Sample records for spatially resolved analysis

  1. Spatially Resolved Analysis of Amines Using a Fluorescence Molecular Probe: Molecular Analysis of IDPs

    NASA Technical Reports Server (NTRS)

    Clemett, S. J.; Messenger, S.; Thomas-Keprta, K. L.; Wentworth, S. J.; Robinson, G. A.; McKay, D. S.

    2002-01-01

    Some Interplanetary Dust Particles (IDPs) have large isotope anomalies in H and N. To address the nature of the carrier phase, we are developing a procedure to spatially resolve the distribution of organic species on IDP thin sections utilizing fluorescent molecular probes. Additional information is contained in the original extended abstract.

  2. Broadband interferometric characterization of divergence and spatial chirp.

    PubMed

    Meier, Amanda K; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-09-01

    We demonstrate a spectral interferometric method to characterize lateral and angular spatial chirp to optimize intensity localization in spatio-temporally focused ultrafast beams. Interference between two spatially sheared beams in an interferometer will lead to straight fringes if the wavefronts are curved. To produce reference fringes, we delay one arm relative to another in order to measure fringe rotation in the spatially resolved spectral interferogram. With Fourier analysis, we can obtain frequency-resolved divergence. In another arrangement, we spatially flip one beam relative to the other, which allows the frequency-dependent beamlet direction (angular spatial chirp) to be measured. Blocking one beam shows the spatial variation of the beamlet position with frequency (i.e., the lateral spatial chirp).

  3. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinyanjui, M. K., E-mail: michael.kinyanjui@uni-ulm.de; Kaiser, U.; Benner, G.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presentedmore » approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.« less

  4. Non-Destructive Study of Bulk Crystallinity and Elemental Composition of Natural Gold Single Crystal Samples by Energy-Resolved Neutron Imaging

    PubMed Central

    Tremsin, Anton S.; Rakovan, John; Shinohara, Takenao; Kockelmann, Winfried; Losko, Adrian S.; Vogel, Sven C.

    2017-01-01

    Energy-resolved neutron imaging enables non-destructive analyses of bulk structure and elemental composition, which can be resolved with high spatial resolution at bright pulsed spallation neutron sources due to recent developments and improvements of neutron counting detectors. This technique, suitable for many applications, is demonstrated here with a specific study of ~5–10 mm thick natural gold samples. Through the analysis of neutron absorption resonances the spatial distribution of palladium (with average elemental concentration of ~0.4 atom% and ~5 atom%) is mapped within the gold samples. At the same time, the analysis of coherent neutron scattering in the thermal and cold energy regimes reveals which samples have a single-crystalline bulk structure through the entire sample volume. A spatially resolved analysis is possible because neutron transmission spectra are measured simultaneously on each detector pixel in the epithermal, thermal and cold energy ranges. With a pixel size of 55 μm and a detector-area of 512 by 512 pixels, a total of 262,144 neutron transmission spectra are measured concurrently. The results of our experiments indicate that high resolution energy-resolved neutron imaging is a very attractive analytical technique in cases where other conventional non-destructive methods are ineffective due to sample opacity. PMID:28102285

  5. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    PubMed

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  6. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).

    PubMed

    Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M

    2018-03-01

    Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.

  7. Sensitivity Analysis and Requirements for Temporally and Spatially Resolved Thermometry Using Neutron Resonance Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Juan Carlos; Barnes, Cris William; Mocko, Michael Jeffrey

    This report is intended to examine the use of neutron resonance spectroscopy (NRS) to make time- dependent and spatially-resolved temperature measurements of materials in extreme conditions. Specifically, the sensitivities of the temperature estimate on neutron-beam and diagnostic parameters is examined. Based on that examination, requirements are set on a pulsed neutron-source and diagnostics to make a meaningful measurement.

  8. A spatially resolving x-ray crystal spectrometer for measurement of ion-temperature and rotation-velocity profiles on the Alcator C-Mod tokamak.

    PubMed

    Hill, K W; Bitter, M L; Scott, S D; Ince-Cushman, A; Reinke, M; Rice, J E; Beiersdorfer, P; Gu, M-F; Lee, S G; Broennimann, Ch; Eikenberry, E F

    2008-10-01

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (lambda/d lambda>6000) of He-like and H-like Ar K alpha lines with good spatial (approximately 1 cm) and temporal (approximately 10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (T(i)), and toroidal plasma rotation velocity (upsilon(phi)) from the line Doppler widths and shifts. The data analysis techniques, T(i) and upsilon(phi) profiles, analysis of fusion-neutron background, and predictions of performance on other tokamaks, including ITER, will be presented.

  9. A Spatially Resolving X-ray Crystal Spectrometer for Measurement of Ion-temperature and Rotation-velocity Profiles on the AlcatorC-Mod Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K. W.; Bitter, M. L.; Scott, S. D.

    2009-03-24

    A new spatially resolving x-ray crystal spectrometer capable of measuring continuous spatial profiles of high resolution spectra (λ/dλ > 6000) of He-like and H-like Ar Kα lines with good spatial (~1 cm) and temporal (~10 ms) resolutions has been installed on the Alcator C-Mod tokamak. Two spherically bent crystals image the spectra onto four two-dimensional Pilatus II pixel detectors. Tomographic inversion enables inference of local line emissivity, ion temperature (Ti), and toroidal plasma rotation velocity (vφ) from the line Doppler widths and shifts. The data analysis techniqu

  10. Spatiotemporal analysis of particulate air pollution and ischemic heart disease mortality in Beijing, China.

    PubMed

    Xu, Meimei; Guo, Yuming; Zhang, Yajuan; Westerdahl, Dane; Mo, Yunzheng; Liang, Fengchao; Pan, Xiaochuan

    2014-12-12

    Few studies have used spatially resolved ambient particulate matter with an aerodynamic diameter of <10 μm (PM10) to examine the impact of PM10 on ischemic heart disease (IHD) mortality in China. The aim of our study is to evaluate the short-term effects of PM10 concentrations on IHD mortality by means of spatiotemporal analysis approach. We collected daily data on air pollution, weather conditions and IHD mortality in Beijing, China during 2008 and 2009. Ordinary kriging (OK) was used to interpolate daily PM10 concentrations at the centroid of 287 township-level areas based on 27 monitoring sites covering the whole city. A generalized additive mixed model was used to estimate quantitatively the impact of spatially resolved PM10 on the IHD mortality. The co-effects of the seasons, gender and age were studied in a stratified analysis. Generalized additive model was used to evaluate the effects of averaged PM10 concentration as well. The averaged spatially resolved PM10 concentration at 287 township-level areas was 120.3 ± 78.1 μg/m3. Ambient PM10 concentration was associated with IHD mortality in spatiotemporal analysis and the strongest effects were identified for the 2-day average. A 10 μg/m3 increase in PM10 was associated with an increase of 0.33% (95% confidence intervals: 0.13%, 0.52%) in daily IHD mortality. The effect estimates using spatially resolved PM10 were larger than that using averaged PM10. The seasonal stratification analysis showed that PM10 had the statistically stronger effects on IHD mortality in summer than that in the other seasons. Males and older people demonstrated the larger response to PM10 exposure. Our results suggest that short-term exposure to particulate air pollution is associated with increased IHD mortality. Spatial variation should be considered for assessing the impacts of particulate air pollution on mortality.

  11. Distortion correction and cross-talk compensation algorithm for use with an imaging spectrometer based spatially resolved diffuse reflectance system

    NASA Astrophysics Data System (ADS)

    Cappon, Derek J.; Farrell, Thomas J.; Fang, Qiyin; Hayward, Joseph E.

    2016-12-01

    Optical spectroscopy of human tissue has been widely applied within the field of biomedical optics to allow rapid, in vivo characterization and analysis of the tissue. When designing an instrument of this type, an imaging spectrometer is often employed to allow for simultaneous analysis of distinct signals. This is especially important when performing spatially resolved diffuse reflectance spectroscopy. In this article, an algorithm is presented that allows for the automated processing of 2-dimensional images acquired from an imaging spectrometer. The algorithm automatically defines distinct spectrometer tracks and adaptively compensates for distortion introduced by optical components in the imaging chain. Crosstalk resulting from the overlap of adjacent spectrometer tracks in the image is detected and subtracted from each signal. The algorithm's performance is demonstrated in the processing of spatially resolved diffuse reflectance spectra recovered from an Intralipid and ink liquid phantom and is shown to increase the range of wavelengths over which usable data can be recovered.

  12. Spatially resolved spectroscopy analysis of the XMM-Newton large program on SN1006

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Decourchelle, Anne; Miceli, Marco; Vink, Jacco; Bocchino, Fabrizio

    2016-04-01

    We perform analysis of the XMM-Newton large program on SN1006 based on our newly developed methods of spatially resolved spectroscopy analysis. We extract spectra from low and high resolution meshes. The former (3596 meshes) is used to roughly decompose the thermal and non-thermal components and characterize the spatial distributions of different parameters, such as temperature, abundances of different elements, ionization age, and electron density of the thermal component, as well as photon index and cutoff frequency of the non-thermal component. On the other hand, the low resolution meshes (583 meshes) focus on the interior region dominated by the thermal emission and have enough counts to well characterize the Si lines. We fit the spectra from the low resolution meshes with different models, in order to decompose the multiple plasma components at different thermal and ionization states and compare their spatial distributions. In this poster, we will present the initial results of this project.

  13. An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis

    DOE PAGES

    Van Berkel, Gary J.; Weiskittel, Taylor M.; Kertesz, Vilmos

    2014-11-07

    Droplet-based liquid microjunction surface sampling coupled with high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) for spatially resolved analysis provides the possibility of effective analysis of complex matrix samples and can provide a greater degree of chemical information from a single spot sample than is typically possible with a direct analysis of an extract. Described here is the setup and enhanced capabilities of a discrete droplet liquid microjunction surface sampling system employing a commercially available CTC PAL autosampler. The system enhancements include incorporation of a laser distance sensor enabling unattended analysis of samples and sample locations of dramatically disparatemore » height as well as reliably dispensing just 0.5 μL of extraction solvent to make the liquid junction to the surface, wherein the extraction spot size was confined to an area about 0.7 mm in diameter; software modifications improving the spatial resolution of sampling spot selection from 1.0 to 0.1 mm; use of an open bed tray system to accommodate samples as large as whole-body rat thin tissue sections; and custom sample/solvent holders that shorten sampling time to approximately 1 min per sample. Lastly, the merit of these new features was demonstrated by spatially resolved sampling, HPLC separation, and mass spectral detection of pharmaceuticals and metabolites from whole-body rat thin tissue sections and razor blade (“crude”) cut mouse tissue.« less

  14. An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J.; Weiskittel, Taylor M.; Kertesz, Vilmos

    Droplet-based liquid microjunction surface sampling coupled with high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) for spatially resolved analysis provides the possibility of effective analysis of complex matrix samples and can provide a greater degree of chemical information from a single spot sample than is typically possible with a direct analysis of an extract. Described here is the setup and enhanced capabilities of a discrete droplet liquid microjunction surface sampling system employing a commercially available CTC PAL autosampler. The system enhancements include incorporation of a laser distance sensor enabling unattended analysis of samples and sample locations of dramatically disparatemore » height as well as reliably dispensing just 0.5 μL of extraction solvent to make the liquid junction to the surface, wherein the extraction spot size was confined to an area about 0.7 mm in diameter; software modifications improving the spatial resolution of sampling spot selection from 1.0 to 0.1 mm; use of an open bed tray system to accommodate samples as large as whole-body rat thin tissue sections; and custom sample/solvent holders that shorten sampling time to approximately 1 min per sample. Lastly, the merit of these new features was demonstrated by spatially resolved sampling, HPLC separation, and mass spectral detection of pharmaceuticals and metabolites from whole-body rat thin tissue sections and razor blade (“crude”) cut mouse tissue.« less

  15. Nanoscale Characterization of Carrier Dynamic and Surface Passivation in InGaN/GaN Multiple Quantum Wells on GaN Nanorods.

    PubMed

    Chen, Weijian; Wen, Xiaoming; Latzel, Michael; Heilmann, Martin; Yang, Jianfeng; Dai, Xi; Huang, Shujuan; Shrestha, Santosh; Patterson, Robert; Christiansen, Silke; Conibeer, Gavin

    2016-11-23

    Using advanced two-photon excitation confocal microscopy, associated with time-resolved spectroscopy, we characterize InGaN/GaN multiple quantum wells on nanorod heterostructures and demonstrate the passivation effect of a KOH treatment. High-quality InGaN/GaN nanorods were fabricated using nanosphere lithography as a candidate material for light-emitting diode devices. The depth- and time-resolved characterization at the nanoscale provides detailed carrier dynamic analysis helpful for understanding the optical properties. The nanoscale spatially resolved images of InGaN quantum well and defects were acquired simultaneously. We demonstrate that nanorod etching improves light extraction efficiency, and a proper KOH treatment has been found to reduce the surface defects efficiently and enhance the luminescence. The optical characterization techniques provide depth-resolved and time-resolved carrier dynamics with nanoscale spatially resolved mapping, which is crucial for a comprehensive and thorough understanding of nanostructured materials and provides novel insight into the improvement of materials fabrication and applications.

  16. Determination of Spatially Resolved Tablet Density and Hardness Using Near-Infrared Chemical Imaging (NIR-CI).

    PubMed

    Talwar, Sameer; Roopwani, Rahul; Anderson, Carl A; Buckner, Ira S; Drennen, James K

    2017-08-01

    Near-infrared chemical imaging (NIR-CI) combines spectroscopy with digital imaging, enabling spatially resolved analysis and characterization of pharmaceutical samples. Hardness and relative density are critical quality attributes (CQA) that affect tablet performance. Intra-sample density or hardness variability can reveal deficiencies in formulation design or the tableting process. This study was designed to develop NIR-CI methods to predict spatially resolved tablet density and hardness. The method was implemented using a two-step procedure. First, NIR-CI was used to develop a relative density/solid fraction (SF) prediction method for pure microcrystalline cellulose (MCC) compacts only. A partial least squares (PLS) model for predicting SF was generated by regressing the spectra of certain representative pixels selected from each image against the compact SF. Pixel selection was accomplished with a threshold based on the Euclidean distance from the median tablet spectrum. Second, micro-indentation was performed on the calibration compacts to obtain hardness values. A univariate model was developed by relating the empirical hardness values to the NIR-CI predicted SF at the micro-indented pixel locations: this model generated spatially resolved hardness predictions for the entire tablet surface.

  17. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics

    NASA Astrophysics Data System (ADS)

    Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C.; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus

    2017-03-01

    Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.

  18. Spatial and molecular resolution of diffuse malignant mesothelioma heterogeneity by integrating label-free FTIR imaging, laser capture microdissection and proteomics.

    PubMed

    Großerueschkamp, Frederik; Bracht, Thilo; Diehl, Hanna C; Kuepper, Claus; Ahrens, Maike; Kallenbach-Thieltges, Angela; Mosig, Axel; Eisenacher, Martin; Marcus, Katrin; Behrens, Thomas; Brüning, Thomas; Theegarten, Dirk; Sitek, Barbara; Gerwert, Klaus

    2017-03-30

    Diffuse malignant mesothelioma (DMM) is a heterogeneous malignant neoplasia manifesting with three subtypes: epithelioid, sarcomatoid and biphasic. DMM exhibit a high degree of spatial heterogeneity that complicates a thorough understanding of the underlying different molecular processes in each subtype. We present a novel approach to spatially resolve the heterogeneity of a tumour in a label-free manner by integrating FTIR imaging and laser capture microdissection (LCM). Subsequent proteome analysis of the dissected homogenous samples provides in addition molecular resolution. FTIR imaging resolves tumour subtypes within tissue thin-sections in an automated and label-free manner with accuracy of about 85% for DMM subtypes. Even in highly heterogeneous tissue structures, our label-free approach can identify small regions of interest, which can be dissected as homogeneous samples using LCM. Subsequent proteome analysis provides a location specific molecular characterization. Applied to DMM subtypes, we identify 142 differentially expressed proteins, including five protein biomarkers commonly used in DMM immunohistochemistry panels. Thus, FTIR imaging resolves not only morphological alteration within tissue but it resolves even alterations at the level of single proteins in tumour subtypes. Our fully automated workflow FTIR-guided LCM opens new avenues collecting homogeneous samples for precise and predictive biomarkers from omics studies.

  19. Scaling properties of Arctic sea ice deformation in high-resolution viscous-plastic sea ice models and satellite observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2017-04-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  20. Scaling Properties of Arctic Sea Ice Deformation in a High‐Resolution Viscous‐Plastic Sea Ice Model and in Satellite Observations

    PubMed Central

    Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Abstract Sea ice models with the traditional viscous‐plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan‐Arctic sea ice‐ocean simulation, the small‐scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data. PMID:29576996

  1. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations

    NASA Astrophysics Data System (ADS)

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  2. Scaling Properties of Arctic Sea Ice Deformation in a High-Resolution Viscous-Plastic Sea Ice Model and in Satellite Observations.

    PubMed

    Hutter, Nils; Losch, Martin; Menemenlis, Dimitris

    2018-01-01

    Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.

  3. Portable measurement system for real-time acquisition and analysis of in-vivo spatially resolved reflectance in the subdiffusive regime

    NASA Astrophysics Data System (ADS)

    Naglič, Peter; Ivančič, Matic; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2018-02-01

    A measurement system was developed to acquire and analyze subdiffusive spatially resolved reflectance using an optical fiber probe with short source-detector separations. Since subdiffusive reflectance significantly depends on the scattering phase function, the analysis of the acquired reflectance is based on a novel inverse Monte Carlo model that allows estimation of phase function related parameters in addition to the absorption and reduced scattering coefficients. In conjunction with our measurement system, the model allowed real-time estimation of optical properties, which we demonstrate for a case of dynamically induced changes in human skin by applying pressure with an optical fiber probe.

  4. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  5. Spatially resolved D-T(2) correlation NMR of porous media.

    PubMed

    Zhang, Yan; Blümich, Bernhard

    2014-05-01

    Within the past decade, 2D Laplace nuclear magnetic resonance (NMR) has been developed to analyze pore geometry and diffusion of fluids in porous media on the micrometer scale. Many objects like rocks and concrete are heterogeneous on the macroscopic scale, and an integral analysis of microscopic properties provides volume-averaged information. Magnetic resonance imaging (MRI) resolves this spatial average on the contrast scale set by the particular MRI technique. Desirable contrast parameters for studies of fluid transport in porous media derive from the pore-size distribution and the pore connectivity. These microscopic parameters are accessed by 1D and 2D Laplace NMR techniques. It is therefore desirable to combine MRI and 2D Laplace NMR to image functional information on fluid transport in porous media. Because 2D Laplace resolved MRI demands excessive measuring time, this study investigates the possibility to restrict the 2D Laplace analysis to the sum signals from low-resolution pixels, which correspond to pixels of similar amplitude in high-resolution images. In this exploratory study spatially resolved D-T2 correlation maps from glass beads and mortar are analyzed. Regions of similar contrast are first identified in high-resolution images to locate corresponding pixels in low-resolution images generated with D-T2 resolved MRI for subsequent pixel summation to improve the signal-to-noise ratio of contrast-specific D-T2 maps. This method is expected to contribute valuable information on correlated sample heterogeneity from the macroscopic and the microscopic scales in various types of porous materials including building materials and rock. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clair, Geremy; Piehowski, Paul D.; Nicola, Teodora

    Global proteomics approaches allow characterization of whole tissue lysates to an impressive depth. However, it is now increasingly recognized that to better understand the complexity of multicellular organisms, global protein profiling of specific spatially defined regions/substructures of tissues (i.e. spatially-resolved proteomics) is essential. Laser capture microdissection (LCM) enables microscopic isolation of defined regions of tissues preserving crucial spatial information. However, current proteomics workflows entail several manual sample preparation steps and are challenged by the microscopic mass-limited samples generated by LCM, and that impact measurement robustness, quantification, and throughput. Here, we coupled LCM with a fully automated sample preparation workflow thatmore » with a single manual step allows: protein extraction, tryptic digestion, peptide cleanup and LC-MS/MS analysis of proteomes from microdissected tissues. Benchmarking against the current state of the art in ultrasensitive global proteomic analysis, our approach demonstrated significant improvements in quantification and throughput. Using our LCM-SNaPP proteomics approach, we characterized to a depth of more than 3,400 proteins, the ontogeny of protein changes during normal lung development in laser capture microdissected alveolar tissue containing ~4,000 cells per sample. Importantly, the data revealed quantitative changes for 350 low abundance transcription factors and signaling molecules, confirming earlier transcript-level observations and defining seven modules of coordinated transcription factor/signaling molecule expression patterns, suggesting that a complex network of temporal regulatory control directs normal lung development with epigenetic regulation fine-tuning pre-natal developmental processes. Our LCM-proteomics approach facilitates efficient, spatially-resolved, ultrasensitive global proteomics analyses in high-throughput that will be enabling for several clinical and biological applications.« less

  7. Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF

    NASA Astrophysics Data System (ADS)

    MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.

    2017-10-01

    Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.

  8. Quantitative disentanglement of coherent and incoherent laser-induced surface deformations by time-resolved x-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.

    2017-12-01

    We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.

  9. BaTMAn: Bayesian Technique for Multi-image Analysis

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2016-12-01

    Bayesian Technique for Multi-image Analysis (BaTMAn) characterizes any astronomical dataset containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (i.e. identical signal within the errors). The output segmentations successfully adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. BaTMAn identifies (and keeps) all the statistically-significant information contained in the input multi-image (e.g. an IFS datacube). The main aim of the algorithm is to characterize spatially-resolved data prior to their analysis.

  10. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry

    DOE PAGES

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-01-14

    Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during amore » field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.« less

  11. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insighs into particle origin and chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-04-21

    Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaignmore » in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.« less

  12. Characterizing the heterogeneity of tumor tissues from spatially resolved molecular measures

    PubMed Central

    Zavodszky, Maria I.

    2017-01-01

    Background Tumor heterogeneity can manifest itself by sub-populations of cells having distinct phenotypic profiles expressed as diverse molecular, morphological and spatial distributions. This inherent heterogeneity poses challenges in terms of diagnosis, prognosis and efficient treatment. Consequently, tools and techniques are being developed to properly characterize and quantify tumor heterogeneity. Multiplexed immunofluorescence (MxIF) is one such technology that offers molecular insight into both inter-individual and intratumor heterogeneity. It enables the quantification of both the concentration and spatial distribution of 60+ proteins across a tissue section. Upon bioimage processing, protein expression data can be generated for each cell from a tissue field of view. Results The Multi-Omics Heterogeneity Analysis (MOHA) tool was developed to compute tissue heterogeneity metrics from MxIF spatially resolved tissue imaging data. This technique computes the molecular state of each cell in a sample based on a pathway or gene set. Spatial states are then computed based on the spatial arrangements of the cells as distinguished by their respective molecular states. MOHA computes tissue heterogeneity metrics from the distributions of these molecular and spatially defined states. A colorectal cancer cohort of approximately 700 subjects with MxIF data is presented to demonstrate the MOHA methodology. Within this dataset, statistically significant correlations were found between the intratumor AKT pathway state diversity and cancer stage and histological tumor grade. Furthermore, intratumor spatial diversity metrics were found to correlate with cancer recurrence. Conclusions MOHA provides a simple and robust approach to characterize molecular and spatial heterogeneity of tissues. Research projects that generate spatially resolved tissue imaging data can take full advantage of this useful technique. The MOHA algorithm is implemented as a freely available R script (see supplementary information). PMID:29190747

  13. Reprint Of: Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.

    2018-01-01

    Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.

  14. Enhanced spatially-resolved trace analysis using combined SIMS-single-stage AMS

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Groopman, E. E.; Fahey, A. J.

    2017-11-01

    Secondary ion mass spectrometry (SIMS) provides spatially resolved trace analysis of solid materials, but can be complicated by unresolved abundant molecular isobars. By adding a 300-kV single-stage accelerator mass spectrometer (SSAMS) as a detector for a Cameca ims 4f SIMS, one can measure more abundant positive ions from the SIMS while removing molecular isobars, thus improving very low abundance trace element and isotope analysis. This paper describes important features and capabilities of such an integrated system at the Naval Research Laboratory using charge state +1 ions. Transmission loss is compared to molecule destruction as gas flow to the molecule-destruction cell increases. As most measurements tolerate more modest abundance sensitivities than for 14C analysis, a lower gas flow is acceptable, so good transmission of 20-50% for ions of interest can be maintained for a broad range of ion masses. This new instrument has measured isotope ratios for uranium, lead, rare earths, and other elements from particulates and localized regions, with molecule destruction enabling the measurement at low SIMS mass resolving power and thus high transmission, as examples will show. This new and world-unique instrument provides improved capabilities for applications in nuclear and other forensics, geochemistry, cosmochemistry, and the development of optical, electronic, multifunctional, and structural materials.

  15. A direct electron detector for time-resolved MeV electron microscopy

    DOE PAGES

    Vecchione, T.; Denes, P.; Jobe, R. K.; ...

    2017-03-15

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  16. Spatially Resolved Sub-millimeter Continuum Imaging of Neptune with ALMA

    NASA Astrophysics Data System (ADS)

    Iino, Takahiro; Yamada, Takayoshi

    2018-02-01

    This paper reports the result of spatially resolved 646 GHz sub-millimeter imaging observation of Neptune obtained by the Atacama Large Millimeter and sub-millimeter Array. The observation was performed in 2012 August as the flux calibration and synthesized beam size were small enough to resolve Neptune’s disk at this time. This analysis aims to constrain the vertical structure of deep and upper-tropospheric South polar hot spot detected previously with mid-IR, millimeter, and centimeter wavelength. The probed atmospheric pressure region estimated by the radiative-transfer method was between 1.0 and 0.6 bar for the nadir and South pole views, respectively. The South polar hot spot was not detected clearly with an uncertainty of 2.1 K. The apparent discontinuity of tropospheric and stratospheric hot spot may be caused by the vertical wind shear of South polar zonal jet.

  17. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  18. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  19. SPATIALLY RESOLVED STAR FORMATION MAIN SEQUENCE OF GALAXIES IN THE CALIFA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.

    2016-04-20

    The “main sequence of galaxies”–defined in terms of the total star formation rate ψ versus the total stellar mass M {sub *}—is a well-studied tight relation that has been observed at several wavelengths and at different redshifts. All earlier studies have derived this relation from integrated properties of galaxies. We recover the same relation from an analysis of spatially resolved properties, with integral field spectroscopic (IFS) observations of 306 galaxies from the CALIFA survey. We consider the SFR surface density in units of log( M {sub ⊙} yr{sup −1} Kpc{sup −2}) and the stellar mass surface density in units ofmore » log( M {sub ⊙} Kpc{sup −2}) in individual spaxels that probe spatial scales of 0.5–1.5 Kpc. This local relation exhibits a high degree of correlation with small scatter ( σ = 0.23 dex), irrespective of the dominant ionization source of the host galaxy or its integrated stellar mass. We highlight (i) the integrated star formation main sequence formed by galaxies whose dominant ionization process is related to star formation, for which we find a slope of 0.81 ± 0.02; (ii) for the spatially resolved relation obtained with the spaxel analysis, we find a slope of 0.72 ± 0.04; and (iii) for the integrated main sequence, we also identified a sequence formed by galaxies that are dominated by an old stellar population, which we have called the retired galaxies sequence.« less

  20. Spatial and spectral resolution of carbonaceous material from hematite (α-Fe2O3) using multivariate curve resolution-alternating least squares (MCR-ALS) with Raman microspectroscopic mapping: implications for the search for life on Mars.

    PubMed

    Smith, Joseph P; Smith, Frank C; Booksh, Karl S

    2017-08-21

    The search for evidence of extant or past life on Mars is a primary objective of both the upcoming Mars 2020 rover (NASA) and ExoMars 2020 rover (ESA/Roscosmos) missions. This search will involve the detection and identification of organic molecules and/or carbonaceous material within the Martian surface environment. For the first time on a mission to Mars, the scientific payload for each rover will include a Raman spectrometer, an instrument well-suited for this search. Hematite (α-Fe 2 O 3 ) is a widespread mineral on the Martian surface. The 2LO Raman band of hematite and the Raman D-band of carbonaceous material show spectral overlap, leading to the potential misidentification of hematite as carbonaceous material. Here we report the ability to spatially and spectrally differentiate carbonaceous material from hematite using multivariate curve resolution-alternating least squares (MCR-ALS) applied to Raman microspectroscopic mapping under both 532 nm and 785 nm excitation. For this study, a sample comprised of hematite, carbonaceous material, and substrate-adhesive epoxy in spatially distinct domains was constructed. Principal component analysis (PCA) reveals that both 532 nm and 785 nm excitation produce representative three-phase systems of hematite, carbonaceous material, and substrate-adhesive epoxy in the analyzed sample. MCR-ALS with Raman microspectroscopic mapping using both 532 nm and 785 nm excitation was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy by generating spatially-resolved chemical maps and corresponding Raman spectra of these spatially distinct chemical species. Moreover, MCR-ALS applied to the combinatorial data sets of 532 nm and 785 nm excitation, which contain hematite and carbonaceous material within the same locations, was able to resolve hematite, carbonaceous material, and substrate-adhesive epoxy. Using multivariate analysis with Raman microspectroscopic mapping, 785 nm excitation more effectively resolved hematite, carbonaceous material, and substrate-adhesive epoxy as compared to 532 nm excitation. To our knowledge, this is the first report of multivariate analysis methods, namely MCR-ALS, with Raman microspectroscopic mapping being employed to differentiate carbonaceous material from hematite. We have therefore provided an analytical methodology useful for the search for extant or past life on the surface of Mars.

  1. Spatially Resolved Far-Infrared Spectroscopic Analysis of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Rattray, Rebecca; Ueta, Toshiya

    2015-01-01

    Planetary Nebulae (PNs) are late-life intermediate-mass (1-8 solar mass) stars that have shed their outer layers. A wide variety of morphologies and physical conditions is seen in PNs, but a complete understanding of what causes these various conditions is still needed. Spatially resolved far-infrared spectroscopic analysis has been performed on 11 targets using both PACS and SPIRE instruments on the Herschel Space Observatory as part of the Herschel Planetary Nebula Survey (HerPlaNS). Far-IR lines probe the ionized parts of the nebulae and suffer less extinction than optical lines, so observations in the far-IR are critical to our complete understanding of PNs. Because PNs are extended objects, the spectral mapping capabilities of both PACS and SPIRE allow us to better understand the spatial variations of the objects by tracking line strengths as a function of location within the nebula. The far-IR lines detected in this study can be used as tracers of electron density and electron temperature which are critical parameters in radiative transfer modeling of PNs. Information on atomic, ionic, and molecular lines identified in these 11 targets will be presented.

  2. Resolving galaxy cluster gas properties at z ˜ 1 with XMM-Newton and Chandra

    NASA Astrophysics Data System (ADS)

    Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Démoclès, J.; van der Burg, R. F. J.; Mazzotta, P.

    2017-02-01

    Massive, high-redshift, galaxy clusters are useful laboratories to test cosmological models and to probe structure formation and evolution, but observations are challenging due to cosmological dimming and angular distance effects. Here we present a pilot X-ray study of the five most massive (M500 > 5 × 1014M⊙), distant (z 1), clusters detected via the Sunyaev-Zel'Dovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM-Newton to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, which are constrained in the centre by Chandra and in the outskirts by XMM-Newton. We show that the Chandra-XMM-Newton combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM-Newton sensitivity allowing higher significance detection of faint substructures. Measuring the morphology using images from both instruments, we found that the sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM-Newton density profiles and spatially-resolved temperature profiles to investigate thermodynamic quantities including entropy and pressure. From comparison of the scaled profiles with the local REXCESS sample, we find no significant departure from standard self-similar evolution, within the dispersion, at any radius, except for the entropy beyond 0.7 R500. The baryon mass fraction tends towards the cosmic value, with a weaker dependence on mass than that observed in the local Universe. We make a comparison with the predictions from numerical simulations. The present pilot study demonstrates the utility and feasibility of spatially-resolved analysis of individual objects at high-redshift through the combination of XMM-Newton and Chandra observations. Observations of a larger sample will allow a fuller statistical analysis to be undertaken, in particular of the intrinsic scatter in the structural and scaling properties of the cluster population.

  3. The ALHAMBRA survey: 2D analysis of the stellar populations in massive early-type galaxies at z < 0.3

    NASA Astrophysics Data System (ADS)

    San Roman, I.; Cenarro, A. J.; Díaz-García, L. A.; López-Sanjuan, C.; Varela, J.; González Delgado, R. M.; Sánchez-Blázquez, P.; Alfaro, E. J.; Ascaso, B.; Bonoli, S.; Borlaff, A.; Castander, F. J.; Cerviño, M.; Fernández-Soto, A.; Márquez, I.; Masegosa, J.; Muniesa, D.; Pović, M.; Viironen, K.; Aguerri, J. A. L.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cristóbal-Hornillos, D.; Infante, L.; Martínez, V. J.; Moles, M.; del Olmo, A.; Perea, J.; Prada, F.; Quintana, J. M.

    2018-01-01

    We present a technique that permits the analysis of stellar population gradients in a relatively low-cost way compared to integral field unit (IFU) surveys. We developed a technique to analyze unresolved stellar populations of spatially resolved galaxies based on photometric multi-filter surveys. This technique allows the analysis of vastly larger samples and out to larger galactic radii. We derived spatially resolved stellar population properties and radial gradients by applying a centroidal Voronoi tessellation and performing a multicolor photometry spectral energy distribution fitting. This technique has been successfully applied to a sample of 29 massive (M⋆ > 1010.5M⊙) early-type galaxies at z < 0.3 from the ALHAMBRA survey. We produced detailed 2D maps of stellar population properties (age, metallicity, and extinction), which allow us to identify galactic features. Radial structures were studied, and luminosity-weighted and mass-weighted gradients were derived out to 2-3.5 Reff. We find that the spatially resolved stellar population mass, age, and metallicity are well represented by their integrated values. We find the gradients of early-type galaxies to be on average flat in age (∇log AgeL = 0.02 ± 0.06 dex/Reff) and negative in metallicity (∇[Fe/H]L = -0.09 ± 0.06 dex/Reff). Overall,the extinction gradients are flat (∇Av = -0.03 ± 0.09 mag/Reff ) with a wide spread. These results are in agreement with previous studies that used standard long-slit spectroscopy, and with the most recent IFU studies. According to recent simulations, these results are consistent with a scenario where early-type galaxies were formed through major mergers and where their final gradients are driven by the older ages and higher metallicity of the accreted systems. We demonstrate the scientific potential of multi-filter photometry to explore the spatially resolved stellar populations of local galaxies and confirm previous spectroscopic trends from a complementary technique. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).

  4. Spatially resolved X-ray emission measurements of the residual velocity during the stagnation phase of inertial confinement fusion implosion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruby, J. J.; Pak, A., E-mail: pak5@llnl.gov; Field, J. E.

    2016-07-15

    A technique for measuring residual motion during the stagnation phase of an indirectly driven inertial confinement experiment has been implemented. This method infers a velocity from spatially and temporally resolved images of the X-ray emission from two orthogonal lines of sight. This work investigates the accuracy of recovering spatially resolved velocities from the X-ray emission data. A detailed analytical and numerical modeling of the X-ray emission measurement shows that the accuracy of this method increases as the displacement that results from a residual velocity increase. For the typical experimental configuration, signal-to-noise ratios, and duration of X-ray emission, it is estimatedmore » that the fractional error in the inferred velocity rises above 50% as the velocity of emission falls below 24 μm/ns. By inputting measured parameters into this model, error estimates of the residual velocity as inferred from the X-ray emission measurements are now able to be generated for experimental data. Details of this analysis are presented for an implosion experiment conducted with an unintentional radiation flux asymmetry. The analysis shows a bright localized region of emission that moves through the larger emitting volume at a relatively higher velocity towards the location of the imposed flux deficit. This technique allows for the possibility of spatially resolving velocity flows within the so-called central hot spot of an implosion. This information would help to refine our interpretation of the thermal temperature inferred from the neutron time of flight detectors and the effect of localized hydrodynamic instabilities during the stagnation phase. Across several experiments, along a single line of sight, the average difference in magnitude and direction of the measured residual velocity as inferred from the X-ray and neutron time of flight detectors was found to be ∼13 μm/ns and ∼14°, respectively.« less

  5. Spatially resolved X-ray emission measurements of the residual velocity during the stagnation phase of inertial confinement fusion implosion experiments

    DOE PAGES

    Ruby, J. J.; Pak, A.; Field, J. E.; ...

    2016-07-01

    A technique for measuring residual motion during the stagnation phase of an indirectly driven inertial confinement experiment has been implemented. Our method infers a velocity from spatially and temporally resolved images of the X-ray emission from two orthogonal lines of sight. This work investigates the accuracy of recovering spatially resolved velocities from the X-ray emission data. A detailed analytical and numerical modeling of the X-ray emission measurement shows that the accuracy of this method increases as the displacement that results from a residual velocity increase. For the typical experimental configuration, signal-to-noise ratios, and duration of X-ray emission, it is estimatedmore » that the fractional error in the inferred velocity rises above 50% as the velocity of emission falls below 24 μm/ns. Furthermore, by inputting measured parameters into this model, error estimates of the residual velocity as inferred from the X-ray emission measurements are now able to be generated for experimental data. Details of this analysis are presented for an implosion experiment conducted with an unintentional radiation flux asymmetry. The analysis shows a bright localized region of emission that moves through the larger emitting volume at a relatively higher velocity towards the location of the imposed flux deficit. Our technique allows for the possibility of spatially resolving velocity flows within the so-called central hot spot of an implosion. This information would help to refine our interpretation of the thermal temperature inferred from the neutron time of flight detectors and the effect of localized hydrodynamic instabilities during the stagnation phase. Across several experiments, along a single line of sight, the average difference in magnitude and direction of the measured residual velocity as inferred from the X-ray and neutron time of flight detectors was found to be ~13 μm/ns and ~14°, respectively.« less

  6. Resolving fluorophores by unmixing multispectral fluorescence tomography with independent component analysis

    NASA Astrophysics Data System (ADS)

    Pu, Huangsheng; Zhang, Guanglei; He, Wei; Liu, Fei; Guang, Huizhi; Zhang, Yue; Bai, Jing; Luo, Jianwen

    2014-09-01

    It is a challenging problem to resolve and identify drug (or non-specific fluorophore) distribution throughout the whole body of small animals in vivo. In this article, an algorithm of unmixing multispectral fluorescence tomography (MFT) images based on independent component analysis (ICA) is proposed to solve this problem. ICA is used to unmix the data matrix assembled by the reconstruction results from MFT. Then the independent components (ICs) that represent spatial structures and the corresponding spectrum courses (SCs) which are associated with spectral variations can be obtained. By combining the ICs with SCs, the recovered MFT images can be generated and fluorophore concentration can be calculated. Simulation studies, phantom experiments and animal experiments with different concentration contrasts and spectrum combinations are performed to test the performance of the proposed algorithm. Results demonstrate that the proposed algorithm can not only provide the spatial information of fluorophores, but also recover the actual reconstruction of MFT images.

  7. Status of GeoTASO Trace Gas Data Analysis for the KORUS-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Janz, S. J.; Nowlan, C. R.; Lamsal, L. N.; Kowalewski, M. G.; Judd, L. M.; Wang, J.

    2017-12-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument measures spectrally resolved backscattered solar radiation at high spatial resolution. The instrument completed 30 sorties on board the NASA LaRC UC-12 aircraft during the KORUS-AQ deployment in May-June of 2016. GeoTASO collects spatially resolved spectra with sufficient sensitivity to retrieve column amounts of the trace gas molecules NO2, SO2, H2CO, O3, and C2H2O2 as well as aerosol products. Typical product retrievals are done in 250 m2 bins with multiple overpasses of key ground sites, allowing for detailed spatio-temporal analysis. Flight patterns consisted of both contiguous overlapping grid patterns to simulate satellite observational strategies in support of future geostationary satellite algorithm development, and "race-track" sampling to perform calibration and validation with the in-situ DC-8 platform as well as ground based assets. We will summarize the status of the radiance data set as well as ongoing analysis from our co-Investigators.

  8. Exotic singularities and spatially curved loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca

    2011-03-15

    We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less

  9. Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis.

    PubMed

    Spraggins, Jeffrey M; Rizzo, David G; Moore, Jessica L; Noto, Michael J; Skaar, Eric P; Caprioli, Richard M

    2016-06-01

    MALDI imaging mass spectrometry is a powerful analytical tool enabling the visualization of biomolecules in tissue. However, there are unique challenges associated with protein imaging experiments including the need for higher spatial resolution capabilities, improved image acquisition rates, and better molecular specificity. Here we demonstrate the capabilities of ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR IMS platforms as they relate to these challenges. High spatial resolution MALDI-TOF protein images of rat brain tissue and cystic fibrosis lung tissue were acquired at image acquisition rates >25 pixels/s. Structures as small as 50 μm were spatially resolved and proteins associated with host immune response were observed in cystic fibrosis lung tissue. Ultra-high speed MALDI-TOF enables unique applications including megapixel molecular imaging as demonstrated for lipid analysis of cystic fibrosis lung tissue. Additionally, imaging experiments using MALDI FTICR IMS were shown to produce data with high mass accuracy (<5 ppm) and resolving power (∼75 000 at m/z 5000) for proteins up to ∼20 kDa. Analysis of clear cell renal cell carcinoma using MALDI FTICR IMS identified specific proteins localized to healthy tissue regions, within the tumor, and also in areas of increased vascularization around the tumor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    DTIC Science & Technology

    2015-04-24

    AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated

  11. Spatially resolved Spectroscopy of Europa’s Large-scale Compositional Units at 3-4 μm with Keck NIRSPEC

    NASA Astrophysics Data System (ADS)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.; Hand, K. P.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3-4 μm obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3-4 μm. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μm compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  12. Spatial capture–recapture with partial identity: An application to camera traps

    USGS Publications Warehouse

    Augustine, Ben C.; Royle, J. Andrew; Kelly, Marcella J.; Satter, Christopher B.; Alonso, Robert S.; Boydston, Erin E.; Crooks, Kevin R.

    2018-01-01

    Camera trapping surveys frequently capture individuals whose identity is only known from a single flank. The most widely used methods for incorporating these partial identity individuals into density analyses discard some of the partial identity capture histories, reducing precision, and, while not previously recognized, introducing bias. Here, we present the spatial partial identity model (SPIM), which uses the spatial location where partial identity samples are captured to probabilistically resolve their complete identities, allowing all partial identity samples to be used in the analysis. We show that the SPIM outperforms other analytical alternatives. We then apply the SPIM to an ocelot data set collected on a trapping array with double-camera stations and a bobcat data set collected on a trapping array with single-camera stations. The SPIM improves inference in both cases and, in the ocelot example, individual sex is determined from photographs used to further resolve partial identities—one of which is resolved to near certainty. The SPIM opens the door for the investigation of trapping designs that deviate from the standard two camera design, the combination of other data types between which identities cannot be deterministically linked, and can be extended to the problem of partial genotypes.

  13. Controlling the influence of elastic eigenmodes on nanomagnet dynamics through pattern geometry

    NASA Astrophysics Data System (ADS)

    Berk, C.; Yahagi, Y.; Dhuey, S.; Cabrini, S.; Schmidt, H.

    2017-03-01

    The effect of the nanoscale array geometry on the interaction between optically generated surface acoustic waves (SAWs) and nanomagnet dynamics is investigated using Time-Resolved Magneto-Optical Kerr Effect Microscopy (TR-MOKE). It is demonstrated that altering the nanomagnet geometry from a periodic to a randomized aperiodic pattern effectively removes the magneto-elastic effect of SAWs on the magnetization dynamics. The efficiency of this method depends on the extent of any residual spatial correlations and is quantified by spatial Fourier analysis of the two structures. Randomization allows observation and extraction of intrinsic magnetic parameters such as spin wave frequencies and damping to be resolvable using all-optical methods, enabling the conclusion that the fabrication process does not affect the damping.

  14. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the differentmore » selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with quantitative data analysis and an appropriate in situ catalytic experiment allowed drawing important conclusions on the reaction mechanism, and the analytical strategy might be similarly applied in other case studies. The corresponding temperature profiles and the catalytic performance were measured by means of an IR-camera and mass spectrometric analysis. In a more advanced experiment the ignition process of the partial oxidation of methane was followed in a spatiotemporal manner which demonstrates that spatially resolved spectroscopic information can even be obtained in the subsecond scale.« less

  15. Maximizing the Biochemical Resolving Power of Fluorescence Microscopy

    PubMed Central

    Esposito, Alessandro; Popleteeva, Marina; Venkitaraman, Ashok R.

    2013-01-01

    Most recent advances in fluorescence microscopy have focused on achieving spatial resolutions below the diffraction limit. However, the inherent capability of fluorescence microscopy to non-invasively resolve different biochemical or physical environments in biological samples has not yet been formally described, because an adequate and general theoretical framework is lacking. Here, we develop a mathematical characterization of the biochemical resolution in fluorescence detection with Fisher information analysis. To improve the precision and the resolution of quantitative imaging methods, we demonstrate strategies for the optimization of fluorescence lifetime, fluorescence anisotropy and hyperspectral detection, as well as different multi-dimensional techniques. We describe optimized imaging protocols, provide optimization algorithms and describe precision and resolving power in biochemical imaging thanks to the analysis of the general properties of Fisher information in fluorescence detection. These strategies enable the optimal use of the information content available within the limited photon-budget typically available in fluorescence microscopy. This theoretical foundation leads to a generalized strategy for the optimization of multi-dimensional optical detection, and demonstrates how the parallel detection of all properties of fluorescence can maximize the biochemical resolving power of fluorescence microscopy, an approach we term Hyper Dimensional Imaging Microscopy (HDIM). Our work provides a theoretical framework for the description of the biochemical resolution in fluorescence microscopy, irrespective of spatial resolution, and for the development of a new class of microscopes that exploit multi-parametric detection systems. PMID:24204821

  16. Improved algorithm for estimating optical properties of food and biological materials using spatially-resolved diffuse reflectance

    USDA-ARS?s Scientific Manuscript database

    In this research, the inverse algorithm for estimating optical properties of food and biological materials from spatially-resolved diffuse reflectance was optimized in terms of data smoothing, normalization and spatial region of reflectance profile for curve fitting. Monte Carlo simulation was used ...

  17. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    PubMed Central

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  18. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  19. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-06-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  20. Horizontal Temperature Variability in the Stratosphere: Global Variations Inferred from CRISTA Data

    NASA Technical Reports Server (NTRS)

    Eidmann, G.; Offermann, D.; Jarisch, M.; Preusse, P.; Eckermann, S. D.; Schmidlin, F. J.

    2001-01-01

    In two separate orbital campaigns (November, 1994 and August, 1997), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument acquired global stratospheric data of high accuracy and high spatial resolution. The standard limb-scanned CRISTA measurements resolved atmospheric spatial structures with vertical dimensions greater than or equal to 1.5 - 2 km and horizontal dimensions is greater than or equal to 100 - 200 km. A fluctuation analysis of horizontal temperature distributions derived from these data is presented. This method is somewhat complementary to conventional power-spectral analysis techniques.

  1. Spatially resolved high resolution x-ray spectroscopy for magnetically confined fusion plasmas (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ince-Cushman, A.; Rice, J. E.; Reinke, M. L.

    2008-10-15

    The use of high resolution x-ray crystal spectrometers to diagnose fusion plasmas has been limited by the poor spatial localization associated with chord integrated measurements. Taking advantage of a new x-ray imaging spectrometer concept [M. Bitter et al., Rev. Sci. Instrum. 75, 3660 (2004)], and improvements in x-ray detector technology [Ch. Broennimann et al., J. Synchrotron Radiat. 13, 120 (2006)], a spatially resolving high resolution x-ray spectrometer has been built and installed on the Alcator C-Mod tokamak. This instrument utilizes a spherically bent quartz crystal and a set of two dimensional x-ray detectors arranged in the Johann configuration [H. H.more » Johann, Z. Phys. 69, 185 (1931)] to image the entire plasma cross section with a spatial resolution of about 1 cm. The spectrometer was designed to measure line emission from H-like and He-like argon in the wavelength range 3.7 and 4.0 A with a resolving power of approximately 10 000 at frame rates up to 200 Hz. Using spectral tomographic techniques [I. Condrea, Phys. Plasmas 11, 2427 (2004)] the line integrated spectra can be inverted to infer profiles of impurity emissivity, velocity, and temperature. From these quantities it is then possible to calculate impurity density and electron temperature profiles. An overview of the instrument, analysis techniques, and example profiles are presented.« less

  2. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA’S LARGE-SCALE COMPOSITIONAL UNITS AT 3–4 μ m WITH KECK NIRSPEC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K.

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scalemore » chaos, and can aid efforts to identify the endogenous non-ice species.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, Amy; Hughes, A. Meredith; Carpenter, John

    The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HDmore » 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.« less

  4. On the analysis of time-of-flight spin-echo modulated dark-field imaging data

    NASA Astrophysics Data System (ADS)

    Sales, Morten; Plomp, Jeroen; Bouwman, Wim G.; Tremsin, Anton S.; Habicht, Klaus; Strobl, Markus

    2017-06-01

    Spin-Echo Modulated Small Angle Neutron Scattering with spatial resolution, i.e. quantitative Spin-Echo Dark Field Imaging, is an emerging technique coupling neutron imaging with spatially resolved quantitative small angle scattering information. However, the currently achieved relatively large modulation periods of the order of millimeters are superimposed to the images of the samples. So far this required an independent reduction and analyses of the image and scattering information encoded in the measured data and is involving extensive curve fitting routines. Apart from requiring a priori decisions potentially limiting the information content that is extractable also a straightforward judgment of the data quality and information content is hindered. In contrast we propose a significantly simplified routine directly applied to the measured data, which does not only allow an immediate first assessment of data quality and delaying decisions on potentially information content limiting further reduction steps to a later and better informed state, but also, as results suggest, generally better analyses. In addition the method enables to drop the spatial resolution detector requirement for non-spatially resolved Spin-Echo Modulated Small Angle Neutron Scattering.

  5. Multimodal hyperspectral optical microscopy

    DOE PAGES

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu; ...

    2017-09-02

    We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less

  6. Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Paliwal, Umed; Sharma, Mukesh; Burkhart, John F.

    2016-10-01

    Black carbon (BC) emissions from India for the year 2011 are estimated to be 901.11 ± 151.56 Gg yr-1 based on a new ground-up, GIS-based inventory. The grid-based, spatially resolved emission inventory includes, in addition to conventional sources, emissions from kerosene lamps, forest fires, diesel-powered irrigation pumps and electricity generators at mobile towers. The emissions have been estimated at district level and were spatially distributed onto grids at a resolution of 40 × 40 km2. The uncertainty in emissions has been estimated using a Monte Carlo simulation by considering the variability in activity data and emission factors. Monthly variation of BC emissions has also been estimated to account for the seasonal variability. To the total BC emissions, domestic fuels contributed most significantly (47 %), followed by industry (22 %), transport (17 %), open burning (12 %) and others (2 %). The spatial and seasonal resolution of the inventory will be useful for modeling BC transport in the atmosphere for air quality, global warming and other process-level studies that require greater temporal resolution than traditional inventories.

  7. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    PubMed

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  8. Multimodal hyperspectral optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikova, Irina V.; Smallwood, Chuck R.; Gong, Yu

    We describe a unique and convenient approach to multimodal hyperspectral optical microscopy, herein achieved by coupling a portable and transferable hyperspectral imager to various optical microscopes. The experimental and data analysis schemes involved in recording spectrally and spatially resolved fluorescence, dark field, and optical absorption micrographs are illustrated through prototypical measurements targeting selected model systems. Namely, hyperspectral fluorescence micrographs of isolated fluorescent beads are employed to ensure spectral calibration of our detector and to gauge the attainable spatial resolution of our measurements; the recorded images are diffraction-limited. Moreover, spatially over-sampled absorption spectroscopy of a single lipid (18:1 Liss Rhod PE)more » layer reveals that optical densities on the order of 10-3 may be resolved by spatially averaging the recorded optical signatures. We also briefly illustrate two applications of our setup in the general areas of plasmonics and cell biology. Most notably, we deploy hyperspectral optical absorption microscopy to identify and image algal pigments within a single live Tisochrysis lutea cell. Overall, this work paves the way for multimodal multidimensional spectral imaging measurements spanning the realms of several scientific disciples.« less

  9. Hydrodynamic stability and Ti-tracer distribution in low-adiabat OMEGA direct-drive implosions

    NASA Astrophysics Data System (ADS)

    Joshi, Tirtha R.

