piotr K.

    2018-04-01

    This paper extends the multidimensional positive definite advection transport algorithm (MPDATA) to third-order accuracy for temporally and spatially varying flows. This is accomplished by identifying the leading truncation error of the standard second-order MPDATA, performing the Cauchy-Kowalevski procedure to express it in a spatial form and compensating its discrete representation-much in the same way as the standard MPDATA corrects the first-order accurate upwind scheme. The procedure of deriving the spatial form of the truncation error was automated using a computer algebra system. This enables various options in MPDATA to be included straightforwardly in the third-order scheme, thereby minimising the implementation effort in existing code bases. Following the spirit of MPDATA, the error is compensated using the upwind scheme resulting in a sign-preserving algorithm, and the entire scheme can be formulated using only two upwind passes. Established MPDATA enhancements, such as formulation in generalised curvilinear coordinates, the nonoscillatory option or the infinite-gauge variant, carry over to the fully third-order accurate scheme. A manufactured 3D analytic solution is used to verify the theoretical development and its numerical implementation, whereas global tracer-transport benchmarks demonstrate benefits for chemistry-transport models fundamental to air quality monitoring, forecasting and control. A series of explicitly-inviscid implicit large-eddy simulations of a convective boundary layer and explicitly-viscid simulations of a double shear layer illustrate advantages of the fully third-order-accurate MPDATA for fluid dynamics applications.

  3. Evaluation of the Event Driven Phenology Model Coupled with the VegET Evapotranspiration Model Through Comparisons with Reference Datasets in a Spatially Explicit Manner

    NASA Technical Reports Server (NTRS)

    Kovalskyy, V.; Henebry, G. M.; Adusei, B.; Hansen, M.; Roy, D. P.; Senay, G.; Mocko, D. M.

    2011-01-01

    A new model coupling scheme with remote sensing data assimilation was developed for estimation of daily actual evapotranspiration (ET). The scheme represents a mix of the VegET, a physically based model to estimate ET from a water balance, and an event driven phenology model (EDPM), where the EDPM is an empirically derived crop specific model capable of producing seasonal trajectories of canopy attributes. In this experiment, the scheme was deployed in a spatially explicit manner within the croplands of the Northern Great Plains. The evaluation was carried out using 2007-2009 land surface forcing data from the North American Land Data Assimilation System (NLDAS) and crop maps derived from remotely sensed data of NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). We compared the canopy parameters produced by the phenology model with normalized difference vegetation index (NDVI) data derived from the MODIS nadir bi-directional reflectance distribution function (BRDF) adjusted reflectance (NBAR) product. The expectations of the EDPM performance in prognostic mode were met, producing determination coefficient (r2) of 0.8 +/-.0.15. Model estimates of NDVI yielded root mean square error (RMSE) of 0.1 +/-.0.035 for the entire study area. Retrospective correction of canopy dynamics with MODIS NDVI brought the errors down to just below 10% of observed data range. The ET estimates produced by the coupled scheme were compared with ones from the MODIS land product suite. The expected r2=0.7 +/-.15 and RMSE = 11.2 +/-.4 mm per 8 days were met and even exceeded by the coupling scheme0 functioning in both prognostic and retrospective modes. Minor setbacks of the EDPM and VegET performance (r2 about 0.5 and additional 30 % of RMSR) were found on the peripheries of the study area and attributed to the insufficient EDPM training and to spatially varying accuracy of crop maps. Overall the experiment provided sufficient evidence of soundness and robustness of the EDPM and VegET coupling scheme, assuring its potential for spatially explicit applications.

  4. Spatial Differentiation of Arable Land and Permanent Grasslands to Improve a Regional Land Management Model for Nutrient Balancing

    NASA Astrophysics Data System (ADS)

    Gómez Giménez, M.; Della Peruta, R.; de Jong, R.; Keller, A.; Schaepman, M. E.

    2015-12-01

    Agroecosystems play an important role providing economic and ecosystem services, which directly impact society. Inappropriate land use and unsustainable agricultural management with associated nutrient cycles can jeopardize important soil functions such as food production, livestock feeding and conservation of biodiversity. The objective of this study was to integrate remotely sensed land cover information into a regional Land Management Model (LMM) to improve the assessment of spatial explicit nutrient balances for agroecosystems. Remotely sensed data as well as an optimized parameter set contributed to feed the LMM providing a better spatial allocation of agricultural data aggregated at farm level. The integration of land use information in the land allocation process relied predominantly on three factors: i) spatial resolution, ii) classification accuracy and iii) parcels definition. The best-input parameter combination resulted in two different land cover classifications with overall accuracies of 98%, improving the LMM performance by 16% as compared to using non-spatially explicit input. Firstly, the use of spatial explicit information improved the spatial allocation output resulting in a pattern that better followed parcel boundaries (Figure 1). Second, the high classification accuracies ensured consistency between the datasets used. Third, the use of a suitable spatial unit to define the parcels boundaries influenced the model in terms of computational time and the amount of farmland allocated. We conclude that the combined use of remote sensing (RS) data with the LMM has the potential to provide highly accurate information of spatial explicit nutrient balances that are crucial for policy options concerning sustainable management of agricultural soils. Figure 1. Details of the spatial pattern obtained: a) Using only the farm census data, b) using also land use information. Framed in black in the left image (a), examples of artifacts that disappeared when using land use information (right image, b). Colors represent different ownership.

  5. Soil organic matter dynamics and CO2 fluxes in relation to landscape scale processes: linking process understanding to regional scale carbon mass-balances

    NASA Astrophysics Data System (ADS)

    Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas

    2014-05-01

    In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.

  6. Time Series Remote Sensing in Monitoring the Spatio-Temporal Dynamics of Plant Invasions: A Study of Invasive Saltcedar (Tamarix Spp.)

    NASA Astrophysics Data System (ADS)

    Diao, Chunyuan

    In today's big data era, the increasing availability of satellite and airborne platforms at various spatial and temporal scales creates unprecedented opportunities to understand the complex and dynamic systems (e.g., plant invasion). Time series remote sensing is becoming more and more important to monitor the earth system dynamics and interactions. To date, most of the time series remote sensing studies have been conducted with the images acquired at coarse spatial scale, due to their relatively high temporal resolution. The construction of time series at fine spatial scale, however, is limited to few or discrete images acquired within or across years. The objective of this research is to advance the time series remote sensing at fine spatial scale, particularly to shift from discrete time series remote sensing to continuous time series remote sensing. The objective will be achieved through the following aims: 1) Advance intra-annual time series remote sensing under the pure-pixel assumption; 2) Advance intra-annual time series remote sensing under the mixed-pixel assumption; 3) Advance inter-annual time series remote sensing in monitoring the land surface dynamics; and 4) Advance the species distribution model with time series remote sensing. Taking invasive saltcedar as an example, four methods (i.e., phenological time series remote sensing model, temporal partial unmixing method, multiyear spectral angle clustering model, and time series remote sensing-based spatially explicit species distribution model) were developed to achieve the objectives. Results indicated that the phenological time series remote sensing model could effectively map saltcedar distributions through characterizing the seasonal phenological dynamics of plant species throughout the year. The proposed temporal partial unmixing method, compared to conventional unmixing methods, could more accurately estimate saltcedar abundance within a pixel by exploiting the adequate temporal signatures of saltcedar. The multiyear spectral angle clustering model could guide the selection of the most representative remotely sensed image for repetitive saltcedar mapping over space and time. Through incorporating spatial autocorrelation, the species distribution model developed in the study could identify the suitable habitats of saltcedar at a fine spatial scale and locate appropriate areas at high risk of saltcedar infestation. Among 10 environmental variables, the distance to the river and the phenological attributes summarized by the time series remote sensing were regarded as the most important. These methods developed in the study provide new perspectives on how the continuous time series can be leveraged under various conditions to investigate the plant invasion dynamics.

  7. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds

    USGS Publications Warehouse

    Weiser, Emily L.; Lanctot, Richard B.; Brown, Stephen C.; Gates, H. River; Bentzen, Rebecca L.; Bêty, Joël; Boldenow, Megan L.; English, Willow B.; Franks, Samantha E.; Koloski, Laura; Kwon, Eunbi; Lamarre, Jean-Francois; Lank, David B.; Liebezeit, Joseph R.; McKinnon, Laura; Nol, Erica; Rausch, Jennie; Saalfeld, Sarah T.; Senner, Nathan R.; Ward, David H.; Woodard, Paul F.; Sandercock, Brett K.

    2018-01-01

    Many Arctic shorebird populations are declining, and quantifying adult survival and the effects of anthropogenic factors is a crucial step toward a better understanding of population dynamics. We used a recently developed, spatially explicit Cormack–Jolly–Seber model in a Bayesian framework to obtain broad-scale estimates of true annual survival rates for 6 species of shorebirds at 9 breeding sites across the North American Arctic in 2010–2014. We tested for effects of environmental and ecological variables, study site, nest fate, and sex on annual survival rates of each species in the spatially explicit framework, which allowed us to distinguish between effects of variables on site fidelity versus true survival. Our spatially explicit analysis produced estimates of true survival rates that were substantially higher than previously published estimates of apparent survival for most species, ranging from S = 0.72 to 0.98 across 5 species. However, survival was lower for the arcticolasubspecies of Dunlin (Calidris alpina arcticola; S = 0.54), our only study taxon that migrates through the East Asian–Australasian Flyway. Like other species that use that flyway, arcticola Dunlin could be experiencing unsustainably low survival rates as a result of loss of migratory stopover habitat. Survival rates of our study species were not affected by timing of snowmelt or summer temperature, and only 2 species showed minor variation among study sites. Furthermore, although previous reproductive success, predator abundance, and the availability of alternative prey each affected survival of one species, no factors broadly affected survival across species. Overall, our findings of few effects of environmental or ecological variables suggest that annual survival rates of adult shorebirds are generally robust to conditions at Arctic breeding sites. Instead, conditions at migratory stopovers or overwintering sites might be driving adult survival rates and should be the focus of future studies.

  9. Phosphorus in global agricultural soils: spatially explicit modelling of soil phosphorus and crop uptake for 1900 to 2010

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Beusen, A.; Bouwman, L.; Apeldoorn, D. V.; Yu, C.

    2016-12-01

    Phosphorus (P) plays a vital role in global crop production and food security. To explore the global P status of soils, in this study we developed a spatially explicit version of a two-pool dynamic soil P model at 0.5°resolution. With this model, we analyzed the historical changes of soil P inputs (including manure and inorganic P fertilizer) from 1900 to 2010, reproduced the historical crop P uptake, calculated the phosphorus use efficiency (PUE) and conducted a comprehensive inventory of soil P pools and P budgets (deficit and surplus) in global soils under croplands. Our results suggest that the spatially explicit model is capable of simulating the long-term soil P budget changes and crop uptake, with model simulations closely matching historical P uptake for cropland in all countries. The global P inputs from fertilizers and manure increased from 2 Tg P in 1900 to 23 Tg P in 2010 with great variation across different regions and countries of the world. The magnitude of crop uptake has also changed rapidly over the 20th century: according to our model, crop P uptake per hectare in Western Europe increased by more than three times while the total soil P stock per hectare increased by close to 37% due to long-term P surplus application, with a slight decrease in recent years. Croplands in China (total P per hectare slight decline during 1900-1970, +34% since 1970) and India (total P per hectare gradual increase by 14% since 1900, 6% since 1970) are currently in the phase of accumulation.The total soil P content per hectare in Sub-Saharan Africa has slightly decreased since 1900.Our model is a promising tool to analyze the changes in the soil P status and the capacity of soils to supply P to crops, including future projections of required nutrient inputs.

  10. Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqiang; Ju, Lili; Du, Qiang

    2016-07-01

    The Willmore flow formulated by phase field dynamics based on the elastic bending energy model has been widely used to describe the shape transformation of biological lipid vesicles. In this paper, we develop and investigate some efficient and stable numerical methods for simulating the unconstrained phase field Willmore dynamics and the phase field Willmore dynamics with fixed volume and surface area constraints. The proposed methods can be high-order accurate and are completely explicit in nature, by combining exponential time differencing Runge-Kutta approximations for time integration with spectral discretizations for spatial operators on regular meshes. We also incorporate novel linear operator splitting techniques into the numerical schemes to improve the discrete energy stability. In order to avoid extra numerical instability brought by use of large penalty parameters in solving the constrained phase field Willmore dynamics problem, a modified augmented Lagrange multiplier approach is proposed and adopted. Various numerical experiments are performed to demonstrate accuracy and stability of the proposed methods.

  11. Geography of Global Forest Carbon Stocks & Dynamics

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.

    2014-12-01

    Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.

  12. The role of landscape-dependent disturbance and dispersal in metapopulation persistence.

    PubMed

    Elkin, Ché M; Possingham, Hugh

    2008-10-01

    The fundamental processes that influence metapopulation dynamics (extinction and recolonization) will often depend on landscape structure. Disturbances that increase patch extinction rates will frequently be landscape dependent such that they are spatially aggregated and have an increased likelihood of occurring in some areas. Similarly, landscape structure can influence organism movement, producing asymmetric dispersal between patches. Using a stochastic, spatially explicit model, we examine how landscape-dependent correlations between dispersal and disturbance rates influence metapopulation dynamics. Habitat patches that are situated in areas where the likelihood of disturbance is low will experience lower extinction rates and will function as partial refuges. We discovered that the presence of partial refuges increases metapopulation viability and that the value of partial refuges was contingent on whether dispersal was also landscape dependent. Somewhat counterintuitively, metapopulation viability was reduced when individuals had a preponderance to disperse away from refuges and was highest when there was biased dispersal toward refuges. Our work demonstrates that landscape structure needs to be incorporated into metapopulation models when there is either empirical data or ecological rationale for extinction and/or dispersal rates being landscape dependent.

  13. Dark Solitons for the Defocusing Cubic Nonlinear Schrödinger Equation with the Spatially Periodic Potential and Nonlinearity

    NASA Astrophysics Data System (ADS)

    Yan, Zhen-Ya; Yan, Fang-Chi

    2015-09-01

    We study the existence of dark solitons of the defocusing cubic nonlinear Schrödinger (NLS) eqaution with the spatially-periodic potential and nonlinearity. Firstly, we propose six families of upper and lower solutions of the dynamical systems arising from the stationary defocusing NLS equation. Secondly, by regarding a dark soliton as a heteroclinic orbit of the Poincaré map, we present some constraint conditions for the periodic potential and nonlinearity to show the existence of stationary dark solitons of the defocusing NLS equation for six different cases in terms of the theory of strict lower and upper solutions and the dynamics of planar homeomorphisms. Finally, we give the explicit dark solitons of the defocusing NLS equation with the chosen periodic potential and nonlinearity. Supported by the National Natural Science Foundation of China under Grant No. 61178091, the National Key Basic Research Program of China under Grant No. 2011CB302400, and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China under Grant No. Y4KF211CJ1

  14. The fourth dimension of life: fractal geometry and allometric scaling of organisms.

    PubMed

    West, G B; Brown, J H; Enquist, B J

    1999-06-04

    Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by maximizing the scaling of exchange surface areas, and internal efficiency, by minimizing the scaling of transport distances and times. These design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.

  15. Diffusion for holographic lattices

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.; Ziogas, Vaios

    2018-03-01

    We consider black hole spacetimes that are holographically dual to strongly coupled field theories in which spatial translations are broken explicitly. We discuss how the quasinormal modes associated with diffusion of heat and charge can be systematically constructed in a long wavelength perturbative expansion. We show that the dispersion relation for these modes is given in terms of the thermoelectric DC conductivity and static susceptibilities of the dual field theory and thus we derive a generalised Einstein relation from Einstein's equations. A corollary of our results is that thermodynamic instabilities imply specific types of dynamical instabilities of the associated black hole solutions.

  16. Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.

    PubMed

    Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M

    2005-06-15

    Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.

  17. Surge dynamics coupled to pore-pressure evolution in debris flows

    USGS Publications Warehouse

    Savage, S.B.; Iverson, R.M.; ,

    2003-01-01

    Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.

  18. Recurrence plot analyses suggest a novel reference system involved in newborn spontaneous movements.

    PubMed

    Assmann, Birte; Thiel, Marco; Romano, Maria C; Niemitz, Carsten

    2006-08-01

    The movements of newborns have been thoroughly studied in terms of reflexes, muscle synergies, leg coordination, and target-directed arm/hand movements. Since these approaches have concentrated mainly on separate accomplishments, there has remained a clear need for more integrated investigations. Here, we report an inquiry in which we explicitly concentrated on taking such a perspective and, additionally, were guided by the methodological concept of home base behavior, which Ilan Golani developed for studies of exploratory behavior in animals. Methods from nonlinear dynamics, such as symbolic dynamics and recurrence plot analyses of kinematic data received from audiovisual newborn recordings, yielded new insights into the spatial and temporal organization of limb movements. In the framework of home base behavior, our approach uncovered a novel reference system of spontaneous newborn movements.

  19. Implicit representations of space after bilateral parietal lobe damage.

    PubMed

    Kim, M S; Robertson, L C

    2001-11-15

    There is substantial evidence that the primate cortex is grossly divided into two functional streams, an occipital-parietal-frontal pathway that processes "where" and an occipital-temporal-frontal pathway that processes "what" (Ungerleider and Mishkin, 1982). In humans, bilateral occipital-parietal damage results in severe spatial deficits and a neuropsychological disorder known as Balint's syndrome in which a single object can be perceived (simultanagnosia) but its location is unknown (Balint, 1995). The data reported here demonstrate that spatial information for visual features that cannot be explicitly located is represented normally below the level of spatial awareness even with large occipital-parietal lesions. They also demonstrate that parietal damage does not affect preattentive spatial coding of feature locations or complex spatial relationships between parts of a stimulus despite explicit spatial deficits and simultanagnosia.

  20. Exploring the Spatial and Temporal Organization of a Cell’s Proteome

    PubMed Central

    Beck, Martin; Topf, Maya; Frazier, Zachary; Tjong, Harianto; Xu, Min; Zhang, Shihua; Alber, Frank

    2013-01-01

    To increase our current understanding of cellular processes, such as cell signaling and division, knowledge is needed about the spatial and temporal organization of the proteome at different organizational levels. These levels cover a wide range of length and time scales: from the atomic structures of macromolecules for inferring their molecular function, to the quantitative description of their abundance, and distribution in the cell. Emerging new experimental technologies are greatly increasing the availability of such spatial information on the molecular organization in living cells. This review addresses three fields that have significantly contributed to our understanding of the proteome’s spatial and temporal organization: first, methods for the structure determination of individual macromolecular assemblies, specifically the fitting of atomic structures into density maps generated from electron microscopy techniques; second, research that visualizes the spatial distributions of these complexes within the cellular context using cryo electron tomography techniques combined with computational image processing; and third, methods for the spatial modeling of the dynamic organization of the proteome, specifically those methods for simulating reaction and diffusion of proteins and complexes in crowded intracellular fluids. The long-term goal is to integrate the varied data about a proteome’s organization into a spatially explicit, predictive model of cellular processes. PMID:21094684

  1. Spatial dynamics of large-scale, multistage crab (Callinectes sapidus) dispersal: Determinants and consequences for recruitment

    USGS Publications Warehouse

    Etherington, L.L.; Eggleston, D.B.

    2003-01-01

    We assessed determinants and consequences of multistage dispersal on spatial recruitment of the blue crab, Callinectes sapidus, within the Croatan, Albemarle, Pamlico Estuarine System (CAPES), North Carolina, U.S.A. Large-scale sampling of early juvenile crabs over 4 years indicated that spatial abundance patterns were size-dependent and resulted from primary post-larval dispersal (pre-settlement) and secondary juvenile dispersal (early post-settlement). In general, primary dispersal led to high abundances within more seaward habitats, whereas secondary dispersal (which was relatively consistent) expanded the distribution of juveniles, potentially increasing the estuarine nursery capacity. There were strong relationships between juvenile crab density and specific wind characteristics; however, these patterns were spatially explicit. Various physical processes (e.g., seasonal wind events, timing and magnitude of tropical cyclones) interacted to influence dispersal during multiple stages and determined crab recruitment patterns. Our results suggest that the nursery value of different habitats is highly dependent on the dispersal potential (primary and secondary dispersal) to and from these areas, which is largely determined by the relative position of habitats within the estuarine landscape.

  2. Context-dependent colonization dynamics: Regional reward contagion drives local compression in aquatic beetles.

    PubMed

    Pintar, Matthew R; Resetarits, William J

    2017-09-01

    Habitat selection by colonizing organisms is an important factor in determining species abundance and community dynamics at multiple spatial scales. Many organisms select habitat patches based on intrinsic patch quality, but patches exist in complex landscapes linked by dispersal and colonization, forming metapopulations and metacommunities. Perceived patch quality can be influenced by neighbouring patches through spatial contagion, wherein perceived quality of one patch can extend beyond its borders and either increase or decrease the colonization of neighbouring patches and localities. These spatially explicit colonization dynamics can result in habitat compression, wherein more colonists occupy a patch or locality than in the absence of spatial context dependence. Previous work on contagion/compression focused primarily on the role of predators in driving colonization patterns. Our goal was to determine whether resource abundance can drive multi-scale colonization dynamics of aquatic beetles through the processes of contagion and compression in naturally colonized experimental pools. We established two levels (high/low quality) of within-patch resource abundances (leaf litter) using an experimental landscape of mesocosms, and assayed colonization by 35 species of aquatic beetles. Patches were arranged in localities (sets of two patches), which consisted of a combination of two patch-level resource levels in a 2 × 2 factorial design, allowing us to assay colonization at both locality and patch levels. We demonstrate that patterns of species abundance and richness of colonizing aquatic beetles are determined by patch quality and context-dependent processes at multiple spatial scales. Localities that consisted of at least one high-quality patch were colonized at equivalent rates that were higher than localities containing only low-quality patches, displaying regional reward contagion. In localities that consisted of one high- and one low-quality patch, reward contagion produced by higher leaf litter levels resulted in greater abundance of beetles in such localities, which then compressed into the highest quality patches. Our results provide further support for the critical roles of habitat selection and spatial context, particularly the quality of neighbouring habitat patches, in generating patterns of species abundances and community structure across landscapes. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  3. Adaptive form-finding method for form-fixed spatial network structures

    NASA Astrophysics Data System (ADS)

    Lan, Cheng; Tu, Xi; Xue, Junqing; Briseghella, Bruno; Zordan, Tobia

    2018-02-01

    An effective form-finding method for form-fixed spatial network structures is presented in this paper. The adaptive form-finding method is introduced along with the example of designing an ellipsoidal network dome with bar length variations being as small as possible. A typical spherical geodesic network is selected as an initial state, having bar lengths in a limit group number. Next, this network is transformed into the ellipsoidal shape as desired by applying compressions on bars according to the bar length variations caused by transformation. Afterwards, the dynamic relaxation method is employed to explicitly integrate the node positions by applying residual forces. During the form-finding process, the boundary condition of constraining nodes on the ellipsoid surface is innovatively considered as reactions on the normal direction of the surface at node positions, which are balanced with the components of the nodal forces in a reverse direction induced by compressions on bars. The node positions are also corrected according to the fixed-form condition in each explicit iteration step. In the serial results of time history, the optimal solution is found from a time history of states by properly choosing convergence criteria, and the presented form-finding procedure is proved to be applicable for form-fixed problems.

  4. Spatially nonrandom tree mortality and ingrowth maintain equilibrium pattern in an old-growth Pseudotsuga-Tsuga forest.

    PubMed

    Lutz, James A; Larson, Andrew J; Furniss, Tucker J; Donato, Daniel C; Freund, James A; Swanson, Mark E; Bible, Kenneth J; Chen, Jiquan; Franklin, Jerry F

    2014-08-01

    Mortality processes in old-growth forests are generally assumed to be driven by gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but these assumptions are rarely tested with data sets incorporating repeated measurements. Using a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old Pseudotsuga-Tsuga forest, we demonstrate significant density-dependent mortality and spatially aggregated tree recruitment. However, the combined effect of these strongly nonrandom demographic processes was to maintain tree patterns in a state of dynamic equilibrium. Density-dependent mortality was most pronounced for the dominant late-successional species, Tsuga heterophylla. The long-lived, early-seral Pseudotsuga menziesii experienced an annual stem mortality rate of 0.84% and no new recruitment. Late-seral species Tsuga and Abies amabilis had nearly balanced demographic rates of ingrowth and mortality. The 2.34% mortality rate for Taxus brevifolia was higher than expected, notably less than ingrowth, and strongly affected by proximity to Tsuga. Large-diameter Tsuga structured both the regenerating conspecific and heterospecific cohorts with recruitment of Tsuga and Abies unlikely in neighborhoods crowded with large-diameter competitors (P < 0.001). Density-dependent competitive interactions strongly shape forest communities even five centuries after stand initiation, underscoring the dynamic nature of even equilibrial old-growth forests.

  5. An implicit higher-order spatially accurate scheme for solving time dependent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Tomaro, Robert F.

    1998-07-01

    The present research is aimed at developing a higher-order, spatially accurate scheme for both steady and unsteady flow simulations using unstructured meshes. The resulting scheme must work on a variety of general problems to ensure the creation of a flexible, reliable and accurate aerodynamic analysis tool. To calculate the flow around complex configurations, unstructured grids and the associated flow solvers have been developed. Efficient simulations require the minimum use of computer memory and computational times. Unstructured flow solvers typically require more computer memory than a structured flow solver due to the indirect addressing of the cells. The approach taken in the present research was to modify an existing three-dimensional unstructured flow solver to first decrease the computational time required for a solution and then to increase the spatial accuracy. The terms required to simulate flow involving non-stationary grids were also implemented. First, an implicit solution algorithm was implemented to replace the existing explicit procedure. Several test cases, including internal and external, inviscid and viscous, two-dimensional, three-dimensional and axi-symmetric problems, were simulated for comparison between the explicit and implicit solution procedures. The increased efficiency and robustness of modified code due to the implicit algorithm was demonstrated. Two unsteady test cases, a plunging airfoil and a wing undergoing bending and torsion, were simulated using the implicit algorithm modified to include the terms required for a moving and/or deforming grid. Secondly, a higher than second-order spatially accurate scheme was developed and implemented into the baseline code. Third- and fourth-order spatially accurate schemes were implemented and tested. The original dissipation was modified to include higher-order terms and modified near shock waves to limit pre- and post-shock oscillations. The unsteady cases were repeated using the higher-order spatially accurate code. The new solutions were compared with those obtained using the second-order spatially accurate scheme. Finally, the increased efficiency of using an implicit solution algorithm in a production Computational Fluid Dynamics flow solver was demonstrated for steady and unsteady flows. A third- and fourth-order spatially accurate scheme has been implemented creating a basis for a state-of-the-art aerodynamic analysis tool.

  6. Uncertainty in spatially explicit animal dispersal models

    USGS Publications Warehouse

    Mooij, Wolf M.; DeAngelis, Donald L.

    2003-01-01

    Uncertainty in estimates of survival of dispersing animals is a vexing difficulty in conservation biology. The current notion is that this uncertainty decreases the usefulness of spatially explicit population models in particular. We examined this problem by comparing dispersal models of three levels of complexity: (1) an event-based binomial model that considers only the occurrence of mortality or arrival, (2) a temporally explicit exponential model that employs mortality and arrival rates, and (3) a spatially explicit grid-walk model that simulates the movement of animals through an artificial landscape. Each model was fitted to the same set of field data. A first objective of the paper is to illustrate how the maximum-likelihood method can be used in all three cases to estimate the means and confidence limits for the relevant model parameters, given a particular set of data on dispersal survival. Using this framework we show that the structure of the uncertainty for all three models is strikingly similar. In fact, the results of our unified approach imply that spatially explicit dispersal models, which take advantage of information on landscape details, suffer less from uncertainly than do simpler models. Moreover, we show that the proposed strategy of model development safeguards one from error propagation in these more complex models. Finally, our approach shows that all models related to animal dispersal, ranging from simple to complex, can be related in a hierarchical fashion, so that the various approaches to modeling such dispersal can be viewed from a unified perspective.

  7. Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission

    PubMed Central

    Perkins, T. Alex; Scott, Thomas W.; Le Menach, Arnaud; Smith, David L.

    2013-01-01

    The Ross-Macdonald model has dominated theory for mosquito-borne pathogen transmission dynamics and control for over a century. The model, like many other basic population models, makes the mathematically convenient assumption that populations are well mixed; i.e., that each mosquito is equally likely to bite any vertebrate host. This assumption raises questions about the validity and utility of current theory because it is in conflict with preponderant empirical evidence that transmission is heterogeneous. Here, we propose a new dynamic framework that is realistic enough to describe biological causes of heterogeneous transmission of mosquito-borne pathogens of humans, yet tractable enough to provide a basis for developing and improving general theory. The framework is based on the ecological context of mosquito blood meals and the fine-scale movements of individual mosquitoes and human hosts that give rise to heterogeneous transmission. Using this framework, we describe pathogen dispersion in terms of individual-level analogues of two classical quantities: vectorial capacity and the basic reproductive number, . Importantly, this framework explicitly accounts for three key components of overall heterogeneity in transmission: heterogeneous exposure, poor mixing, and finite host numbers. Using these tools, we propose two ways of characterizing the spatial scales of transmission—pathogen dispersion kernels and the evenness of mixing across scales of aggregation—and demonstrate the consequences of a model's choice of spatial scale for epidemic dynamics and for estimation of , both by a priori model formulas and by inference of the force of infection from time-series data. PMID:24348223

  8. Modeling and measuring snow for assessing climate change impacts in Glacier National Park, Montana

    USGS Publications Warehouse

    Fagre, Daniel B.; Selkowitz, David J.; Reardon, Blase; Holzer, Karen; Mckeon, Lisa L.

    2002-01-01

    A 12-year program of global change research at Glacier National Park by the U.S. Geological Survey and numerous collaborators has made progress in quantifying the role of snow as a driver of mountain ecosystem processes. Spatially extensive snow surveys during the annual accumulation/ablation cycle covered two mountain watersheds and approximately 1,000 km2 . Over 7,000 snow depth and snow water equivalent (SWE) measurements have been made through spring 2002. These augment two SNOTEL sites, 9 NRCS snow courses, and approximately 150 snow pit analyses. Snow data were used to establish spatially-explicit interannual variability in snowpack SWE. East of the Continental Divide, snowpack SWE was lower but also less variable than west of the Divide. Analysis of snowpacks suggest downward trends in SWE, a reduction in snow cover duration, and earlier melt-out dates during the past 52 years. Concurrently, high elevation forests and treelines have responded with increased growth. However, the 80 year record of snow from 3 NRCS snow courses reflects a strong influence from the Pacific Decadal Oscillation, resulting in 20-30 year phases of greater or lesser mean SWE. Coupled with the fine-resolution spatial snow data from the two watersheds, the ecological consequences of changes in snowpack can be empirically assessed at a habitat patch scale. This will be required because snow distribution models have had varied success in simulating snowpack accumulation/ablation dynamics in these mountain watersheds, ranging from R2=0.38 for individual south-facing forested snow survey routes to R2=0.95 when aggregated to the watershed scale. Key ecological responses to snowpack changes occur below the watershed scale, such as snow-mediated expansion of forest into subalpine meadows, making continued spatially-explicit snow surveys a necessity. 

  9. Understanding African Swine Fever infection dynamics in Sardinia using a spatially explicit transmission model in domestic pig farms.

    PubMed

    Mur, L; Sánchez-Vizcaíno, J M; Fernández-Carrión, E; Jurado, C; Rolesu, S; Feliziani, F; Laddomada, A; Martínez-López, B

    2018-02-01

    African swine fever virus (ASFV) has been endemic in Sardinia since 1978, resulting in severe losses for local pig producers and creating important problems for the island's veterinary authorities. This study used a spatially explicit stochastic transmission model followed by two regression models to investigate the dynamics of ASFV spread amongst domestic pig farms, to identify geographic areas at highest risk and determine the role of different susceptible pig populations (registered domestic pigs, non-registered domestic pigs [brado] and wild boar) in ASF occurrence. We simulated transmission within and between farms using an adapted version of the previously described model known as Be-FAST. Results from the model revealed a generally low diffusion of ASF in Sardinia, with only 24% of the simulations resulting in disease spread, and for each simulated outbreak on average only four farms and 66 pigs were affected. Overall, local spread (indirect transmission between farms within a 2 km radius through fomites) was the most common route of transmission, being responsible for 98.6% of secondary cases. The risk of ASF occurrence for each domestic pig farm was estimated from the spread model results and integrated in two regression models together with available data for brado and wild boar populations. There was a significant association between the density of all three populations (domestic pigs, brado, and wild boar) and ASF occurrence in Sardinia. The most significant risk factors were the high densities of brado (OR = 2.2) and wild boar (OR = 2.1). The results of both analyses demonstrated that ASF epidemiology and infection dynamics in Sardinia create a complex and multifactorial disease situation, where all susceptible populations play an important role. To stop ASF transmission in Sardinia, three main factors (improving biosecurity on domestic pig farms, eliminating brado practices and better management of wild boars) need to be addressed. © 2017 Blackwell Verlag GmbH.