    We discuss the hydrodynamic stability of low-adiabat OMEGA direct-drive implosions based on results obtained from simultaneous emission and absorption spectroscopy of a titanium tracer added to the target. The targets were deuterium filled, warm plastic shells of varying thicknesses and filling gas pressures with a submicron Ti-doped tracer layer initially located on the inner surface of the shell. The spectral features from the titanium tracer are observed during the deceleration and stagnation phases of the implosion, and recorded with a time integrated spectrometer (XRS1), streaked crystal spectrometer (SSCA) and three gated, multi-monochromatic X-ray imager (MMI) instruments fielded along quasi-orthogonal lines-of-sight. The time-integrated, streaked and gated data show simultaneous emission and absorption spectral features associated with titanium K-shell line transitions but only the MMI data provides spatially resolved information. The arrays of gated spectrally resolved images recorded with MMI were processed to obtain spatially resolved spectra characteristic of annular contour regions on the image. A multi-zone spectroscopic analysis of the annular spatially resolved spectra permits the extraction of plasma conditions in the core as well as the spatial distribution of tracer atoms. In turn, the titanium atom distribution provides direct evidence of tracer penetration into the core and thus of the hydrodynamic stability of the shell. The observations, timing and analysis indicate that during fuel burning the titanium atoms have migrated deep into the core and thus shell material mixing is likely to impact the rate of nuclear fusion reactions, i.e. burning rate, and the neutron yield of the implosion. We have found that the Ti atom number density decreases towards the center in early deceleration phase, but later in time the trend is just opposite, i.e., it increases towards the center of the implosion core. This is in part a consequence of the convergent effect of spherical geometry. The spatial profiles of Ti areal densities in the implosion core are extracted from space-resolved spectra and also evaluated using 1D spherical scaling. The trends are similar to the Ti number density spatial profiles. The areal densities extracted from data and 1D spherical scaling are very comparable in the outer spherical zones of the implosion core but significantly deviate in the innermost zone. We have observed that approximately 85% of the Ti atoms migrate into the hot core, while 15% of the atoms are still on the shell-fuel interface and contributing to the absorption. In addition, a method to extract the hot spot size based on the formation of the absorption feature in a sequence of annular spectra will be discussed. Results and trends are discussed as a function of target shell thickness and filling pressure, and laser pulse shape.

  10. National Jet Fuels Combustion Program - overall program integration and analysis, Area #7.

    DOT National Transportation Integrated Search

    2017-01-01

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the referee combustor (WPAFB, Bldg. 490, RC 152) selected by the ASCENT National Fuel Combustion Program. We will conduct advanced spatially resolve...

  11. Reconfigurable wavefront sensor for ultrashort pulses.

    PubMed

    Bock, Martin; Das, Susanta Kumar; Fischer, Carsten; Diehl, Michael; Börner, Peter; Grunwald, Ruediger

    2012-04-01

    A highly flexible Shack-Hartmann wavefront sensor for ultrashort pulse diagnostics is presented. The temporal system performance is studied in detail. Reflective operation is enabled by programming tilt-tolerant microaxicons into a liquid-crystal-on-silicon spatial light modulator. Nearly undistorted pulse transfer is obtained by generating nondiffracting needle beams as subbeams. Reproducible wavefront analysis and spatially resolved second-order autocorrelation are demonstrated at incident angles up to 50° and pulse durations down to 6 fs.

  12. Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

    PubMed Central

    Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.

    2010-01-01

    Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147

  13. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    NASA Astrophysics Data System (ADS)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  14. Analysis of Co-spatial UV-Optical STIS Spectra of Planetary Nebulae From HST Cycle 19 GO 12600

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.; Henry, Richard B. C.; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano

    2015-01-01

    We present an analysis of five spatially resolved planetary nebulae (PNe), NGC 5315, NGC 5882, NGC 7662, IC 2165, and IC 3568, from observations in the Cycle 19 program GO 12600 using HST STIS. Details of the observations and data are presented in the poster by Dufour et al. in this session. These five observations cover the wavelength range 1150-10,270 Å with 0.2 and 0.5 arcsec wide slits, and are co-spatial to 0.1 arcsec along a 25 arcsec length across each nebula. This unprecedented resolution in both wavelength and spatial coverage enabled detailed studies of physical conditions and abundances from UV line ion emissions (compared to optical lines). We first analyzed the low- and moderate-resolution UV emission lines of carbon using the resolved lines of C III] 1906.68 and 1908.73, which yielded a direct measurement of the density within the volume occupied by doubly-ionized carbon and other similar co-spatial ions. Next, each PN spectrum was divided into spatial sub-regions in order to assess inferred density variations among the sub-regions along the entire slit. Variations in electron temperature and chemical abundances were also probed. Lastly, these nebulae were modeled in detail with the photoionization code CLOUDY. This modeling tested different density profiles in order to reproduce the observed density variations and temperature fluctuations, and constrain central star parameters. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO 12600, as well as from the University of Oklahoma.

  15. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    NASA Astrophysics Data System (ADS)

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  16. Near-Infrared Spatially Resolved Spectroscopy for Tablet Quality Determination.

    PubMed

    Igne, Benoît; Talwar, Sameer; Feng, Hanzhou; Drennen, James K; Anderson, Carl A

    2015-12-01

    Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Spatially Resolved Mid-IR Spectra from Meteorites; Linking Composition, Crystallographic Orientation and Spectra on the Micro-Scale

    NASA Astrophysics Data System (ADS)

    Stephen, N. R.

    2016-08-01

    IR spectroscopy is used to infer composition of extraterrestrial bodies, comparing bulk spectra to databases of separate mineral phases. We extract spatially resolved meteorite-specific spectra from achondrites with respect to zonation and orientation.

  18. Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study

    PubMed Central

    Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert

    2012-01-01

    Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748

  19. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) with Raman Imaging Applied to Lunar Meteorites.

    PubMed

    Smith, Joseph P; Smith, Frank C; Booksh, Karl S

    2018-03-01

    Lunar meteorites provide a more random sampling of the surface of the Moon than do the returned lunar samples, and they provide valuable information to help estimate the chemical composition of the lunar crust, the lunar mantle, and the bulk Moon. As of July 2014, ∼96 lunar meteorites had been documented and ten of these are unbrecciated mare basalts. Using Raman imaging with multivariate curve resolution-alternating least squares (MCR-ALS), we investigated portions of polished thin sections of paired, unbrecciated, mare-basalt lunar meteorites that had been collected from the LaPaz Icefield (LAP) of Antarctica-LAP 02205 and LAP 04841. Polarized light microscopy displays that both meteorites are heterogeneous and consist of polydispersed sized and shaped particles of varying chemical composition. For two distinct probed areas within each meteorite, the individual chemical species and associated chemical maps were elucidated using MCR-ALS applied to Raman hyperspectral images. For LAP 02205, spatially and spectrally resolved clinopyroxene, ilmenite, substrate-adhesive epoxy, and diamond polish were observed within the probed areas. Similarly, for LAP 04841, spatially resolved chemical images with corresponding resolved Raman spectra of clinopyroxene, troilite, a high-temperature polymorph of anorthite, substrate-adhesive epoxy, and diamond polish were generated. In both LAP 02205 and LAP 04841, substrate-adhesive epoxy and diamond polish were more readily observed within fractures/veinlet features. Spectrally diverse clinopyroxenes were resolved in LAP 04841. Factors that allow these resolved clinopyroxenes to be differentiated include crystal orientation, spatially distinct chemical zoning of pyroxene crystals, and/or chemical and molecular composition. The minerals identified using this analytical methodology-clinopyroxene, anorthite, ilmenite, and troilite-are consistent with the results of previous studies of the two meteorites using electron microprobe analysis. To our knowledge, this is the first report of MCR-ALS with Raman imaging used for the investigation of both lunar and other types of meteorites. We have demonstrated the use of multivariate analysis methods, namely MCR-ALS, with Raman imaging to investigate heterogeneous lunar meteorites. Our analytical methodology can be used to elucidate the chemical, molecular, and structural characteristics of phases in a host of complex, heterogeneous geological, geochemical, and extraterrestrial materials.

  20. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  1. FIND: difFerential chromatin INteractions Detection using a spatial Poisson process

    PubMed Central

    Chen, Yang; Zhang, Michael Q.

    2018-01-01

    Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. PMID:29440282

  2. The emergence of spatial cyberinfrastructure.

    PubMed

    Wright, Dawn J; Wang, Shaowen

    2011-04-05

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge.

  3. The emergence of spatial cyberinfrastructure

    PubMed Central

    Wright, Dawn J.; Wang, Shaowen

    2011-01-01

    Cyberinfrastructure integrates advanced computer, information, and communication technologies to empower computation-based and data-driven scientific practice and improve the synthesis and analysis of scientific data in a collaborative and shared fashion. As such, it now represents a paradigm shift in scientific research that has facilitated easy access to computational utilities and streamlined collaboration across distance and disciplines, thereby enabling scientific breakthroughs to be reached more quickly and efficiently. Spatial cyberinfrastructure seeks to resolve longstanding complex problems of handling and analyzing massive and heterogeneous spatial datasets as well as the necessity and benefits of sharing spatial data flexibly and securely. This article provides an overview and potential future directions of spatial cyberinfrastructure. The remaining four articles of the special feature are introduced and situated in the context of providing empirical examples of how spatial cyberinfrastructure is extending and enhancing scientific practice for improved synthesis and analysis of both physical and social science data. The primary focus of the articles is spatial analyses using distributed and high-performance computing, sensor networks, and other advanced information technology capabilities to transform massive spatial datasets into insights and knowledge. PMID:21467227

  4. A Spatially Resolved Study of the GRB 020903 Host Galaxy

    NASA Astrophysics Data System (ADS)

    Thorp, Mallory D.; Levesque, Emily M.

    2018-03-01

    GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.

  5. A Mach-Zender digital holographic microscope with sub-micrometer resolution for imaging and tracking of marine micro-organisms

    NASA Astrophysics Data System (ADS)

    Kühn, Jonas; Niraula, Bimochan; Liewer, Kurt; Kent Wallace, J.; Serabyn, Eugene; Graff, Emilio; Lindensmith, Christian; Nadeau, Jay L.

    2014-12-01

    Digital holographic microscopy is an ideal tool for investigation of microbial motility. However, most designs do not exhibit sufficient spatial resolution for imaging bacteria. In this study we present an off-axis Mach-Zehnder design of a holographic microscope with spatial resolution of better than 800 nm and the ability to resolve bacterial samples at varying densities over a 380 μm × 380 μm × 600 μm three-dimensional field of view. Larger organisms, such as protozoa, can be resolved in detail, including cilia and flagella. The instrument design and performance are presented, including images and tracks of bacterial and protozoal mixed samples and pure cultures of six selected species. Organisms as small as 1 μm (bacterial spores) and as large as 60 μm (Paramecium bursaria) may be resolved and tracked without changes in the instrument configuration. Finally, we present a dilution series investigating the maximum cell density that can be imaged, a type of analysis that has not been presented in previous holographic microscopy studies.

  6. Spatially-resolved magnetic resonance study of the dissolution interface between soaps and water

    NASA Astrophysics Data System (ADS)

    Ciampi, E.; Goerke, U.; McDonald, P. J.; Chambers, J. G.; Newling, B.

    2002-06-01

    The developing interfacial region between a soap bar and water has been studied using a suite of spatially resolved NMR techniques. Stray field imaging (STRAFI) allowed the dynamics of water ingress into a shop-bought, commercial soap to be followed. A simplistic analysis of the data shows the ingress to be a Fickian process (∝t1/2) in the first 4 h. The T2 contrast employed in the STRAFI method is not sufficient to resolve detail of the mesophase formation at the interface. However, double quantum filtered 2H spectroscopy at different positions in the interfacial region allowed water concentration (and mesophase distribution) to be mapped over the first 120 h of dissolution. A simple model shows good agreement with the water concentration data. In the isotropic soap solution above the interfacial region, J-cyclic cross polarization was used to selectively interrogate the CH2 1H of the soap alkyl chains and, in combination with a pulsed field gradient measurement of self-diffusion, suggests a micellar solution in which the hydrodynamic radius of the micelles is ~5nm.

  7. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    NASA Astrophysics Data System (ADS)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  8. Opal photonic crystals infiltrated with chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astratov, V. N.; Adawi, A. M.; Skolnick, M. S.

    Composite opal structures for nonlinear applications are obtained by infiltration with chalcogenide glasses As{sub 2}S{sub 3} and AsSe by precipitation from solution. Analysis of spatially resolved optical spectra reveals that the glass aggregates into submillimeter areas inside the opal. These areas exhibit large shifts in the optical stop bands by up to 80 nm, and by comparison with modelling are shown to have uniform glass filling factors of opal pores up to 40%. Characterization of the domain structure of the opals prior to infiltration by large area angle-resolved spectroscopy is an important step in the analysis of the properties ofmore » the infiltrated regions. {copyright} 2001 American Institute of Physics.« less

  9. 5D-intravital tomography as a novel tool for non-invasive in-vivo analysis of human skin

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Breunig, Hans G.; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer; Schwarz, Martin; Riemann, Iris; Stracke, Frank; Huck, Volker; Gorzelanny, Christian; Schneider, Stefan W.

    2010-02-01

    Some years ago, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have been launched. These tomographs provide optical biopsies with submicron resolution based on two-photon excited autofluorescence (NAD(P)H, flavoproteins, keratin, elastin, melanin, porphyrins) and second harmonic generation by collagen. The 3D tomograph was now transferred into a 5D imaging system by the additional detection of the emission spectrum and the fluorescence lifetime based on spatially and spectrally resolved time-resolved single photon counting. The novel 5D intravital tomograph (5D-IVT) was employed for the early detection of atopic dermatitis and the analysis of treatment effects.

  10. Spatially resolved organic analysis of the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Zenobi, Renato; Philippoz, Jean-Michel; Zare, Richard N.; Buseck, Peter R.

    1989-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende meteorite has been probed with two-step laser desorption/laser multiphoton ionization mass spectrometry. This method allows direct in situ analysis with a spatial resolution of 1 sq mm or better of selected organic molecules. Spectra from freshly fractured interior surfaces of the meteorite show that PAH concentrations are locally high compared to the average concentrations found by wet chemical analysis of pulverized samples. The data suggest that the PAHs are primarily associated with the fine-grained matrix, where the organic polymer occurs. In addition, highly substituted PAH skeletons were observed. Interiors of individual chondrules were devoid of PAHs at the detection limit (about 0.05 ppm).

  11. Resolving z ~2 galaxy using adaptive coadded source plane reconstruction

    NASA Astrophysics Data System (ADS)

    Sharma, Soniya; Richard, Johan; Kewley, Lisa; Yuan, Tiantian

    2018-06-01

    Natural magnification provided by gravitational lensing coupled with Integral field spectrographic observations (IFS) and adaptive optics (AO) imaging techniques have become the frontier of spatially resolved studies of high redshift galaxies (z>1). Mass models of gravitational lenses hold the key for understanding the spatially resolved source–plane (unlensed) physical properties of the background lensed galaxies. Lensing mass models very sensitively control the accuracy and precision of source-plane reconstructions of the observed lensed arcs. Effective source-plane resolution defined by image-plane (observed) point spread function (PSF) makes it challenging to recover the unlensed (source-plane) surface brightness distribution.We conduct a detailed study to recover the source-plane physical properties of z=2 lensed galaxy using spatially resolved observations from two different multiple images of the lensed target. To deal with PSF’s from two data sets on different multiple images of the galaxy, we employ a forward (Source to Image) approach to merge these independent observations. Using our novel technique, we are able to present a detailed analysis of the source-plane dynamics at scales much better than previously attainable through traditional image inversion methods. Moreover, our technique is adapted to magnification, thus allowing us to achieve higher resolution in highly magnified regions of the source. We find that this lensed system is highly evident of a minor merger. In my talk, I present this case study of z=2 lensed galaxy and also discuss the applications of our algorithm to study plethora of lensed systems, which will be available through future telescopes like JWST and GMT.

  12. Validation of WRF-Chem air quality simulations in the Netherlands at high resolution

    NASA Astrophysics Data System (ADS)

    Hilboll, A.; Lowe, D.; Kuenen, J. J. P.; Denier Van Der Gon, H.; Vrekoussis, M.

    2017-12-01

    Air pollution is the single most important environmental hazard for publichealth, and especially nitrogen dioxide (NO2) plays a key role in air qualityresearch. With the aim of improving the quality and reproducibility ofmeasurements of NO2 vertical distribution from MAX-DOAS instruments, theCINDI-2 campaign was held in Cabauw (NL) in September 2016.The measurement site was rural, but surrounded by several major pollutioncenters. Due to this spatial heterogeneity of emissions, as well as themeteorological conditions, high spatial and temporal variability in NO2 mixingratios were observed.Air quality models used in the analysis of the measured data must have highspatial resolution in order to resolve this fine spatial structure. Thisremains a challenge even today, mostly due to the uncertainties and largespatial heterogeneity of emission data, and the need to parameterize small-scaleprocesses.In this study, we use the state-of-the-art version 3.9 of the Weather Researchand Forecasting Model with Chemistry (WRF-Chem) to simulate air pollutantconcentrations over the Netherlands, to facilitate the analysis of the CINDI-2NO2 measurements. The model setup contains three nested domains withhorizontal resolutions of 15, 3, and 1 km. Anthropogenic emissions are takenfrom the TNO-MACC III inventory and, where available, from the Dutch PollutantRelease and Transfer Register (Emissieregistratie), at a spatial resolution of 7and 1 km, respectively. We use the Common Reactive Intermediates gas-phasechemical mechanism (CRIv2-R5) with the MOSAIC aerosol module.The high spatial resolution of model and emissions will allow us to resolve thestrong spatial gradients in the NO2 concentrations measured during theCINDI-2 campaign, allowing for an unprecedented level of detail in theanalysis of individual pollution sources.

  13. Analysis of Co-spatial UV-Optical STIS Spectra of Seven Planetary Nebulae From HST Cycle 19 GO 12600

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.; Henry, Richard B. C.; Dufour, Reginald J.; Kwitter, Karen B.; Shaw, Richard A.; Balick, Bruce; Corradi, Romano

    2016-01-01

    We present an analysis of seven spatially resolved planetary nebulae (PNe), NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, IC 2165, and IC 3568, from observations in the Cycle 19 program GO 12600 using HST STIS. These seven observations cover the wavelength range 1150-10,270 Å with 0.2 and 0.5 arcsec wide slits, and are co-spatial to within 0.1 arcsec along a 25 arcsec length across each nebula. The wavelength and spatial coverage enabled a detailed study of physical conditions and abundances from UV and optical line emissions (compared to only optical lines) for these seven PNe. The first UV lines of interest are those of carbon. The resolved lines of C III] 1906.68 and 1908.73 yielded a direct measurement of the density within the volume occupied by doubly-ionized carbon and other similar co-spatial ions as well as contributed to an accurate measurement of the carbon abundance. Each PN spectrum was divided into smaller spatial regions or segments in order to assess inferred density variations among the regions along the entire slit. There is a clear difference in the inferred density for several regions of each PNe. Variations in electron temperature and chemical abundances were also probed and shown to be completely homogeneous within the errors. Lastly, these nebulae were modeled in detail with the photoionization code CLOUDY. This modeling constrained the central star parameters of temperature and luminosity and tested the effects different density profiles have on these parameters. We gratefully acknowledge generous support from NASA through grants related to the Cycle 19 program GO 12600, as well as from the University of Oklahoma.

  14. Spatially unresolved SED fitting can underestimate galaxy masses: a solution to the missing mass problem

    NASA Astrophysics Data System (ADS)

    Sorba, Robert; Sawicki, Marcin

    2018-05-01

    We perform spatially resolved, pixel-by-pixel Spectral Energy Distribution (SED) fitting on galaxies up to z ˜ 2.5 in the Hubble eXtreme Deep Field (XDF). Comparing stellar mass estimates from spatially resolved and spatially unresolved photometry we find that unresolved masses can be systematically underestimated by factors of up to 5. The ratio of the unresolved to resolved mass measurement depends on the galaxy's specific star formation rate (sSFR): at low sSFRs the bias is small, but above sSFR ˜ 10-9.5 yr-1 the discrepancy increases rapidly such that galaxies with sSFRs ˜ 10-8 yr-1 have unresolved mass estimates of only one-half to one-fifth of the resolved value. This result indicates that stellar masses estimated from spatially unresolved data sets need to be systematically corrected, in some cases by large amounts, and we provide an analytic prescription for applying this correction. We show that correcting stellar mass measurements for this bias changes the normalization and slope of the star-forming main sequence and reduces its intrinsic width; most dramatically, correcting for the mass bias increases the stellar mass density of the Universe at high redshift and can resolve the long-standing discrepancy between the directly measured cosmic SFR density at z ≳ 1 and that inferred from stellar mass densities (`the missing mass problem').

  15. Analysis of Co-spatial UV-Optical STIS Spectra of Six Planetary Nebulae From HST Cycle 19 GO 12600

    NASA Astrophysics Data System (ADS)

    Reid Miller, Timothy; Henry, Richard B. C.; Dufour, Reginald J.; Kwitter, Karen; Shaw, Richard A.; Balick, Bruce; Corradi, Romano

    2015-08-01

    We present an analysis of six spatially resolved planetary nebulae (PNe), NGC 3242, NGC 5315, NGC5882, NGC 7662, IC 2165, and IC 3568, from observations in the Cycle 19 program GO 12600 using HSTSTIS. These six observations cover the wavelength range 1150-10,270 Å with 0.2 and 0.5 arcsec wideslits, and are co-spatial to 0.1 arcsec along a 25 arcsec length across each nebula. The wavelength andspatial coverage enabled this detailed study of physical conditions and abundances from UV and opticalline emissions (compared to only optical lines) for these six PNe. The first UV lines of interest are thoseof carbon. The resolved lines of C III] 1906.68 and 1908.73 yielded a direct measurement of the densitywithin the volume occupied by doubly-ionized carbon and other similar co-spatial ions as well ascontributed to an accurate measurement of the carbon abundance. Each PN spectrum was divided intosmaller spatial regions in order to assess inferred density variations among the regions along the entireslit. There is a clear difference in the inferred density for several regions of each PNe. Variations inelectron temperature and chemical abundances were also probed and shown to be nearly completelyhomogeneous within the errors. Lastly, these nebulae were modeled in detail with the photoionizationcode CLOUDY. This modeling tested different density profiles in order to reproduce the observed densityvariations and temperature fluctuations, and constrain central star parameters. We gratefullyacknowledge generous support from NASA through grants related to the Cycle 19 program GO 12600, aswell as from the University of Oklahoma.

  16. Impact of temporal upscaling and chemical transport model horizontal resolution on reducing ozone exposure misclassification

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Serre, Marc L.; Reyes, Jeanette M.; Vizuete, William

    2017-10-01

    We have developed a Bayesian Maximum Entropy (BME) framework that integrates observations from a surface monitoring network and predictions from a Chemical Transport Model (CTM) to create improved exposure estimates that can be resolved into any spatial and temporal resolution. The flexibility of the framework allows for input of data in any choice of time scales and CTM predictions of any spatial resolution with varying associated degrees of estimation error and cost in terms of implementation and computation. This study quantifies the impact on exposure estimation error due to these choices by first comparing estimations errors when BME relied on ozone concentration data either as an hourly average, the daily maximum 8-h average (DM8A), or the daily 24-h average (D24A). Our analysis found that the use of DM8A and D24A data, although less computationally intensive, reduced estimation error more when compared to the use of hourly data. This was primarily due to the poorer CTM model performance in the hourly average predicted ozone. Our second analysis compared spatial variability and estimation errors when BME relied on CTM predictions with a grid cell resolution of 12 × 12 km2 versus a coarser resolution of 36 × 36 km2. Our analysis found that integrating the finer grid resolution CTM predictions not only reduced estimation error, but also increased the spatial variability in daily ozone estimates by 5 times. This improvement was due to the improved spatial gradients and model performance found in the finer resolved CTM simulation. The integration of observational and model predictions that is permitted in a BME framework continues to be a powerful approach for improving exposure estimates of ambient air pollution. The results of this analysis demonstrate the importance of also understanding model performance variability and its implications on exposure error.

  17. Nanometer-resolved chemical analyses of femtosecond laser-induced periodic surface structures on titanium

    NASA Astrophysics Data System (ADS)

    Kirner, Sabrina V.; Wirth, Thomas; Sturm, Heinz; Krüger, Jörg; Bonse, Jörn

    2017-09-01

    The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ˜150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ˜200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath.

  18. Spatially resolved resistance of NiO nanostructures under humid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Christopher B; Ievlev, Anton; Collins, Liam F

    2016-01-01

    The spatially resolved electrical response of polycrystalline NiO films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized with sub 25nm resolution using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy under argon atmosphere at 0%, 50%, and 80% relative humidity. The dimensionality of surface features obtained through autocorrelation analysis of topological maps increased linearly with increased relative humidity, as water was adsorbed onto the film surface. Surface potential decreased from about 280mV to about 100 mV and resistance decreased from about 5more » G to about 3 G , in a nonlinear fashion when relative humidity was increased from 0% to 80%. Spatially resolved surface potential and resistance of the NiO films was found to be heterogeneous throughout the film, with distinct domains that grew in size from about 60 nm to 175 nm at 0% and 80% RH levels, respectively. The heterogeneous character of the topological, surface potential, and resistance properties of the polycrystalline NiO film observed under dry conditions decreased with increased relative humidity, yielding nearly homogeneous surface properties at 80% RH, suggesting that the nanoscale potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO film.« less

  19. Spatially resolved synchrotron radiation induced X-ray fluorescence analyses of rare Rembrandt silverpoint drawings

    NASA Astrophysics Data System (ADS)

    Reiche, I.; Radtke, M.; Berger, A.; Görner, W.; Merchel, S.; Riesemeier, H.; Bevers, H.

    2006-05-01

    New analyses of a series of very rare silverpoint drawings that were executed by Rembrandt Harmensz. van Rijn (1606 1669) which are kept today in the Kupferstichkabinett (Museum of Prints and Drawings) of the State Museums of Berlin are reported here. Analysis of these drawings requires particular attention because the study has to be fully non-destructive and extremely sensitive. The metal alloy on the paper does not exceed some hundreds of μg/cm2. Therefore, synchrotron radiation induced X-ray fluorescence (SR-XRF) is together with external micro-proton-induced X-ray emission the only well-suited method for the analyses of metalpoint drawings. In some primary work, about 25 German and Flemish metalpoint drawings were investigated using spatially resolved SR-XRF analysis at the BAMline at BESSY. This study enlarges the existing French German database of metalpoint drawings dating from the 15th and 16th centuries, as these Rembrandt drawings originate from the 17th century where this graphical technique was even rarer and already obsolete. It also illustrates how SR-XRF analysis can reinforce art historical assumptions on the dating of drawings and their connection.

  20. FIND: difFerential chromatin INteractions Detection using a spatial Poisson process.

    PubMed

    Djekidel, Mohamed Nadhir; Chen, Yang; Zhang, Michael Q

    2018-02-12

    Polymer-based simulations and experimental studies indicate the existence of a spatial dependency between the adjacent DNA fibers involved in the formation of chromatin loops. However, the existing strategies for detecting differential chromatin interactions assume that the interacting segments are spatially independent from the other segments nearby. To resolve this issue, we developed a new computational method, FIND, which considers the local spatial dependency between interacting loci. FIND uses a spatial Poisson process to detect differential chromatin interactions that show a significant difference in their interaction frequency and the interaction frequency of their neighbors. Simulation and biological data analysis show that FIND outperforms the widely used count-based methods and has a better signal-to-noise ratio. © 2018 Djekidel et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy

    NASA Astrophysics Data System (ADS)

    Yoshigoe, Akitaka; Shiwaku, Hideaki; Kobayashi, Toru; Shimoyama, Iwao; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Kogure, Toshihiro; Ohkochi, Takuo; Yasui, Akira; Yaita, Tsuyoshi

    2018-01-01

    A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.

  2. Chandra/ACIS Observations of the 30 Doradus Star-Forming Complex

    NASA Astrophysics Data System (ADS)

    Townsley, Leisa; Broos, Patrick; Feigelson, Eric; Burrows, David; Chu, You-Hua; Garmire, Gordon; Griffiths, Richard; Maeda, Yoshitomo; Pavlov, George; Tsuboi, Yohko

    2002-04-01

    30 Doradus is the archetype giant extragalactic H II region, a massive star-forming complex in the Large Magellanic Cloud. We examine high-spatial-resolution X-ray images and spectra of the essential parts of 30 Doradus, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level, allowing spectral analysis of bright constituents; other OB/Wolf-Rayet binaries and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the composite SNR containing a 16-msec pulsar. The spectrally soft superbubble structures seen by ROSAT are dramatically imaged by Chandra; we explore the spectral differences they exhibit. Taken together, the components of 30 Doradus give us an excellent microscopic view of high-energy phenomena seen on larger scales in more distant galaxies as starbursts and galactic winds.

  3. A spatially resolved pyrometer for measuring the blackbody temperature of a warm dense plasma

    DOE PAGES

    Coleman, Joshua Eugene

    2016-12-30

    A pyrometer has been developed to spatially resolve the blackbody temperature of a radiatively cooling warm dense plasma. The pyrometer is composed of a lens coupled fiber array, Czerny-Turner visible spectrometer, and an intensified gated CCD for the detector. The radiatively cooling warm dense plasma is generated by a ~100-ns-long intense relativistic electron bunch with an energy of 19.1 MeV and a current of 0.2 kA interacting with 100-μm-thick low-Z foils. The continuum spectrum is measured over 250 nm with a low groove density grating. These plasmas emit visible light or blackbody radiation on relatively long time scales (~0.1 tomore » 100 μs). Finally, we presented the diagnostic layout, calibration, and proof-of-principle measurement of a radiatively cooling aluminum plasma, which includes a spatially resolved temperature gradient and the ability to temporally resolve it also.« less

  4. An online, energy-resolving beam profile detector for laser-driven proton beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzkes, J.; Rehwald, M.; Obst, L.

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energymore » can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.« less

  5. An online, energy-resolving beam profile detector for laser-driven proton beams.

    PubMed

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  6. Water Quality Assessment Simulation Program (WASP8): Upgrades to the Advanced Toxicant Module for Simulating Dissolved Chemicals, Nanomaterials, and Solids

    EPA Science Inventory

    The Water Quality Analysis Simulation Program (WASP) is a dynamic, spatially-resolved, differential mass balance fate and transport modeling framework. WASP is used to develop models to simulate concentrations of environmental contaminants in surface waters and sediments. As a mo...

  7. Face Inversion Disproportionately Impairs the Perception of Vertical but Not Horizontal Relations between Features

    ERIC Educational Resources Information Center

    Goffaux, Valerie; Rossion, Bruno

    2007-01-01

    Upside-down inversion disrupts the processing of spatial relations between the features of a face, while largely preserving local feature analysis. However, recent studies on face inversion failed to observe a clear dissociation between relational and featural processing. To resolve these discrepancies and clarify how inversion affects face…

  8. Resolvent analysis of shear flows using One-Way Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim

    2017-11-01

    For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).

  9. Wide-field high spatial frequency domain imaging of tissue microstructure

    NASA Astrophysics Data System (ADS)

    Lin, Weihao; Zeng, Bixin; Cao, Zili; Zhu, Danfeng; Xu, M.

    2018-02-01

    Wide-field tissue imaging is usually not capable of resolving tissue microstructure. We present High Spatial Frequency Domain Imaging (HSFDI) - a noncontact imaging modality that spatially maps the tissue microscopic scattering structures over a large field of view. Based on an analytical reflectance model of sub-diffusive light from forward-peaked highly scattering media, HSFDI quantifies the spatially-resolved parameters of the light scattering phase function from the reflectance of structured light modulated at high spatial frequencies. We have demonstrated with ex vivo cancerous tissue to validate the robustness of HSFDI in significant contrast and differentiation of the microstructutral parameters between different types and disease states of tissue.

  10. Analysis of Recombination in CdTe Heterostructures With Time-Resolved Two-Photon Excitation Microscopy

    DOE PAGES

    Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig; ...

    2016-11-01

    Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.

  11. Analysis of Recombination in CdTe Heterostructures With Time-Resolved Two-Photon Excitation Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuciauskas, Darius; Wernsing, Keith; Jensen, Soren Alkaersig

    Here, we used time-resolved photoluminescence microscopy to analyze charge carrier transport and recombination in CdTe double heterostructures fabricated by molecular beam epitaxy (MBE). This allowed us to determine the charge carrier mobility in this system, which was found to be 500-625 cm 2/(V s). Charge carrier lifetimes in the 15-100 ns range are limited by the interface recombination, and the data indicate higher interface recombination velocity near extended defects. This study describes a new method to analyze the spatial distribution of the interface recombination velocity and the interface defects in semiconductor heterostructures.

  12. Evolution and enabling capabilities of spatially resolved techniques for the characterization of heterogeneously catalyzed reactions

    DOE PAGES

    Morgan, Kevin; Touitou, Jamal; Choi, Jae -Soon; ...

    2016-01-15

    The development and optimization of catalysts and catalytic processes requires knowledge of reaction kinetics and mechanisms. In traditional catalyst kinetic characterization, the gas composition is known at the inlet, and the exit flow is measured to determine changes in concentration. As such, the progression of the chemistry within the catalyst is not known. Technological advances in electromagnetic and physical probes have made visualizing the evolution of the chemistry within catalyst samples a reality, as part of a methodology commonly known as spatial resolution. Herein, we discuss and evaluate the development of spatially resolved techniques, including the evolutions and achievements ofmore » this growing area of catalytic research. The impact of such techniques is discussed in terms of the invasiveness of physical probes on catalytic systems, as well as how experimentally obtained spatial profiles can be used in conjunction with kinetic modeling. Moreover, some aims and aspirations for further evolution of spatially resolved techniques are considered.« less

  13. The spatial resolving power of earth resources satellites: A review

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.

    1980-01-01

    The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.

  14. High-resolution, time-resolved MRA provides superior definition of lower-extremity arterial segments compared to 2D time-of-flight imaging.

    PubMed

    Thornton, F J; Du, J; Suleiman, S A; Dieter, R; Tefera, G; Pillai, K R; Korosec, F R; Mistretta, C A; Grist, T M

    2006-08-01

    To evaluate a novel time-resolved contrast-enhanced (CE) projection reconstruction (PR) magnetic resonance angiography (MRA) method for identifying potential bypass graft target vessels in patients with Class II-IV peripheral vascular disease. Twenty patients (M:F = 15:5, mean age = 58 years, range = 48-83 years), were recruited from routine MRA referrals. All imaging was performed on a 1.5 T MRI system with fast gradients (Signa LX; GE Healthcare, Waukesha, WI). Images were acquired with a novel technique that combined undersampled PR with a time-resolved acquisition to yield an MRA method with high temporal and spatial resolution. The method is called PR hyper time-resolved imaging of contrast kinetics (PR-hyperTRICKS). Quantitative and qualitative analyses were used to compare two-dimensional (2D) time-of-flight (TOF) and PR-hyperTRICKS in 13 arterial segments per lower extremity. Statistical analysis was performed with the Wilcoxon signed-rank test. Fifteen percent (77/517) of the vessels were scored as missing or nondiagnostic with 2D TOF, but were scored as diagnostic with PR-hyperTRICKS. Image quality was superior with PR-hyperTRICKS vs. 2D TOF (on a four-point scale, mean rank = 3.3 +/- 1.2 vs. 2.9 +/- 1.2, P < 0.0001). PR-hyperTRICKS produced images with high contrast-to-noise ratios (CNR) and high spatial and temporal resolution. 2D TOF images were of inferior quality due to moderate spatial resolution, inferior CNR, greater flow-related artifacts, and absence of temporal resolution. PR-hyperTRICKS provides superior preoperative assessment of lower limb ischemia compared to 2D TOF.

  15. Spatially Resolved Carbon Isotope and Elemental Analyses of the Root-Rhizosphere-Soil System to Understand Below-ground Nutrient Interactions

    NASA Astrophysics Data System (ADS)

    Denis, E. H.; Ilhardt, P.; Tucker, A. E.; Huggett, N. L.; Rosnow, J. J.; Krogstad, E. J.; Moran, J.

    2017-12-01

    The intimate relationships between plant roots, rhizosphere, and soil are fostered by the release of organic compounds from the plant (through various forms of rhizodeposition) into soil and the simultaneous harvesting and delivery of inorganic nutrients from the soil to the plant. This project's main goal is to better understand the spatial controls on bi-directional nutrient exchange through the rhizosphere and how they impact overall plant health and productivity. Here, we present methods being developed to 1) spatially track the release and migration of plant-derived organics into the rhizosphere and soil and 2) map the local inorganic geochemical microenvironments within and surrounding the rhizosphere. Our studies focused on switchgrass microcosms containing soil from field plots at the Kellogg Biological Station (Hickory Corners, Michigan), which have been cropped with switchgrass for nearly a decade. We used a 13CO2 tracer to label our samples for both one and two diel cycles and tracked subsequent movement of labeled organic carbon using spatially specific δ13C analysis (with 50 µm resolution). The laser ablation-isotope ratio mass spectrometry (LA-IRMS) approach allowed us to map the extent of 13C-label migration into roots, rhizosphere, and surrounding soil. Preliminary results show the expected decrease of organic exudates with distance from a root and that finer roots (<0.1 mm) incorporated more 13C-label than thicker roots, which likely correlates to specific root growth rates. We are adapting both laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to spatially map inorganic nutrient content in the exact same samples used for LA-IRMS analysis. Both of these methods provide rapid surface mapping of a wide range of elements (with high dynamic range) at 150 μm spatial resolution. Preliminary results show that, based on elemental content, we can distinguish between roots, rhizosphere, soil, and specific types of mineral grains within soil. Integrating spatially resolved analysis of photosynthate distribution with local geochemical microenvironments may reveal key properties of nutrient exchange hotspots that help direct overall plant health and productivity.

  16. Towards real-time non contact spatial resolved oxygenation monitoring using a multi spectral filter array camera in various light conditions

    NASA Astrophysics Data System (ADS)

    Bauer, Jacob R.; van Beekum, Karlijn; Klaessens, John; Noordmans, Herke Jan; Boer, Christa; Hardeberg, Jon Y.; Verdaasdonk, Rudolf M.

    2018-02-01

    Non contact spatial resolved oxygenation measurements remain an open challenge in the biomedical field and non contact patient monitoring. Although point measurements are the clinical standard till this day, regional differences in the oxygenation will improve the quality and safety of care. Recent developments in spectral imaging resulted in spectral filter array cameras (SFA). These provide the means to acquire spatial spectral videos in real-time and allow a spatial approach to spectroscopy. In this study, the performance of a 25 channel near infrared SFA camera was studied to obtain spatial oxygenation maps of hands during an occlusion of the left upper arm in 7 healthy volunteers. For comparison a clinical oxygenation monitoring system, INVOS, was used as a reference. In case of the NIRS SFA camera, oxygenation curves were derived from 2-3 wavelength bands with a custom made fast analysis software using a basic algorithm. Dynamic oxygenation changes were determined with the NIR SFA camera and INVOS system at different regional locations of the occluded versus non-occluded hands and showed to be in good agreement. To increase the signal to noise ratio, algorithm and image acquisition were optimised. The measurement were robust to different illumination conditions with NIR light sources. This study shows that imaging of relative oxygenation changes over larger body areas is potentially possible in real time.

  17. Role of density modulation in the spatially resolved dynamics of strongly confined liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Shibu, E-mail: shibu.saw@sydney.edu.au; Dasgupta, Chandan, E-mail: cdgupta@physics.iisc.ernet.in

    Confinement by walls usually produces a strong modulation in the density of dense liquids near the walls. Using molecular dynamics simulations, we examine the effects of the density modulation on the spatially resolved dynamics of a liquid confined between two parallel walls, using a resolution of a fraction of the interparticle distance in the liquid. The local dynamics is quantified by the relaxation time associated with the temporal autocorrelation function of the local density. We find that this local relaxation time varies in phase with the density modulation. The amplitude of the spatial modulation of the relaxation time can bemore » quite large, depending on the characteristics of the wall and thermodynamic parameters of the liquid. To disentangle the effects of confinement and density modulation on the spatially resolved dynamics, we compare the dynamics of a confined liquid with that of an unconfined one in which a similar density modulation is induced by an external potential. We find several differences indicating that density modulation alone cannot account for all the features seen in the spatially resolved dynamics of confined liquids. We also examine how the dynamics near a wall depends on the separation between the two walls and show that the features seen in our simulations persist in the limit of large wall separation.« less

  18. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE PAGES

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; ...

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  19. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belianinov, Alex, E-mail: belianinova@ornl.gov; Ganesh, Panchapakesan; Lin, Wenzhi

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified bymore » their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  20. Spatial Variability of Wet Troposphere Delays Over Inland Water Bodies

    NASA Astrophysics Data System (ADS)

    Mehran, Ali; Clark, Elizabeth A.; Lettenmaier, Dennis P.

    2017-11-01

    Satellite radar altimetry has enabled the study of water levels in large lakes and reservoirs at a global scale. The upcoming Surface Water and Ocean Topography (SWOT) satellite mission (scheduled launch 2020) will simultaneously measure water surface extent and elevation at an unprecedented accuracy and resolution. However, SWOT retrieval accuracy will be affected by a number of factors, including wet tropospheric delay—the delay in the signal's passage through the atmosphere due to atmospheric water content. In past applications, the wet tropospheric delay over large inland water bodies has been corrected using atmospheric moisture profiles based on atmospheric reanalysis data at relatively coarse (tens to hundreds of kilometers) spatial resolution. These products cannot resolve subgrid variations in wet tropospheric delays at the spatial resolutions (of 1 km and finer) that SWOT is intended to resolve. We calculate zenith wet tropospheric delays (ZWDs) and their spatial variability from Weather Research and Forecasting (WRF) numerical weather prediction model simulations at 2.33 km spatial resolution over the southwestern U.S., with attention in particular to Sam Rayburn, Ray Hubbard, and Elephant Butte Reservoirs which have width and length dimensions that are of order or larger than the WRF spatial resolution. We find that spatiotemporal variability of ZWD over the inland reservoirs depends on climatic conditions at the reservoir location, as well as distance from ocean, elevation, and surface area of the reservoir, but that the magnitude of subgrid variability (relative to analysis and reanalysis products) is generally less than 10 mm.

  1. Spatially resolved speckle-correlometry of sol-gel transition

    NASA Astrophysics Data System (ADS)

    Isaeva, A. A.; Isaeva, E. A.; Pantyukov, A. V.; Zimnyakov, D. A.

    2018-04-01

    Sol-gel transition was studied using the speckle correlometry method with a localized light source and spatial filtering of backscattered radiation. Water solutions of technical or food gelatin with added TiO2 nanoparticles were used as studied objects. Structural transformation of "sol-gel" system was studied at various temperatures from 25°C to 50°C using analysis of the correlation and structure functions of speckle intensity fluctuations. The characteristic temperatures of "sol - gel" transition were evaluated for studied systems. Obtained results can be used for various applications in biomedicine and food industry.

  2. ANCA: Anharmonic Conformational Analysis of Biomolecular Simulations.

    PubMed

    Parvatikar, Akash; Vacaliuc, Gabriel S; Ramanathan, Arvind; Chennubhotla, S Chakra

    2018-05-08

    Anharmonicity in time-dependent conformational fluctuations is noted to be a key feature of functional dynamics of biomolecules. Although anharmonic events are rare, long-timescale (μs-ms and beyond) simulations facilitate probing of such events. We have previously developed quasi-anharmonic analysis to resolve higher-order spatial correlations and characterize anharmonicity in biomolecular simulations. In this article, we have extended this toolbox to resolve higher-order temporal correlations and built a scalable Python package called anharmonic conformational analysis (ANCA). ANCA has modules to: 1) measure anharmonicity in the form of higher-order statistics and its variation as a function of time, 2) output a storyboard representation of the simulations to identify key anharmonic conformational events, and 3) identify putative anharmonic conformational substates and visualization of transitions between these substates. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. [A spatial adaptive algorithm for endmember extraction on multispectral remote sensing image].

    PubMed

    Zhu, Chang-Ming; Luo, Jian-Cheng; Shen, Zhan-Feng; Li, Jun-Li; Hu, Xiao-Dong

    2011-10-01

    Due to the problem that the convex cone analysis (CCA) method can only extract limited endmember in multispectral imagery, this paper proposed a new endmember extraction method by spatial adaptive spectral feature analysis in multispectral remote sensing image based on spatial clustering and imagery slice. Firstly, in order to remove spatial and spectral redundancies, the principal component analysis (PCA) algorithm was used for lowering the dimensions of the multispectral data. Secondly, iterative self-organizing data analysis technology algorithm (ISODATA) was used for image cluster through the similarity of the pixel spectral. And then, through clustering post process and litter clusters combination, we divided the whole image data into several blocks (tiles). Lastly, according to the complexity of image blocks' landscape and the feature of the scatter diagrams analysis, the authors can determine the number of endmembers. Then using hourglass algorithm extracts endmembers. Through the endmember extraction experiment on TM multispectral imagery, the experiment result showed that the method can extract endmember spectra form multispectral imagery effectively. What's more, the method resolved the problem of the amount of endmember limitation and improved accuracy of the endmember extraction. The method has provided a new way for multispectral image endmember extraction.

  4. Investigating the galactic Supernova Remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, M.; Bamba, A.; Orlando, S.; Bocchino, F.

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  5. Investigating the Galactic supernova remnant Kes 78 with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Miceli, Marco; Bamba, Aya; Orlando, Salvatore; Bocchino, Fabrizio

    2016-06-01

    The galactic supernova remnant Kes 78 is associated with a HESS gamma-ray source and its X-ray emission has been recently revealed by Suzaku observations which have found indications for a hard X-ray component in the spectra. We analyzed an XMM-Newton EPIC observation of Kes 78 and studied the spatial distribution of the physical and chemical properties of the X-ray emitting plasma. The EPIC data unveiled a very complex morphology for the soft X-ray emission. We performed image analysis and spatially resolved spectral analysis finding indications for the interaction of the remnant with a local molecular cloud. Finally, we investigated the origin of the hard X-ray emitting component.

  6. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry

    NASA Astrophysics Data System (ADS)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.

    2017-12-01

    Dynamic in time and space, New Zealand's seasonal snow is largely confined to remote alpine areas, complicating ongoing in situ measurement and characterisation. Improved understanding and modeling of the seasonal snowpack requires fine scale resolution of snow distribution and spatial variability. The potential of remotely piloted aircraft system (RPAS) photogrammetry to resolve spatial and temporal variability of snow depth and water equivalent in a New Zealand alpine catchment is assessed in the Pisa Range, Central Otago. This approach yielded orthophotomosaics and digital surface models (DSM) at 0.05 and 0.15 m spatial resolution, respectively. An autumn reference DSM allowed mapping of winter (02/08/2016) and spring (10/09/2016) snow depth at 0.15 m spatial resolution, via DSM differencing. The consistency and accuracy of the RPAS-derived surface was assessed by comparison of snow-free regions of the spring and autumn DSMs, while accuracy of RPAS retrieved snow depth was assessed with 86 in situ snow probe measurements. Results show a mean vertical residual of 0.024 m between DSMs acquired in autumn and spring. This residual approximated a Laplace distribution, reflecting the influence of large outliers on the small overall bias. Propagation of errors associated with successive DSMs saw snow depth mapped with an accuracy of ± 0.09 m (95% c.l.). Comparing RPAS and in situ snow depth measurements revealed the influence of geo-location uncertainty and interactions between vegetation and the snowpack on snow depth uncertainty and bias. Semi-variogram analysis revealed that the RPAS outperformed systematic in situ measurements in resolving fine scale spatial variability. Despite limitations accompanying RPAS photogrammetry, this study demonstrates a repeatable means of accurately mapping snow depth for an entire, yet relatively small, hydrological basin ( 0.5 km2), at high resolution. Resolving snowpack features associated with re-distribution and preferential accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.

  7. Data-driven signal-resolving approaches of infrared spectra to explore the macroscopic and microscopic spatial distribution of organic and inorganic compounds in plant.

    PubMed

    Chen, Jian-bo; Sun, Su-qin; Zhou, Qun

    2015-07-01

    The nondestructive and label-free infrared (IR) spectroscopy is a direct tool to characterize the spatial distribution of organic and inorganic compounds in plant. Since plant samples are usually complex mixtures, signal-resolving methods are necessary to find the spectral features of compounds of interest in the signal-overlapped IR spectra. In this research, two approaches using existing data-driven signal-resolving methods are proposed to interpret the IR spectra of plant samples. If the number of spectra is small, "tri-step identification" can enhance the spectral resolution to separate and identify the overlapped bands. First, the envelope bands of the original spectrum are interpreted according to the spectra-structure correlations. Then the spectrum is differentiated to resolve the underlying peaks in each envelope band. Finally, two-dimensional correlation spectroscopy is used to enhance the spectral resolution further. For a large number of spectra, "tri-step decomposition" can resolve the spectra by multivariate methods to obtain the structural and semi-quantitative information about the chemical components. Principal component analysis is used first to explore the existing signal types without any prior knowledge. Then the spectra are decomposed by self-modeling curve resolution methods to estimate the spectra and contents of significant chemical components. At last, targeted methods such as partial least squares target can explore the content profiles of specific components sensitively. As an example, the macroscopic and microscopic distribution of eugenol and calcium oxalate in the bud of clove is studied.

  8. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surfacemore » by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.« less

  9. ROTATIONAL DYNAMICS AND STAR FORMATION IN THE NEARBY DWARF GALAXY NGC 5238

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, John M.; McNichols, Andrew T.; Teich, Yaron G., E-mail: jcannon@macalester.edu, E-mail: amcnicho@nrao.edu, E-mail: yateich@gmail.com

    2016-12-01

    We present new H i spectral-line images of the nearby low-mass galaxy NGC 5238, acquired with the Karl G. Jansky Very Large Array. Located at a distance of 4.51 ± 0.04 Mpc, NGC 5238 is an actively star-forming galaxy with widespread H α and ultraviolet (UV) continuum emission. The source is included in many ongoing and recent nearby galaxy surveys, but until this work the spatially resolved qualities of its neutral interstellar medium have remained unstudied. Our H i images resolve the disk on physical scales of ∼400 pc, allowing us to undertake a detailed comparative study of the gaseous and stellar components. Themore » H i disk is asymmetric in the outer regions, and the areas of high H i mass surface density display a crescent-shaped morphology that is slightly offset from the center of the stellar populations. The H i column density exceeds 10{sup 21} cm{sup −2} in much of the disk. We quantify the degree of co-spatiality of dense H i gas and sites of ongoing star formation as traced by far-UV and H α emission. The neutral gas kinematics are complex; using a spatially resolved position–velocity analysis, we infer a rotational velocity of 31 ± 5 km s{sup −1}. We place NGC 5238 on the baryonic Tully–Fisher relation and contextualize the system among other low-mass galaxies.« less

  10. Spatially resolved and time-resolved imaging of transport of indirect excitons in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.

    2017-06-01

    We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.

  11. Spatial heterodyne interferometry of VY Canis Major's, alpha Orionis, alpha Scorpii, and R leonis at 11 microns

    NASA Technical Reports Server (NTRS)

    Sutton, E. C.; Storey, J. W. V.; Betz, A. L.; Townes, C. H.; Spears, D. L.

    1977-01-01

    Using the technique of heterodyne interferometry, measurements were made of the spatial distribution of 11 micron radiation from four late type stars. The circumstellar shells surrounding VY Canis Majoris, alpha Orionis, and alpha Scorpii were resolved, whereas that of R Leonis was only partially resolved at a fringe spacing of 0.4 sec.

  12. HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke A.; Teuling, Adriaan J.; Torfs, Paul J. J. F.; Uijlenhoet, Remko; Mizukami, Naoki; Clark, Martyn P.

    2016-03-01

    A meta-analysis on 192 peer-reviewed articles reporting on applications of the variable infiltration capacity (VIC) model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution. We identified six time concepts in hydrological models, which all impact the model results and conclusions. Process-based model evaluation is particularly relevant when models are applied at hyper-resolution, where stakeholders expect credible results both at a high spatial and temporal resolution.

  13. HESS Opinions: The need for process-based evaluation of large-domain hyper-resolution models

    NASA Astrophysics Data System (ADS)

    Melsen, L. A.; Teuling, A. J.; Torfs, P. J. J. F.; Uijlenhoet, R.; Mizukami, N.; Clark, M. P.

    2015-12-01

    A meta-analysis on 192 peer-reviewed articles reporting applications of the Variable Infiltration Capacity (VIC) model in a distributed way reveals that the spatial resolution at which the model is applied has increased over the years, while the calibration and validation time interval has remained unchanged. We argue that the calibration and validation time interval should keep pace with the increase in spatial resolution in order to resolve the processes that are relevant at the applied spatial resolution. We identified six time concepts in hydrological models, which all impact the model results and conclusions. Process-based model evaluation is particularly relevant when models are applied at hyper-resolution, where stakeholders expect credible results both at a high spatial and temporal resolution.

  14. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  15. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.

    PubMed

    Raben, Jaime S; Hariharan, Prasanna; Robinson, Ronald; Malinauskas, Richard; Vlachos, Pavlos P

    2016-03-01

    We present advanced particle image velocimetry (PIV) processing, post-processing, and uncertainty estimation techniques to support the validation of computational fluid dynamics analyses of medical devices. This work is an extension of a previous FDA-sponsored multi-laboratory study, which used a medical device mimicking geometry referred to as the FDA benchmark nozzle model. Experimental measurements were performed using time-resolved PIV at five overlapping regions of the model for Reynolds numbers in the nozzle throat of 500, 2000, 5000, and 8000. Images included a twofold increase in spatial resolution in comparison to the previous study. Data was processed using ensemble correlation, dynamic range enhancement, and phase correlations to increase signal-to-noise ratios and measurement accuracy, and to resolve flow regions with large velocity ranges and gradients, which is typical of many blood-contacting medical devices. Parameters relevant to device safety, including shear stress at the wall and in bulk flow, were computed using radial basis functions. In addition, in-field spatially resolved pressure distributions, Reynolds stresses, and energy dissipation rates were computed from PIV measurements. Velocity measurement uncertainty was estimated directly from the PIV correlation plane, and uncertainty analysis for wall shear stress at each measurement location was performed using a Monte Carlo model. Local velocity uncertainty varied greatly and depended largely on local conditions such as particle seeding, velocity gradients, and particle displacements. Uncertainty in low velocity regions in the sudden expansion section of the nozzle was greatly reduced by over an order of magnitude when dynamic range enhancement was applied. Wall shear stress uncertainty was dominated by uncertainty contributions from velocity estimations, which were shown to account for 90-99% of the total uncertainty. This study provides advancements in the PIV processing methodologies over the previous work through increased PIV image resolution, use of robust image processing algorithms for near-wall velocity measurements and wall shear stress calculations, and uncertainty analyses for both velocity and wall shear stress measurements. The velocity and shear stress analysis, with spatially distributed uncertainty estimates, highlights the challenges of flow quantification in medical devices and provides potential methods to overcome such challenges.

  16. Spatially resolved scatter measurement of diffractive micromirror arrays.

    PubMed

    Sicker, Cornelius; Heber, Jörg; Berndt, Dirk

    2016-06-01

    Spatial light modulators (SLMs) support flexible system concepts in modern optics and especially phase-only SLMs such as micromirror arrays (MMAs) appear attractive for many applications. In order to achieve a precise phase modulation, which is crucial for optical performance, careful characterization and calibration of SLM devices is required. We examine an intensity-based measurement concept, which promises distinct advantages by means of a spatially resolved scatter measurement that is combined with the MMA's diffractive principle. Measurements yield quantitative results, which are consistent with measurements of micromirror roughness components, by white-light interferometry. They reveal relative scatter as low as 10-4, which corresponds to contrast ratios up to 10,000. The potential of the technique to resolve phase changes in the subnanometer range is experimentally demonstrated.

  17. Non-normality and classification of amplification mechanisms in stability and resolvent analysis

    NASA Astrophysics Data System (ADS)

    Symon, Sean; Rosenberg, Kevin; Dawson, Scott T. M.; McKeon, Beverley J.

    2018-05-01

    Eigenspectra and pseudospectra of the mean-linearized Navier-Stokes operator are used to characterize amplification mechanisms in laminar and turbulent flows in which linear mechanisms are important. Success of mean flow (linear) stability analysis for a particular frequency is shown to depend on whether two scalar measures of non-normality agree: (1) the product between the resolvent norm and the distance from the imaginary axis to the closest eigenvalue and (2) the inverse of the inner product between the most amplified resolvent forcing and response modes. If they agree, the resolvent operator can be rewritten in its dyadic representation to reveal that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes at that frequency. Hence the real parts of the eigenvalues are important since they are responsible for resonant amplification and the resolvent operator is low rank when the eigenvalues are sufficiently separated in the spectrum. If the amplification is pseudoresonant, then resolvent analysis is more suitable to understand the origin of observed flow structures. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with resonant mechanisms, hence the success of both classical and mean stability analysis with respect to predicting the critical Reynolds number and global frequency of the saturated flow. Both scalar measures of non-normality agree for the base and mean flows, and the region where the forcing and response modes overlap scales with the length of the recirculation bubble. In the case of turbulent channel flow, structures result from both resonant and pseudoresonant mechanisms, suggesting that both are necessary elements to sustain turbulence. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how pseudoresonance is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures. Some implications for flow control are discussed.

  18. Super-resolution binding activated localization microscopy through reversible change of DNA conformation.

    PubMed

    Szczurek, Aleksander; Birk, Udo; Knecht, Hans; Dobrucki, Jurek; Mai, Sabine; Cremer, Christoph

    2018-01-01

    Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine.

  19. Excitation-resolved cone-beam x-ray luminescence tomography.

    PubMed

    Liu, Xin; Liao, Qimei; Wang, Hongkai; Yan, Zhuangzhi

    2015-07-01

    Cone-beam x-ray luminescence computed tomography (CB-XLCT), as an emerging imaging technique, plays an important role in in vivo small animal imaging studies. However, CB-XLCT suffers from low-spatial resolution due to the ill-posed nature of reconstruction. We improve the imaging performance of CB-XLCT by using a multiband excitation-resolved imaging scheme combined with principal component analysis. To evaluate the performance of the proposed method, the physical phantom experiment is performed with a custom-made XLCT/XCT imaging system. The experimental results validate the feasibility of the method, where two adjacent nanophosphors (with an edge-to-edge distance of 2.4 mm) can be located.

  20. Relaxation of water infiltration pulses observed with GPR

    NASA Astrophysics Data System (ADS)

    Hantschel, Lisa; Hemmer, Benedikt; Roth, Kurt

    2017-04-01

    We observe the relaxation of infiltration pulses in sandy soil with ground-penetrating radar (GPR). The spatial distribution of water in the infiltration area and its temporal evolution is represented by ordinary reflections at layer boundaries as well as multiple reflections at the wetting front and the pulse boundaries. The structure of these highly resolved signals are reproduced by numerical simulations of electromagnetic wave propagation. The temporally highly resolved electrical fields reveal the origin also of complex reflection signals. The usage of these more complex signals might allow a more detailed representation of the infiltration process by direct analysis as well as in combination with inversion techniques.

  1. Super-resolution binding activated localization microscopy through reversible change of DNA conformation

    PubMed Central

    Knecht, Hans; Dobrucki, Jurek; Mai, Sabine

    2018-01-01

    ABSTRACT Methods of super-resolving light microscopy (SRM) have found an exponentially growing range of applications in cell biology, including nuclear structure analyses. Recent developments have proven that Single Molecule Localization Microscopy (SMLM), a type of SRM, is particularly useful for enhanced spatial analysis of the cell nucleus due to its highest resolving capability combined with very specific fluorescent labeling. In this commentary we offer a brief review of the latest methodological development in the field of SMLM of chromatin designated DNA Structure Fluctuation Assisted Binding Activated Localization Microscopy (abbreviated as fBALM) as well as its potential future applications in biology and medicine. PMID:29297245

  2. Simulating air quality in the Netherlands with WRF-Chem 3.8.1 at high resolution

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Kuenen, Jeroen; Denier van der Gon, Hugo; Vrekoussis, Mihalis

    2017-04-01

    Air pollution is the single most important environmental hazard for public health. Especially nitrogen dioxide (NO(2)) plays a key role in air quality research, both due to its immediate importance for the production of tropospheric ozone and acid rain, and as a general indicator of fossil fuel burning. To improve the quality and reproducibility of measurements of NO(2) vertical distribution from MAX-DOAS instruments, the CINDI-2 campaign was held in Cabauw (NL) in September 2016, featuring instruments from many of the leading atmospheric research institutions in the world. The measurement site in Cabauw is located in a rather rural region, surrounded by several major pollution centers (Utrecht, Rotterdam, Amsterdam). Since the instruments measure in several azimuthal directions, the measurements are able to provide information about the high spatial and temporal variability in pollutant concentrations, caused by both the spatial heterogeneity of emissions and meteorological conditions. When using air quality models in the analysis of the measured data to identify pollution sources, this mandates high spatial resolution in order to resolve the expected fine spatial structure in NO(2) concentrations. In spite of constant advances in computing power, this remains a challenge, mostly due to the uncertainties and large spatial heterogeneity of emissions and the need to parameterize small-scale processes. In this study, we use the most recent version 3.8.1 of the Weather Research and Forecasting Model with Chemistry (WRF-Chem) to simulate air pollutant concentrations over the Netherlands, to facilitate the analysis of the CINDI-2 NO(2}) measurements. The model setup contains three nested domains with horizontal resolutions of 15, 3, and 1 km. Anthropogenic emissions are taken from the TNO-MACC III inventory and, where available, from the Dutch Pollutant Release and Transfer Register (Emissieregistratie), at a spatial resolution of 7 and 1 km, respectively. We use the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) with the MOSAIC aerosol module. The high spatial resolution of model and emissions will allow us to resolve the strong spatial gradients in the NO(2) concentrations measured during the CINDI-2 campaign, allowing for an unprecedented level of detail in the analysis of individual pollution sources.

  3. The History of the M31 Disk from Resolved Stellar Populations as Seen by PHAT

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Dalcanton, J. J.; Dolphin, A. E.; Weisz, D. R.; Williams, B. F.; PHAT Collaboration

    2014-03-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that is mapping the resolved stellar populations of ˜1/3 of M31 from the UV through the near-IR. These data provide color and luminosity information for more than 150 million stars in the M31 disk. We use stellar evolution models to fit the luminous main sequence to derive spatially-resolved recent star formation histories (SFHs) over large areas of M31 with 50-100 pc resolution. These include individual star-forming regions as well as quiescent portions of the disk. We use the gridded SFHs to create movies of star formation activity to study the evolution of individual star-forming events across the disk. Outside of the star-forming regions, we use our resolved stellar photometry to derive the full SFHs of larger regions. These allow us to probe spatial and temporal trends in age and metallicity across a large radial baseline, providing constraints on the global formation and evolution of the disk over a Hubble time. M31 is the only large disk galaxy that is close enough to obtain the photometry necessary for this type of spatially-resolved SFH mapping.

  4. Spatially: resolved heterogeneous dynamics in a strong colloidal gel

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Alaimo, Matteo David; Secchi, Eleonora; Piazza, Roberto

    2015-05-01

    We re-examine the classical problem of irreversible colloid aggregation, showing that the application of Digital Fourier Imaging (DFI), a class of optical correlation methods that combine the power of light scattering and imaging, allows one to pick out novel useful evidence concerning the restructuring processes taking place in a strong colloidal gel. In particular, the spatially-resolved displacement fields provided by DFI strongly suggest that the temporally-intermittent local rearrangements taking place in the course of gel ageing are characterized by very long-ranged spatial correlations.

  5. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE PAGES

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; ...

    2016-07-08

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  6. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy.

    PubMed

    Tremsin, Anton S; Gao, Yan; Dial, Laura C; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  7. Microplasma array patterning of reactive oxygen and nitrogen species onto polystyrene

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Dedrick, James; Oh, Jun-Seok; Bradley, James W.; Boswell, Roderick W.; Charles, Christine; Short, Robert D.; Al-Bataineh, Sameer A.

    2017-02-01

    We investigate an approach for the patterning of reactive oxygen and nitrogen species (RONS) onto polystyrene using atmospheric-pressure microplasma arrays. The spectrally integrated and time-resolved optical emission from the array is characterised with respect to the applied voltage, applied-voltage frequency and pressure; and the array is used to achieve spatially resolved modification of polystyrene at three pressures: 500 Torr, 760 Torr and 1000 Torr. As determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS), regions over which surface modification occurs are clearly restricted to areas that are exposed to individual microplasma cavities. Analysis of the negative-ion ToF-SIMS mass spectra from the centre of the modified microspots shows that the level of oxidation is dependent on the operating pressure, and closely correlated with the spatial distribution of the optical emission. The functional groups that are generated by the microplasma array on the polystyrene surface are shown to readily participate in an oxidative reaction in phosphate buffered saline solution (pH 7.4). Patterns of oxidised and chemically reactive functionalities could potentially be applied to the future development of biomaterial surfaces, where spatial control over biomolecule or cell function is needed.

  8. [Non-invasive, spatially resolved determination of tissue properties of the crystalline lens with regard to rheology, refractive index, density and protein concentration by using Brillouin spectroscopy].

    PubMed

    Reiss, S; Stachs, O; Guthoff, R; Stolz, H

    2011-12-01

    The confocal Brillouin spectroscopy is an innovative measurement method that allows the non-invasive determination of the rheological properties of materials. Its application in ophthalmology can offer the possibility to determine in-vivo the deformation properties of sections of transparent biological tissue such as the cornea or eye lens with spatial resolution. This seems to be a promising approach concerning current presbyopia research. Due to the spatially resolved detection of the viscoelastic lens properties, a better understanding of the natural aging process of the lens and the influences of different lens opacities on the stiffness is expected. From the obtained spectral data the relative protein levels, the relative refractive index profile and the relative density profile within the lens tissue can be derived in addition. A measurement set-up for confocal Brillouin microscopy based on spectral analysis of spontaneous Brillouin scattering signals by using a high-resolution dispersive device is presented. First in-vitro test results on animal and human lenses are presented and evaluated concerning their rheological significance. These data are compared with known research results. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with 100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  10. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  11. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    PubMed Central

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Abstract Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components. PMID:27877885

  12. Beyond Conceptual Knowledge: The Impact of Children’s Theory-of-Mind on Dyadic Spatial Tasks

    PubMed Central

    Viana, Karine M. P.; Zambrana, Imac M.; Karevold, Evalill B.; Pons, Francisco

    2016-01-01

    Recent studies show that Theory of Mind (ToM) has implications for children’s social competences and psychological well-being. Nevertheless, although it is well documented that children overall take advantage when they have to resolve cognitive problems together with a partner, whether individual difference in ToM is one of the mechanisms that could explain cognitive performances produced in social interaction has received little attention. This study examines to what extent ToM explains children’s spatial performances in a dyadic situation. The sample includes 66 boys and girls between the ages of 5–9 years, who were tested for their ToM and for their competence to resolve a Spatial task involving mental rotation and spatial perspective taking, first individually and then in a dyadic condition. Results showed, in accordance with previous research, that children performed better on the Spatial task when they resolved it with a partner. Specifically, children’s ToM was a better predictor of their spatial performances in the dyadic condition than their age, gender, and spatial performances in the individual setting. The findings are discussed in terms of the relation between having a conceptual understanding of the mind and the practical implications of this knowledge for cognitive performances in social interaction regarding mental rotation and spatial perspective taking. PMID:27812344

  13. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging.

    PubMed

    Zhang, Guojin; Senak, Laurence; Moore, David J

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  14. Resolving runaway electron distributions in space, time, and energy

    NASA Astrophysics Data System (ADS)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  15. Spatially resolved NMR spectra for the Swiss cheese model in heavy fermion PuCoGa5 superconductor

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Balatsky, A. V.; Graf, M. J.

    2011-03-01

    Spatially resolved NMR experiments, which probe the local electronic excitations, play a vital role for studying the pairing symmetry of unconventional superconductors. Here we calculate the spatial modulation of the NMR spin-lattice relaxation rate (1/T1) for the Swiss cheese model as a function of impurity concentration in PuCoGa5 superconductor. The local suppression of the superconducting order parameter due to impurities is related to the number of holes in the Swiss cheese model. Our results indicate that Friedel-like oscillations,as seen in the local-density of states near an impurity, are also present in the behavior of 1/T1 as one moves away from the impurity site. We demonstrate that the gap nodes, which are filled by disorder, can be probed by NMR through the local information encoded in the spectra. The advantage of spatially resolved NMR compared to STM measurements is that the former probe is not sensitive to surface states. Work is supported by US DOE.

  16. Characterization of spatially resolved high resolution x-ray spectrometers for HEDP and light-source experiments

    NASA Astrophysics Data System (ADS)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Pablant, N.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-10-01

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for measurement of spatial profiles of Doppler ion temperature and plasma flow velocity, as well as electron temperature. Laboratory measurements demonstrate a resolving power, E/ ΔE of 10,000 and spatial resolution better than 10 μm. Good performance is obtained for Bragg angles ranging from 23 to 63 degrees. Initial tests of the instrument on HEDP plasmas are being performed with a goal of developing spatially resolved ion and electron temperature diagnostics. This work was performed under the auspices of the US DOE by PPPL under Contract DE-AC02-09CH11466 and by LLNL under Contract DE-AC52-07NA27344.

  17. Development of the Vista Methane Emissions Inventory for Southern California: A GIS-Based Approach for Mapping Methane Emissions

    NASA Astrophysics Data System (ADS)

    Carranza, V.; Frausto-Vicencio, I.; Rafiq, T.; Verhulst, K. R.; Hopkins, F. M.; Rao, P.; Duren, R. M.; Miller, C. E.

    2016-12-01

    Atmospheric methane (CH4) is the second most prevalent anthropogenic greenhouse gas. Improved estimates of CH4 emissions from cities is essential for carbon cycle science and climate mitigation efforts. Development of spatially-resolved carbon emissions data sets may offer significant advances in understanding and managing carbon emissions from cities. Urban CH4 emissions in particular require spatially resolved emission maps to help resolve uncertainties in the CH4 budget. This study presents a Geographic Information System (GIS)-based approach to mapping CH4 emissions using locations of infrastructure known to handle and emit methane. We constrain the spatial distribution of sources to the facility level for the major CH4 emitting sources in the South Coast Air Basin. GIS spatial modeling was combined with publicly available datasets to determine the distribution of potential CH4 sources. The datasets were processed and validated to ensure accuracy in the location of individual sources. This information was then used to develop the Vista emissions prior, which is a one-year long, spatially-resolved CH4 emissions estimate. Methane emissions were calculated and spatially allocated to produce 1 km x 1 km gridded CH4 emission map spanning the Los Angeles Basin. In future work, the Vista CH4 emissions prior will be compared with existing, coarser-resolution emissions estimates and will be evaluated in inverse modeling studies using atmospheric observations. The Vista CH4 emissions inventory presents the first detailed spatial maps of CH4 sources and emissions estimates in the Los Angeles Basin and is a critical step towards sectoral attribution of CH4 emissions at local to regional scales.

  18. Spatial sampling considerations of the CERES (Clouds and Earth Radiant Energy System) instrument

    NASA Astrophysics Data System (ADS)

    Smith, G. L.; Manalo-Smith, Natividdad; Priestley, Kory

    2014-10-01

    The CERES (Clouds and Earth Radiant Energy System) instrument is a scanning radiometer with three channels for measuring Earth radiation budget. At present CERES models are operating aboard the Terra, Aqua and Suomi/NPP spacecraft and flights of CERES instruments are planned for the JPSS-1 spacecraft and its successors. CERES scans from one limb of the Earth to the other and back. The footprint size grows with distance from nadir simply due to geometry so that the size of the smallest features which can be resolved from the data increases and spatial sampling errors increase with nadir angle. This paper presents an analysis of the effect of nadir angle on spatial sampling errors of the CERES instrument. The analysis performed in the Fourier domain. Spatial sampling errors are created by smoothing of features which are the size of the footprint and smaller, or blurring, and inadequate sampling, that causes aliasing errors. These spatial sampling errors are computed in terms of the system transfer function, which is the Fourier transform of the point response function, the spacing of data points and the spatial spectrum of the radiance field.

  19. Chandra/ACIS Spectra of the 30 Doradus Star Forming Region

    NASA Astrophysics Data System (ADS)

    Townsley, L.; Broos, P.; Feigelson, E.; Burrows, D.; Chu, Y.-H.; Garmire, G.; Griffiths, R.; Maeda, Y.; Tsuboi, Y.

    2000-12-01

    We present the first high-spatial-resolution X-ray spectra of constituents of the 30 Doradus star-forming region in the Large Magellanic Cloud, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. Our continuing efforts to remove the spectral effects of CCD charge transfer inefficiency (CTI) due to radiation damage are described. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level by ACIS, allowing spectral analysis of several constituents. Other Wolf-Rayet stars and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the plerion SNR recently shown by X-ray observations to contain a 16-msec pulsar (Marshall et al., ApJ 499, L179). The spectrally soft superbubble structures seen by ROSAT are visible in the Chandra image; a composite spectrum, improved with CTI correction, is presented. Support for this effort was provided by NASA contract NAS8-38252 to Gordon Garmire, the ACIS Principal Investigator.

  20. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells

    DOE PAGES

    Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.; ...

    2018-01-01

    Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less

  1. Characterization of high explosive particles using cluster secondary ion mass spectrometry.

    PubMed

    Gillen, Greg; Mahoney, Christine; Wight, Scott; Lareau, Richard

    2006-01-01

    The use of secondary ion mass spectrometry (SIMS) for the detection and spatially resolved analysis of individual high explosive particles is described. A C(8) (-) carbon cluster primary ion beam was used in a commercial SIMS instrument to analyze samples of high explosives dispersed as particles on silicon substrates. In comparison with monatomic primary ion bombardment, the carbon cluster primary ion beam was found to greatly enhance characteristic secondary ion signals from the explosive compounds while causing minimal beam-induced degradation. The resistance of these compounds to degradation under ion bombardment allows explosive particles to be analyzed under high primary ion dose bombardment (dynamic SIMS) conditions, facilitating the rapid acquisition of spatially resolved molecular information. The use of cluster SIMS combined with computer control of the sample stage position allows for the automated identification and counting of explosive particle distributions on silicon surfaces. This will be useful for characterizing the efficiency of transfer of particulates in trace explosive detection portal collectors and/or swipes utilized for ion mobility spectrometry applications.

  2. Fiber optic sensing technology for detecting gas hydrate formation and decomposition.

    PubMed

    Rawn, C J; Leeman, J R; Ulrich, S M; Alford, J E; Phelps, T J; Madden, M E

    2011-02-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH(4)-H(2)O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  3. A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.

    Hybrid perovskites represent a potential paradigm shift for the creation of low-cost solar cells. Current power conversion efficiencies (PCEs) exceed 22%. However, despite this, record PCEs are still far from their theoretical Shockley–Queisser limit of 31%. To increase these PCE values, there is a pressing need to understand, quantify and microscopically model charge recombination processes in full working devices. Here, we present a complete microscopic account of charge recombination processes in high efficiency (18–19% PCE) hybrid perovskite (mixed cation and methylammonium lead iodide) solar cells. We employ diffraction-limited optical measurements along with relevant kinetic modeling to establish, for the firstmore » time, local photoluminescence quantum yields, trap densities, trapping efficiencies, charge extraction efficiencies, quasi-Fermi-level splitting, and effective PCE estimates. Correlations between these spatially resolved parameters, in turn, allow us to conclude that intrinsic electron traps in the perovskite active layers limit the performance of these state-of-the-art hybrid perovskite solar cells.« less

  4. Fiber optic sensing technology for detecting gas hydrate formation and decomposition

    NASA Astrophysics Data System (ADS)

    Rawn, C. J.; Leeman, J. R.; Ulrich, S. M.; Alford, J. E.; Phelps, T. J.; Madden, M. E.

    2011-02-01

    A fiber optic-based distributed sensing system (DSS) has been integrated with a large volume (72 l) pressure vessel providing high spatial resolution, time-resolved, 3D measurement of hybrid temperature-strain (TS) values within experimental sediment-gas hydrate systems. Areas of gas hydrate formation (exothermic) and decomposition (endothermic) can be characterized through this proxy by time series analysis of discrete data points collected along the length of optical fibers placed within a sediment system. Data are visualized as an animation of TS values along the length of each fiber over time. Experiments conducted in the Seafloor Process Simulator at Oak Ridge National Laboratory clearly indicate hydrate formation and dissociation events at expected pressure-temperature conditions given the thermodynamics of the CH4-H2O system. The high spatial resolution achieved with fiber optic technology makes the DSS a useful tool for visualizing time-resolved formation and dissociation of gas hydrates in large-scale sediment experiments.

  5. Experimental measurement of spatially resolved electron density in a filament of a pulsed positive streamer discharge in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiao Qiong; Niu, Zhi Wen; Ren, Chun-Sheng

    2015-06-29

    By combining a high-speed frame camera with a monochromator, the spatially resolved optical emission spectrum of hydrogen α line in a single filament of a pulsed positive streamer discharge in water has been experimentally measured. The spatially resolved electron densities in a single filament of a pulsed positive streamer discharge in water with a conductivity of 200 μS/cm were investigated. During the experiment, the average energy per pulse of discharge was 90.6 ± 13.6 mJ. The results show that the electron density in the streamer filament is 10{sup 17–18}/cm{sup 3}, and present a decreasing tendency along the axial direction of the streamer filamentmore » with increasing distance from the tip of the anode.« less

  6. Geostatistical Analysis of Mesoscale Spatial Variability and Error in SeaWiFS and MODIS/Aqua Global Ocean Color Data

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.

    2018-01-01

    Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.

  7. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Pluto: Distribution of ices and coloring agents from New Horizons LEISA observations

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Grundy, William M.; Stern, S. Alan; Olkin, Catherine B.; Cook, Jason C.; Dalle Ore, Cristina M.; Binzel, Richard P.; Earle, Alissa M.; Ennico, Kimberly; Jennings, Donald E.; Howett, Carly J. A.; Linscott, Ivan R.; Lunsford, Allen W.; Parker, Alex H.; Parker, Joel W.; Protopapa, Silvia; Reuter, Dennis C.; Singer, Kelsi N.; Spencer, John R.; Tsang, Constantine C. C.; Verbiscer, Anne J.; Weaver, Harold A.; Young, Leslie A.

    2015-11-01

    Pluto was observed at high spatial resolution (maximum ~3 km/px) by the New Horizons LEISA imaging spectrometer. LEISA is a component of the Ralph instrument (Reuter, D.C., Stern, S.A., Scherrer, J., et al. 2008, Space Sci. Rev. 140, 129) and affords a spectral resolving power of 240 in the wavelength range 1.25-2.5 µm, and 560 in the range 2.1-2.25 µm. Spatially resolved spectra with LEISA are used to map the distributions of the known ices on Pluto (N2, CH4, CO) and to search for other surface components. The spatial distribution of volatile ices is compared with the distribution of the coloring agent(s) on Pluto's surface. The correlation of ice abundance and the degree of color (ranging from yellow to orange to dark red) is consistent with the presence of tholins, which are refractory organic solids of complex structure and high molecular weight, with colors consistent with those observed on Pluto. Tholins are readily synthesized in the laboratory by energetic processing of mixtures of the ices (N2, CH4, CO) known on Pluto's surface. We present results returned from the spacecraft to date obtained from the analysis of the high spatial resolution dataset obtained near the time of closest approach to the planet. Supported by NASA’s New Horizons project.

  9. Histomolecular interpretation of pleomorphic adenomas of the salivary gland by matrix-assisted laser desorption ionization imaging and spatial segmentation.

    PubMed

    Ernst, Günther; Guntinas-Lichius, Orlando; Hauberg-Lotte, Lena; Trede, Dennis; Becker, Michael; Alexandrov, Theodore; von Eggeling, Ferdinand

    2015-07-01

    Despite efforts in localization of key proteins using immunohistochemistry, the complex proteomic composition of pleomorphic adenomas has not yet been characterized. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI imaging) allows label-free and spatially resolved detection of hundreds of proteins directly from tissue sections and of histomorphological regions by finding colocalized molecular signals. Spatial segmentation of MALDI imaging data is an algorithmic method for finding regions of similar proteomic composition as functionally similar regions. We investigated 2 pleomorphic adenomas by applying spatial segmentation to the MALDI imaging data of tissue sections. The spatial segmentation subdivided the tissue in a good accordance with the tissue histology. Numerous molecular signals colocalized with histologically defined tissue regions were found. Our study highlights the cellular transdifferentiation within the pleomorphic adenoma. It could be shown that spatial segmentation of MALDI imaging data is a promising approach in the emerging field of digital histological analysis and characterization of tumors. © 2014 Wiley Periodicals, Inc.

  10. Analysis of students’ spatial thinking in geometry: 3D object into 2D representation

    NASA Astrophysics Data System (ADS)

    Fiantika, F. R.; Maknun, C. L.; Budayasa, I. K.; Lukito, A.

    2018-05-01

    The aim of this study is to find out the spatial thinking process of students in transforming 3-dimensional (3D) object to 2-dimensional (2D) representation. Spatial thinking is helpful in using maps, planning routes, designing floor plans, and creating art. The student can engage geometric ideas by using concrete models and drawing. Spatial thinking in this study is identified through geometrical problems of transforming a 3-dimensional object into a 2-dimensional object image. The problem was resolved by the subject and analyzed by reference to predetermined spatial thinking indicators. Two representative subjects of elementary school were chosen based on mathematical ability and visual learning style. Explorative description through qualitative approach was used in this study. The result of this study are: 1) there are different representations of spatial thinking between a boy and a girl object, 2) the subjects has their own way to invent the fastest way to draw cube net.

  11. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Berkel, Gary J; Kertesz, Vilmos

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI modemore » was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.« less

  12. The SELGIFS data challenge: generating synthetic observations of CALIFA galaxies from hydrodynamical simulations

    NASA Astrophysics Data System (ADS)

    Guidi, G.; Casado, J.; Ascasibar, Y.; García-Benito, R.; Galbany, L.; Sánchez-Blázquez, P.; Sánchez, S. F.; Rosales-Ortega, F. F.; Scannapieco, C.

    2018-06-01

    In this work we present a set of synthetic observations that mimic the properties of the Integral Field Spectroscopy (IFS) survey CALIFA, generated using radiative transfer techniques applied to hydrodynamical simulations of galaxies in a cosmological context. The simulated spatially-resolved spectra include stellar and nebular emission, kinematic broadening of the lines, and dust extinction and scattering. The results of the radiative transfer simulations have been post-processed to reproduce the main properties of the CALIFA V500 and V1200 observational setups. The data has been further formatted to mimic the CALIFA survey in terms of field of view size, spectral range and sampling. We have included the effect of the spatial and spectral Point Spread Functions affecting CALIFA observations, and added detector noise after characterizing it on a sample of 367 galaxies. The simulated datacubes are suited to be analysed by the same algorithms used on real IFS data. In order to provide a benchmark to compare the results obtained applying IFS observational techniques to our synthetic datacubes, and test the calibration and accuracy of the analysis tools, we have computed the spatially-resolved properties of the simulations. Hence, we provide maps derived directly from the hydrodynamical snapshots or the noiseless spectra, in a way that is consistent with the values recovered by the observational analysis algorithms. Both the synthetic observations and the product datacubes are public and can be found in the collaboration website http://astro.ft.uam.es/selgifs/data_challenge/.

  13. Development of Imaging Fourier-Transform Spectroscopy for the Characterization of Turbulent Jet Flames

    DTIC Science & Technology

    2014-09-18

    Spatially resolved infrared spectra of jet exhaust from an F109 turbofan engine...Appendix E contains a conference proceeding in its entirety [32]. This proceeding summarizes analysis of a turbofan engine exhaust via the Hyper-Cam and...demonstrated in a separate experiment. Recently, exhaust from an F109 turbofan engine was imaged with the IFTS[32]. Examination of the time-averaged

  14. Distributed measurement of high electric current by means of polarimetric optical fiber sensor.

    PubMed

    Palmieri, Luca; Sarchi, Davide; Galtarossa, Andrea

    2015-05-04

    A novel distributed optical fiber sensor for spatially resolved monitoring of high direct electric current is proposed and analyzed. The sensor exploits Faraday rotation and is based on the polarization analysis of the Rayleigh backscattered light. Preliminary laboratory tests, performed on a section of electric cable for currents up to 2.5 kA, have confirmed the viability of the method.

  15. Polarization-resolved second-harmonic generation microscopy as a method to visualize protein-crystal domains

    PubMed Central

    DeWalt, Emma L.; Begue, Victoria J.; Ronau, Judith A.; Sullivan, Shane Z.; Das, Chittaranjan; Simpson, Garth J.

    2013-01-01

    Polarization-resolved second-harmonic generation (PR-SHG) microscopy is described and applied to identify the presence of multiple crystallographic domains within protein-crystal conglomerates, which was confirmed by synchrotron X-ray diffraction. Principal component analysis (PCA) of PR-SHG images resulted in principal component 2 (PC2) images with areas of contrasting negative and positive values for conglomerated crystals and PC2 images exhibiting uniformly positive or uniformly negative values for single crystals. Qualitative assessment of PC2 images allowed the identification of domains of different internal ordering within protein-crystal samples as well as differentiation between multi-domain conglomerated crystals and single crystals. PR-SHG assessments of crystalline domains were in good agreement with spatially resolved synchrotron X-ray diffraction measurements. These results have implications for improving the productive throughput of protein structure determination through early identification of multi-domain crystals. PMID:23275165

  16. Comparison of two spatially-resolved fossil fuel CO2 emissions inventories at the urban scale in four US cities

    NASA Astrophysics Data System (ADS)

    Liang, J.; Gurney, K. R.; O'Keeffe, D.; Patarasuk, R.; Hutchins, M.; Rao, P.

    2017-12-01

    Spatially-resolved fossil fuel CO2 (FFCO2) emissions are used not only in complex atmospheric modeling systems as prior scenarios to simulate concentrations of CO2 in the atmosphere, but to improve understanding of relationships with socioeconomic factors in support of sustainability policymaking. We present a comparison of ODIAC, a top-down global gridded FFCO2 emissions dataset, and Hesita, a bottom-up FFCO2 emissions dataset, in four US cities, including Los Angles, Indianapolis, Salt Lake City and Baltimore City. ODIAC was developed by downscaling national total emissions to 1km-by-1km grid cells using satellite nightlight imagery as proxy. Hesita was built from the ground up by allocating sector-specific county-level emissions to urban-level spatial surrogates including facility locations, road maps, building footprints/parcels, railroad maps and shipping lanes. The differences in methodology and data sources could lead to large discrepancies in FFCO2 estimates at the urban scale, and these discrepancies need to be taken into account in conducting atmospheric modeling or socioeconomic analysis. This comparison work is aimed at quantifying the statistical and spatial difference between the two FFCO2 inventories. An analysis of the difference in total emissions, spatial distribution and statistical distribution resulted in the following findings: (1) ODIAC agrees well with Hestia in total FFCO2 emissions estimates across the four cities with a difference from 3%-20%; (2) Small-scale areal and linear spatial features such as roads and buildings are either entirely missing or not very well represented in ODIAC, since nightlight imagery might not be able to capture these information. This might further lead to underestimated on-road FFCO2 emissions in ODIAC; (3) The statistical distribution of ODIAC is more concentrated around the mean with much less samples in the lower range. These phenomena could result from the nightlight halo and saturation effects; (4) The grid-cell cumulative emissions of ODIAC appear in good agreement with that of Hestia, implying the two inventories have similar overall spatial structures at the city scale.

  17. High Performance Nuclear Magnetic Resonance Imaging Using Magnetic Resonance Force Microscopy

    DTIC Science & Technology

    2013-12-12

    Micron- Size Ferromagnet . Physical Review Letters, 92(3) 037205 (2004) [22] A. Z. Genack and A. G. Redeld. Theory of nuclear spin diusion in a...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated...perform spatially resolved scanned probe studies of spin dynamics in nanoscale ensembles of few electron spins of varying size . Our research culminated

  18. Spectral refractive index assessment of turbid samples by combining spatial frequency near-infrared spectroscopy with Kramers-Kronig analysis

    NASA Astrophysics Data System (ADS)

    Meitav, Omri; Shaul, Oren; Abookasis, David

    2018-03-01

    A practical algorithm for estimating the wavelength-dependent refractive index (RI) of a turbid sample in the spatial frequency domain with the aid of Kramers-Kronig (KK) relations is presented. In it, phase-shifted sinusoidal patterns (structured illumination) are serially projected at a high spatial frequency onto the sample surface (mouse scalp) at different near-infrared wavelengths while a camera mounted normally to the sample surface captures the reflected diffuse light. In the offline analysis pipeline, recorded images at each wavelength are converted to spatial absorption maps by logarithmic function, and once the absorption coefficient information is obtained, the imaginary part (k) of the complex RI (CRI), based on Maxell's equations, can be calculated. Using the data represented by k, the real part of the CRI (n) is then resolved by KK analysis. The wavelength dependence of n ( λ ) is then fitted separately using four standard dispersion models: Cornu, Cauchy, Conrady, and Sellmeier. In addition, three-dimensional surface-profile distribution of n is provided based on phase profilometry principles and a phase-unwrapping-based phase-derivative-variance algorithm. Experimental results demonstrate the capability of the proposed idea for sample's determination of a biological sample's RI value.

  19. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    PubMed

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  20. Resolving runaway electron distributions in space, time, and energy

    DOE PAGES

    Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.; ...

    2018-05-01

    Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less

  1. Resolving runaway electron distributions in space, time, and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paz-Soldan, Carlos; Cooper, C. M.; Aleynikov, P.

    Areas of agreement and disagreement with present-day models of RE evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially-resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally-resolved measurements find qualitative agreement with modelingmore » on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. As a result, possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.« less

  2. Snapshot hyperspectral fovea vision system (HyperVideo)

    NASA Astrophysics Data System (ADS)

    Kriesel, Jason; Scriven, Gordon; Gat, Nahum; Nagaraj, Sheela; Willson, Paul; Swaminathan, V.

    2012-06-01

    The development and demonstration of a new snapshot hyperspectral sensor is described. The system is a significant extension of the four dimensional imaging spectrometer (4DIS) concept, which resolves all four dimensions of hyperspectral imaging data (2D spatial, spectral, and temporal) in real-time. The new sensor, dubbed "4×4DIS" uses a single fiber optic reformatter that feeds into four separate, miniature visible to near-infrared (VNIR) imaging spectrometers, providing significantly better spatial resolution than previous systems. Full data cubes are captured in each frame period without scanning, i.e., "HyperVideo". The current system operates up to 30 Hz (i.e., 30 cubes/s), has 300 spectral bands from 400 to 1100 nm (~2.4 nm resolution), and a spatial resolution of 44×40 pixels. An additional 1.4 Megapixel video camera provides scene context and effectively sharpens the spatial resolution of the hyperspectral data. Essentially, the 4×4DIS provides a 2D spatially resolved grid of 44×40 = 1760 separate spectral measurements every 33 ms, which is overlaid on the detailed spatial information provided by the context camera. The system can use a wide range of off-the-shelf lenses and can either be operated so that the fields of view match, or in a "spectral fovea" mode, in which the 4×4DIS system uses narrow field of view optics, and is cued by a wider field of view context camera. Unlike other hyperspectral snapshot schemes, which require intensive computations to deconvolve the data (e.g., Computed Tomographic Imaging Spectrometer), the 4×4DIS requires only a linear remapping, enabling real-time display and analysis. The system concept has a range of applications including biomedical imaging, missile defense, infrared counter measure (IRCM) threat characterization, and ground based remote sensing.

  3. Spatially Resolved Chemical Imaging for Biosignature Analysis: Terrestrial and Extraterrestrial Examples

    NASA Astrophysics Data System (ADS)

    Bhartia, R.; Wanger, G.; Orphan, V. J.; Fries, M.; Rowe, A. R.; Nealson, K. H.; Abbey, W. J.; DeFlores, L. P.; Beegle, L. W.

    2014-12-01

    Detection of in situ biosignatures on terrestrial and planetary missions is becoming increasingly more important. Missions that target the Earth's deep biosphere, Mars, moons of Jupiter (including Europa), moons of Saturn (Titan and Enceladus), and small bodies such as asteroids or comets require methods that enable detection of materials for both in-situ analysis that preserve context and as a means to select high priority sample for return to Earth. In situ instrumentation for biosignature detection spans a wide range of analytical and spectroscopic methods that capitalize on amino acid distribution, chirality, lipid composition, isotopic fractionation, or textures that persist in the environment. Many of the existing analytical instruments are bulk analysis methods and while highly sensitive, these require sample acquisition and sample processing. However, by combining with triaging spectroscopic methods, biosignatures can be targeted on a surface and preserve spatial context (including mineralogy, textures, and organic distribution). To provide spatially correlated chemical analysis at multiple spatial scales (meters to microns) we have employed a dual spectroscopic approach that capitalizes on high sensitivity deep UV native fluorescence detection and high specificity deep UV Raman analysis.. Recently selected as a payload on the Mars 2020 mission, SHERLOC incorporates these optical methods for potential biosignatures detection on Mars. We present data from both Earth analogs that operate as our only examples known biosignatures and meteorite samples that provide an example of abiotic organic formation, and demonstrate how provenance effects the spatial distribution and composition of organics.

  4. Influence of excited state spatial distributions on plasma diagnostics: Atmospheric pressure laser-induced He-H2 plasma

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam K.; Hüwel, Lutz

    2012-10-01

    Atmospheric pressure plasmas in helium-hydrogen mixtures with H2 molar concentrations ranging from 0.13% to 19.7% were investigated at times from 1 to 25 μs after formation by a Q-switched Nd:YAG laser. Spatially integrated electron density values are obtained using time resolved optical emission spectroscopic techniques. Depending on mixture concentration and delay time, electron densities vary from almost 1017 cm-3 to about 1014 cm-3. Helium based results agree reasonably well with each other, as do values extracted from the Hα and Hβ emission lines. However, in particular for delays up to about 7 μs and in mixtures with less than 1% hydrogen, large discrepancies are observed between results obtained from the two species. Differences decrease with increasing hydrogen partial pressure and/or increasing delay time. In mixtures with molecular hydrogen fraction of 7% or more, all methods yield electron densities that are in good agreement. These findings seemingly contradict the well-established idea that addition of small amounts of hydrogen for diagnostic purposes does not perturb the plasma. Using Abel inversion analysis of the experimental data and a semi-empirical numerical model, we demonstrate that the major part of the detected discrepancies can be traced to differences in the spatial distributions of excited helium and hydrogen neutrals. The model yields spatially resolved emission intensities and electron density profiles that are in qualitative agreement with experiment. For the test case of a 1% H2 mixture at 5 μs delay, our model suggests that high electron temperatures cause an elevated degree of ionization and thus a reduction of excited hydrogen concentration relative to that of helium near the plasma center. As a result, spatially integrated analysis of hydrogen emission lines leads to oversampling of the plasma perimeter and thus to lower electron density values compared to those obtained from helium lines.

  5. Spectro-microscopy of living plant cells.

    PubMed

    Harter, Klaus; Meixner, Alfred J; Schleifenbaum, Frank

    2012-01-01

    Spectro-microscopy, a combination of fluorescence microscopy with spatially resolved spectroscopic techniques, provides new and exciting tools for functional cell biology in living organisms. This review focuses on recent developments in spectro-microscopic applications for the investigation of living plant cells in their native tissue context. The application of spectro-microscopic methods led to the recent discovery of a fast signal response pathway for the brassinosteroide receptor BRI1 in the plasma membrane of living plant cells. Moreover, the competence of different plant cell types to respond to environmental or endogenous stimuli was determined in vivo by correlation analysis of different optical and spectroscopic readouts such as fluorescence lifetime (FLT). Furthermore, a new spectro-microscopic technique, fluorescence intensity decay shape analysis microscopy (FIDSAM), has been developed. FIDSAM is capable of imaging low-expressed fluorophore-tagged proteins at high spatial resolution and precludes the misinterpretation of autofluorescence artifacts. In addition, FIDSAM provides a very effective and sensitive tool on the basis of Förster resonance energy transfer (FRET) for the qualitative and quantitative determination of protein-protein interaction. Finally, we report on the quantitative analysis of the photosystem I and II (PSI/PSII) ratio in the chloroplasts of living Arabidopsis plants at room temperature, using high-resolution, spatially resolved fluorescence spectroscopy. With this technique, it was not only possible to measure PSI/PSII ratios, but also to demonstrate the differential competence of wild-type and carbohydrate-deficient plants to adapt the PSI/PSII ratio to different light conditions. In summary, the information content of standard microscopic images is extended by several dimensions by the use of spectro-microscopic approaches. Therefore, novel cell physiological and molecular topics can be addressed and valuable insights into molecular and subcellular processes can be obtained in living plants.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  7. Passive Standoff Super Resolution Imaging using Spatial-Spectral Multiplexing

    DTIC Science & Technology

    2017-08-14

    94 5.0 Four -Dimensional Object-Space Data Reconstruction Using Spatial...103 5.3 Four -dimensional scene reconstruction using SSM...transitioning to systems based on spectrally resolved longitudinal spatial coherence interferometry. This document also includes research related to four

  8. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Lechuga, M.; Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid; Fuentes, L. M.

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed tomore » resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.« less

  9. Spatially and time resolved kinetics of indirect magnetoexcitons

    NASA Astrophysics Data System (ADS)

    Hasling, Matthew; Dorow, Chelsey; Calman, Erica; Butov, Leonid; Wilkes, Joe; Campman, Kenneth; Gossard, Arthur

    The small exciton mass and binding energy give the opportunity to realize the high magnetic field regime for excitons in magnetic fields of few Tesla achievable in lab Long lifetimes of indirect exciton give the opportunity to study kinetics of magnetoexciton transport by time-resolved optical imaging of exciton emission. We present spatially and time resolved measurements showing the effect of increased magnetic field on transport of magnetoexcitons. We observe that increased magnetic field leads to slowing down of magnetoexciton transport. Supported by NSF Grant No. 1407277. J.W. was supported by the EPSRC (Grant EP/L022990/1). C.J.D. was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1144086.

  10. Spatially resolved rest-UV spectroscopy of a prototypical quasar driven superwind at low-z

    NASA Astrophysics Data System (ADS)

    Johnson, Sean

    2017-08-01

    Powerful galaxy-wide winds launched by quasars are thought to be a common evolutionary phase of massive galaxies, but observations of this phenomena are scarce. We have conducted a multi-wavelength observational campaign for J1356+1026, a poster-child obscured quasar driving a superwind at z=0.123. J1356+1026 is driving a nuclear molecular outflow and an extended ionized outflow observed as an [OIII] emitting bubble at 10 kpc that is spatially coincident with soft X-ray emission. Quasar-driven winds carry material at a wide range of densities and temperatures making it difficult to measure their energetics and the dominant phases are unknown. Here we propose spatially resolved rest-UV spectroscopy by acquiring circum-nuclear absorption spectra of J1356+1026 and emission spectra of its off-nucleus bubble using COS+G140L. The circum-nuclear spectrum will provide measurements of the outflow velocity through blueshifted absorption while the off-nuclear spectrum of the bubble will measure the ionization state and mechanisms of the outflow through powerful UV diagnostic lines. Together, these spectra will enable a more complete mass, energy and momentum accounting of a spatially resolved quasar driven superwind for the first time. Furthermore, detection of shocked gas through OVI emission will enable us to infer properties of the enigmatic volume-filling, low density component of the wind. To our knowledge, this will be the first spatially resolved rest UV spectroscopy of a quasar wind and the proposed observations will serve as a pilot to guide future HST proposals.

  11. Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.

    PubMed

    Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M

    2017-06-01

    Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.

  12. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm

    NASA Astrophysics Data System (ADS)

    Chen, Ting-Wan; Schady, Patricia; Xiao, Lin; Eldridge, J. J.; Schweyer, Tassilo; Lee, Chien-Hsiu; Yu, Po-Chieh; Smartt, Stephen J.; Inserra, Cosimo

    2017-11-01

    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this Letter, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12+{log}({{O}}/{{H}})∼ 8.8{--}9.1). Additionally, we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or gamma-ray burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.

  13. SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting

    2018-02-01

    The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.

  14. Probabilistic Common Spatial Patterns for Multichannel EEG Analysis

    PubMed Central

    Chen, Zhe; Gao, Xiaorong; Li, Yuanqing; Brown, Emery N.; Gao, Shangkai

    2015-01-01

    Common spatial patterns (CSP) is a well-known spatial filtering algorithm for multichannel electroencephalogram (EEG) analysis. In this paper, we cast the CSP algorithm in a probabilistic modeling setting. Specifically, probabilistic CSP (P-CSP) is proposed as a generic EEG spatio-temporal modeling framework that subsumes the CSP and regularized CSP algorithms. The proposed framework enables us to resolve the overfitting issue of CSP in a principled manner. We derive statistical inference algorithms that can alleviate the issue of local optima. In particular, an efficient algorithm based on eigendecomposition is developed for maximum a posteriori (MAP) estimation in the case of isotropic noise. For more general cases, a variational algorithm is developed for group-wise sparse Bayesian learning for the P-CSP model and for automatically determining the model size. The two proposed algorithms are validated on a simulated data set. Their practical efficacy is also demonstrated by successful applications to single-trial classifications of three motor imagery EEG data sets and by the spatio-temporal pattern analysis of one EEG data set recorded in a Stroop color naming task. PMID:26005228

  15. Analysis of students geometry skills viewed from spatial intelligence

    NASA Astrophysics Data System (ADS)

    Riastuti, Nova; Mardiyana, Pramudya, Ikrar

    2017-12-01

    Geometry is one of the difficult materials for students because students must have the ability to visualize, describe the picture, draw a figure, and know the kinds of figures. This study aimisto describe the students geometry skills in resolving geometry problems viewed from spatial intelligence. This research uses a descriptive qualitative method has aim to identify students geometry skills by 6 students in eight grade of Ngawi regency, Indonesia. The subjects were 2 students with high spatial intelligence, 2 students with medium spatial intelligence, and 2 students with low spatial intelligence. Datas were collected based on written test and interview. The result of this research showed that the students geometry skills viewed from spatial intelligence includes. The results of this study indicate that there was a correlation between students' spatial intelligence with geometric skills. Students had different geometric skills in each category of spatial intelligence, although there were similarities in some geometry skill indicators. Students with low spatial intelligence had less geometry skills, thus requiring special attention from teachers. Mathematics teachers are expected to provide more practice questions that reinforce students' geometry skills including visual skills, descriptive skills, drawing skills, logical skills, applied skills.

  16. Composition analysis of a polymer electrolyte membrane fuel cell microporous layer using scanning transmission X-ray microscopy and near edge X-ray absorption fine structure analysis

    NASA Astrophysics Data System (ADS)

    George, Michael G.; Wang, Jian; Banerjee, Rupak; Bazylak, Aimy

    2016-03-01

    The novel application of scanning transmission X-ray microscopy (STXM) to the microporous layer (MPL) of a polymer electrolyte membrane fuel cell is investigated. A spatially resolved chemical component distribution map is obtained for the MPL of a commercially available SGL 25 BC sample. This is achieved with near edge X-ray absorption fine structure spectroscopic analysis. Prior to analysis the sample is embedded in non-reactive epoxy and ultra-microtomed to a thickness of 100 nm. Polytetrafluoroethylene (PTFE), carbon particle agglomerates, and supporting epoxy resin distributions are identified and reconstructed for a scanning area of 6 μm × 6 μm. It is observed that the spatial distribution of PTFE is strongly correlated to the carbon particle agglomerations. Additionally, agglomerate structures of PTFE are identified, possibly indicating the presence of a unique mesostructure in the MPL. STXM analysis is presented as a useful technique for the investigation of chemical species distributions in the MPL.

  17. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    NASA Technical Reports Server (NTRS)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with 500 m resolution, and small, but significant, differences were found between peak and nadir river flow periods in terms of optimal resolution and resolvable proportion of variability.

  18. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

    PubMed Central

    2018-01-01

    Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399

  19. REMOVING BIASES IN RESOLVED STELLAR MASS MAPS OF GALAXY DISKS THROUGH SUCCESSIVE BAYESIAN MARGINALIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-García, Eric E.; González-Lópezlira, Rosa A.; Bruzual A, Gustavo

    2017-01-20

    Stellar masses of galaxies are frequently obtained by fitting stellar population synthesis models to galaxy photometry or spectra. The state of the art method resolves spatial structures within a galaxy to assess the total stellar mass content. In comparison to unresolved studies, resolved methods yield, on average, higher fractions of stellar mass for galaxies. In this work we improve the current method in order to mitigate a bias related to the resolved spatial distribution derived for the mass. The bias consists in an apparent filamentary mass distribution and a spatial coincidence between mass structures and dust lanes near spiral arms.more » The improved method is based on iterative Bayesian marginalization, through a new algorithm we have named Bayesian Successive Priors (BSP). We have applied BSP to M51 and to a pilot sample of 90 spiral galaxies from the Ohio State University Bright Spiral Galaxy Survey. By quantitatively comparing both methods, we find that the average fraction of stellar mass missed by unresolved studies is only half what previously thought. In contrast with the previous method, the output BSP mass maps bear a better resemblance to near-infrared images.« less

  20. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  1. Portable TXRF Spectrometer with 10{sup -11}g Detection Limit and Portable XRF Spectromicroscope with Sub-mm Spatial Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunimura, Shinsuke; Hatakeyama, So; Sasaki, Nobuharu

    A portable total reflection X-ray fluorescence (TXRF) spectrometer that we have developed is applied to trace elemental analysis of water solutions. Although a 5 W X-ray tube is used in the portable TXRF spectrometer, detection limits of several ppb are achieved for 3d transition metal elements and trace elements in a leaching solution of soils, a leaching solution of solder, and alcoholic beverages are detected. Portable X-ray fluorescence (XRF) spectromicroscopes with a 1 W X-ray tube and an 8 W X-ray tube are also presented. Using the portable XRF spectromicroscope with the 1 W X-ray tube, 93 ppm of Crmore » is detected with an about 700 {mu}m spatial resolution. Spatially resolved elemental analysis of a mug painted with blue, red, green, and white is performed using the two portable spectromicroscopes, and the difference in elemental composition at each paint is detected.« less

  2. An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials

    PubMed Central

    Chen, X.; Ashcroft, I. A.; Wildman, R. D.; Tuck, C. J.