  10. Spatial vs. non-spatial eco-evolutionary dynamics in a tumor growth model.

    PubMed

    You, Li; Brown, Joel S; Thuijsman, Frank; Cunningham, Jessica J; Gatenby, Robert A; Zhang, Jingsong; Staňková, Kateřina

    2017-12-21

    Metastatic prostate cancer is initially treated with androgen deprivation therapy (ADT). However, resistance typically develops in about 1 year - a clinical condition termed metastatic castrate-resistant prostate cancer (mCRPC). We develop and investigate a spatial game (agent based continuous space) of mCRPC that considers three distinct cancer cell types: (1) those dependent on exogenous testosterone (T + ), (2) those with increased CYP17A expression that produce testosterone and provide it to the environment as a public good (T P ), and (3) those independent of testosterone (T - ). The interactions within and between cancer cell types can be represented by a 3 × 3 matrix. Based on the known biology of this cancer there are 22 potential matrices that give roughly three major outcomes depending upon the absence (good prognosis), near absence or high frequency (poor prognosis) of T -  cells at the evolutionarily stable strategy (ESS). When just two cell types coexist the spatial game faithfully reproduces the ESS of the corresponding matrix game. With three cell types divergences occur, in some cases just two strategies coexist in the spatial game even as a non-spatial matrix game supports all three. Discrepancies between the spatial game and non-spatial ESS happen because different cell types become more or less clumped in the spatial game - leading to non-random assortative interactions between cell types. Three key spatial scales influence the distribution and abundance of cell types in the spatial game: i. Increasing the radius at which cells interact with each other can lead to higher clumping of each type, ii. Increasing the radius at which cells experience limits to population growth can cause densely packed tumor clusters in space, iii. Increasing the dispersal radius of daughter cells promotes increased mixing of cell types. To our knowledge the effects of these spatial scales on eco-evolutionary dynamics have not been explored in cancer models. The fact that cancer interactions are spatially explicit and that our spatial game of mCRPC provides in general different outcomes than the non-spatial game might suggest that non-spatial models are insufficient for capturing key elements of tumorigenesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Global change and terrestrial plant community dynamics

    DOE PAGES

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...

    2016-02-29

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  12. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  13. Follow your nose: Implicit spatial processing within the chemosensory systems.

    PubMed

    Wudarczyk, Olga A; Habel, Ute; Turetsky, Bruce I; Gur, Raquel E; Kellermann, Thilo; Schneider, Frank; Moessnang, Carolin

    2016-11-01

    Although most studies agree that humans cannot smell in stereo, it was recently suggested that olfactory localization is possible when assessed implicitly. In a spatial cueing paradigm, lateralized olfactory cues impaired the detection of congruently presented visual targets, an effect contrary to the typical facilitation observed in other sensory domains. Here, we examined the specificity and the robustness of this finding by studying implicit localization abilities in another chemosensory system and by accounting for possible confounds in a modified paradigm. Sixty participants completed a spatial cueing task along with an explicit localization task, using trigeminal (Experiment 1) and olfactory (Experiment 2) stimuli. A control task was implemented to control for residual somatosensory stimulation (Experiment 3). In the trigeminal experiment, stimuli were localized with high accuracy on the explicit level, while the cueing effect in form of facilitation was limited to response accuracy. In the olfactory experiment, responses were slowed by congruent cues on the implicit level, while no explicit localization was observed. Our results point to the robustness of the olfactory interference effect, corroborating the implicit-explicit dissociation of olfactory localization, and challenging the view that humans lost the ability to extract spatial information from smell. The absence of a similar interference for trigeminal cues suggests distinct implicit spatial processing mechanisms within the chemosensory systems. Moreover, the lack of a typical facilitation effect in the trigeminal domain points to important differences from spatial information processing in other, nonchemosensory domains. The possible mechanisms driving the effects are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. The Construction of Visual-spatial Situation Models in Children's Reading and Their Relation to Reading Comprehension

    PubMed Central

    Barnes, Marcia A.; Raghubar, Kimberly P.; Faulkner, Heather; Denton, Carolyn A.

    2014-01-01

    Readers construct mental models of situations described by text to comprehend what they read, updating these situation models based on explicitly described and inferred information about causal, temporal, and spatial relations. Fluent adult readers update their situation models while reading narrative text based in part on spatial location information that is consistent with the perspective of the protagonist. The current study investigates whether children update spatial situation models in a similar way, whether there are age-related changes in children's formation of spatial situation models during reading, and whether measures of the ability to construct and update spatial situation models are predictive of reading comprehension. Typically-developing children from ages 9 through 16 years (n=81) were familiarized with a physical model of a marketplace. Then the model was covered, and children read stories that described the movement of a protagonist through the marketplace and were administered items requiring memory for both explicitly stated and inferred information about the character's movements. Accuracy of responses and response times were evaluated. Results indicated that: (a) location and object information during reading appeared to be activated and updated not simply from explicit text-based information but from a mental model of the real world situation described by the text; (b) this pattern showed no age-related differences; and (c) the ability to update the situation model of the text based on inferred information, but not explicitly stated information, was uniquely predictive of reading comprehension after accounting for word decoding. PMID:24315376

  15. Spatially explicit models, generalized reproduction numbers and the prediction of patterns of waterborne disease

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Gatto, M.; Mari, L.; Casagrandi, R.; Righetto, L.; Bertuzzo, E.; Rodriguez-Iturbe, I.

    2012-12-01

    Metacommunity and individual-based theoretical models are studied in the context of the spreading of infections of water-borne diseases along the ecological corridors defined by river basins and networks of human mobility. The overarching claim is that mathematical models can indeed provide predictive insight into the course of an ongoing epidemic, potentially aiding real-time emergency management in allocating health care resources and by anticipating the impact of alternative interventions. To support the claim, we examine the ex-post reliability of published predictions of the 2010-2011 Haiti cholera outbreak from four independent modeling studies that appeared almost simultaneously during the unfolding epidemic. For each modeled epidemic trajectory, it is assessed how well predictions reproduced the observed spatial and temporal features of the outbreak to date. The impact of different approaches is considered to the modeling of the spatial spread of V. cholera, the mechanics of cholera transmission and in accounting for the dynamics of susceptible and infected individuals within different local human communities. A generalized model for Haitian epidemic cholera and the related uncertainty is thus constructed and applied to the year-long dataset of reported cases now available. Specific emphasis will be dedicated to models of human mobility, a fundamental infection mechanism. Lessons learned and open issues are discussed and placed in perspective, supporting the conclusion that, despite differences in methods that can be tested through model-guided field validation, mathematical modeling of large-scale outbreaks emerges as an essential component of future cholera epidemic control. Although explicit spatial modeling is made routinely possible by widespread data mapping of hydrology, transportation infrastructure, population distribution, and sanitation, the precise condition under which a waterborne disease epidemic can start in a spatially explicit setting is still lacking. Here, we show that the requirement that all the local reproduction numbers R0 be larger than unity is neither necessary nor sufficient for outbreaks to occur when local settlements are connected by networks of primary and secondary infection mechanisms. To determine onset conditions, we derive general analytical expressions for a reproduction matrix G0 explicitly accounting for spatial distributions of human settlements and pathogen transmission via hydrological and human mobility networks. At disease onset, a generalized reproduction number Λ0 (the dominant eigenvalue of G0) must be larger than unity. We also show that geographical outbreak patterns in complex environments are linked to the dominant eigenvector and to spectral properties of G0. Tests against data and computations for the 2010 Haiti and 2000 KwaZulu-Natal cholera outbreaks, as well as against computations for metapopulation networks, demonstrate that eigenvectors of G0 provide a synthetic and effective tool for predicting the disease course in space and time. Networked connectivity models, describing the interplay between hydrology, epidemiology and social behavior sustaining human mobility, thus prove to be key tools for emergency management of waterborne infections.

  16. A watershed-based spatially-explicit demonstration of an integrated environmental modeling framework for ecosystem services in the Coal River Basin (WV, USA)

    Treesearch

    John M. Johnston; Mahion C. Barber; Kurt Wolfe; Mike Galvin; Mike Cyterski; Rajbir Parmar; Luis Suarez

    2016-01-01

    We demonstrate a spatially-explicit regional assessment of current condition of aquatic ecoservices in the Coal River Basin (CRB), with limited sensitivity analysis for the atmospheric contaminant mercury. The integrated modeling framework (IMF) forecasts water quality and quantity, habitat suitability for aquatic biota, fish biomasses, population densities, ...

  17. Cohen's Kappa and classification table metrics 2.0: An ArcView 3.x extension for accuracy assessment of spatially explicit models

    Treesearch

    Jeff Jenness; J. Judson Wynne

    2005-01-01

    In the field of spatially explicit modeling, well-developed accuracy assessment methodologies are often poorly applied. Deriving model accuracy metrics have been possible for decades, but these calculations were made by hand or with the use of a spreadsheet application. Accuracy assessments may be useful for: (1) ascertaining the quality of a model; (2) improving model...

  18. Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing

    PubMed Central

    Salvato, Gerardo; Patai, Eva Z.; Nobre, Anna C.

    2016-01-01

    It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. PMID:26649914

  19. Modeling dynamics of western juniper under climate change in a semiarid ecosystem

    NASA Astrophysics Data System (ADS)

    Shrestha, R.; Glenn, N. F.; Flores, A. N.

    2013-12-01

    Modeling future vegetation dynamics in response to climate change and disturbances such as fire relies heavily on model parameterization. Fine-scale field-based measurements can provide the necessary parameters for constraining models at a larger scale. But the time- and labor-intensive nature of field-based data collection leads to sparse sampling and significant spatial uncertainties in retrieved parameters. In this study we quantify the fine-scale carbon dynamics and uncertainty of juniper woodland in the Reynolds Creek Experimental Watershed (RCEW) in southern Idaho, which is a proposed critical zone observatory (CZO) site for soil carbon processes. We leverage field-measured vegetation data along with airborne lidar and timeseries Landsat imagery to initialize a state-and-transition model (VDDT) and a process-based fire-model (FlamMap) to examine the vegetation dynamics in response to stochastic fire events and climate change. We utilize recently developed and novel techniques to measure biomass and canopy characteristics of western juniper at the individual tree scale using terrestrial and airborne laser scanning techniques in RCEW. These fine-scale data are upscaled across the watershed for the VDDT and FlamMap models. The results will immediately improve our understanding of fine-scale dynamics and carbon stocks and fluxes of woody vegetation in a semi-arid ecosystem. Moreover, quantification of uncertainty will also provide a basis for generating ensembles of spatially-explicit alternative scenarios to guide future land management decisions in the region.

  20. Modelling carbon responses of tundra ecosystems to historical and projected climate: Sensitivity of pan-Arctic carbon storage to temporal and spatial variation in climate

    USGS Publications Warehouse

    McGuire, A.D.; Clein, Joy S.; Melillo, J.M.; Kicklighter, D.W.; Meier, R.A.; Vorosmarty, C.J.; Serreze, Mark C.

    2000-01-01

    Historical and projected climate trends for high latitudes show substantial temporal and spatial variability. To identify uncertainties in simulating carbon (C) dynamics for pan-Arctic tundra, we compare the historical and projected responses of tundra C storage from 1921 to 2100 between simulations by the Terrestrial Ecosystem Model (TEM) for the pan-Arctic and the Kuparuk River Basin, which was the focus of an integrated study of C dynamics from 1994 to 1996. In the historical period from 1921 to 1994, the responses of net primary production (NPP) and heterotrophic respiration (RH) simulated for the Kuparuk River Basin and the pan-Arctic are correlated with the same factors; NPP is positively correlated with net nitrogen mineralization (NMIN) and RH is negatively correlated with mean annual soil moisture. In comparison to the historical period, the spatially aggregated responses of NPP and RH for the Kuparuk River Basin and the pan-Arctic in our simulations for the projected period have different sensitivities to temperature, soil moisture and NMIN. In addition to being sensitive to soil moisture during the projected period, RH is also sensitive to temperature and there is a significant correlation between RH and NMIN. We interpret the increases in NPP during the projected period as being driven primarily by increases in NMIN, and that the correlation between NPP and temperature in the projected period is a result primarily of the causal linkage between temperature, RH, and NMIN. Although similar factors appear to be controlling simulated regional-and biome-scale C dynamics, simulated C dynamics at the two scales differ in magnitude with higher increases in C storage simulated for the Kuparuk River Basin than for the pan-Arctic at the end of the historical period and throughout the projected period. Also, the results of the simulations indicate that responses of C storage show different climate sensitivities at regional and pan-Arctic spatial scales and that these sensitivities change across the temporal scope of the simulations. The results of the TEM simulations indicate that the scaling of C dynamics to a region of arctic tundra may not represent C dynamics of pan-Arctic tundra because of the limited spatial variation in climate and vegetation within a region relative to the pan-Arctic. For reducing uncertainties, our analyses highlight the importance of incorporating the understanding gained from process-level studies of C dynamics in a region of arctic tundra into process-based models that simulate C dynamics in a spatially explicit fashion across the spatial domain of pan-Arctic tundra. Also, efforts to improve gridded datasets of historical climate for the pan-Arctic would advance the ability to assess the responses of C dynamics for pan-Arctic tundra in a more realistic fashion. A major challenge will be to incorporate topographic controls over soil moisture in assessing the response of C storage for pan-Arctic tundra.

  1. The calculation of weakly non-spherical cavitation bubble impact on a solid

    NASA Astrophysics Data System (ADS)

    Aganin, A. A.; Guseva, T. S.; Kosolapova, L. A.; Khismatullina, N. A.

    2016-11-01

    The effect of small spheroidal non-sphericity of a cavitation bubble touching a solid at the beginning of its collapse on its impact on the solid of a copper-nickel alloy is investigated. The impact on the solid is realized by means of a high-speed liquid jet arising at collapse on the bubble surface. The shape of the jet, its velocity and pressure are calculated by the boundary element method. The spatial and temporal characteristics of the pressure pulses on the solid surface are determined by the CIP-CUP method on dynamically adaptive grids without explicitly separating the gas-liquid interface. The solid surface layer dynamics is evaluated by the Godunov method. The results are analyzed in dimensionless variables obtained with using the water hammer pressure, the time moment and the jet-solid contact area radius at which the jet begins to spread on the solid surface. It is shown that in those dimensionless variables, the dependence of the spatial and temporal characteristics of the solid surface pressure pulses on the initial bubble shape non-sphericity is relatively small. The nonsphericity also slightly influences the main qualitative features of the dynamic processes inside the solid, whereas its effect on their quantitative characteristics can be significant.

  2. Components for Atomistic-to-Continuum Multiscale Modeling of Flow in Micro- and Nanofluidic Systems

    DOE PAGES

    Adalsteinsson, Helgi; Debusschere, Bert J.; Long, Kevin R.; ...

    2008-01-01

    Micro- and nanofluidics pose a series of significant challenges for science-based modeling. Key among those are the wide separation of length- and timescales between interface phenomena and bulk flow and the spatially heterogeneous solution properties near solid-liquid interfaces. It is not uncommon for characteristic scales in these systems to span nine orders of magnitude from the atomic motions in particle dynamics up to evolution of mass transport at the macroscale level, making explicit particle models intractable for all but the simplest systems. Recently, atomistic-to-continuum (A2C) multiscale simulations have gained a lot of interest as an approach to rigorously handle particle-levelmore » dynamics while also tracking evolution of large-scale macroscale behavior. While these methods are clearly not applicable to all classes of simulations, they are finding traction in systems in which tight-binding, and physically important, dynamics at system interfaces have complex effects on the slower-evolving large-scale evolution of the surrounding medium. These conditions allow decomposition of the simulation into discrete domains, either spatially or temporally. In this paper, we describe how features of domain decomposed simulation systems can be harnessed to yield flexible and efficient software for multiscale simulations of electric field-driven micro- and nanofluidics.« less

  3. Estimating carbon and showing impacts of drought using satellite data in regression-tree models

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.; Howard, Danny; Dahal, Devendra; Gilmanov, Tagir G.

    2018-01-01

    Integrating spatially explicit biogeophysical and remotely sensed data into regression-tree models enables the spatial extrapolation of training data over large geographic spaces, allowing a better understanding of broad-scale ecosystem processes. The current study presents annual gross primary production (GPP) and annual ecosystem respiration (RE) for 2000–2013 in several short-statured vegetation types using carbon flux data from towers that are located strategically across the conterminous United States (CONUS). We calculate carbon fluxes (annual net ecosystem production [NEP]) for each year in our study period, which includes 2012 when drought and higher-than-normal temperatures influence vegetation productivity in large parts of the study area. We present and analyse carbon flux dynamics in the CONUS to better understand how drought affects GPP, RE, and NEP. Model accuracy metrics show strong correlation coefficients (r) (r ≥ 94%) between training and estimated data for both GPP and RE. Overall, average annual GPP, RE, and NEP are relatively constant throughout the study period except during 2012 when almost 60% less carbon is sequestered than normal. These results allow us to conclude that this modelling method effectively estimates carbon dynamics through time and allows the exploration of impacts of meteorological anomalies and vegetation types on carbon dynamics.

  4. The spatial dynamics of ecosystem engineers.

    PubMed

    Franco, Caroline; Fontanari, José F

    2017-10-01

    The changes on abiotic features of ecosystems have rarely been taken into account by population dynamics models, which typically focus on trophic and competitive interactions between species. However, understanding the population dynamics of organisms that must modify their habitats in order to survive, the so-called ecosystem engineers, requires the explicit incorporation of abiotic interactions in the models. Here we study a model of ecosystem engineers that is discrete both in space and time, and where the engineers and their habitats are arranged in patches fixed to the sites of regular lattices. The growth of the engineer population is modeled by Ricker equation with a density-dependent carrying capacity that is given by the number of modified habitats. A diffusive dispersal stage ensures that a fraction of the engineers move from their birth patches to neighboring patches. We find that dispersal influences the metapopulation dynamics only in the case that the local or single-patch dynamics exhibit chaotic behavior. In that case, it can suppress the chaotic behavior and avoid extinctions in the regime of large intrinsic growth rate of the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Radar orthogonality and radar length in Finsler and metric spacetime geometry

    NASA Astrophysics Data System (ADS)

    Pfeifer, Christian

    2014-09-01

    The radar experiment connects the geometry of spacetime with an observers measurement of spatial length. We investigate the radar experiment on Finsler spacetimes which leads to a general definition of radar orthogonality and radar length. The directions radar orthogonal to an observer form the spatial equal time surface an observer experiences and the radar length is the physical length the observer associates to spatial objects. We demonstrate these concepts on a forth order polynomial Finsler spacetime geometry which may emerge from area metric or premetric linear electrodynamics or in quantum gravity phenomenology. In an explicit generalization of Minkowski spacetime geometry we derive the deviation from the Euclidean spatial length measure in an observers rest frame explicitly.

  6. Virtual-pulse time integral methodology: A new explicit approach for computational dynamics - Theoretical developments for general nonlinear structural dynamics

    NASA Technical Reports Server (NTRS)

    Chen, Xiaoqin; Tamma, Kumar K.; Sha, Desong

    1993-01-01

    The present paper describes a new explicit virtual-pulse time integral methodology for nonlinear structural dynamics problems. The purpose of the paper is to provide the theoretical basis of the methodology and to demonstrate applicability of the proposed formulations to nonlinear dynamic structures. Different from the existing numerical methods such as direct time integrations or mode superposition techniques, the proposed methodology offers new perspectives and methodology of development, and possesses several unique and attractive computational characteristics. The methodology is tested and compared with the implicit Newmark method (trapezoidal rule) through a nonlinear softening and hardening spring dynamic models. The numerical results indicate that the proposed explicit virtual-pulse time integral methodology is an excellent alternative for solving general nonlinear dynamic problems.

  7. Studying the effects of fuel treatment based on burn probability on a boreal forest landscape.

    PubMed

    Liu, Zhihua; Yang, Jian; He, Hong S

    2013-01-30

    Fuel treatment is assumed to be a primary tactic to mitigate intense and damaging wildfires. However, how to place treatment units across a landscape and assess its effectiveness is difficult for landscape-scale fuel management planning. In this study, we used a spatially explicit simulation model (LANDIS) to conduct wildfire risk assessments and optimize the placement of fuel treatments at the landscape scale. We first calculated a baseline burn probability map from empirical data (fuel, topography, weather, and fire ignition and size data) to assess fire risk. We then prioritized landscape-scale fuel treatment based on maps of burn probability and fuel loads (calculated from the interactions among tree composition, stand age, and disturbance history), and compared their effects on reducing fire risk. The burn probability map described the likelihood of burning on a given location; the fuel load map described the probability that a high fuel load will accumulate on a given location. Fuel treatment based on the burn probability map specified that stands with high burn probability be treated first, while fuel treatment based on the fuel load map specified that stands with high fuel loads be treated first. Our results indicated that fuel treatment based on burn probability greatly reduced the burned area and number of fires of different intensities. Fuel treatment based on burn probability also produced more dispersed and smaller high-risk fire patches and therefore can improve efficiency of subsequent fire suppression. The strength of our approach is that more model components (e.g., succession, fuel, and harvest) can be linked into LANDIS to map the spatially explicit wildfire risk and its dynamics to fuel management, vegetation dynamics, and harvesting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis.

    PubMed

    Ferrer, Jordi; Prats, Clara; López, Daniel; Vives-Rego, Josep

    2009-08-31

    Predictive microbiology is the area of food microbiology that attempts to forecast the quantitative evolution of microbial populations over time. This is achieved to a great extent through models that include the mechanisms governing population dynamics. Traditionally, the models used in predictive microbiology are whole-system continuous models that describe population dynamics by means of equations applied to extensive or averaged variables of the whole system. Many existing models can be classified by specific criteria. We can distinguish between survival and growth models by seeing whether they tackle mortality or cell duplication. We can distinguish between empirical (phenomenological) models, which mathematically describe specific behaviour, and theoretical (mechanistic) models with a biological basis, which search for the underlying mechanisms driving already observed phenomena. We can also distinguish between primary, secondary and tertiary models, by examining their treatment of the effects of external factors and constraints on the microbial community. Recently, the use of spatially explicit Individual-based Models (IbMs) has spread through predictive microbiology, due to the current technological capacity of performing measurements on single individual cells and thanks to the consolidation of computational modelling. Spatially explicit IbMs are bottom-up approaches to microbial communities that build bridges between the description of micro-organisms at the cell level and macroscopic observations at the population level. They provide greater insight into the mesoscale phenomena that link unicellular and population levels. Every model is built in response to a particular question and with different aims. Even so, in this research we conducted a SWOT (Strength, Weaknesses, Opportunities and Threats) analysis of the different approaches (population continuous modelling and Individual-based Modelling), which we hope will be helpful for current and future researchers.

  9. Logistical constraints lead to an intermediate optimum in outbreak response vaccination

    PubMed Central

    Shea, Katriona; Ferrari, Matthew

    2018-01-01

    Dynamic models in disease ecology have historically evaluated vaccination strategies under the assumption that they are implemented homogeneously in space and time. However, this approach fails to formally account for operational and logistical constraints inherent in the distribution of vaccination to the population at risk. Thus, feedback between the dynamic processes of vaccine distribution and transmission might be overlooked. Here, we present a spatially explicit, stochastic Susceptible-Infected-Recovered-Vaccinated model that highlights the density-dependence and spatial constraints of various diffusive strategies of vaccination during an outbreak. The model integrates an agent-based process of disease spread with a partial differential process of vaccination deployment. We characterize the vaccination response in terms of a diffusion rate that describes the distribution of vaccination to the population at risk from a central location. This generates an explicit trade-off between slow diffusion, which concentrates effort near the central location, and fast diffusion, which spreads a fixed vaccination effort thinly over a large area. We use stochastic simulation to identify the optimum vaccination diffusion rate as a function of population density, interaction scale, transmissibility, and vaccine intensity. Our results show that, conditional on a timely response, the optimal strategy for minimizing outbreak size is to distribute vaccination resource at an intermediate rate: fast enough to outpace the epidemic, but slow enough to achieve local herd immunity. If the response is delayed, however, the optimal strategy for minimizing outbreak size changes to a rapidly diffusive distribution of vaccination effort. The latter may also result in significantly larger outbreaks, thus suggesting a benefit of allocating resources to timely outbreak detection and response. PMID:29791432

  10. A Spatio-Temporal Model of Notch Signalling in the Zebrafish Segmentation Clock: Conditions for Synchronised Oscillatory Dynamics

    PubMed Central

    Terry, Alan J.; Sturrock, Marc; Dale, J. Kim; Maroto, Miguel; Chaplain, Mark A. J.

    2011-01-01

    In the vertebrate embryo, tissue blocks called somites are laid down in head-to-tail succession, a process known as somitogenesis. Research into somitogenesis has been both experimental and mathematical. For zebrafish, there is experimental evidence for oscillatory gene expression in cells in the presomitic mesoderm (PSM) as well as evidence that Notch signalling synchronises the oscillations in neighbouring PSM cells. A biological mechanism has previously been proposed to explain these phenomena. Here we have converted this mechanism into a mathematical model of partial differential equations in which the nuclear and cytoplasmic diffusion of protein and mRNA molecules is explictly considered. By performing simulations, we have found ranges of values for the model parameters (such as diffusion and degradation rates) that yield oscillatory dynamics within PSM cells and that enable Notch signalling to synchronise the oscillations in two touching cells. Our model contains a Hill coefficient that measures the co-operativity between two proteins (Her1, Her7) and three genes (her1, her7, deltaC) which they inhibit. This coefficient appears to be bounded below by the requirement for oscillations in individual cells and bounded above by the requirement for synchronisation. Consistent with experimental data and a previous spatially non-explicit mathematical model, we have found that signalling can increase the average level of Her1 protein. Biological pattern formation would be impossible without a certain robustness to variety in cell shape and size; our results possess such robustness. Our spatially-explicit modelling approach, together with new imaging technologies that can measure intracellular protein diffusion rates, is likely to yield significant new insight into somitogenesis and other biological processes. PMID:21386903

  11. Integrating remote sensing and spatially explicit epidemiological modeling

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rinaldo, Andrea

    2015-04-01

    Spatially explicit epidemiological models are a crucial tool for the prediction of epidemiological patterns in time and space as well as for the allocation of health care resources. In addition they can provide valuable information about epidemiological processes and allow for the identification of environmental drivers of the disease spread. Most epidemiological models rely on environmental data as inputs. They can either be measured in the field by the means of conventional instruments or using remote sensing techniques to measure suitable proxies of the variables of interest. The later benefit from several advantages over conventional methods, including data availability, which can be an issue especially in developing, and spatial as well as temporal resolution of the data, which is particularly crucial for spatially explicit models. Here we present the case study of a spatially explicit, semi-mechanistic model applied to recurring cholera outbreaks in the Lake Kivu area (Democratic Republic of the Congo). The model describes the cholera incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers. Human mobility and its effect on the disease spread is also taken into account. Several model configurations are tested on a data set of reported cases. The best models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via cross validation. The best performing model accounts for seasonality, El Niño Southern Oscillation, precipitation and human mobility.

  12. Improving carbon monitoring and reporting in forests using spatially-explicit information.

    PubMed

    Boisvenue, Céline; Smiley, Byron P; White, Joanne C; Kurz, Werner A; Wulder, Michael A

    2016-12-01

    Understanding and quantifying carbon (C) exchanges between the biosphere and the atmosphere-specifically the process of C removal from the atmosphere, and how this process is changing-is the basis for developing appropriate adaptation and mitigation strategies for climate change. Monitoring forest systems and reporting on greenhouse gas (GHG) emissions and removals are now required components of international efforts aimed at mitigating rising atmospheric GHG. Spatially-explicit information about forests can improve the estimates of GHG emissions and removals. However, at present, remotely-sensed information on forest change is not commonly integrated into GHG reporting systems. New, detailed (30-m spatial resolution) forest change products derived from satellite time series informing on location, magnitude, and type of change, at an annual time step, have recently become available. Here we estimate the forest GHG balance using these new Landsat-based change data, a spatial forest inventory, and develop yield curves as inputs to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) to estimate GHG emissions and removals at a 30 m resolution for a 13 Mha pilot area in Saskatchewan, Canada. Our results depict the forests as cumulative C sink (17.98 Tg C or 0.64 Tg C year -1 ) between 1984 and 2012 with an average C density of 206.5 (±0.6) Mg C ha -1 . Comparisons between our estimates and estimates from Canada's National Forest Carbon Monitoring, Accounting and Reporting System (NFCMARS) were possible only on a subset of our study area. In our simulations the area was a C sink, while the official reporting simulations, it was a C source. Forest area and overall C stock estimates also differ between the two simulated estimates. Both estimates have similar uncertainties, but the spatially-explicit results we present here better quantify the potential improvement brought on by spatially-explicit modelling. We discuss the source of the differences between these estimates. This study represents an important first step towards the integration of spatially-explicit information into Canada's NFCMARS.

  13. Long-term consistency in spatial patterns of primate seed dispersal.

    PubMed

    Heymann, Eckhard W; Culot, Laurence; Knogge, Christoph; Noriega Piña, Tony Enrique; Tirado Herrera, Emérita R; Klapproth, Matthias; Zinner, Dietmar

    2017-03-01

    Seed dispersal is a key ecological process in tropical forests, with effects on various levels ranging from plant reproductive success to the carbon storage potential of tropical rainforests. On a local and landscape scale, spatial patterns of seed dispersal create the template for the recruitment process and thus influence the population dynamics of plant species. The strength of this influence will depend on the long-term consistency of spatial patterns of seed dispersal. We examined the long-term consistency of spatial patterns of seed dispersal with spatially explicit data on seed dispersal by two neotropical primate species, Leontocebus nigrifrons and Saguinus mystax (Callitrichidae), collected during four independent studies between 1994 and 2013. Using distributions of dispersal probability over distances independent of plant species, cumulative dispersal distances, and kernel density estimates, we show that spatial patterns of seed dispersal are highly consistent over time. For a specific plant species, the legume Parkia panurensis , the convergence of cumulative distributions at a distance of 300 m, and the high probability of dispersal within 100 m from source trees coincide with the dimension of the spatial-genetic structure on the embryo/juvenile (300 m) and adult stage (100 m), respectively, of this plant species. Our results are the first demonstration of long-term consistency of spatial patterns of seed dispersal created by tropical frugivores. Such consistency may translate into idiosyncratic patterns of regeneration.

  14. Topics in Modeling of Cochlear Dynamics: Computation, Response and Stability Analysis

    NASA Astrophysics Data System (ADS)

    Filo, Maurice G.

    This thesis touches upon several topics in cochlear modeling. Throughout the literature, mathematical models of the cochlea vary according to the degree of biological realism to be incorporated. This thesis casts the cochlear model as a continuous space-time dynamical system using operator language. This framework encompasses a wider class of cochlear models and makes the dynamics more transparent and easier to analyze before applying any numerical method to discretize space. In fact, several numerical methods are investigated to study the computational efficiency of the finite dimensional realizations in space. Furthermore, we study the effects of the active gain perturbations on the stability of the linearized dynamics. The stability analysis is used to explain possible mechanisms underlying spontaneous otoacoustic emissions and tinnitus. Dynamic Mode Decomposition (DMD) is introduced as a useful tool to analyze the response of nonlinear cochlear models. Cochlear response features are illustrated using DMD which has the advantage of explicitly revealing the spatial modes of vibrations occurring in the Basilar Membrane (BM). Finally, we address the dynamic estimation problem of BM vibrations using Extended Kalman Filters (EKF). Due to the limitations of noninvasive sensing schemes, such algorithms are inevitable to estimate the dynamic behavior of a living cochlea.

  15. Incorporating human-water dynamics in a hyper-resolution land surface model

    NASA Astrophysics Data System (ADS)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in a hyper-resolution LSM this work allows for progress on hydrological monitoring and predictions, as well as drought preparedness and water impact assessments at relevant decision-making scales.

  16. Spatial modeling of cell signaling networks.

    PubMed

    Cowan, Ann E; Moraru, Ion I; Schaff, James C; Slepchenko, Boris M; Loew, Leslie M

    2012-01-01

    The shape of a cell, the sizes of subcellular compartments, and the spatial distribution of molecules within the cytoplasm can all control how molecules interact to produce a cellular behavior. This chapter describes how these spatial features can be included in mechanistic mathematical models of cell signaling. The Virtual Cell computational modeling and simulation software is used to illustrate the considerations required to build a spatial model. An explanation of how to appropriately choose between physical formulations that implicitly or explicitly account for cell geometry and between deterministic versus stochastic formulations for molecular dynamics is provided, along with a discussion of their respective strengths and weaknesses. As a first step toward constructing a spatial model, the geometry needs to be specified and associated with the molecules, reactions, and membrane flux processes of the network. Initial conditions, diffusion coefficients, velocities, and boundary conditions complete the specifications required to define the mathematics of the model. The numerical methods used to solve reaction-diffusion problems both deterministically and stochastically are then described and some guidance is provided in how to set up and run simulations. A study of cAMP signaling in neurons ends the chapter, providing an example of the insights that can be gained in interpreting experimental results through the application of spatial modeling. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Locally adaptive, spatially explicit projection of US population for 2030 and 2050.