    2015-01-01

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance. PMID:26730216

  3. An inverse method for determining the spatially resolved properties of viscoelastic-viscoplastic three-dimensional printed materials.

    PubMed

    Chen, X; Ashcroft, I A; Wildman, R D; Tuck, C J

    2015-11-08

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic-viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic-viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance.

  4. Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography

    PubMed Central

    Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.

    2015-01-01

    Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598

  5. A Modeling Framework for Inference of Surface Emissions Using Mobile Observations

    NASA Astrophysics Data System (ADS)

    Fasoli, B.; Mitchell, L.; Crosman, E.; Mendoza, D. L.; Lin, J. C.

    2016-12-01

    Our ability to quantify surface emissions depends on the precision of observations and the spatial density of measurement networks. Mobile measurement techniques offer a cost effective strategy for quantifying atmospheric conditions over space without requiring a dense network of in-situ sites. However, interpretation of these data and inversion of dispersed measurements to estimate surface emissions can be difficult. We introduce a framework using the Stochastic Time-Inverted Lagrangian Transport (STILT) model that assimilates both spatially resolved observations and an emissions inventory to better estimate surface fluxes. Salt Lake City is a unique laboratory for the study of urban carbon emissions. It is the only U.S. city that utilizes light-rail trains to continuously measure high frequency carbon dioxide (CO2) and methane (CH4); it is home to one of the longest and most spatially resolved high precision CO2 measurement networks (air.utah.edu); and it is one of four cities in the world for which the Hestia anthropogenic emissions inventory has been produced which characterizes CO2 emissions at the scale of individual buildings and roadways. Using these data and modeling resources, we evaluate spatially resolved CO2 measurements and transported CO2 emissions on hourly timescales at a dense spatial resolution across Salt Lake City.

  6. A complete solution of cartographic displacement based on elastic beams model and Delaunay triangulation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Guo, Q.; Sun, Y.

    2014-04-01

    In map production and generalization, it is inevitable to arise some spatial conflicts, but the detection and resolution of these spatial conflicts still requires manual operation. It is become a bottleneck hindering the development of automated cartographic generalization. Displacement is the most useful contextual operator that is often used for resolving the conflicts arising between two or more map objects. Automated generalization researches have reported many approaches of displacement including sequential approaches and optimization approaches. As an excellent optimization approach on the basis of energy minimization principles, elastic beams model has been used in resolving displacement problem of roads and buildings for several times. However, to realize a complete displacement solution, techniques of conflict detection and spatial context analysis should be also take into consideration. So we proposed a complete solution of displacement based on the combined use of elastic beams model and constrained Delaunay triangulation (CDT) in this paper. The solution designed as a cyclic and iterative process containing two phases: detection phase and displacement phase. In detection phase, CDT of map is use to detect proximity conflicts, identify spatial relationships and structures, and construct auxiliary structure, so as to support the displacement phase on the basis of elastic beams. In addition, for the improvements of displacement algorithm, a method for adaptive parameters setting and a new iterative strategy are put forward. Finally, we implemented our solution on a testing map generalization platform, and successfully tested it against 2 hand-generated test datasets of roads and buildings respectively.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, M.-L.; Pailloux, F.; Mauchamp, V.

    The understanding of the mechanisms of helium bubble formation and evolution in materials requires the quantitative determination of several key quantities such as the helium density in the bubbles. Helium nanobubbles of about 16 nm in diameter were created in silicon by helium implantation at high fluence and subsequent annealing. Individual nanobubbles were analyzed by spatially resolved Electron Energy-loss Spectroscopy (EELS). We report on the in situ probing of helium desorption from the nanobubbles under electron irradiation. This opens new perspectives for a more accurate determination of the helium density through spatially resolved EELS.

  8. The Orbiting Carbon Observatory Mission: Watching the Earth Breathe Mapping CO2 from Space

    NASA Technical Reports Server (NTRS)

    Boain, Ron

    2007-01-01

    Approach: Collect spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight. Use these data to resolve spatial and temporal variations in the column averaged CO2 dry air mole fraction, X(sub CO2) over the sunlit hemisphere. Employ independent calibration and validation approaches to produce X(sub CO2) estimates with random errors and biases no larger than 1-2 ppm (0.3-0.5%) on regional scales at monthly intervals.

  9. Control of experimental uncertainties in filtered Rayleigh scattering measurements

    NASA Technical Reports Server (NTRS)

    Forkey, Joseph N.; Finkelstein, N. D.; Lempert, Walter R.; Miles, Richard B.

    1995-01-01

    Filtered Rayleigh Scattering is a technique which allows for measurement of velocity, temperature, and pressure in unseeded flows, spatially resolved in 2-dimensions. We present an overview of the major components of a Filtered Rayleigh Scattering system. In particular, we develop and discuss a detailed theoretical model along with associated model parameters and related uncertainties. Based on this model, we then present experimental results for ambient room air and for a Mach 2 free jet, including spatially resolved measurements of velocity, temperature, and pressure.

  10. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, P. D.; Brown, M. E.; Hand, K. P., E-mail: pfischer@caltech.edu

    2015-11-15

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is ofmore » particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative.« less

  11. Spatially resolved bimodal spectroscopy for classification/evaluation of mouse skin inflammatory and pre-cancerous stages

    NASA Astrophysics Data System (ADS)

    Díaz-Ayil, Gilberto; Amouroux, Marine; Clanché, Fabien; Granjon, Yves; Blondel, Walter C. P. M.

    2009-07-01

    Spatially-resolved bimodal spectroscopy (multiple AutoFluorescence AF excitation and Diffuse Reflectance DR), was used in vivo to discriminate various healthy and precancerous skin stages in a pre-clinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A specific data preprocessing scheme was applied to intensity spectra (filtering, spectral correction and intensity normalization), and several sets of spectral characteristics were automatically extracted and selected based on their discrimination power, statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of Sensibility (Se) and Specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibres distances and of the numbers of principal components, such that: Se and Sp ~ 100% when discriminating CH vs. others; Sp ~ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ~ 74% and Se ~ 63% for AH vs. D.

  12. Combined Exact-Repeat and Geodetic Mission Altimetry for High-Resolution Empirical Tide Mapping

    NASA Astrophysics Data System (ADS)

    Zaron, E. D.

    2014-12-01

    The configuration of present and historical exact-repeat mission (ERM) altimeter ground tracks determines the maximum resolution of empirical tidal maps obtained with ERM data. Although the mode-1 baroclinic tide is resolvable at mid-latitudes in the open ocean, the ability to detect baroclinic and barotropic tides near islands and complex coastlines is limited, in part, by ERM track density. In order to obtain higher resolution maps, the possibility of combining ERM and geodetic mission (GM) altimetry is considered, using a combination of spatial thin-plate splines and temporal harmonic analysis. Given the present spatial and temporal distribution of GM missions, it is found that GM data can contribute to resolving tidal features smaller than 75 km, provided the signal amplitude is greater than about 1 cm. Uncertainties in the mean sea surface and environmental corrections are significant components of the GM error budget, and methods to optimize data selection and along-track filtering are still being optimized. Application to two regions, Monterey Bay and Luzon Strait, finds evidence for complex tidal fields in agreement with independent observations and modeling studies.

  13. Assessment of craniospinal arteriovenous malformations at 3T with highly temporally and highly spatially resolved contrast-enhanced MR angiography.

    PubMed

    Saleh, R S; Lohan, D G; Villablanca, J P; Duckwiler, G; Kee, S T; Finn, J P

    2008-05-01

    Patients with arteriovenous malformation (AVM) are known to have an elevated risk of complications with conventional catheter angiography (CCA) but nonetheless require monitoring of hemodynamics. Thus, we aimed to evaluate both anatomy and hemodynamics in patients with AVM noninvasively by using contrast-enhanced MR angiography (CE-MRA) at 3T and to compare the results with CCA. Institutional review board approval and informed consent were obtained for this Health Insurance Portability and Accountability Act-compliant study. Twenty control subjects without vascular malformation (6 men, 18-70 years of age) and 10 patients with AVMs (6 men, 20-74 years of age) underwent supra-aortic time-resolved and high-spatial-resolution CE-MRA at 3T. Large-field-of-view coronal acquisitions extending from the root of the aorta to the cranial vertex were obtained for both MRA techniques. Image quality was assessed by 2 specialized radiologists by using a 4-point scale. AVM characteristics and nidus size were evaluated by using both CE-MRA and CCA in all patients. In patients, 96.6% (319/330) of arterial segments on high-spatial-resolution MRA and 87.7% (272/310) of arterial segments on time-resolved MRA were graded excellent/good. MRA showed 100% specificity for detecting feeding arteries and venous drainage (n = 8) and complete obliteration of the AVM in 2 cases (concordance with CCA). Nidus diameters measured by both MRA and CCA resulted in a very strong correlation (r = 0.99) with a mild overestimation by MRA (0.10 cm by using the Bland-Altman plot). By combining highly temporally resolved and highly spatially resolved MRA at 3T as complementary studies, one can assess vascular anatomy and hemodynamics noninvasively in patients with AVM.

  14. A Magnified View of the Kinematics and Morphology of RCSGA 032727-132609: Zooming in on a Merger at z = 1.7

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Sharon, Keren

    2014-01-01

    We present a detailed analysis of multi-wavelength Hubble Space Telescope/Wide Field Camera 3 (WFC3) imaging and Keck/OSIRIS near-infrared adaptive optics-assisted integral field spectroscopy for a highly magnified lensed galaxy at z = 1.70. This young starburst is representative of ultraviolet-selected star-forming galaxies (SFGs) at z approx. 2 and contains multiple individual star-forming regions. Due to the lensing magnification, we can resolve spatial scales down to 100 pc in the source plane of the galaxy. The velocity field shows disturbed kinematics suggestive of an ongoing interaction and there is a clear signature of a tidal tail. We constrain the age, reddening, star formation rate, and stellar mass of the star-forming clumps from spectral energy distribution (SED) modeling of the WFC3 photometry and measure their H(alpha) luminosity, metallicity, and outflow properties from the OSIRIS data.With strong star-formation-driven outflows in four clumps, RCSGA0327 is the first high-redshift SFG at stellar mass <10(exp 10) Stellar Mass with spatially resolved stellar winds. We compare the H(alpha) luminosities, sizes, and dispersions of the star-forming regions with other high-z clumps as well as local giant H(II) regions and find no evidence for increased clump star formation surface densities in interacting systems, unlike in the local universe. Spatially resolved SED modeling unveils an established stellar population at the location of the largest clump and a second mass concentration near the edge of the system that is not detected in H(alpha) emission. This suggests a picture of an equal-mass mixed major merger, which has not triggered a new burst of star formation or caused a tidal tail in the gas-poor component.

  15. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins.

    PubMed

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-06-30

    A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. ISM DUST GRAINS AND N-BAND SPECTRAL VARIABILITY IN THE SPATIALLY RESOLVED SUBARCSECOND BINARY UY Aur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.

    2010-03-10

    The 10 {mu}m silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries ({approx}<3''; {approx}< 420 AU) at the distances of the nearest star-forming regions ({approx}140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0.''88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR,more » and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk.« less

  17. Examining diseased states in a scaled-up vocal fold model using simultaneous temporally resolved DPIV and pressure measurements

    NASA Astrophysics Data System (ADS)

    Rogers, Dylan; Wei, Nathaniel; Ringenber, Hunter; Krane, Michael; Wei, Timothy

    2017-11-01

    This study builds on the parallel presentation of Ringenberg, et al. (APS-DFD 2017) involving simultaneous, temporally and spatially resolved flow and pressure measurements in a scaled-up vocal fold model. In this talk, data from experiments replicating characteristics of diseased vocal folds are presented. This begins with vocal folds that do not fully close and continues with asymmetric oscillations. Data are compared to symmetric, i.e. `healthy', oscillatory motions presented in the companion talk. Having pressure and flow data for individual as well as phase averaged oscillations for these diseased cases highlights the potential for aeroacoustic analysis in this complex system. Supported by NIH Grant No. 2R01 DC005642-11.

  18. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures.

    PubMed

    Gentile, Francesco; Ferrara, Lorenzo; Villani, Marco; Bettelli, Manuele; Iannotta, Salvatore; Zappettini, Andrea; Cesarelli, Mario; Di Fabrizio, Enzo; Coppedè, Nicola

    2016-01-12

    PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices.

  19. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures

    PubMed Central

    Gentile, Francesco; Ferrara, Lorenzo; Villani, Marco; Bettelli, Manuele; Iannotta, Salvatore; Zappettini, Andrea; Cesarelli, Mario; Di Fabrizio, Enzo; Coppedè, Nicola

    2016-01-01

    PEDOT:PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PEDOT:PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices. PMID:26753611

  20. Comparison of tropical cyclogenesis processes in climate model and cloud-resolving model simulations using moist static energy budget analysis

    NASA Astrophysics Data System (ADS)

    Wing, Allison; Camargo, Suzana; Sobel, Adam; Kim, Daehyun; Murakami, Hiroyuki; Reed, Kevin; Vecchi, Gabriel; Wehner, Michael; Zarzycki, Colin; Zhao, Ming

    2017-04-01

    In recent years, climate models have improved such that high-resolution simulations are able to reproduce the climatology of tropical cyclone activity with some fidelity and show some skill in seasonal forecasting. However biases remain in many models, motivating a better understanding of what factors control the representation of tropical cyclone activity in climate models. We explore the tropical cyclogenesis processes in five high-resolution climate models, including both coupled and uncoupled configurations. Our analysis framework focuses on how convection, moisture, clouds and related processes are coupled and employs budgets of column moist static energy and the spatial variance of column moist static energy. The latter was originally developed to study the mechanisms of tropical convective organization in idealized cloud-resolving models, and allows us to quantify the different feedback processes responsible for the amplification of moist static energy anomalies associated with the organization of convection and cyclogenesis. We track the formation and evolution of tropical cyclones in the climate model simulations and apply our analysis both along the individual tracks and composited over many tropical cyclones. We then compare the genesis processes; in particular, the role of cloud-radiation interactions, to those of spontaneous tropical cyclogenesis in idealized cloud-resolving model simulations.

  1. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures

    NASA Astrophysics Data System (ADS)

    Gentile, Francesco; Ferrara, Lorenzo; Villani, Marco; Bettelli, Manuele; Iannotta, Salvatore; Zappettini, Andrea; Cesarelli, Mario; di Fabrizio, Enzo; Coppedè, Nicola

    2016-01-01

    PEDOT:PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PEDOT:PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices.

  2. Laser radar measurements of the aerosol content of the atmosphere

    NASA Technical Reports Server (NTRS)

    Grams, G. W.

    1969-01-01

    A summary of the results of laser radar observations of atmospheric aerosols is presented along with a description of the laser radar system devised during the study and of the data handling techniques utilized for the analysis of the data of the temporal and spatial distribution of atmospheric aerosols. Current research conducted by the group is directed toward the analysis of the frequency spectrum of laser radar echoes to obtain absolute measurements of the dust content of the atmosphere by resolving the molecular and aerosol contributions to the laser radar echoes.

  3. SDSS-IV MaNGA: The Spatially Resolved Stellar Initial Mass Function in ˜400 Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Parikh, Taniya; Thomas, Daniel; Maraston, Claudia; Westfall, Kyle B.; Goddard, Daniel; Lian, Jianhui; Meneses-Goytia, Sofia; Jones, Amy; Vaughan, Sam; Andrews, Brett H.; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Emsellem, Eric; Law, David R.; Newman, Jeffrey A.; Roman-Lopes, Alexandre; Wake, David; Yan, Renbin; Zheng, Zheng

    2018-03-01

    MaNGA provides the opportunity to make precise spatially resolved measurements of the IMF slope in galaxies owing to its unique combination of spatial resolution, wavelength coverage and sample size. We derive radial gradients in age, element abundances and IMF slope analysing optical and near-infrared absorption features from stacked spectra out to the half-light radius of 366 early-type galaxies with masses 9.9 - 10.8 log M/M⊙. We find flat gradients in age and [α/Fe] ratio, as well as negative gradients in metallicity, consistent with the literature. We further derive significant negative gradients in the [Na/Fe] ratio with galaxy centres being well enhanced in Na abundance by up to 0.5 dex. Finally, we find a gradient in IMF slope with a bottom-heavy IMF in the centre (typical mass excess factor of 1.5) and a Milky Way-type IMF at the half-light radius. This pattern is mass-dependent with the lowest mass galaxies in our sample featuring only a shallow gradient around a Milky Way IMF. Our results imply the local IMF-σ relation within galaxies to be even steeper than the global relation and hint towards the local metallicity being the dominating factor behind the IMF variations. We also employ different stellar population models in our analysis and show that a radial IMF gradient is found independently of the stellar population model used. A similar analysis of the Wing-Ford band provides inconsistent results and further evidence of the difficulty in measuring and modelling this particular feature.

  4. BATMAN: Bayesian Technique for Multi-image Analysis

    NASA Astrophysics Data System (ADS)

    Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.

    2017-04-01

    This paper describes the Bayesian Technique for Multi-image Analysis (BATMAN), a novel image-segmentation technique based on Bayesian statistics that characterizes any astronomical data set containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (I.e. identical signal within the errors). We illustrate its operation and performance with a set of test cases including both synthetic and real integral-field spectroscopic data. The output segmentations adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in regions with low signal-to-noise ratio. However, the algorithm may be sensitive to small-scale random fluctuations, and its performance in presence of spatial gradients is limited. Due to these effects, errors may be underestimated by as much as a factor of 2. Our analysis reveals that the algorithm prioritizes conservation of all the statistically significant information over noise reduction, and that the precise choice of the input data has a crucial impact on the results. Hence, the philosophy of BaTMAn is not to be used as a 'black box' to improve the signal-to-noise ratio, but as a new approach to characterize spatially resolved data prior to its analysis. The source code is publicly available at http://astro.ft.uam.es/SELGIFS/BaTMAn.

  5. a Comparative Analysis of Five Cropland Datasets in Africa

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Lu, M.; Wu, W.

    2018-04-01

    The food security, particularly in Africa, is a challenge to be resolved. The cropland area and spatial distribution obtained from remote sensing imagery are vital information. In this paper, according to cropland area and spatial location, we compare five global cropland datasets including CCI Land Cover, GlobCover, MODIS Collection 5, GlobeLand30 and Unified Cropland in circa 2010 of Africa in terms of cropland area and spatial location. The accuracy of cropland area calculated from five datasets was analyzed compared with statistic data. Based on validation samples, the accuracies of spatial location for the five cropland products were assessed by error matrix. The results show that GlobeLand30 has the best fitness with the statistics, followed by MODIS Collection 5 and Unified Cropland, GlobCover and CCI Land Cover have the lower accuracies. For the accuracy of spatial location of cropland, GlobeLand30 reaches the highest accuracy, followed by Unified Cropland, MODIS Collection 5 and GlobCover, CCI Land Cover has the lowest accuracy. The spatial location accuracy of five datasets in the Csa with suitable farming condition is generally higher than in the Bsk.

  6. A diffusion-matched principal component analysis (DM-PCA) based two-channel denoising procedure for high-resolution diffusion-weighted MRI

    PubMed Central

    Chang, Hing-Chiu; Bilgin, Ali; Bernstein, Adam; Trouard, Theodore P.

    2018-01-01

    Over the past several years, significant efforts have been made to improve the spatial resolution of diffusion-weighted imaging (DWI), aiming at better detecting subtle lesions and more reliably resolving white-matter fiber tracts. A major concern with high-resolution DWI is the limited signal-to-noise ratio (SNR), which may significantly offset the advantages of high spatial resolution. Although the SNR of DWI data can be improved by denoising in post-processing, existing denoising procedures may potentially reduce the anatomic resolvability of high-resolution imaging data. Additionally, non-Gaussian noise induced signal bias in low-SNR DWI data may not always be corrected with existing denoising approaches. Here we report an improved denoising procedure, termed diffusion-matched principal component analysis (DM-PCA), which comprises 1) identifying a group of (not necessarily neighboring) voxels that demonstrate very similar magnitude signal variation patterns along the diffusion dimension, 2) correcting low-frequency phase variations in complex-valued DWI data, 3) performing PCA along the diffusion dimension for real- and imaginary-components (in two separate channels) of phase-corrected DWI voxels with matched diffusion properties, 4) suppressing the noisy PCA components in real- and imaginary-components, separately, of phase-corrected DWI data, and 5) combining real- and imaginary-components of denoised DWI data. Our data show that the new two-channel (i.e., for real- and imaginary-components) DM-PCA denoising procedure performs reliably without noticeably compromising anatomic resolvability. Non-Gaussian noise induced signal bias could also be reduced with the new denoising method. The DM-PCA based denoising procedure should prove highly valuable for high-resolution DWI studies in research and clinical uses. PMID:29694400

  7. A Framework for Widespread Replication of a Highly Spatially Resolved Childhood Lead Exposure Risk Model

    PubMed Central

    Kim, Dohyeong; Galeano, M. Alicia Overstreet; Hull, Andrew; Miranda, Marie Lynn

    2008-01-01

    Background Preventive approaches to childhood lead poisoning are critical for addressing this longstanding environmental health concern. Moreover, increasing evidence of cognitive effects of blood lead levels < 10 μg/dL highlights the need for improved exposure prevention interventions. Objectives Geographic information system–based childhood lead exposure risk models, especially if executed at highly resolved spatial scales, can help identify children most at risk of lead exposure, as well as prioritize and direct housing and health-protective intervention programs. However, developing highly resolved spatial data requires labor-and time-intensive geocoding and analytical processes. In this study we evaluated the benefit of increased effort spent geocoding in terms of improved performance of lead exposure risk models. Methods We constructed three childhood lead exposure risk models based on established methods but using different levels of geocoded data from blood lead surveillance, county tax assessors, and the 2000 U.S. Census for 18 counties in North Carolina. We used the results to predict lead exposure risk levels mapped at the individual tax parcel unit. Results The models performed well enough to identify high-risk areas for targeted intervention, even with a relatively low level of effort on geocoding. Conclusions This study demonstrates the feasibility of widespread replication of highly spatially resolved childhood lead exposure risk models. The models guide resource-constrained local health and housing departments and community-based organizations on how best to expend their efforts in preventing and mitigating lead exposure risk in their communities. PMID:19079729

  8. CO(J = 3-2) on-the-fly mapping of the nearby spiral galaxies NGC 628 and NGC 7793: Spatially resolved CO(J = 3-2) star-formation law

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro

    2016-04-01

    We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.

  9. Towards a conceptual multi-agent-based framework to simulate the spatial group decision-making process

    NASA Astrophysics Data System (ADS)

    Ghavami, Seyed Morsal; Taleai, Mohammad

    2017-04-01

    Most spatial problems are multi-actor, multi-issue and multi-phase in nature. In addition to their intrinsic complexity, spatial problems usually involve groups of actors from different organizational and cognitive backgrounds, all of whom participate in a social structure to resolve or reduce the complexity of a given problem. Hence, it is important to study and evaluate what different aspects influence the spatial problem resolution process. Recently, multi-agent systems consisting of groups of separate agent entities all interacting with each other have been put forward as appropriate tools to use to study and resolve such problems. In this study, then in order to generate a better level of understanding regarding the spatial problem group decision-making process, a conceptual multi-agent-based framework is used that represents and specifies all the necessary concepts and entities needed to aid group decision making, based on a simulation of the group decision-making process as well as the relationships that exist among the different concepts involved. The study uses five main influencing entities as concepts in the simulation process: spatial influence, individual-level influence, group-level influence, negotiation influence and group performance measures. Further, it explains the relationship among different concepts in a descriptive rather than explanatory manner. To illustrate the proposed framework, the approval process for an urban land use master plan in Zanjan—a provincial capital in Iran—is simulated using MAS, the results highlighting the effectiveness of applying an MAS-based framework when wishing to study the group decision-making process used to resolve spatial problems.

  10. Investigation of local thermodynamic equilibrium of laser induced Al{sub 2}O{sub 3}–TiC plasma in argon by spatially resolved optical emission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnama, K.; Alkhawwam, A.; Jazmati, A. K., E-mail: pscientific5@aec.org.sy

    Plasma plume of Al{sub 2}O{sub 3}–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES) at different argon background gas pressures 10, 10{sup 2}, 10{sup 3}, 10{sup 4} and 10{sup 5} Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validitymore » in the plasma.« less

  11. Local probing of ionic diffusion by electrochemical strain microscopy: Spatial resolution and signal formation mechanisms

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.; Balke, N.; Kalinin, S. V.

    2010-09-01

    Electrochemical insertion-deintercalation reactions are typically associated with significant change in molar volume of the host compound. This strong coupling between ionic currents and strains underpins image formation mechanisms in electrochemical strain microscopy (ESM), and allows exploring the tip-induced electrochemical processes locally. Here we analyze the signal formation mechanism in ESM, and develop the analytical description of operation in frequency and time domains. The ESM spectroscopic modes are compared to classical electrochemical methods including potentiostatic and galvanostatic intermittent titration, and electrochemical impedance spectroscopy. This analysis illustrates the feasibility of spatially resolved studies of Li-ion dynamics on the sub-10-nm level using electromechanical detection.

  12. Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús; La Barbera, Francesco; Yıldırım, Akın; van de Ven, Glenn

    2018-04-01

    To investigate star formation and assembly processes of massive galaxies, we present here a spatially resolved stellar population analysis of a sample of 45 elliptical galaxies (Es) selected from the Calar Alto Legacy Integral Field Area survey. We find rather flat age and [Mg/Fe] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar population gradients of our sample of Es to a sample of nearby relic galaxies, i.e. local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z ≳ 2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Secondly, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.

  13. The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements

    PubMed Central

    Kastengren, Alan; Powell, Christopher F.; Arms, Dohn; Dufresne, Eric M.; Gibson, Harold; Wang, Jin

    2012-01-01

    In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS. PMID:22713903

  14. ISM Dust Grains and N-band Spectral Variability in the Spatially Resolved Subarcsecond Binary UY Aur

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Greene, Thomas P.; Males, Jared R.; Beck, Tracy L.

    2010-03-01

    The 10 μm silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries (lsim3''; <~ 420 AU) at the distances of the nearest star-forming regions (~140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0farcs88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR, and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk. The observations reported here were partially obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.

  15. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    PubMed

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  16. Spatial variation in carrier dynamics along a single CdSSe nanowire

    NASA Astrophysics Data System (ADS)

    Blake, Jolie C.; Eldridge, Peter S.; Gundlach, Lars

    2014-10-01

    Ultrafast charge carrier dynamics along individual CdSxSe1-x nanowires has been measured. The use of an improved ultrafast Kerr-gated microscope allows for spatially resolved luminescence measurements along a single nanowire. Amplified spontaneous emission (ASE) was observed at high excitation fluences. Position dependent variations of ultrafast ASE dynamics were observed. SEM and colorimetric measurements showed that the difference in dynamics can be attributed to variations in non-radiative recombination rates along the wire. The dominant Shockley-Read recombination rate can be extracted from ASE dynamics and can be directly related to charge carrier mobility and defect density. Employing ASE as a probe for defect densities provides a new sub-micron spatially resolved, contactless method for measurements of charge carrier mobility.

  17. Utility of spatially-resolved atmospheric pressure surface sampling and ionization techniques as alternatives to mass spectrometric imaging (MSI) in drug metabolism.

    PubMed

    Blatherwick, Eleanor Q; Van Berkel, Gary J; Pickup, Kathryn; Johansson, Maria K; Beaudoin, Marie-Eve; Cole, Roderic O; Day, Jennifer M; Iverson, Suzanne; Wilson, Ian D; Scrivens, James H; Weston, Daniel J

    2011-08-01

    Tissue distribution studies of drug molecules play an essential role in the pharmaceutical industry and are commonly undertaken using quantitative whole body autoradiography (QWBA) methods. The growing need for complementary methods to address some scientific gaps around radiography methods has led to increased use of mass spectrometric imaging (MSI) technology over the last 5 to 10 years. More recently, the development of novel mass spectrometric techniques for ambient surface sampling has redefined what can be regarded as "fit-for-purpose" for MSI in a drug metabolism and disposition arena. Together with a review of these novel alternatives, this paper details the use of two liquid microjunction (LMJ)-based mass spectrometric surface sampling technologies. These approaches are used to provide qualitative determination of parent drug in rat liver tissue slices using liquid extraction surface analysis (LESA) and to assess the performance of a LMJ surface sampling probe (LMJ-SSP) interface for quantitative assessment of parent drug in brain, liver and muscle tissue slices. An assessment of the utility of these spatially-resolved sampling methods is given, showing interdependence between mass spectrometric and QWBA methods, in particular there emerges a reason to question typical MSI workflows for drug metabolism; suggesting the expedient use of profile or region analysis may be more appropriate, rather than generating time-intensive molecular images of the entire tissue section.

  18. Reduction, analysis, and properties of electric current systems in solar active regions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Demoulin, Pascal

    1995-01-01

    The specific attraction and, in large part, the significance of solar magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 deg ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 deg ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local `preferred' direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar (beta) (gamma) (delta)-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA/sq m and have a linear decreasing distribution to a diameter of 30 Mn.

  19. Reduction, Analysis, and Properties of Electric Current Systems in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Demoulin, Pascal

    1995-01-01

    The specific attraction and, in large part, the significance of solar vector magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 degree ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 degree ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local "preferred" direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar beta gamma delta-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA per square meter and have a linear decreasing distribution to a diameter of 30 Mm.

  20. Imaging electronic trap states in perovskite thin films with combined fluorescence and femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-04-22

    Charge carrier trapping degrades the performance of organometallic halide perovskite solar cells. To characterize the locations of electronic trap states in a heterogeneous photoactive layer, a spatially resolved approach is essential. Here, we report a comparative study on methylammonium lead tri-iodide perovskite thin films subject to different thermal annealing times using a combined photoluminescence (PL) and femtosecond transient absorption microscopy (TAM) approach to spatially map trap states. This approach coregisters the initially populated electronic excited states with the regions that recombine radiatively. Although the TAM images are relatively homogeneous for both samples, the corresponding PL images are highly structured. Themore » remarkable variation in the PL intensities as compared to transient absorption signal amplitude suggests spatially dependent PL quantum efficiency, indicative of trapping events. Furthermore, detailed analysis enables identification of two trapping regimes: a densely packed trapping region and a sparse trapping area that appear as unique spatial features in scaled PL maps.« less

  1. Visualizing driving forces of spatially extended systems using the recurrence plot framework

    NASA Astrophysics Data System (ADS)

    Riedl, Maik; Marwan, Norbert; Kurths, Jürgen

    2017-12-01

    The increasing availability of highly resolved spatio-temporal data leads to new opportunities as well as challenges in many scientific disciplines such as climatology, ecology or epidemiology. This allows more detailed insights into the investigated spatially extended systems. However, this development needs advanced techniques of data analysis which go beyond standard linear tools since the more precise consideration often reveals nonlinear phenomena, for example threshold effects. One of these tools is the recurrence plot approach which has been successfully applied to the description of complex systems. Using this technique's power of visualization, we propose the analysis of the local minima of the underlying distance matrix in order to display driving forces of spatially extended systems. The potential of this novel idea is demonstrated by the analysis of the chlorophyll concentration and the sea surface temperature in the Southern California Bight. We are able not only to confirm the influence of El Niño events on the phytoplankton growth in this region but also to confirm two discussed regime shifts in the California current system. This new finding underlines the power of the proposed approach and promises new insights into other complex systems.

  2. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C.

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us tomore » recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.« less

  3. Combining Statistical Samples of Resolved-ISM Simulated Galaxies with Realistic Mock Observations to Fully Interpret HST and JWST Surveys

    NASA Astrophysics Data System (ADS)

    Faucher-Giguere, Claude-Andre

    2016-10-01

    HST has invested thousands of orbits to complete multi-wavelength surveys of high-redshift galaxies including the Deep Fields, COSMOS, 3D-HST and CANDELS. Over the next few years, JWST will undertake complementary, spatially-resolved infrared observations. Cosmological simulations are the most powerful tool to make detailed predictions for the properties of galaxy populations and to interpret these surveys. We will leverage recent major advances in the predictive power of cosmological hydrodynamic simulations to produce the first statistical sample of hundreds of galaxies simulated with 10 pc resolution and with explicit interstellar medium and stellar feedback physics proved to simultaneously reproduce the galaxy stellar mass function, the chemical enrichment of galaxies, and the neutral hydrogen content of galaxy halos. We will process our new set of full-volume cosmological simulations, called FIREBOX, with a mock imaging and spectral synthesis pipeline to produce realistic mock HST and JWST observations, including spatially-resolved photometry and spectroscopy. By comparing FIREBOX with recent high-redshift HST surveys, we will study the stellar build up of galaxies, the evolution massive star-forming clumps, their contribution to bulge growth, the connection of bulges to star formation quenching, and the triggering mechanisms of AGN activity. Our mock data products will also enable us to plan future JWST observing programs. We will publicly release all our mock data products to enable HST and JWST science beyond our own analysis, including with the Frontier Fields.

  4. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, L. Clifton; Sandstrom, Karin; Seth, Anil C.

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studiedmore » galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.« less

  5. Measuring Spatial Dependence for Infectious Disease Epidemiology

    PubMed Central

    Grabowski, M. Kate; Cummings, Derek A. T.

    2016-01-01

    Global spatial clustering is the tendency of points, here cases of infectious disease, to occur closer together than expected by chance. The extent of global clustering can provide a window into the spatial scale of disease transmission, thereby providing insights into the mechanism of spread, and informing optimal surveillance and control. Here the authors present an interpretable measure of spatial clustering, τ, which can be understood as a measure of relative risk. When biological or temporal information can be used to identify sets of potentially linked and likely unlinked cases, this measure can be estimated without knowledge of the underlying population distribution. The greater our ability to distinguish closely related (i.e., separated by few generations of transmission) from more distantly related cases, the more closely τ will track the true scale of transmission. The authors illustrate this approach using examples from the analyses of HIV, dengue and measles, and provide an R package implementing the methods described. The statistic presented, and measures of global clustering in general, can be powerful tools for analysis of spatially resolved data on infectious diseases. PMID:27196422

  6. Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/β-catenin signaling in autonomic control of heart rate

    PubMed Central

    Burkhard, Silja Barbara

    2018-01-01

    Development of specialized cells and structures in the heart is regulated by spatially -restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development we used tomo-seq, combining high-throughput RNA-sequencing with tissue-sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development. Using our transcriptome map, we identified spatially restricted Wnt/β-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/β-catenin signaling controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially restricted molecular pathways critical for specific cardiac functions. PMID:29400650

  7. Optical Analysis Of The Vacuum Arc Plasma Generated In Cup-Shape Contacts

    NASA Astrophysics Data System (ADS)

    Pavelescu, G.; Pavelescu, D.; Dumitrescu, G.; Anghelita, P.; Gherendi, F.

    2007-04-01

    In this paper are presented the results of the optical analysis on the rotating arc plasma, generated in the vacuum low voltage circuit breaker with cup-shaped contacts. An adequate experimental setup was used for single shot time and spatial resolved spectroscopy in order to analyze the evolution of the vacuum arc plasma. Different current interruption situations are correlated with plasma spectral diagnosis. The study is aimed to contribute to a better understanding of the complex phenomena that take place in the interruption process of high currents that appears in the short-circuit regime of electrical networks.

  8. Modeling the Radiance of the Moon for On-orbit Calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Becker, K.J.; ,

    2003-01-01

    The RObotic Lunar Observatory (ROLO) project has developed radiometric models of the Moon for disk-integrated irradiance and spatially resolved radiance. Although the brightness of the Moon varies spatially and with complex dependencies upon illumination and viewing geometry, the surface photometric properties are extremely stable, and therefore potentially knowable to high accuracy. The ROLO project has acquired 5+ years of spatially resolved lunar images in 23 VNIR and 9 SWIR filter bands at phase angles up to 90??. These images are calibrated to exoatmospheric radiance using nightly stellar observations in a band-coupled extinction algorithm and a radiometric scale based upon observations of the star Vega. An effort is currently underway to establish an absolute scale with direct traceability to NIST radiometric standards. The ROLO radiance model performs linear fitting of the spatially resolved lunar image data on an individual pixel basis. The results are radiance images directly comparable to spacecraft observations of the Moon. Model-generated radiance images have been produced for the ASTER lunar view conducted on 14 April 2003. The radiance model is still experimental - simplified photometric functions have been used, and initial results show evidence of computational instabilities, particularly at the lunar poles. The ROLO lunar image dataset is unique and extensive and presents opportunities for development of novel approaches to lunar photometric modeling.

  9. A Herschel resolved debris disc around HD 105211

    NASA Astrophysics Data System (ADS)

    Hengst, S.; Marshall, J. P.; Horner, J.; Marsden, S. C.

    2017-07-01

    Debris discs are the dusty aftermath of planet formation processes around main-sequence stars. Analysis of these discs is often hampered by the absence of any meaningful constraint on the location and spatial extent of the disc around its host star. Multi-wavelength, resolved imaging ameliorates the degeneracies inherent in the modelling process, making such data indispensable in the interpretation of these systems. The Herschel Space Observatory observed HD 105211 (η Cru, HIP 59072) with its Photodetector Array Camera and Spectrometer (PACS) instrument in three far-infrared wavebands (70, 100 and 160 μm). Here we combine these data with ancillary photometry spanning optical to far-infrared wavelengths in order to determine the extent of the circumstellar disc. The spectral energy distribution and multi-wavelength resolved emission of the disc are simultaneously modelled using a radiative transfer and imaging codes. Analysis of the Herschel/PACS images reveals the presence of extended structure in all three PACS images. From a radiative transfer model we derive a disc extent of 87.0 ± 2.5 au, with an inclination of 70.7 ± 2.2° to the line of sight and a position angle of 30.1 ± 0.5°. Deconvolution of the Herschel images reveals a potential asymmetry but this remains uncertain as a combined radiative transfer and image analysis replicates both the structure and the emission of the disc using a single axisymmetric annulus.

  10. Resolving the Massive Binary Wind Interaction Of Eta Carinae with HST/STIS

    NASA Technical Reports Server (NTRS)

    Gull, Theodore; Nielsen, K.; Corcoran, M.; Hillier, J.; Madura, T.; Hamaguchi, K.; Kober, G.; Owocki, S.; Russell, C.; Okazaki, A.; hide

    2009-01-01

    We have resolved the outer structures of the massive binary interacting wind of Eta Carinae using the HST/STIS. They extend as much as 0.7' (1600AU) and are highly distorted due to the very elliptical orbit of the binary system. Observations conducted from 1998.0 to 2004.3 show spatial and temporal variations consistent with a massive, low excitation wind, seen by spatially resolved, velocity-broadened [Fe II], and a high excitation extended wind interaction region, seen by[Fe III], in the shape of a distorted paraboloid. The highly excited [Fe III] structure is visible for 90% of the 5.5-year period, but disappears as periastron occurs along with the drop of X-Rays as seen by RXTE. Some components appear in [Fe II] emission across the months long minimum. We will discuss the apparent differences between the bowshock orientation derived from the RXTE light curve and these structures seen by HST/STIS. Monitoring the temporal variations with phase using high spatial resolution with appropriate spectral dispersions proves to be a valuable tool for understanding massive wind interactions.

  11. Spatially Resolved Quantification of Chromatin Condensation through Differential Local Rheology in Cell Nuclei Fluorescence Lifetime Imaging

    PubMed Central

    Spagnol, Stephen T.; Dahl, Kris Noel

    2016-01-01

    The linear sequence of DNA encodes access to the complete set of proteins that carry out cellular functions. Yet, much of the functionality appropriate for each cell is nested within layers of dynamic regulation and organization, including a hierarchy of chromatin structural states and spatial arrangement within the nucleus. There remain limitations in our understanding of gene expression within the context of nuclear organization from an inability to characterize hierarchical chromatin organization in situ. Here we demonstrate the use of fluorescence lifetime imaging microscopy (FLIM) to quantify and spatially resolve chromatin condensation state using cell-permeable, DNA-binding dyes (Hoechst 33342 and PicoGreen). Through in vitro and in situ experiments we demonstrate the sensitivity of fluorescence lifetime to condensation state through the mechanical effects that accompany the structural changes and are reflected through altered viscosity. The establishment of FLIM for resolving and quantifying chromatin condensation state opens the door for single-measurement mechanical studies of the nucleus and for characterizing the role of genome structure and organization in nuclear processes that accompany physiological and pathological changes. PMID:26765322

  12. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2017-09-01

    The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.

  13. Spatially organizing biochemistry: choosing a strategy to translate synthetic biology to the factory.

    PubMed

    Jakobson, Christopher M; Tullman-Ercek, Danielle; Mangan, Niall M

    2018-05-29

    Natural biochemical systems are ubiquitously organized both in space and time. Engineering the spatial organization of biochemistry has emerged as a key theme of synthetic biology, with numerous technologies promising improved biosynthetic pathway performance. One strategy, however, may produce disparate results for different biosynthetic pathways. We use a spatially resolved kinetic model to explore this fundamental design choice in systems and synthetic biology. We predict that two example biosynthetic pathways have distinct optimal organization strategies that vary based on pathway-dependent and cell-extrinsic factors. Moreover, we demonstrate that the optimal design varies as a function of kinetic and biophysical properties, as well as culture conditions. Our results suggest that organizing biosynthesis has the potential to substantially improve performance, but that choosing the appropriate strategy is key. The flexible design-space analysis we propose can be adapted to diverse biosynthetic pathways, and lays a foundation to rationally choose organization strategies for biosynthesis.

  14. Separation of distinct photoexcitation species in femtosecond transient absorption microscopy

    DOE PAGES

    Xiao, Kai; Ma, Ying -Zhong; Simpson, Mary Jane; ...

    2016-02-03

    Femtosecond transient absorption microscopy is a novel chemical imaging capability with simultaneous high spatial and temporal resolution. Although several powerful data analysis approaches have been developed and successfully applied to separate distinct chemical species in such images, the application of such analysis to distinguish different photoexcited species is rare. In this paper, we demonstrate a combined approach based on phasor and linear decomposition analysis on a microscopic level that allows us to separate the contributions of both the excitons and free charge carriers in the observed transient absorption response of a composite organometallic lead halide perovskite film. We found spatialmore » regions where the transient absorption response was predominately a result of excitons and others where it was predominately due to charge carriers, and regions consisting of signals from both contributors. Lastly, quantitative decomposition of the transient absorption response curves further enabled us to reveal the relative contribution of each photoexcitation to the measured response at spatially resolved locations in the film.« less

  15. Spatial Systems Lipidomics Reveals Nonalcoholic Fatty Liver Disease Heterogeneity

    PubMed Central

    2018-01-01

    Hepatocellular lipid accumulation characterizes nonalcoholic fatty liver disease (NAFLD). However, the types of lipids associated with disease progression are debated, as is the impact of their localization. Traditional lipidomics analysis using liver homogenates or plasma dilutes and averages lipid concentrations, and does not provide spatial information about lipid distribution. We aimed to characterize the distribution of specific lipid species related to NAFLD severity by performing label-free molecular analysis by mass spectrometry imaging (MSI). Fresh frozen liver biopsies from obese subjects undergoing bariatric surgery (n = 23) with various degrees of NAFLD were cryosectioned and analyzed by matrix-assisted laser desorption/ionization (MALDI)-MSI. Molecular identification was verified by tandem MS. Tissue sections were histopathologically stained, annotated according to the Kleiner classification, and coregistered with the MSI data set. Lipid pathway analysis was performed and linked to local proteome networks. Spatially resolved lipid profiles showed pronounced differences between nonsteatotic and steatotic tissues. Lipid identification and network analyses revealed phosphatidylinositols and arachidonic acid metabolism in nonsteatotic regions, whereas low–density lipoprotein (LDL) and very low–density lipoprotein (VLDL) metabolism was associated with steatotic tissue. Supervised and unsupervised discriminant analysis using lipid based classifiers outperformed simulated analysis of liver tissue homogenates in predicting steatosis severity. We conclude that lipid composition of steatotic and nonsteatotic tissue is highly distinct, implying that spatial context is important for understanding the mechanisms of lipid accumulation in NAFLD. MSI combined with principal component–linear discriminant analysis linking lipid and protein pathways represents a novel tool enabling detailed, comprehensive studies of the heterogeneity of NAFLD. PMID:29570976

  16. Application toward Confocal Full-Field Microscopic X-ray Absorption Near Edge Structure Spectroscopy.

    PubMed

    Tack, Pieter; Vekemans, Bart; Laforce, Brecht; Rudloff-Grund, Jennifer; Hernández, Willinton Y; Garrevoet, Jan; Falkenberg, Gerald; Brenker, Frank; Van Der Voort, Pascal; Vincze, Laszlo

    2017-02-07

    Using X-ray absorption near edge structure (XANES) spectroscopy, information on the local chemical structure and oxidation state of an element of interest can be acquired. Conventionally, this information can be obtained in a spatially resolved manner by scanning a sample through a focused X-ray beam. Recently, full-field methods have been developed to obtain direct 2D chemical state information by imaging a large sample area. These methods are usually in transmission mode, thus restricting the use to thin and transmitting samples. Here, a fluorescence method is displayed using an energy-dispersive pnCCD detector, the SLcam, characterized by measurement times far superior to what is generally applicable. Additionally, this method operates in confocal mode, thus providing direct 3D spatially resolved chemical state information from a selected subvolume of a sample, without the need of rotating a sample. The method is applied to two samples: a gold-supported magnesia catalyst (Au/MgO) and a natural diamond containing Fe-rich inclusions. Both samples provide XANES spectra that can be overlapped with reference XANES spectra, allowing this method to be used for fingerprinting and linear combination analysis of known XANES reference compounds.

  17. Spatially resolved elemental distributions in articular cartilage

    NASA Astrophysics Data System (ADS)

    Reinert, T.; Reibetanz, U.; Vogt, J.; Butz, T.; Werner, A.; Gründer, W.

    2001-07-01

    In this study, the nuclear microprobe technique is employed to analyse the chemistry of joint cartilage in order to correlate internal structures of the collagen network with the elemental distribution. The samples were taken from pig's knee joint. 30 μm thick coronar cross-sections were prepared by means of cryosectioning and freeze-drying. We performed simultaneously particle induced X-ray emission (PIXE), Rutherford backscattering spectrometry (RBS) and elastic recoil detection analysis (ERDA). Thus we obtained spatially resolved distributions of the elements H, C, N, O, P, S, Cl, K and Ca. The main components of the organic matrix are H, C, N and O. It was shown that their relations vary with the cartilage structures. It could be shown that zones with aligned collagen fibrils contain less sulphur and potassium but more chlorine. The higher chlorine concentration is remarkable because newest biochemical studies found that hypochloric acid is involved in cartilage degradation. Furthermore, the calcium distribution is still of great interest. Its correlation to structural changes inside the cartilage is still being discussed. It could be disproved that zones of higher calcium concentration are related to the aligned structures of the collagen network.

  18. Electron acceleration in connection with radio noise storm onsets or enhancements

    NASA Astrophysics Data System (ADS)

    Vilmer, N.; Trottet, G.

    2008-11-01

    Radio noise storms are generated by suprathermal (≃ 10 keV) electrons accelerated continuously over time scales of hours or days in active region magnetic fields. They are related to emerging magnetic loops interacting with overlying loops and leading to magnetic coronal reconfiguration (e.g. Bentley et al. 2000). Noise storm onsets or enhancements have been sometimes observed in association with a flare-like sudden energy release in the active region producing a localized microwave (Raulin et al. 1991) or soft X-ray brightening (Raulin & Klein 1994). A few cases have also been reported in which 10-30 keV emission from a superhot plasma or from non-thermal electrons have been observed at the onset of noise storms (Crosby et al. 1996) confirming that a flare-like energy release in the lower corona could be a necessary condition for noise storms to start. No spatially resolved hard X-ray observations were however available in the case of the latter analysis, allowing to check that the flare-like emission and the noise storm were originating from the same active region. We present here an event for which both radio and hard X-ray (HXR) spatially resolved observations are available.

  19. Nanotextured phase coexistence in the correlated insulator V2O3

    NASA Astrophysics Data System (ADS)

    McLeod, Alexander

    The Mott insulator-metal transition remains among the most studied phenomena in correlated electron physics. However, the formation of spontaneous spatial patterns amidst coexisting insulating and metallic phases remains poorly explored on the meso- and nanoscales. Here we present real-space evolution of the insulator-metal transition in a thin film of V2O3, the ``canonical'' Mott insulator, imaged at high spatial resolution by cryogenic near-field infrared microscopy. We resolve spontaneously nanotextured coexistence of metal and correlated Mott insulator phases near the insulator-metal transition (T = 160-180 K) associated with percolation and an underlying structural phase transition. Augmented with macroscopic temperature-resolved X-ray diffraction measurements of the same film, a quantitative analysis of nano-infrared images acquired across the transition suggests decoupling of electronic and structural transformations. Persistent low-temperature metallicity is accompanied by unconventional dimensional scaling among metallic ``puddles,'' implicating relevance of a long-range Coulombic interaction through the film's first-order insulator-metal transition. The speaker and co-authors acknowledge support from DOE-DE-SC0012375, DOE-DE-SC0012592, and AFOSR Grant No. FA9550-12-1-0381. The speaker also acknowledges support from a US Dept. of Energy Office of Science Graduate Fellowship (DOE SCGF).

  20. The relationship between amplitude modulation, coherent structure and critical layers in wall turbulence

    NASA Astrophysics Data System (ADS)

    McKeon, Beverley

    2015-11-01

    The importance of critical layers in determining aspects of the structure of wall turbulence is discussed. We have shown (Jacobi & McKeon, 2013) that the amplitude modulation coefficient investigated most recently by Hutchins & Marusic (2007) and co-authors, which describes the correlation between large scales above a (spatial) wavelength filter with the envelope of small scales below the filter, is dominated by very large scale motion (VLSM) at a single wavelength. The resolvent analysis of McKeon & Sharma (2010) gives a suitable model for the three-dimensional, three-component form of the VLSM and energetic structure at other wavelengths. This model is used to identify the three-dimensional spatial variation of instantaneous critical layers in the presence of a mean velocity profile and to relate this to earlier observations of coherent structure in unperturbed flows (both experimental and via the resolvent model, Sharma & McKeon, 2013); to the phase relationships between scales identified by Chung & McKeon (2010, 2014); and to the structure of wall turbulence that has been modified by the addition of single synthetic scales, e.g. Jacobi & McKeon (2011), Duvvuri & McKeon (2015). The support of AFOSR under grant number FA 9550-12-1-0469 is gratefully acknowledged.

  1. NMR relaxation in natural soils: Fast Field Cycling and T1-T2 Determination by IR-MEMS

    NASA Astrophysics Data System (ADS)

    Haber-Pohlmeier, S.; Pohlmeier, A.; Stapf, S.; van Dusschoten, D.

    2009-04-01

    Soils are natural porous media of highest importance for food production and sustainment of water resources. For these functions, prominent properties are their ability of water retainment and transport, which are mainly controlled by pore size distribution. The latter is related to NMR relaxation times of water molecules, of which the longitudinal relaxation time can be determined non-invasively by fast-field cycling relaxometry (FFC) and both are obtainable by inversion recovery - multi-echo- imaging (IR-MEMS) methods. The advantage of the FFC method is the determination of the field dependent dispersion of the spin-lattice relaxation rate, whereas MRI at high field is capable of yielding spatially resolved T1 and T2 times. Here we present results of T1- relaxation time distributions of water in three natural soils, obtained by the analysis of FFC data by means of the inverse Laplace transformation (CONTIN)1. Kaldenkirchen soil shows relatively broad bimodal distribution functions D(T1) which shift to higher relaxation rates with increasing relaxation field. These data are compared to spatially resolved T1- and T2 distributions, obtained by IR-MEMS. The distribution of T1 corresponds well to that obtained by FFC.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can bemore » omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less

  3. Far-infrared image restoration analysis of the protostellar cluster in S140

    NASA Technical Reports Server (NTRS)

    Lester, D. F.; Harvey, P. M.; Joy, M.; Ellis, H. B., Jr.

    1986-01-01

    Image restoration techniques are applied to one-dimensional scans at 50 and 100 microns of the protostellar cluster in S140. These measurements resolve the surrounding nebula clearly, and Fourier methods are used to match the effective beam profiles at these wavelengths. This allows the radial distribution of temperature and dust column density to be derived at a diffraction limited spatial resolution of 23 arcsec (0.1 pc). Evidence for heating of the S140 molecular cloud by a nearby ionization front is established, and the dissociation of molecules inside the ionization front is spatially well correlated with the heating of the dust. The far-infrared spectral distribution of the three near-infrared sources within 10 arcsesc of the cluster center is presented.

  4. Eddy Fluxes and Sensitivity of the Water Cycle to Spatial Resolution in Idealized Regional Aquaplanet Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson M.; Leung, Lai-Yung R.; Gustafson, William I.

    2014-02-28

    A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddies fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effect, on the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides the potential for reducing thismore » sensitivity by representing the unresolved eddies by their marginally resolved counterparts.« less

  5. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  6. Characterization and imaging of nanostructured materials using tabletop extreme ultraviolet light sources

    NASA Astrophysics Data System (ADS)

    Karl, Robert; Knobloch, Joshua; Frazer, Travis; Tanksalvala, Michael; Porter, Christina; Bevis, Charles; Chao, Weilun; Abad Mayor, Begoña.; Adams, Daniel; Mancini, Giulia F.; Hernandez-Charpak, Jorge N.; Kapteyn, Henry; Murnane, Margaret

    2018-03-01

    Using a tabletop coherent extreme ultraviolet source, we extend current nanoscale metrology capabilities with applications spanning from new models of nanoscale transport and materials, to nanoscale device fabrication. We measure the ultrafast dynamics of acoustic waves in materials; by analyzing the material's response, we can extract elastic properties of films as thin as 11nm. We extend this capability to a spatially resolved imaging modality by using coherent diffractive imaging to image the acoustic waves in nanostructures as they propagate. This will allow for spatially resolved characterization of the elastic properties of non-isotropic materials.

  7. Applications of nonlinear science and kinetic equations to the spread of epidemics

    NASA Astrophysics Data System (ADS)

    Macinnis, David Robert

    The study of the spread of epidemics is currently growing into a successful subfield of a combination of nonlinear science and statistical mechanics. Topics studied in this field include kinetic and mean field levels of epidemiological models. This thesis consists of the analysis of such topics and specifically directed at the Hantavirus, West Nile virus, and the Bubonic Plague. A successful reaction-diffusion equation approach developed recently by Abramson and Kenkre was able to describe spatiotemporal patterns of the Hantavirus model. From measurements of the parameters of their model it was found that the mice, the carriers of the infection, must be regarded as moving diffusively within attractive potentials representative of home ranges. Several attempts have been made to incorporate home ranges into their model. Two of these attempts are discussed within this thesis. A model to explain the transmission of the West Nile virus within bird and mosquito populations was recently developed by Kenkre, Parmenter, Peixoto, and Sadasiv who showed how spatially resolved issues could be discussed but restricted their analysis to mean field considerations. This thesis extends that study by investigating spatial resolution of the infected populations. Traveling waves of the bird and mosquito populations are found in the West Nile context. Infection control of various epidemics has become increasingly important to limit the potential force of infection into the human population. This thesis contains a quantitative attempt at a theory of such control (for the West Nile virus) via spraying of the mosquito population. Mean field and kinetic level models are proposed in this thesis to describe the transmission of the Bubonic Plague which involves flea and mammal populations. The various populations are found to undergo a variety of bifurcations as well as hysteresis in their steady state regime. Spatially resolved analysis of the populations is also presented.

  8. Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES

    NASA Astrophysics Data System (ADS)

    Ertel, S.; Marshall, J. P.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Eiroa, C.; Mora, A.; del Burgo, C.; Montesinos, B.; Bryden, G.; Danchi, W.; Kirchschlager, F.; Liseau, R.; Maldonado, J.; Pilbratt, G. L.; Schüppler, Ch.; Thébault, Ph.; White, G. J.; Wolf, S.

    2014-01-01

    Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims: Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods: We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD 23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results: A standard single component disk model fails to reproduce the major axis radial profiles at 70 μm, 100 μm, and 160 μm simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions: The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  9. Lock-in thermography approach for imaging the efficiency of light emitters and optical coolers

    NASA Astrophysics Data System (ADS)

    Radevici, Ivan; Tiira, Jonna; Oksanen, Jani

    2017-02-01

    Developing optical cooling technologies requires access to reliable efficiency measurement techniques and ability to detect spatial variations in the efficiency and light emission of the devices. We investigate the possibility to combine the calorimetric efficiency measurement principles with lock-in thermography (LIT) and conventional luminescence microscopy to enable spatially resolved measurement of the efficiency, current spreading and local device heating of double diode structures (DDS) serving as test vessels for developing thermophotonic cooling devices. Our approach enables spatially resolved characterization and localization of the losses of the double diode structures as well as other light emitting semiconductor devices. In particular, the approach may allow directly observing effects like current crowding and surface recombination on the light emission and heating of the DDS devices.

  10. Recent applications of hyperspectral imaging in microbiology.

    PubMed

    Gowen, Aoife A; Feng, Yaoze; Gaston, Edurne; Valdramidis, Vasilis

    2015-05-01

    Hyperspectral chemical imaging (HSI) is a broad term encompassing spatially resolved spectral data obtained through a variety of modalities (e.g. Raman scattering, Fourier transform infrared microscopy, fluorescence and near-infrared chemical imaging). It goes beyond the capabilities of conventional imaging and spectroscopy by obtaining spatially resolved spectra from objects at spatial resolutions varying from the level of single cells up to macroscopic objects (e.g. foods). In tandem with recent developments in instrumentation and sampling protocols, applications of HSI in microbiology have increased rapidly. This article gives a brief overview of the fundamentals of HSI and a comprehensive review of applications of HSI in microbiology over the past 10 years. Technical challenges and future perspectives for these techniques are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Study on the evaluation index of active power reserve

    NASA Astrophysics Data System (ADS)

    Guo, Xiaorui; Liu, Jiantao; Wang, Ke; Min, Lu

    2018-01-01

    Based on the role of active reserve at different time scales, divides the evaluation dimension of active reserve. Analysis the calculation principle of traditional reliability index such as probability of system safety, lack of power shortage and electricity shortage expectancy, and studies the applicability of these indicators to evaluate the reserve capacity on different dimensions. Resolves the evaluation index of active reserve capacity from the dimensions of time dimension, spatial dimension, system state, risk degree and economy, then construct evaluation index of active reserve capacity.

  12. Phases and interfaces from real space atomically resolved data: Physics-based deep data image analysis

    DOE PAGES

    Vasudevan, Rama K.; Ziatdinov, Maxim; Jesse, Stephen; ...

    2016-08-12

    Advances in electron and scanning probe microscopies have led to a wealth of atomically resolved structural and electronic data, often with ~1–10 pm precision. However, knowledge generation from such data requires the development of a physics-based robust framework to link the observed structures to macroscopic chemical and physical descriptors, including single phase regions, order parameter fields, interfaces, and structural and topological defects. Here, we develop an approach based on a synergy of sliding window Fourier transform to capture the local analog of traditional structure factors combined with blind linear unmixing of the resultant 4D data set. This deep data analysismore » is ideally matched to the underlying physics of the problem and allows reconstruction of the a priori unknown structure factors of individual components and their spatial localization. We demonstrate the principles of this approach using a synthetic data set and further apply it for extracting chemical and physically relevant information from electron and scanning tunneling microscopy data. Furthermore, this method promises to dramatically speed up crystallographic analysis in atomically resolved data, paving the road toward automatic local structure–property determinations in crystalline and quasi-ordered systems, as well as systems with competing structural and electronic order parameters.« less

  13. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE PAGES

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn; ...

    2018-04-30

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  14. Spatially resolved texture and microstructure evolution of additively manufactured and gas gun deformed 304L stainless steel investigated by neutron diffraction and electron backscatter diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takajo, Shigehiro; Brown, Donald William; Clausen, Bjorn

    In this study, we report the characterization of a 304L stainless steel cylindrical projectile produced by additive manufacturing. The projectile was compressively deformed using a Taylor Anvil Gas Gun, leading to a huge strain gradient along the axis of the deformed cylinder. Spatially resolved neutron diffraction measurements on the HIgh Pressure Preferred Orientation time-of-flight diffractometer (HIPPO) and Spectrometer for Materials Research at Temperature and Stress diffractometer (SMARTS) beamlines at the Los Alamos Neutron Science CEnter (LANSCE) with Rietveld and single-peak analysis were used to quantitatively evaluate the volume fractions of the α, γ, and ε phases as well as residualmore » strain and texture. The texture of the γ phase is consistent with uniaxial compression, while the α texture can be explained by the Kurdjumov–Sachs relationship from the γ texture after deformation. This indicates that the material first deformed in the γ phase and subsequently transformed at larger strains. The ε phase was only found in volumes close to the undeformed material with a texture connected to the γ texture by the Shoji–Nishiyama orientation relationship. This allows us to conclude that the ε phase occurs as an intermediate phase at lower strain, and is superseded by the α phase when strain increases further. We found a proportionality between the root-mean-squared microstrain of the γ phase, dominated by the dislocation density, with the α volume fraction, consistent with strain-induced martensite α formation. In conclusion, knowledge of the sample volume with the ε phase from the neutron diffraction analysis allowed us to identify the ε phase by electron back scatter diffraction analysis, complementing the neutron diffraction analysis with characterization on the grain level.« less

  15. Direct measurement of lateral transport in membranes by using time-resolved spatial photometry.

    PubMed Central

    Kapitza, H G; McGregor, G; Jacobson, K A

    1985-01-01

    Spatially resolving light detectors allow, with proper calibration, quantitative analysis of the variations in two-dimensional intensity distributions over time. An ultrasensitive microfluorometer was assembled by using as a detector a microchannel plate-intensified video camera. The camera was interfaced with a software-based digital video analysis system to digitize, average, and process images and to directly control the timing of the experiments to minimize exposure of the specimen to light. The detector system has been characterized to allow its use as a photometer. A major application has been to perform fluorescence recovery after photobleaching measurements by using the camera in place of a photomultiplier tube (video-FRAP) with the goal of detecting possible anisotropic diffusion or convective flow. Analysis of the data on macromolecular diffusion in homogenous aqueous glycol solutions yielded diffusion constants in agreement with previous measurements. Results on lipid probe diffusion in dimyristoylphosphatidylcholine multibilayers indicated that at temperatures above the gel-to-liquid crystalline phase transition diffusion is isotropic, and analysis of video-FRAP data yielded diffusion coefficients consistent with those measured previously by using spot photobleaching. However, lipid probes in these multibilayers held just below the main phase transition temperature exhibited markedly anisotropic diffusive fluxes when the bleaching beam was positioned proximate to domain boundaries in the P beta' phase. Lipid probes and lectin receptor complexes diffused isotropically in fibroblast surface membranes with little evidence for diffusion channeled parallel to stress fibers. A second application was to trace the time evolution of cell surface reactions such as patching. The feasibility of following, on the optical scale, the growth of individual receptor clusters induced by the ligand wheat germ agglutinin was demonstrated. PMID:3858869

  16. Direct measurement of lateral transport in membranes by using time-resolved spatial photometry.

    PubMed

    Kapitza, H G; McGregor, G; Jacobson, K A

    1985-06-01

    Spatially resolving light detectors allow, with proper calibration, quantitative analysis of the variations in two-dimensional intensity distributions over time. An ultrasensitive microfluorometer was assembled by using as a detector a microchannel plate-intensified video camera. The camera was interfaced with a software-based digital video analysis system to digitize, average, and process images and to directly control the timing of the experiments to minimize exposure of the specimen to light. The detector system has been characterized to allow its use as a photometer. A major application has been to perform fluorescence recovery after photobleaching measurements by using the camera in place of a photomultiplier tube (video-FRAP) with the goal of detecting possible anisotropic diffusion or convective flow. Analysis of the data on macromolecular diffusion in homogenous aqueous glycol solutions yielded diffusion constants in agreement with previous measurements. Results on lipid probe diffusion in dimyristoylphosphatidylcholine multibilayers indicated that at temperatures above the gel-to-liquid crystalline phase transition diffusion is isotropic, and analysis of video-FRAP data yielded diffusion coefficients consistent with those measured previously by using spot photobleaching. However, lipid probes in these multibilayers held just below the main phase transition temperature exhibited markedly anisotropic diffusive fluxes when the bleaching beam was positioned proximate to domain boundaries in the P beta' phase. Lipid probes and lectin receptor complexes diffused isotropically in fibroblast surface membranes with little evidence for diffusion channeled parallel to stress fibers. A second application was to trace the time evolution of cell surface reactions such as patching. The feasibility of following, on the optical scale, the growth of individual receptor clusters induced by the ligand wheat germ agglutinin was demonstrated.

  17. Iao: The New Adaptive Optics Visible Imaging and Photometric System for AEOS

    DTIC Science & Technology

    2008-09-01

    observations of binary stars, asteroids and planets such as Mercury and Mars [2,3,4]. The Visible Imager is also used to take time resolved photometry ...role it takes high spatial resolution imagery of resolved targets. These targets are primarily low Earth orbiting satellites acquired for the...albedo pattern: Comparing the AEOS and TES data sets [5] D.T. Hall et al. 2007, Journal of Spacecraft and Rockets, 44, 910-919, Time - Resolved I-Band

  18. Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.

    2015-10-15

    Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less

  19. Depth-resolved multilayer pigment identification in paintings: combined use of laser-induced breakdown spectroscopy (LIBS) and optical coherence tomography (OCT).

    PubMed

    Kaszewska, Ewa A; Sylwestrzak, Marcin; Marczak, Jan; Skrzeczanowski, Wojciech; Iwanicka, Magdalena; Szmit-Naud, Elżbieta; Anglos, Demetrios; Targowski, Piotr

    2013-08-01

    A detailed feasibility study on the combined use of laser-induced breakdown spectroscopy with optical coherence tomography (LIBS/OCT), aiming at a realistic depth-resolved elemental analysis of multilayer stratigraphies in paintings, is presented. Merging a high spectral resolution LIBS system with a high spatial resolution spectral OCT instrument significantly enhances the quality and accuracy of stratigraphic analysis. First, OCT mapping is employed prior to LIBS analysis in order to assist the selection of specific areas of interest on the painting surface to be examined in detail. Then, intertwined with LIBS, the OCT instrument is used as a precise profilometer for the online determination of the depth of the ablation crater formed by individual laser pulses during LIBS depth-profile analysis. This approach is novel and enables (i) the precise in-depth scaling of elemental concentration profiles, and (ii) the recognition of layer boundaries by estimating the corresponding differences in material ablation rate. Additionally, the latter is supported, within the transparency of the object, by analysis of the OCT cross-sectional views. The potential of this method is illustrated by presenting results on the detailed analysis of the structure of an historic painting on canvas performed to aid planned restoration of the artwork.

  20. A Spatial Heterodyne Spectrometer for Laboratory Astrophysics; First Interferogram

    NASA Technical Reports Server (NTRS)

    Lawler, J. E.; Labby, Z. E.; Roesler, F. L.; Harlander, J.

    2006-01-01

    A Spatial Heterodyne Spectrometer with broad spectral coverage across the VUV - UV region and with a high (> 500,000 ) spectral resolving power is being built for laboratory measurements of spectroscopic data including emission branching fractions, improved level energies, and hyperfine/isotopic parameters.

  1. EXAMINATION OF MODEL PREDICTIONS AT DIFFERENT HORIZONTAL GRID RESOLUTIONS

    EPA Science Inventory

    While fluctuations in meteorological and air quality variables occur on a continuum of spatial scales, the horizontal grid spacing of coupled meteorological and photochemical models sets a lower limit on the spatial scales that they can resolve. However, both computational costs ...

  2. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    NASA Astrophysics Data System (ADS)

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  3. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions

    NASA Astrophysics Data System (ADS)

    Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo

    2017-05-01

    Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.

  4. Broadband Radio Polarimetry of Fornax A. I. Depolarized Patches Generated by Advected Thermal Material from NGC 1316

    NASA Astrophysics Data System (ADS)

    Anderson, C. S.; Gaensler, B. M.; Heald, G. H.; O’Sullivan, S. P.; Kaczmarek, J. F.; Feain, I. J.

    2018-03-01

    We present observations and analysis of the polarized radio emission from the nearby radio galaxy Fornax A over 1.28–3.1 GHz, using data from the Australia Telescope Compact Array. In this, the first of two associated papers, we use modern broadband polarimetric techniques to examine the nature and origin of conspicuous low-polarization (low-p) patches in the lobes. We resolve the (low-p) patches and find that their low fractional polarization is associated with complicated frequency-dependent interference in the polarized signal generated by Faraday effects along the line of sight (LOS). The low-p patches are spatially correlated with interfaces in the magnetic structure of the lobe, across which the LOS-projected magnetic field changes direction. Spatial correlations with the sky-projected magnetic field orientation and structure in total intensity are also identified and discussed. We argue that the (low-p) patches, along with associated reversals in the LOS magnetic field and other related phenomena, are best explained by the presence of { \\mathcal O }({10}9) {M}ȯ of magnetized thermal plasma in the lobes, structured in shells or filaments, and likely advected from the interstellar medium of NCG 1316 or its surrounding intracluster medium. Our study underscores the power and utility of spatially resolved, broadband, full-polarization radio observations to reveal new facets of flow behaviors and magneto-ionic structure in radio lobes and their interplay with the surrounding environment.

  5. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  6. High-resolution structure, interactions, and dynamics of self-assembled virus-like partilces

    NASA Astrophysics Data System (ADS)

    Raviv, Uri; Asor, R.; Ben-Shaul, O.; Oppenheim, A.; Schlicksup, L. C.; Seltzer, L.; Jarrold, M. F.; Zlotnick, A.

    Using SAXS, in combination with Monte Carlo simulations, and our unique solution x-ray scattering data analysis program, we resolved at high spatial resolution, the manner by which wtSV40 packages its 5.2kb circular DNA about 20 histone octamers in the virus capsid (Figure 1). This structure, known as a mini-chromosome, is highly dynamic and could not be resolved by microscopy methods. Using time-resolved solution SAXS, stopped-flow, and flow-through setups the assembly process of VP1, the major caspid protein of the SV40 virus, with RNA or DNA to form virus-like particles (VLPs) was studied in msec temporal resolution. By mixing the nucleotides and the capsid protein, virus-like particles formed within 35 msec, in the case of RNA that formed T =1 particles, and within 15 seconds in the case of DNA that formed T =7 particles, similar to wt SV40. The structural changes leading to the particle formation were followed in detail. More recently, we have extended this work to study the assembly of HBV virus-like particles.

  7. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    NASA Astrophysics Data System (ADS)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  8. Excitation-resolved multispectral method for imaging pharmacokinetic parameters in dynamic fluorescent molecular tomography

    NASA Astrophysics Data System (ADS)

    Chen, Maomao; Zhou, Yuan; Su, Han; Zhang, Dong; Luo, Jianwen

    2017-04-01

    Imaging of the pharmacokinetic parameters in dynamic fluorescence molecular tomography (DFMT) can provide three-dimensional metabolic information for biological studies and drug development. However, owing to the ill-posed nature of the FMT inverse problem, the relatively low quality of the parametric images makes it difficult to investigate the different metabolic processes of the fluorescent targets with small distances. An excitation-resolved multispectral DFMT method is proposed; it is based on the fact that the fluorescent targets with different concentrations show different variations in the excitation spectral domain and can be considered independent signal sources. With an independent component analysis method, the spatial locations of different fluorescent targets can be decomposed, and the fluorescent yields of the targets at different time points can be recovered. Therefore, the metabolic process of each component can be independently investigated. Simulations and phantom experiments are carried out to evaluate the performance of the proposed method. The results demonstrated that the proposed excitation-resolved multispectral method can effectively improve the reconstruction accuracy of the parametric images in DFMT.

  9. Spectrally resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography

    PubMed Central

    Cong, Wenxiang; Shen, Haiou; Wang, Ge

    2011-01-01

    The nanophosphors, or other similar materials, emit near-infrared (NIR) light upon x-ray excitation. They were designed as optical probes for in vivo visualization and analysis of molecular and cellular targets, pathways, and responses. Based on the previous work on x-ray fluorescence computed tomography (XFCT) and x-ray luminescence computed tomography (XLCT), here we propose a spectrally-resolving and scattering-compensated x-ray luminescence/fluorescence computed tomography (SXLCT or SXFCT) approach to quantify a spatial distribution of nanophosphors (other similar materials or chemical elements) within a biological object. In this paper, the x-ray scattering is taken into account in the reconstruction algorithm. The NIR scattering is described in the diffusion approximation model. Then, x-ray excitations are applied with different spectra, and NIR signals are measured in a spectrally resolving fashion. Finally, a linear relationship is established between the nanophosphor distribution and measured NIR data using the finite element method and inverted using the compressive sensing technique. The numerical simulation results demonstrate the feasibility and merits of the proposed approach. PMID:21721815

  10. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    NASA Astrophysics Data System (ADS)

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E.; Hammond, Adam T.

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  11. Absolute Spatially- and Temporally-Resolved Optical Emission Measurements of rf Glow Discharges in Argon

    PubMed Central

    Djurović, S.; Roberts, J. R.; Sobolewski, M. A.; Olthoff, J. K.

    1993-01-01

    Spatially- and temporally-resolved measurements of optical emission intensities are presented from rf discharges in argon over a wide range of pressures (6.7 to 133 Pa) and applied rf voltages (75 to 200 V). Results of measurements of emission intensities are presented for both an atomic transition (Ar I, 750.4 nm) and an ionic transition (Ar II, 434.8 nm). The absolute scale of these optical emissions has been determined by comparison with the optical emission from a calibrated standard lamp. All measurements were made in a well-defined rf reactor. They provide detailed characterization of local time-resolved plasma conditions suitable for the comparison with results from other experiments and theoretical models. These measurements represent a new level of detail in diagnostic measurements of rf plasmas, and provide insight into the electron transport properties of rf discharges. PMID:28053464

  12. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest.

    PubMed

    Dahlberg, Peter D; Boughter, Christopher T; Faruk, Nabil F; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A; Shaiber, Alon; Sherani, Aiman; Zhang, Jiacheng; Jureller, Justin E; Hammond, Adam T

    2016-11-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH 3 NH 3 PbBr 3 perovskites and measure differences between nanocrystal films and micron scale crystals.

  13. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.

    PubMed

    Dam, Jan S; Yavari, Nazila; Sørensen, Søren; Andersson-Engels, Stefan

    2005-07-10

    We present a fast and accurate method for real-time determination of the absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid samples by using simple continuous-wave noncoherent light sources. The three optical properties are extracted from recordings of angularly resolved transmittance in addition to spatially resolved diffuse reflectance and transmittance. The applied multivariate calibration and prediction techniques are based on multiple polynomial regression in combination with a Newton--Raphson algorithm. The numerical test results based on Monte Carlo simulations showed mean prediction errors of approximately 0.5% for all three optical properties within ranges typical for biological media. Preliminary experimental results are also presented yielding errors of approximately 5%. Thus the presented methods show a substantial potential for simultaneous absorption and scattering characterization of turbid media.

  14. Optical Emission Studies of Copper Plasma Induced Using Infrared Transversely Excited Atmospheric (IR TEA) Carbon Dioxide Laser Pulses.

    PubMed

    Momcilovic, Milos; Kuzmanovic, Miroslav; Rankovic, Dragan; Ciganovic, Jovan; Stoiljkovic, Milovan; Savovic, Jelena; Trtica, Milan

    2015-04-01

    Spatially resolved, time-integrated optical emission spectroscopy was applied for investigation of copper plasma produced by a nanosecond infrared (IR) transversely excited atmospheric (TEA) CO2 laser, operating at 10.6 μm. The effect of surrounding air pressure, in the pressure range 0.1 to 1013 mbar, on plasma formation and its characteristics was investigated. A linear dependence of intensity threshold for plasma formation on logarithm of air pressure was found. Lowering of the air pressure reduces the extent of gas breakdown, enabling better laser-target coupling and thus increases ablation. Optimum air pressure for target plasma formation was 0.1 mbar. Under that pressure, the induced plasma consisted of two clearly distinguished and spatially separated regions. The maximum intensity of emission, with sharp and well-resolved spectral lines and negligibly low background emission, was obtained from a plasma zone 8 mm from the target surface. The estimated excitation temperature in this zone was around 7000 K. The favorable signal to background ratio obtained in this plasma region indicates possible analytical application of TEA CO2 laser produced copper plasma. Detection limits of trace elements present in the Cu sample were on the order of 10 ppm (parts per million). Time-resolved measurements of spatially selected plasma zones were used to find a correlation between the observed spatial position and time delay.

  15. Spatially resolved proteome mapping of laser capture microdissected tissue with automated sample transfer to nanodroplets.

    PubMed

    Zhu, Ying; Dou, Maowei; Piehowski, Paul D; Liang, Yiran; Wang, Fangjun; Chu, Rosalie K; Chrisler, Will; Smith, Jordan N; Schwarz, Kaitlynn C; Shen, Yufeng; Shukla, Anil K; Moore, Ronald J; Smith, Richard D; Qian, Wei-Jun; Kelly, Ryan T

    2018-06-24

    Current mass spectrometry (MS)-based proteomics approaches are ineffective for mapping protein expression in tissue sections with high spatial resolution due to the limited overall sensitivity of conventional workflows. Here we report an integrated and automated method to advance spatially resolved proteomics by seamlessly coupling laser capture microdissection (LCM) with a recently developed nanoliter-scale sample preparation system termed nanoPOTS (Nanodroplet Processing in One pot for Trace Samples). The workflow is enabled by prepopulating nanowells with DMSO, which serves as a sacrificial capture liquid for microdissected tissues. The DMSO droplets efficiently collect laser-pressure catapulted LCM tissues as small as 20 µm in diameter with success rates >87%. We also demonstrate that tissue treatment with DMSO can significantly improve proteome coverage, likely due to its ability to dissolve lipids from tissue and enhance protein extraction efficiency. The LCM-nanoPOTS platform was able to identify 180, 695, and 1827 protein groups on average from 12-µm-thick rat brain cortex tissue sections with diameters of 50, 100, and 200 µm, respectively. We also analyzed 100-µm-diameter sections corresponding to 10-18 cells from three different regions of rat brain and comparatively quantified ~1000 proteins, demonstrating the potential utility for high-resolution spatially resolved mapping of protein expression in tissues. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Spatially-Resolved Observations of Giant Stars with SPHERE

    NASA Astrophysics Data System (ADS)

    Khouri, Theo

    2018-04-01

    SPHERE on the VLT is an extreme adaptive optics instrument that produces images with unprecedented angular resolution at visible and near-infrared wavelengths. Its primary goal is imaging, low-resolution spectroscopic, and polarimetric characterization of extra-solar planetary systems. Nonetheless, the high spatial resolution and the instrument design optimized for observations in a narrow field of view around bright targets make SPHERE the perfect instrument for obtaining spatially-resolved images of close-by giant, evolved stars. This is particularly true at the shortest wavelengths available with SPHERE, where the angular resolution is best (> 20 mas) and these stars appear larger (< 70 mas). In this talk, I will review how SPHERE has been used to study the surfaces and extended atmospheres of evolved stars and how these observations advance our understanding of the stellar pulsations and convective motions that shape these stars. Moreover, I will present recent results from a monitoring campaign of the star R Doradus using SPHERE with observations taken at twelve epochs over eight months that reveal features on the stellar disc varying on timescales of a few weeks. Finally, I will present quasi-simultaneous observations with SPHERE and ALMA that spatially resolve the stellar discs of two asymptotic giant branch stars, Mira and R Doradus, and discuss what such multi-wavelength observation campaigns can teach us about the processes that shape evolved stars.

  17. Rotational cars application to simultaneous and multiple-point temperature and concentration determination in a turbulent flow

    NASA Technical Reports Server (NTRS)

    Snow, J. B.; Murphy, D. V.; Chang, R. K.

    1984-01-01

    Coherent Anti-stokes Raman Scattering (CARS) from the pure rotational Raman lines of N2 is employed to measure the instantaneous rotational temperature of N2 gas at room temperature and below with good spatial resolution. A broad-bandwidth dye laser is used to obtain the entire rotational spectrum from a signal laser pulse; the CARS signal is then dispersed by a spectrograph and recorded on an optical multichannel analyzer. A best-fit temperature is found in several seconds with the aid of a computer for each experimental spectrum by a least squares comparison with calculated spectra. The model used to calculate the theoretical spectra incorporates the temperature and pressure dependence of the pressure-broadened rotational Raman lines, includes the nonresonant background susceptibility, and assumes that the pump laser has a finite linewidth. Temperatures are fit to experimental spectra recorded over the temperature range of 135 to 296K, and over the pressure range of 0.13 to 15.3 atm. In addition to the spatially resolved single point work, we have used multipoint CARS to obtain information from many spatially resolved volume elements along a cylindrical line (0.1 x 0.1 x 2.0 mm). We also obtained qualitative information on the instantaneous species concentration and temperature at 20 spatially resolved volume elements (0.1 x 0.1 x 0.1 mm) along a line.

  18. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.

  19. Spatial Resolution Versus Data Acquisition Efficiency in Mapping an Inhomogeneous System with Species Diffusion

    DOE PAGES

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; ...

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the twomore » modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.« less

  20. Spatially resolved multicomponent gels

    NASA Astrophysics Data System (ADS)

    Draper, Emily R.; Eden, Edward G. B.; McDonald, Tom O.; Adams, Dave J.

    2015-10-01

    Multicomponent supramolecular systems could be used to prepare exciting new functional materials, but it is often challenging to control the assembly across multiple length scales. Here we report a simple approach to forming patterned, spatially resolved multicomponent supramolecular hydrogels. A multicomponent gel is first formed from two low-molecular-weight gelators and consists of two types of fibre, each formed by only one gelator. One type of fibre in this ‘self-sorted network’ is then removed selectively by a light-triggered gel-to-sol transition. We show that the remaining network has the same mechanical properties as it would have done if it initially formed alone. The selective irradiation of sections of the gel through a mask leads to the formation of patterned multicomponent networks, in which either one or two networks can be present at a particular position with a high degree of spatial control.

  1. Vector electric field measurement via position-modulated Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.

    2017-10-01

    High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.

  2. Development of a spatially resolving x-ray crystal spectrometer for measurement of ion-temperature (T(i)) and rotation-velocity (v) profiles in ITER.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Johnson, D; Feder, R; Beiersdorfer, P; Dunn, J; Morris, K; Wang, E; Reinke, M; Podpaly, Y; Rice, J E; Barnsley, R; O'Mullane, M; Lee, S G

    2010-10-01

    Imaging x-ray crystal spectrometer (XCS) arrays are being developed as a US-ITER activity for Doppler measurement of T(i) and v profiles of impurities (W, Kr, and Fe) with ∼7 cm (a/30) and 10-100 ms resolution in ITER. The imaging XCS, modeled after a prototype instrument on Alcator C-Mod, uses a spherically bent crystal and 2D x-ray detectors to achieve high spectral resolving power (E/dE>6000) horizontally and spatial imaging vertically. Two arrays will measure T(i) and both poloidal and toroidal rotation velocity profiles. The measurement of many spatial chords permits tomographic inversion for the inference of local parameters. The instrument design, predictions of performance, and results from C-Mod are presented.

  3. Time-resolved Spectroscopy of RS CVn Binaries and dMe Flare Stars

    NASA Astrophysics Data System (ADS)

    Brown, Alexander

    One of the most striking feature of the first two years of EUVE spectroscopy is the frequent occurrence of largescale coronal variability, in the form of stellar flares and slower changes in activity level due to rotational modulation and evolution of active regions. We propose EUVE observations of a set of RS CVn and dMe star binaries, most with short (< 2 days) periods, to investigate the coronal conditions and physical processes associated with this variability. EUVE flare outbursts have mostly been long duration events lasting many satellite orbits and been readily studied using time-resolved spectroscopy. Our targets are the dMe binaries YY Gem, CC Eri and Gliese 2123, and the RS CVn systems EI Eri, AR Psc, and TY Pyx. YY Gem and TY Pyx are eclipsing systems and Deep Survey photometry will be used to investigate the size of the coronal emitting regions. Situated 73 arcmin from YY Gem is Castor (Alpha Gem) another X-ray source that can be observed (and spatially resolved) simultaneously. We shall use the DS lightcurve to guide our time resolved spectral analysis. Changes in the coronal emission measure as a function of temperature and possibly changes in coronal density will be used to constrain magnetic loop models.

  4. Investigation of the flow structure in thin polymer films using 3D µPTV enhanced by GPU

    NASA Astrophysics Data System (ADS)

    Cavadini, Philipp; Weinhold, Hannes; Tönsmann, Max; Chilingaryan, Suren; Kopmann, Andreas; Lewkowicz, Alexander; Miao, Chuan; Scharfer, Philip; Schabel, Wilhelm

    2018-04-01

    To understand the effects of inhomogeneous drying on the quality of polymer coatings, an experimental setup to resolve the occurring flow field throughout the drying film has been developed. Deconvolution microscopy is used to analyze the flow field in 3D and time. Since the dimension of the spatial component in the direction of the line-of-sight is limited compared to the lateral components, a multi-focal approach is used. Here, the beam of light is equally distributed on up to five cameras using cubic beam splitters. Adding a meniscus lens between each pair of camera and beam splitter and setting different distances between each camera and its meniscus lens creates multi-focality and allows one to increase the depth of the observed volume. Resolving the spatial component in the line-of-sight direction is based on analyzing the point spread function. The analysis of the PSF is computational expensive and introduces a high complexity compared to traditional particle image velocimetry approaches. A new algorithm tailored to the parallel computing architecture of recent graphics processing units has been developed. The algorithm is able to process typical images in less than a second and has further potential to realize online analysis in the future. As a prove of principle, the flow fields occurring in thin polymer solutions drying at ambient conditions and at boundary conditions that force inhomogeneous drying are presented.

  5. Discrimination between biologically relevant calcium phosphate phases by surface-analytical techniques

    NASA Astrophysics Data System (ADS)

    Kleine-Boymann, Matthias; Rohnke, Marcus; Henss, Anja; Peppler, Klaus; Sann, Joachim; Janek, Juergen

    2014-08-01

    The spatially resolved phase identification of biologically relevant calcium phosphate phases (CPPs) in bone tissue is essential for the elucidation of bone remodeling mechanisms and for the diagnosis of bone diseases. Analytical methods with high spatial resolution for the discrimination between chemically quite close phases are rare. Therefore the applicability of state-of-the-art ToF-SIMS, XPS and EDX as chemically specific techniques was investigated. The eight CPPs hydroxyapatite (HAP), β-tricalcium phosphate (β-TCP), α-tricalcium phosphate (α-TCP), octacalcium phosphate (OCP), dicalcium phosphate dihydrate (DCPD), dicalcium phosphate (DCP), monocalcium phosphate (MCP) and amorphous calcium phosphate (ACP) were either commercial materials in high purity or synthesized by ourselves. The phase purity was proven by XRD analysis. All of the eight CPPs show different mass spectra and the phases can be discriminated by applying the principal component analysis method to the mass spectrometric data. The Ca/P ratios of all phosphates were determined by XPS and EDX. With both methods some CPPs can be distinguished, but the obtained Ca/P ratios deviate systematically from their theoretical values. It is necessary in any case to determine a calibration curve, respectively the ZAF values, from appropriate standards. In XPS also the O(1s)-satellite signals are correlated to the CPPs composition. Angle resolved and long-term XPS measurements of HAP clearly prove that there is no phosphate excess at the surface. Decomposition due to X-ray irradiation has not been observed.

  6. Compact all-fiber quartz-enhanced photoacoustic spectroscopy sensor with a 30.72 kHz quartz tuning fork and spatially resolved trace gas detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Yufei, E-mail: mayufei@hit.edu.cn; Post-doctoral Mobile Station of Power Engineering and Engineering Thermophysics, Harbin Institute of Technology, Harbin 150001; He, Ying

    An ultra compact all-fiber quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor using quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was demonstrated. Such a sensor architecture has the advantages of easier optical alignment, lower insertion loss, lower cost, and more compact compared with a conventional QEPAS sensor using discrete optical components for laser delivery and coupling to the QTF. A fiber beam splitter and three QTFs were employed to perform multi-point detection and demonstrated the potential of spatially resolved measurements.

  7. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-more » $$\\alpha$$ emission. Density profiles were measured from K-$$\\alpha$$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$$\\alpha$$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.« less

  8. Spatially Resolved Spectroscopy of the PMS Quadruple GG Tau: Evidence for a Substellar Companion

    NASA Astrophysics Data System (ADS)

    White, R. J.; Ghez, A. M.; Schultz, G.; Reid, I. N.

    1998-05-01

    We present spatially resolved optical spectra from HST (FOS) and the Keck Telescope (HIRES & LRIS) of the components of the quadruple PMS system GG Tau. According to the latest PMS evolutionary models, the coldest component of this system, GG Tau/c B, appears to be substellar with a preliminary mass of only 50 M_J. This putative brown dwarf is especially intriguing as it shows clear signatures of accretion. The components of this quadruple, which span a wide range in mass, are used to test theoretical low mass PMS evolutionary models under the assumption that the components should be coeval.

  9. Diagnosing the plasma nonuniformity in an iron opacity experiment by spatially resolved Al 1s-2p absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaoding; Research Center of Laser Fusion, P. O. Box 919-986, Mianyang 621900; Zhang Jiyan

    Generating a well-characterized hot-dense sample is of great importance to high quality opacity measurements. In this paper, we report on an experimental investigation of the plasma nonuniformity in a radiatively heated iron opacity sample by spatially resolved Al 1s-2p absorption spectroscopy. The iron sample was tamped by plastic at both sides and was heated by thermal x-ray radiation generated in a gold Hohlraum, and an Al layer attached to it was used as a tracer for temperature diagnosis. Spatially resolved 1s-2p transition absorption spectra of the Al tracer were measured by the technique of point-projection-spectroscopy, and temperatures in the samplemore » were obtained by comparing the measured spectra with detailed-term-accounting model calculations, with the density of the sample deduced using a combination of side-on radiography and radiative hydrodynamic simulation. The results showed the existence of axial temperature nonuniformity in the sample, and these temperature variations have been used to explain the shift of iron 2p-3d transition absorption feature along the axial direction of the Hohlraum used to heat the sample successfully.« less

  10. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  11. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities.

    PubMed

    Sawyer, Audrey H; David, Cédric H; Famiglietti, James S

    2016-08-12

    Submarine groundwater discharge (SGD) delivers water and dissolved chemicals from continents to oceans, and its spatial distribution affects coastal water quality. Unlike rivers, SGD is broadly distributed and relatively difficult to measure, especially at continental scales. We present spatially resolved estimates of fresh (land-derived) SGD for the contiguous United States based on historical climate records and high-resolution hydrographic data. Climate controls regional patterns in fresh SGD, while coastal drainage geometry imparts strong local variability. Because the recharge zones that contribute fresh SGD are densely populated, the quality and quantity of fresh SGD are both vulnerable to anthropogenic disturbance. Our analysis unveils hot spots for contaminant discharge to marine waters and saltwater intrusion into coastal aquifers. Copyright © 2016, American Association for the Advancement of Science.

  12. Poster 8: ALMA observations of Titan : Vertical and spatial distributions of nitriles

    NASA Astrophysics Data System (ADS)

    Moreno, Raphael; Lellouch, Emmanuel; Vinatier, Sandrine; Gurwell, Mark; Moullet, Arielle; Lara, Luisa; Hidayat, Taufiq

    2016-06-01

    We report submm observations of Titan performed with the ALMA interferometer centered at the rotational frequencies of HCN(4-3) and HNC(4-3), i.e. 354 and 362 GHz. These measurements yielded disk-resolved emission spectra of Titan with an angular resolution of ˜0.47". Titan's angular surface diameter was 0.77". Data were acquired in summer 2012 near the greatest eastern and western elongations of Titan at a spectral resolution of 122 kHz (λ/dλ = 3106). We will present radiative transfer analysis of the acquired spectra. With the combination of all the detected rotational lines, we will constrain the atmospheric temperature, the spatial and vertical distribution HCN, HC3N, CH3CN, HNC, C2H5CN, as well as isotopic ratios.

  13. Retinal ganglion cell distribution and spatial resolving power in elasmobranchs.

    PubMed

    Lisney, Thomas J; Collin, Shaun P

    2008-01-01

    The total number, distribution and peak density of presumed retinal ganglion cells was assessed in 10 species of elasmobranch (nine species of shark and one species of batoid) using counts of Nissl-stained cells in retinal wholemounts. The species sampled include a number of active, predatory benthopelagic and pelagic sharks that are found in a variety of coastal and oceanic habitats and represent elasmobranch groups for which information of this nature is currently lacking. The topographic distribution of cells was heterogeneous in all species. Two benthic species, the shark Chiloscyllium punctatum and the batoid Taeniura lymma, have a dorsal or dorso-central horizontal streak of increased cell density, whereas the majority of the benthopelagic and pelagic sharks examined exhibit a more concentric pattern of increasing cell density, culminating in a central area centralis of higher cell density located close to the optic nerve head. The exception is the shark Alopias superciliosus, which possesses a ventral horizontal streak. Variation in retinal ganglion cell topography appears to be related to the visual demands of different habitats and lifestyles, as well as the positioning of the eyes in the head. The upper limits of spatial resolving power were calculated for all 10 species, using peak ganglion cell densities and estimates of focal length taken from cryo-sectioned eyes in combination with information from the literature. Spatial resolving power ranged from 2.02 to 10.56 cycles deg(-1), which is in accordance with previous studies. Species with a lower spatial resolving power tend to be benthic and/or coastal species that feed on benthic invertebrates and fishes. Active, benthopelagic and pelagic species from more oceanic habitats which feed on larger, more active prey, possess a higher resolving power. Additionally, ganglion cells in a juvenile of C. punctatum, were retrogradely-labeled from the optic nerve with biotinylated dextran amine (BDA). A comparison of the BDA- labeled material and tissue stained for Nissl substance indicates that 76% of the cells in the retinal ganglion cell and inner plexiform layers of the central retina in this species are non-ganglion cells. Copyright 2008 S. Karger AG, Basel.

  14. Deriving spatial trends of air pollution at a neighborhood-scale through mobile monitoring

    EPA Science Inventory

    Abstract: Measuring air pollution in real-time using an instrumented vehicle platform has been an emerging strategy to resolve air pollution trends at a very fine spatial scale (10s of meters). Achieving second-by-second data representative of urban air quality trends requires a...

  15. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization

    EPA Science Inventory

    The maximum depth of colonization (Zc) is a useful measure of seagrass growth that describes response to light attenuation in the water column. However, lack of standardization among methods for estimating Zc has limited the description of habitat requirements at spatial scales m...

  16. Measurement of spatial and temporal variation in volatile hazardous air pollutants in Tacoma, Washington, using a mobile membrane introduction mass spectrometry (MIMS) system.

    PubMed

    Davey, Nicholas G; Fitzpatrick, Cole T E; Etzkorn, Jacob M; Martinsen, Morten; Crampton, Robert S; Onstad, Gretchen D; Larson, Timothy V; Yost, Michael G; Krogh, Erik T; Gilroy, Michael; Himes, Kathy H; Saganić, Erik T; Simpson, Christopher D; Gill, Christopher G

    2014-09-19

    The objective of this study was to use membrane introduction mass spectrometry (MIMS), implemented on a mobile platform, in order to provide real-time, fine-scale, temporally and spatially resolved measurements of several hazardous air pollutants. This work is important because there is now substantial evidence that fine-scale spatial and temporal variations of air pollutant concentrations are important determinants of exposure to air pollution and adverse health outcomes. The study took place in Tacoma, WA during periods of impaired air quality in the winter and summer of 2008 and 2009. Levels of fine particles were higher in winter compared to summer, and were spatially uniform across the study area. Concentrations of vapor phase pollutants measured by membrane introduction mass spectrometry (MIMS), notably benzene and toluene, had relatively uniform spatial distributions at night, but exhibited substantial spatial variation during the day-daytime levels were up to 3-fold higher at traffic-impacted locations compared to a reference site. Although no direct side-by-side comparison was made between the MIMS system and traditional fixed site monitors, the MIMS system typically reported higher concentrations of specific VOCs, particularly benzene, ethylbenzene and naphthalene, compared to annual average concentrations obtained from SUMA canisters and gas chromatographic analysis at the fixed sites.

  17. Resolving human object recognition in space and time

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2014-01-01

    A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044

  18. Imaging of electrical response of NiO x under controlled environment with sub-25-nm resolution

    DOE PAGES

    Jacobs, Christopher B.; Ievlev, Anton V.; Collins, Liam F.; ...

    2016-07-19

    The spatially resolved electrical response of rf-sputtered polycrystalline NiO x films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy at 0%, 50%, and 80% relative humidity with sub 25nm resolution. The surface potential of NiO x decreased by about 180 mV and resistance decreased in a nonlinear fashion by about 2 G when relative humidity was increased from 0% to 80%. The dimensionality of surface features obtained through autocorrelation analysis of topological, surfacemore » potential and resistance maps increased linearly with increased relative humidity as water was adsorbed onto the film surface. Spatially resolved surface potential and resistance of the NiO x films were found to be heterogeneous, with distinct features that grew in size from about 60 nm to 175 nm between 0% and 80% RH levels, respectively. Here, we find that the changes in the heterogeneous character of the NiO films are consistent through the topological, surface potential, and resistance measurements, suggesting that the nanoscale surface potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO x film.« less

  19. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy

    PubMed Central

    Hirsch, M.; Catchpole-Smith, S.; Patel, R.; Marrow, P.; Li, Wenqi; Tuck, C.; Sharples, S. D.

    2017-01-01

    Developments in additive manufacturing technology are serving to expand the potential applications. Critical developments are required in the supporting areas of measurement and in process inspection to achieve this. CM247LC is a nickel superalloy that is of interest for use in aerospace and civil power plants. However, it is difficult to process via selective laser melting (SLM) as it suffers from cracking during rapid cooling and solidification. This limits the viability of CM247LC parts created using SLM. To quantify part integrity, spatially resolved acoustic spectroscopy (SRAS) has been identified as a viable non-destructive evaluation technique. In this study, a combination of optical microscopy and SRAS was used to identify and classify the surface defects present in SLM-produced parts. By analysing the datasets and scan trajectories, it is possible to correlate morphological information with process parameters. Image processing was used to quantify porosity and cracking for bulk density measurement. Analysis of surface acoustic wave data showed that an error in manufacture in the form of an overscan occurred. Comparing areas affected by overscan with a bulk material, a change in defect density from 1.17% in the bulk material to 5.32% in the overscan regions was observed, highlighting the need to reduce overscan areas in manufacture. PMID:28989306

  20. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Zhao, Shi; Howey, David A.

    2016-09-01

    Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models - such as thermal equivalent circuits (TEC) - are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a low-order 2D thermal model of a cylindrical battery based on a Chebyshev spectral-Galerkin (SG) method, capable of predicting the full temperature distribution with a similar efficiency to a TEC. The model accounts for transient heat generation, anisotropic heat conduction, and non-homogeneous convection boundary conditions. The accuracy of the model is validated through comparison with finite element simulations, which show that the 2-D temperature field (r, z) of a large format (64 mm diameter) cell can be accurately modelled with as few as 4 states. Furthermore, the performance of the model for a range of Biot numbers is investigated via frequency analysis. For larger cells or highly transient thermal dynamics, the model order can be increased for improved accuracy. The incorporation of this model in a state estimation scheme with experimental validation against thermocouple measurements is presented in the companion contribution (http://www.sciencedirect.com/science/article/pii/S0378775316308163)

  1. Evidence for intermittency and a truncated power law from highly resolved aphid movement data.

    PubMed

    Mashanova, Alla; Oliver, Tom H; Jansen, Vincent A A

    2010-01-06

    Power laws are increasingly used to describe animal movement. Despite this, the use of power laws has been criticized on both empirical and theoretical grounds, and alternative models based on extensions of conventional random walk theory (Brownian motion) have been suggested. In this paper, we analyse a large volume of data of aphid walking behaviour (65,068 data points), which provides a highly resolved dataset to investigate the pattern of movement. We show that aphid movement is intermittent--with alternations of a slow movement with frequent change of direction and a fast, relatively directed movement--and that the fast movement consists of two phases--a strongly directed phase that gradually changes into an uncorrelated random walk. By measuring the mean-squared displacement and the duration of non-stop movement episodes we found that both spatial and temporal aspects of aphid movement are best described using a truncated power law approach. We suggest that the observed spatial pattern arises from the duration of non-stop movement phases rather than from correlations in turning angles. We discuss the implications of these findings for interpreting movement data, such as distinguishing between movement and non-movement, and the effect of the range of data used in the analysis on the conclusions.

  2. The effect of Jupiter oscillations on Juno gravity measurements

    NASA Astrophysics Data System (ADS)

    Durante, Daniele; Guillot, Tristan; Iess, Luciano

    2017-01-01

    Seismology represents a unique method to probe the interiors of giant planets. Recently, Saturn's f-modes have been indirectly observed in its rings, and there is strong evidence for the detection of Jupiter global modes by means of ground-based, spatially-resolved, velocimetry measurements. We propose to exploit Juno's extremely accurate radio science data by looking at the gravity perturbations that Jupiter's acoustic modes would produce. We evaluate the perturbation to Jupiter's gravitational field using the oscillation spectrum of a polytrope with index 1 and the corresponding radial eigenfunctions. We show that Juno will be most sensitive to the fundamental mode (n = 0), unless its amplitude is smaller than 0.5 cm/s, i.e. 100 times weaker than the n ∼ 4 - 11 modes detected by spatially-resolved velocimetry. The oscillations yield contributions to Juno's measured gravitational coefficients similar to or larger than those expected from shallow zonal winds (extending to depths less than 300 km). In the case of a strong f-mode (radial velocity ∼ 30 cm/s), these contributions would become of the same order as those expected from deep zonal winds (extending to 3000 km), especially on the low degree zonal harmonics, therefore requiring a new approach to the analysis of Juno data.

  3. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy.

    PubMed

    Hirsch, M; Catchpole-Smith, S; Patel, R; Marrow, P; Li, Wenqi; Tuck, C; Sharples, S D; Clare, A T

    2017-09-01

    Developments in additive manufacturing technology are serving to expand the potential applications. Critical developments are required in the supporting areas of measurement and in process inspection to achieve this. CM247LC is a nickel superalloy that is of interest for use in aerospace and civil power plants. However, it is difficult to process via selective laser melting (SLM) as it suffers from cracking during rapid cooling and solidification. This limits the viability of CM247LC parts created using SLM. To quantify part integrity, spatially resolved acoustic spectroscopy (SRAS) has been identified as a viable non-destructive evaluation technique. In this study, a combination of optical microscopy and SRAS was used to identify and classify the surface defects present in SLM-produced parts. By analysing the datasets and scan trajectories, it is possible to correlate morphological information with process parameters. Image processing was used to quantify porosity and cracking for bulk density measurement. Analysis of surface acoustic wave data showed that an error in manufacture in the form of an overscan occurred. Comparing areas affected by overscan with a bulk material, a change in defect density from 1.17% in the bulk material to 5.32% in the overscan regions was observed, highlighting the need to reduce overscan areas in manufacture.

  4. Energy transport in a shear flow of particles in a two-dimensional dusty plasma.

    PubMed

    Feng, Yan; Goree, J; Liu, Bin

    2012-11-01

    A shear flow of particles in a laser-driven two-dimensional (2D) dusty plasma is observed in a study of viscous heating and thermal conduction. Video imaging and particle tracking yields particle velocity data, which we convert into continuum data, presented as three spatial profiles: mean particle velocity (i.e., flow velocity), mean-square particle velocity, and mean-square fluctuations of particle velocity. These profiles and their derivatives allow a spatially resolved determination of each term in the energy and momentum continuity equations, which we use for two purposes. First, by balancing these terms so that their sum (i.e., residual) is minimized while varying viscosity η and thermal conductivity κ as free parameters, we simultaneously obtain values for η and κ in the same experiment. Second, by comparing the viscous heating and thermal conduction terms, we obtain a spatially resolved characterization of the viscous heating.

  5. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells.

    PubMed

    Hess, Katherine C; Epting, William K; Litster, Shawn

    2011-12-15

    We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.

  6. The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.; Onken, Christopher A.; Bershady, Matthew A.

    2017-02-01

    We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure MBH determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first (V) and second (σ⋆) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.

  7. Bioimaging of cells and tissues using accelerator-based sources.

    PubMed

    Petibois, Cyril; Cestelli Guidi, Mariangela

    2008-07-01

    A variety of techniques exist that provide chemical information in the form of a spatially resolved image: electron microprobe analysis, nuclear microprobe analysis, synchrotron radiation microprobe analysis, secondary ion mass spectrometry, and confocal fluorescence microscopy. Linear (LINAC) and circular (synchrotrons) particle accelerators have been constructed worldwide to provide to the scientific community unprecedented analytical performances. Now, these facilities match at least one of the three analytical features required for the biological field: (1) a sufficient spatial resolution for single cell (< 1 mum) or tissue (<1 mm) analyses, (2) a temporal resolution to follow molecular dynamics, and (3) a sensitivity in the micromolar to nanomolar range, thus allowing true investigations on biological dynamics. Third-generation synchrotrons now offer the opportunity of bioanalytical measurements at nanometer resolutions with incredible sensitivity. Linear accelerators are more specialized in their physical features but may exceed synchrotron performances. All these techniques have become irreplaceable tools for developing knowledge in biology. This review highlights the pros and cons of the most popular techniques that have been implemented on accelerator-based sources to address analytical issues on biological specimens.

  8. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    DOE PAGES

    Hakel, Peter

    2016-10-01

    Here we report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  9. FESTR: Finite-Element Spectral Transfer of Radiation spectroscopic modeling and analysis code

    NASA Astrophysics Data System (ADS)

    Hakel, Peter

    2016-10-01

    We report on the development of a new spectral postprocessor of hydrodynamic simulations of hot, dense plasmas. Based on given time histories of one-, two-, and three-dimensional spatial distributions of materials, and their local temperature and density conditions, spectroscopically-resolved signals are computed. The effects of radiation emission and absorption by the plasma on the emergent spectra are simultaneously taken into account. This program can also be used independently of hydrodynamic calculations to analyze available experimental data with the goal of inferring plasma conditions.