    PubMed

    McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.

  18. Quantifying the extent of protected-area downgrading, downsizing, and degazettement in Australia.

    PubMed

    Cook, Carly N; Valkan, Rebecca S; Mascia, Michael B; McGeoch, Melodie A

    2017-10-01

    The use of total area protected as the predominant indicator of progress in building protected area (PA) networks is receiving growing criticism. Documenting the full dynamics of PA networks, both in terms of the gains and losses in protection, provides a much more informative approach to tracking progress. To this end, documentation of PA downgrading, downsizing, and degazettement (PADDD) has increased. Studies of PADDD events generally fail to place these losses in the context of gains in protection; therefore, they omit important elements of PA network dynamics. To address this limitation, we used a spatially explicit approach to identify every parcel of land added to and excised from the Australian terrestrial PA network and PAs that had their level of protection changed over 17 years (1997-2014). By quantifying changes in the spatial configuration of the PA network with time-series data (spatial layers for nine separate time steps), ours is the first assessment of the dynamics (increases and decreases in area and level of protection) of a PA network and the first comprehensive assessment of PADDD in a developed country. We found that the Australian network was highly dynamic; there were 5233 changes in area or level of protection over 17 years. Against a background of enormous increases in area protected, we identified over 1500 PADDD events, which affected over one-third of the network, which were largely the result of widespread downgrading of protection. We believe our approach provides a mechanism for robust tracking of trends in the world's PAs through the use of data from the World Database on Protected Areas. However, this will require greater transparency and improved data standards in reporting changes to PAs. © 2017 Society for Conservation Biology.

  19. Increasingly, Data Availability Limits Model Predictive Capacity: the Western Lake Erie Basin, a Case Study

    NASA Astrophysics Data System (ADS)

    Behrman, K. D.; Johnson, M. V. V.; Atwood, J. D.; Norfleet, M. L.

    2016-12-01

    Recent algal blooms in Western Lake Erie Basin (WLEB) have renewed scientific community's interest in developing process based models to better understand and predict the drivers of eutrophic conditions in the lake. At the same time, in order to prevent future blooms, farmers, local communities and policy makers are interested in developing spatially explicit nutrient and sediment management plans at various scales, from field to watershed. These interests have fueled several modeling exercises intended to locate "hotspots" in the basin where targeted adoption of additional agricultural conservation practices could provide the most benefit to water quality. The models have also been used to simulate various scenarios representing potential agricultural solutions. The Soil and Water Assessment Tool (SWAT) and its sister model, the Agricultural Policy Environmental eXtender (APEX), have been used to simulate hydrology of interacting land uses in thousands of scientific studies around the world. High performance computing allows SWAT and APEX users to continue to improve and refine the model specificity to make predictions at small-spatial scales. Consequently, data inputs and calibration/validation data are now becoming the limiting factor to model performance. Water quality data for the tributaries and rivers that flow through WLEB is spatially and temporally limited. Land management data, including conservation practice and nutrient management data, are not publicly available at fine spatial and temporal scales. Here we show the data uncertainties associated with modeling WLEB croplands at a relatively large spatial scale (HUC-4) using site management data from over 1,000 farms collected by the Conservation Effects Assessment Project (CEAP). The error associated with downscaling this data to the HUC-8 and HUC-12 scale is shown. Simulations of spatially explicit dynamics can be very informative, but care must be taken when policy decisions are made based on models with unstated, but implicit assumptions. As we interpret modeling results, we must communicate the spatial and temporal scale for which the model was developed and at which the data is valid. When there is little to no data to enable appropriate validation and calibration, the results must be interpreted with appropriate skepticism.

  20. Evaluation of Spatially Targeted Strategies to Control Non-Domiciliated Triatoma dimidiata Vector of Chagas Disease

    PubMed Central

    Barbu, Corentin; Dumonteil, Eric; Gourbière, Sébastien

    2011-01-01

    Background Chagas disease is a major neglected tropical disease with deep socio-economical effects throughout Central and South America. Vector control programs have consistently reduced domestic populations of triatomine vectors, but non-domiciliated vectors still have to be controlled efficiently. Designing control strategies targeting these vectors is challenging, as it requires a quantitative description of the spatio-temporal dynamics of village infestation, which can only be gained from combinations of extensive field studies and spatial population dynamic modelling. Methodology/Principal Findings A spatially explicit population dynamic model was combined with a two-year field study of T. dimidiata infestation dynamics in the village of Teya, Mexico. The parameterized model fitted and predicted accurately both intra-annual variation and the spatial gradient in vector abundance. Five different control strategies were then applied in concentric rings to mimic spatial design targeting the periphery of the village, where vectors were most abundant. Indoor insecticide spraying and insect screens reduced vector abundance by up to 80% (when applied to the whole village), and half of this effect was obtained when control was applied only to the 33% of households closest to the village periphery. Peri-domicile cleaning was able to eliminate up to 60% of the vectors, but at the periphery of the village it has a low effect, as it is ineffective against sylvatic insects. The use of lethal traps and the management of house attractiveness provided similar levels of control. However this required either house attractiveness to be null, or ≥5 lethal traps, at least as attractive as houses, to be installed in each household. Conclusion/Significance Insecticide and insect screens used in houses at the periphery of the village can contribute to reduce house infestation in more central untreated zones. However, this beneficial effect remains insufficient to allow for a unique spatially targeted strategy to offer protection to all households. Most efficiently, control should combine the use of insect screens in outer zones to reduce infestation by both sylvatic and peri-domiciliated vectors, and cleaning of peri-domicile in the centre of the village where sylvatic vectors are absent. The design of such spatially mixed strategies of control offers a promising avenue to reduce the economic cost associated with the control of non-domiciliated vectors. PMID:21610862

  1. A class of high resolution explicit and implicit shock-capturing methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1989-01-01

    An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.

  2. Habitat fragmentation resulting in overgrazing by herbivores.

    PubMed

    Kondoh, Michio

    2003-12-21

    Habitat fragmentation sometimes results in outbreaks of herbivorous insect and causes an enormous loss of primary production. It is hypothesized that the driving force behind such herbivore outbreaks is disruption of natural enemy attack that releases herbivores from top-down control. To test this hypothesis I studied how trophic community structure changes along a gradient of habitat fragmentation level using spatially implicit and explicit models of a tri-trophic (plant, herbivore and natural enemy) food chain. While in spatially implicit model number of trophic levels gradually decreases with increasing fragmentation, in spatially explicit model a relatively low level of habitat fragmentation leads to overgrazing by herbivore to result in extinction of the plant population followed by a total system collapse. This provides a theoretical support to the hypothesis that habitat fragmentation can lead to overgrazing by herbivores and suggests a central role of spatial structure in the influence of habitat fragmentation on trophic communities. Further, the spatially explicit model shows (i) that the total system collapse by the overgrazing can occur only if herbivore colonization rate is high; (ii) that with increasing natural enemy colonization rate, the fragmentation level that leads to the system collapse becomes higher, and the frequency of the collapse is lowered.

  3. Exploring spatial change and gravity center movement for ecosystem services value using a spatially explicit ecosystem services value index and gravity model.

    PubMed

    He, Yingbin; Chen, Youqi; Tang, Huajun; Yao, Yanmin; Yang, Peng; Chen, Zhongxin

    2011-04-01

    Spatially explicit ecosystem services valuation and change is a newly developing area of research in the field of ecology. Using the Beijing region as a study area, the authors have developed a spatially explicit ecosystem services value index and implemented this to quantify and spatially differentiate ecosystem services value at 1-km grid resolution. A gravity model was developed to trace spatial change in the total ecosystem services value of the Beijing study area from a holistic point of view. Study results show that the total value of ecosystem services for the study area decreased by 19.75% during the period 1996-2006 (3,226.2739 US$×10(6) in 1996, 2,589.0321 US$×10(6) in 2006). However, 27.63% of the total area of the Beijing study area increased in ecosystem services value. Spatial differences in ecosystem services values for both 1996 and 2006 are very clear. The center of gravity of total ecosystem services value for the study area moved 32.28 km northwestward over the 10 years due to intensive human intervention taking place in southeast Beijing. The authors suggest that policy-makers should pay greater attention to ecological protection under conditions of rapid socio-economic development and increase the area of green belt in the southeastern part of Beijing.

  4. Rapid Response Tools and Datasets for Post-fire Erosion Modeling: Lessons Learned from the Rock House and High Park Fires

    NASA Astrophysics Data System (ADS)

    Miller, Mary Ellen; Elliot, William E.; MacDonald, Lee H.

    2013-04-01

    Once the danger posed by an active wildfire has passed, land managers must rapidly assess the threat from post-fire runoff and erosion due to the loss of surface cover and fire-induced changes in soil properties. Increased runoff and sediment delivery are of great concern to both the pubic and resource managers. Post-fire assessments and proposals to mitigate these threats are typically undertaken by interdisciplinary Burned Area Emergency Response (BAER) teams. These teams are under very tight deadlines, so they often begin their analysis while the fire is still burning and typically must complete their plans within a couple of weeks. Many modeling tools and datasets have been developed over the years to assist BAER teams, but process-based, spatially explicit models are currently under-utilized relative to simpler, lumped models because they are more difficult to set up and require the preparation of spatially-explicit data layers such as digital elevation models, soils, and land cover. The difficulty of acquiring and utilizing these data layers in spatially-explicit models increases with increasing fire size. Spatially-explicit post-fire erosion modeling was attempted for a small watershed in the 1270 km2 Rock House fire in Texas, but the erosion modeling work could not be completed in time. The biggest limitation was the time required to extract the spatially explicit soils data needed to run the preferred post-fire erosion model (GeoWEPP with Disturbed WEPP parameters). The solution is to have the spatial soil, land cover, and DEM data layers prepared ahead of time, and to have a clear methodology for the BAER teams to incorporate these layers in spatially-explicit modeling interfaces like GeoWEPP. After a fire occurs the data layers can quickly be clipped to the fire perimeter. The soil and land cover parameters can then be adjusted according to the burn severity map, which is one of the first products generated for the BAER teams. Under a previous project for the U.S. Environmental Protection Agency this preparatory work was done for much of Colorado, and in June 2012 the High Park wildfire in north central Colorado burned over 340 km2. The data layers for the entire burn area were quickly assembled and the spatially explicit runoff and erosion modeling was completed in less than three days. The resulting predictions were then used by the BAER team to quantify downstream risks and delineate priority areas for different post-fire treatments. These two contrasting case studies demonstrate the feasibility and the value of preparing datasets and modeling tools ahead of time. In recognition of this, the U.S. National Aeronautic and Space Administration has agreed to fund a pilot project to demonstrate the utility of acquiring and preparing the necessary data layers for fire-prone wildlands across the western U.S. A similar modeling and data acquisition approach could be followed

  5. Territory surveillance and prey management: Wolves keep track of space and time.

    PubMed

    Schlägel, Ulrike E; Merrill, Evelyn H; Lewis, Mark A

    2017-10-01

    Identifying behavioral mechanisms that underlie observed movement patterns is difficult when animals employ sophisticated cognitive-based strategies. Such strategies may arise when timing of return visits is important, for instance to allow for resource renewal or territorial patrolling. We fitted spatially explicit random-walk models to GPS movement data of six wolves ( Canis lupus ; Linnaeus, 1758) from Alberta, Canada to investigate the importance of the following: (1) territorial surveillance likely related to renewal of scent marks along territorial edges, to reduce intraspecific risk among packs, and (2) delay in return to recently hunted areas, which may be related to anti-predator responses of prey under varying prey densities. The movement models incorporated the spatiotemporal variable "time since last visit," which acts as a wolf's memory index of its travel history and is integrated into the movement decision along with its position in relation to territory boundaries and information on local prey densities. We used a model selection framework to test hypotheses about the combined importance of these variables in wolf movement strategies. Time-dependent movement for territory surveillance was supported by all wolf movement tracks. Wolves generally avoided territory edges, but this avoidance was reduced as time since last visit increased. Time-dependent prey management was weak except in one wolf. This wolf selected locations with longer time since last visit and lower prey density, which led to a longer delay in revisiting high prey density sites. Our study shows that we can use spatially explicit random walks to identify behavioral strategies that merge environmental information and explicit spatiotemporal information on past movements (i.e., "when" and "where") to make movement decisions. The approach allows us to better understand cognition-based movement in relation to dynamic environments and resources.

  6. Modeling Wood Encroachment in Abandoned Grasslands in the Eifel National Park – Model Description and Testing

    PubMed Central

    Hudjetz, Silvana; Lennartz, Gottfried; Krämer, Klara; Roß-Nickoll, Martina; Gergs, André; Preuss, Thomas G.

    2014-01-01

    The degradation of natural and semi-natural landscapes has become a matter of global concern. In Germany, semi-natural grasslands belong to the most species-rich habitat types but have suffered heavily from changes in land use. After abandonment, the course of succession at a specific site is often difficult to predict because many processes interact. In order to support decision making when managing semi-natural grasslands in the Eifel National Park, we built the WoodS-Model (Woodland Succession Model). A multimodeling approach was used to integrate vegetation dynamics in both the herbaceous and shrub/tree layer. The cover of grasses and herbs was simulated in a compartment model, whereas bushes and trees were modelled in an individual-based manner. Both models worked and interacted in a spatially explicit, raster-based landscape. We present here the model description, parameterization and testing. We show highly detailed projections of the succession of a semi-natural grassland including the influence of initial vegetation composition, neighborhood interactions and ungulate browsing. We carefully weighted the single processes against each other and their relevance for landscape development under different scenarios, while explicitly considering specific site conditions. Model evaluation revealed that the model is able to emulate successional patterns as observed in the field as well as plausible results for different population densities of red deer. Important neighborhood interactions such as seed dispersal, the protection of seedlings from browsing ungulates by thorny bushes, and the inhibition of wood encroachment by the herbaceous layer, have been successfully reproduced. Therefore, not only a detailed model but also detailed initialization turned out to be important for spatially explicit projections of a given site. The advantage of the WoodS-Model is that it integrates these many mutually interacting processes of succession. PMID:25494057

  7. A Theoretical Analysis of the Geography of Schistosomiasis in Burkina Faso Highlights the Roles of Human Mobility and Water Resources Development in Disease Transmission

    PubMed Central

    Perez-Saez, Javier; Mari, Lorenzo; Bertuzzo, Enrico; Casagrandi, Renato; Sokolow, Susanne H.; De Leo, Giulio A.; Mande, Theophile; Ceperley, Natalie; Froehlich, Jean-Marc; Sou, Mariam; Karambiri, Harouna; Yacouba, Hamma; Maiga, Amadou; Gatto, Marino; Rinaldo, Andrea

    2015-01-01

    We study the geography of schistosomiasis across Burkina Faso by means of a spatially explicit model of water-based disease dynamics. The model quantitatively addresses the geographic stratification of disease burden in a novel framework by explicitly accounting for drivers and controls of the disease, including spatial information on the distributions of population and infrastructure, jointly with a general description of human mobility and climatic/ecological drivers. Spatial patterns of disease are analysed by the extraction and the mapping of suitable eigenvectors of the Jacobian matrix subsuming the stability of the disease-free equilibrium. The relevance of the work lies in the novel mapping of disease burden, a byproduct of the parametrization induced by regional upscaling, by model-guided field validations and in the predictive scenarios allowed by exploiting the range of possible parameters and processes. Human mobility is found to be a primary control at regional scales both for pathogen invasion success and the overall distribution of disease burden. The effects of water resources development highlighted by systematic reviews are accounted for by the average distances of human settlements from water bodies that are habitats for the parasite’s intermediate host. Our results confirm the empirical findings about the role of water resources development on disease spread into regions previously nearly disease-free also by inspection of empirical prevalence patterns. We conclude that while the model still needs refinements based on field and epidemiological evidence, the proposed framework provides a powerful tool for large-scale public health planning and schistosomiasis management. PMID:26513655

  8. A novel explicit approach to model bromide and pesticide transport in soils containing macropores

    NASA Astrophysics Data System (ADS)

    Klaus, J.; Zehe, E.

    2011-01-01

    The present study tests whether an explicit treatment of worm burrows is feasible for simulating water flow, bromide and pesticide transport in structured heterogeneous soils. The essence is to represent worm burrows as morphologically connected paths of low flow resistance in the spatially highly resolved model domain. A recent Monte Carlo study (Klaus and Zehe, 2010) revealed that this approach allowed successful reproduction of tile drain event discharge recorded during an irrigation experiment at a tile drained field site. However, several "hillslope architectures" that were all consistent with the available extensive data base allowed a good reproduction of tile drain flow response. Our second objective was thus to find out whether this "equifinality" in spatial model setups may be reduced when including bromide tracer data in the model falsification process. We thus simulated transport of bromide and Isoproturon (IPU) for the 13 spatial model setups, which performed best with respect to reproduce tile drain event discharge, without any further calibration. All model setups allowed a very good prediction of the temporal dynamics of cumulated bromide leaching into the tile drain, while only four of them matched the accumulated water balance and accumulated bromide loss into the tile drain. The number of behavioural model architectures could thus be reduced to four. One of those setups was used for simulating transport of IPU, using different parameter combinations to characterise adsorption according to the Footprint data base. Simulations could, however, only reproduce the observed leaching behaviour, when we allowed for retardation coefficients that were very close to one.

  9. A methodological approach for deriving regional crop rotations as basis for the assessment of the impact of agricultural strategies using soil erosion as example.

    PubMed

    Lorenz, Marco; Fürst, Christine; Thiel, Enrico

    2013-09-01

    Regarding increasing pressures by global societal and climate change, the assessment of the impact of land use and land management practices on land degradation and the related decrease in sustainable provision of ecosystem services gains increasing interest. Existing approaches to assess agricultural practices focus on the assessment of single crops or statistical data because spatially explicit information on practically applied crop rotations is mostly not available. This provokes considerable uncertainties in crop production models as regional specifics have to be neglected or cannot be considered in an appropriate way. In a case study in Saxony, we developed an approach to (i) derive representative regional crop rotations by combining different data sources and expert knowledge. This includes the integration of innovative crop sequences related to bio-energy production or organic farming and different soil tillage, soil management and soil protection techniques. Furthermore, (ii) we developed a regionalization approach for transferring crop rotations and related soil management strategies on the basis of statistical data and spatially explicit data taken from so called field blocks. These field blocks are the smallest spatial entity for which agricultural practices must be reported to apply for agricultural funding within the frame of the European Agricultural Fund for Rural Development (EAFRD) program. The information was finally integrated into the spatial decision support tool GISCAME to assess and visualize in spatially explicit manner the impact of alternative agricultural land use strategies on soil erosion risk and ecosystem services provision. Objective of this paper is to present the approach how to create spatially explicit information on agricultural management practices for a study area around Dresden, the capital of the German Federal State Saxony. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases

    PubMed Central

    2011-01-01

    The complex epidemiology of vector-borne diseases creates significant challenges in the design and delivery of prevention and control strategies, especially in light of rapid social and environmental changes. Spatial models for predicting disease risk based on environmental factors such as climate and landscape have been developed for a number of important vector-borne diseases. The resulting risk maps have proven value for highlighting areas for targeting public health programs. However, these methods generally only offer technical information on the spatial distribution of disease risk itself, which may be incomplete for making decisions in a complex situation. In prioritizing surveillance and intervention strategies, decision-makers often also need to consider spatially explicit information on other important dimensions, such as the regional specificity of public acceptance, population vulnerability, resource availability, intervention effectiveness, and land use. There is a need for a unified strategy for supporting public health decision making that integrates available data for assessing spatially explicit disease risk, with other criteria, to implement effective prevention and control strategies. Multi-criteria decision analysis (MCDA) is a decision support tool that allows for the consideration of diverse quantitative and qualitative criteria using both data-driven and qualitative indicators for evaluating alternative strategies with transparency and stakeholder participation. Here we propose a MCDA-based approach to the development of geospatial models and spatially explicit decision support tools for the management of vector-borne diseases. We describe the conceptual framework that MCDA offers as well as technical considerations, approaches to implementation and expected outcomes. We conclude that MCDA is a powerful tool that offers tremendous potential for use in public health decision-making in general and vector-borne disease management in particular. PMID:22206355

  11. Analysis of Spatial Concepts, Spatial Skills and Spatial Representations in New York State Regents Earth Science Examinations

    ERIC Educational Resources Information Center

    Kastens, Kim A.; Pistolesi, Linda; Passow, Michael J.

    2014-01-01

    Research has shown that spatial thinking is important in science in general, and in Earth Science in particular, and that performance on spatially demanding tasks can be fostered through instruction. Because spatial thinking is rarely taught explicitly in the U.S. education system, improving spatial thinking may be "low-hanging fruit" as…

  12. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000

    NASA Astrophysics Data System (ADS)

    Reba, Meredith; Reitsma, Femke; Seto, Karen C.

    2016-06-01

    How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? In order to understand the current era of urbanization, we must understand long-term historical urbanization trends and patterns. However, to date there is no comprehensive record of spatially explicit, historic, city-level population data at the global scale. Here, we developed the first spatially explicit dataset of urban settlements from 3700 BC to AD 2000, by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data previously published in tabular form by Chandler and Modelski. The dataset creation process also required data cleaning and harmonization procedures to make the data internally consistent. Additionally, we created a reliability ranking for each geocoded location to assess the geographic uncertainty of each data point. The dataset provides the first spatially explicit archive of the location and size of urban populations over the last 6,000 years and can contribute to an improved understanding of contemporary and historical urbanization trends.

  13. Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000

    PubMed Central

    Reba, Meredith; Reitsma, Femke; Seto, Karen C.

    2016-01-01

    How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? In order to understand the current era of urbanization, we must understand long-term historical urbanization trends and patterns. However, to date there is no comprehensive record of spatially explicit, historic, city-level population data at the global scale. Here, we developed the first spatially explicit dataset of urban settlements from 3700 BC to AD 2000, by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data previously published in tabular form by Chandler and Modelski. The dataset creation process also required data cleaning and harmonization procedures to make the data internally consistent. Additionally, we created a reliability ranking for each geocoded location to assess the geographic uncertainty of each data point. The dataset provides the first spatially explicit archive of the location and size of urban populations over the last 6,000 years and can contribute to an improved understanding of contemporary and historical urbanization trends. PMID:27271481

  14. Efficient Conformational Sampling in Explicit Solvent Using a Hybrid Replica Exchange Molecular Dynamics Method

    DTIC Science & Technology

    2011-12-01

    REMD while reproducing the energy landscape of explicit solvent simulations . ’ INTRODUCTION Molecular dynamics (MD) simulations of proteins can pro...Mongan, J.; McCammon, J. A. Accelerated molecular dynamics : a promising and efficient simulation method for biomolecules. J. Chem. Phys. 2004, 120 (24...Chemical Theory and Computation ARTICLE (8) Abraham,M. J.; Gready, J. E. Ensuringmixing efficiency of replica- exchange molecular dynamics simulations . J

  15. A global assessment of market accessibility and market influence for global environmental change studies

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Ellis, Erle C.; Letourneau, Aurelien

    2011-07-01

    Markets influence the global patterns of urbanization, deforestation, agriculture and other land use systems. Yet market influence is rarely incorporated into spatially explicit global studies of environmental change, largely because consistent global data are lacking below the national level. Here we present the first high spatial resolution gridded data depicting market influence globally. The data jointly represent variations in both market strength and accessibility based on three market influence indices derived from an index of accessibility to market locations and national level gross domestic product (purchasing power parity). These indices show strong correspondence with human population density while also revealing several distinct and useful relationships with other global environmental patterns. As market influence grows, the need for high resolution global data on market influence and its dynamics will become increasingly important to understanding and forecasting global environmental change.

  16. A 2D Daubechies finite wavelet domain method for transient wave response analysis in shear deformable laminated composite plates

    NASA Astrophysics Data System (ADS)

    Nastos, C. V.; Theodosiou, T. C.; Rekatsinas, C. S.; Saravanos, D. A.

    2018-03-01

    An efficient numerical method is developed for the simulation of dynamic response and the prediction of the wave propagation in composite plate structures. The method is termed finite wavelet domain method and takes advantage of the outstanding properties of compactly supported 2D Daubechies wavelet scaling functions for the spatial interpolation of displacements in a finite domain of a plate structure. The development of the 2D wavelet element, based on the first order shear deformation laminated plate theory is described and equivalent stiffness, mass matrices and force vectors are calculated and synthesized in the wavelet domain. The transient response is predicted using the explicit central difference time integration scheme. Numerical results for the simulation of wave propagation in isotropic, quasi-isotropic and cross-ply laminated plates are presented and demonstrate the high spatial convergence and problem size reduction obtained by the present method.

  17. Metapopulation responses to patch connectivity and quality are masked by successional habitat dynamics.

    PubMed

    Hodgson, Jenny A; Moilanen, Atte; Thomas, Chris D

    2009-06-01

    Many species have to track changes in the spatial distribution of suitable habitat from generation to generation. Understanding the dynamics of such species will likely require spatially explicit models, and patch-based metapopulation models are potentially appropriate. However, relatively little attention has been paid to developing metapopulation models that include habitat dynamics, and very little to testing the predictions of these models. We tested three predictions from theory about the differences between dynamic habitat metapopulations and their static counterparts using long-term survey data from two metapopulations of the butterfly Plebejus argus. As predicted, we showed first that the metapopulation inhabiting dynamic habitat had a lower level of habitat occupancy, which could not be accounted for by other differences between the metapopulations. Secondly, we found that patch occupancy did not significantly increase with increasing patch connectivity in dynamic habitat, whereas there was a strong positive connectivity-occupancy relationship in static habitat. Thirdly, we found no significant relationship between patch occupancy and patch quality in dynamic habitat, whereas there was a strong, positive quality-occupancy relationship in static habitat. Modeling confirmed that the differences in mean patch occupancy and connectivity-occupancy slope could arise without changing the species' metapopulation parameters-importantly, without changing the dependence of colonization upon connectivity. We found that, for a range of landscape scenarios, successional simulations always produced a lower connectivity-occupancy slope than comparable simulations with static patches, whether compared like-for-like or controlling for mean occupancy. We conclude that landscape-scale studies may often underestimate the importance of connectivity for species occurrence and persistence because habitat turnover can obscure the connectivity-occupancy relationship in commonly available snapshot data.

  18. Spatial Working Memory Interferes with Explicit, but Not Probabilistic Cuing of Spatial Attention

    ERIC Educational Resources Information Center

    Won, Bo-Yeong; Jiang, Yuhong V.

    2015-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal…

  19. Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    NASA Astrophysics Data System (ADS)

    Zuchowski, Loïc; Brun, Michael; De Martin, Florent

    2018-05-01

    The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova, T; Carlsen, T

    We present a study, based on simulations with SERDYCA, a spatially-explicit individual based model of rodent dynamics, on the connection between population persistence and the presence of inhomogeneities in the habitat. We are specifically interested on the effect that inhomogeneities that do not fragment the environment, have on population persistence. Our results suggest that a certain percentage of inhomogeneities can increase the average time to extinction of the population. Inhomogeneities decrease the population density and can increase the ratio of juveniles in the population thus providing a better chance for the population to restore itself after a severe period withmore » critically low population density. We call this the ''inhomogeneity localization effect''.« less

  1. A different time and place test of ArcHSI: A spatially explicit habitat model for elk in the Black Hills

    Treesearch

    Mark A. Rumble; Lakhdar Benkobi; R. Scott Gamo

    2007-01-01

    We tested predictions of the spatially explicit ArcHSI habitat model for elk. The distribution of elk relative to proximity of forage and cover differed from that predicted. Elk used areas near primary roads similar to that predicted by the model, but elk were farther from secondary roads. Elk used areas categorized as good (> 0.7), fair (> 0.42 to 0.7), and poor...

  2. Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing.

    PubMed

    Salvato, Gerardo; Patai, Eva Z; Nobre, Anna C

    2016-01-01

    It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Using a spatially explicit analysis model to evaluate spatial variation of corn yield

    USDA-ARS?s Scientific Manuscript database

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  4. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways

    DOE PAGES

    Jones, B.; O’Neill, B. C.

    2016-07-29

    Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less

  5. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.; O’Neill, B. C.

    Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less

  6. Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region.

    PubMed

    Li, Tianyu; Meng, Qingmin

    2017-05-01

    The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.

  7. Dynamic assessment of urban economy-environment-energy system using system dynamics model: A case study in Beijing.

    PubMed

    Wu, Desheng; Ning, Shuang

    2018-07-01

    Economic development, accompanying with environmental damage and energy depletion, becomes essential nowadays. There is a complicated and comprehensive interaction between economics, environment and energy. Understanding the operating mechanism of Energy-Environment-Economy model (3E) and its key factors is the inherent part in dealing with the issue. In this paper, we combine System Dynamics model and Geographic Information System to analyze the energy-environment-economy (3E) system both temporally and spatially, which explicitly explore the interaction of economics, energy, and environment and effects of the key influencing factors. Beijing is selected as a case study to verify our SD-GIS model. Alternative scenarios, e.g., current, technology, energy and environment scenarios are explored and compared. Simulation results shows that, current scenario is not sustainable; technology scenario is applicable to economic growth; environment scenario maintains a balanced path of development for long term stability. Policy-making insights are given based on our results and analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region

    NASA Astrophysics Data System (ADS)

    Li, Tianyu; Meng, Qingmin

    2017-05-01

    The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.

  9. Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models.

    PubMed

    Keith, David A; Akçakaya, H Resit; Thuiller, Wilfried; Midgley, Guy F; Pearson, Richard G; Phillips, Steven J; Regan, Helen M; Araújo, Miguel B; Rebelo, Tony G

    2008-10-23

    Species responses to climate change may be influenced by changes in available habitat, as well as population processes, species interactions and interactions between demographic and landscape dynamics. Current methods for assessing these responses fail to provide an integrated view of these influences because they deal with habitat change or population dynamics, but rarely both. In this study, we linked a time series of habitat suitability models with spatially explicit stochastic population models to explore factors that influence the viability of plant species populations under stable and changing climate scenarios in South African fynbos, a global biodiversity hot spot. Results indicate that complex interactions between life history, disturbance regime and distribution pattern mediate species extinction risks under climate change. Our novel mechanistic approach allows more complete and direct appraisal of future biotic responses than do static bioclimatic habitat modelling approaches, and will ultimately support development of more effective conservation strategies to mitigate biodiversity losses due to climate change.

  10. Motion-Dependent Filling-In of Spatiotemporal Information at the Blind Spot

    PubMed Central

    Maus, Gerrit W.; Whitney, David

    2016-01-01

    We usually do not notice the blind spot, a receptor-free region on the retina. Stimuli extending through the blind spot appear filled in. However, if an object does not reach through but ends in the blind spot, it is perceived as “cut off” at the boundary. Here we show that even when there is no corresponding stimulation at opposing edges of the blind spot, well known motion-induced position shifts also extend into the blind spot and elicit a dynamic filling-in process that allows spatial structure to be extrapolated into the blind spot. We presented observers with sinusoidal gratings that drifted into or out of the blind spot, or flickered in counterphase. Gratings moving into the blind spot were perceived to be longer than those moving out of the blind spot or flickering, revealing motion-dependent filling-in. Further, observers could perceive more of a grating’s spatial structure inside the blind spot than would be predicted from simple filling-in of luminance information from the blind spot edge. This is evidence for a dynamic filling-in process that uses spatiotemporal information from the motion system to extrapolate visual percepts into the scotoma of the blind spot. Our findings also provide further support for the notion that an explicit spatial shift of topographic representations contributes to motion-induced position illusions. PMID:27100795

  11. Four millennia of woodland structure and dynamics at the Arctic treeline of eastern Canada.

    PubMed

    Auger, Sarah; Payette, Serge

    2010-05-01

    Paleoecological analysis using complementary indicators of vegetation and soil can provide spatially explicit information on ecological processes influencing trajectories of long-term ecosystem change. Here we document the structure and dynamics of an old-growth woodland before and after its inception 1000 years ago. We infer vegetation and soil characteristics from size and age distributions of black spruce (Picea mariana (Mill.) B.S.P.), soil properties, plant fossils, and paleosols. Radiocarbon ages of charcoal on the ground and in the soil indicate that the fire return interval was approximately 300 years between 2750 and 1000 cal. yr BP. No fire evidence was found before and after this period despite the presence of spruce since 4200 cal. yr BP. The size structures of living and dead spruce suggest that the woodland is in equilibrium with present climate in absence of fire. Tree establishment and mortality occurred regularly since the last fire event around 950 cal. yr BP. Both layering and occasional seeding have contributed to stabilize the spatial distribution of spruce over the past 1000 years. Since initial afforestation, soil development has been homogenized by the changing spatial distribution of spruce following each fire. We conclude that the history of the woodland is characterized by vegetation shifts associated with fire and soil disturbances and by millennial-scale maintenance of the woodland's structure despite changing climatic conditions.

  12. Motion-Dependent Filling-In of Spatiotemporal Information at the Blind Spot.

    PubMed

    Maus, Gerrit W; Whitney, David

    2016-01-01

    We usually do not notice the blind spot, a receptor-free region on the retina. Stimuli extending through the blind spot appear filled in. However, if an object does not reach through but ends in the blind spot, it is perceived as "cut off" at the boundary. Here we show that even when there is no corresponding stimulation at opposing edges of the blind spot, well known motion-induced position shifts also extend into the blind spot and elicit a dynamic filling-in process that allows spatial structure to be extrapolated into the blind spot. We presented observers with sinusoidal gratings that drifted into or out of the blind spot, or flickered in counterphase. Gratings moving into the blind spot were perceived to be longer than those moving out of the blind spot or flickering, revealing motion-dependent filling-in. Further, observers could perceive more of a grating's spatial structure inside the blind spot than would be predicted from simple filling-in of luminance information from the blind spot edge. This is evidence for a dynamic filling-in process that uses spatiotemporal information from the motion system to extrapolate visual percepts into the scotoma of the blind spot. Our findings also provide further support for the notion that an explicit spatial shift of topographic representations contributes to motion-induced position illusions.

  13. Understanding climate impacts on recruitment and spatial dynamics of Atlantic cod in the Gulf of Maine: Integration of observations and modeling

    NASA Astrophysics Data System (ADS)

    Runge, Jeffrey A.; Kovach, Adrienne I.; Churchill, James H.; Kerr, Lisa A.; Morrison, John R.; Beardsley, Robert C.; Berlinsky, David L.; Chen, Changsheng; Cadrin, Steven X.; Davis, Cabell S.; Ford, Kathryn H.; Grabowski, Jonathan H.; Howell, W. Huntting; Ji, Rubao; Jones, Rebecca J.; Pershing, Andrew J.; Record, Nicholas R.; Thomas, Andrew C.; Sherwood, Graham D.; Tallack, Shelly M. L.; Townsend, David W.

    2010-10-01

    We put forward a combined observing and modeling strategy for evaluating effects of environmental forcing on the dynamics of spatially structured cod populations spawning in the western Gulf of Maine. Recent work indicates at least two genetically differentiated complexes in this region: a late spring spawning, coastal population centered in Ipswich Bay, and a population that spawns in winter inshore and on nearshore banks in the Gulf of Maine and off southern New England. The two populations likely differ in trophic interactions and in physiological and behavioral responses to different winter and spring environments. Coupled physical-biological modeling has advanced to the point where within-decade forecasting of environmental conditions for recruitment to each of the two populations is feasible. However, the modeling needs to be supported by hydrographic, primary production and zooplankton data collected by buoys, and by data from remote sensing and fixed station sampling. Forecasts of environmentally driven dispersal and growth of planktonic early life stages, combined with an understanding of possible population-specific predator fields, usage of coastal habitat by juveniles and adult resident and migratory patterns, can be used to develop scenarios for spatially explicit population responses to multiple forcings, including climate change, anthropogenic impacts on nearshore juvenile habitat, connectivity among populations and management interventions such as regional fisheries closures.

  14. Exploring component-based approaches in forest landscape modeling

    Treesearch

    H. S. He; D. R. Larsen; D. J. Mladenoff

    2002-01-01

    Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...

  15. The importance of place names in the search for ecosystem-like concepts in indigenous societies: an example from the Bolivian Andes.

    PubMed

    Boillat, Sébastien; Serrano, Elvira; Rist, Stephan; Berkes, Fikret

    2013-03-01

    This paper aims to deepen the search for ecosystem-like concepts in indigenous societies by highlighting the importance of place names used by Quechua indigenous farmers from the central Bolivian Andes. Villagers from two communities in the Tunari Mountain Range were asked to list, describe, map and categorize the places they knew on their community's territory. Results show that place names capture spatially explicit units which integrate biotic and abiotic nature and humans, and that there is an emphasis on topographic terms, highlighting the importance of geodiversity. Farmers' perspectives differ from the classical view of ecosystems because they 'humanize' places, considering them as living beings with agency. Consequently, they do not make a distinction between natural and cultural heritage. Their perspective of the environment is that of a personalized, dynamic relationship with the elements of the natural world that are perceived as living entities. A practical implication of the findings for sustainable development is that since places names make the links between people and the elements of the landscape, toponymy is a tool for ecosystem management rooted in indigenous knowledge. Because place names refer to holistic units linked with people's experience and spatially explicit, they can be used as an entry point to implement an intercultural dialogue for more sustainable land management.

  16. The Importance of Place Names in the Search for Ecosystem-Like Concepts in Indigenous Societies: An Example from the Bolivian Andes

    NASA Astrophysics Data System (ADS)

    Boillat, Sébastien; Serrano, Elvira; Rist, Stephan; Berkes, Fikret

    2013-03-01

    This paper aims to deepen the search for ecosystem-like concepts in indigenous societies by highlighting the importance of place names used by Quechua indigenous farmers from the central Bolivian Andes. Villagers from two communities in the Tunari Mountain Range were asked to list, describe, map and categorize the places they knew on their community's territory. Results show that place names capture spatially explicit units which integrate biotic and abiotic nature and humans, and that there is an emphasis on topographic terms, highlighting the importance of geodiversity. Farmers' perspectives differ from the classical view of ecosystems because they `humanize' places, considering them as living beings with agency. Consequently, they do not make a distinction between natural and cultural heritage. Their perspective of the environment is that of a personalized, dynamic relationship with the elements of the natural world that are perceived as living entities. A practical implication of the findings for sustainable development is that since places names make the links between people and the elements of the landscape, toponymy is a tool for ecosystem management rooted in indigenous knowledge. Because place names refer to holistic units linked with people's experience and spatially explicit, they can be used as an entry point to implement an intercultural dialogue for more sustainable land management.

  17. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2018-02-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

  18. Spatially explicit spectral analysis of point clouds and geospatial data

    USGS Publications Warehouse

    Buscombe, Daniel D.

    2015-01-01

    The increasing use of spatially explicit analyses of high-resolution spatially distributed data (imagery and point clouds) for the purposes of characterising spatial heterogeneity in geophysical phenomena necessitates the development of custom analytical and computational tools. In recent years, such analyses have become the basis of, for example, automated texture characterisation and segmentation, roughness and grain size calculation, and feature detection and classification, from a variety of data types. In this work, much use has been made of statistical descriptors of localised spatial variations in amplitude variance (roughness), however the horizontal scale (wavelength) and spacing of roughness elements is rarely considered. This is despite the fact that the ratio of characteristic vertical to horizontal scales is not constant and can yield important information about physical scaling relationships. Spectral analysis is a hitherto under-utilised but powerful means to acquire statistical information about relevant amplitude and wavelength scales, simultaneously and with computational efficiency. Further, quantifying spatially distributed data in the frequency domain lends itself to the development of stochastic models for probing the underlying mechanisms which govern the spatial distribution of geological and geophysical phenomena. The software packagePySESA (Python program for Spatially Explicit Spectral Analysis) has been developed for generic analyses of spatially distributed data in both the spatial and frequency domains. Developed predominantly in Python, it accesses libraries written in Cython and C++ for efficiency. It is open source and modular, therefore readily incorporated into, and combined with, other data analysis tools and frameworks with particular utility for supporting research in the fields of geomorphology, geophysics, hydrography, photogrammetry and remote sensing. The analytical and computational structure of the toolbox is described, and its functionality illustrated with an example of a high-resolution bathymetric point cloud data collected with multibeam echosounder.

  19. Continuous attractor network models of grid cell firing based on excitatory–inhibitory interactions

    PubMed Central

    Shipston‐Sharman, Oliver; Solanka, Lukas

    2016-01-01

    Abstract Neurons in the medial entorhinal cortex encode location through spatial firing fields that have a grid‐like organisation. The challenge of identifying mechanisms for grid firing has been addressed through experimental and theoretical investigations of medial entorhinal circuits. Here, we discuss evidence for continuous attractor network models that account for grid firing by synaptic interactions between excitatory and inhibitory cells. These models assume that grid‐like firing patterns are the result of computation of location from velocity inputs, with additional spatial input required to oppose drift in the attractor state. We focus on properties of continuous attractor networks that are revealed by explicitly considering excitatory and inhibitory neurons, their connectivity and their membrane potential dynamics. Models at this level of detail can account for theta‐nested gamma oscillations as well as grid firing, predict spatial firing of interneurons as well as excitatory cells, show how gamma oscillations can be modulated independently from spatial computations, reveal critical roles for neuronal noise, and demonstrate that only a subset of excitatory cells in a network need have grid‐like firing fields. Evaluating experimental data against predictions from detailed network models will be important for establishing the mechanisms mediating grid firing. PMID:27870120

  20. Fully coupled approach to modeling shallow water flow, sediment transport, and bed evolution in rivers

    NASA Astrophysics Data System (ADS)

    Li, Shuangcai; Duffy, Christopher J.

    2011-03-01

    Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.

  1. Spatially and seasonally asymmetric responses of Amazon forests to El Niño

    NASA Astrophysics Data System (ADS)

    Mao, J.; Yan, B.; Dickinson, R. E.; Shi, X.; Ricciuto, D. M.; Norby, R. J.; Dai, Y.; Zhang, X.; McDowell, N.; Wu, J.

    2017-12-01

    El Niño Southern Oscillation (ENSO) events impose strong inter-annual signals on local climate changes and terrestrial ecosystem dynamics in many regions on the Earth especially tropical forests in the Amazon basin. However, much is still unknown regarding the vulnerability of tropical forests to ENSO effects, especially in a spatially-explicit context. Here, using satellite and ground observations with reanalysis data of climate variables, we analyzed the spatial and temporal patterns of plant growth in response to the warm phase of ENSO (i.e., El Niño), which resulted in precipitation anomaly (or drought) over a large area across the Amazon. We found that the influence of El Niño events on vegetation growth varied spatially and seasonally. During each season (dry or wet), the forests were divided into two sub-regions that were either controlled by precipitation or radiation. The boundaries between the two sub-regions were determined, which were distributed from northwest to southeast in the dry season and from northeast to southwest in the wet season. This result improves our understanding of the water and energy availability co-modulating the vegetation growth in Amazonia and the magnitude and direction of Amazon forests responding to drought.

  2. Implicit and Explicit Number-Space Associations Differentially Relate to Interference Control in Young Adults With ADHD

    PubMed Central

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2018-01-01

    Behavioral evidence for the link between numerical and spatial representations comes from the spatial-numerical association of response codes (SNARC) effect, consisting in faster reaction times to small/large numbers with the left/right hand respectively. The SNARC effect is, however, characterized by considerable intra- and inter-individual variability. It depends not only on the explicit or implicit nature of the numerical task, but also relates to interference control. To determine whether the prevalence of the latter relation in the elderly could be ascribed to younger individuals’ ceiling performances on executive control tasks, we determined whether the SNARC effect related to Stroop and/or Flanker effects in 26 young adults with ADHD. We observed a divergent pattern of correlation depending on the type of numerical task used to assess the SNARC effect and the type of interference control measure involved in number-space associations. Namely, stronger number-space associations during parity judgments involving implicit magnitude processing related to weaker interference control in the Stroop but not Flanker task. Conversely, stronger number-space associations during explicit magnitude classifications tended to be associated with better interference control in the Flanker but not Stroop paradigm. The association of stronger parity and magnitude SNARC effects with weaker and better interference control respectively indicates that different mechanisms underlie these relations. Activation of the magnitude-associated spatial code is irrelevant and potentially interferes with parity judgments, but in contrast assists explicit magnitude classifications. Altogether, the present study confirms the contribution of interference control to number-space associations also in young adults. It suggests that magnitude-associated spatial codes in implicit and explicit tasks are monitored by different interference control mechanisms, thereby explaining task-related intra-individual differences in number-space associations. PMID:29881363

  3. Role of depletion on the dynamics of a diffusing forager

    NASA Astrophysics Data System (ADS)

    Bénichou, O.; Chupeau, M.; Redner, S.

    2016-09-01

    We study the dynamics of a starving random walk in general spatial dimension d. This model represents an idealized description for the fate of an unaware forager whose motion is not affected by the presence or absence of resources. The forager depletes its environment by consuming resources and dies if it wanders too long without finding food. In the exactly solvable case of one dimension, we explicitly derive the average lifetime of the walk and the distribution for the number of distinct sites visited by the walk at the instant of starvation. We also give a heuristic derivation for the averages of these two quantities. We tackle the complex but ecologically relevant case of two dimensions by an approximation in which the depleted zone is assumed to always be circular and which grows incrementally each time the walk reaches the edge of this zone. Within this framework, we derive a lower bound for the scaling of the average lifetime and number of distinct sites visited at starvation. We also determine the asymptotic distribution of the number of distinct sites visited at starvation. Finally, we solve the case of high spatial dimensions within a mean-field approach.

  4. Tropical forests are non-equilibrium ecosystems governed by interspecific competition based on universal 1/6 niche width.

    PubMed

    Fort, Hugo; Inchausti, Pablo

    2013-01-01

    Tropical forests are mega-diverse ecosystems that display complex and non-equilibrium dynamics. However, theoretical approaches have largely focused on explaining steady-state behaviour and fitting snapshots of data. Here we show that local and niche interspecific competition can realistically and parsimoniously explain the observed non-equilibrium regime of permanent plots of nine tropical forests, in eight different countries. Our spatially-explicit model, besides predicting with accuracy the main biodiversity metrics for these plots, can also reproduce their dynamics. A central finding is that tropical tree species have a universal niche width of approximately 1/6 of the niche axis that echoes the observed widespread convergence in their functional traits enabling them to exploit similar resources and to coexist despite of having large niche overlap. This niche width yields an average ratio of 0.25 between interspecific and intraspecific competition that corresponds to an intermediate value between the extreme claims of the neutral model and the classical niche-based model of community assembly (where interspecific competition is dominant). In addition, our model can explain and yield observed spatial patterns that classical niche-based and neutral theories cannot.

  5. Climate change in metacommunities: dispersal gives double-sided effects on persistence.

    PubMed

    Eklöf, Anna; Kaneryd, Linda; Münger, Peter

    2012-11-05

    Climate change is increasingly affecting the structure and dynamics of ecological communities both at local and at regional scales, and this can be expected to have important consequences for their robustness and long-term persistence. The aim of the present work is to analyse how the spatial structure of the landscape and dispersal patterns of species (dispersal rate and average dispersal distance) affects metacommunity response to two disturbances: (i) increased mortality during dispersal and (ii) local species extinction. We analyse the disturbances both in isolation and in combination. Using a spatially and dynamically explicit metacommunity model, we find that the effect of dispersal on metacommunity persistence is two-sided: on the one hand, high dispersal significantly reduces the risk of bottom-up extinction cascades following the local removal of a species; on the other hand, when dispersal imposes a risk to the dispersing individuals, high dispersal increases extinction risks, especially when dispersal is global. Large-bodied species with long generation times at the highest trophic level are particularly vulnerable to extinction when dispersal involves a risk. This suggests that decreasing the mortality risk of dispersing individuals by improving the quality of the habitat matrix may greatly increase the robustness of metacommunities.

  6. Confidentiality and spatially explicit data: Concerns and challenges

    PubMed Central

    VanWey, Leah K.; Rindfuss, Ronald R.; Gutmann, Myron P.; Entwisle, Barbara; Balk, Deborah L.

    2005-01-01

    Recent theoretical, methodological, and technological advances in the spatial sciences create an opportunity for social scientists to address questions about the reciprocal relationship between context (spatial organization, environment, etc.) and individual behavior. This emerging research community has yet to adequately address the new threats to the confidentiality of respondent data in spatially explicit social survey or census data files, however. This paper presents four sometimes conflicting principles for the conduct of ethical and high-quality science using such data: protection of confidentiality, the social–spatial linkage, data sharing, and data preservation. The conflict among these four principles is particularly evident in the display of spatially explicit data through maps combined with the sharing of tabular data files. This paper reviews these two research activities and shows how current practices favor one of the principles over the others and do not satisfactorily resolve the conflict among them. Maps are indispensable for the display of results but also reveal information on the location of respondents and sampling clusters that can then be used in combination with shared data files to identify respondents. The current practice of sharing modified or incomplete data sets or using data enclaves is not ideal for either the advancement of science or the protection of confidentiality. Further basic research and open debate are needed to advance both understanding of and solutions to this dilemma. PMID:16230608

  7. Nuclear quantum effects on the structure and the dynamics of [H2O]8 at low temperatures.

    PubMed

    Videla, Pablo E; Rossky, Peter J; Laria, D

    2013-11-07

    We use ring-polymer-molecular-dynamics (RPMD) techniques and the semi-empirical q-TIP4P/F water model to investigate the relationship between hydrogen bond connectivity and the characteristics of nuclear position fluctuations, including explicit incorporation of quantum effects, for the energetically low lying isomers of the prototype cluster [H2O]8 at T = 50 K and at 150 K. Our results reveal that tunneling and zero-point energy effects lead to sensible increments in the magnitudes of the fluctuations of intra and intermolecular distances. The degree of proton spatial delocalization is found to map logically with the hydrogen-bond connectivity pattern of the cluster. Dangling hydrogen bonds exhibit the largest extent of spatial delocalization and participate in shorter intramolecular O-H bonds. Combined effects from quantum and polarization fluctuations on the resulting individual dipole moments are also examined. From the dynamical side, we analyze the characteristics of the infrared absorption spectrum. The incorporation of nuclear quantum fluctuations promotes red shifts and sensible broadening relative to the classical profile, bringing the simulation results in much more satisfactory agreement with direct experimental information in the mid and high frequency range of the stretching band. While RPMD predictions overestimate the peak position of the low frequency shoulder, the overall agreement with that reported using an accurate, parameterized, many-body potential is reasonable, and far superior to that one obtains by implementing a partially adiabatic centroid molecular dynamics approach. Quantum effects on the collective dynamics, as reported by instantaneous normal modes, are also discussed.

  8. CDFISH: an individual-based, spatially-explicit, landscape genetics simulator for aquatic species in complex riverscapes

    USGS Publications Warehouse

    Erin L. Landguth,; Muhlfeld, Clint C.; Luikart, Gordon

    2012-01-01

    We introduce Cost Distance FISHeries (CDFISH), a simulator of population genetics and connectivity in complex riverscapes for a wide range of environmental scenarios of aquatic organisms. The spatially-explicit program implements individual-based genetic modeling with Mendelian inheritance and k-allele mutation on a riverscape with resistance to movement. The program simulates individuals in subpopulations through time employing user-defined functions of individual migration, reproduction, mortality, and dispersal through straying on a continuous resistance surface.

  9. Video Salient Object Detection via Fully Convolutional Networks.

    PubMed

    Wang, Wenguan; Shen, Jianbing; Shao, Ling

    This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).This paper proposes a deep learning model to efficiently detect salient regions in videos. It addresses two important issues: 1) deep video saliency model training with the absence of sufficiently large and pixel-wise annotated video data and 2) fast video saliency training and detection. The proposed deep video saliency network consists of two modules, for capturing the spatial and temporal saliency information, respectively. The dynamic saliency model, explicitly incorporating saliency estimates from the static saliency model, directly produces spatiotemporal saliency inference without time-consuming optical flow computation. We further propose a novel data augmentation technique that simulates video training data from existing annotated image data sets, which enables our network to learn diverse saliency information and prevents overfitting with the limited number of training videos. Leveraging our synthetic video data (150K video sequences) and real videos, our deep video saliency model successfully learns both spatial and temporal saliency cues, thus producing accurate spatiotemporal saliency estimate. We advance the state-of-the-art on the densely annotated video segmentation data set (MAE of .06) and the Freiburg-Berkeley Motion Segmentation data set (MAE of .07), and do so with much improved speed (2 fps with all steps).

  10. An eleven-year validation of a physically-based distributed dynamic ecohydorological model tRIBS+VEGGIE: Walnut Gulch Experimental Watershed

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bisht, G.; Ivanov, V. Y.; Bras, R. L.

    2008-12-01

    A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was applied to the semiarid Walnut Gulch Experimental Watershed in Arizona. The physically-based, distributed nature of the coupled model allows for parameterization and simulation of watershed vegetation-water-energy dynamics on timescales varying from hourly to interannual. The model also allows for explicit spatial representation of processes that vary due to complex topography, such as lateral redistribution of moisture and partitioning of radiation with respect to aspect and slope. Model parameterization and forcing was conducted using readily available databases for topography, soil types, and land use cover as well as the data from network of meteorological stations located within the Walnut Gulch watershed. In order to test the performance of the model, three sets of simulations were conducted over an 11 year period from 1997 to 2007. Two simulations focus on heavily instrumented nested watersheds within the Walnut Gulch basin; (i) Kendall watershed, which is dominated by annual grasses; and (ii) Lucky Hills watershed, which is dominated by a mixture of deciduous and evergreen shrubs. The third set of simulations cover the entire Walnut Gulch Watershed. Model validation and performance were evaluated in relation to three broad categories; (i) energy balance components: the network of meteorological stations were used to validate the key energy fluxes; (ii) water balance components: the network of flumes, rain gauges and soil moisture stations installed within the watershed were utilized to validate the manner in which the model partitions moisture; and (iii) vegetation dynamics: remote sensing products from MODIS were used to validate spatial and temporal vegetation dynamics. Model results demonstrate satisfactory spatial and temporal agreement with observed data, giving confidence that key ecohydrological processes can be adequately represented for future applications of tRIBS+VEGGIE in regional modeling of land-atmosphere interactions.

  11. Strategies of offspring investment and dispersal in a spatially structured environment: a theoretical study using ants.

    PubMed

    Cronin, Adam L; Loeuille, Nicolas; Monnin, Thibaud

    2016-02-05

    Offspring investment strategies vary markedly between and within taxa, and much of this variation is thought to stem from the trade-off between offspring size and number. While producing larger offspring can increase their competitive ability, this often comes at a cost to their colonization ability. This competition-colonization trade-off (CCTO) is thought to be an important mechanism supporting coexistence of alternative strategies in a wide range of taxa. However, the relative importance of an alternative and possibly synergistic mechanism-spatial structuring of the environment-remains the topic of some debate. In this study, we explore the influence of these mechanisms on metacommunity structure using an agent-based model built around variable life-history traits. Our model combines explicit resource competition and spatial dynamics, allowing us to tease-apart the influence of, and explore the interaction between, the CCTO and the spatial structure of the environment. We test our model using two reproductive strategies which represent extremes of the CCTO and are common in ants. Our simulations show that colonisers outperform competitors in environments subject to higher temporal and spatial heterogeneity and are favoured when agents mature late and invest heavily in reproduction, whereas competitors dominate in low-disturbance, high resource environments and when maintenance costs are low. Varying life-history parameters has a marked influence on coexistence conditions and yields evolutionary stable strategies for both modes of reproduction. Nonetheless, we show that these strategies can coexist over a wide range of life-history and environmental parameter values, and that coexistence can in most cases be explained by a CCTO. By explicitly considering space, we are also able to demonstrate the importance of the interaction between dispersal and landscape structure. The CCTO permits species employing different reproductive strategies to coexist over a wide range of life-history and environmental parameters, and is likely to be an important factor in structuring ant communities. Our consideration of space highlights the importance of dispersal, which can limit the success of low-dispersers through kin competition, and enhance coexistence conditions for different strategies in spatially structured environments.

  12. Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models

    NASA Astrophysics Data System (ADS)

    Schoups, G.; Vrugt, J. A.; Fenicia, F.; van de Giesen, N. C.

    2010-10-01

    Conceptual rainfall-runoff models have traditionally been applied without paying much attention to numerical errors induced by temporal integration of water balance dynamics. Reliance on first-order, explicit, fixed-step integration methods leads to computationally cheap simulation models that are easy to implement. Computational speed is especially desirable for estimating parameter and predictive uncertainty using Markov chain Monte Carlo (MCMC) methods. Confirming earlier work of Kavetski et al. (2003), we show here that the computational speed of first-order, explicit, fixed-step integration methods comes at a cost: for a case study with a spatially lumped conceptual rainfall-runoff model, it introduces artificial bimodality in the marginal posterior parameter distributions, which is not present in numerically accurate implementations of the same model. The resulting effects on MCMC simulation include (1) inconsistent estimates of posterior parameter and predictive distributions, (2) poor performance and slow convergence of the MCMC algorithm, and (3) unreliable convergence diagnosis using the Gelman-Rubin statistic. We studied several alternative numerical implementations to remedy these problems, including various adaptive-step finite difference schemes and an operator splitting method. Our results show that adaptive-step, second-order methods, based on either explicit finite differencing or operator splitting with analytical integration, provide the best alternative for accurate and efficient MCMC simulation. Fixed-step or adaptive-step implicit methods may also be used for increased accuracy, but they cannot match the efficiency of adaptive-step explicit finite differencing or operator splitting. Of the latter two, explicit finite differencing is more generally applicable and is preferred if the individual hydrologic flux laws cannot be integrated analytically, as the splitting method then loses its advantage.

  13. Exploring the effect of drought extent and interval on the Florida snail kite: Interplay between spatial and temporal scales

    USGS Publications Warehouse

    Mooij, Wolf M.; Bennetts, Robert E.; Kitchens, Wiley M.; DeAngelis, Donald L.

    2002-01-01

    The paper aims at exploring the viability of the Florida snail kite population under various drought regimes in its wetland habitat. The population dynamics of snail kites are strongly linked with the hydrology of the system due to the dependence of this bird species on one exclusive prey species, the apple snail, which is negatively affected by a drying out of habitat. Based on empirical evidence, it has been hypothesised that the viability of the snail kite population critically depends not only on the time interval between droughts, but also on the spatial extent of these droughts. A system wide drought is likely to result in reduced reproduction and increased mortality, whereas the birds can respond to local droughts by moving to sites where conditions are still favourable. This paper explores the implications of this hypothesis by means of a spatially-explicit individual-based model. The specific aim of the model is to study in a factorial design the dynamics of the kite population in relation to two scale parameters, the temporal interval between droughts and the spatial correlation between droughts. In the model high drought frequencies led to reduced numbers of kites. Also, habitat degradation due to prolonged periods of inundation led to lower predicted numbers of kites. Another main result was that when the spatial correlation between droughts was low, the model showed little variability in the predicted numbers of kites. But when droughts occurred mostly on a system wide level, environmental stochasticity strongly increased the stochasticity in kite numbers and in the worst case the viability of the kite population was seriously threatened.

  14. Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data

    PubMed Central

    Broekhuis, Femke; Gopalaswamy, Arjun M.

    2016-01-01

    Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed ‘hotspots’ of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species. PMID:27135614

  15. Counting Cats: Spatially Explicit Population Estimates of Cheetah (Acinonyx jubatus) Using Unstructured Sampling Data.

    PubMed

    Broekhuis, Femke; Gopalaswamy, Arjun M

    2016-01-01

    Many ecological theories and species conservation programmes rely on accurate estimates of population density. Accurate density estimation, especially for species facing rapid declines, requires the application of rigorous field and analytical methods. However, obtaining accurate density estimates of carnivores can be challenging as carnivores naturally exist at relatively low densities and are often elusive and wide-ranging. In this study, we employ an unstructured spatial sampling field design along with a Bayesian sex-specific spatially explicit capture-recapture (SECR) analysis, to provide the first rigorous population density estimates of cheetahs (Acinonyx jubatus) in the Maasai Mara, Kenya. We estimate adult cheetah density to be between 1.28 ± 0.315 and 1.34 ± 0.337 individuals/100km2 across four candidate models specified in our analysis. Our spatially explicit approach revealed 'hotspots' of cheetah density, highlighting that cheetah are distributed heterogeneously across the landscape. The SECR models incorporated a movement range parameter which indicated that male cheetah moved four times as much as females, possibly because female movement was restricted by their reproductive status and/or the spatial distribution of prey. We show that SECR can be used for spatially unstructured data to successfully characterise the spatial distribution of a low density species and also estimate population density when sample size is small. Our sampling and modelling framework will help determine spatial and temporal variation in cheetah densities, providing a foundation for their conservation and management. Based on our results we encourage other researchers to adopt a similar approach in estimating densities of individually recognisable species.

  16. Understanding the effects of different social data on selecting priority conservation areas.

    PubMed

    Karimi, Azadeh; Tulloch, Ayesha I T; Brown, Greg; Hockings, Marc

    2017-12-01

    Conservation success is contingent on assessing social and environmental factors so that cost-effective implementation of strategies and actions can be placed in a broad social-ecological context. Until now, the focus has been on how to include spatially explicit social data in conservation planning, whereas the value of different kinds of social data has received limited attention. In a regional systematic conservation planning case study in Australia, we examined the spatial concurrence of a range of spatially explicit social values and land-use preferences collected using a public participation geographic information system and biological data. We used Zonation to integrate the social data with the biological data in a series of spatial-prioritization scenarios to determine the effect of the different types of social data on spatial prioritization compared with biological data alone. The type of social data (i.e., conservation opportunities or constraints) significantly affected spatial prioritization outcomes. The integration of social values and land-use preferences under different scenarios was highly variable and generated spatial prioritizations 1.2-51% different from those based on biological data alone. The inclusion of conservation-compatible values and preferences added relatively few new areas to conservation priorities, whereas including noncompatible economic values and development preferences as costs significantly changed conservation priority areas (48.2% and 47.4%, respectively). Based on our results, a multifaceted conservation prioritization approach that combines spatially explicit social data with biological data can help conservation planners identify the type of social data to collect for more effective and feasible conservation actions. © 2017 Society for Conservation Biology.

  17. Heteroskedasticity as a leading indicator of desertification in spatially explicit data.

    PubMed

    Seekell, David A; Dakos, Vasilis

    2015-06-01

    Regime shifts are abrupt transitions between alternate ecosystem states including desertification in arid regions due to drought or overgrazing. Regime shifts may be preceded by statistical anomalies such as increased autocorrelation, indicating declining resilience and warning of an impending shift. Tests for conditional heteroskedasticity, a type of clustered variance, have proven powerful leading indicators for regime shifts in time series data, but an analogous indicator for spatial data has not been evaluated. A spatial analog for conditional heteroskedasticity might be especially useful in arid environments where spatial interactions are critical in structuring ecosystem pattern and process. We tested the efficacy of a test for spatial heteroskedasticity as a leading indicator of regime shifts with simulated data from spatially extended vegetation models with regular and scale-free patterning. These models simulate shifts from extensive vegetative cover to bare, desert-like conditions. The magnitude of spatial heteroskedasticity increased consistently as the modeled systems approached a regime shift from vegetated to desert state. Relative spatial autocorrelation, spatial heteroskedasticity increased earlier and more consistently. We conclude that tests for spatial heteroskedasticity can contribute to the growing toolbox of early warning indicators for regime shifts analyzed with spatially explicit data.

  18. Configuration of the thermal landscape determines thermoregulatory performance of ectotherms

    PubMed Central

    Sears, Michael W.; Angilletta, Michael J.; Schuler, Matthew S.; Borchert, Jason; Dilliplane, Katherine F.; Stegman, Monica; Rusch, Travis W.; Mitchell, William A.

    2016-01-01

    Although most organisms thermoregulate behaviorally, biologists still cannot easily predict whether mobile animals will thermoregulate in natural environments. Current models fail because they ignore how the spatial distribution of thermal resources constrains thermoregulatory performance over space and time. To overcome this limitation, we modeled the spatially explicit movements of animals constrained by access to thermal resources. Our models predict that ectotherms thermoregulate more accurately when thermal resources are dispersed throughout space than when these resources are clumped. This prediction was supported by thermoregulatory behaviors of lizards in outdoor arenas with known distributions of environmental temperatures. Further, simulations showed how the spatial structure of the landscape qualitatively affects responses of animals to climate. Biologists will need spatially explicit models to predict impacts of climate change on local scales. PMID:27601639

  19. The Use of Spatial Analysis to Estimate the Prevalence of Canine Leishmaniasis in Greece and Cyprus to Predict Its Future Variation and Relate It to Human Disease

    PubMed Central

    Sifaki-Pistola, Dimitra; Ntais, Pantelis; Christodoulou, Vasiliki; Mazeris, Apostolos; Antoniou, Maria

    2014-01-01

    Climatic, environmental, and demographic changes favor the emergence of neglected vector-borne diseases like leishmaniasis, which is spreading through dogs, the principle host of the protozoan Leishmania infantum. Surveillance of the disease in dogs is important, because the number of infected animals in an area determines the local risk of human infection. However, dog epidemiological studies are costly. Our aim was to evaluate the Emerging Diseases in a Changing European Environment (EDEN) veterinary questionnaire as a cost-effective tool in providing reliable, spatially explicit indicators of canine leishmaniasis prevalence. For this purpose, the data from the questionnaire were compared with data from two epidemiological studies on leishmaniasis carried out in Greece and Cyprus at the same time using statistical methods and spatial statistics. Although the questionnaire data cannot provide a quantitative measure of leishmaniasis in an area, it indicates the dynamic of the disease; information is obtained in a short period of time at low cost. PMID:24957543

  20. A new spatial multiple discrete-continuous modeling approach to land use change analysis.

    DOT National Transportation Integrated Search

    2013-09-01

    This report formulates a multiple discrete-continuous probit (MDCP) land-use model within a : spatially explicit economic structural framework for land-use change decisions. The spatial : MDCP model is capable of predicting both the type and intensit...