  10. Next generation laser-based standoff spectroscopy techniques for Mars exploration.

    PubMed

    Gasda, Patrick J; Acosta-Maeda, Tayro E; Lucey, Paul G; Misra, Anupam K; Sharma, Shiv K; Taylor, G Jeffrey

    2015-01-01

    In the recent Mars 2020 Rover Science Definition Team Report, the National Aeronautics and Space Administration (NASA) has sought the capability to detect and identify elements, minerals, and most importantly, biosignatures, at fine scales for the preparation of a retrievable cache of samples. The current Mars rover, the Mars Science Laboratory Curiosity, has a remote laser-induced breakdown spectroscopy (LIBS) instrument, a type of quantitative elemental analysis, called the Chemistry Camera (ChemCam) that has shown that laser-induced spectroscopy instruments are not only feasible for space exploration, but are reliable and complementary to traditional elemental analysis instruments such as the Alpha Particle X-Ray Spectrometer. The superb track record of ChemCam has paved the way for other laser-induced spectroscopy instruments, such as Raman and fluorescence spectroscopy. We have developed a prototype remote LIBS-Raman-fluorescence instrument, Q-switched laser-induced time-resolved spectroscopy (QuaLITy), which is approximately 70 000 times more efficient at recording signals than a commercially available LIBS instrument. The increase in detection limits and sensitivity is due to our development of a directly coupled system, the use of an intensified charge-coupled device image detector, and a pulsed laser that allows for time-resolved measurements. We compare the LIBS capabilities of our system with an Ocean Optics spectrometer instrument at 7 m and 5 m distance. An increase in signal-to-noise ratio of at least an order of magnitude allows for greater quantitative analysis of the elements in a LIBS spectrum with 200-300 μm spatial resolution at 7 m, a Raman instrument capable of 1 mm spatial resolution at 3 m, and bioorganic fluorescence detection at longer distances. Thus, the new QuaLITy instrument fulfills all of the NASA expectations for proposed instruments.

  11. Multimodal MSI in Conjunction with Broad Coverage Spatially Resolved MS2 Increases Confidence in Both Molecular Identification and Localization.

    PubMed

    Veličković, Dušan; Chu, Rosalie K; Carrell, Alyssa A; Thomas, Mathew; Paša-Tolić, Ljiljana; Weston, David J; Anderton, Christopher R

    2018-01-02

    One critical aspect of mass spectrometry imaging (MSI) is the need to confidently identify detected analytes. While orthogonal tandem MS (e.g., LC-MS 2 ) experiments from sample extracts can assist in annotating ions, the spatial information about these molecules is lost. Accordingly, this could cause mislead conclusions, especially in cases where isobaric species exhibit different distributions within a sample. In this Technical Note, we employed a multimodal imaging approach, using matrix assisted laser desorption/ionization (MALDI)-MSI and liquid extraction surface analysis (LESA)-MS 2 I, to confidently annotate and localize a broad range of metabolites involved in a tripartite symbiosis system of moss, cyanobacteria, and fungus. We found that the combination of these two imaging modalities generated very congruent ion images, providing the link between highly accurate structural information onfered by LESA and high spatial resolution attainable by MALDI. These results demonstrate how this combined methodology could be very useful in differentiating metabolite routes in complex systems.

  12. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks

    PubMed Central

    Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-01-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100 ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250 ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. PMID:27039703

  13. Line-scan spatially offset Raman spectroscopy for inspecting subsurface food safety and quality

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2016-05-01

    This paper presented a method for subsurface food inspection using a newly developed line-scan spatially offset Raman spectroscopy (SORS) technique. A 785 nm laser was used as a Raman excitation source. The line-shape SORS data was collected in a wavenumber range of 0-2815 cm-1 using a detection module consisting of an imaging spectrograph and a CCD camera. A layered sample, which was created by placing a plastic sheet cut from the original container on top of cane sugar, was used to test the capability for subsurface food inspection. A whole set of SORS data was acquired in an offset range of 0-36 mm (two sides of the laser) with a spatial interval of 0.07 mm. Raman spectrum from the cane sugar under the plastic sheet was resolved using self-modeling mixture analysis algorithms, demonstrating the potential of the technique for authenticating foods and ingredients through packaging. The line-scan SORS measurement technique provides a new method for subsurface inspection of food safety and quality.

  14. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging.

    PubMed

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong

    2017-07-20

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.

  15. Road displacement model based on structural mechanics

    NASA Astrophysics Data System (ADS)

    Lu, Xiuqin; Guo, Qingsheng; Zhang, Yi

    2006-10-01

    Spatial conflict resolution is an important part of cartographic generalization, and it can deal with the problems of having too much information competing for too little space, while feature displacement is a primary operator of map generalization, which aims at resolving the spatial conflicts between neighbor objects especially road features. Considering the road object, this paper explains an idea of displacement based on structural mechanics. In view of spatial conflict problem after road symbolization, it is the buffer zones that are used to detect conflicts, then we focus on each conflicting region, with the finite element method, taking every triangular element for analysis, listing stiffness matrix, gathering system equations and calculating with iteration strategy, and we give the solution to road symbol conflicts. Being like this until all the conflicts in conflicting regions are solved, then we take the whole map into consideration again, conflicts are detected by reusing the buffer zones and solved by displacement operator, so as to all of them are handled.

  16. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  17. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy

    PubMed Central

    Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer

    2017-01-01

    Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm−1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine. PMID:28198384

  18. Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy

    NASA Astrophysics Data System (ADS)

    Amenabar, Iban; Poly, Simon; Goikoetxea, Monika; Nuansing, Wiwat; Lasch, Peter; Hillenbrand, Rainer

    2017-02-01

    Infrared nanospectroscopy enables novel possibilities for chemical and structural analysis of nanocomposites, biomaterials or optoelectronic devices. Here we introduce hyperspectral infrared nanoimaging based on Fourier transform infrared nanospectroscopy with a tunable bandwidth-limited laser continuum. We describe the technical implementations and present hyperspectral infrared near-field images of about 5,000 pixel, each one covering the spectral range from 1,000 to 1,900 cm-1. To verify the technique and to demonstrate its application potential, we imaged a three-component polymer blend and a melanin granule in a human hair cross-section, and demonstrate that multivariate data analysis can be applied for extracting spatially resolved chemical information. Particularly, we demonstrate that distribution and chemical interaction between the polymer components can be mapped with a spatial resolution of about 30 nm. We foresee wide application potential of hyperspectral infrared nanoimaging for valuable chemical materials characterization and quality control in various fields ranging from materials sciences to biomedicine.

  19. Comparison of in-situ and optical current-meter estimates of rip-current circulation

    NASA Astrophysics Data System (ADS)

    Moulton, M.; Chickadel, C. C.; Elgar, S.; Raubenheimer, B.

    2016-12-01

    Rip currents are fast, narrow, seaward flows that transport material from the shoreline to the shelf. Spatially and temporally complex rip current circulation patterns are difficult to resolve with in-situ instrument arrays. Here, high spatial-resolution estimates of rip current circulation from remotely sensed optical images of the sea surface are compared with in-situ estimates of currents in and near channels ( 1- to 2-m deep and 30-m wide) dredged across the surf zone. Alongshore flows are estimated using the optical current-meter method, and cross-shore flows are derived with the assumption of continuity. The observations span a range of wave conditions, tidal elevations, and flow patterns, including meandering alongshore currents near and in the channel, and 0.5 m/s alongshore flows converging at a 0.8 m/s rip jet in the channel. In addition, the remotely sensed velocities are used to investigate features of the spatially complex flow patterns not resolved by the spatially sparse in-situ sensors, including the spatial extent of feeder current zones and the width, alongshore position, and cross-shore extent of rip current jets. Funded by ASD(R&E) and NSF.

  20. The Sun at high spatial resolution: The physics of small spatial structures in a magnetized medium

    NASA Technical Reports Server (NTRS)

    Rosner, R. T.

    1986-01-01

    An attempt is made to provide a perspective on the problem of spatial structuring on scales smaller than can presently be directly and regularly observed from the ground or with which current space-based instrumentation can be anticipated. There is abundant evidence from both observations and theory that such spatial structuring of the solar outer atmosphere is ubiquitous not only on the observed scales, but also on spatial scales down to (at least) the subarcsecond range. This is not to say that the results to be obtained from observations on these small scales can be anticipated: quite the opposite. What is clear instead is that many of the classic problems of coronal and chromospheric activity - involving the basic dissipative nature of magnetized plasmas - will be seen from a novel perspective at these scales, and that there are reasons for believing that dynamical processes of importance to activity on presently-resolved scales will themselves begin to be resolved on the sub-arcsecond level. Since the Sun is the only astrophysical laboratory for which there is any hope of studying these processes in any detail, this observatioinal opportunity is an exciting prospect for any student of magnetic activity in astrophysics.

  1. Image Analysis of DNA Fiber and Nucleus in Plants.

    PubMed

    Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi

    2016-01-01

    Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.

  2. Resolved Dual-Frequency Observations of the Debris Disk Around AU Mic: Strengths of Bodies in the Collisional Cascade

    NASA Astrophysics Data System (ADS)

    Carter, Evan; Hughes, A. Meredith; Daley, Cail; Flaherty, Kevin; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; MacGregor, Meredith Ann; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; Moor, Attila; Kospal, Agnes

    2018-01-01

    Debris disks are hallmarks of mature planetary systems, with second-generation dust produced via collisions between pluto-like planetesimals. The vertical structure of a debris disk encodes unique information about the dynamical state of the system, particularly at millimeter wavelengths where gravitational effects dominate over the effects of stellar radiation. We present 450 μm Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the edge-on debris disk around AU Mic, a nearby (d = 9.91 ± 0.10 pc) M1-type star. The 0.3'' angular resolution of the data allows us to spatially resolve the scale height of the disk, complementing previous observations at a wavelength of 1.3 mm. By resolving the vertical structure of the disk at these two widely-separated frequencies, we are able to spatially resolve the spectral index and study variations in the grain size distribution as a function of disk radius. The comparison of scale heights for two different wavelengths and therefore particle sizes also constrains the velocity dispersion as a function of grain size, which allows us to probe the strengths of bodies in the collisional cascade for the first time outside the Solar System.

  3. Pinned, optically aligned diagnostic dock for use on the Z facility.

    PubMed

    Gomez, M R; Rochau, G A; Bailey, J E; Dunham, G S; Kernaghan, M D; Gard, P; Robertson, G K; Owen, A C; Argo, J W; Nielsen, D S; Lake, P W

    2012-10-01

    The pinned optically aligned diagnostic dock (PODD) is a multi-configuration diagnostic platform designed to measure x-ray emission on the Z facility. The PODD houses two plasma emission acquisition (PEA) systems, which are aligned with a set of precision machined pins. The PEA systems are modular, allowing a single diagnostic housing to support several different diagnostics. The PEA configurations fielded to date include both time-resolved and time-integrated, 1D spatially resolving, elliptical crystal spectrometers, and time-integrated, 1D spatially resolving, convex crystal spectrometers. Additional proposed configurations include time-resolved, monochromatic mirrored pinhole imagers and arrays of filtered x-ray diodes, diamond photo-conducting diode detectors, and bolometers. The versatility of the PODD system will allow the diagnostic configuration of the Z facility to be changed without significantly adding to the turn-around time of the machine. Additionally, the PODD has been designed to allow instrument setup to be completed entirely off-line, leaving only a refined alignment process to be performed just prior to a shot, which is a significant improvement over the instrument the PODD replaces. Example data collected with the PODD are presented.

  4. Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs

    PubMed Central

    2017-01-01

    The magnitude of diffusive carbon dioxide (CO2) and methane (CH4) emission from man-made reservoirs is uncertain because the spatial variability generally is not well-represented. Here, we examine the spatial variability and its drivers for partial pressure, gas-exchange velocity (k), and diffusive flux of CO2 and CH4 in three tropical reservoirs using spatially resolved measurements of both gas concentrations and k. We observed high spatial variability in CO2 and CH4 concentrations and flux within all three reservoirs, with river inflow areas generally displaying elevated CH4 concentrations. Conversely, areas close to the dam are generally characterized by low concentrations and are therefore not likely to be representative for the whole system. A large share (44–83%) of the within-reservoir variability of gas concentration was explained by dissolved oxygen, pH, chlorophyll, water depth, and within-reservoir location. High spatial variability in k was observed, and kCH4 was persistently higher (on average, 2.5 times more) than kCO2. Not accounting for the within-reservoir variability in concentrations and k may lead to up to 80% underestimation of whole-system diffusive emission of CO2 and CH4. Our findings provide valuable information on how to develop field-sampling strategies to reliably capture the spatial heterogeneity of diffusive carbon fluxes from reservoirs. PMID:29257874

  5. Pulse shape measurements using single shot-frequency resolved optical gating for high energy (80 J) short pulse (600 fs) laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniyappan, S.; Johnson, R.; Shimada, T.

    2010-10-15

    Relevant to laser based electron/ion accelerations, a single shot second harmonic generation frequency resolved optical gating (FROG) system has been developed to characterize laser pulses (80 J, {approx}600 fs) incident on and transmitted through nanofoil targets, employing relay imaging, spatial filter, and partially coated glass substrates to reduce spatial nonuniformity and B-integral. The device can be completely aligned without using a pulsed laser source. Variations of incident pulse shape were measured from durations of 613 fs (nearly symmetric shape) to 571 fs (asymmetric shape with pre- or postpulse). The FROG measurements are consistent with independent spectral and autocorrelation measurements.

  6. Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection.

    PubMed

    Parniak, Michał; Dąbrowski, Michał; Mazelanik, Mateusz; Leszczyński, Adam; Lipka, Michał; Wasilewski, Wojciech

    2017-12-15

    Parallelized quantum information processing requires tailored quantum memories to simultaneously handle multiple photons. The spatial degree of freedom is a promising candidate to facilitate such photonic multiplexing. Using a single-photon resolving camera, we demonstrate a wavevector multiplexed quantum memory based on a cold atomic ensemble. Observation of nonclassical correlations between Raman scattered photons is confirmed by an average value of the second-order correlation function [Formula: see text] in 665 separated modes simultaneously. The proposed protocol utilizing the multimode memory along with the camera will facilitate generation of multi-photon states, which are a necessity in quantum-enhanced sensing technologies and as an input to photonic quantum circuits.

  7. Time-Domain Filtering for Spatial Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Pruett, C. David

    1997-01-01

    An approach to large-eddy simulation (LES) is developed whose subgrid-scale model incorporates filtering in the time domain, in contrast to conventional approaches, which exploit spatial filtering. The method is demonstrated in the simulation of a heated, compressible, axisymmetric jet, and results are compared with those obtained from fully resolved direct numerical simulation. The present approach was, in fact, motivated by the jet-flow problem and the desire to manipulate the flow by localized (point) sources for the purposes of noise suppression. Time-domain filtering appears to be more consistent with the modeling of point sources; moreover, time-domain filtering may resolve some fundamental inconsistencies associated with conventional space-filtered LES approaches.

  8. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges.

    PubMed

    Zając, S; Rzadkiewicz, J; Rosmej, O; Scholz, M; Yongtao, Zhao; Gójska, A; Paduch, M; Zielińska, E

    2010-10-01

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at ∼400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  9. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  10. Composite x-ray pinholes for time-resolved microphotography of laser compressed targets.

    PubMed

    Attwood, D T; Weinstein, B W; Wuerker, R F

    1977-05-01

    Composite x-ray pinholes having dichroic properties are presented. These pinholes permit both x-ray imaging and visible alignment with micron accuracy by presenting different apparent apertures in these widely disparate regions of the spectrum. Their use is mandatory in certain applications in which the x-ray detection consists of a limited number of resolvable elements whose use one wishes to maximize. Mating the pinhole camera with an x-ray streaking camera is described, along with experiments which spatially and temporally resolve the implosion of laser irradiated targets.

  11. Spatial bedrock erosion distribution in a natural gorge

    NASA Astrophysics Data System (ADS)

    Beer, A. R.; Turowski, J. M.; Kirchner, J. W.

    2015-12-01

    Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half of the total eroded material. Our results demonstrate the practicability of TLS for highly resolved spatio-temporal erosion monitoring in the field and quantitatively confirm concepts of spatially varying erosion rates based current thinking. Furthermore, we introduce an easy-to-apply method for qualitative spatial erosion detection by paint.

  12. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    PubMed Central

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  13. The CubeSat Imaging X-ray Solar Spectrometer (CubIXSS) Mission Concept

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Shih, Albert Y.; Warren, Harry; DeForest, Craig; Laurent, Glenn Thomas; Schwartz, Richard A.; Woods, Thomas N.; Mason, James; Palo, Scott; Steslicki, Marek; Sylwester, Janusz; Gburek, Szymon; Mrozek, Tomasz; Kowalinski, Miroslaw; Torre, Gabriele; Crowley, Geoffrey; Schattenburg, Mark

    2017-08-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics, origins, and evolution of these energetic processes, providing probes both into the temperature distributions and elemental compositions of hot plasmas; spatially-resolved measurements are critical for understanding energy transport and mass flow. A better understanding of the thermal plasma improves our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed small satellite mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-FastSDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. Multiple detectors and tailored apertures provide sensitivity to a wide range of solar conditions, optimized for a launch during solar minimum. The precise spectra from these instruments will provide detailed measurements of the coronal temperature distribution and elemental abundances from the quiet Sun to active regions and flares. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a custom pinhole camera and Chandra-heritage X-ray transmission diffraction grating to provide spatially- resolved, full-Sun imaging spectroscopy from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. MOXSI’s unique capabilities enable SXR spectroscopy and temperature diagnostics of individual active regions and flares. Through its groundbreaking new measurements, CubIXSS will improve our physical understanding of thermal plasma processes and impulsive energy release in the solar corona, from quiet Sun to solar flares.

  14. Ambient infrared laser ablation mass spectrometry (AIRLAB-MS) of live plant tissue with plume capture by continuous flow solvent probe.

    PubMed

    O'Brien, Jeremy T; Williams, Evan R; Holman, Hoi-Ying N

    2015-03-03

    A new experimental setup for spatially resolved ambient infrared laser ablation-mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is ∼50%. This transfer efficiency is significantly higher than values reported for similar techniques. Laser desorption does not induce fragmentation of biomolecules in droplets containing bradykinin, leucine enkephalin and myoglobin, but loss of the heme group from myoglobin occurs as a result of the denaturing solution used. An application of AIRLAB-MS to biological materials is demonstrated for tobacco leaves. Chemical components are identified from the spatially resolved mass spectra of the ablated plant material, including nicotine and uridine. The reproducibility of measurements made using AIRLAB-MS on plant material was demonstrated by the ablation of six closely spaced areas (within 2 × 2 mm) on a young tobacco leaf, and the results indicate a standard deviation of <10% in the uridine signal obtained for each area. The spatial distribution of nicotine was measured for selected leaf areas and variation in the relative nicotine levels (15-100%) was observed. Comparative analysis of the nicotine distribution was demonstrated for two tobacco plant varieties, a genetically modified plant and its corresponding wild-type, indicating generally higher nicotine levels in the mutant.

  15. Policy applications of a highly resolved spatial and temporal onroad carbon dioxide emissions data product for the U.S.: Analyses and their implications for mitigation

    NASA Astrophysics Data System (ADS)

    Mendoza Lebrun, Daniel

    Onroad CO2 emissions were analyzed as part of overall GHG emissions, but those studies have suffered from one or more of these five shortcomings: 1) the spatial resolution was coarse, usually encompassing a region, or the entire U.S.; 2) the temporal resolution was coarse (annual or monthly); 3) the study region was limited, usually a metropolitan planning organization (MPO) or state; 4) fuel sales were used as a proxy to quantify fuel consumption instead of focusing on travel; 5) the spatial heterogeneity of fleet and road network composition was not considered and instead national averages are used. Normalized vehicle-type state-level spatial biases range from 2.6% to 8.1%, while the road type classification biases range from -6.3% to 16.8%. These biases are found to cause errors in reduction estimates as large as ±60%, corresponding to ±0.2 MtC, for a national-average emissions mitigation strategy focused on a 10% emissions reduction from a single vehicle class. Temporal analysis shows distinct emissions seasonality that is particularly visible in the northernmost latitudes, demonstrating peak-to-peak deviations from the annual mean of up to 50%. The hourly structure shows peak-to-peak deviation from a weekly average of up to 200% for heavy-duty (HD) vehicles and 140% for light-duty (LD) vehicles. The present study focuses on reduction of travel and fuel economy improvements by putting forth several mitigation scenarios aimed at reducing VMT and increasing vehicle fuel efficiency. It was found that the most effective independent reduction strategies are those that increase fuel efficiency by extending standards proposed by the corporate average fuel economy (CAFE) or reduction of fuel consumption due to price increases. These two strategies show cumulative emissions reductions of approximately 11% and 12%, respectively, from a business as usual (BAU) approach over the 2000-2050 period. The U.S. onroad transportation sector is long overdue a comprehensive study of CO2 emissions at a highly resolved level. Such a study would improve fossil fuel flux products by enhancing measurement accuracy and prompt location-specific mitigation policy. The carbon cycle science and policymaking communities are both poised to benefit greatly from the development of a highly resolved spatiotemporal emissions product.

  16. Spectral characteristics of background error covariance and multiscale data assimilation

    DOE PAGES

    Li, Zhijin; Cheng, Xiaoping; Gustafson, Jr., William I.; ...

    2016-05-17

    The steady increase of the spatial resolutions of numerical atmospheric and oceanic circulation models has occurred over the past decades. Horizontal grid spacing down to the order of 1 km is now often used to resolve cloud systems in the atmosphere and sub-mesoscale circulation systems in the ocean. These fine resolution models encompass a wide range of temporal and spatial scales, across which dynamical and statistical properties vary. In particular, dynamic flow systems at small scales can be spatially localized and temporarily intermittent. Difficulties of current data assimilation algorithms for such fine resolution models are numerically and theoretically examined. Ourmore » analysis shows that the background error correlation length scale is larger than 75 km for streamfunctions and is larger than 25 km for water vapor mixing ratios, even for a 2-km resolution model. A theoretical analysis suggests that such correlation length scales prevent the currently used data assimilation schemes from constraining spatial scales smaller than 150 km for streamfunctions and 50 km for water vapor mixing ratios. Moreover, our results highlight the need to fundamentally modify currently used data assimilation algorithms for assimilating high-resolution observations into the aforementioned fine resolution models. Lastly, within the framework of four-dimensional variational data assimilation, a multiscale methodology based on scale decomposition is suggested and challenges are discussed.« less

  17. Dissociating temporal attention from spatial attention and motor response preparation: A high-density EEG study.

    PubMed

    Faugeras, Frédéric; Naccache, Lionel

    2016-01-01

    Engagement of various forms of attention and response preparation determines behavioral performance during stimulus-response tasks. Many studies explored the respective properties and neural signatures of each of these processes. However, very few experiments were conceived to explore their interaction. In the present work we used an auditory target detection task during which both temporal attention on the one side, and spatial attention and motor response preparation on the other side could be explicitly cued. Both cueing effects speeded response times, and showed strictly additive effects. Target ERP analysis revealed modulations of N1 and P3 responses by these two forms of cueing. Cue-target interval analysis revealed two main effects paralleling behavior. First, a typical contingent negative variation (CNV), induced by the cue and resolved immediately after target onset, was found larger for temporal attention cueing than for spatial and motor response cueing. Second, a posterior and late cue-P3 complex showed the reverse profile. Analyses of lateralized readiness potentials (LRP) revealed both patterns of motor response inhibition and activation. Taken together these results help to clarify and disentangle the respective effects of temporal attention on the one hand, and of the combination of spatial attention and motor response preparation on the other hand on brain activity and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Spatio-temporal dynamics of a tree-killing beetle and its predator

    Treesearch

    Aaron S. Weed; Matthew P. Ayres; Andrew M. Liebhold; Ronald F. Billings

    2016-01-01

    Resolving linkages between local-scale processes and regional-scale patterns in abundance of interacting species is important for understanding long-term population stability across spatial scales. Landscape patterning in consumer population dynamics may be largely the result of interactions between consumers and their predators, or driven by spatial variation in basal...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, J.E.; Adams, R.; Carlson, A.L.

    Stark-shift measurements using emission spectroscopy are a powerful tool for advancing understanding in many plasma physics experiments. The authors use simultaneous 2-D-spatial and time-resolved spectra to study the electric field evolution in the 20 TW Particle Beam Fusion Accelerator II ion diode acceleration gap. Fiber optic arrays transport light from the gap to remote streaked spectrographs operated in a multiplexed mode that enables recording time-resolved spectra from eight spatial locations on a single instrument. Design optimization and characterization measurements of the multiplexed spectrograph properties include the astigmatism, resolution, dispersion variation, and sensitivity. A semi-automated line-fitting procedure determines the Stark shiftmore » and the related uncertainties. Fields up to 10 MV/cm are measured with an accuracy {+-}2--4%. Detailed tests of the fitting procedure confirm that the wavelength shift uncertainties are accurate to better than {+-}20%. Development of an active spectroscopy probe technique that uses laser-induced fluorescence from an injected atomic beam to obtain 3-D space- and time-resolved measurements of the electric and magnetic fields is in progress.« less

  20. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas

    NASA Astrophysics Data System (ADS)

    Wallace, M. S.; Haque, S.; Neill, P.; Pereira, N. R.; Presura, R.

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  1. Electron density in surface barrier discharge emerging at argon/water interface: quantification for streamers and leaders

    NASA Astrophysics Data System (ADS)

    Cvetanović, Nikola; Galmiz, Oleksandr; Synek, Petr; Zemánek, Miroslav; Brablec, Antonín; Hoder, Tomáš

    2018-02-01

    Optical emission spectroscopy, fast intensified CCD imaging and electrical measurements were applied to investigate the basic plasma parameters of surface barrier discharge emerging from a conductive water electrode. The discharge was generated at the triple-line interface of atmospheric pressure argon gas and conductive water solution at the fused silica dielectrics using a sinusoidal high-voltage waveform. The spectroscopic methods of atomic line broadening and molecular spectroscopy were used to determine the electron densities and the gas temperature in the active plasma. These parameters were obtained for both applied voltage polarities and resolved spatially. Two different spectral signatures were identified in the spatially resolved spectra resulting in electron densities differing by two orders of magnitude. It is shown that two discharge mechanisms take a place: the streamer and the leader one, with electron densities of 1014 and 1016 cm-3, respectively. This spectroscopic evidence is supported by the combined diagnostics of electrical current measurements and phase-resolved intensified CCD camera imaging.

  2. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    PubMed

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  3. A simple approach to spectrally resolved fluorescence and bright field microscopy over select regions of interest

    PubMed Central

    Dahlberg, Peter D.; Boughter, Christopher T.; Faruk, Nabil F.; Hong, Lu; Koh, Young Hoon; Reyer, Matthew A.; Sherani, Aiman; Hammond, Adam T.

    2016-01-01

    A standard wide field inverted microscope was converted to a spatially selective spectrally resolved microscope through the addition of a polarizing beam splitter, a pair of polarizers, an amplitude-mode liquid crystal-spatial light modulator, and a USB spectrometer. The instrument is capable of simultaneously imaging and acquiring spectra over user defined regions of interest. The microscope can also be operated in a bright-field mode to acquire absorption spectra of micron scale objects. The utility of the instrument is demonstrated on three different samples. First, the instrument is used to resolve three differently labeled fluorescent beads in vitro. Second, the instrument is used to recover time dependent bleaching dynamics that have distinct spectral changes in the cyanobacteria, Synechococcus leopoliensis UTEX 625. Lastly, the technique is used to acquire the absorption spectra of CH3NH3PbBr3 perovskites and measure differences between nanocrystal films and micron scale crystals. PMID:27910631

  4. Polarimetric optical imaging of scattering surfaces.

    PubMed

    Barter, J D; Lee, P H

    1996-10-20

    A polarimetric optical specular event detector (OSED) has been developed to provide spatially and temporally resolved polarimetric data of backscattering in the visible from water wave surfaces. The OSED acquires simultaneous, two-dimensionally resolved images of the remote target in two orthogonal planes of polarization. With the use of plane-polarized illumination the OSED presently can measure, in an ensemble of breaking waves, the equivalent four-element polarization matrix common to polarimetric radars. Upgrade to full Stokes parameter state of polarization measurements is straightforward with the use of present single-aperture, multi-imager CCD camera technology. The OSED is used in conjunction with a coherent pulse-chirped radar (PCR), which also measures the four-element polarization matrix, to provide direct time-correlated identification of backscattering mechanisms operative during wave-breaking events which heretofore have not been described theoretically. We describe the instrument and its implementation, and examples of spatially resolved polarimetric data are displayed as correlated with the PCR backscatter cross section and polarization ratio records.

  5. Space-resolved diffusing wave spectroscopy measurements of the macroscopic deformation and the microscopic dynamics in tensile strain tests

    NASA Astrophysics Data System (ADS)

    Nagazi, Med-Yassine; Brambilla, Giovanni; Meunier, Gérard; Marguerès, Philippe; Périé, Jean-Noël; Cipelletti, Luca

    2017-01-01

    We couple a laser-based, space-resolved dynamic light scattering apparatus to a universal traction machine for mechanical extensional tests. We perform simultaneous optical and mechanical measurements on polyether ether ketone, a semi-crystalline polymer widely used in the industry. Due to the high turbidity of the sample, light is multiply scattered by the sample and the diffusing wave spectroscopy (DWS) formalism is used to interpret the data. Space-resolved DWS yields spatial maps of the sample strain and of the microscopic dynamics. An excellent agreement is found between the strain maps thus obtained and those measured by a conventional stereo-digital image correlation technique. The microscopic dynamics reveals both affine motion and plastic rearrangements. Thanks to the extreme sensitivity of DWS to displacements as small as 1 nm, plastic activity and its spatial localization can be detected at an early stage of the sample strain, making the technique presented here a valuable complement to existing material characterization methods.

  6. The Grism Lens-Amplified Survey from Space (GLASS): Dissecting reionization, z~2 galaxies, and dense environments

    NASA Astrophysics Data System (ADS)

    Treu, Tommaso; GLASS Team

    2016-01-01

    The Grism Lens-Amplified Survey from Space (GLASS) is a large HST cycle-21 program targeting 10 massive galaxy clusters with extensive HST imaging from CLASH and the Frontier Field Initiative. The program consists of 140 primary and 140 parallel orbits of near-infrared WCF3 and optical ACS grism observations, which result in spatially resolved spectroscopy of thousands of galaxies. GLASS has three primary science drivers although a wide variety of other science investigations are possible with the public GLASS data (e.g. SN 'Refsdal'). The key science goals of GLASS are to: 1) shed light on the epoch of reionization, by measuring the lyman alpha optical depth at z>6 2) Study gas accretion, star formation, and outflows by spatially mapping resolved star formation and determine metallicity gradients from emission lines of galaxies at 1.3

  7. Compact advanced extreme-ultraviolet imaging spectrometer for spatiotemporally varying tungsten spectra from fusion plasmas.

    PubMed

    Song, Inwoo; Seon, C R; Hong, Joohwan; An, Y H; Barnsley, R; Guirlet, R; Choe, Wonho

    2017-09-01

    A compact advanced extreme-ultraviolet (EUV) spectrometer operating in the EUV wavelength range of a few nanometers to measure spatially resolved line emissions from tungsten (W) was developed for studying W transport in fusion plasmas. This system consists of two perpendicularly crossed slits-an entrance aperture and a space-resolved slit-inside a chamber operating as a pinhole, which enables the system to obtain a spatial distribution of line emissions. Moreover, a so-called v-shaped slit was devised to manage the aperture size for measuring the spatial resolution of the system caused by the finite width of the pinhole. A back-illuminated charge-coupled device was used as a detector with 2048 × 512 active pixels, each with dimensions of 13.5 × 13.5 μm 2 . After the alignment and installation on Korea superconducting tokamak advanced research, the preliminary results were obtained during the 2016 campaign. Several well-known carbon atomic lines in the 2-7 nm range originating from intrinsic carbon impurities were observed and used for wavelength calibration. Further, the time behavior of their spatial distributions is presented.

  8. INFRARED TRANSMISSION SPECTROSCOPY OF THE EXOPLANETS HD 209458b AND XO-1b USING THE WIDE FIELD CAMERA-3 ON THE HUBBLE SPACE TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deming, Drake; Wilkins, Ashlee; McCullough, Peter

    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scanmore » mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of {lambda}/{delta}{lambda} {approx} 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 {mu}m. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm{sup 2} g{sup -1} account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.« less

  9. Infrared Transmission Spectroscopy of the Exoplanets HD 209458b and XO-1b Using the Wide Field Camera-3 on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Deming, Drake; Wilkins, Ashlee; McCullough, Peter; Burrows, Adam; Fortney, Jonathan J.; Agol, Eric; Dobbs-Dixon, Ian; Madhusudhan, Nikku; Crouzet, Nicolas; Desert, Jean-Michel; Gilliland, Ronald L.; Haynes, Korey; Knutson, Heather A.; Line, Michael; Magic, Zazralt; Mandell, Avi M.; Ranjan, Sukrit; Charbonneau, David; Clampin, Mark; Seager, Sara; Showman, Adam P.

    2013-09-01

    Exoplanetary transmission spectroscopy in the near-infrared using the Hubble Space Telescope (HST) NICMOS is currently ambiguous because different observational groups claim different results from the same data, depending on their analysis methodologies. Spatial scanning with HST/WFC3 provides an opportunity to resolve this ambiguity. We here report WFC3 spectroscopy of the giant planets HD 209458b and XO-1b in transit, using spatial scanning mode for maximum photon-collecting efficiency. We introduce an analysis technique that derives the exoplanetary transmission spectrum without the necessity of explicitly decorrelating instrumental effects, and achieves nearly photon-limited precision even at the high flux levels collected in spatial scan mode. Our errors are within 6% (XO-1) and 26% (HD 209458b) of the photon-limit at a resolving power of λ/δλ ~ 70, and are better than 0.01% per spectral channel. Both planets exhibit water absorption of approximately 200 ppm at the water peak near 1.38 μm. Our result for XO-1b contradicts the much larger absorption derived from NICMOS spectroscopy. The weak water absorption we measure for HD 209458b is reminiscent of the weakness of sodium absorption in the first transmission spectroscopy of an exoplanet atmosphere by Charbonneau et al. Model atmospheres having uniformly distributed extra opacity of 0.012 cm2 g-1 account approximately for both our water measurement and the sodium absorption. Our results for HD 209458b support the picture advocated by Pont et al. in which weak molecular absorptions are superposed on a transmission spectrum that is dominated by continuous opacity due to haze and/or dust. However, the extra opacity needed for HD 209458b is grayer than for HD 189733b, with a weaker Rayleigh component.

  10. Spatially resolved heat release rate measurements in turbulent premixed flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayoola, B.O.; Kaminski, C.F.; Balachandran, R.

    Heat release rate is a fundamental property of great importance for the theoretical and experimental elucidation of unsteady flame behaviors such as combustion noise, combustion instabilities, and pulsed combustion. Investigations of such thermoacoustic interactions require a reliable indicator of heat release rate capable of resolving spatial structures in turbulent flames. Traditionally, heat release rate has been estimated via OH or CH radical chemiluminescence; however, chemiluminescence suffers from being a line-of-sight technique with limited capability for resolving small-scale structures. In this paper, we report spatially resolved two-dimensional measurements of a quantity closely related to heat release rate. The diagnostic technique usesmore » simultaneous OH and CH{sub 2}O planar laser-induced fluorescence (PLIF), and the pixel-by-pixel product of the OH and CH{sub 2}O PLIF signals has previously been shown to correlate well with local heat release rates. Results from this diagnostic technique, which we refer to as heat release rate imaging (HR imaging), are compared with traditional OH chemiluminescence measurements in several flames. Studies were performed in lean premixed ethylene flames stabilized between opposed jets and with a bluff body. Correlations between bulk strain rates and local heat release rates were obtained and the effects of curvature on heat release rate were investigated. The results show that the heat release rate tends to increase with increasing negative curvature for the flames investigated for which Lewis numbers are greater than unity. This correlation becomes more pronounced as the flame gets closer to global extinction.« less

  11. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    NASA Technical Reports Server (NTRS)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  12. A Spatially Resolved Study of Cold Dust, Molecular Gas, H II Regions, and Stars in the z = 2.12 Submillimeter Galaxy ALESS67.1

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Hodge, J. A.; Smail, Ian; Swinbank, A. M.; Walter, Fabian; Simpson, J. M.; Calistro Rivera, Gabriela; Bertoldi, F.; Brandt, W. N.; Chapman, S. C.; da Cunha, Elisabete; Dannerbauer, H.; De Breuck, C.; Harrison, C. M.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Wardlow, J. L.; Weiß, A.; van der Werf, P. P.

    2017-09-01

    We present detailed studies of a z = 2.12 submillimeter galaxy, ALESS67.1, using sub-arcsecond resolution ALMA, adaptive optics-aided VLT/SINFONI, and Hubble Space Telescope (HST)/CANDELS data to investigate the kinematics and spatial distributions of dust emission (870 μm continuum), 12CO(J = 3–2), strong optical emission lines, and visible stars. Dynamical modeling of the optical emission lines suggests that ALESS67.1 is not a pure rotating disk but a merger, consistent with the apparent tidal features revealed in the HST imaging. Our sub-arcsecond resolution data set allows us to measure half-light radii for all the tracers, and we find a factor of 4–6 smaller sizes in dust continuum compared to all the other tracers, including 12CO; also, ultraviolet (UV) and Hα emission are significantly offset from the dust continuum. The spatial mismatch between the UV continuum and the cold dust and gas reservoir supports the explanation that geometrical effects are responsible for the offset of the dusty galaxy on the IRX–β diagram. Using a dynamical method we derive an {α }CO}=1.8+/- 1.0, consistent with other submillimeter galaxies (SMGs) that also have resolved CO and dust measurements. Assuming a single {α }CO} value we also derive resolved gas and star formation rate surface densities, and find that the core region of the galaxy (≲ 5 kpc) follows the trend of mergers on the Schmidt–Kennicutt relationship, whereas the outskirts (≳ 5 kpc) lie on the locus of normal star-forming galaxies, suggesting different star formation efficiencies within one galaxy. Our results caution against using single size or morphology for different tracers of the star formation activity and gas content of galaxies, and therefore argue the need to use spatially resolved, multi-wavelength observations to interpret the properties of SMGs, and perhaps even for z> 1 galaxies in general.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Partridge Jr, William P.; Choi, Jae-Soon

    By directly resolving spatial and temporal species distributions within operating honeycomb monolith catalysts, spatially resolved capillary inlet mass spectrometry (SpaciMS) provides a uniquely enabling perspective for advancing automotive catalysis. Specifically, the ability to follow the spatiotemporal evolution of reactions throughout the catalyst is a significant advantage over inlet-and-effluent-limited analysis. Intracatalyst resolution elucidates numerous catalyst details including the network and sequence of reactions, clarifying reaction pathways; the relative rates of different reactions and impacts of operating conditions and catalyst state; and reaction dynamics and intermediate species that exist only within the catalyst. These details provide a better understanding of how themore » catalyst functions and have basic and practical benefits; e.g., catalyst system design; strategies for on-road catalyst state assessment, control, and on-board diagnostics; and creating robust and accurate predictive catalyst models. Moreover, such spatiotemporally distributed data provide for critical model assessment, and identification of improvement opportunities that might not be apparent from effluent assessment; i.e., while an incorrectly formulated model may provide correct effluent predictions, one that can accurately predict the spatiotemporal evolution of reactions along the catalyst channels will be more robust, accurate, and reliable. In such ways, intracatalyst diagnostics comprehensively enable improved design and development tools, and faster and lower-cost development of more efficient and durable automotive catalyst systems. Beyond these direct contributions, SpaciMS has spawned and been applied to enable other analytical techniques for resolving transient distributed intracatalyst performance. This chapter focuses on SpaciMS applications and associated catalyst insights and improvements, with specific sections related to lean NOx traps, selective catalytic reduction catalysts, oxidation catalysts, and particulate filters. The objective is to promote broader use and development of intracatalyst analytical methods, and thereby expand the insights resulting from this detailed perspective for advancing automotive catalyst technologies.« less

  14. A CANDELS-3D-HST synergy: Resolved Star Formation Patterns at 0.7 < z < 1.5

    NASA Astrophysics Data System (ADS)

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Nelson, Erica J.; van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; Genzel, Reinhard; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Rosario, David; Skelton, Rosalind E.; Tacconi, Linda J.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-12-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multi-wavelength broadband imaging from CANDELS and Hα surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Hα morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Hα dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Hα/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced Hα equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Hα/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  15. A CANDELS-3d-HST Synergy: Resolved Star Formation Patterns at 0.7 less than z less than 1.5

    NASA Technical Reports Server (NTRS)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Nelson, Erica J.; Van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; hide

    2013-01-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multiwavelength broadband imaging from CANDELS andHalpha surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H alpha equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  16. A Quantitative Visual Mapping and Visualization Approach for Deep Ocean Floor Research

    NASA Astrophysics Data System (ADS)

    Hansteen, T. H.; Kwasnitschka, T.

    2013-12-01

    Geological fieldwork on the sea floor is still impaired by our inability to resolve features on a sub-meter scale resolution in a quantifiable reference frame and over an area large enough to reveal the context of local observations. In order to overcome these issues, we have developed an integrated workflow of visual mapping techniques leading to georeferenced data sets which we examine using state-of-the-art visualization technology to recreate an effective working style of field geology. We demonstrate a microbathymetrical workflow, which is based on photogrammetric reconstruction of ROV imagery referenced to the acoustic vehicle track. The advantage over established acoustical systems lies in the true three-dimensionality of the data as opposed to the perspective projection from above produced by downward looking mapping methods. A full color texture mosaic derived from the imagery allows studies at resolutions beyond the resolved geometry (usually one order of magnitude below the image resolution) while color gives additional clues, which can only be partly resolved in acoustic backscatter. The creation of a three-dimensional model changes the working style from the temporal domain of a video recording back to the spatial domain of a map. We examine these datasets using a custom developed immersive virtual visualization environment. The ARENA (Artificial Research Environment for Networked Analysis) features a (lower) hemispherical screen at a diameter of six meters, accommodating up to four scientists at once thus providing the ability to browse data interactively among a group of researchers. This environment facilitates (1) the development of spatial understanding analogue to on-land outcrop studies, (2) quantitative observations of seafloor morphology and physical parameters of its deposits, (3) more effective formulation and communication of working hypotheses.

  17. Anthropogenic heat flux: advisable spatial resolutions when input data are scarce

    NASA Astrophysics Data System (ADS)

    Gabey, A. M.; Grimmond, C. S. B.; Capel-Timms, I.

    2018-02-01

    Anthropogenic heat flux (QF) may be significant in cities, especially under low solar irradiance and at night. It is of interest to many practitioners including meteorologists, city planners and climatologists. QF estimates at fine temporal and spatial resolution can be derived from models that use varying amounts of empirical data. This study compares simple and detailed models in a European megacity (London) at 500 m spatial resolution. The simple model (LQF) uses spatially resolved population data and national energy statistics. The detailed model (GQF) additionally uses local energy, road network and workday population data. The Fractions Skill Score (FSS) and bias are used to rate the skill with which the simple model reproduces the spatial patterns and magnitudes of QF, and its sub-components, from the detailed model. LQF skill was consistently good across 90% of the city, away from the centre and major roads. The remaining 10% contained elevated emissions and "hot spots" representing 30-40% of the total city-wide energy. This structure was lost because it requires workday population, spatially resolved building energy consumption and/or road network data. Daily total building and traffic energy consumption estimates from national data were within ± 40% of local values. Progressively coarser spatial resolutions to 5 km improved skill for total QF, but important features (hot spots, transport network) were lost at all resolutions when residential population controlled spatial variations. The results demonstrate that simple QF models should be applied with conservative spatial resolution in cities that, like London, exhibit time-varying energy use patterns.

  18. Diffusion-Weighted PROPELLER MRI for Quantitative Assessment of Liver Tumor Necrotic Fraction and Viable Tumor Volume in VX2 Rabbits

    PubMed Central

    Deng, Jie; Virmani, Sumeet; Young, Joseph; Harris, Kathleen; Yang, Guang-Yu; Rademaker, Alfred; Woloschak, Gayle; Omary, Reed A.; Larson, Andrew C.

    2010-01-01

    Purpose To test the hypothesis that diffusion-weighted (DW)-PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) MRI provides more accurate liver tumor necrotic fraction (NF) and viable tumor volume (VTV) measurements than conventional DW-SE-EPI (spin echo echo-planar imaging) methods. Materials and Methods Our institutional Animal Care and Use Committee approved all experiments. In six rabbits implanted with 10 VX2 liver tumors, DW-PROPELLER and DW-SE-EPI scans were performed at contiguous axial slice positions covering each tumor volume. Apparent diffusion coefficient maps of each tumor were used to generate spatially resolved tumor viability maps for NF and VTV measurements. We compared NF, whole tumor volume (WTV), and VTV measurements to corresponding reference standard histological measurements based on correlation and concordance coefficients and the Bland–Altman analysis. Results DW-PROPELLER generally improved image quality with less distortion compared to DW-SE-EPI. DW-PROPELLER NF, WTV, and VTV measurements were strongly correlated and satisfactorily concordant with histological measurements. DW-SE-EPI NF measurements were weakly correlated and poorly concordant with histological measurements. Bland–Altman analysis demonstrated that DWPROPELLER WTV and VTV measurements were less biased from histological measurements than the corresponding DW-SE-EPI measurements. Conclusion DW-PROPELLER MRI can provide spatially resolved liver tumor viability maps for accurate NF and VTV measurements, superior to DW-SE-EPI approaches. DWPROPELLER measurements may serve as a noninvasive surrogate for pathology, offering the potential for more accurate assessments of therapy response than conventional anatomic size measurements. PMID:18407540

  19. Image/video understanding systems based on network-symbolic models

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2004-03-01

    Vision is a part of a larger information system that converts visual information into knowledge structures. These structures drive vision process, resolve ambiguity and uncertainty via feedback projections, and provide image understanding that is an interpretation of visual information in terms of such knowledge models. Computer simulation models are built on the basis of graphs/networks. The ability of human brain to emulate similar graph/network models is found. Symbols, predicates and grammars naturally emerge in such networks, and logic is simply a way of restructuring such models. Brain analyzes an image as a graph-type relational structure created via multilevel hierarchical compression of visual information. Primary areas provide active fusion of image features on a spatial grid-like structure, where nodes are cortical columns. Spatial logic and topology naturally present in such structures. Mid-level vision processes like perceptual grouping, separation of figure from ground, are special kinds of network transformations. They convert primary image structure into the set of more abstract ones, which represent objects and visual scene, making them easy for analysis by higher-level knowledge structures. Higher-level vision phenomena are results of such analysis. Composition of network-symbolic models combines learning, classification, and analogy together with higher-level model-based reasoning into a single framework, and it works similar to frames and agents. Computational intelligence methods transform images into model-based knowledge representation. Based on such principles, an Image/Video Understanding system can convert images into the knowledge models, and resolve uncertainty and ambiguity. This allows creating intelligent computer vision systems for design and manufacturing.

  20. The Analysis of the Patterns of Radiation-Induced DNA Damage Foci by a Stochastic Monte Carlo Model of DNA Double Strand Breaks Induction by Heavy Ions and Image Segmentation Software

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Cucinotta, F.

    2011-01-01

    To create a generalized mechanistic model of DNA damage in human cells that will generate analytical and image data corresponding to experimentally observed DNA damage foci and will help to improve the experimental foci yields by simulating spatial foci patterns and resolving problems with quantitative image analysis. Material and Methods: The analysis of patterns of RIFs (radiation-induced foci) produced by low- and high-LET (linear energy transfer) radiation was conducted by using a Monte Carlo model that combines the heavy ion track structure with characteristics of the human genome on the level of chromosomes. The foci patterns were also simulated in the maximum projection plane for flat nuclei. Some data analysis was done with the help of image segmentation software that identifies individual classes of RIFs and colocolized RIFs, which is of importance to some experimental assays that assign DNA damage a dual phosphorescent signal. Results: The model predicts the spatial and genomic distributions of DNA DSBs (double strand breaks) and associated RIFs in a human cell nucleus for a particular dose of either low- or high-LET radiation. We used the model to do analyses for different irradiation scenarios. In the beam-parallel-to-the-disk-of-a-flattened-nucleus scenario we found that the foci appeared to be merged due to their high density, while, in the perpendicular-beam scenario, the foci appeared as one bright spot per hit. The statistics and spatial distribution of regions of densely arranged foci, termed DNA foci chains, were predicted numerically using this model. Another analysis was done to evaluate the number of ion hits per nucleus, which were visible from streaks of closely located foci. In another analysis, our image segmentaiton software determined foci yields directly from images with single-class or colocolized foci. Conclusions: We showed that DSB clustering needs to be taken into account to determine the true DNA damage foci yield, which helps to determine the DSB yield. Using the model analysis, a researcher can refine the DSB yield per nucleus per particle. We showed that purely geometric artifacts, present in the experimental images, can be analytically resolved with the model, and that the quantization of track hits and DSB yields can be provided to the experimentalists who use enumeration of radiation-induced foci in immunofluorescence experiments using proteins that detect DNA damage. An automated image segmentaiton software can prove useful in a faster and more precise object counting for colocolized foci images.

  1. Based on time and spatial-resolved SERS mapping strategies for detection of pesticides.

    PubMed

    Ma, Bingbing; Li, Pan; Yang, Liangbao; Liu, Jinhuai

    2015-08-15

    For the sensitive and convenient detection of pesticides, several sensing methods and materials have been widely explored. However, it is still a challenge to obtain sensitive, simple detection techniques for pesticides. Here, the simple and sensitive Time-resolved SERS mapping (T-SERS) and Spatial-resolved SERS mapping (S-SERS) are presented for detection of pesticides by using Au@Ag NPs as SERS substrate. The Time-resolved SERS mapping (T-SERS) is based on state translation nanoparticles from the wet state to the dry state to realize SERS measurements. During the SERS measurement, adhesive force drives the particles closer together and then average interparticle gap becomes smaller. Following, air then begins to intersperse into the liquid network and the particles are held together by adhesive forces at the solid-liquid-air interface. In the late stage of water evaporation, all particles are uniformly distributed. Thus, so called hotspots matrix that can hold hotspots between every two adjacent particles in efficient space with minimal polydispersity of particle size are achieved, accompanying the red-shift of surface plasmon peak and appearance of an optimal SPR resonated sharply with excitation wavelength. Here, we found that the T-SERS method exhibits the detection limits of 1-2 orders of magnitude higher than that of S-SERS. On the other hand, the T-SERS is very simple method with high detection sensitivity, better reproducibility (RSD=10.8%) and is beneficial to construction of a calibration curve in comparison with that of Spatial-resolved SERS mapping (S-SERS). Most importantly, as a result of its remarkable sensitivity, T-SERS mapping strategies have been applied to detection of several pesticides and the detect limit can down to 1nM for paraoxon, 0.5nM for sumithion. In short, T-SERS mapping measurement promises to open a market for SERS practical detection with prominent advantages. Copyright © 2015. Published by Elsevier B.V.

  2. Pressure spectra from single-snapshot tomographic PIV

    NASA Astrophysics Data System (ADS)

    Schneiders, Jan F. G.; Avallone, Francesco; Pröbsting, Stefan; Ragni, Daniele; Scarano, Fulvio

    2018-03-01

    The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor's hypothesis (TH) of frozen turbulence and vortex-in-cell (VIC) simulation. Finite time marching of the measured instantaneous velocity fields is performed using TH and VIC. Pressure is calculated from the resulting velocity time series. Because of the theoretical limitations, the finite time marching can be performed until the measured flow structures are convected out of the measurement volume. This provides a lower limit of resolvable frequency range. An upper limit is given by the spatial resolution of the measurements. Finite time-marching approaches are applied to low-repetition-rate tomographic PIV data of the flow past a straight trailing edge at 10 m/s. Reference results of the power spectral density and coherence are obtained from surface pressure transducers. In addition, the results are compared to state-of-the-art experimental data obtained from time-resolved tomographic PIV performed at 10 kHz. The time-resolved approach suffers from low spatial resolution and limited maximum acquisition frequency because of hardware limitations. Additionally, these approaches strongly depend upon the time kernel length chosen for pressure evaluation. On the other hand, the finite time-marching approaches make use of low-repetition-rate tomographic PIV measurements that offer higher spatial resolution. Consequently, increased accuracy of the power spectral density and coherence of pressure fluctuations are obtained in the high-frequency range, in comparison to the time-resolved measurements. The approaches based on TH and VIC are found to perform similarly in the high-frequency range. At lower frequencies, TH is found to underestimate coherence and intensity of the pressure fluctuations in comparison to time-resolved PIV and the microphone reference data. The VIC-based approach, on the other hand, returns results on the order of the reference.