  1. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  2. Using IBMs to Investigate Spatially-dependent Processes in Landscape Genetics Theory

    EPA Science Inventory

    Much of landscape and conservation genetics theory has been derived using non-spatialmathematical models. Here, we use a mechanistic, spatially-explicit, eco-evolutionary IBM to examine the utility of this theoretical framework in landscapes with spatial structure. Our analysis...

  3. Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

    PubMed Central

    Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374

  4. Local difference measures between complex networks for dynamical system model evaluation.

    PubMed

    Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen

    2015-01-01

    A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.

  5. Dynamic Assessment of Writing: The Impact of Implicit/Explicit Mediations on L2 Learners' Internalization of Writing Skills and Strategies

    ERIC Educational Resources Information Center

    Alavi, Sayyed Mohammad; Taghizadeh, Mahboubeh

    2014-01-01

    Dynamic assessment is a procedure in which development is simultaneously assessed and improved with regard to the individual's or group's Zone of Proximal Development (ZPD; Lantolf & Poehner, 2004). This study aimed to follow dynamic assessment and investigate the impact of three types of implicit and explicit feedback on the essay writing of…

  6. Biased figure-ground assignment affects conscious object recognition in spatial neglect.

    PubMed

    Eramudugolla, Ranmalee; Driver, Jon; Mattingley, Jason B

    2010-09-01

    Unilateral spatial neglect is a disorder of attention and spatial representation, in which early visual processes such as figure-ground segmentation have been assumed to be largely intact. There is evidence, however, that the spatial attention bias underlying neglect can bias the segmentation of a figural region from its background. Relatively few studies have explicitly examined the effect of spatial neglect on processing the figures that result from such scene segmentation. Here, we show that a neglect patient's bias in figure-ground segmentation directly influences his conscious recognition of these figures. By varying the relative salience of figural and background regions in static, two-dimensional displays, we show that competition between elements in such displays can modulate a neglect patient's ability to recognise parsed figures in a scene. The findings provide insight into the interaction between scene segmentation, explicit object recognition, and attention.

  7. Projecting malaria hazard from climate change in eastern Africa using large ensembles to estimate uncertainty.

    PubMed

    Leedale, Joseph; Tompkins, Adrian M; Caminade, Cyril; Jones, Anne E; Nikulin, Grigory; Morse, Andrew P

    2016-03-31

    The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach.

  8. Impaired associative learning in schizophrenia: behavioral and computational studies

    PubMed Central

    Diwadkar, Vaibhav A.; Flaugher, Brad; Jones, Trevor; Zalányi, László; Ujfalussy, Balázs; Keshavan, Matcheri S.

    2008-01-01

    Associative learning is a central building block of human cognition and in large part depends on mechanisms of synaptic plasticity, memory capacity and fronto–hippocampal interactions. A disorder like schizophrenia is thought to be characterized by altered plasticity, and impaired frontal and hippocampal function. Understanding the expression of this dysfunction through appropriate experimental studies, and understanding the processes that may give rise to impaired behavior through biologically plausible computational models will help clarify the nature of these deficits. We present a preliminary computational model designed to capture learning dynamics in healthy control and schizophrenia subjects. Experimental data was collected on a spatial-object paired-associate learning task. The task evinces classic patterns of negatively accelerated learning in both healthy control subjects and patients, with patients demonstrating lower rates of learning than controls. Our rudimentary computational model of the task was based on biologically plausible assumptions, including the separation of dorsal/spatial and ventral/object visual streams, implementation of rules of learning, the explicit parameterization of learning rates (a plausible surrogate for synaptic plasticity), and learning capacity (a plausible surrogate for memory capacity). Reductions in learning dynamics in schizophrenia were well-modeled by reductions in learning rate and learning capacity. The synergy between experimental research and a detailed computational model of performance provides a framework within which to infer plausible biological bases of impaired learning dynamics in schizophrenia. PMID:19003486

  9. Dynamical characteristics of an electromagnetic field under conditions of total reflection

    NASA Astrophysics Data System (ADS)

    Bekshaev, Aleksandr Ya

    2018-04-01

    The dynamical characteristics of electromagnetic fields include energy, momentum, angular momentum (spin) and helicity. We analyze their spatial distributions near the planar interface between two transparent and non-dispersive media, when the incident monochromatic plane wave with arbitrary polarization is totally reflected, and an evanescent wave is formed in the medium with lower optical density. Based on the recent arguments in favor of the Minkowski definition of the electromagnetic momentum in a material medium (Philbin 2011 Phys. Rev. A 83 013823; Philbin and Allanson 2012 86 055802; Bliokh et al 2017 Phys. Rev. Lett. 119 073901), we derive the explicit expressions for the dynamical characteristics in both media, with special attention to their behavior at the interface. In particular, the ‘extraordinary’ spin and momentum components orthogonal to the plane of incidence are described, and a canonical (spin-orbital) momentum decomposition is performed that contains no singular terms. The field energy, helicity, the spin momentum and orbital momentum components are everywhere regular but experience discontinuities at the interface; the spin components parallel to the interface appear to be continuous, which testifies to the consistency of the adopted Minkowski picture. The results supply a meaningful example of the electromagnetic momentum decomposition, with separation of spatial and polarization degrees of freedom, in inhomogeneous media, and can be used in engineering the structured fields designed for optical sorting, dispatching and micromanipulation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  11. Latent spatial models and sampling design for landscape genetics

    Treesearch

    Ephraim M. Hanks; Melvin B. Hooten; Steven T. Knick; Sara J. Oyler-McCance; Jennifer A. Fike; Todd B. Cross; Michael K. Schwartz

    2016-01-01

    We propose a spatially-explicit approach for modeling genetic variation across space and illustrate how this approach can be used to optimize spatial prediction and sampling design for landscape genetic data. We propose a multinomial data model for categorical microsatellite allele data commonly used in landscape genetic studies, and introduce a latent spatial...

  12. Individual-based modeling of ecological and evolutionary processes

    USGS Publications Warehouse

    DeAngelis, Donald L.; Mooij, Wolf M.

    2005-01-01

    Individual-based models (IBMs) allow the explicit inclusion of individual variation in greater detail than do classical differential-equation and difference-equation models. Inclusion of such variation is important for continued progress in ecological and evolutionary theory. We provide a conceptual basis for IBMs by describing five major types of individual variation in IBMs: spatial, ontogenetic, phenotypic, cognitive, and genetic. IBMs are now used in almost all subfields of ecology and evolutionary biology. We map those subfields and look more closely at selected key papers on fish recruitment, forest dynamics, sympatric speciation, metapopulation dynamics, maintenance of diversity, and species conservation. Theorists are currently divided on whether IBMs represent only a practical tool for extending classical theory to more complex situations, or whether individual-based theory represents a radically new research program. We feel that the tension between these two poles of thinking can be a source of creativity in ecology and evolutionary theory.

  13. A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics

    NASA Astrophysics Data System (ADS)

    Fekak, Fatima-Ezzahra; Brun, Michael; Gravouil, Anthony; Depale, Bruno

    2017-07-01

    In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit-implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean's event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean's schemes and provides also an excellent energy behavior. Then, the two time scales explicit-implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit-explicit interface is well controlled and the computational time is lower than a full-explicit simulation.

  14. USE OF HABITAT-CONTAMINATION SPATIAL CORRELATION TO DETERMINE WHEN TO PERFORM A SPATIALLY EXPLICIT ECOLOGICAL RISK ASSESSMENT

    EPA Science Inventory

    Anthropogenic contamination is typically distributed heterogeneously through space. This spatial structure can have different effects on the cumulative doses of individuals exposed to contamination within the environment. These effects are accentuated when individuals pursue di...

  15. Experiments with explicit filtering for LES using a finite-difference method

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Kaltenbach, H. J.

    1995-01-01

    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture most of the energy-containing eddies, and if explicit filtering is used, the mesh must be enlarged so that these motions are passed by the filter. Given the high cost of explicit filtering, the following interesting question arises. Since the mesh must be expanded in order to perform the explicit filter, might it be better to take advantage of the increased resolution and simply perform an unfiltered simulation on the larger mesh? The cost of the two approaches is roughly the same, but the philosophy is rather different. In the filtered simulation, resolution is sacrificed in order to minimize the various forms of numerical error. In the unfiltered simulation, the errors are left intact, but they are concentrated at very small scales that could be dynamically unimportant from a LES perspective. Very little is known about this tradeoff and the objective of this work is to study this relationship in high Reynolds number channel flow simulations using a second-order finite-difference method.

  16. Simple models for studying complex spatiotemporal patterns of animal behavior

    NASA Astrophysics Data System (ADS)

    Tyutyunov, Yuri V.; Titova, Lyudmila I.

    2017-06-01

    Minimal mathematical models able to explain complex patterns of animal behavior are essential parts of simulation systems describing large-scale spatiotemporal dynamics of trophic communities, particularly those with wide-ranging species, such as occur in pelagic environments. We present results obtained with three different modelling approaches: (i) an individual-based model of animal spatial behavior; (ii) a continuous taxis-diffusion-reaction system of partial-difference equations; (iii) a 'hybrid' approach combining the individual-based algorithm of organism movements with explicit description of decay and diffusion of the movement stimuli. Though the models are based on extremely simple rules, they all allow description of spatial movements of animals in a predator-prey system within a closed habitat, reproducing some typical patterns of the pursuit-evasion behavior observed in natural populations. In all three models, at each spatial position the animal movements are determined by local conditions only, so the pattern of collective behavior emerges due to self-organization. The movement velocities of animals are proportional to the density gradients of specific cues emitted by individuals of the antagonistic species (pheromones, exometabolites or mechanical waves of the media, e.g., sound). These cues play a role of taxis stimuli: prey attract predators, while predators repel prey. Depending on the nature and the properties of the movement stimulus we propose using either a simplified individual-based model, a continuous taxis pursuit-evasion system, or a little more detailed 'hybrid' approach that combines simulation of the individual movements with the continuous model describing diffusion and decay of the stimuli in an explicit way. These can be used to improve movement models for many species, including large marine predators.

  17. TTLEM - an implicit-explicit (IMEX) scheme for modelling landscape evolution in MATLAB

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Schwanghart, Wolfgang

    2016-04-01

    Landscape evolution models (LEM) are essential to unravel interdependent earth surface processes. They are proven very useful to bridge several temporal and spatial timescales and have been successfully used to integrate existing empirical datasets. There is a growing consensus that landscapes evolve at least as much in the horizontal as in the vertical direction urging for an efficient implementation of dynamic drainage networks. Here we present a spatially explicit LEM, which is based on the object-oriented function library TopoToolbox 2 (Schwanghart and Scherler, 2014). Similar to other LEMs, rivers are considered to be the main drivers for simulated landscape evolution as they transmit pulses of tectonic perturbations and set the base level of surrounding hillslopes. Highly performant graph algorithms facilitate efficient updates of the flow directions to account for planform changes in the river network and the calculation of flow-related terrain attributes. We implement the model using an implicit-explicit (IMEX) scheme, i.e. different integrators are used for different terms in the diffusion-incision equation. While linear diffusion is solved using an implicit scheme, we calculate incision explicitly. Contrary to previously published LEMS, however, river incision is solved using a total volume method which is total variation diminishing in order to prevent numerical diffusion when solving the stream power law (Campforts and Govers, 2015). We show that the use of this updated numerical scheme alters both landscape topography and catchment wide erosion rates at a geological time scale. Finally, the availability of a graphical user interface facilitates user interaction, making the tool very useful both for research and didactical purposes. References Campforts, B., Govers, G., 2015. Keeping the edge: A numerical method that avoids knickpoint smearing when solving the stream power law. J. Geophys. Res. Earth Surf. 120, 1189-1205. doi:10.1002/2014JF003376 Schwanghart, W., Scherler, D., 2014. TopoToolbox 2 - MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2, 1-7. doi:10.5194/esurf-2-1-2014

  18. High resolution modeling of reservoir storage and extent dynamics at the continental scale

    NASA Astrophysics Data System (ADS)

    Shin, S.; Pokhrel, Y. N.

    2017-12-01

    Over the past decade, significant progress has been made in developing reservoir schemes in large scale hydrological models to better simulate hydrological fluxes and storages in highly managed river basins. These schemes have been successfully used to study the impact of reservoir operation on global river basins. However, improvements in the existing schemes are needed for hydrological fluxes and storages, especially at the spatial resolution to be used in hyper-resolution hydrological modeling. In this study, we developed a reservoir routing scheme with explicit representation of reservoir storage and extent at the grid scale of 5km or less. Instead of setting reservoir area to a fixed value or diagnosing it using the area-storage equation, which is a commonly used approach in the existing reservoir schemes, we explicitly simulate the inundated storage and area for all grid cells that are within the reservoir extent. This approach enables a better simulation of river-floodplain-reservoir storage by considering both the natural flood and man-made reservoir storage. Results of the seasonal dynamics of reservoir storage, river discharge at the downstream of dams, and the reservoir inundation extent are evaluated with various datasets from ground-observations and satellite measurements. The new model captures the dynamics of these variables with a good accuracy for most of the large reservoirs in the western United States. It is expected that the incorporation of the newly developed reservoir scheme in large-scale land surface models (LSMs) will lead to improved simulation of river flow and terrestrial water storage in highly managed river basins.

  19. The landscape of fear as an emergent property of heterogeneity: Contrasting patterns of predation risk in grassland ecosystems.

    PubMed

    Atuo, Fidelis Akunke; O'Connell, Timothy John

    2017-07-01

    The likelihood of encountering a predator influences prey behavior and spatial distribution such that non-consumptive effects can outweigh the influence of direct predation. Prey species are thought to filter information on perceived predator encounter rates in physical landscapes into a landscape of fear defined by spatially explicit heterogeneity in predation risk. The presence of multiple predators using different hunting strategies further complicates navigation through a landscape of fear and potentially exposes prey to greater risk of predation. The juxtaposition of land cover types likely influences overlap in occurrence of different predators, suggesting that attributes of a landscape of fear result from complexity in the physical landscape. Woody encroachment in grasslands furnishes an example of increasing complexity with the potential to influence predator distributions. We examined the role of vegetation structure on the distribution of two avian predators, Red-tailed Hawk ( Buteo jamaicensis ) and Northern Harrier ( Circus cyaneus ), and the vulnerability of a frequent prey species of those predators, Northern Bobwhite ( Colinus virginianus ). We mapped occurrences of the raptors and kill locations of Northern Bobwhite to examine spatial vulnerability patterns in relation to landscape complexity. We use an offset model to examine spatially explicit habitat use patterns of these predators in the Southern Great Plains of the United States, and monitored vulnerability patterns of their prey species based on kill locations collected during radio telemetry monitoring. Both predator density and predation-specific mortality of Northern Bobwhite increased with vegetation complexity generated by fine-scale interspersion of grassland and woodland. Predation pressure was lower in more homogeneous landscapes where overlap of the two predators was less frequent. Predator overlap created areas of high risk for Northern Bobwhite amounting to 32% of the land area where landscape complexity was high and 7% where complexity was lower. Our study emphasizes the need to evaluate the role of landscape structure on predation dynamics and reveals another threat from woody encroachment in grasslands.

  20. Toward accurate and precise estimates of lion density.

    PubMed

    Elliot, Nicholas B; Gopalaswamy, Arjun M

    2017-08-01

    Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and policy decisions. © 2016 Society for Conservation Biology.

  1. Getting the biggest birch for the bang: restoring and expanding upland birchwoods in the Scottish Highlands by managing red deer

    PubMed Central

    Tanentzap, Andrew J; Zou, James; Coomes, David A

    2013-01-01

    High deer populations threaten the conservation value of woodlands and grasslands, but predicting the success of deer culling, in terms of allowing vegetation to recover, is difficult. Numerical simulation modeling is one approach to gain insight into the outcomes of management scenarios. We develop a spatially explicit model to predict the responses of Betula spp. to red deer (Cervus elaphus) and land management in the Scottish Highlands. Our model integrates a Bayesian stochastic stage-based matrix model within the framework of a widely used individual-based forest simulation model, using data collected along spatial and temporal gradients in deer browsing. By initializing our model with the historical spatial locations of trees, we find that densities of juvenile trees (<3 m tall) predicted after 9–13 years closely match counts observed in the field. This is among the first tests of the accuracy of a dynamical simulation model for predicting the responses of tree regeneration to herbivores. We then test the relative importance of deer browsing, ground cover vegetation, and seed availability in facilitating landscape-level birch regeneration using simulations in which we varied these three variables. We find that deer primarily control transitions of birch to taller (>3 m) height tiers over 30 years, but regeneration also requires suitable ground cover for seedling establishment. Densities of adult seed sources did not influence regeneration, nor did an active management scenario where we altered the spatial configuration of adults by creating “woodland islets”. Our results show that managers interested in maximizing tree regeneration cannot simply reduce deer densities but must also improve ground cover for seedling establishment, and the model we develop now enables managers to quantify explicitly how much both these factors need to be altered. More broadly, our findings emphasize the need for land managers to consider the impacts of large herbivores rather than their densities. PMID:23919137

  2. A Multi-Temporal Remote Sensing Approach to Freshwater Turtle Conservation

    NASA Astrophysics Data System (ADS)

    Mui, Amy B.

    Freshwater turtles are a globally declining taxa, and estimates of population status are not available for many species. Primary causes of decline stem from widespread habitat loss and degradation, and obtaining spatially-explicit information on remaining habitat across a relevant spatial scale has proven challenging. The discipline of remote sensing science has been employed widely in studies of biodiversity conservation, but it has not been utilized as frequently for cryptic, and less vagile species such as turtles, despite their vulnerable status. The work presented in this thesis investigates how multi-temporal remote sensing imagery can contribute key information for building spatially-explicit and temporally dynamic models of habitat and connectivity for the threatened, Blanding's turtle (Emydoidea blandingii) in southern Ontario, Canada. I began with outlining a methodological approach for delineating freshwater wetlands from high spatial resolution remote sensing imagery, using a geographic object-based image analysis (GEOBIA) approach. This method was applied to three different landscapes in southern Ontario, and across two biologically relevant seasons during the active (non-hibernating) period of Blanding's turtles. Next, relevant environmental variables associated with turtle presence were extracted from remote sensing imagery, and a boosted regression tree model was developed to predict the probability of occurrence of this species. Finally, I analysed the movement potential for Blanding's turtles in a disturbed landscape using a combination of approaches. Results indicate that (1) a parsimonious GEOBIA approach to land cover mapping, incorporating texture, spectral indices, and topographic information can map heterogeneous land cover with high accuracy, (2) remote-sensing derived environmental variables can be used to build habitat models with strong predictive power, and (3) connectivity potential is best estimated using a variety of approaches, though accurate estimates across human-altered landscapes is challenging. Overall, this body of work supports the use of remote sensing imagery in species distribution models to strengthen the precision, and power of predictive models, and also draws attention to the need to consider a multi-temporal examination of species habitat requirements.

  3. Accelerated orbits in black hole fields: the static case

    NASA Astrophysics Data System (ADS)

    Bini, Donato; de Felice, Fernando; Geralico, Andrea

    2011-11-01

    We study non-geodesic orbits of test particles endowed with a structure, assuming the Schwarzschild spacetime as background. We develop a formalism which allows one to recognize the geometrical characterization of those orbits in terms of their Frenet-Serret parameters and apply it to explicit cases as those of spatially circular orbits which witness the equilibrium under conflicting types of interactions. In our general analysis, we solve the equations of motion offering a detailed picture of the dynamics having in mind a check with a possible astronomical setup. We focus on certain ambiguities which plague the interpretation of the measurements preventing one from identifying the particular structure carried by the particle.

  4. The need for spatially explicit quantification of benefits in invasive-species management.

    PubMed

    Januchowski-Hartley, Stephanie R; Adams, Vanessa M; Hermoso, Virgilio

    2018-04-01

    Worldwide, invasive species are a leading driver of environmental change across terrestrial, marine, and freshwater environments and cost billions of dollars annually in ecological damages and economic losses. Resources limit invasive-species control, and planning processes are needed to identify cost-effective solutions. Thus, studies are increasingly considering spatially variable natural and socioeconomic assets (e.g., species persistence, recreational fishing) when planning the allocation of actions for invasive-species management. There is a need to improve understanding of how such assets are considered in invasive-species management. We reviewed over 1600 studies focused on management of invasive species, including flora and fauna. Eighty-four of these studies were included in our final analysis because they focused on the prioritization of actions for invasive species management. Forty-five percent (n = 38) of these studies were based on spatial optimization methods, and 35% (n = 13) accounted for spatially variable assets. Across all 84 optimization studies considered, 27% (n = 23) explicitly accounted for spatially variable assets. Based on our findings, we further explored the potential costs and benefits to invasive species management when spatially variable assets are explicitly considered or not. To include spatially variable assets in decision-making processes that guide invasive-species management there is a need to quantify environmental responses to invasive species and to enhance understanding of potential impacts of invasive species on different natural or socioeconomic assets. We suggest these gaps could be filled by systematic reviews, quantifying invasive species impacts on native species at different periods, and broadening sources and enhancing sharing of knowledge. © 2017 Society for Conservation Biology.

  5. Shared Spatial Representations for Numbers and Space: The Reversal of the SNARC and the Simon Effects

    ERIC Educational Resources Information Center

    Notebaert, Wim; Gevers, Wim; Verguts, Tom; Fias, Wim

    2006-01-01

    In 4 experiments, the authors investigated the reversal of spatial congruency effects when participants concurrently practiced incompatible mapping rules (J. G. Marble & R. W. Proctor, 2000). The authors observed an effect of an explicit spatially incompatible mapping rule on the way numerical information was associated with spatial responses. The…

  6. Open space preservation, property value, and optimal spatial configuration

    Treesearch

    Yong Jiang; Stephen K. Swallow

    2007-01-01

    The public has increasingly demonstrated a strong support for open space preservation. How to finance the socially efficient level of open space with the optimal spatial structure is of high policy relevance to local governments. In this study, we developed a spatially explicit open space model to help identify the socially optimal amount and optimal spatial...

  7. Promotion of Spatial Skills in Chemistry and Biochemistry Education at the College Level

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria; Babilonia-Rosa, Melissa A.

    2017-01-01

    Decades of research have demonstrated the correlation of spatial abilities to chemistry achievement and career selection. Nonetheless, reviews have highlighted the need and scarcity of explicit spatial instruction to promote spatial skills. Therefore, the goal of this literature review is to summarize what has been done during the past decade in…

  8. How Far Is "Near"? Inferring Distance from Spatial Descriptions

    ERIC Educational Resources Information Center

    Carlson, Laura A.; Covey, Eric S.

    2005-01-01

    A word may mean different things in different contexts. The current study explored the changing denotations of spatial terms, focusing on how the distance inferred from a spatial description varied as a function of the size of the objects being spatially related. We examined both terms that explicitly convey distance (i.e., topological terms such…

  9. Explicit filtering in large eddy simulation using a discontinuous Galerkin method

    NASA Astrophysics Data System (ADS)

    Brazell, Matthew J.

    The discontinuous Galerkin (DG) method is a formulation of the finite element method (FEM). DG provides the ability for a high order of accuracy in complex geometries, and allows for highly efficient parallelization algorithms. These attributes make the DG method attractive for solving the Navier-Stokes equations for large eddy simulation (LES). The main goal of this work is to investigate the feasibility of adopting an explicit filter in the numerical solution of the Navier-Stokes equations with DG. Explicit filtering has been shown to increase the numerical stability of under-resolved simulations and is needed for LES with dynamic sub-grid scale (SGS) models. The explicit filter takes advantage of DG's framework where the solution is approximated using a polyno- mial basis where the higher modes of the solution correspond to a higher order polynomial basis. By removing high order modes, the filtered solution contains low order frequency content much like an explicit low pass filter. The explicit filter implementation is tested on a simple 1-D solver with an initial condi- tion that has some similarity to turbulent flows. The explicit filter does restrict the resolution as well as remove accumulated energy in the higher modes from aliasing. However, the ex- plicit filter is unable to remove numerical errors causing numerical dissipation. A second test case solves the 3-D Navier-Stokes equations of the Taylor-Green vortex flow (TGV). The TGV is useful for SGS model testing because it is initially laminar and transitions into a fully turbulent flow. The SGS models investigated include the constant coefficient Smagorinsky model, dynamic Smagorinsky model, and dynamic Heinz model. The constant coefficient Smagorinsky model is over dissipative, this is generally not desirable however it does add stability. The dynamic Smagorinsky model generally performs better, especially during the laminar-turbulent transition region as expected. The dynamic Heinz model which is based on an improved model, handles the laminar-turbulent transition region well while also showing additional robustness.

  10. Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model.

    PubMed

    Hagenlocher, Michael; Castro, Marcia C

    2015-01-01

    Outbreaks of vector-borne diseases (VBDs) impose a heavy burden on vulnerable populations. Despite recent progress in eradication and control, malaria remains the most prevalent VBD. Integrative approaches that take into account environmental, socioeconomic, demographic, biological, cultural, and political factors contributing to malaria risk and vulnerability are needed to effectively reduce malaria burden. Although the focus on malaria risk has increasingly gained ground, little emphasis has been given to develop quantitative methods for assessing malaria risk including malaria vulnerability in a spatial explicit manner. Building on a conceptual risk and vulnerability framework, we propose a spatial explicit approach for modeling relative levels of malaria risk - as a function of hazard, exposure, and vulnerability - in the United Republic of Tanzania. A logistic regression model was employed to identify a final set of risk factors and their contribution to malaria endemicity based on multidisciplinary geospatial information. We utilized a Geographic Information System for the construction and visualization of a malaria vulnerability index and its integration into a spatially explicit malaria risk map. The spatial pattern of malaria risk was very heterogeneous across the country. Malaria risk was higher in Mainland areas than in Zanzibar, which is a result of differences in both malaria entomological inoculation rate and prevailing vulnerabilities. Areas of high malaria risk were identified in the southeastern part of the country, as well as in two distinct "hotspots" in the northwestern part of the country bordering Lake Victoria, while concentrations of high malaria vulnerability seem to occur in the northwestern, western, and southeastern parts of the mainland. Results were visualized using both 10×10 km(2) grids and subnational administrative units. The presented approach makes an important contribution toward a decision support tool. By decomposing malaria risk into its components, the approach offers evidence on which factors could be targeted for reducing malaria risk and vulnerability to the disease. Ultimately, results offer relevant information for place-based intervention planning and more effective spatial allocation of resources.

  11. On Spatially Explicit Models of Epidemic and Endemic Cholera: The Haiti and Lake Kivu Case Studies.

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Bertuzzo, E.; Mari, L.; Finger, F.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.

    2014-12-01

    The first part of the Lecture deals with the predictive ability of mechanistic models for the Haitian cholera epidemic. Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data pertaining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human mobility and proxies of exposure rates. A formal model comparison framework provides a quantitative assessment of the explanatory and predictive abilities of various model settings with different spatial aggregation levels. Intensive computations and objective model comparisons show that parsimonious spatially explicit models accounting for spatial connections have superior explanatory power than spatially disconnected ones for short-to intermediate calibration windows. In general, spatially connected models show better predictive ability than disconnected ones. We suggest limits and validity of the various approaches and discuss the pathway towards the development of case-specific predictive tools in the context of emergency management. The second part deals with approaches suitable to describe patterns of endemic cholera. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of lake Kivu. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multi-year dataset of reported cholera cases. Fourteen models, accounting for different environmental drivers, are selected in calibration. Among these, the one accounting for seasonality, El Nino Southern Oscillation, precipitation and human mobility outperforms the others in cross-validation.

  12. A modeling framework for the establishment and spread of invasive species in heterogeneous environments.

    PubMed

    Lustig, Audrey; Worner, Susan P; Pitt, Joel P W; Doscher, Crile; Stouffer, Daniel B; Senay, Senait D

    2017-10-01

    Natural and human-induced events are continuously altering the structure of our landscapes and as a result impacting the spatial relationships between individual landscape elements and the species living in the area. Yet, only recently has the influence of the surrounding landscape on invasive species spread started to be considered. The scientific community increasingly recognizes the need for broader modeling framework that focuses on cross-study comparisons at different spatiotemporal scales. Using two illustrative examples, we introduce a general modeling framework that allows for a systematic investigation of the effect of habitat change on invasive species establishment and spread. The essential parts of the framework are (i) a mechanistic spatially explicit model (a modular dispersal framework-MDIG) that allows population dynamics and dispersal to be modeled in a geographical information system (GIS), (ii) a landscape generator that allows replicated landscape patterns with partially controllable spatial properties to be generated, and (iii) landscape metrics that depict the essential aspects of landscape with which dispersal and demographic processes interact. The modeling framework provides functionality for a wide variety of applications ranging from predictions of the spatiotemporal spread of real species and comparison of potential management strategies, to theoretical investigation of the effect of habitat change on population dynamics. Such a framework allows to quantify how small-grain landscape characteristics, such as habitat size and habitat connectivity, interact with life-history traits to determine the dynamics of invasive species spread in fragmented landscape. As such, it will give deeper insights into species traits and landscape features that lead to establishment and spread success and may be key to preventing new incursions and the development of efficient monitoring, surveillance, control or eradication programs.

  13. Modelling Parasite Transmission in a Grazing System: The Importance of Host Behaviour and Immunity

    PubMed Central

    Fox, Naomi J.; Marion, Glenn; Davidson, Ross S.; White, Piran C. L.; Hutchings, Michael R.

    2013-01-01

    Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts’ immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites’ free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to fully understand transmission dynamics. Understanding of both physiological and behavioural defence strategies will aid the development of novel approaches for control. PMID:24223133

  14. Simulating ungulate herbivory across forest landscapes: A browsing extension for LANDIS-II

    USGS Publications Warehouse

    DeJager, Nathan R.; Drohan, Patrick J.; Miranda, Brian M.; Sturtevant, Brian R.; Stout, Susan L.; Royo, Alejandro; Gustafson, Eric J.; Romanski, Mark C.

    2017-01-01

    Browsing ungulates alter forest productivity and vegetation succession through selective foraging on species that often dominate early succession. However, the long-term and large-scale effects of browsing on forest succession are not possible to project without the use of simulation models. To explore the effects of ungulates on succession in a spatially explicit manner, we developed a Browse Extension that simulates the effects of browsing ungulates on the growth and survival of plant species cohorts within the LANDIS-II spatially dynamic forest landscape simulation model framework. We demonstrate the capabilities of the new extension and explore the spatial effects of ungulates on forest composition and dynamics using two case studies. The first case study examined the long-term effects of persistently high white-tailed deer browsing rates in the northern hardwood forests of the Allegheny National Forest, USA. In the second case study, we incorporated a dynamic ungulate population model to simulate interactions between the moose population and boreal forest landscape of Isle Royale National Park, USA. In both model applications, browsing reduced total aboveground live biomass and caused shifts in forest composition. Simulations that included effects of browsing resulted in successional patterns that were more similar to those observed in the study regions compared to simulations that did not incorporate browsing effects. Further, model estimates of moose population density and available forage biomass were similar to previously published field estimates at Isle Royale and in other moose-boreal forest systems. Our simulations suggest that neglecting effects of browsing when modeling forest succession in ecosystems known to be influenced by ungulates may result in flawed predictions of aboveground biomass and tree species composition.

  15. Diel predator activity drives a dynamic landscape of fear

    USGS Publications Warehouse

    Kohl, Michel T.; Stahler, Daniel R.; Metz, Matthew C.; Forester, James D.; Kauffman, Matthew J.; Varley, Nathan; White, P.J.; Smith, Douglas W.; MacNulty, Daniel R.