  3. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Qian; University of the Chinese Academy of Sciences, Beijing 100039; Li, Bincheng, E-mail: bcli@ioe.ac.cn

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique withmore » multiple pump beam radii.« less

  4. Parallel Multiscale Algorithms for Astrophysical Fluid Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Norman, Michael L.

    1997-01-01

    Our goal is to develop software libraries and applications for astrophysical fluid dynamics simulations in multidimensions that will enable us to resolve the large spatial and temporal variations that inevitably arise due to gravity, fronts and microphysical phenomena. The software must run efficiently on parallel computers and be general enough to allow the incorporation of a wide variety of physics. Cosmological structure formation with realistic gas physics is the primary application driver in this work. Accurate simulations of e.g. galaxy formation require a spatial dynamic range (i.e., ratio of system scale to smallest resolved feature) of 104 or more in three dimensions in arbitrary topologies. We take this as our technical requirement. We have achieved, and in fact, surpassed these goals.

  5. Noninvasive diagnostics of skin microphysical parameters based on spatially resolved diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2013-01-01

    The ability to determine noninvasively microphysical parameters (MPPs) of skin characteristic of malignant melanoma was demonstrated. The MPPs were the melanin content in dermis, saturation of tissue with blood vessels, and concentration and effective size of tissue scatterers. The proposed method was based on spatially resolved spectral measurements of skin diffuse reflectance and multiple regressions between linearly independent measurement components and skin MPPs. The regressions were established by modeling radiation transfer in skin with a wide variation of its MPPs. Errors in the determination of skin MPPs were estimated using fiber-optic measurements of its diffuse reflectance at wavelengths of commercially available semiconductor diode lasers (578, 625, 660, 760, and 806 nm) at source-detector separations of 0.23-1.38 mm.

  6. Time resolved photo-luminescent decay characterization of mercury cadmium telluride focal plane arrays

    DOE PAGES

    Soehnel, Grant

    2015-01-20

    The minority carrier lifetime is a measurable material property that is an indication of infrared detector device performance. To study the utility of measuring the carrier lifetime, an experiment has been constructed that can time resolve the photo-luminescent decay of a detector or wafer sample housed inside a liquid nitrogen cooled Dewar. Motorized stages allow the measurement to be scanned over the sample surface, and spatial resolutions as low as 50µm have been demonstrated. A carrier recombination simulation was developed to analyze the experimental data. Results from measurements performed on 4 mercury cadmium telluride focal plane arrays show strong correlationmore » between spatial maps of the lifetime, dark current, and relative response.« less

  7. Spatially and Temporally Resolved Studies of the Human Microbiome (2011 JGI User Meeting)

    ScienceCinema

    Knight, Rob

    2018-04-26

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Rob Knight of the University of Colorado gives a presentation on "Spatially and Temporally Resolved Studies of the Human Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011.

  8. Optical high-resolution analysis of rotational movement: testing circular spatial filter velocimetry (CSFV) with rotating biological cells

    NASA Astrophysics Data System (ADS)

    Schaeper, M.; Schmidt, R.; Kostbade, R.; Damaschke, N.; Gimsa, J.

    2016-07-01

    Circular spatial filtering velocimetry (CSFV) was tested during the microscopic registration of the individual rotations of baker’s yeast cells. Their frequency-dependent rotation (electrorotation; ER) was induced in rotating electric fields, which were generated in a glass chip chamber with four electrodes (600 μm tip-to-tip distance). The electrodes were driven with sinusoidal quadrature signals of 5 or 8 V PP with frequencies up to 3 MHz. The observed cell rotation was of the order of 1-100 s per revolution. At each measuring frequency, the independent rotations of up to 20 cells were simultaneously recorded with a high-speed camera. CSFV was software-implemented using circular spatial filters with harmonic gratings. ER was proportional to the phase shift between the values of the spatial filtering signal of consecutive frames. ER spectra obtained by CSFV from the rotation velocities at different ER-field frequencies agreed well with manual measurements and theoretical spectra. Oscillations in the rotation velocity of a single cell in the elliptically polarized field near an electrode, which were resolved by CSFV, could not be visually discerned. ER step responses after field-on were recorded at 2500 frames per second. Analysis proved the high temporal resolution of CSFV and revealed a largely linear torque-friction relation during the acceleration phase of ER. Future applications of CSFV will allow for the simple and cheap automated high-resolution analysis of rotational movements where mechanical detection has too low a resolution or is not possible, e.g. in polluted environments or for gas and fluid vortices, microscopic objects, etc.

  9. Extending a prototype knowledge- and object-based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    USGS Publications Warehouse

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  10. Extending a prototype knowledge and object based image analysis model to coarser spatial resolution imagery: an example from the Missouri River

    USGS Publications Warehouse

    Strong, Laurence L.

    2012-01-01

    A prototype knowledge- and object-based image analysis model was developed to inventory and map least tern and piping plover habitat on the Missouri River, USA. The model has been used to inventory the state of sandbars annually for 4 segments of the Missouri River since 2006 using QuickBird imagery. Interpretation of the state of sandbars is difficult when images for the segment are acquired at different river stages and different states of vegetation phenology and canopy cover. Concurrent QuickBird and RapidEye images were classified using the model and the spatial correspondence of classes in the land cover and sandbar maps were analysed for the spatial extent of the images and at nest locations for both bird species. Omission and commission errors were low for unvegetated land cover classes used for nesting by both bird species and for land cover types with continuous vegetation cover and water. Errors were larger for land cover classes characterized by a mixture of sand and vegetation. Sandbar classification decisions are made using information on land cover class proportions and disagreement between sandbar classes was resolved using fuzzy membership possibilities. Regression analysis of area for a paired sample of 47 sandbars indicated an average positive bias, 1.15 ha, for RapidEye that did not vary with sandbar size. RapidEye has potential to reduce temporal uncertainty about least tern and piping plover habitat but would not be suitable for mapping sandbar erosion, and characterization of sandbar shapes or vegetation patches at fine spatial resolution.

  11. Ecological Status of the St. Louis River System, as Informed by Spatially Comprehensive Surveys and Comparison to Coastal Wetlands Elsewhere

    EPA Science Inventory

    Extensive data on biota and the physical/chemical environment were collected across the lower St. Louis River in 2004-2007 as part of multiple studies undertaken by EPA. The 2005-2007 work provides a spatially highly-resolved assessment of conditions across the system, while the ...

  12. Chapter 1.4: Spatially Resolved Characterization of CNC-Polypropylene composite by Confocal Raman Microscopy

    Treesearch

    Umesh Agarwal; Ronald Sabo; Richard Reiner; Craig Clemons; Alan Rudie

    2013-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)-polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose), and two of the three composites...

  13. Spatially Resolved Characterization of Cellulose Nanocrystal-Polypropylene Composite by Confocal Raman Microscopy

    Treesearch

    Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie

    2012-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)–polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...

  14. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  15. Time-resolved measurement of global synchronization in the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, J. D.

    2014-10-01

    A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.

  16. Chemical imaging of molecular changes in a hydrated single cell by dynamic secondary ion mass spectrometry and super-resolution microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xin; Szymanski, Craig; Wang, Zhaoying

    2016-01-01

    Chemical imaging of single cells is important in capturing biological dynamics. Single cell correlative imaging is realized between structured illumination microscopy (SIM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) using System for Analysis at the Liquid Vacuum Interface (SALVI), a multimodal microreactor. SIM characterized cells and guided subsequent ToF-SIMS analysis. Dynamic ToF-SIMS provided time- and space-resolved cell molecular mapping. Lipid fragments were identified in the hydrated cell membrane. Principal component analysis was used to elucidate chemical component differences among mouse lung cells that uptake zinc oxide nanoparticles. Our results provided submicron chemical spatial mapping for investigations of cell dynamics atmore » the molecular level.« less

  17. Graph Theoretic Foundations of Multibody Dynamics Part I: Structural Properties

    PubMed Central

    Jain, Abhinandan

    2011-01-01

    This is the first part of two papers that use concepts from graph theory to obtain a deeper understanding of the mathematical foundations of multibody dynamics. The key contribution is the development of a unifying framework that shows that key analytical results and computational algorithms in multibody dynamics are a direct consequence of structural properties and require minimal assumptions about the specific nature of the underlying multibody system. This first part focuses on identifying the abstract graph theoretic structural properties of spatial operator techniques in multibody dynamics. The second part paper exploits these structural properties to develop a broad spectrum of analytical results and computational algorithms. Towards this, we begin with the notion of graph adjacency matrices and generalize it to define block-weighted adjacency (BWA) matrices and their 1-resolvents. Previously developed spatial operators are shown to be special cases of such BWA matrices and their 1-resolvents. These properties are shown to hold broadly for serial and tree topology multibody systems. Specializations of the BWA and 1-resolvent matrices are referred to as spatial kernel operators (SKO) and spatial propagation operators (SPO). These operators and their special properties provide the foundation for the analytical and algorithmic techniques developed in the companion paper. We also use the graph theory concepts to study the topology induced sparsity structure of these operators and the system mass matrix. Similarity transformations of these operators are also studied. While the detailed development is done for the case of rigid-link multibody systems, the extension of these techniques to a broader class of systems (e.g. deformable links) are illustrated. PMID:22102790

  18. [Development of spatial orientation during pilot training].

    PubMed

    Ivanov, V V; Vorob'ev, O A; Snipkov, Iu Iu

    1988-01-01

    The problem of spatial orientation of pilots flying high-altitude aircraft is in the focus of present-day aviation medicine because of a growing number of accidents in the air. One of the productive lines of research is to study spatial orientation in terms of active formation and maintenance of its imagery in a complex environment. However investigators usually emphasize the role of visual (instrumental) information in the image construction, almost ignoring the sensorimotor component of spatial orientation. The theoretical analysis of the process of spatial orientation has facilitated the development of the concept assuming that the pattern of space perception changes with growing professional experience. The concept is based on an active approach to the essence, emergence, formation and variation in the pattern of sensory perception of space in man's consciousness. This concept asserts that as pilot's professional expertise increases, the pattern of spatial orientation becomes geocentric because a new system of spatial perception evolves which is a result of the development of a new (instrumental) type of motor activity in space. This finds expression in the fact that perception of spatial position inflight occurs when man has to resolve a new motor task--movement along a complex trajectory in the three-dimensional space onboard a flying vehicle. The meaningful structure of this problem which is to be implemented through controlling movements of the pilot acts as a factor that forms this new system of perception. All this underlies the arrangement of meaningful collection of instrumental data and detection of noninstrumental signals in the comprehensive perception of changes in the spatial position of a flying vehicle.

  19. Echo-Planar Imaging-Based, J-Resolved Spectroscopic Imaging for Improved Metabolite Detection in Prostate Cancer

    DTIC Science & Technology

    2016-12-01

    tiple dimensions (20). Hu et al. employed pseudo-random phase-encoding blips during the EPSI readout to create nonuniform sampling along the spatial...resolved MRSI with Nonuniform Undersampling and Compressed Sensing 514 30.5 Prior-knowledge Fitting for Metabolite Quantitation 515 30.6 Future Directions... NONUNIFORM UNDERSAMPLING AND COMPRESSED SENSING Nonuniform undersampling (NUS) of k-space and subsequent reconstruction using compressed sensing (CS

  20. Measurement of Radiative Non-Equilibrium for Air Shocks Between 7-9 Km/s

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.

    2016-01-01

    This paper describes a recent characterization of non-equilibrium radiation for shock speeds between 7 and 9 km/s in the NASA Ames Electric Arc Shock Tube (EAST) Facility. Data is spectrally resolved from 190- 1450 nm and spatially resolved behind the shock front. Comparisons are made to DPLR/NEQAIR simulations using different modeling options and recommendations for future study are made based on these comparisons.

  1. Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model

    NASA Astrophysics Data System (ADS)

    Thomas Steven Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten

    2016-11-01

    Where high-resolution topographic data are available, modelers are faced with the decision of whether it is better to spend computational resource on resolving topography at finer resolutions or on running more simulations to account for various uncertain input factors (e.g., model parameters). In this paper we apply global sensitivity analysis to explore how influential the choice of spatial resolution is when compared to uncertainties in the Manning's friction coefficient parameters, the inflow hydrograph, and those stemming from the coarsening of topographic data used to produce Digital Elevation Models (DEMs). We apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially variable model outputs that represent different aspects of flood inundation processes, including flood extent, water depth, and time of inundation. We find that the most influential input factor for flood extent predictions changes during the flood event, starting with the inflow hydrograph during the rising limb before switching to the channel friction parameter during peak flood inundation, and finally to the floodplain friction parameter during the drying phase of the flood event. Spatial resolution and uncertainty introduced by resampling topographic data to coarser resolutions are much more important for water depth predictions, which are also sensitive to different input factors spatially and temporally. Our findings indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously thought. Consequently, the input factors that modelers should prioritize will differ depending on the model output assessed, and the location and time of when and where this output is most relevant.

  2. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    PubMed

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  3. Eta Carinae: Viewed from Multiple Vantage Points

    NASA Technical Reports Server (NTRS)

    Gull, Theodore

    2007-01-01

    The central source of Eta Carinae and its ejecta is a massive binary system buried within a massive interacting wind structure which envelops the two stars. However the hot, less massive companion blows a small cavity in the very massive primary wind, plus ionizes a portion of the massive wind just beyond the wind-wind boundary. We gain insight on this complex structure by examining the spatially-resolved Space Telescope Imaging Spectrograph (STIS) spectra of the central source (0.1") with the wind structure which extends out to nearly an arcsecond (2300AU) and the wind-blown boundaries, plus the ejecta of the Little Homunculus. Moreover, the spatially resolved Very Large Telescope/UltraViolet Echelle Spectrograph (VLT/UVES) stellar spectrum (one arcsecond) and spatially sampled spectra across the foreground lobe of the Homunculus provide us vantage points from different angles relative to line of sight. Examples of wind line profiles of Fe II, and the.highly excited [Fe III], [Ne III], [Ar III] and [S III)], plus other lines will be presented.

  4. A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection.

    PubMed

    Miki, Shigehito; Yamashita, Taro; Wang, Zhen; Terai, Hirotaka

    2014-04-07

    We present the characterization of two-dimensionally arranged 64-pixel NbTiN superconducting nanowire single-photon detector (SSPD) array for spatially resolved photon detection. NbTiN films deposited on thermally oxidized Si substrates enabled the high-yield production of high-quality SSPD pixels, and all 64 SSPD pixels showed uniform superconducting characteristics within the small range of 7.19-7.23 K of superconducting transition temperature and 15.8-17.8 μA of superconducting switching current. Furthermore, all of the pixels showed single-photon sensitivity, and 60 of the 64 pixels showed a pulse generation probability higher than 90% after photon absorption. As a result of light irradiation from the single-mode optical fiber at different distances between the fiber tip and the active area, the variations of system detection efficiency (SDE) in each pixel showed reasonable Gaussian distribution to represent the spatial distributions of photon flux intensity.

  5. Upscaling of dilution and mixing using a trajectory based Spatial Markov random walk model in a periodic flow domain

    NASA Astrophysics Data System (ADS)

    Sund, Nicole L.; Porta, Giovanni M.; Bolster, Diogo

    2017-05-01

    The Spatial Markov Model (SMM) is an upscaled model that has been used successfully to predict effective mean transport across a broad range of hydrologic settings. Here we propose a novel variant of the SMM, applicable to spatially periodic systems. This SMM is built using particle trajectories, rather than travel times. By applying the proposed SMM to a simple benchmark problem we demonstrate that it can predict mean effective transport, when compared to data from fully resolved direct numerical simulations. Next we propose a methodology for using this SMM framework to predict measures of mixing and dilution, that do not just depend on mean concentrations, but are strongly impacted by pore-scale concentration fluctuations. We use information from trajectories of particles to downscale and reconstruct pore-scale approximate concentration fields from which mixing and dilution measures are then calculated. The comparison between measurements from fully resolved simulations and predictions with the SMM agree very favorably.

  6. Measurements of spatially resolved velocity variations in shock compressed heterogeneous materials using a line-imaging velocity interferometer

    NASA Astrophysics Data System (ADS)

    Trott, Wayne M.; Knudson, Marcus D.; Chhabildas, Lalit C.; Asay, James R.

    2000-04-01

    Relatively straightforward changes in the design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging instrument that allows adjustment of spatial resolution over a wide range. As a result, line-imaging ORVIS can be tailored to various specific applications involving dynamic deformation of heterogeneous materials as required by their characteristic length scales (ranging from a few μm for ferroelectric ceramics to a few mm for concrete). A line-imaging system has been successfully interfaced to a compressed gas gun driver and fielded on numerous tests in combination with simultaneous dual delay-leg, "push-pull" VISAR measurements. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Results are presented that illustrate the capability for recording detailed spatially resolved material response.

  7. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    PubMed Central

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites produced by microbial biofilms, which can drastically affect colony development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. “Images” over a 3.25 × 0.9 mm area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify, and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression. PMID:24510163

  8. Synchrotron X-ray Microdiffraction Analysis of Proton Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. I.; Davidson, J. L.; Ice, G. E.; Liu, W.

    2004-01-01

    X-ray microdiffraction is a non-destructive technique that allows for depth-resolved, strain measurements with sub-micron spatial resolution. These capabilities make this technique promising for understanding the mechanical properties of MicroElectroMechanical Systems (MEMS). This investigation examined the local strain induced by irradiating a polycrystalline diamond thin film with a dose of 2x10(exp 17) H(+)per square centimeter protons. Preliminary results indicate that a measurable strain, on the order of 10(exp -3), was introduced into the film near the End of Range (EOR) region of the protons.

  9. Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.

    PubMed

    Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M

    2005-06-15

    Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.

  10. A Compact, Solid-State UV (266 nm) Laser System Capable of Burst-Mode Operation for Laser Ablation Desorption Processing

    NASA Technical Reports Server (NTRS)

    Arevalo, Ricardo, Jr.; Coyle, Barry; Paulios, Demetrios; Stysley, Paul; Feng, Steve; Getty, Stephanie; Binkerhoff, William

    2015-01-01

    Compared to wet chemistry and pyrolysis techniques, in situ laser-based methods of chemical analysis provide an ideal way to characterize precious planetary materials without requiring extensive sample processing. In particular, laser desorption and ablation techniques allow for rapid, reproducible and robust data acquisition over a wide mass range, plus: Quantitative, spatially-resolved measurements of elemental and molecular (organic and inorganic) abundances; Low analytical blanks and limits-of-detection ( ng g-1); and, the destruction of minimal quantities of sample ( g) compared to traditional solution and/or pyrolysis analyses (mg).

  11. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    PubMed

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  12. Detectability of planetary characteristics in disk-averaged spectra. I: The Earth model.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Fishbein, Evan; Turnbull, Margaret; Bibring, Jean-Pierre

    2006-02-01

    Over the next 2 decades, NASA and ESA are planning a series of space-based observatories to detect and characterize extrasolar planets. This first generation of observatories will not be able to spatially resolve the terrestrial planets detected. Instead, these planets will be characterized by disk-averaged spectroscopy. To assess the detectability of planetary characteristics in disk-averaged spectra, we have developed a spatially and spectrally resolved model of the Earth. This model uses atmospheric and surface properties from existing observations and modeling studies as input, and generates spatially resolved high-resolution synthetic spectra using the Spectral Mapping Atmospheric Radiative Transfer model. Synthetic spectra were generated for a variety of conditions, including cloud coverage, illumination fraction, and viewing angle geometry, over a wavelength range extending from the ultraviolet to the farinfrared. Here we describe the model and validate it against disk-averaged visible to infrared observations of the Earth taken by the Mars Global Surveyor Thermal Emission Spectrometer, the ESA Mars Express Omega instrument, and ground-based observations of earthshine reflected from the unilluminated portion of the Moon. The comparison between the data and model indicates that several atmospheric species can be identified in disk-averaged Earth spectra, and potentially detected depending on the wavelength range and resolving power of the instrument. At visible wavelengths (0.4-0.9 microm) O3, H2O, O2, and oxygen dimer [(O2)2] are clearly apparent. In the mid-infrared (5-20 microm) CO2, O3, and H2O are present. CH4, N2O, CO2, O3, and H2O are visible in the near-infrared (1-5 microm). A comprehensive three-dimensional model of the Earth is needed to produce a good fit with the observations.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jatana, Gurneesh; Geckler, Sam; Koeberlein, David

    We designed and developed a 4-probe multiplexed multi-species absorption spectroscopy sensor system for gas property measurements on the intake side of commercial multi-cylinder internal-combustion (I.C.) engines; the resulting cycle- and cylinder-resolved concentration, temperature and pressure measurements are applicable for assessing spatial and temporal variations in the recirculated exhaust gas (EGR) distribution at various locations along the intake gas path, which in turn is relevant to assessing cylinder charge uniformity, control strategies, and CFD models. Furthermore, the diagnostic is based on absorption spectroscopy and includes an H 2O absorption system (utilizing a 1.39 m distributed feedback (DFB) diode laser) for measuringmore » gas temperature, pressure, and H 2O concentration, and a CO 2 absorption system (utilizing a 2.7 m DFB laser) for measuring CO 2 concentration. The various lasers, optical components and detectors were housed in an instrument box, and the 1.39- m and 2.7- m lasers were guided to and from the engine-mounted probes via optical fibers and hollow waveguides, respectively. The 5kHz measurement bandwidth allows for near-crank angle resolved measurements, with a resolution of 1.2 crank angle degrees at 1000 RPM. Our use of compact stainless steel measurement probes enables simultaneous multi-point measurements at various locations on the engine with minimal changes to the base engine hardware; in addition to resolving large-scale spatial variations via simultaneous multi-probe measurements, local spatial gradients can be resolved by translating individual probes. Along with details of various sensor design features and performance, we also demonstrate validation of the spectral parameters of the associated CO 2 absorption transitions using both a multi-pass heated cell and the sensor probes.« less

  14. A Hyperspectral View of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Charlebois, M.; Drissen, L.; Bernier, A.-P.; Grandmont, F.; Binette, L.

    2010-05-01

    We have obtained spatially resolved spectra of the Crab nebula in the spectral ranges 450-520 nm and 650-680 nm, encompassing the Hβ, [O III] λ4959, λ5007, Hα, [N II] λ6548, λ6584, and [S II] λ6717, λ6731 emission lines, with the imaging Fourier transform spectrometer SpIOMM at the Observatoire du Mont-Mégantic's 1.6 m telescope. We first compare our data with published observations obtained either from a Fabry-Perot interferometer or from a long-slit spectrograph. Using a spectral deconvolution technique similar to the one developed by Čadež et al., we identify and resolve multiple emission lines separated by large Doppler shifts and contained within the rapidly expanding filamentary structure of the Crab. This allows us to measure important line ratios, such as [N II]/Hα, [S II]/Hα, and [S II] λ6717 /[S II] λ6731 of individual filaments, providing a new insight on the SE-NW asymmetry in the Crab. From our analysis of the spatial distribution of the electronic density and of the respective shocked versus photoionized gas components, we deduce that the skin-less NW region must have evolved faster than the rest of the nebula. Assuming a very simple expansion model for the ejecta material, our data provide us with a complete tridimensional view of the Crab.

  15. Climate downscaling effects on predictive ecological models: a case study for threatened and endangered vertebrates in the southeastern United States

    USGS Publications Warehouse

    Bucklin, David N.; Watling, James I.; Speroterra, Carolina; Brandt, Laura A.; Mazzotti, Frank J.; Romañach, Stephanie S.

    2013-01-01

    High-resolution (downscaled) projections of future climate conditions are critical inputs to a wide variety of ecological and socioeconomic models and are created using numerous different approaches. Here, we conduct a sensitivity analysis of spatial predictions from climate envelope models for threatened and endangered vertebrates in the southeastern United States to determine whether two different downscaling approaches (with and without the use of a regional climate model) affect climate envelope model predictions when all other sources of variation are held constant. We found that prediction maps differed spatially between downscaling approaches and that the variation attributable to downscaling technique was comparable to variation between maps generated using different general circulation models (GCMs). Precipitation variables tended to show greater discrepancies between downscaling techniques than temperature variables, and for one GCM, there was evidence that more poorly resolved precipitation variables contributed relatively more to model uncertainty than more well-resolved variables. Our work suggests that ecological modelers requiring high-resolution climate projections should carefully consider the type of downscaling applied to the climate projections prior to their use in predictive ecological modeling. The uncertainty associated with alternative downscaling methods may rival that of other, more widely appreciated sources of variation, such as the general circulation model or emissions scenario with which future climate projections are created.

  16. Spatially resolved, in-situ monitoring of crack growth via the coupling current in aluminum alloy 5083

    NASA Astrophysics Data System (ADS)

    Williams, Krystaufeux D.

    The work discussed in this dissertation is an experimental validation of a body of research that was created to model stress corrosion cracking phenomenon for 304 stainless steels in boiling water reactors. This coupled environment fracture model (CEFM) incorporates the natural laws of the conservation of charge and the differential aeration hypothesis to predict the amount of stress corrosion crack growth as a function of many external environmental variables, including potential, stress intensity, solution conductivity, oxidizer concentrations, and various other environmental parameters. Out of this approach came the concept of the coupling current; a local corrosion current that flows from within cracks, crevices, pits, etc... of a metal or alloy to the external surface. Because of the deterministic approach taken in the mentioned research, the coupling current analysis and CEFM model can be applied to the specific problem of SCC in aluminum alloy 5083 (the alloy of interest for this dissertation that is highly sought after today because of its corrosion resistance and high strength to weight ratio). This dissertation research is specifically devoted to the experimental verification of the coupling current, which results from a coupling between the crack's internal and external environments, by spatially resolving them using the scanning vibrating probe (SVP) as a tool. Hence, through the use of a unique fracture mechanics setup, simultaneous mechanical and local electrochemical data may be obtained, in situ..

  17. Nanoantenna-Enhanced Infrared Spectroscopic Chemical Imaging.

    PubMed

    Kühner, Lucca; Hentschel, Mario; Zschieschang, Ute; Klauk, Hagen; Vogt, Jochen; Huck, Christian; Giessen, Harald; Neubrech, Frank

    2017-05-26

    Spectroscopic infrared chemical imaging is ideally suited for label-free and spatially resolved characterization of molecular species, but often suffers from low infrared absorption cross sections. Here, we overcome this limitation by utilizing confined electromagnetic near-fields of resonantly excited plasmonic nanoantennas, which enhance the molecular absorption by orders of magnitude. In the experiments, we evaporate microstructured chemical patterns of C 60 and pentacene with nanometer thickness on top of homogeneous arrays of tailored nanoantennas. Broadband mid-infrared spectra containing plasmonic and vibrational information were acquired with diffraction-limited resolution using a two-dimensional focal plane array detector. Evaluating the enhanced infrared absorption at the respective frequencies, spatially resolved chemical images were obtained. In these chemical images, the microstructured chemical patterns are only visible if nanoantennas are used. This confirms the superior performance of our approach over conventional spectroscopic infrared imaging. In addition to the improved sensitivity, our technique provides chemical selectivity, which would not be available with plasmonic imaging that is based on refractive index sensing. To extend the accessible spectral bandwidth of nanoantenna-enhanced spectroscopic imaging, we employed nanostructures with dual-band resonances, providing broadband plasmonic enhancement and sensitivity. Our results demonstrate the potential of nanoantenna-enhanced spectroscopic infrared chemical imaging for spatially resolved characterization of organic layers with thicknesses of several nanometers. This is of potential interest for medical applications which are currently hampered by state-of-art infrared techniques, e.g., for distinguishing cancerous from healthy tissues.

  18. A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker

    2018-04-01

    We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.

  19. Quantifying Feedback from Narrow Line Region Outflows in Nearby Active Galaxies. I. Spatially Resolved Mass Outflow Rates for the Seyfert 2 Galaxy Markarian 573

    NASA Astrophysics Data System (ADS)

    Revalski, M.; Crenshaw, D. M.; Kraemer, S. B.; Fischer, T. C.; Schmitt, H. R.; Machuca, C.

    2018-03-01

    We present the first spatially resolved mass outflow rate measurements ({\\dot{M}}out}) of the optical emission line gas in the narrow line region (NLR) of a Seyfert 2 galaxy, Markarian 573. Using long slit spectra and [O III] imaging from the Hubble Space Telescope and Apache Point Observatory in conjunction with emission line diagnostics and Cloudy photoionization models, we find a peak outflow rate of {\\dot{M}}out}≈ 3.4 +/- 0.5 {M}ȯ {yr}}-1 at a distance of 210 pc from the central supermassive black hole (SMBH). The outflow extends to distances of 600 pc from the nucleus with a total mass and kinetic energy of M ≈ 2.2 × 106 M ⊙ and E ≈ 5.1 × 1054 erg, revealing the outflows to be more energetic than those in the lower luminosity Seyfert 1 galaxy NGC 4151. The peak outflow rate is an order of magnitude larger than the mass accretion and nuclear outflow rates, indicating local in situ acceleration of the circumnuclear NLR gas. We compare these results to global techniques that quantify an average outflow rate across the NLR, and find the latter are subject to larger uncertainties. These results indicate that spatially resolved observations are critical for probing AGN feedback on scales where circumnuclear star formation occurs.

  20. SDSS-IV MaNGA: identification of active galactic nuclei in optical integral field unit surveys

    NASA Astrophysics Data System (ADS)

    Wylezalek, Dominika; Zakamska, Nadia L.; Greene, Jenny E.; Riffel, Rogemar A.; Drory, Niv; Andrews, Brett H.; Merloni, Andrea; Thomas, Daniel

    2018-02-01

    In this paper, we investigate 2727 galaxies observed by MaNGA as of 2016 June to develop spatially resolved techniques for identifying signatures of active galactic nuclei (AGNs). We identify 303 AGN candidates. The additional spatial dimension imposes challenges in identifying AGNs due to contamination from diffuse ionized gas, extraplanar gas and photoionization by hot stars. We show that the combination of spatially resolved line diagnostic diagrams and additional cuts on H α surface brightness and H α equivalent width can distinguish between AGN-like signatures and high-metallicity galaxies with low-ionization nuclear emission-line regions-like spectra. Low-mass galaxies with high specific star formation rates are particularly difficult to diagnose and routinely show diagnostic line ratios outside of the standard star formation locus. We develop a new diagnostic - the distance from the standard diagnostic line in the line-ratio space - to evaluate the significance of the deviation from the star formation locus. We find 173 galaxies that would not have been selected as AGN candidates based on single-fibre spectral measurements but exhibit photoionization signatures suggestive of AGN activity in the Mapping Nearby Galaxies at APO resolved observations, underscoring the power of large integral field unit surveys. A complete census of these new AGN candidates is necessary to understand their nature and probe the complex co-evolution of supermassive black holes and their hosts.

  1. Spatially Resolved Observations of the Galactic Center Source IRS 21

    NASA Astrophysics Data System (ADS)

    Tanner, A.; Ghez, A. M.; Morris, M.; Becklin, E. E.; Cotera, A.; Ressler, M.; Werner, M.; Wizinowich, P.

    2002-08-01

    We present diffraction-limited 2-25 μm images obtained with the W. M. Keck 10 m telescopes that spatially resolve the cool source IRS 21, one of a small group of enigmatic objects in the central parsec of our Galaxy that have eluded classification. Modeled as a Gaussian, the azimuthally averaged intensity profile of IRS 21 has a half-width at half-maximum (HWHM) size of 650+/-80 AU at 2.2 μm and an average HWHM size of 1600+/-200 AU at mid-infrared wavelengths. These large apparent sizes imply an extended distribution of dust. The mid-infrared color map indicates that IRS 21 is a self-luminous source rather than an externally heated dust clump as originally suggested. The spectral energy distribution has distinct near- and mid-infrared components. A simple radiative transfer code, which simultaneously fits the near- and mid-infrared photometry and intensity profiles, supports a model in which the near-infrared radiation is scattered and extincted light from an embedded central source, while the mid-infrared emission is from thermally reradiating silicate dust. We argue that IRS 21 (and by analogy, the other luminous sources along the Northern Arm) is a massive star experiencing rapid mass loss and plowing through the Northern Arm, thereby generating a bow shock, which is spatially resolved in our observations.

  2. Complexity metric based on fraction of penumbra dose - initial study

    NASA Astrophysics Data System (ADS)

    Bäck, A.; Nordström, F.; Gustafsson, M.; Götstedt, J.; Karlsson Hauer, A.

    2017-05-01

    Volumetric modulated arc therapy improve radiotherapy outcome for many patients compared to conventional three dimensional conformal radiotherapy but require a more extensive, most often measurement based, quality assurance. Multi leaf collimator (MLC) aperture-based complexity metrics have been suggested to be used to distinguish complex treatment plans unsuitable for treatment without time consuming measurements. This study introduce a spatially resolved complexity score that correlate to the fraction of penumbra dose and will give information on the spatial distribution and the clinical relevance of the calculated complexity. The complexity metric is described and an initial study on the correlation between the complexity score and the difference between measured and calculated dose for 30 MLC openings is presented. The result of an analysis of the complexity scores were found to correlate to differences between measurements and calculations with a Pearson’s r-value of 0.97.

  3. Calculating the mounting parameters for Taylor Spatial Frame correction using computed tomography.

    PubMed

    Kucukkaya, Metin; Karakoyun, Ozgur; Armagan, Raffi; Kuzgun, Unal

    2011-07-01

    The Taylor Spatial Frame uses a computer program-based six-axis deformity analysis. However, there is often a residual deformity after the initial correction, especially in deformities with a rotational component. This problem can be resolved by recalculating the parameters and inputting all new deformity and mounting parameters. However, this may necessitate repeated x-rays and delay treatment. We believe that error in the mounting parameters is the main reason for most residual deformities. To prevent these problems, we describe a new calculation technique for determining the mounting parameters that uses computed tomography. This technique is especially advantageous for deformities with a rotational component. Using this technique, exact calculation of the mounting parameters is possible and the residual deformity and number of repeated x-rays can be minimized. This new technique is an alternative method to accurately calculating the mounting parameters.

  4. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    DOE PAGES

    Hachtel, Jordan A.; Marvinney, Claire; Mouti, Anas; ...

    2016-03-02

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows usmore » to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. Furthermore, the approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.« less

  5. Simultaneous multi-beam planar array IR (pair) spectroscopy

    DOEpatents

    Elmore, Douglas L.; Rabolt, John F.; Tsao, Mei-Wei

    2005-09-13

    An apparatus and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources, sampling accessories for positioning the samples, optically dispersive elements, a focal plane array (FPA) arranged to detect the dispersed light beams, and a processor and display to control the FPA, and display an IR spectrograph. Fiber-optic coupling can be used to allow remote sensing. Portability, reliability, and ruggedness is enhanced due to the no-moving part construction. Applications include determining time-resolved orientation and characteristics of materials, including polymer monolayers. Orthogonal polarizers may be used to determine certain material characteristics.

  6. Spectrally Resolved Intensities of Ultra-Dense Hot Aluminum Plasmas

    NASA Astrophysics Data System (ADS)

    Gil, J. M.; Rodríguez, R.; Florido, R.; Rubiano, J. G.; Martel, P.; Mínguez, E.; Sauvan, P.; Angelo, P.; Schott, R.; Dalimier, E.; Mancini, R.

    2008-10-01

    We present a first study of spectroscopic determination of electron temperature and density spatial profiles of aluminum K-shell line emission spectra from laser-shocked aluminum experiments performed at LULI. The radiation emitted by the aluminum plasma was dispersed with an ultra-high resolution spectrograph (λ/Δλ≈6000). From the recorded films one can extract a set of time-integrated emission lineouts associated with the corresponding spatial region of the plasma. The observed spectra include the Lyα, Heβ, Heγ, Lyβ and Lyγ line emissions and their associated He- and Li-like satellites thus covering a photon energy range from 1700 eV to 2400 eV approximately. The data analysis rely on the ABAKO/RAPCAL computational package, which has been recently developed at the University of Las Palmas de Gran Canaria and takes into account non-equilibrium collisional-radiative atomic kinetics, Stark broadened line shapes and radiation transport calculations.

  7. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  8. Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea

    PubMed Central

    Akimova, Anna; Núñez-Riboni, Ismael; Kempf, Alexander; Taylor, Marc H.

    2016-01-01

    Understanding of the processes affecting recruitment of commercially important fish species is one of the major challenges in fisheries science. Towards this aim, we investigated the relation between North Sea hydrography (temperature and salinity) and fish stock variables (recruitment, spawning stock biomass and pre-recruitment survival index) for 9 commercially important fishes using spatially-resolved cross-correlation analysis. We used high-resolution (0.2° × 0.2°) hydrographic data fields matching the maximal temporal extent of the fish population assessments (1948–2013). Our approach allowed for the identification of regions in the North Sea where environmental variables seem to be more influential on the fish stocks, as well as the regions of a lesser or nil influence. Our results confirmed previously demonstrated negative correlations between temperature and recruitment of cod and plaice and identified regions of the strongest correlations (German Bight for plaice and north-western North Sea for cod). We also revealed a positive correlation between herring spawning stock biomass and temperature in the Orkney-Shetland area, as well as a negative correlation between sole pre-recruitment survival index and temperature in the German Bight. A strong positive correlation between sprat stock variables and salinity in the central North Sea was also found. To our knowledge the results concerning correlations between North Sea hydrography and stocks’ dynamics of herring, sole and sprat are novel. The new information about spatial distribution of the correlation provides an additional help to identify mechanisms underlying these correlations. As an illustration of the utility of these results for fishery management, an example is provided that incorporates the identified environmental covariates in stock-recruitment models. PMID:27584155

  9. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy.

    PubMed

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-01-18

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels.

  10. The Grism Lens-amplified Survey from Space (GLASS). X. Sub-kiloparsec Resolution Gas-phase Metallicity Maps at Cosmic Noon behind the Hubble Frontier Fields Cluster MACS1149.6+2223

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jones, Tucker A.; Treu, Tommaso; Morishita, Takahiro; Abramson, Louis E.; Brammer, Gabriel B.; Huang, Kuang-Han; Malkan, Matthew A.; Schmidt, Kasper B.; Fontana, Adriano; Grillo, Claudio; Henry, Alaina L.; Karman, Wouter; Kelly, Patrick L.; Mason, Charlotte A.; Mercurio, Amata; Rosati, Piero; Sharon, Keren; Trenti, Michele; Vulcani, Benedetta

    2017-03-01

    We combine deep Hubble Space Telescope grism spectroscopy with a new Bayesian method to derive maps of gas-phase metallicity for 10 star-forming galaxies at high redshift (1.2≲ z≲ 2.3). Exploiting lensing magnification by the foreground cluster MACS1149.6+2223, we reach sub-kiloparsec spatial resolution and push the limit of stellar mass associated with such high-z spatially resolved measurements below {10}8 {M}⊙ for the first time. Our maps exhibit diverse morphologies, indicative of various effects such as efficient radial mixing from tidal torques, rapid accretion of low-metallicity gas, and other physical processes that can affect the gas and metallicity distributions in individual galaxies. Based upon an exhaustive sample of all existing sub-kiloparesec resolution metallicity gradient measurements at high z, we find that predictions given by analytical chemical evolution models assuming a relatively extended star-formation profile in the early disk-formation phase can explain the majority of observed metallicity gradients, without involving galactic feedback or radial outflows. We observe a tentative correlation between stellar mass and metallicity gradients, consistent with the “downsizing” galaxy formation picture that more massive galaxies are more evolved into a later phase of disk growth, where they experience more coherent mass assembly at all radii and thus show shallower metallicity gradients. In addition to the spatially resolved analysis, we compile a sample of homogeneously cross-calibrated integrated metallicity measurements spanning three orders of magnitude in stellar mass at z ˜ 1.8. We use this sample to study the mass-metallicity relation (MZR) and find that the slope of the observed MZR can rule out the momentum-driven wind model at a 3σ confidence level.

  11. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in cellular media due to strong cross-talk between energetically separated detection channels. Dedicated to Professor Kankan Bhattacharyya.

  12. Spatially and chemically resolved source apportionment analysis: Case study of high particulate matter event

    NASA Astrophysics Data System (ADS)

    Kim, Byeong-Uk; Bae, Changhan; Kim, Hyun Cheol; Kim, Eunhye; Kim, Soontae

    2017-08-01

    This article presents the results of a detailed source apportionment study of the high particulate matter (PM) event in the Seoul Metropolitan Area (SMA), South Korea, during late February 2014. Using the Comprehensive Air Quality Model with Extensions with its Particulate Source Apportionment Technology (CAMx-PSAT), we defined 10 source regions, including five in China, for spatially and chemically resolved analyses. During the event, the spatially averaged PM10 concentration at all PM10 monitors in the SMA was 129 μg/m3, while the PM10 and PM2.5 concentrations at the BulGwang Supersite were 143 μg/m3 and 123 μg/m3, respectively. CAMx-PSAT showed reasonably good PM model performance in both China and the SMA. For February 23-27, CAMx-PSAT estimated that Chinese contributions to the SMA PM10 and PM2.5 were 84.3 μg/m3 and 80.0 μg/m3, respectively, or 64% and 70% of the respective totals, while South Korea's respective domestic contributions were 36.5 μg/m3 and 23.3 μg/m3. We observed that the spatiotemporal pattern of PM constituent concentrations and contributions did not necessarily follow that of total PM10 and PM2.5 concentrations. For example, Beijing-Tianjin-Hebei produced high nitrate concentrations, but the two most-contributing regions to PM in the SMA were the Near Beijing area and South Korea. In addition, we noticed that the relative contributions from each region changed over time. We found that most ammonium mass that neutralized Chinese sulfate mass in the SMA came from South Korean sources, indicating that secondary inorganic aerosol in the SMA, especially ammonium sulfates, during this event resulted from different major precursors originating from different regions.

  13. Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy

    PubMed Central

    Ortega, Richard; Devès, Guillaume; Carmona, Asunción

    2009-01-01

    The direct detection of biologically relevant metals in single cells and of their speciation is a challenging task that requires sophisticated analytical developments. The aim of this article is to present the recent achievements in the field of cellular chemical element imaging, and direct speciation analysis, using proton and synchrotron radiation X-ray micro- and nano-analysis. The recent improvements in focusing optics for MeV-accelerated particles and keV X-rays allow application to chemical element analysis in subcellular compartments. The imaging and quantification of trace elements in single cells can be obtained using particle-induced X-ray emission (PIXE). The combination of PIXE with backscattering spectrometry and scanning transmission ion microscopy provides a high accuracy in elemental quantification of cellular organelles. On the other hand, synchrotron radiation X-ray fluorescence provides chemical element imaging with less than 100 nm spatial resolution. Moreover, synchrotron radiation offers the unique capability of spatially resolved chemical speciation using micro-X-ray absorption spectroscopy. The potential of these methods in biomedical investigations will be illustrated with examples of application in the fields of cellular toxicology, and pharmacology, bio-metals and metal-based nano-particles. PMID:19605403

  14. Spatial and temporal dynamics of a pulsed spark microplasma used for aerosol analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Lina; Kulkarni, Pramod; Diwakar, Prasoon

    2018-06-01

    The spatial and temporal dynamics of a pulsed, electrical spark microplasma used for spectrochemical analysis of aerosols was investigated. The spark discharge was generated by applying a high voltage pulse between a coaxial anode and cathode. Aerosol particles of black carbon were collected on the cathode for 2 min, following which the pulsed microplasma was introduced, leading to ablation and atomization of the collected particles. The space- and time-resolved emission spectra showed that the atomic emission signal from the carbon species originated from the region close to the cathode surface during the early evolution of the microplasma. The C I and C II atomic emission reached peak intensities at 11 and 6 μs delay time, respectively. Peak emission intensities occurred between 0.5-1.3 mm above the cathode surface. The average excitation temperature and the electron number density of the spark microplasma were estimated to be 23,000 K, and 1.6 × 1017 cm-3, respectively. The effects of pulse energy on the excitation temperature and electron density were also investigated. The results provide insights into the dynamics of the pulsed spark microplasma and are helpful in optimizing elemental analysis of aerosols using this technique.

  15. Understanding Organics in Meteorites and the Pre-Biotic Environment

    NASA Technical Reports Server (NTRS)

    Zare, Richard N.

    2003-01-01

    (1) Refinement of the analytic capabilities of our experiment via characterization of molecule-specific response and the effects upon analysis of the type of sample under investigation; (2) Measurement of polycyclic aromatic hydrocarbons (PAHs) with high sensitivity and spatial resolution within extraterrestrial samples; (3) Investigation of the interstellar reactions of PAHs via the analysis of species formed in systems modeling dust grains and ices; (4) Investigations into the potential role of PAHs in prebiotic and early biotic chemistry via photoreactions of PAHs under simulated prebiotic Earth conditions. To meet these objectives, we use microprobe laser-desorption, laser-ionization mass spectrometry (MuL(exp 2)MS), which is a sensitive, selective, and spatially resolved technique for detection of aromatic compounds. Appendix A presents a description of the MuL(exp 2)MS technique. The initial grant proposal was for a three-year funding period, while the award was given for a one-year interim period. Because of this change in time period, emphasis was shifted from the first research goal, which was more development-oriented, in order to focus more on the other analysis-oriented goals. The progress made on each of the four research areas is given below.

  16. High-resolution Imaging of Deuterium-Tritium Capsule Implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, Benjamin; Rygg, Ryan; Collins, Gilbert; Patel, Pravesh

    2017-10-01

    Highly-resolved 3-D simulations of inertial confinement fusion (ICF) implosions predict a hot spot plasma that exhibits complex micron-scale structure originating from a variety of 3-D perturbations. Experimental diagnosis of these conditions requires high spatial resolution imaging techniques. X-ray penumbral imaging can improve the spatial resolution over pinhole imaging while simultaneously increasing the detected photon yield at x-ray energies where the ablator opacity becomes negligible. Here we report on the first time-integrated x-ray penumbral imaging experiments of ICF capsule implosions at the National Ignition Facility that achieved spatial resolution as high as 4 micrometer. 6 to 30 keV hot spot images from layered DT implosions will be presented from a variety of experimental ICF campaigns, revealing previously unseen detail. It will be discussed how these and future results can be used to improve our physics understanding of inertially confined fusion plasmas by enabling spatially resolved measurements of hot spot properties, such as radiation energy, temperature or derived quantities. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  17. Sodium Atoms in the Lunar Exotail: Observed Velocity and Spatial Distributions

    NASA Technical Reports Server (NTRS)

    Line, Michael R.; Mierkiewicz, E. J.; Oliversen, R. J.; Wilson, J. K.; Haffner, L. M.; Roesler, F. L.

    2011-01-01

    The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations determined the average radial velocity of sodium atoms moving down the lunar tail beyond Earth along the Sun-Moon-Earth line (i.e., the anti-lunar point) to be 12.4 km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15 x times 15 deg region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights around new moon in October 2007. The spatial distribution of the sodium atoms is elongated along the ecliptic with the location of the peak intensity drifting 3 degrees east along the ecliptic per night. Preliminary modeling results suggest that the spatial and velocity distributions in the sodium exotail are sensitive to the near surface lunar sodium velocity distribution and that observations of this sort along with detailed modeling offer new opportunities to describe the time history of lunar surface sputtering over several days.

  18. Absorption Mode FT-ICR Mass Spectrometry Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode formore » Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.« less

  19. Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia

    NASA Astrophysics Data System (ADS)

    Werner, Johannes P.; Divine, Dmitry V.; Charpentier Ljungqvist, Fredrik; Nilsen, Tine; Francus, Pierre

    2018-04-01

    In this article, the first spatially resolved and millennium-length summer (June-August) temperature reconstruction over the Arctic and sub-Arctic domain (north of 60° N) is presented. It is based on a set of 44 annually dated temperature-sensitive proxy archives of various types from the revised PAGES2k database supplemented with six new recently updated proxy records. As a major advance, an extension of the Bayesian BARCAST climate field (CF) reconstruction technique provides a means to treat climate archives with dating uncertainties. This results not only in a more precise reconstruction but additionally enables joint probabilistic constraints to be imposed on the chronologies of the used archives. The new seasonal CF reconstruction for the Arctic region can be shown to be skilful for the majority of the terrestrial nodes. The decrease in the proxy data density back in time, however, limits the analyses in the spatial domain to the period after 750 CE, while the spatially averaged reconstruction covers the entire time interval of 1-2002 CE.The centennial to millennial evolution of the reconstructed temperature is in good agreement with a general pattern that was inferred in recent studies for the Arctic and its subregions. In particular, the reconstruction shows a pronounced Medieval Climate Anomaly (MCA; here ca. 920-1060 CE), which was characterised by a sequence of extremely warm decades over the whole domain. The medieval warming was followed by a gradual cooling into the Little Ice Age (LIA), with 1766-1865 CE as the longest centennial-scale cold period, culminating around 1811-1820 CE for most of the target region.In total over 600 independent realisations of the temperature CF were generated. As showcased for local and regional trends and temperature anomalies, operating in a probabilistic framework directly results in comprehensive uncertainty estimates, even for complex analyses. For the presented multi-scale trend analysis, for example, the spread in different paths across the reconstruction ensemble prevents a robust analysis of features at timescales shorter than ca. 30 years. For the spatial reconstruction, the benefit of using the spatially resolved reconstruction ensemble is demonstrated by focusing on the regional expression of the recent warming and the MCA. While our analysis shows that the peak MCA summer temperatures were as high as in the late 20th and early 21st centuries, the spatial coherence of extreme years over the last decades of the reconstruction (1980s onwards) seems unprecedented at least back until 750 CE. However, statistical testing could not provide conclusive support of the contemporary warming to exceed the peak of the MCA in terms of the pan-Arctic mean summer temperatures: the reconstruction cannot be extended reliably past 2002 CE due to lack of proxy data and thus the most recent warming is not captured.

  20. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited).

    PubMed

    Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J

    2014-11-01

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  1. The High Resolution Chandra X-Ray Spectrum of 3C273

    NASA Technical Reports Server (NTRS)

    Fruscione, Antonella; Lavoie, Anthony (Technical Monitor)

    2000-01-01

    The bright quasar 3C273 was observed by Chandra in January 2000 for 120 ksec as a calibration target. It was observed with all detector- plus-grating combinations (ACIS+HETG, ACIS+LETG, and HRC+LETG) yielding an X-ray spectrum across the entire 0.1-10 keV band with unprecedented spectral resolution. At about 10 arcsec from the nucleus, an X-ray jet is also clearly visible and resolved in the Oth order images. While the jet is much fainter than the nuclear source, the Chandra spatial resolution allows, for the first time, spectral analysis of both components separately. We will present detailed spectral analysis with particular emphasis on possible absorption features and comparison with simultaneous BeppoSAX data.

  2. Preconditioning for the Navier-Stokes equations with finite-rate chemistry

    NASA Technical Reports Server (NTRS)

    Godfrey, Andrew G.; Walters, Robert W.; Van Leer, Bram

    1993-01-01

    The preconditioning procedure for generalized finite-rate chemistry and the proper preconditioning for the one-dimensional Navier-Stokes equations are presented. Eigenvalue stiffness is resolved and convergence-rate acceleration is demonstrated over the entire Mach-number range from the incompressible to the hypersonic. Specific benefits are realized at low and transonic flow speeds. The extended preconditioning matrix accounts for thermal and chemical non-equilibrium and its implementation is explained for both explicit and implicit time marching. The effect of higher-order spatial accuracy and various flux splittings is investigated. Numerical analysis reveals the possible theoretical improvements from using proconditioning at all Mach numbers. Numerical results confirm the expectations from the numerical analysis. Representative test cases include flows with previously troublesome embedded high-condition-number regions.

  3. Spatial-spectral characterization of focused spatially chirped broadband laser beams.

    PubMed

    Greco, Michael J; Block, Erica; Meier, Amanda K; Beaman, Alex; Cooper, Samuel; Iliev, Marin; Squier, Jeff A; Durfee, Charles G

    2015-11-20

    Proper alignment is critical to obtain the desired performance from focused spatially chirped beams, for example in simultaneous spatial and temporal focusing (SSTF). We present a simple technique for inspecting the beam paths and focusing conditions for the spectral components of a broadband beam. We spectrally resolve the light transmitted past a knife edge as it was scanned across the beam at several axial positions. The measurement yields information about spot size, M2, and the propagation paths of different frequency components. We also present calculations to illustrate the effects of defocus aberration on SSTF beams.

  4. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    NASA Technical Reports Server (NTRS)

    Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub

    2012-01-01

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.

  5. Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines.

    PubMed

    Miles, P C

    1999-03-20

    An optical diagnostic system based on line imaging of Raman-scattered light has been developed to study the mixing processes in internal combustion engines. The system permits multipoint, single laser-shot measurements of CO(2), O(2), N(2), C(3)H(8), and H(2)O mole fractions with submillimeter spatial resolution. Selection of appropriate system hardware is discussed, as are subsequent data reduction and analysis procedures. Results are reported for data obtained at multiple crank angles and in two different engine flow fields. Measurements are made at 12 locations simultaneously, each location having measurement volume dimensions of 0.5 mm x 0.5 mm x 0.9 mm. The data are analyzed to obtain statistics of species mole fractions: mean, rms, histograms, and both spatial and cross-species covariance functions. The covariance functions are used to quantify the accuracy of the measured rms mole fraction fluctuations, to determine the integral length scales of the mixture inhomogeneities, and to quantify the cycle-to-cycle fluctuations in bulk mixture composition under well-mixed conditions.