    2017-01-01

    A "landscape of fear" (LOF) is a map that describes continuous spatial variation in an animal's perception of predation risk. The relief on this map reflects, for example, places that an animal avoids to minimize risk. Although the LOF concept is a potential unifying theme in ecology that is often invoked to explain the ecological and conservation significance of fear, quantified examples of a LOF over large spatial scales are lacking as is knowledge about the daily dynamics of a LOF. Despite theory and data to the contrary, investigators often assume, implicitly or explicitly, that a LOF is a static consequence of a predator's mere presence. We tested the prediction that a LOF in a large-scale, free-living system is a highly-dynamic map with "peaks" and "valleys" that alternate across the diel (24-hour) cycle in response to daily lulls in predator activity. We did so with extensive data from the case study of Yellowstone elk (Cervus elaphus) and wolves (Canis lupus) that was the original basis for the LOF concept. We quantified the elk LOF, defined here as spatial allocation of time away from risky places and times, across nearly 1000-km2 of northern Yellowstone National Park and found that it fluctuated with the crepuscular activity pattern of wolves, enabling elk to use risky places during wolf downtimes. This may help explain evidence that wolf predation risk has no effect on elk stress levels, body condition, pregnancy, or herbivory. The ability of free-living animals to adaptively allocate habitat use across periods of high and low predator activity within the diel cycle is an underappreciated aspect of animal behavior that helps explain why strong antipredator responses may trigger weak ecological effects, and why a LOF may have less conceptual and practical importance than direct killing.

  16. Testing the skill of numerical hydraulic modeling to simulate spatiotemporal flooding patterns in the Logone floodplain, Cameroon

    NASA Astrophysics Data System (ADS)

    Fernández, Alfonso; Najafi, Mohammad Reza; Durand, Michael; Mark, Bryan G.; Moritz, Mark; Jung, Hahn Chul; Neal, Jeffrey; Shastry, Apoorva; Laborde, Sarah; Phang, Sui Chian; Hamilton, Ian M.; Xiao, Ningchuan

    2016-08-01

    Recent innovations in hydraulic modeling have enabled global simulation of rivers, including simulation of their coupled wetlands and floodplains. Accurate simulations of floodplains using these approaches may imply tremendous advances in global hydrologic studies and in biogeochemical cycling. One such innovation is to explicitly treat sub-grid channels within two-dimensional models, given only remotely sensed data in areas with limited data availability. However, predicting inundated area in floodplains using a sub-grid model has not been rigorously validated. In this study, we applied the LISFLOOD-FP hydraulic model using a sub-grid channel parameterization to simulate inundation dynamics on the Logone River floodplain, in northern Cameroon, from 2001 to 2007. Our goal was to determine whether floodplain dynamics could be simulated with sufficient accuracy to understand human and natural contributions to current and future inundation patterns. Model inputs in this data-sparse region include in situ river discharge, satellite-derived rainfall, and the shuttle radar topography mission (SRTM) floodplain elevation. We found that the model accurately simulated total floodplain inundation, with a Pearson correlation coefficient greater than 0.9, and RMSE less than 700 km2, compared to peak inundation greater than 6000 km2. Predicted discharge downstream of the floodplain matched measurements (Nash-Sutcliffe efficiency of 0.81), and indicated that net flow from the channel to the floodplain was modeled accurately. However, the spatial pattern of inundation was not well simulated, apparently due to uncertainties in SRTM elevations. We evaluated model results at 250, 500 and 1000-m spatial resolutions, and found that results are insensitive to spatial resolution. We also compared the model output against results from a run of LISFLOOD-FP in which the sub-grid channel parameterization was disabled, finding that the sub-grid parameterization simulated more realistic dynamics. These results suggest that analysis of global inundation is feasible using a sub-grid model, but that spatial patterns at sub-kilometer resolutions still need to be adequately predicted.

  17. State-and-transition simulation models: a framework for forecasting landscape change

    USGS Publications Warehouse

    Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée

    2016-01-01

    SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of landscape dynamics.

  18. Spatial Contiguity and Incidental Learning in Multimedia Environments

    ERIC Educational Resources Information Center

    Paek, Seungoh; Hoffman, Daniel L.; Saravanos, Antonios

    2017-01-01

    Drawing on dual-process theories of cognitive function, the degree to which spatial contiguity influences incidental learning outcomes was examined. It was hypothesized that spatial contiguity would mediate what was learned even in the absence of an explicit learning goal. To test this hypothesis, 149 adults completed a multimedia-related task…

  19. Utility of computer simulations in landscape genetics

    Treesearch

    Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale

    2010-01-01

    Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...

  20. Spatial allocation of forest recreation value

    Treesearch

    Kenneth A. Baerenklau; Armando Gonzalez-Caban; Catrina Paez; Edgard Chavez

    2009-01-01

    Non-market valuation methods and geographic information systems are useful planning and management tools for public land managers. Recent attention has been given to investigation and demonstration of methods for combining these tools to provide spatially-explicit representations of non-market value. Most of these efforts have focused on spatial allocation of...

  1. Hydration dynamics promote bacterial coexistence on rough surfaces

    PubMed Central

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694

  2. Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model

    NASA Astrophysics Data System (ADS)

    Zheng, Qiming; Jiang, Ruowei; Wang, Ke; Huang, Lingyan; Ye, Ziran; Gan, Muye; Ji, Biyong

    2018-03-01

    Urban nighttime light hotspot is an ideal representation of the spatial heterogeneity of human activities within a city, which is sensitive to regional urban expansion pattern. However, most of previous studies related to nighttime light imageries focused on extracting urban extent, leaving the spatial variation of radiance intensity insufficiently explored. With the help of global radiance calibrated DMSP-OLS datasets (NTLgrc), we proposed an innovative framework to explore the spatio-temporal trajectory of polycentric urban nighttime light hotspots. Firstly, NTLgrc was inter-annually calibrated to improve the consistency. Secondly, multi-resolution segmentation and region-growing SVM classification were employed to remove blooming effect and to extract potential clusters. At last, the urban hotspots were identified by a Gaussian volume model, and the resulting parameters were used to quantitatively depict hotspot features (i.e., intensity, morphology and centroid dynamics). The result shows that our framework successfully captures hotspots in polycentric urban area, whose Ra2 are over 0.9. Meanwhile, the spatio-temporal dynamics of the hotspot features intuitively reveal the impact of the regional urban growth pattern and planning strategies on human activities. Compared to previous studies, our framework is more robust and offers an effective way to describe hotspot pattern. Also, it provides a more comprehensive and spatial-explicit understanding regarding the interaction between urbanization pattern and human activities. Our findings are expected to be beneficial to governors in term of sustainable urban planning and decision making.

  3. Applying metapopulation theory to conservation of migratory birds

    USGS Publications Warehouse

    Esler, Daniel N.

    2000-01-01

    Metapopulation theory has proven useful for understanding the population structure and dynamics of many species of conservation concern. The metapopulation concept has been applied almost exclusively to nonmigratory species, however, for which subpopulation demographic independence—a requirement for a classically defined metapopulation - is explicitly related to geographic distribution and dispersal probabilities. Defining the degree of demographic independence among subpopulations of migratory animals, and thus the applicability of metapopulation theory as a conceptual framework for understanding population dynamics, is much more difficult. Unlike nonmigratory species, subpopulations of migratory animals cannot be defined as synonymous with geographic areas. Groups of migratory birds that are geographically separate at one part of the annual cycle may occur together at others, but co-occurrence in time and space does not preclude the demographic independence of subpopulations. I suggest that metapopulation theory can be applied to migratory species but that understanding the degree of subpopulation independence may require information about both spatial distribution throughout the annual cycle and behavioral mechanisms that may lead to subpopulation demographic independence. The key for applying metapopulation theory to migratory animals lies in identifying demographically independent subpopulations, even as they move during the annual cycle and potentially co-occur with other subpopulations. Using examples of migratory bird species, I demonstrate that spatial and temporal modes of subpopulation independence can interact with behavioral mechanisms to create demographically independent subpopulations, including cases in which subpopulations are not spatially distinct in some parts of the annual cycle.

  4. Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing.

    PubMed

    Bradley, Bethany A; Mustard, John F

    2006-06-01

    Improved understanding of the spatial dynamics of invasive plant species may lead to more effective land management and reduced future invasion. Here, we identified the spatial extents of nonnative cheatgrass (Bromus tectorum) in the north central Great Basin using remotely sensed data from Landsat MSS, TM, and ETM+. We compared cheatgrass extents in 1973 and 2001 to six spatially explicit landscape variables: elevation, aspect, hydrographic channels, cultivation, roads, and power lines. In 2001, Cheatgrass was 10% more likely to be found in elevation ranges from 1400 to 1700 m (although the data suggest a preferential invasion into lower elevations by 2001), 6% more likely on west and northwest facing slopes, and 3% more likely within hydrographic channels. Over this time period, cheatgrass expansion was also closely linked to proximity to land use. In 2001, cheatgrass was 20% more likely to be found within 3 km of cultivation, 13% more likely to be found within 700 m of a road, and 15% more likely to be found within 1 km of a power line. Finally, in 2001 cheatgrass was 26% more likely to be present within 150 m of areas occupied by cheatgrass in 1973. Using these relationships, we created a risk map of future cheatgrass invasion that may aid land management. These results highlight the importance of including land use variables and the extents of current plant invasion in predictions of future risk.

  5. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  6. Role of Micro-Topographic Variability on the Distribution of Inorganic Soil-Nitrogen Age in Intensively Managed Landscape

    NASA Astrophysics Data System (ADS)

    Woo, Dong K.; Kumar, Praveen

    2017-10-01

    How does the variability of topography structure the spatial heterogeneity of nutrient dynamics? In particular, what role does micro-topographic depression play in the spatial and temporal dynamics of nitrate, ammonia, and ammonium? We explore these questions using the 3-D simulation of their joint dynamics of concentration and age. To explicitly resolve micro-topographic variability and its control on moisture, vegetation, and carbon-nitrogen dynamics, we use a high-resolution LiDAR data over an agricultural site under a corn-soybean rotation in the Intensively Managed landscapes Critical Zone Observatory in the U.S. Midwest. We utilize a hybrid CPU-GPU parallel computing architecture to reduce the computational cost associated with such high-resolution simulations. Our results show that in areas that present closed topographic depressions, relatively lower nitrate concentration and age are observed compared to elsewhere. The periodic ponding in depressions increases the downward flux of water that carries more dissolved nitrate to the deeper soil layer. However, the variability in the depressions is relatively higher as a result of the episodic ponding pattern. When aggregate efflux from the soil domain at the bottom of the soil is considered, we find a gradual decrease in the age on the rising limb of nitrate efflux and a gradual increase on the falling limb. In addition, the age of the nitrate efflux ranges from 4 to 7 years. These are significantly higher as compared to the ages associated with a nonreactive tracer indicating that they provide an inaccurate estimate of residence time of a reactive constituent through the soil column.

  7. Parameter and uncertainty estimation for mechanistic, spatially explicit epidemiological models

    NASA Astrophysics Data System (ADS)

    Finger, Flavio; Schaefli, Bettina; Bertuzzo, Enrico; Mari, Lorenzo; Rinaldo, Andrea

    2014-05-01

    Epidemiological models can be a crucially important tool for decision-making during disease outbreaks. The range of possible applications spans from real-time forecasting and allocation of health-care resources to testing alternative intervention mechanisms such as vaccines, antibiotics or the improvement of sanitary conditions. Our spatially explicit, mechanistic models for cholera epidemics have been successfully applied to several epidemics including, the one that struck Haiti in late 2010 and is still ongoing. Calibration and parameter estimation of such models represents a major challenge because of properties unusual in traditional geoscientific domains such as hydrology. Firstly, the epidemiological data available might be subject to high uncertainties due to error-prone diagnosis as well as manual (and possibly incomplete) data collection. Secondly, long-term time-series of epidemiological data are often unavailable. Finally, the spatially explicit character of the models requires the comparison of several time-series of model outputs with their real-world counterparts, which calls for an appropriate weighting scheme. It follows that the usual assumption of a homoscedastic Gaussian error distribution, used in combination with classical calibration techniques based on Markov chain Monte Carlo algorithms, is likely to be violated, whereas the construction of an appropriate formal likelihood function seems close to impossible. Alternative calibration methods, which allow for accurate estimation of total model uncertainty, particularly regarding the envisaged use of the models for decision-making, are thus needed. Here we present the most recent developments regarding methods for parameter and uncertainty estimation to be used with our mechanistic, spatially explicit models for cholera epidemics, based on informal measures of goodness of fit.

  8. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico.

    Treesearch

    Hongqing Wanga; Charles A.S. Halla; Frederick N. Scatenab; Ned Fetcherc; Wei Wua

    2003-01-01

    There are few studies that have examined the spatial variability of forest productivity over an entire tropical forested landscape. In this study, we used a spatially-explicit forest productivity model, TOPOPROD, which is based on the FORESTBGC model, to simulate spatial patterns of gross primary productivity (GPP), net primary productivity (NPP), and respiration over...

  9. Bayesian methods to estimate urban growth potential

    USGS Publications Warehouse

    Smith, Jordan W.; Smart, Lindsey S.; Dorning, Monica; Dupéy, Lauren Nicole; Méley, Andréanne; Meentemeyer, Ross K.

    2017-01-01

    Urban growth often influences the production of ecosystem services. The impacts of urbanization on landscapes can subsequently affect landowners’ perceptions, values and decisions regarding their land. Within land-use and land-change research, very few models of dynamic landscape-scale processes like urbanization incorporate empirically-grounded landowner decision-making processes. Very little attention has focused on the heterogeneous decision-making processes that aggregate to influence broader-scale patterns of urbanization. We examine the land-use tradeoffs faced by individual landowners in one of the United States’ most rapidly urbanizing regions − the urban area surrounding Charlotte, North Carolina. We focus on the land-use decisions of non-industrial private forest owners located across the region’s development gradient. A discrete choice experiment is used to determine the critical factors influencing individual forest owners’ intent to sell their undeveloped properties across a series of experimentally varied scenarios of urban growth. Data are analyzed using a hierarchical Bayesian approach. The estimates derived from the survey data are used to modify a spatially-explicit trend-based urban development potential model, derived from remotely-sensed imagery and observed changes in the region’s socioeconomic and infrastructural characteristics between 2000 and 2011. This modeling approach combines the theoretical underpinnings of behavioral economics with spatiotemporal data describing a region’s historical development patterns. By integrating empirical social preference data into spatially-explicit urban growth models, we begin to more realistically capture processes as well as patterns that drive the location, magnitude and rates of urban growth.

  10. High-Order Space-Time Methods for Conservation Laws

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.

    2013-01-01

    Current high-order methods such as discontinuous Galerkin and/or flux reconstruction can provide effective discretization for the spatial derivatives. Together with a time discretization, such methods result in either too small a time step size in the case of an explicit scheme or a very large system in the case of an implicit one. To tackle these problems, two new high-order space-time schemes for conservation laws are introduced: the first is explicit and the second, implicit. The explicit method here, also called the moment scheme, achieves a Courant-Friedrichs-Lewy (CFL) condition of 1 for the case of one-spatial dimension regardless of the degree of the polynomial approximation. (For standard explicit methods, if the spatial approximation is of degree p, then the time step sizes are typically proportional to 1/p(exp 2)). Fourier analyses for the one and two-dimensional cases are carried out. The property of super accuracy (or super convergence) is discussed. The implicit method is a simplified but optimal version of the discontinuous Galerkin scheme applied to time. It reduces to a collocation implicit Runge-Kutta (RK) method for ordinary differential equations (ODE) called Radau IIA. The explicit and implicit schemes are closely related since they employ the same intermediate time levels, and the former can serve as a key building block in an iterative procedure for the latter. A limiting technique for the piecewise linear scheme is also discussed. The technique can suppress oscillations near a discontinuity while preserving accuracy near extrema. Preliminary numerical results are shown

  11. Towards a minimal stochastic model for a large class of diffusion-reactions on biological membranes.

    PubMed

    Chevalier, Michael W; El-Samad, Hana

    2012-08-28

    Diffusion of biological molecules on 2D biological membranes can play an important role in the behavior of stochastic biochemical reaction systems. Yet, we still lack a fundamental understanding of circumstances where explicit accounting of the diffusion and spatial coordinates of molecules is necessary. In this work, we illustrate how time-dependent, non-exponential reaction probabilities naturally arise when explicitly accounting for the diffusion of molecules. We use the analytical expression of these probabilities to derive a novel algorithm which, while ignoring the exact position of the molecules, can still accurately capture diffusion effects. We investigate the regions of validity of the algorithm and show that for most parameter regimes, it constitutes an accurate framework for studying these systems. We also document scenarios where large spatial fluctuation effects mandate explicit consideration of all the molecules and their positions. Taken together, our results derive a fundamental understanding of the role of diffusion and spatial fluctuations in these systems. Simultaneously, they provide a general computational methodology for analyzing a broad class of biological networks whose behavior is influenced by diffusion on membranes.

  12. Spatially explicit decision support for selecting translocation areas for Mojave desert tortoises

    USGS Publications Warehouse

    Heaton, Jill S.; Nussear, Kenneth E.; Esque, Todd C.; Inman, Richard D.; Davenport, Frank; Leuteritz, Thomas E.; Medica, Philip A.; Strout, Nathan W.; Burgess, Paul A.; Benvenuti, Lisa

    2008-01-01

    Spatially explicit decision support systems are assuming an increasing role in natural resource and conservation management. In order for these systems to be successful, however, they must address real-world management problems with input from both the scientific and management communities. The National Training Center at Fort Irwin, California, has expanded its training area, encroaching U.S. Fish and Wildlife Service critical habitat set aside for the Mojave desert tortoise (Gopherus agassizii), a federally threatened species. Of all the mitigation measures proposed to offset expansion, the most challenging to implement was the selection of areas most feasible for tortoise translocation. We developed an objective, open, scientifically defensible spatially explicit decision support system to evaluate translocation potential within the Western Mojave Recovery Unit for tortoise populations under imminent threat from military expansion. Using up to a total of 10 biological, anthropogenic, and/or logistical criteria, seven alternative translocation scenarios were developed. The final translocation model was a consensus model between the seven scenarios. Within the final model, six potential translocation areas were identified.

  13. Using spatially explicit surveillance models to provide confidence in the eradication of an invasive ant

    PubMed Central

    Ward, Darren F.; Anderson, Dean P.; Barron, Mandy C.

    2016-01-01

    Effective detection plays an important role in the surveillance and management of invasive species. Invasive ants are very difficult to eradicate and are prone to imperfect detection because of their small size and cryptic nature. Here we demonstrate the use of spatially explicit surveillance models to estimate the probability that Argentine ants (Linepithema humile) have been eradicated from an offshore island site, given their absence across four surveys and three surveillance methods, conducted since ant control was applied. The probability of eradication increased sharply as each survey was conducted. Using all surveys and surveillance methods combined, the overall median probability of eradication of Argentine ants was 0.96. There was a high level of confidence in this result, with a high Credible Interval Value of 0.87. Our results demonstrate the value of spatially explicit surveillance models for the likelihood of eradication of Argentine ants. We argue that such models are vital to give confidence in eradication programs, especially from highly valued conservation areas such as offshore islands. PMID:27721491

  14. Multilayer networks reveal the spatial structure of seed-dispersal interactions across the Great Rift landscapes.

    PubMed

    Timóteo, Sérgio; Correia, Marta; Rodríguez-Echeverría, Susana; Freitas, Helena; Heleno, Ruben

    2018-01-10

    Species interaction networks are traditionally explored as discrete entities with well-defined spatial borders, an oversimplification likely impairing their applicability. Using a multilayer network approach, explicitly accounting for inter-habitat connectivity, we investigate the spatial structure of seed-dispersal networks across the Gorongosa National Park, Mozambique. We show that the overall seed-dispersal network is composed by spatially explicit communities of dispersers spanning across habitats, functionally linking the landscape mosaic. Inter-habitat connectivity determines spatial structure, which cannot be accurately described with standard monolayer approaches either splitting or merging habitats. Multilayer modularity cannot be predicted by null models randomizing either interactions within each habitat or those linking habitats; however, as habitat connectivity increases, random processes become more important for overall structure. The importance of dispersers for the overall network structure is captured by multilayer versatility but not by standard metrics. Highly versatile species disperse many plant species across multiple habitats, being critical to landscape functional cohesion.

  15. The Stabilizing Effect of Spacetime Expansion on Relativistic Fluids With Sharp Results for the Radiation Equation of State

    NASA Astrophysics Data System (ADS)

    Speck, Jared

    2013-07-01

    In this article, we study the 1 + 3-dimensional relativistic Euler equations on a pre-specified conformally flat expanding spacetime background with spatial slices that are diffeomorphic to {R}^3. We assume that the fluid verifies the equation of state {p = c2s ρ,} where {0 ≤ cs ≤ √{1/3}} is the speed of sound. We also assume that the reciprocal of the scale factor associated with the expanding spacetime metric verifies a c s -dependent time-integrability condition. Under these assumptions, we use the vector field energy method to prove that an explicit family of physically motivated, spatially homogeneous, and spatially isotropic fluid solutions are globally future-stable under small perturbations of their initial conditions. The explicit solutions corresponding to each scale factor are analogs of the well-known spatially flat Friedmann-Lemaître-Robertson-Walker family. Our nonlinear analysis, which exploits dissipative terms generated by the expansion, shows that the perturbed solutions exist for all future times and remain close to the explicit solutions. This work is an extension of previous results, which showed that an analogous stability result holds when the spacetime is exponentially expanding. In the case of the radiation equation of state p = (1/3)ρ, we also show that if the time-integrability condition for the reciprocal of the scale factor fails to hold, then the explicit fluid solutions are unstable. More precisely, we show the existence of an open family of initial data such that (i) it contains arbitrarily small smooth perturbations of the explicit solutions' data and (ii) the corresponding perturbed solutions necessarily form shocks in finite time. The shock formation proof is based on the conformal invariance of the relativistic Euler equations when {c2s = 1/3,} which allows for a reduction to a well-known result of Christodoulou.

  16. Assessing land-use history for reporting on cropland dynamics - A case study using the Land-Parcel Identification System in Ireland

    NASA Astrophysics Data System (ADS)

    Zimmermann, Jesko; González, Ainhoa; Jones, Michael; O'Brien, Phillip; Stout, Jane C.; Green, Stuart

    2016-04-01

    In developed countries, cropland and grassland conversions and management can be a major factor in Land Use and Land Use Change (LULUC) related Greenhouse Gas (GHG) dynamics. Depending on land use, management and factors such as soil properties land can either act as source or sink for GHGs. Currently many countries depend on national statistics combined with socio-economic modelling to assess current land use as well as inter-annual changes. This potentially introduces a bias as it neither provides information on direct land- use change trajectories nor spatially explicit information to assess the environmental context. In order to improve reporting countries are shifting towards high resolution spatial datasets. In this case study, we used the Land Parcel Identification System (LPIS), a pan-European geographical database developed to assist farmers and authorities with agricultural subsidies, to analyse cropland dynamics in Ireland. The database offer high spatial resolution and is updated annually. Generally Ireland is considered grassland dominated with 90 % of its agricultural area under permanent grassland, and only a small area dedicated to cropland. However an in-depth analysis of the LPIS for the years 2000 to 2012 showed strong underlying dynamics. While the annual area reported as cropland remained relatively constant at 3752.3 ± 542.3 km2, the area of permanent cropland was only 1251.9 km2. Reversely, the area that was reported as cropland for at least one year during the timeframe was 7373.4 km2, revealing a significantly higher area with cropland history than annual statistics would suggest. Furthermore, the analysis showed that one quarter of the land converting from or to cropland will return to the previous land use within a year. To demonstrate potential policy impact, we assessed cropland/grassland dynamics from the 2008 to 2012 commitment period using (a) annual statistics, and (b) data including land use history derived from LPIS. Under current reporting standards temporary grassland is considered cropland for reporting purposes. Therefore taking land use history into account increases the area reported as cropland in 2008 by 45.7 % and the area remaining cropland in 2012 by 17.5 % compared to using annual statistics. In conclusion we showed that high resolution spatial datasets are an important tool to better understand land use dynamics, and can directly improve national GHG accounting efforts. Furthermore, knowledge of land use history is important to assess local GHG dynamics, and can therefore contribute to ultimately progress reporting to higher Tier level reporting.

  17. Hydrologic Drivers of Soil Organic Carbon Erosion and Burial: Insights from a Spatially-explicit Model of a Degraded Landscape at the Calhoun Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Bras, R. L.; Richter, D. D., Jr.

    2017-12-01

    Soil erosion and burial of organic material may constitute a substantial sink of atmospheric CO2. Attempts to quantify impacts of soil erosion on the soil-atmosphere C exchange are limited by difficulties in accounting for the fate of eroded soil organic carbon (SOC), a key factor in estimating of the net effect of erosion on the C cycle. Processes that transport SOC are still inadequately represented in terrestrial carbon (C) cycle models. This study investigates hydrologic controls on SOC redistribution across the landscape focusing on dynamic feedbacks between watershed hydrology, soil erosional processes, and SOC burial. We use tRIBS-ECO (Triangulated Irregular Network-based Real-time Integrated Basin Simulator-Erosion and Carbon Oxidation), a spatially-explicit model of SOC dynamics coupled with a physically-based hydro-geomorphic model. tRIBS-ECO systematically accounts for the fate of eroded SOC across the watershed: Rainsplash erosion and sheet erosion redistribute SOC from upland sites to depositional environments, altering depth-dependent soil biogeochemical properties in diverse soil profiles. Eroded organic material is transferred with sediment and can be partially oxidized upon transport, or preserved from decomposition by burial. The model was applied in the Calhoun Critical Zone Observatory (CZO), a site that is recovering from some of the most serious agricultural erosion in North America. Soil biogeochemical characteristics at multiple soil horizons were used to initialize the model and test performance. Remotely sensed soil moisture data (NASA SMAP) were used for model calibration. Results show significant rates of hydrologically-induced burial of SOC at the Calhoun CZO. We find that organic material at upland eroding soil profiles is largely mobilized by rainsplash erosion. Sheet erosion mainly drives C transport in lower elevation clayey soils. While SOC erosion and deposition rates declined with recent reforestation at the study site, the erosional potential of the degraded landscape remains significant.

  18. Self-organization in irregular landscapes: Detecting autogenic interactions from field data using descriptive statistics and dynamical systems theory

    NASA Astrophysics Data System (ADS)

    Larsen, L.; Watts, D.; Khurana, A.; Anderson, J. L.; Xu, C.; Merritts, D. J.

    2015-12-01

    The classic signal of self-organization in nature is pattern formation. However, the interactions and feedbacks that organize depositional landscapes do not always result in regular or fractal patterns. How might we detect their existence and effects in these "irregular" landscapes? Emergent landscapes such as newly forming deltaic marshes or some restoration sites provide opportunities to study the autogenic processes that organize landscapes and their physical signatures. Here we describe a quest to understand autogenic vs. allogenic controls on landscape evolution in Big Spring Run, PA, a landscape undergoing restoration from bare-soil conditions to a target wet meadow landscape. The contemporary motivation for asking questions about autogenic vs. allogenic controls is to evaluate how important initial conditions or environmental controls may be for the attainment of management objectives. However, these questions can also inform interpretation of the sedimentary record by enabling researchers to separate signals that may have arisen through self-organization processes from those resulting from environmental perturbations. Over three years at Big Spring Run, we mapped the dynamic evolution of floodplain vegetation communities and distributions of abiotic variables and topography. We used principal component analysis and transition probability analysis to detect associative interactions between vegetation and geomorphic variables and convergent cross-mapping on lidar data to detect causal interactions between biomass and topography. Exploratory statistics revealed that plant communities with distinct morphologies exerted control on landscape evolution through stress divergence (i.e., channel initiation) and promoting the accumulation of fine sediment in channels. Together, these communities participated in a negative feedback that maintains low energy and multiple channels. Because of the spatially explicit nature of this feedback, causal interactions could not be uncovered from convergent cross-mapping with this limited dataset, serving as a reminder that spatially explicit approaches for revealing causality are needed to reconstruct self-organizing mechanisms from data.

  19. Modelling the development and arrangement of the primary vascular structure in plants.

    PubMed

    Cartenì, Fabrizio; Giannino, Francesco; Schweingruber, Fritz Hans; Mazzoleni, Stefano

    2014-09-01

    The process of vascular development in plants results in the formation of a specific array of bundles that run throughout the plant in a characteristic spatial arrangement. Although much is known about the genes involved in the specification of procambium, phloem and xylem, the dynamic processes and interactions that define the development of the radial arrangement of such tissues remain elusive. This study presents a spatially explicit reaction-diffusion model defining a set of logical and functional rules to simulate the differentiation of procambium, phloem and xylem and their spatial patterns, starting from a homogeneous group of undifferentiated cells. Simulation results showed that the model is capable of reproducing most vascular patterns observed in plants, from primitive and simple structures made up of a single strand of vascular bundles (protostele), to more complex and evolved structures, with separated vascular bundles arranged in an ordered pattern within the plant section (e.g. eustele). The results presented demonstrate, as a proof of concept, that a common genetic-molecular machinery can be the basis of different spatial patterns of plant vascular development. Moreover, the model has the potential to become a useful tool to test different hypotheses of genetic and molecular interactions involved in the specification of vascular tissues.

  20. Latitude delineates patterns of biogeography in terrestrial Streptomyces.

    PubMed

    Choudoir, Mallory J; Doroghazi, James R; Buckley, Daniel H

    2016-12-01

    The biogeography of Streptomyces was examined at regional spatial scales to identify factors that govern patterns of microbial diversity. Streptomyces are spore forming filamentous bacteria which are widespread in soil. Streptomyces strains were isolated from perennial grass habitats sampled across a spatial scale of more than 6000 km. Previous analysis of this geographically explicit culture collection provided evidence for a latitudinal diversity gradient in Streptomyces species. Here the hypothesis that this latitudinal diversity gradient is a result of evolutionary dynamics associated with historical demographic processes was evaluated. Historical demographic phenomena have genetic consequences that can be evaluated through analysis of population genetics. Population genetic approaches were applied to analyze population structure in six of the most numerically abundant and geographically widespread Streptomyces phylogroups from our culture collection. Streptomyces population structure varied at regional spatial scales, and allelic diversity correlated with geographic distance. In addition, allelic diversity and gene flow are partitioned by latitude. Finally, it was found that nucleotide diversity within phylogroups was negatively correlated with latitude. These results indicate that phylogroup diversification is constrained by dispersal limitation at regional spatial scales, and they are consistent with the hypothesis that historical demographic processes have influenced the contemporary biogeography of Streptomyces. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  2. Spatial vegetation patterns and neighborhood competition among woody plants in an East African savanna.

    PubMed

    Dohn, Justin; Augustine, David J; Hanan, Niall P; Ratnam, Jayashree; Sankaran, Mahesh

    2017-02-01

    The majority of research on savanna vegetation dynamics has focused on the coexistence of woody and herbaceous vegetation. Interactions among woody plants in savannas are relatively poorly understood. We present data from a 10-yr longitudinal study of spatially explicit growth patterns of woody vegetation in an East African savanna following exclusion of large herbivores and in the absence of fire. We examined plant spatial patterns and quantified the degree of competition among woody individuals. Woody plants in this semiarid savanna exhibit strongly clumped spatial distributions at scales of 1-5 m. However, analysis of woody plant growth rates relative to their conspecific and heterospecific neighbors revealed evidence for strong competitive interactions at neighborhood scales of up to 5 m for most woody plant species. Thus, woody plants were aggregated in clumps despite significantly decreased growth rates in close proximity to neighbors, indicating that the spatial distribution of woody plants in this region depends on dispersal and establishment processes rather than on competitive, density-dependent mortality. However, our documentation of suppressive effects of woody plants on neighbors also suggests a potentially important role for tree-tree competition in controlling vegetation structure and indicates that the balanced-competition hypothesis may contribute to well-known patterns in maximum tree cover across rainfall gradients in Africa. © 2016 by the Ecological Society of America.

  3. Mean field analysis of a spatial stochastic model of a gene regulatory network.

    PubMed

    Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J

    2015-10-01

    A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.

  4. MATLAB for laser speckle contrast analysis (LASCA): a practice-based approach

    NASA Astrophysics Data System (ADS)

    Postnikov, Eugene B.; Tsoy, Maria O.; Postnov, Dmitry E.

    2018-04-01

    Laser Speckle Contrast Analysis (LASCA) is one of the most powerful modern methods for revealing blood dynamics. The experimental design and theory for this method are well established, and the computational recipie is often regarded to be trivial. However, the achieved performance and spatial resolution may considerable differ for different implementations. We comprise a minireview of known approaches to the spatial laser speckle contrast data processing and their realization in MATLAB code providing an explicit correspondence to the mathematical representation, a discussion of available implementations. We also present the algorithm based on the 2D Haar wavelet transform, also supplied with the program code. This new method provides an opportunity to introduce horizontal, vertical and diagonal speckle contrasts; it may be used for processing highly anisotropic images of vascular trees. We provide the comparative analysis of the accuracy of vascular pattern detection and the processing times with a special attention to details of the used MATLAB procedures.

  5. Survival in patchy landscapes: the interplay between dispersal, habitat loss and fragmentation

    PubMed Central

    Niebuhr, Bernardo B. S.; Wosniack, Marina E.; Santos, Marcos C.; Raposo, Ernesto P.; Viswanathan, Gandhimohan M.; da Luz, Marcos G. E.; Pie, Marcio R.

    2015-01-01

    Habitat loss and fragmentation are important factors determining animal population dynamics and spatial distribution. Such landscape changes can lead to the deleterious impact of a significant drop in the number of species, caused by critically reduced survival rates for organisms. In order to obtain a deeper understanding of the threeway interplay between habitat loss, fragmentation and survival rates, we propose here a spatially explicit multi-scaled movement model of individuals that search for habitat. By considering basic ecological processes, such as predation, starvation (outside the habitat area), and competition, together with dispersal movement as a link among habitat areas, we show that a higher survival rate is achieved in instances with a lower number of patches of larger areas. Our results demonstrate how movement may counterbalance the effects of habitat loss and fragmentation in altered landscapes. In particular, they have important implications for conservation planning and ecosystem management, including the design of specific features of conservation areas in order to enhance landscape connectivity and population viability. PMID:26148488

  6. Space-based Ornithology-Studying Bird Migration and Environmental Change in North America

    NASA Technical Reports Server (NTRS)

    Smith, James; Deppe, Jill

    2008-01-01

    Natural fluctuations in the availability of critical stopover sites coupled with anthropogenic destruction of wetlands, land-use change, and anticipated losses due to climate change present migratory birds with a formidable challenge. We have developed an individual-based, spatially explicit bird migration model that simulates the migration routes, timing and energy budgets of individual birds under dynamic weather and land surface conditions. Our model incorporates biophysical constraints, individual bird energy status, bird behavior, and flight aerodynamics. We model the speed, direction, and timing of individual birds moving through a user specified Lagrangian grid. The model incorporates environmental properties including wind speed and direction, topography, dynamic hydrologic properties of the landscape, and environmental suitability. The model is driven by important variables estimated from satellite observations of the land surface, by data assimilation products from weather and climate models, and biological field data. We illustrate the use of the model to study the impact of both short- and long-term environmental variatios, e.g. climate, drought, anthropogenic, on migration timing (phenology), spatial pattern, and fitness (survival and reproductive success). We present several theoretical simulations of the spring migration of Pectoral Sandpiper (Calidris melanotos) in North America with emphasis on the Central flyway from the Gulf of Mexico to Alaska.

  7. Characterizing forest fragments in boreal, temperate, and tropical ecosystems

    Treesearch

    Arjan J. H. Meddens; Andrew T. Hudak; Jeffrey S. Evans; William A. Gould; Grizelle Gonzalez

    2008-01-01

    An increased ability to analyze landscapes in a spatial manner through the use of remote sensing leads to improved capabilities for quantifying human-induced forest fragmentation. Developments of spatially explicit methods in landscape analyses are emerging. In this paper, the image delineation software program eCognition and the spatial pattern analysis program...

  8. Spatiality and the Place of the Material in Schools

    ERIC Educational Resources Information Center

    McGregor, Jane

    2004-01-01

    Drawing on a research study into the spatiality of teachers' workplaces, this article explores the "concrete realities" of the artefact-filled world with which teachers, support staff and students interact, and considers the way in which networks of people and things order the spaces of the school. Spatiality is examined explicitly in…

  9. Algorithms and software for nonlinear structural dynamics

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.

    1989-01-01

    The objective of this research is to develop efficient methods for explicit time integration in nonlinear structural dynamics for computers which utilize both concurrency and vectorization. As a framework for these studies, the program WHAMS, which is described in Explicit Algorithms for the Nonlinear Dynamics of Shells (T. Belytschko, J. I. Lin, and C.-S. Tsay, Computer Methods in Applied Mechanics and Engineering, Vol. 42, 1984, pp 225 to 251), is used. There are two factors which make the development of efficient concurrent explicit time integration programs a challenge in a structural dynamics program: (1) the need for a variety of element types, which complicates the scheduling-allocation problem; and (2) the need for different time steps in different parts of the mesh, which is here called mixed delta t integration, so that a few stiff elements do not reduce the time steps throughout the mesh.

  10. The role of internal dynamics in the coherent evolution of indirect excitons

    NASA Astrophysics Data System (ADS)

    Grasselli, Federico; Bertoni, Andrea; Goldoni, Guido

    2017-08-01

    We study the time-dependent quantum scattering of a spatially indirect exciton by an external potential, taking fully into account the relative quantum dynamics of the electron-hole (e-h) pair. Exact calculations for an e-h wave packet show that transfer of energy between centre-of-mass (c.m.) and relative degrees of freedom may result in a genuine correction to the evolution during the scattering and eventually at asymptotic times. We show in experimentally relevant regimes and device configurations, that transmission resonances, tunnelling probabilities, diffraction patterns and wave packet fragmentation of indirect excitons are largely determined by the internal dynamics, and could not be reproduced by point-like dipole models or mean-field calculations. We show that a properly-designed local self-energy potential to be added to the c.m. Hamiltonian embeds the effects of the c.m.-internal motion correlation at a small fraction of the computation load needed for full-propagation calculations. The explicit form of this self-energy emphasises the dominant role of internal virtual transitions in determining scattering coefficients of indirect excitons.

  11. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  12. Sediment resuspension in a shallow lake with muddy substrates: St Lucia, South Africa

    NASA Astrophysics Data System (ADS)

    Zikhali, Vulindlela; Tirok, Katrin; Stretch, Derek

    2015-10-01

    Wind-driven sediment resuspension affects the physical and biological environment of the water column in shallow estuarine lakes. This study investigated the relationship between wind-driven waves and suspended sediment concentration (SSC) using the 33 km2 South Lake basin of Lake St Lucia, South Africa as a case study. Five wave poles measuring significant wave height and turbidity were deployed over an aggregate period of twenty days at distributed locations where sediment substrate compositions varied from muddy to sandy and depths ranged from 0.7 m to 2.1 m. The resulting turbidity dynamics were used to test a simple depth-averaged model of suspended sediment concentrations. The model performed best in the muddy regions of the lake and was able to simulate the resuspension dynamics more accurately than the settling dynamics. Peak suspended sediment concentration levels were best captured for the deeper muddy locations. The model provides a means to make spatially explicit predictions of suspended sediment concentrations that can be used to understand the forcing mechanisms for primary producer growth and distribution or to improve sediment budget calculations.

  13. High speed imaging of dynamic processes with a switched source x-ray CT system

    NASA Astrophysics Data System (ADS)

    Thompson, William M.; Lionheart, William R. B.; Morton, Edward J.; Cunningham, Mike; Luggar, Russell D.

    2015-05-01

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data.

  14. Electron and ion dynamics study of iron in warm dense matter regime by time-resolved XAS measurements and from first-principles

    NASA Astrophysics Data System (ADS)

    Ogitsu, T.; Fernandez-Paãella, A.; Correa, A.; Engelhorn, K.; Barbrel, B.; Prendergast, D. G.; Pemmaraju, D.; Beckwith, M.; Kraus, D.; Hamel, S.; Cho, B. I.; Jin, L.; Wong, J.; Heinman, P.; Collins, G. W.; Falcone, R.; Ping, Y.

    2016-10-01

    We present a study of the electron-phonon coupling of warm dense iron upon femtosecond laser excitation by time-resolved x-ray absorption near edge spectroscopy (XANES). The dynamics of iron in electron-ion non-equilibrium conditions was studied using ab-initio density-functional-theory (DFT) simulations combined with the Two Temperature Model (TTM) where spatial inhomogeneity of electron (and ion) temperature(s) due to short ballistic electron transport length in iron was explicitly taken into consideration. Detailed comparison between our simulation results and experiments indicates that the ion temperature dependence on specific heat and on electron-phonon coupling also plays a relevant role in modeling the relaxation dynamics of electrons and ions. These results are the first experimental evidence of the suppression of the electron-phonon coupling factor of a transition metal at electron temperatures ranging 5000- 10000 K. This work was performed under DOE contract DE-AC52-07NA27344 with support from OFES Early Career program and LLNL LDRD program.

  15. On the topological sensitivity of cellular automata

    NASA Astrophysics Data System (ADS)

    Baetens, Jan M.; De Baets, Bernard

    2011-06-01

    Ever since the conceptualization of cellular automata (CA), much attention has been paid to the dynamical properties of these discrete dynamical systems, and, more in particular, to their sensitivity to the initial condition from which they are evolved. Yet, the sensitivity of CA to the topology upon which they are based has received only minor attention, such that a clear insight in this dependence is still lacking and, furthermore, a quantification of this so-called topological sensitivity has not yet been proposed. The lack of attention for this issue is rather surprising since CA are spatially explicit, which means that their dynamics is directly affected by their topology. To overcome these shortcomings, we propose topological Lyapunov exponents that measure the divergence of two close trajectories in phase space originating from a topological perturbation, and we relate them to a measure grasping the sensitivity of CA to their topology that relies on the concept of topological derivatives, which is introduced in this paper. The validity of the proposed methodology is illustrated for the 256 elementary CA and for a family of two-state irregular totalistic CA.

  16. Attending to space within and between objects: Implications from a patient with Balint’s syndrome

    PubMed Central

    Robertson, Lynn C.; Treisman, Anne

    2007-01-01

    Neuropsychological conditions such as Balint’s syndrome have shown that perceptual organization of parts into a perceptual unit can be dissociated from the ability to localize objects relative to each other. Neural mechanisms that code the spatial structure within individual objects or words may seem to be intact, while between-object structure is compromised. Here we investigate the nature of within-object spatial processing in a patient with Balint’s syndrome (RM). We suggest that within-object spatial structure can be determined (a) directly by explicit spatial processing of between-part relations, mediated by the same dorsal pathway as between-object spatial relations; or (b) indirectly by the discrimination of object identities, which may involve implicit processing of between-part relations and which is probably mediated by the ventral system. When this route is ruled out, by testing discrimination of differences in part location that do not change the identity of the object, we find no evidence of explicit within-object spatial coding in a patient without functioning parietal lobes. PMID:21049339

  17. Mixed models and reduction method for dynamic analysis of anisotropic shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.

  18. Rotational wind indicator enhances control of rotated displays

    NASA Technical Reports Server (NTRS)

    Cunningham, H. A.; Pavel, Misha

    1991-01-01

    Rotation by 108 deg of the spatial mapping between a visual display and a manual input device produces large spatial errors in a discrete aiming task. These errors are not easily corrected by voluntary mental effort, but the central nervous system does adapt gradually to the new mapping. Bernotat (1970) showed that adding true hand position to a 90 deg rotated display improved performance of a compensatory tracking task, but tracking error rose again upon removal of the explicit cue. This suggests that the explicit error signal did not induce changes in the neural mapping, but rather allowed the operator to reduce tracking error using a higher mental strategy. In this report, we describe an explicit visual display enhancement applied to a 108 deg rotated discrete aiming task. A 'wind indicator' corresponding to the effect of the mapping rotation is displayed on the operator-controlled cursor. The human operator is instructed to oppose the virtual force represented by the indicator, as one would do if flying an airplane in a crosswind. This enhancement reduces spatial aiming error in the first 10 minutes of practice by an average of 70 percent when compared to a no enhancement control condition. Moreover, it produces adaptation aftereffect, which is evidence of learning by neural adaptation rather than by mental strategy. Finally, aiming error does not rise upon removal of the explicit cue.

  19. Empirical evaluation of spatial and non-spatial European-scale multimedia fate models: results and implications for chemical risk assessment.

    PubMed

    Armitage, James M; Cousins, Ian T; Hauck, Mara; Harbers, Jasper V; Huijbregts, Mark A J

    2007-06-01

    Multimedia environmental fate models are commonly-applied tools for assessing the fate and distribution of contaminants in the environment. Owing to the large number of chemicals in use and the paucity of monitoring data, such models are often adopted as part of decision-support systems for chemical risk assessment. The purpose of this study was to evaluate the performance of three multimedia environmental fate models (spatially- and non-spatially-explicit) at a European scale. The assessment was conducted for four polycyclic aromatic hydrocarbons (PAHs) and hexachlorobenzene (HCB) and compared predicted and median observed concentrations using monitoring data collected for air, water, sediments and soils. Model performance in the air compartment was reasonable for all models included in the evaluation exercise as predicted concentrations were typically within a factor of 3 of the median observed concentrations. Furthermore, there was good correspondence between predictions and observations in regions that had elevated median observed concentrations for both spatially-explicit models. On the other hand, all three models consistently underestimated median observed concentrations in sediment and soil by 1-3 orders of magnitude. Although regions with elevated median observed concentrations in these environmental media were broadly identified by the spatially-explicit models, the magnitude of the discrepancy between predicted and median observed concentrations is of concern in the context of chemical risk assessment. These results were discussed in terms of factors influencing model performance such as the steady-state assumption, inaccuracies in emission estimates and the representativeness of monitoring data.

  20. Fusion of multichannel local and global structural cues for photo aesthetics evaluation.

    PubMed

    Luming Zhang; Yue Gao; Zimmermann, Roger; Qi Tian; Xuelong Li

    2014-03-01

    Photo aesthetic quality evaluation is a fundamental yet under addressed task in computer vision and image processing fields. Conventional approaches are frustrated by the following two drawbacks. First, both the local and global spatial arrangements of image regions play an important role in photo aesthetics. However, existing rules, e.g., visual balance, heuristically define which spatial distribution among the salient regions of a photo is aesthetically pleasing. Second, it is difficult to adjust visual cues from multiple channels automatically in photo aesthetics assessment. To solve these problems, we propose a new photo aesthetics evaluation framework, focusing on learning the image descriptors that characterize local and global structural aesthetics from multiple visual channels. In particular, to describe the spatial structure of the image local regions, we construct graphlets small-sized connected graphs by connecting spatially adjacent atomic regions. Since spatially adjacent graphlets distribute closely in their feature space, we project them onto a manifold and subsequently propose an embedding algorithm. The embedding algorithm encodes the photo global spatial layout into graphlets. Simultaneously, the importance of graphlets from multiple visual channels are dynamically adjusted. Finally, these post-embedding graphlets are integrated for photo aesthetics evaluation using a probabilistic model. Experimental results show that: 1) the visualized graphlets explicitly capture the aesthetically arranged atomic regions; 2) the proposed approach generalizes and improves four prominent aesthetic rules; and 3) our approach significantly outperforms state-of-the-art algorithms in photo aesthetics prediction.

  1. Ecological Complexity in a Coffee Agroecosystem: Spatial Heterogeneity, Population Persistence and Biological Control

    PubMed Central

    Liere, Heidi; Jackson, Doug; Vandermeer, John

    2012-01-01

    Background Spatial heterogeneity is essential for the persistence of many inherently unstable systems such as predator-prey and parasitoid-host interactions. Since biological interactions themselves can create heterogeneity in space, the heterogeneity necessary for the persistence of an unstable system could be the result of local interactions involving elements of the unstable system itself. Methodology/Principal Findings Here we report on a predatory ladybird beetle whose natural history suggests that the beetle requires the patchy distribution of the mutualism between its prey, the green coffee scale, and the arboreal ant, Azteca instabilis. Based on known ecological interactions and the natural history of the system, we constructed a spatially-explicit model and showed that the clustered spatial pattern of ant nests facilitates the persistence of the beetle populations. Furthermore, we show that the dynamics of the beetle consuming the scale insects can cause the clustered distribution of the mutualistic ants in the first place. Conclusions/Significance From a theoretical point of view, our model represents a novel situation in which a predator indirectly causes a spatial pattern of an organism other than its prey, and in doing so facilitates its own persistence. From a practical point of view, it is noteworthy that one of the elements in the system is a persistent pest of coffee, an important world commodity. This pest, we argue, is kept within limits of control through a complex web of ecological interactions that involves the emergent spatial pattern. PMID:23029061

  2. Cluster Dynamics Modeling with Bubble Nucleation, Growth and Coalescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F.; Blondel, Sophie; Bernholdt, David E.

    The topic of this communication pertains to defect formation in irradiated solids such as plasma-facing tungsten submitted to helium implantation in fusion reactor com- ponents, and nuclear fuel (metal and oxides) submitted to volatile ssion product generation in nuclear reactors. The purpose of this progress report is to describe ef- forts towards addressing the prediction of long-time evolution of defects via continuum cluster dynamics simulation. The di culties are twofold. First, realistic, long-time dynamics in reactor conditions leads to a non-dilute di usion regime which is not accommodated by the prevailing dilute, stressless cluster dynamics theory. Second, long-time dynamics callsmore » for a large set of species (ideally an in nite set) to capture all possible emerging defects, and this represents a computational bottleneck. Extensions beyond the dilute limit is a signi cant undertaking since no model has been advanced to extend cluster dynamics to non-dilute, deformable conditions. Here our proposed approach to model the non-dilute limit is to monitor the appearance of a spatially localized void volume fraction in the solid matrix with a bell shape pro le and insert an explicit geometrical bubble onto the support of the bell function. The newly cre- ated internal moving boundary provides the means to account for the interfacial ux of mobile species into the bubble, and the growth of bubbles allows for coalescence phenomena which captures highly non-dilute interactions. We present a preliminary interfacial kinematic model with associated interfacial di usion transport to follow the evolution of the bubble in any number of spatial dimensions and any number of bubbles, which can be further extended to include a deformation theory. Finally we comment on a computational front-tracking method to be used in conjunction with conventional cluster dynamics simulations in the non-dilute model proposed.« less

  3. Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat

    USGS Publications Warehouse

    Erickson, Richard A.; Thogmartin, Wayne E.; Diffendorfer, James E.; Russell, Robin E.; Szymanski, Jennifer A.

    2016-01-01

    Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.

  4. Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat.

    PubMed

    Erickson, Richard A; Thogmartin, Wayne E; Diffendorfer, Jay E; Russell, Robin E; Szymanski, Jennifer A

    2016-01-01

    Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat ( Myotis sodalis ), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans , disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.

  5. Ubiquitous Geo-Sensing for Context-Aware Analysis: Exploring Relationships between Environmental and Human Dynamics

    PubMed Central

    Sagl, Günther; Blaschke, Thomas; Beinat, Euro; Resch, Bernd

    2012-01-01

    Ubiquitous geo-sensing enables context-aware analyses of physical and social phenomena, i.e., analyzing one phenomenon in the context of another. Although such context-aware analysis can potentially enable a more holistic understanding of spatio-temporal processes, it is rarely documented in the scientific literature yet. In this paper we analyzed the collective human behavior in the context of the weather. We therefore explored the complex relationships between these two spatio-temporal phenomena to provide novel insights into the dynamics of urban systems. Aggregated mobile phone data, which served as a proxy for collective human behavior, was linked with the weather data from climate stations in the case study area, the city of Udine, Northern Italy. To identify and characterize potential patterns within the weather-human relationships, we developed a hybrid approach which integrates several spatio-temporal statistical analysis methods. Thereby we show that explanatory factor analysis, when applied to a number of meteorological variables, can be used to differentiate between normal and adverse weather conditions. Further, we measured the strength of the relationship between the ‘global’ adverse weather conditions and the spatially explicit effective variations in user-generated mobile network traffic for three distinct periods using the Maximal Information Coefficient (MIC). The analyses result in three spatially referenced maps of MICs which reveal interesting insights into collective human dynamics in the context of weather, but also initiate several new scientific challenges. PMID:23012571

  6. A functional-dynamic reflection on participatory processes in modeling projects.

    PubMed

    Seidl, Roman

    2015-12-01

    The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management.

  7. Spatial variation of corn canopy temperature as dependent upon soil texture and crop rooting characteristics

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1983-01-01

    A soil plant atmosphere model for corn (Zea mays L.) together with the scaling theory for soil hydraulic heterogeneity are used to study the sensitivity of spatial variation of canopy temperature to field averaged soil texture and crop rooting characteristics. The soil plant atmosphere model explicitly solves a continuity equation for water flux resulting from root water uptake, changes in plant water storage and transpirational flux. Dynamical equations for root zone soil water potential and the plant water storage models the progressive drying of soil, and day time dehydration and night time hydration of the crop. The statistic of scaling parameter which describes the spatial variation of soil hydraulic conductivity and matric potential is assumed to be independent of soil texture class. The field averaged soil hydraulic characteristics are chosen to be representative of loamy sand and clay loam soils. Two rooting characteristics are chosen, one shallow and the other deep rooted. The simulation shows that the range of canopy temperatures in the clayey soil is less than 1K, but for the sandy soil the range is about 2.5 and 5.0 K, respectively, for the shallow and deep rooted crops.

  8. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    USGS Publications Warehouse

    Mikle, Nathaniel; Graves, Tabitha A.; Kovach, Ryan P.; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral.

  9. Demographic mechanisms underpinning genetic assimilation of remnant groups of a large carnivore

    PubMed Central

    Kovach, Ryan; Kendall, Katherine C.; Macleod, Amy C.

    2016-01-01

    Current range expansions of large terrestrial carnivores are occurring following human-induced range contraction. Contractions are often incomplete, leaving small remnant groups in refugia throughout the former range. Little is known about the underlying ecological and evolutionary processes that influence how remnant groups are affected during range expansion. We used data from a spatially explicit, long-term genetic sampling effort of grizzly bears (Ursus arctos) in the Northern Continental Divide Ecosystem (NCDE), USA, to identify the demographic processes underlying spatial and temporal patterns of genetic diversity. We conducted parentage analysis to evaluate how reproductive success and dispersal contribute to spatio-temporal patterns of genetic diversity in remnant groups of grizzly bears existing in the southwestern (SW), southeastern (SE) and east-central (EC) regions of the NCDE. A few reproductively dominant individuals and local inbreeding caused low genetic diversity in peripheral regions that may have persisted for multiple generations before eroding rapidly (approx. one generation) during population expansion. Our results highlight that individual-level genetic and reproductive dynamics play critical roles during genetic assimilation, and show that spatial patterns of genetic diversity on the leading edge of an expansion may result from historical demographic patterns that are highly ephemeral. PMID:27655768

  10. Spatiotemporal variability of urban growth factors: A global and local perspective on the megacity of Mumbai

    NASA Astrophysics Data System (ADS)

    Shafizadeh-Moghadam, Hossein; Helbich, Marco

    2015-03-01

    The rapid growth of megacities requires special attention among urban planners worldwide, and particularly in Mumbai, India, where growth is very pronounced. To cope with the planning challenges this will bring, developing a retrospective understanding of urban land-use dynamics and the underlying driving-forces behind urban growth is a key prerequisite. This research uses regression-based land-use change models - and in particular non-spatial logistic regression models (LR) and auto-logistic regression models (ALR) - for the Mumbai region over the period 1973-2010, in order to determine the drivers behind spatiotemporal urban expansion. Both global models are complemented by a local, spatial model, the so-called geographically weighted logistic regression (GWLR) model, one that explicitly permits variations in driving-forces across space. The study comes to two main conclusions. First, both global models suggest similar driving-forces behind urban growth over time, revealing that LRs and ALRs result in estimated coefficients with comparable magnitudes. Second, all the local coefficients show distinctive temporal and spatial variations. It is therefore concluded that GWLR aids our understanding of urban growth processes, and so can assist context-related planning and policymaking activities when seeking to secure a sustainable urban future.

  11. A dam-reservoir module for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2017-04-01

    Developing modeling tools that help to assess the spatial distribution of water resources is a key issue to achieve better solutions for the optimal management of water availability among users in a river basin. Streamflow dynamics depends on (i) the spatial variability of rainfall, (ii) the heterogeneity of catchment behavior and response, and (iii) local human regulations (e.g., reservoirs) that store and control surface water. These aspects can be successfully handled by distributed or semi-distributed hydrological models. In this study, we develop a dam-reservoir module within a semi-distributed rainfall-runoff model (de Lavenne et al. 2016). The model runs at the daily time step, and has five parameters for each sub-catchment as well as a streamflow velocity parameter for flow routing. Its structure is based on two stores, one for runoff production and one for routing. The calibration of the model is performed from upstream to downstream sub-catchments, which efficiently uses spatially-distributed streamflow measurements. In a previous study, Payan et al. (2008) described a strategy to implement a dam module within a lumped rainfall-runoff model. Here we propose to adapt this strategy to a semi-distributed hydrological modelling framework. In this way, the specific location of existing reservoirs inside a river basin is explicitly accounted for. Our goal is to develop a tool that can provide answers to the different issues involved in spatial water management in human-influenced contexts and at large modelling scales. The approach is tested for the Seine basin in France. Results are shown for model performance with and without the dam module. Also, a comparison with the lumped GR5J model highlights the improvements obtained in model performance by considering human influences more explicitly, and by facilitating parameter identifiability. This work opens up new perspectives for streamflow naturalization analyses and scenario-based spatial assessment of water resources under global change. References de Lavenne, A.; Thirel, G.; Andréassian, V.; Perrin, C. & Ramos, M.-H. (2016), 'Spatial variability of the parameters of a semi-distributed hydrological model', PIAHS 373, 87-94. Payan, J.-L.; Perrin, C.; Andréassian, V. & Michel, C. (2008), 'How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?', Water Resour. Res. 44(3), W03420.

  12. Assessment of economically optimal water management and geospatial potential for large-scale water storage

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Harshi; Schneider, Uwe A.

    2010-05-01

    Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms in GIS, potential water storage sites are identified for constructing regional reservoirs. Subsequently, sites are prioritized based on runoff generation potential (m3 per unit area), and geographical suitability for constructing storage structures. The results from the spatial analysis are used as input for the optimization model. Allocation of resources and appropriate dimension for dams and associated structures are identified using the optimization model. The model evaluates the capability of alternative reservoirs for cost-efficient water management. The Geographic Information System is used to store, analyze, and integrate spatially explicit and non-spatial attribute information whereas the algebraic modeling platform is used to develop the dynamic optimization model. The results of this methodology are validated over space against satellite remote sensing data and existing data on reservoir capacities and runoff. The method is suitable for application of on-farm water storage structures, water distribution networks, and moisture conservation structures in a global context.

  13. The impact of ARM on climate modeling

    DOE PAGES

    Randall, David A.; Del Genio, Anthony D.; Donner, Lee J.; ...

    2016-07-15

    Climate models are among humanity’s most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of Earth down to 100 km or smaller and implicitly include the effects of processes on even smaller scales down to a micron or so. In addition, themore » atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM).« less

  14. Numerical algorithms based on Galerkin methods for the modeling of reactive interfaces in photoelectrochemical (PEC) solar cells

    NASA Astrophysics Data System (ADS)

    Harmon, Michael; Gamba, Irene M.; Ren, Kui

    2016-12-01

    This work concerns the numerical solution of a coupled system of self-consistent reaction-drift-diffusion-Poisson equations that describes the macroscopic dynamics of charge transport in photoelectrochemical (PEC) solar cells with reactive semiconductor and electrolyte interfaces. We present three numerical algorithms, mainly based on a mixed finite element and a local discontinuous Galerkin method for spatial discretization, with carefully chosen numerical fluxes, and implicit-explicit time stepping techniques, for solving the time-dependent nonlinear systems of partial differential equations. We perform computational simulations under various model parameters to demonstrate the performance of the proposed numerical algorithms as well as the impact of these parameters on the solution to the model.

  15. A Bayesian methodological framework for accommodating interannual variability of nutrient loading with the SPARROW model

    NASA Astrophysics Data System (ADS)

    Wellen, Christopher; Arhonditsis, George B.; Labencki, Tanya; Boyd, Duncan

    2012-10-01

    Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow) have assumed a prominent role in efforts to estimate the sources and transport of nutrient pollution at river basin scales. However, almost no attempts have been made to explicitly accommodate interannual nutrient loading variability in their structure, despite empirical and theoretical evidence indicating that the associated source/sink processes are quite variable at annual timescales. In this study, we present two methodological approaches to accommodate interannual variability with the Spatially Referenced Regressions on Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses the SPARROW model to estimate a static baseline load and climatic variables (e.g., precipitation) to drive the interannual variability. The second approach allows the source/sink processes within the SPARROW model to vary at annual timescales using dynamic parameter estimation techniques akin to those used in dynamic linear models. Model parameterization is founded upon Bayesian inference techniques that explicitly consider calibration data and model uncertainty. Our case study is the Hamilton Harbor watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more parsimonious of the two strategies tested and can offer insights into the temporal structural changes associated with watershed functioning. Consistent with empirical and theoretical work, model estimated annual in-stream attenuation rates varied inversely with annual discharge. Estimated phosphorus source areas were concentrated near the receiving water body during years of high in-stream attenuation and dispersed along the main stems of the streams during years of low attenuation, suggesting that nutrient source areas are subject to interannual variability.

  16. An epidemic model for the interactions between thermal regime of rivers and transmission of Proliferative Kidney Disease in salmonid fish

    NASA Astrophysics Data System (ADS)

    Carraro, Luca; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Strepparava, Nicole; Hartikainen, Hanna; Rinaldo, Andrea

    2015-04-01

    Proliferative kidney disease (PKD) affects salmonid populations in European and North-American rivers. It is caused by the endoparasitic myxozoan Tetracapsuloides bryosalmonae, which exploits freshwater bryozoans (Fredericella sultana) and salmonids as primary and secondary hosts, respectively. Incidence and mortality, which can reach up to 90-100%, are known to be strongly related to water temperature. PKD has been present in brown trout population for a long time but has recently increased rapidly in incidence and severity causing a decline in fish catches in many countries. In addition, environmental changes are feared to cause PKD outbreaks at higher latitude and altitude regions as warmer temperatures promote disease development. This calls for a better comprehension of the interactions between disease dynamics and the thermal regime of rivers, in order to possibly devise strategies for disease management. In this perspective, a spatially explicit model of PKD epidemiology in riverine host metacommunities is proposed. The model aims at summarizing the knowledge on the modes of transmission of the disease and the life-cycle of the parasite, making the connection between temperature and epidemiological parameters explicit. The model accounts for both local population and disease dynamics of bryozoans and fish and hydrodynamic dispersion of the parasite spores and hosts along the river network. The model is time-hybrid, coupling inter-seasonal and intra-seasonal dynamics, the former being described in a continuous time domain, the latter seen as time steps of a discrete time domain. In order to test the model, a case study is conducted in river Wigger (Cantons of Aargau and Lucerne, Switzerland), where data about water temperature, brown trout and bryozoan populations and PKD prevalence are being collected.

  17. Rapid Response Tools and Datasets for Post-fire Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Miller, Mary Ellen; MacDonald, Lee H.; Billmire, Michael; Elliot, William J.; Robichaud, Pete R.

    2016-04-01

    Rapid response is critical following natural disasters. Flooding, erosion, and debris flows are a major threat to life, property and municipal water supplies after moderate and high severity wildfires. The problem is that mitigation measures must be rapidly implemented if they are to be effective, but they are expensive and cannot be applied everywhere. Fires, runoff, and erosion risks also are highly heterogeneous in space, so there is an urgent need for a rapid, spatially-explicit assessment. Past post-fire modeling efforts have usually relied on lumped, conceptual models because of the lack of readily available, spatially-explicit data layers on the key controls of topography, vegetation type, climate, and soil characteristics. The purpose of this project is to develop a set of spatially-explicit data layers for use in process-based models such as WEPP, and to make these data layers freely available. The resulting interactive online modeling database (http://geodjango.mtri.org/geowepp/) is now operational and publically available for 17 western states in the USA. After a fire, users only need to upload a soil burn severity map, and this is combined with the pre-existing data layers to generate the model inputs needed for spatially explicit models such as GeoWEPP (Renschler, 2003). The development of this online database has allowed us to predict post-fire erosion and various remediation scenarios in just 1-7 days for six fires ranging in size from 4-540 km2. These initial successes have stimulated efforts to further improve the spatial extent and amount of data, and add functionality to support the USGS debris flow model, batch processing for Disturbed WEPP (Elliot et al., 2004) and ERMiT (Robichaud et al., 2007), and to support erosion modeling for other land uses, such as agriculture or mining. The design and techniques used to create the database and the modeling interface are readily repeatable for any area or country that has the necessary topography, climate, soil, and land cover datasets.

  18. The influence of uncertainty and location-specific conditions on the environmental prioritisation of human pharmaceuticals in Europe.