  6. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks.

    PubMed

    Martin Cichy, Radoslaw; Khosla, Aditya; Pantazis, Dimitrios; Oliva, Aude

    2017-06-01

    Human scene recognition is a rapid multistep process evolving over time from single scene image to spatial layout processing. We used multivariate pattern analyses on magnetoencephalography (MEG) data to unravel the time course of this cortical process. Following an early signal for lower-level visual analysis of single scenes at ~100ms, we found a marker of real-world scene size, i.e. spatial layout processing, at ~250ms indexing neural representations robust to changes in unrelated scene properties and viewing conditions. For a quantitative model of how scene size representations may arise in the brain, we compared MEG data to a deep neural network model trained on scene classification. Representations of scene size emerged intrinsically in the model, and resolved emerging neural scene size representation. Together our data provide a first description of an electrophysiological signal for layout processing in humans, and suggest that deep neural networks are a promising framework to investigate how spatial layout representations emerge in the human brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Multimodal MSI in Conjunction with Broad Coverage Spatially Resolved MS 2 Increases Confidence in Both Molecular Identification and Localization

    DOE PAGES

    Veličković, Dušan; Chu, Rosalie K.; Carrell, Alyssa A.; ...

    2017-12-06

    One critical aspect of mass spectrometry imaging (MSI) is the need to confidently identify detected analytes. While orthogonal tandem MS (e.g., LC–MS 2) experiments from sample extracts can assist in annotating ions, the spatial information about these molecules is lost. Accordingly, this could cause mislead conclusions, especially in cases where isobaric species exhibit different distributions within a sample. In this Technical Note, we employed a multimodal imaging approach, using matrix assisted laser desorption/ionization (MALDI)-MSI and liquid extraction surface analysis (LESA)-MS 2I, to confidently annotate and localize a broad range of metabolites involved in a tripartite symbiosis system of moss, cyanobacteria,more » and fungus. In conclusion, we found that the combination of these two imaging modalities generated very congruent ion images, providing the link between highly accurate structural information onfered by LESA and high spatial resolution attainable by MALDI. These results demonstrate how this combined methodology could be very useful in differentiating metabolite routes in complex systems.« less

  8. Multimodal MSI in Conjunction with Broad Coverage Spatially Resolved MS 2 Increases Confidence in Both Molecular Identification and Localization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veličković, Dušan; Chu, Rosalie K.; Carrell, Alyssa A.

    One critical aspect of mass spectrometry imaging (MSI) is the need to confidently identify detected analytes. While orthogonal tandem MS (e.g., LC–MS 2) experiments from sample extracts can assist in annotating ions, the spatial information about these molecules is lost. Accordingly, this could cause mislead conclusions, especially in cases where isobaric species exhibit different distributions within a sample. In this Technical Note, we employed a multimodal imaging approach, using matrix assisted laser desorption/ionization (MALDI)-MSI and liquid extraction surface analysis (LESA)-MS 2I, to confidently annotate and localize a broad range of metabolites involved in a tripartite symbiosis system of moss, cyanobacteria,more » and fungus. In conclusion, we found that the combination of these two imaging modalities generated very congruent ion images, providing the link between highly accurate structural information onfered by LESA and high spatial resolution attainable by MALDI. These results demonstrate how this combined methodology could be very useful in differentiating metabolite routes in complex systems.« less

  9. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging

    DOE PAGES

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...

    2017-07-04

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3NH 3PbI 3–xCl x) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmissionmore » microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less

  10. A Chandra High-Resolution X-ray Image of Centaurus A.

    PubMed

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  11. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  12. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstratedmore » for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.« less

  13. SPATIALLY RESOLVED HCN J = 4-3 AND CS J = 7-6 EMISSION FROM THE DISK AROUND HD 142527

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Plas, G.; Casassus, S.; Perez, S.

    2014-09-10

    The disk around HD 142527 attracts a great amount of attention compared to others because of its resolved (sub-)millimeter dust continuum that is concentrated into the shape of a horseshoe toward the north of the star. In this Letter we present spatially resolved ALMA detections of the HCN J = 4-3 and CS J = 7-6 emission lines. These lines give us a deeper view into the disk compared to the (optically thicker) CO isotopes. This is the first detection of CS J = 7-6 coming from a protoplanetary disk. Both emission lines are azimuthally asymmetric and are suppressed under the horseshoe-shapedmore » continuum emission peak. A possible mechanism for explaining the decrease under the horseshoe-shaped continuum is the increased opacity coming from the higher dust concentration at the continuum peak. Lower dust and/or gas temperatures and an optically thick radio-continuum reduce line emission by freezing out and shielding emission from the far side of the disk.« less

  14. Investigation of temporal-resolved emission spectra of highly charged Al ions from laser-produced plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, M. G., E-mail: sumg@nwnu.edu.cn; Sun, D. X.; Dong, C. Z.

    2016-03-15

    Temporal evolution of extreme ultraviolet emission from laser-produced aluminum (Al) plasma has been experimentally and theoretically investigated. Al plasmas have been measured by using the temporal-spatially resolved laser-produced plasma technique. The emission lines can be identified from 2p-3s, 3d, 4s, 4d, 5d transition lines from Al{sup 3+} to Al{sup 6+} ions. In order to quickly diagnose the plasma, the assumptions of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model are used to estimate the values of electron temperature and electron density in plasma. We succeeded in reproducing the simulated spectra related to the different timemore » delays, which are in good agreement with experiments. Temporal evolution behavior of highly charged Al ions in plasma has been analyzed, and the exponential decay about electron temperature and electron density has been obtained. The results indicate that the temporal-spatially resolved measurement is essential for accurate understanding of evolution behavior of highly charged ions in laser-produced plasmas.« less

  15. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; ...

    2015-09-01

    One effective method of reducing NO x emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO 2 concentration at various locationsmore » in the intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO 2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.« less

  16. SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    NASA Astrophysics Data System (ADS)

    Hsieh, B. C.; Lin, Lihwai; Lin, J. H.; Pan, H. A.; Hsu, C. H.; Sánchez, S. F.; Cano-Díaz, M.; Zhang, K.; Yan, R.; Barrera-Ballesteros, J. K.; Boquien, M.; Riffel, R.; Brownstein, J.; Cruz-González, I.; Hagen, A.; Ibarra, H.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.

    2017-12-01

    We present our study on the spatially resolved Hα and M * relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density ({{{Σ }}}{SFR}), derived based on the Hα emissions, is strongly correlated with the M * surface density ({{{Σ }}}* ) on kiloparsec scales for star-forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that ∼20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower specific star formation rate (SSFR) than typical star-forming galaxies. Meanwhile, we also find a tight correlation between {{{Σ }}}{{H}α } and {{{Σ }}}* for LI(N)ER regions, named the resolved “LI(N)ER” sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.

  17. Biological tissue imaging with a position and time sensitive pixelated detector.

    PubMed

    Jungmann, Julia H; Smith, Donald F; MacAleese, Luke; Klinkert, Ivo; Visser, Jan; Heeren, Ron M A

    2012-10-01

    We demonstrate the capabilities of a highly parallel, active pixel detector for large-area, mass spectrometric imaging of biological tissue sections. A bare Timepix assembly (512 × 512 pixels) is combined with chevron microchannel plates on an ion microscope matrix-assisted laser desorption time-of-flight mass spectrometer (MALDI TOF-MS). The detector assembly registers position- and time-resolved images of multiple m/z species in every measurement frame. We prove the applicability of the detection system to biomolecular mass spectrometry imaging on biologically relevant samples by mass-resolved images from Timepix measurements of a peptide-grid benchmark sample and mouse testis tissue slices. Mass-spectral and localization information of analytes at physiologic concentrations are measured in MALDI-TOF-MS imaging experiments. We show a high spatial resolution (pixel size down to 740 × 740 nm(2) on the sample surface) and a spatial resolving power of 6 μm with a microscope mode laser field of view of 100-335 μm. Automated, large-area imaging is demonstrated and the Timepix' potential for fast, large-area image acquisition is highlighted.

  18. Doppler-free spectroscopy of the atomic rubidium fine structure using ultrafast spatial coherent control method

    NASA Astrophysics Data System (ADS)

    Kim, Minhyuk; Kim, Kyungtae; Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2017-04-01

    Spectral programming solutions for the ultrafast spatial coherent control (USCC) method to resolve the fine-structure energy levels of atomic rubidium are reported. In USCC, a pair of counter-propagating ultrashort laser pulses are programmed to make a two-photon excitation pattern specific to particular transition pathways and atom species, thus allowing the involved transitions resolvable in space simultaneously. With a proper spectral phase and amplitude modulation, USCC has been also demonstrated for the systems with many intermediate energy levels. Pushing the limit of system complexity even further, we show here an experimental demonstration of the rubidium fine-structure excitation pattern resolvable by USCC. The spectral programming solution for the given USCC is achieved by combining a double-V-shape spectral phase function and a set of phase steps, where the former distinguishes the fine structure and the latter prevents resonant transitions. The experimental results will be presented along with its application in conjunction with the Doppler-free frequency-comb spectroscopy for rubidium hyperfine structure measurements. Samsung Science and Technology Foundation [SSTFBA1301-12].

  19. The spatially resolved star formation history of mergers. A comparative study of the LIRGs IC 1623, NGC 6090, NGC 2623, and Mice

    NASA Astrophysics Data System (ADS)

    Cortijo-Ferrero, C.; González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; Di Matteo, P.; Sánchez, S. F.; de Amorim, A. L.; Lacerda, E. A. D.; López Fernández, R.; Tadhunter, C.

    2017-11-01

    This paper presents the spatially resolved star formation history (2D-SFH) of a small sample of four local mergers: the early-stage mergers IC 1623, NGC 6090, and the Mice, and the more advanced merger NGC 2623, by analyzing IFS data from the CALIFA survey and PMAS in LArr mode. Full spectral fitting techniques are applied to the datacubes to obtain the spatially resolved mass growth histories, the time evolution of the star formation rate intensity (ΣSFR), and the local specific star formation rate (sSFR), over three different time scales (30 Myr, 300 Myr, and 1 Gyr). The results are compared with non-interacting Sbc-Sc galaxies, to quantify if there is an enhancement of the star formation and to trace its time scale and spatial extent. Our results for the three LIRGs (IC 1623 W, NGC 6090, and NGC 2623) show that a major phase of star formation is occurring in time scales of 107 yr to few 108 yr, with global SFR enhancements of between approximately two and six with respect to main-sequence star forming (MSSF) galaxies. In the two early-stage mergers IC 1623 W and NGC 6090, which are between first pericentre passage and coalescence, the most remarkable increase of the SFR with respect to non-interacting spirals occurred in the last 30 Myr, and it is spatially extended, with enhancements of factors between two and seven both in the centres (r < 0.5 half light radius, HLR), and in the disks (r > 1 HLR). In the more advanced merger NGC 2623 an extended phase of star formation occurred on a longer time scale of 1 Gyr, with a SFR enhancement of a factor of approximately two-to-three larger than the one in Sbc-Sc MSSF galaxies over the same period, probably relic of the first pericentre passage epoch. A SFR enhancement in the last 30 Myr is also present, but only in NGC 2623 centre, by a factor of three. In general, the spatially resolved SFHs of the LIRG-mergers are consistent with the predictions from high spatial resolution simulations. In contrast, the star formation in the Mice, specially in Mice B, is not enhanced but inhibited with respect to Sbc-Sc MSSF galaxies. The fact that the gas fraction of Mice B is smaller than in most non-interacting spirals, and that the Mice are close to a prograde orbit, represents a new challenge for the models, which must cover a larger space of parameters in terms of the availability of gas and the orbital characteristics.

  20. Three-dimensional cathodoluminescence characterization of a semipolar GaInN based LED sample

    NASA Astrophysics Data System (ADS)

    Hocker, Matthias; Maier, Pascal; Tischer, Ingo; Meisch, Tobias; Caliebe, Marian; Scholz, Ferdinand; Mundszinger, Manuel; Kaiser, Ute; Thonke, Klaus

    2017-02-01

    A semipolar GaInN based light-emitting diode (LED) sample is investigated by three-dimensionally resolved cathodoluminescence (CL) mapping. Similar to conventional depth-resolved CL spectroscopy (DRCLS), the spatial resolution perpendicular to the sample surface is obtained by calibration of the CL data with Monte-Carlo-simulations (MCSs) of the primary electron beam scattering. In addition to conventional MCSs, we take into account semiconductor-specific processes like exciton diffusion and the influence of the band gap energy. With this method, the structure of the LED sample under investigation can be analyzed without additional sample preparation, like cleaving of cross sections. The measurement yields the thickness of the p-type GaN layer, the vertical position of the quantum wells, and a defect analysis of the underlying n-type GaN, including the determination of the free charge carrier density. The layer arrangement reconstructed from the DRCLS data is in good agreement with the nominal parameters defined by the growth conditions.

  1. GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data.

    PubMed

    Mifsud, Borbala; Martincorena, Inigo; Darbo, Elodie; Sugar, Robert; Schoenfelder, Stefan; Fraser, Peter; Luscombe, Nicholas M

    2017-01-01

    Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).

  2. Operating organic light-emitting diodes imaged by super-resolution spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, John T.; Granick, Steve

    Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semi-conducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packedmore » chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. As a result, this points the way towards real-time analysis of materials design principles in devices as they actually operate.« less

  3. Watching proteins function with picosecond X-ray crystallography and molecular dynamics simulations.

    NASA Astrophysics Data System (ADS)

    Anfinrud, Philip

    2006-03-01

    Time-resolved electron density maps of myoglobin, a ligand-binding heme protein, have been stitched together into movies that unveil with < 2-å spatial resolution and 150-ps time-resolution the correlated protein motions that accompany and/or mediate ligand migration within the hydrophobic interior of a protein. A joint analysis of all-atom molecular dynamics (MD) calculations and picosecond time-resolved X-ray structures provides single-molecule insights into mechanisms of protein function. Ensemble-averaged MD simulations of the L29F mutant of myoglobin following ligand dissociation reproduce the direction, amplitude, and timescales of crystallographically-determined structural changes. This close agreement with experiments at comparable resolution in space and time validates the individual MD trajectories, which identify and structurally characterize a conformational switch that directs dissociated ligands to one of two nearby protein cavities. This unique combination of simulation and experiment unveils functional protein motions and illustrates at an atomic level relationships among protein structure, dynamics, and function. In collaboration with Friedrich Schotte and Gerhard Hummer, NIH.

  4. Growth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate

    PubMed Central

    Burden, Daniel K.; Spillmann, Christopher M.; Everett, Richard K.; Barlow, Daniel E.; Orihuela, Beatriz; Deschamps, Jeffrey R.; Fears, Kenan P.; Rittschof, Daniel; Wahl, Kathryn J.

    2014-01-01

    The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, Amphibalanus (= Balanus) amphitrite were resolved in situ and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide ex situ material identification of regions imaged by confocal microscopy. In situ and ex situ analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery. PMID:25115515

  5. Imaging and image restoration of an on-axis three-mirror Cassegrain system with wavefront coding technology.

    PubMed

    Guo, Xiaohu; Dong, Liquan; Zhao, Yuejin; Jia, Wei; Kong, Lingqin; Wu, Yijian; Li, Bing

    2015-04-01

    Wavefront coding (WFC) technology is adopted in the space optical system to resolve the problem of defocus caused by temperature difference or vibration of satellite motion. According to the theory of WFC, we calculate and optimize the phase mask parameter of the cubic phase mask plate, which is used in an on-axis three-mirror Cassegrain (TMC) telescope system. The simulation analysis and the experimental results indicate that the defocused modulation transfer function curves and the corresponding blurred images have a perfect consistency in the range of 10 times the depth of focus (DOF) of the original TMC system. After digital image processing by a Wiener filter, the spatial resolution of the restored images is up to 57.14 line pairs/mm. The results demonstrate that the WFC technology in the TMC system has superior performance in extending the DOF and less sensitivity to defocus, which has great value in resolving the problem of defocus in the space optical system.

  6. Growth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate.

    PubMed

    Burden, Daniel K; Spillmann, Christopher M; Everett, Richard K; Barlow, Daniel E; Orihuela, Beatriz; Deschamps, Jeffrey R; Fears, Kenan P; Rittschof, Daniel; Wahl, Kathryn J

    2014-01-01

    The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, Amphibalanus (= Balanus) amphitrite were resolved in situ and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide ex situ material identification of regions imaged by confocal microscopy. In situ and ex situ analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery.

  7. Operating organic light-emitting diodes imaged by super-resolution spectroscopy

    DOE PAGES

    King, John T.; Granick, Steve

    2016-06-21

    Super-resolution stimulated emission depletion (STED) microscopy is adapted here for materials characterization that would not otherwise be possible. With the example of organic light-emitting diodes (OLEDs), spectral imaging with pixel-by-pixel wavelength discrimination allows us to resolve local-chain environment encoded in the spectral response of the semi-conducting polymer, and correlate chain packing with local electroluminescence by using externally applied current as the excitation source. We observe nanoscopic defects that would be unresolvable by traditional microscopy. They are revealed in electroluminescence maps in operating OLEDs with 50 nm spatial resolution. We find that brightest emission comes from regions with more densely packedmore » chains. Conventional microscopy of an operating OLED would lack the resolution needed to discriminate these features, while traditional methods to resolve nanoscale features generally cannot be performed when the device is operating. As a result, this points the way towards real-time analysis of materials design principles in devices as they actually operate.« less

  8. The Spatially Resolved H(alpha)-Emitting Wind Structure of P Cygni

    DTIC Science & Technology

    2010-06-01

    using radio and optical interferometry, as well as direct imaging with adaptive optics (AO). Radio interferometric observations detect the nebula around...to structures in the nebula of P Cyg that are more than an order of magnitude smaller. Therefore, optical interferometry provides a unique window of...resolved the outer Hα-emitting region of the extended envelope, but detected signatures of clumping. Although, the angular scales sampled with a 1.52 m

  9. BRIEF COMMUNICATION: Calculation of a magnetic field effect on emission spectra of light diatomic molecules for diagnostic application to fusion edge plasmas

    NASA Astrophysics Data System (ADS)

    Shikama, T.; Fujii, K.; Mizushiri, K.; Hasuo, M.; Kado, S.; Zushi, H.

    2009-12-01

    A scheme for computation of emission spectra of light diatomic molecules under external magnetic and electric fields is presented. As model species in fusion edge plasmas, the scheme is applied to polarization-resolved emission spectra of H2, CH, C2, BH and BeH molecules. The possibility of performing spatially resolved measurements of these spectra is examined.

  10. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements.

    PubMed

    Lin, L; Ding, W X; Brower, D L

    2014-11-01

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.

  11. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spethmann, A., E-mail: spethmann@physik.uni-kiel.de; Trottenberg, T., E-mail: trottenberg@physik.uni-kiel.de; Kersten, H., E-mail: kersten@physik.uni-kiel.de

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forcesmore » and currents onto the same target are compared with each other and with Faraday cup measurements.« less

  12. Temporally resolved proton radiography of rapidly varying electric and magnetic fields in laser-driven capacitor coil targets

    NASA Astrophysics Data System (ADS)

    Morace, A.; Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Alpinaniz, J.; Brabetz, C.; Schaumann, G.; Volpe, L.

    2017-02-01

    Understanding the dynamics of rapidly varying electromagnetic fields in intense short pulse laser plasma interactions is of key importance to understand the mechanisms at the basis of a wide variety of physical processes, from high energy density physics and fusion science to the development of ultrafast laser plasma devices to control laser-generated particle beams. Target normal sheath accelerated (TNSA) proton radiography represents an ideal tool to diagnose ultrafast electromagnetic phenomena, providing 2D spatially and temporally resolved radiographs with temporal resolution varying from 2-3 ps to few tens of ps. In this work we introduce the proton radiography technique and its application to diagnose the spatial and temporal evolution of electromagnetic fields in laser-driven capacitor coil targets.

  13. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.

    2014-11-15

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less

  14. Nd:AlN polycrystalline ceramics: A candidate media for tunable, high energy, near IR lasers

    NASA Astrophysics Data System (ADS)

    Wieg, A. T.; Grossnickle, M. J.; Kodera, Y.; Gabor, N. M.; Garay, J. E.

    2016-09-01

    We present processing and characterization of Nd-doped aluminum nitride (Nd:AlN) polycrystalline ceramics. We compare ceramics with significant segregation of Nd to those exhibiting minimal segregation. Spatially resolved photoluminescence maps reveal a strong correlation between homogeneous Nd doping and spatially homogeneous light emission. The spectroscopically resolved light emission lines show excellent agreement with the expected Nd electronic transitions. Notably, the lines are significantly broadened, producing near IR emission (˜1077 nm) with a remarkable ˜100 nm bandwidth at room temperature. We attribute the broadened lines to a combination of effects: multiple Nd-sites, anisotropy of AlN and phonon broadening. These broadened, overlapping lines in a media with excellent thermal conductivity have potential for Nd-based, tunable lasers with high average power.

  15. The Fossil Record of Black Hole Seeds, with Spatially Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; CANDELS, 3D-HST

    2016-01-01

    I will present the first robust measurement of black hole occupation over a wide range of host galaxy mass (8

  16. Coupling of TRAC-PF1/MOD2, Version 5.4.25, with NESTLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knepper, P.L.; Hochreiter, L.E.; Ivanov, K.N.

    1999-09-01

    A three-dimensional (3-D) spatial kinetics capability within a thermal-hydraulics system code provides a more correct description of the core physics during reactor transients that involve significant variations in the neutron flux distribution. Coupled codes provide the ability to forecast safety margins in a best-estimate manner. The behavior of a reactor core and the feedback to the plant dynamics can be accurately simulated. For each time step, coupled codes are capable of resolving system interaction effects on neutronics feedback and are capable of describing local neutronics effects caused by the thermal hydraulics and neutronics coupling. With the improvements in computational technology,more » modeling complex reactor behaviors with coupled thermal hydraulics and spatial kinetics is feasible. Previously, reactor analysis codes were limited to either a detailed thermal-hydraulics model with simplified kinetics or multidimensional neutron kinetics with a simplified thermal-hydraulics model. The authors discuss the coupling of the Transient Reactor Analysis Code (TRAC)-PF1/MOD2, Version 5.4.25, with the NESTLE code.« less

  17. MULTI-COMPONENT ANALYSIS OF POSITION-VELOCITY CUBES OF THE HH 34 JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Gonzalez, A.; Esquivel, A.; Raga, A. C.

    We present an analysis of H{alpha} spectra of the HH 34 jet with two-dimensional spectral resolution. We carry out multi-Gaussian fits to the spatially resolved line profiles and derive maps of the intensity, radial velocity, and velocity width of each of the components. We find that close to the outflow source we have three components: a high (negative) radial velocity component with a well-collimated, jet-like morphology; an intermediate velocity component with a broader morphology; and a positive radial velocity component with a non-collimated morphology and large linewidth. We suggest that this positive velocity component is associated with jet emission scatteredmore » in stationary dust present in the circumstellar environment. Farther away from the outflow source, we find only two components (a high, negative radial velocity component, which has a narrower spatial distribution than an intermediate velocity component). The fitting procedure was carried out with the new AGA-V1 code, which is available online and is described in detail in this paper.« less

  18. Automated Liquid Microjunction Surface Sampling-HPLC-MS/MS Analysis of Drugs and Metabolites in Whole-Body Thin Tissue Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kertesz, Vilmos; Van Berkel, Gary J

    A fully automated liquid extraction-based surface sampling system utilizing a commercially available autosampler coupled to high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) detection is reported. Discrete spots selected for droplet-based sampling and automated sample queue generation for both the autosampler and MS were enabled by using in-house developed software. In addition, co-registration of spatially resolved sampling position and HPLC-MS information to generate heatmaps of compounds monitored for subsequent data analysis was also available in the software. The system was evaluated with whole-body thin tissue sections from propranolol dosed rat. The hands-free operation of the system was demonstrated by creating heatmapsmore » of the parent drug and its hydroxypropranolol glucuronide metabolites with 1 mm resolution in the areas of interest. The sample throughput was approximately 5 min/sample defined by the time needed for chromatographic separation. The spatial distributions of both the drug and its metabolites were consistent with previous studies employing other liquid extraction-based surface sampling methodologies.« less

  19. Insights into soil carbon dynamics across climatic and geologic gradients from temporally-resolved radiocarbon measurements

    NASA Astrophysics Data System (ADS)

    van der Voort, T. S.; Hagedorn, F.; Mannu, U.; Walthert, L.; McIntyre, C.; Eglinton, T. I.

    2016-12-01

    Soil carbon constitutes the largest terrestrial reservoir of organic carbon, and therefore quantifying soil organic matter dynamics (carbon turnover, stocks and fluxes) across spatial gradients is essential for an understanding of the carbon cycle and the impacts of global change. In particular, links between soil carbon dynamics and different climatic and compositional factors remains poorly understood. Radiocarbon constitutes a powerful tool for unraveling soil carbon dynamics. Temporally-resolved radiocarbon measurements, which take advantage of "bomb-radiocarbon"-driven changes in atmospheric 14C, enable further constraints to be placed on C turnover times. These in turn can yield more precise flux estimates for both upper and deeper soil horizons. This project combines bulk radiocarbon measurements on a suite of soil profiles spanning strong climatic (MAT 1.3-9.2°C, MAP 600 to 2100 mm m-2y-1) and geologic gradients with a more in-depth approach for a subset of locations. For this subset, temporal and carbon-fraction specific radiocarbon data has been acquired for both topsoil and deeper soils. These well-studied sites are part of the Long-Term Forest Ecosystem Research (LWF) program of the Swiss Federal Institute for Forest, Snow and Landscape research (WSL). Resulting temporally-resolved turnover estimates are coupled to carbon stocks, fluxes across this wide range of forest ecosystems and are examined in the context of environmental drivers (temperature, precipitation, primary production and soil moisture) as well as composition (sand, silt and clay content). Statistical analysis on the region-scale - correlating radiocarbon signature with climatic variables such as temperature, precipitation, primary production and elevation - indicates that composition rather than climate is a key driver of ­­Δ14C signatures. Estimates of carbon turnover, stocks and fluxes derived from temporally-resolved measurements highlight the pivotal role of soil moisture as a key driver of soil carbon turnover and associated fluxes. Overall, this study has afforded a uniquely comprehensive dataset that improves our understanding of controls on carbon dynamics across spatial and temporal scales, as well as the pool-specific and long-term trends in soil carbon (de)stabilization and vulnerability.

  20. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5 microns. ACM recovers spatially-resolved atmospheric temperatures in Titan's troposphere via 3- and 5-microns spectral transitions. Together, the mixing ratio profiles and the aerosol distributions are utilized to investigate the photochemistry of the stratosphere and consequent formation processes for aerosols. Finally, ring opacities, observed during solar occultations and in reflected sunlight, provide a measurement of the particle size and distribution of ring material. ACM will be the first high spectral resolution mapping spectrometer on an outer planet mission for atmospheric studies while retaining a high resolution spatial mapping capability. ACM, thus, opens an entirely new range of orbital scientific studies of the origin, physio-chemical evolution and structure of the Saturn and Titan atmospheres. ACM provides high angular resolution spectral maps, viewing nadir and near-limb thermal radiation and reflected sunlight; sounds planetary limbs, spatially resolving vertical profiles to several atmospheric scale heights; and measures solar occultations, mapping both atmospheres and rings. ACM's high spectral and spatial resolution mapping capability is achieved with a simplified Fourier Transform spectrometer with a no-moving parts, physically compact design. ACM's simplicity guarantees an inherent stability essential for reliable performance throughout the lengthy Cassini Orbiter mission.

  1. Space-resolved measurements of neutrons and ions emitted by a plasma focus

    NASA Astrophysics Data System (ADS)

    Jaeger, U.

    1980-05-01

    Space-resolved measurements of neutrons and of accelerated charged particles emitted by a plasma focus device are presented. The neutron source was measured with one and two dimensional paraffin collimators. The spatial resolution is 5 mn along the axis and the radius, with a time resolution of 10 ns. In order to make quantitative statements about the neutron yield, neutron scattering, absorption, and nuclear reactions were taken into account. Part of the neutron measurement was carried out together with time and space resolved measurements of the electron density to study possible correlations between n sub e and y sub n.

  2. A comparative analysis of two highly spatially resolved European atmospheric emission inventories

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Guevara, M.; Baldasano, J. M.; Tchepel, O.; Schaap, M.; Miranda, A. I.; Borrego, C.

    2013-08-01

    A reliable emissions inventory is highly important for air quality modelling applications, especially at regional or local scales, which require high resolutions. Consequently, higher resolution emission inventories have been developed that are suitable for regional air quality modelling. This research performs an inter-comparative analysis of different spatial disaggregation methodologies of atmospheric emission inventories. This study is based on two different European emission inventories with different spatial resolutions: 1) the EMEP (European Monitoring and Evaluation Programme) inventory and 2) an emission inventory developed by the TNO (Netherlands Organisation for Applied Scientific Research). These two emission inventories were converted into three distinct gridded emission datasets as follows: (i) the EMEP emission inventory was disaggregated by area (EMEParea) and (ii) following a more complex methodology (HERMES-DIS - High-Elective Resolution Modelling Emissions System - DISaggregation module) to understand and evaluate the influence of different disaggregation methods; and (iii) the TNO gridded emissions, which are based on different emission data sources and different disaggregation methods. A predefined common grid with a spatial resolution of 12 × 12 km2 was used to compare the three datasets spatially. The inter-comparative analysis was performed by source sector (SNAP - Selected Nomenclature for Air Pollution) with emission totals for selected pollutants. It included the computation of difference maps (to focus on the spatial variability of emission differences) and a linear regression analysis to calculate the coefficients of determination and to quantitatively measure differences. From the spatial analysis, greater differences were found for residential/commercial combustion (SNAP02), solvent use (SNAP06) and road transport (SNAP07). These findings were related to the different spatial disaggregation that was conducted by the TNO and HERMES-DIS for the first two sectors and to the distinct data sources that were used by the TNO and HERMES-DIS for road transport. Regarding the regression analysis, the greatest correlation occurred between the EMEParea and HERMES-DIS because the latter is derived from the first, which does not occur for the TNO emissions. The greatest correlations were encountered for agriculture NH3 emissions, due to the common use of the CORINE Land Cover database for disaggregation. The point source emissions (energy industries, industrial processes, industrial combustion and extraction/distribution of fossil fuels) resulted in the lowest coefficients of determination. The spatial variability of SOx differed among the emissions that were obtained from the different disaggregation methods. In conclusion, HERMES-DIS and TNO are two distinct emission inventories, both very well discretized and detailed, suitable for air quality modelling. However, the different databases and distinct disaggregation methodologies that were used certainly result in different spatial emission patterns. This fact should be considered when applying regional atmospheric chemical transport models. Future work will focus on the evaluation of air quality models performance and sensitivity to these spatial discrepancies in emission inventories. Air quality modelling will benefit from the availability of appropriate resolution, consistent and reliable emission inventories.

  3. The Herschel Planetary Nebula Survey (HerPlaNS). I. Data overview and analysis demonstration with NGC 6781

    NASA Astrophysics Data System (ADS)

    Ueta, T.; Ladjal, D.; Exter, K. M.; Otsuka, M.; Szczerba, R.; Siódmiak, N.; Aleman, I.; van Hoof, P. A. M.; Kastner, J. H.; Montez, R.; McDonald, I.; Wittkowski, M.; Sandin, C.; Ramstedt, S.; De Marco, O.; Villaver, E.; Chu, Y.-H.; Vlemmings, W.; Izumiura, H.; Sahai, R.; Lopez, J. A.; Balick, B.; Zijlstra, A.; Tielens, A. G. G. M.; Rattray, R. E.; Behar, E.; Blackman, E. G.; Hebden, K.; Hora, J. L.; Murakawa, K.; Nordhaus, J.; Nordon, R.; Yamamura, I.

    2014-05-01

    Context. This is the first of a series of investigations into far-IR characteristics of 11 planetary nebulae (PNe) under the Herschel Space Observatory open time 1 program, Herschel Planetary Nebula Survey (HerPlaNS). Aims: Using the HerPlaNS data set, we look into the PN energetics and variations of the physical conditions within the target nebulae. In the present work, we provide an overview of the survey, data acquisition and processing, and resulting data products. Methods: We performed (1) PACS/SPIRE broadband imaging to determine the spatial distribution of the cold dust component in the target PNe and (2) PACS/SPIRE spectral-energy-distribution and line spectroscopy to determine the spatial distribution of the gas component in the target PNe. Results: For the case of NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbon-rich dust shell and the surrounding halo having temperatures of 26-40 K. The PACS/SPIRE multiposition spectra show spatial variations of far-IR lines that reflect the physical stratification of the nebula. We demonstrate that spatially resolved far-IR line diagnostics yield the (Te, ne) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allows to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195 ± 110. The present analysis yields estimates of the total mass of the shell to be 0.86 M⊙, consisting of 0.54 M⊙ of ionized gas, 0.12 M⊙ of atomic gas, 0.2 M⊙ of molecular gas, and 4 × 10-3 M⊙ of dust grains. These estimates also suggest that the central star of about 1.5 M⊙ initial mass is terminating its PN evolution onto the white dwarf cooling track. Conclusions: The HerPlaNS data provide various diagnostics for both the dust and gas components in a spatially resolved manner. In the forthcoming papers of the HerPlaNS series we will explore the HerPlaNS data set fully for the entire sample of 11 PNe. Herschel is an ESA Space Observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Table 2 and appendices are available in electronic form at http://www.aanda.org

  4. Spatial nonuniformity of electron energy in a microwave atmospheric-pressure microplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Liguo; Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Zhang Zhibo

    The characteristics of the electron energy in a microwave atmospheric-pressure argon microplasma are investigated by a spatially resolved optical emission spectroscopy. By adding tiny amount of xenon (<1 ppm) as tracer gas into the argon discharge, it is found that the spatial distribution of the electrons with energy >8.3 eV is quite different from that of the electrons with energy >11.5 eV. Spatial distribution of the population ratio between 4p and 5p levels of Ar atom is also determined. Furthermore, with a collisional-radiative model, it is found that the spatial variation of this population ratio is mainly attributed to themore » spatial nonuniformity of the effective electron temperature.« less

  5. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds

    NASA Astrophysics Data System (ADS)

    Kunkel, Philipp; Prüfer, Maximilian; Strobel, Helmut; Linnemann, Daniel; Frölian, Anika; Gasenzer, Thomas; Gärttner, Martin; Oberthaler, Markus K.

    2018-04-01

    A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement.

  6. Stellar mass functions and implications for a variable IMF

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Sheth, R. K.; Fischer, J.-L.; Meert, A.; Chae, K.-H.; Dominguez-Sanchez, H.; Huertas-Company, M.; Shankar, F.; Vikram, V.

    2018-03-01

    Spatially resolved kinematics of nearby galaxies has shown that the ratio of dynamical to stellar population-based estimates of the mass of a galaxy (M_{*}^JAM/M_{*}) correlates with σe, the light-weighted velocity dispersion within its half-light radius, if M* is estimated using the same initial mass function (IMF) for all galaxies and the stellar mass-to-light ratio within each galaxy is constant. This correlation may indicate that, in fact, the IMF is more bottom-heavy or dwarf-rich for galaxies with large σ. We use this correlation to estimate a dynamical or IMF-corrected stellar mass, M_{*}^{α _{JAM}}, from M* and σe for a sample of 6 × 105 Sloan Digital Sky Survey (SDSS) galaxies for which spatially resolved kinematics is not available. We also compute the `virial' mass estimate k(n,R) R_e σ _R^2/G, where n is the Sérsic index, in the SDSS and ATLAS3D samples. We show that an n-dependent correction must be applied to the k(n, R) values provided by Prugniel & Simien. Our analysis also shows that the shape of the velocity dispersion profile in the ATLAS3D sample varies weakly with n: (σR/σe) = (R/Re)-γ(n). The resulting stellar mass functions, based on M_*^{α _{JAM}} and the recalibrated virial mass, are in good agreement. Using a Fundamental Plane-based observational proxy for σe produces comparable results. The use of direct measurements for estimating the IMF-dependent stellar mass is prohibitively expensive for a large sample of galaxies. By demonstrating that cheaper proxies are sufficiently accurate, our analysis should enable a more reliable census of the mass in stars, especially at high redshift, at a fraction of the cost. Our results are provided in tabular form.

  7. Assessing temporally and spatially resolved PM 2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements

    NASA Astrophysics Data System (ADS)

    Kloog, Itai; Koutrakis, Petros; Coull, Brent A.; Lee, Hyung Joo; Schwartz, Joel

    2011-11-01

    Land use regression (LUR) models provide good estimates of spatially resolved long-term exposures, but are poor at capturing short term exposures. Satellite-derived Aerosol Optical Depth (AOD) measurements have the potential to provide spatio-temporally resolved predictions of both long and short term exposures, but previous studies have generally showed relatively low predictive power. Our objective was to extend our previous work on day-specific calibrations of AOD data using ground PM 2.5 measurements by incorporating commonly used LUR variables and meteorological variables, thus benefiting from both the spatial resolution from the LUR models and the spatio-temporal resolution from the satellite models. Later we use spatial smoothing to predict PM 2.5 concentrations for day/locations with missing AOD measures. We used mixed models with random slopes for day to calibrate AOD data for 2000-2008 across New-England with monitored PM 2.5 measurements. We then used a generalized additive mixed model with spatial smoothing to estimate PM 2.5 in location-day pairs with missing AOD, using regional measured PM 2.5, AOD values in neighboring cells, and land use. Finally, local (100 m) land use terms were used to model the difference between grid cell prediction and monitored value to capture very local traffic particles. Out-of-sample ten-fold cross-validation was used to quantify the accuracy of our predictions. For days with available AOD data we found high out-of-sample R2 (mean out-of-sample R2 = 0.830, year to year variation 0.725-0.904). For days without AOD values, our model performance was also excellent (mean out-of-sample R2 = 0.810, year to year variation 0.692-0.887). Importantly, these R2 are for daily, rather than monthly or yearly, values. Our model allows one to assess short term and long-term human exposures in order to investigate both the acute and chronic effects of ambient particles, respectively.

  8. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Yuxing; Fan, Jiwen; Xiao, Heng

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32more » km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.« less

  9. Using Remote Sensing to Determine the Spatial Scales of Estuaries

    NASA Astrophysics Data System (ADS)

    Davis, C. O.; Tufillaro, N.; Nahorniak, J.

    2016-02-01

    One challenge facing Earth system science is to understand and quantify the complexity of rivers, estuaries, and coastal zone regions. Earlier studies using data from airborne hyperspectral imagers (Bissett et al., 2004, Davis et al., 2007) demonstrated from a very limited data set that the spatial scales of the coastal ocean could be resolved with spatial sampling of 100 m Ground Sample Distance (GSD) or better. To develop a much larger data set (Aurin et al., 2013) used MODIS 250 m data for a wide range of coastal regions. Their conclusion was that farther offshore 500 m GSD was adequate to resolve large river plume features while nearshore regions (a few kilometers from the coast) needed higher spatial resolution data not available from MODIS. Building on our airborne experience, the Hyperspectral Imager for the Coastal Ocean (HICO, Lucke et al., 2011) was designed to provide hyperspectral data for the coastal ocean at 100 m GSD. HICO operated on the International Space Station for 5 years and collected over 10,000 scenes of the coastal ocean and other regions around the world. Here we analyze HICO data from an example set of major river delta regions to assess the spatial scales of variability in those systems. In one system, the San Francisco Bay and Delta, we also analyze Landsat 8 OLI data at 30 m and 15 m to validate the 100 m GSD sampling scale for the Bay and assess spatial sampling needed as you move up river.

  10. Modulation of microsaccades by spatial frequency during object categorization.

    PubMed

    Craddock, Matt; Oppermann, Frank; Müller, Matthias M; Martinovic, Jasna

    2017-01-01

    The organization of visual processing into a coarse-to-fine information processing based on the spatial frequency properties of the input forms an important facet of the object recognition process. During visual object categorization tasks, microsaccades occur frequently. One potential functional role of these eye movements is to resolve high spatial frequency information. To assess this hypothesis, we examined the rate, amplitude and speed of microsaccades in an object categorization task in which participants viewed object and non-object images and classified them as showing either natural objects, man-made objects or non-objects. Images were presented unfiltered (broadband; BB) or filtered to contain only low (LSF) or high spatial frequency (HSF) information. This allowed us to examine whether microsaccades were modulated independently by the presence of a high-level feature - the presence of an object - and by low-level stimulus characteristics - spatial frequency. We found a bimodal distribution of saccades based on their amplitude, with a split between smaller and larger microsaccades at 0.4° of visual angle. The rate of larger saccades (⩾0.4°) was higher for objects than non-objects, and higher for objects with high spatial frequency content (HSF and BB objects) than for LSF objects. No effects were observed for smaller microsaccades (<0.4°). This is consistent with a role for larger microsaccades in resolving HSF information for object identification, and previous evidence that more microsaccades are directed towards informative image regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tracing Galactic Outflows to the Source: Spatially Resolved Feedback in M83 with COS

    NASA Astrophysics Data System (ADS)

    Aloisi, Alessandra

    2016-10-01

    Star-formation (SF) feedback plays a vital role in shaping galaxy properties, but there are many open questions about how this feedback is created, propagated, and felt by galaxies. SF-driven feedback can be observationally constrained with rest-frame UV absorption-line spectroscopy that accesses a range of powerful gas density and kinematic diagnostics. Studies at both high and low redshift show clear evidence for large-scale outflows in star-forming galaxies that scale with galaxy SF rate. However, by sampling one sightline or the galaxy as a whole, these studies are not tailored to reveal how the large-scale outflows develop from their ultimate sources at the scale of individual SF regions. We propose the first spatially-resolved COS G130M/G160M (1130-1800 A) study of the ISM in the nearby (4.6 Mpc) face-on spiral starburst M83 using individual young star clusters as background sources. This is the first down-the-barrel study where blueshifted absorptions can be identified directly with outflowing gas in a spatially resolved fashion. The kpc-scale flows sampled by the COS pointings will be anchored to the properties of the large-scale (10-100 kpc) flows thanks to the wealth of multi-wavelength observations of M83 from X-ray to radio. A comparison of COS data with mock spectra from constrained simulations of spiral galaxies with FIRE (Feedback In Realistic Environments; a code with unprecedented 1-100 pc spatial resolution and self-consistent treatments of stellar feedback) will provide an important validation of these simulations and will supply the community with a powerful and well-tested tool for galaxy formation predictions applicable to all redshifts.

  12. Spatially-resolved aircraft-based quantification of methane emissions from the Fayetteville Shale Gas Play

    NASA Astrophysics Data System (ADS)

    Schwietzke, S.; Petron, G.; Conley, S. A.; Karion, A.; Tans, P. P.; Wolter, S.; King, C. W.; White, A. B.; Coleman, T.; Bianco, L.; Schnell, R. C.

    2016-12-01

    Confidence in basin scale oil and gas industry related methane (CH4) emission estimates hinges on an in-depth understanding, objective evaluation, and continued improvements of both top-down (e.g. aircraft measurement based) and bottom-up (e.g. emission inventories using facility- and/or component-level measurements) approaches. Systematic discrepancies of CH4 emission estimates between both approaches in the literature have highlighted research gaps. This paper is part of a more comprehensive study to expand and improve this reconciliation effort for a US dry shale gas play. This presentation will focus on refinements of the aircraft mass balance method to reduce the number of potential methodological biases (e.g. data and methodology). The refinements include (i) an in-depth exploration of the definition of upwind conditions and their impact on calculated downwind CH4 enhancements and total CH4 emissions, (ii) taking into account small but non-zero vertical and horizontal wind gradients in the boundary layer, and (iii) characterizing the spatial distribution of CH4 emissions in the study area using aircraft measurements. For the first time to our knowledge, we apply the aircraft mass balance method to calculate spatially resolved total CH4 emissions for 10 km x 60 km sub-regions within the study area. We identify higher-emitting sub-regions and localize repeating emission patterns as well as differences between days. The increased resolution of the top-down calculation will for the first time allow for an in-depth comparison with a spatially and temporally resolved bottom-up emission estimate based on measurements, concurrent activity data and other data sources.

  13. Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chin-Fei; Ho, Paul T. P.; Hirano, Naomi

    HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ∼60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ∼16 au (0.″04) resolution. The envelope is detected in HCO{sup +} J = 4–3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D{sub 2}CO) are detected above and below the dusty disk within ∼40 au of the central protostar. The COMs are methanol (CH{sub 3}OH), deuterated methanolmore » (CH{sub 2}DOH), methyl mercaptan (CH{sub 3}SH), and formamide (NH{sub 2}CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO{sup +} and COMs and found a centrifugal barrier (CB) at a radius of ∼44 au, within which a Keplerian rotating disk is formed. This indicates that HCO{sup +} traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.« less

  14. Resolving vorticity-driven lateral fire spread using the WRF-Fire coupled atmosphere-fire numerical model

    NASA Astrophysics Data System (ADS)

    Simpson, C. C.; Sharples, J. J.; Evans, J. P.

    2014-05-01

    Fire channelling is a form of dynamic fire behaviour, during which a wildland fire spreads rapidly across a steep lee-facing slope in a direction transverse to the background winds, and is often accompanied by a downwind extension of the active flaming region and extreme pyro-convection. Recent work using the WRF-Fire coupled atmosphere-fire model has demonstrated that fire channelling can be characterised as vorticity-driven lateral fire spread (VDLS). In this study, 16 simulations are conducted using WRF-Fire to examine the sensitivity of resolving VDLS to spatial resolution and atmosphere-fire coupling within the WRF-Fire model framework. The horizontal grid spacing is varied between 25 and 90 m, and the two-way atmosphere-fire coupling is either enabled or disabled. At high spatial resolution, the atmosphere-fire coupling increases the peak uphill and lateral spread rate by a factor of up to 2.7 and 9.5. The enhancement of the uphill and lateral spread rate diminishes at coarser spatial resolution, and VDLS is not modelled for a horizontal grid spacing of 90 m. The laterally spreading fire fronts become the dominant contributors of the extreme pyro-convection. The resolved fire-induced vortices responsible for driving the lateral spread in the coupled simulations have non-zero vorticity along each unit vector direction, and develop due to an interaction between the background winds and vertical return circulations generated at the flank of the fire front as part of the pyro-convective updraft. The results presented in this study demonstrate that both high spatial resolution and two-way atmosphere-fire coupling are required to reproduce VDLS within the current WRF-Fire model framework.

  15. Tunable Reflective Spatial Heterodyne Spectrometer: A Technique for High Resolving Power, Wide Field Of View Observation Of Diffuse Emission Line Sources

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyedeh Sona

    The purpose of this dissertation is to discuss the need for new technology in broadband high-resolution spectroscopy based on the emerging technique of Spatial Heterodyne Spectroscopy (SHS) and to propose new solutions that should enhance and generalize this technology to other fields. Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. In current high resolving power devices, the drawback of high-resolution spectroscopy is bound to the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become handicapping for observation of faint and/or extended targets and for spacecraft encounters. A technique with promise for the study of faint and extended sources at high resolving power is the reflective format of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally tailored for both high etendue (defined in section 2.2.5) and high resolving power. In contrast, to achieve similar spectral grasp, grating spectrometers require large telescopes. For reference, SHS is a cyclical interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. The large etendue obtained by SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables one to study the dynamical and physical properties described above. This document contains four chapters. Chapter 1, introduces a class of scientific targets that formerly have not been extensively observed due to absence of technical capabilities in current apparatus. We will introduce the concept of Special Heterodyne Spectrometers and address how it can fill the gap. Chapter 2 reports on the development of a new mathematical frame work for the Reflective SHS. Chapter 3 provides the details of the design and construction of a Tunable Reflective SHS at both UC Davis laboratory and Mt. Hamilton, Lick Observatory, CA. And chapter 4 contains an overview of the prospects of SHS instruments in future.

  16. Characterization of VOC sources in an urban area based on PTR-MS measurements and receptor modelling.

    PubMed

    Stojić, A; Stojić, S Stanišić; Šoštarić, A; Ilić, L; Mijić, Z; Rajšić, S

    2015-09-01

    In this study, the concentrations of volatile organic compounds were measured by the use of proton transfer reaction mass spectrometry, together with NO x , NO, NO2, SO2, CO and PM10 and meteorological parameters in an urban area of Belgrade during winter 2014. The multivariate receptor model US EPA Unmix was applied to the obtained dataset resolving six source profiles, which can be attributed to traffic-related emissions, gasoline evaporation/oil refineries, petrochemical industry/biogenic emissions, aged plumes, solid-fuel burning and local laboratories. Besides the vehicle exhaust, accounting for 27.6 % of the total mixing ratios, industrial emissions, which are present in three out of six resolved profiles, exert a significant impact on air quality in the urban area. The major contribution of regional and long-range transport was determined for source profiles associated with petrochemical industry/biogenic emissions (40 %) and gasoline evaporation/oil refineries (29 %) using trajectory sector analysis. The concentration-weighted trajectory model was applied with the aim of resolving the spatial distribution of potential distant sources, and the results indicated that emission sources from neighbouring countries, as well as from Slovakia, Greece, Poland and Scandinavian countries, significantly contribute to the observed concentrations.

  17. Optimization and comprehensive characterization of metal hydride based hydrogen storage systems using in-situ Neutron Radiography

    NASA Astrophysics Data System (ADS)

    Börries, S.; Metz, O.; Pranzas, P. K.; Bellosta von Colbe, J. M.; Bücherl, T.; Dornheim, M.; Klassen, T.; Schreyer, A.

    2016-10-01

    For the storage of hydrogen, complex metal hydrides are considered as highly promising with respect to capacity, reversibility and safety. The optimization of corresponding storage tanks demands a precise and time-resolved investigation of the hydrogen distribution in scaled-up metal hydride beds. In this study it is shown that in situ fission Neutron Radiography provides unique insights into the spatial distribution of hydrogen even for scaled-up compacts and therewith enables a direct study of hydrogen storage tanks. A technique is introduced for the precise quantification of both time-resolved data and a priori material distribution, allowing inter alia for an optimization of compacts manufacturing process. For the first time, several macroscopic fields are combined which elucidates the great potential of Neutron Imaging for investigations of metal hydrides by going further than solely 'imaging' the system: A combination of in-situ Neutron Radiography, IR-Thermography and thermodynamic quantities can reveal the interdependency of different driving forces for a scaled-up sodium alanate pellet by means of a multi-correlation analysis. A decisive and time-resolved, complex influence of material packing density is derived. The results of this study enable a variety of new investigation possibilities that provide essential information on the optimization of future hydrogen storage tanks.

  18. Impact of uneven sample morphology on mass resolving power in linear MALDI-TOF mass spectrometry: A comprehensive theoretical investigation.

    PubMed

    Cai, Yi-Hong; Wang, Yi-Sheng

    2018-04-01

    This work discusses the correlation between the mass resolving power of matrix-assisted laser desorption/ionization time-of-flight mass analyzers and extraction condition with an uneven sample morphology. Previous theoretical calculations show that the optimum extraction condition for flat samples involves an ideal ion source design and extraction delay. A general expression of spectral feature takes into account ion initial velocity, and extraction delay is derived in the current study. The new expression extends the comprehensive calculation to uneven sample surfaces and above 90% Maxell-Boltzmann initial velocity distribution of ions to account for imperfect ionization condition. Calculation shows that the impact of uneven sample surface or initial spatial spread of ions is negligible when the extraction delay is away from the ideal value. When the extraction delay approaches the optimum value, the flight-time topology shows a characteristic curve shape, and the time-domain mass spectral feature broadens with an increase in initial spatial spread of ions. For protonated 2,5-dihydroxybenzoic acid, the mass resolving power obtained from a sample of 3-μm surface roughness is approximately 3.3 times lower than that of flat samples. For ions of m/z 3000 coexpanded with 2,5-dihydroxybenzoic acid, the mass resolving power in the 3-μm surface roughness case only reduces roughly 7%. Comprehensive calculations also show that the mass resolving power of lighter ions is more sensitive to the accuracy of the extraction delay than heavier ions. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Chromospheric Activity in Cool Luminous Stars

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea

    2018-04-01

    Spatially unresolved spectra of giant and supergiant stars demonstrate ubiquitous signatures of chromospheric activity, variable outflows, and winds. The advent of imaging techniques and spatially resolved spectra reveal complex structures in these extended stellar atmospheres that we do not understand. The presence and behavior of these atmospheres is wide ranging and impacts stellar activity, magnetic fields, angular momentum loss, abundance determinations, and the understanding of stellar cluster populations.

  20. Resource selection by elk at two spatial scales in the Black Hills, South Dakota

    Treesearch

    Mark A. Rumble; R. Scott Gamo

    2011-01-01

    Understanding resource selection by elk (Cervus elaphus) at multiple spatial scales may provide information that will help resolve the increasing number of resource conflicts involving elk. We quantified vegetation at 412 sites where the precise location of elk was known by direct observation and 509 random sites in the Black Hills of South Dakota during 1998-2001. We...

Top