    PubMed

    Oldenkamp, Rik; Huijbregts, Mark A J; Ragas, Ad M J

    2016-05-01

    The selection of priority APIs (Active Pharmaceutical Ingredients) can benefit from a spatially explicit approach, since an API might exceed the threshold of environmental concern in one location, while staying below that same threshold in another. However, such a spatially explicit approach is relatively data intensive and subject to parameter uncertainty due to limited data. This raises the question to what extent a spatially explicit approach for the environmental prioritisation of APIs remains worthwhile when accounting for uncertainty in parameter settings. We show here that the inclusion of spatially explicit information enables a more efficient environmental prioritisation of APIs in Europe, compared with a non-spatial EU-wide approach, also under uncertain conditions. In a case study with nine antibiotics, uncertainty distributions of the PAF (Potentially Affected Fraction) of aquatic species were calculated in 100∗100km(2) environmental grid cells throughout Europe, and used for the selection of priority APIs. Two APIs have median PAF values that exceed a threshold PAF of 1% in at least one environmental grid cell in Europe, i.e., oxytetracycline and erythromycin. At a tenfold lower threshold PAF (i.e., 0.1%), two additional APIs would be selected, i.e., cefuroxime and ciprofloxacin. However, in 94% of the environmental grid cells in Europe, no APIs exceed either of the thresholds. This illustrates the advantage of following a location-specific approach in the prioritisation of APIs. This added value remains when accounting for uncertainty in parameter settings, i.e., if the 95th percentile of the PAF instead of its median value is compared with the threshold. In 96% of the environmental grid cells, the location-specific approach still enables a reduction of the selection of priority APIs of at least 50%, compared with a EU-wide prioritisation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Spatially explicit modeling of 1992-2100 land cover and forest stand age for the conterminous United States

    USGS Publications Warehouse

    Sohl, Terry L.; Sayler, Kristi L.; Bouchard, Michelle; Reker, Ryan R.; Friesz, Aaron M.; Bennett, Stacie L.; Sleeter, Benjamin M.; Sleeter, Rachel R.; Wilson, Tamara; Soulard, Christopher E.; Knuppe, Michelle; Van Hofwegen, Travis

    2014-01-01

    Information on future land-use and land-cover (LULC) change is needed to analyze the impact of LULC change on ecological processes. The U.S. Geological Survey has produced spatially explicit, thematically detailed LULC projections for the conterminous United States. Four qualitative and quantitative scenarios of LULC change were developed, with characteristics consistent with the Intergovernmental Panel on Climate Change (IPCC) Special Report on 5 Emission Scenarios (SRES). The four quantified scenarios (A1B, A2, B1, and B2) served as input to the Forecasting Scenarios of Land-use Change (FORE-SCE) model. Four spatially explicit datasets consistent with scenario storylines were produced for the conterminous United States, with annual LULC maps from 1992 through 2100. The future projections are characterized by a loss of natural land covers in most scenarios, with corresponding expansion of 10 anthropogenic land uses. Along with the loss of natural land covers, remaining natural land covers experience increased fragmentation under most scenarios, with only the B2 scenario remaining relatively stable in both proportion of remaining natural land covers and basic fragmentation measures. Forest stand age was also modeled. By 2100, scenarios and ecoregions with heavy forest cutting have relatively lower mean stand ages compared to those with less 15 forest cutting. Stand ages differ substantially between unprotected and protected forest lands, as well as between different forest classes. The modeled data were compared to the National Land Cover Database (NLCD) and other data sources to assess model characteristics. The consistent, spatially explicit, and thematically detailed LULC projections and the associated forest stand age data layers have been used to analyze LULC impacts on carbon and greenhouse gas fluxes, 20 biodiversity, climate and weather variability, hydrologic change, and other ecological processes.

  20. On the spatial heterogeneity of net ecosystem productivity in complex landscapes

    Treesearch

    Ryan E. Emanuel; Diego A. Riveros-Iregui; Brian L. McGlynn; Howard E. Epstein

    2011-01-01

    Micrometeorological flux towers provide spatially integrated estimates of net ecosystem production (NEP) of carbon over areas ranging from several hectares to several square kilometers, but they do so at the expense of spatially explicit information within the footprint of the tower. This finer-scale information is crucial for understanding how physical and biological...

  1. Spatial abstraction for autonomous robot navigation.

    PubMed

    Epstein, Susan L; Aroor, Anoop; Evanusa, Matthew; Sklar, Elizabeth I; Parsons, Simon

    2015-09-01

    Optimal navigation for a simulated robot relies on a detailed map and explicit path planning, an approach problematic for real-world robots that are subject to noise and error. This paper reports on autonomous robots that rely on local spatial perception, learning, and commonsense rationales instead. Despite realistic actuator error, learned spatial abstractions form a model that supports effective travel.

  2. FUEL3-D: A Spatially Explicit Fractal Fuel Distribution Model

    Treesearch

    Russell A. Parsons

    2006-01-01

    Efforts to quantitatively evaluate the effectiveness of fuels treatments are hampered by inconsistencies between the spatial scale at which fuel treatments are implemented and the spatial scale, and detail, with which we model fire and fuel interactions. Central to this scale inconsistency is the resolution at which variability within the fuel bed is considered. Crown...

  3. A spatial stochastic programming model for timber and core area management under risk of stand-replacing fire

    Treesearch

    Dung Tuan Nguyen

    2012-01-01

    Forest harvest scheduling has been modeled using deterministic and stochastic programming models. Past models seldom address explicit spatial forest management concerns under the influence of natural disturbances. In this research study, we employ multistage full recourse stochastic programming models to explore the challenges and advantages of building spatial...

  4. A spatial stochastic programming model for timber and core area management under risk of fires

    Treesearch

    Yu Wei; Michael Bevers; Dung Nguyen; Erin Belval

    2014-01-01

    Previous stochastic models in harvest scheduling seldom address explicit spatial management concerns under the influence of natural disturbances. We employ multistage stochastic programming models to explore the challenges and advantages of building spatial optimization models that account for the influences of random stand-replacing fires. Our exploratory test models...

  5. High-resolution infrared thermography for capturing wildland fire behaviour - RxCADRE 2012

    Treesearch

    Joseph J. O’Brien; E. Louise Loudermilk; Benjamin Hornsby; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; J. Kevin Hiers; Casey Teske; Roger D. Ottmar

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our...

  6. Using the van Hiele K-12 Geometry Learning Theory to Modify Engineering Mechanics Instruction

    ERIC Educational Resources Information Center

    Sharp, Janet M.; Zachary, Loren W.

    2004-01-01

    Engineering students use spatial thinking when examining diagrams or models to study structure design. It is expected that most engineering students have solidified spatial thinking skills during K-12 schooling. However, according to what we know about geometry learning and teaching, spatial thinking probably needs to be explicitly taught within…

  7. Residence-time framework for modeling multicomponent reactive transport in stream hyporheic zones

    NASA Astrophysics Data System (ADS)

    Painter, S. L.; Coon, E. T.; Brooks, S. C.

    2017-12-01

    Process-based models for transport and transformation of nutrients and contaminants in streams require tractable representations of solute exchange between the stream channel and biogeochemically active hyporheic zones. Residence-time based formulations provide an alternative to detailed three-dimensional simulations and have had good success in representing hyporheic exchange of non-reacting solutes. We extend the residence-time formulation for hyporheic transport to accommodate general multicomponent reactive transport. To that end, the integro-differential form of previous residence time models is replaced by an equivalent formulation based on a one-dimensional advection dispersion equation along the channel coupled at each channel location to a one-dimensional transport model in Lagrangian travel-time form. With the channel discretized for numerical solution, the associated Lagrangian model becomes a subgrid model representing an ensemble of streamlines that are diverted into the hyporheic zone before returning to the channel. In contrast to the previous integro-differential forms of the residence-time based models, the hyporheic flowpaths have semi-explicit spatial representation (parameterized by travel time), thus allowing coupling to general biogeochemical models. The approach has been implemented as a stream-corridor subgrid model in the open-source integrated surface/subsurface modeling software ATS. We use bedform-driven flow coupled to a biogeochemical model with explicit microbial biomass dynamics as an example to show that the subgrid representation is able to represent redox zonation in sediments and resulting effects on metal biogeochemical dynamics in a tractable manner that can be scaled to reach scales.

  8. Spatial-explicit modeling of social vulnerability to malaria in East Africa

    PubMed Central

    2014-01-01

    Background Despite efforts in eradication and control, malaria remains a global challenge, particularly affecting vulnerable groups. Despite the recession in malaria cases, previously malaria free areas are increasingly confronted with epidemics as a result of changing environmental and socioeconomic conditions. Next to modeling transmission intensities and probabilities, integrated spatial methods targeting the complex interplay of factors that contribute to social vulnerability are required to effectively reduce malaria burden. We propose an integrative method for mapping relative levels of social vulnerability in a spatially explicit manner to support the identification of intervention measures. Methods Based on a literature review, a holistic risk and vulnerability framework has been developed to guide the assessment of social vulnerability to water-related vector-borne diseases (VBDs) in the context of changing environmental and societal conditions. Building on the framework, this paper applies spatially explicit modeling for delineating homogeneous regions of social vulnerability to malaria in eastern Africa, while taking into account expert knowledge for weighting the single vulnerability indicators. To assess the influence of the selected indicators on the final index a local sensitivity analysis is carried out. Results Results indicate that high levels of malaria vulnerability are concentrated in the highlands, where immunity within the population is currently low. Additionally, regions with a lack of access to education and health services aggravate vulnerability. Lower values can be found in regions with relatively low poverty, low population pressure, low conflict density and reduced contributions from the biological susceptibility domain. Overall, the factors characterizing vulnerability vary spatially in the region. The vulnerability index reveals a high level of robustness in regard to the final choice of input datasets, with the exception of the immunity indicator which has a marked impact on the composite vulnerability index. Conclusions We introduce a conceptual framework for modeling risk and vulnerability to VBDs. Drawing on the framework we modeled social vulnerability to malaria in the context of global change using a spatially explicit approach. The results provide decision makers with place-specific options for targeting interventions that aim at reducing the burden of the disease amongst the different vulnerable population groups. PMID:25127688

  9. Modeling Spatial Dependencies and Semantic Concepts in Data Mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vatsavai, Raju

    Data mining is the process of discovering new patterns and relationships in large datasets. However, several studies have shown that general data mining techniques often fail to extract meaningful patterns and relationships from the spatial data owing to the violation of fundamental geospatial principles. In this tutorial, we introduce basic principles behind explicit modeling of spatial and semantic concepts in data mining. In particular, we focus on modeling these concepts in the widely used classification, clustering, and prediction algorithms. Classification is the process of learning a structure or model (from user given inputs) and applying the known model to themore » new data. Clustering is the process of discovering groups and structures in the data that are ``similar,'' without applying any known structures in the data. Prediction is the process of finding a function that models (explains) the data with least error. One common assumption among all these methods is that the data is independent and identically distributed. Such assumptions do not hold well in spatial data, where spatial dependency and spatial heterogeneity are a norm. In addition, spatial semantics are often ignored by the data mining algorithms. In this tutorial we cover recent advances in explicitly modeling of spatial dependencies and semantic concepts in data mining.« less

  10. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE PAGES

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; ...

    2018-04-17

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  11. Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models

    NASA Astrophysics Data System (ADS)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.; Reynolds, Daniel R.; Ullrich, Paul A.; Woodward, Carol S.

    2018-04-01

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit-explicit (IMEX) additive Runge-Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit - vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored. The accuracy and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.

  12. Implicit–explicit (IMEX) Runge–Kutta methods for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, David J.; Guerra, Jorge E.; Hamon, François P.

    The efficient simulation of non-hydrostatic atmospheric dynamics requires time integration methods capable of overcoming the explicit stability constraints on time step size arising from acoustic waves. In this work, we investigate various implicit–explicit (IMEX) additive Runge–Kutta (ARK) methods for evolving acoustic waves implicitly to enable larger time step sizes in a global non-hydrostatic atmospheric model. The IMEX formulations considered include horizontally explicit – vertically implicit (HEVI) approaches as well as splittings that treat some horizontal dynamics implicitly. In each case, the impact of solving nonlinear systems in each implicit ARK stage in a linearly implicit fashion is also explored.The accuracymore » and efficiency of the IMEX splittings, ARK methods, and solver options are evaluated on a gravity wave and baroclinic wave test case. HEVI splittings that treat some vertical dynamics explicitly do not show a benefit in solution quality or run time over the most implicit HEVI formulation. While splittings that implicitly evolve some horizontal dynamics increase the maximum stable step size of a method, the gains are insufficient to overcome the additional cost of solving a globally coupled system. Solving implicit stage systems in a linearly implicit manner limits the solver cost but this is offset by a reduction in step size to achieve the desired accuracy for some methods. Overall, the third-order ARS343 and ARK324 methods performed the best, followed by the second-order ARS232 and ARK232 methods.« less

  13. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling

    PubMed Central

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-01-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km2 to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere. PMID:22686347

  14. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT: A GIS-BASED HYDROLOGIC MODELING TOOL

    EPA Science Inventory

    Planning and assessment in land and water resource management are evolving toward complex, spatially explicit regional assessments. These problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extens...

  15. Delineating resource sheds in aquatic ecosystems (presentation)

    EPA Science Inventory

    Analysis of spatially-explicit ecological phenomena in aquatic ecosystems is impeded by a lack of knowledge of, and tools to delimit, spatial patterns of material supply to point locations. Here we apply the concept of "resource sheds" to coasts and watersheds. Resource sheds ar...

  16. Climate change and northern prairie wetlands: Simulations of long-term dynamics

    USGS Publications Warehouse

    Poiani, Karen A.; Johnson, W. Carter; Swanson, George A.; Winter, Thomas C.

    1996-01-01

    A mathematical model (WETSIM 2.0) was used to simulate wetland hydrology and vegetation dynamics over a 32-yr period (1961–1992) in a North Dakota prairie wetland. A hydrology component of the model calculated changes in water storage based on precipitation, evapotranspiration, snowpack, surface runoff, and subsurface inflow. A spatially explicit vegetation component in the model calculated changes in distribution of vegetative cover and open water, depending on water depth, seasonality, and existing type of vegetation.The model reproduced four known dry periods and one extremely wet period during the three decades. One simulated dry period in the early 1980s did not actually occur. Simulated water levels compared favorably with continuous observed water levels outside the calibration period (1990–1992). Changes in vegetative cover were realistic except for years when simulated water levels were significantly different than actual levels. These generally positive results support the use of the model for exploring the effects of possible climate changes on wetland resources.

  17. Higher-order jump conditions for conservation laws

    NASA Astrophysics Data System (ADS)

    Oksuzoglu, Hakan

    2018-04-01

    The hyperbolic conservation laws admit discontinuous solutions where the solution variables can have finite jumps in space and time. The jump conditions for conservation laws are expressed in terms of the speed of the discontinuity and the state variables on both sides. An example from the Gas Dynamics is the Rankine-Hugoniot conditions for the shock speed. Here, we provide an expression for the acceleration of the discontinuity in terms of the state variables and their spatial derivatives on both sides. We derive a jump condition for the shock acceleration. Using this general expression, we show how to obtain explicit shock acceleration formulas for nonlinear hyperbolic conservation laws. We start with the Burgers' equation and check the derived formula with an analytical solution. We next derive formulas for the Shallow Water Equations and the Euler Equations of Gas Dynamics. We will verify our formulas for the Euler Equations using an exact solution for the spherically symmetric blast wave problem. In addition, we discuss the potential use of these formulas for the implementation of shock fitting methods.

  18. Critical Slowing Down in Time-to-Extinction: An Example of Critical Phenomena in Ecology

    NASA Technical Reports Server (NTRS)

    Gandhi, Amar; Levin, Simon; Orszag, Steven

    1998-01-01

    We study a model for two competing species that explicitly accounts for effects due to discreteness, stochasticity and spatial extension of populations. The two species are equally preferred by the environment and do better when surrounded by others of the same species. We observe that the final outcome depends on the initial densities (uniformly distributed in space) of the two species. The observed phase transition is a continuous one and key macroscopic quantities like the correlation length of clusters and the time-to-extinction diverge at a critical point. Away from the critical point, the dynamics can be described by a mean-field approximation. Close to the critical point, however, there is a crossover to power-law behavior because of the gross mismatch between the largest and smallest scales in the system. We have developed a theory based on surface effects, which is in good agreement with the observed behavior. The course-grained reaction-diffusion system obtained from the mean-field dynamics agrees well with the particle system.

  19. Modelling the effect of urbanization on the transmission of an infectious disease.

    PubMed

    Zhang, Ping; Atkinson, Peter M

    2008-01-01

    This paper models the impact of urbanization on infectious disease transmission by integrating a CA land use development model, population projection matrix model and CA epidemic model in S-Plus. The innovative feature of this model lies in both its explicit treatment of spatial land use development, demographic changes, infectious disease transmission and their combination in a dynamic, stochastic model. Heuristically-defined transition rules in cellular automata (CA) were used to capture the processes of both land use development with urban sprawl and infectious disease transmission. A population surface model and dwelling distribution surface were used to bridge the gap between urbanization and infectious disease transmission. A case study is presented involving modelling influenza transmission in Southampton, a dynamically evolving city in the UK. The simulation results for Southampton over a 30-year period show that the pattern of the average number of infection cases per day can depend on land use and demographic changes. The modelling framework presents a useful tool that may be of use in planning applications.

  20. Annual Irrigation Dynamics in the U.S. Northern High Plains Derived from Landsat Satellite Data

    NASA Astrophysics Data System (ADS)

    Deines, Jillian M.; Kendall, Anthony D.; Hyndman, David W.

    2017-09-01

    Sustainable management of agricultural water resources requires improved understanding of irrigation patterns in space and time. We produced annual, high-resolution (30 m) irrigation maps for 1999-2016 by combining all available Landsat satellite imagery with climate and soil covariables in Google Earth Engine. Random forest classification had accuracies from 92 to 100% and generally agreed with county statistics (r2 = 0.88-0.96). Two novel indices that integrate plant greenness and moisture information show promise for improving satellite classification of irrigation. We found considerable interannual variability in irrigation location and extent, including a near doubling between 2002 and 2016. Statistical modeling suggested that precipitation and commodity price influenced irrigated extent through time. High prices incentivized expansion to increase crop yield and profit, but dry years required greater irrigation intensity, thus reducing area in this supply-limited region. Data sets produced with this approach can improve water sustainability by providing consistent, spatially explicit tracking of irrigation dynamics over time.

  1. Linking Watershed Nitrogen Sources with Nitrogen Dynamics in Rivers of Western Oregon, USA

    NASA Astrophysics Data System (ADS)

    Sobota, D. J.; Compton, J.; Goodwin, K. E.

    2012-12-01

    We constructed contemporary nitrogen (N) budgets for 25 river basins in the Willamette River Basin (WRB) of western Oregon, USA, to improve the understanding of how recent trends in human-driven N loading have influenced riverine N dynamics in the region. Nearly 20% of WRB stream length is currently in fair or poor condition because of high N concentrations. Additionally, nitrate contamination of drinking water affects at least 8,000 people in the WRB. We hypothesized that 1) the majority of N inputs in the WRB would originate from agricultural activities in lowland portions of watersheds, 2) annual riverine N yield (kg/ha/yr) would correspond to annual per area watershed N inputs, and 3) riverine N yields would be seasonal and highest during winter due to the region's Mediterranean climate. We calculated average annual N inputs for each study basin by summing newly available datasets describing spatially explicit N inputs of synthetic fertilizer, atmospheric deposition, crop biological N2 fixation, biological N2 fixation by red alder (Alnus rubra Bong.), livestock manure, and point sources for the period 1996 - 2007. Annual and seasonal riverine N exports were estimated with the USGS model LOADEST calibrated to N concentration data collected during the study period. We estimated that two-thirds of total N input to the WRB study basins in the 2000s came from synthetic fertilizer application. Nearly all fertilizer application occurred on the lowlands near watershed mouths. We found a wide range of riverine N yields from the study basins, ranging from one to 70 kg N/ha/yr. Across the study basins, N export was more strongly correlated to fertilizer application rates than to percent of agricultural area in the watershed. Low watershed N yields reflected a high proportion of watershed area in the forested Cascade Mountain Range, which received low N inputs mainly from atmospheric deposition. N yields from study basins were strongly seasonal, with at least 50%, and often 75%, of annual N yield occurring in fall and winter months. Our results suggest that that spatially explicit data on specific crop types and crop practices are valuable for explaining spatial and temporal variation of nutrient concentrations in WRB rivers. This emphasizes the need for careful tracking of non-point N inputs to inform water quality monitoring and management.

  2. The Tacit-Explicit Dimension of the Learning of Mathematics: An Investigation Report

    ERIC Educational Resources Information Center

    Frade, Cristina; Borges, Oto

    2006-01-01

    This paper reports on study that investigated the tacit-explicit dimension of the learning of mathematics. The study was carried out in a secondary school and consisted of an episode analysis related to a class discussion about the difference between plane figures and spatial figures. The data analysis was based on integration between some aspects…

  3. The role of perspective taking in how children connect reference frames when explaining astronomical phenomena

    NASA Astrophysics Data System (ADS)

    Plummer, Julia D.; Bower, Corinne A.; Liben, Lynn S.

    2016-02-01

    This study investigates the role of perspective-taking skills in how children explain spatially complex astronomical phenomena. Explaining many astronomical phenomena, especially those studied in elementary and middle school, requires shifting between an Earth-based description of the phenomena and a space-based reference frame. We studied 7- to 9-year-old children (N = 15) to (a) develop a method for capturing how children make connections between reference frames and to (b) explore connections between perspective-taking skill and the nature of children's explanations. Children's explanations for the apparent motion of the Sun and stars and for seasonal changes in constellations were coded for accuracy of explanation, connection between frames of reference, and use of gesture. Children with higher spatial perspective-taking skills made more explicit connections between reference frames and used certain gesture-types more frequently, although this pattern was evident for only some phenomena. Findings suggest that children - particularly those with lower perspective-taking skills - may need additional support in learning to explicitly connect reference frames in astronomy. Understanding spatial thinking among children who successfully made explicit connections between reference frames in their explanations could be a starting point for future instruction in this domain.

  4. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm

    USGS Publications Warehouse

    Grippa, M.; Mognard, N.; Le, Toan T.; Josberger, E.G.

    2004-01-01

    One of the major challenges in determining snow depth (SD) from passive microwave measurements is to take into account the spatiotemporal variations of the snow grain size. Static algorithms based on a constant snow grain size cannot provide accurate estimates of snow pack thickness, particularly over large regions where the snow pack is subjected to big spatial temperature variations. A recent dynamic algorithm that accounts for the dependence of the microwave scattering on the snow grain size has been developed to estimate snow depth from the Special Sensor Microwave/Imager (SSM/I) over the Northern Great Plains (NGP) in the US. In this paper, we develop a combined dynamic and static algorithm to estimate snow depth from 13 years of SSM/I observations over Central Siberia. This region is characterised by extremely cold surface air temperatures and by the presence of permafrost that significantly affects the ground temperature. The dynamic algorithm is implemented to take into account these effects and it yields accurate snow depths early in the winter, when thin snowpacks combine with cold air temperatures to generate rapid crystal growth. However, it is not applicable later in the winter when the grain size growth slows. Combining the dynamic algorithm to a static algorithm, with a temporally constant but spatially varying coefficient, we obtain reasonable snow depth estimates throughout the entire snow season. Validation is carried out by comparing the satellite snow depth monthly averages to monthly climatological data. We show that the location of the snow depth maxima and minima is improved when applying the combined algorithm, since its dynamic portion explicitly incorporate the thermal gradient through the snowpack. The results obtained are presented and evaluated for five different vegetation zones of Central Siberia. Comparison with in situ measurements is also shown and discussed. ?? 2004 Elsevier Inc. All rights reserved.

  5. Large-scale atomistic calculations of clusters in intense x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Phay J.; Knight, Chris

    Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less

  6. Molecular motors interacting with their own tracks

    NASA Astrophysics Data System (ADS)

    Artyomov, Max N.; Morozov, Alexander Yu.; Kolomeisky, Anatoly B.

    2008-04-01

    Dynamics of molecular motors that move along linear lattices and interact with them via reversible destruction of specific lattice bonds is investigated theoretically by analyzing exactly solvable discrete-state “burnt-bridge” models. Molecular motors are viewed as diffusing particles that can asymmetrically break or rebuild periodically distributed weak links when passing over them. Our explicit calculations of dynamic properties show that coupling the transport of the unbiased molecular motor with the bridge-burning mechanism leads to a directed motion that lowers fluctuations and produces a dynamic transition in the limit of low concentration of weak links. Interaction between the backward biased molecular motor and the bridge-burning mechanism yields a complex dynamic behavior. For the reversible dissociation the backward motion of the molecular motor is slowed down. There is a change in the direction of the molecular motor’s motion for some range of parameters. The molecular motor also experiences nonmonotonic fluctuations due to the action of two opposing mechanisms: the reduced activity after the burned sites and locking of large fluctuations. Large spatial fluctuations are observed when two mechanisms are comparable. The properties of the molecular motor are different for the irreversible burning of bridges where the velocity and fluctuations are suppressed for some concentration range, and the dynamic transition is also observed. Dynamics of the system is discussed in terms of the effective driving forces and transitions between different diffusional regimes.

  7. Large-scale atomistic calculations of clusters in intense x-ray pulses

    DOE PAGES

    Ho, Phay J.; Knight, Chris

    2017-04-28

    Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less

  8. Spatial taxation effects on regional coal economic activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, C.W.; Labys, W.C.

    1982-01-01

    Taxation effects on resource production, consumption and prices are seldom evaluated especially in the field of spatial commodity modeling. The most commonly employed linear programming model has fixed-point estimated demands and capacity constraints; hence it makes taxation effects difficult to be modeled. The second type of resource allocation model, the interregional input-output models does not include a direct and explicit price mechanism. Therefore, it is not suitable for analyzing taxation effects. The third type or spatial commodity model has been econometric in nature. While such an approach has a good deal of flexibility in modeling political and non-economic variables, itmore » treats taxation (or tariff) effects loosely using only dummy variables, and, in many cases, must sacrifice the consistency criterion important for spatial commodity modeling. This leaves model builders only one legitimate choice for analyzing taxation effects: the quadratic programming model which explicitly allows the interplay of regional demand and supply relations via a continuous spatial price constructed by the authors related to the regional demand for and supply of coal from Appalachian markets.« less

  9. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duru, Kenneth, E-mail: kduru@stanford.edu; Dunham, Eric M.; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a)more » enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.« less

  10. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    NASA Astrophysics Data System (ADS)

    Duru, Kenneth; Dunham, Eric M.

    2016-01-01

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.

  11. Mapping the impact of river regulation on carbon dynamics using coupled field surveys and remotely-sensed optical properties

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Butman, D. E.

    2016-12-01

    Many river-reservoir networks are already managed for ecological targets such as stream temperature regulation, but less is known about how management choices alter the quantity and composition of dissolved organic carbon as well as the concentration of dissolved carbon gases. Understanding these ecological impacts is critical to informing water resources management, especially in light of the global hydropower boom and the increased interest in dam removal in the United States. Here we present results from a field survey and remote sensing imagery analysis quantifying a suite of water quality variables. With this approach, we evaluate spatial differences in carbon signals above, and below eight mainstem dams located on the Columbia and Snake Rivers. Dissolved methane and carbon dioxide concentrations were in excess of atmospheric levels with occasional carbon dioxide undersaturation being observed in the Snake River. CH4 and CO2 δ13C values shifted between the mainstem and the tributaries reflecting changes in carbon sources and processes. Satellite-retrieved estimates of CDOM and chlorophyll-a were compared to in situ measurements to enable surface mapping of concentrations at broader spatial scales. Our technical approach blends cloud-based data fusion techniques and machine learning to link ground-collected observations to remote sensing imagery in order to produce spatially-explicit, cross-scale estimates of carbon dynamics in a large, highly regulated river system. These findings test the feasibility of coupling remote sensing with field-based measurements to observe the complex impacts of run-of-the river impoundments to aquatic carbon cycling.

  12. Place mapping and the role of spatial scale in understanding landowner views of fire and fuels management

    Treesearch

    Michael A. Cacciapaglia; Laurie Yung; Michael E. Patterson

    2011-01-01

    Place mapping is emerging as a way to understand the spatial components of people's relationships with particular locations and how these relate to support for management proposals. But despite the spatial focus of place mapping, scale is rarely explicitly examined in such exercises. This is particularly problematic since scalar definitions and configurations have...

  13. Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery

    USDA-ARS?s Scientific Manuscript database

    Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long...

  14. A SPATIALLY EXPLICIT HIERARCHICAL APPROACH TO MODELING COMPLEX ECOLOGICAL SYSTEMS: THEORY AND APPLICATIONS. (R827676)

    EPA Science Inventory

    Ecological systems are generally considered among the most complex because they are characterized by a large number of diverse components, nonlinear interactions, scale multiplicity, and spatial heterogeneity. Hierarchy theory, as well as empirical evidence, suggests that comp...

  15. GIS-BASED HYDROLOGIC MODELING: THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL

    EPA Science Inventory

    Planning and assessment in land and water resource management are evolving from simple, local scale problems toward complex, spatially explicit regional ones. Such problems have to be
    addressed with distributed models that can compute runoff and erosion at different spatial a...

  16. Spatially explicit assessment of estuarine fish after Deepwater Horizon oil spill: trade-off in complexity and parsimony

    EPA Science Inventory

    Evaluating long- term contaminant effects on wildlife populations depends on spatial information about habitat quality, heterogeneity in contaminant exposure, and sensitivities and distributions of species integrated into a systems modeling approach. Rarely is this information re...

  17. Contrasting support for alternative models of genomic variation based on microhabitat preference: species-specific effects of climate change in alpine sedges.

    PubMed

    Massatti, Rob; Knowles, L Lacey

    2016-08-01

    Deterministic processes may uniquely affect codistributed species' phylogeographic patterns such that discordant genetic variation among taxa is predicted. Yet, explicitly testing expectations of genomic discordance in a statistical framework remains challenging. Here, we construct spatially and temporally dynamic models to investigate the hypothesized effect of microhabitat preferences on the permeability of glaciated regions to gene flow in two closely related montane species. Utilizing environmental niche models from the Last Glacial Maximum and the present to inform demographic models of changes in habitat suitability over time, we evaluate the relative probabilities of two alternative models using approximate Bayesian computation (ABC) in which glaciated regions are either (i) permeable or (ii) a barrier to gene flow. Results based on the fit of the empirical data to data sets simulated using a spatially explicit coalescent under alternative models indicate that genomic data are consistent with predictions about the hypothesized role of microhabitat in generating discordant patterns of genetic variation among the taxa. Specifically, a model in which glaciated areas acted as a barrier was much more probable based on patterns of genomic variation in Carex nova, a wet-adapted species. However, in the dry-adapted Carex chalciolepis, the permeable model was more probable, although the difference in the support of the models was small. This work highlights how statistical inferences can be used to distinguish deterministic processes that are expected to result in discordant genomic patterns among species, including species-specific responses to climate change. © 2016 John Wiley & Sons Ltd.

  18. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA

    NASA Astrophysics Data System (ADS)

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Riegle, Jodi L.; Hester, David J.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  19. Assessing landscape change and processes of recurrence, replacement, and recovery in the Southeastern Coastal Plains, USA

    USGS Publications Warehouse

    Drummond, Mark A.; Stier, Michael P.; Auch, Roger F.; Taylor, Janis L.; Griffith, Glenn E.; Hester, David J.; Riegle, Jodi L.; Soulard, Christopher E.; McBeth, Jamie L.

    2015-01-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8 % of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15 % of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83 %. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3 % of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

  20. Assessing Landscape Change and Processes of Recurrence, Replacement, and Recovery in the Southeastern Coastal Plains, USA.

    PubMed

    Drummond, Mark A; Stier, Michael P; Auch, Roger F; Taylor, Janis L; Griffith, Glenn E; Riegle, Jodi L; Hester, David J; Soulard, Christopher E; McBeth, Jamie L

    2015-11-01

    The processes of landscape change are complex, exhibiting spatial variability as well as linear, cyclical, and reversible characteristics. To better understand the various processes that cause transformation, a data aggregation, validation, and attribution approach was developed and applied to an analysis of the Southeastern Coastal Plains (SECP). The approach integrates information from available national land-use, natural disturbance, and land-cover data to efficiently assess spatially-specific changes and causes. Between 2001 and 2006, the processes of change affected 7.8% of the SECP but varied across small-scale ecoregions. Processes were placed into a simple conceptual framework to explicitly identify the type and direction of change based on three general characteristics: replacement, recurrence, and recovery. Replacement processes, whereby a land use or cover is supplanted by a new land use, including urbanization and agricultural expansion, accounted for approximately 15% of the extent of change. Recurrent processes that contribute to cyclical changes in land cover, including forest harvest/replanting and fire, accounted for 83%. Most forest cover changes were recurrent, while the extents of recurrent silviculture and forest replacement processes such as urbanization far exceeded forest recovery processes. The total extent of landscape recovery, from prior land use to natural or semi-natural vegetation cover, accounted for less than 3% of change. In a region of complex change, increases in transitory grassland and shrubland covers were caused by large-scale intensive plantation silviculture and small-scale activities including mining reclamation. Explicit identification of the process types and dynamics presented here may improve the understanding of land-cover change and landscape trajectory.

Top