Science.gov

Sample records for spatially resolved study

  1. Spatially resolved study of primary electron transport in magnetic cusps

    SciTech Connect

    Hubble, Aimee A.; Foster, John E.

    2012-01-15

    Spatially resolved primary electron current density profiles were measured using a planar Langmuir probe in the region above a magnetic cusp in a small ion thruster discharge chamber. The probe current maps obtained were used to study the electron collection mechanics in the cusp region in the limit of zero gas flow and no plasma production, and they allowed for the visualization of primary electron transport through the cusp. Attenuation coefficients and loss widths were calculated as a function of probe distance above the anode at various operating conditions. Finally, the collection mechanics between two magnetic cusps were studied and compared. It was found that primary electron collection was dominated by the upstream magnet ring.

  2. Spatially resolved scattering polarimeter.

    PubMed

    Kohlgraf-Owens, Thomas; Dogariu, Aristide

    2009-05-01

    We demonstrate a compact, spatially resolved polarimeter based on a coherent optical fiber bundle coupled with a thin layer of scattering centers. The use of scattering for polarization encoding allows the polarimeter to work across broad angular and spectral domains. Optical fiber bundles provide high spatial resolution of the incident field. Because neighboring elements of the bundle interact with the incident field differently, only a single interaction of the fiber bundle with the unknown field is needed to perform the measurement. Experimental results are shown to demonstrate the capability to perform imaging polarimetry. PMID:19412259

  3. NMR methods for in-situ biofilm metabolism studies: spatial and temporal resolved measurements

    SciTech Connect

    Majors, Paul D.; Mclean, Jeffrey S.; Fredrickson, Jim K.; Wind, Robert A.

    2005-11-01

    We are developing nuclear magnetic resonance (NMR) microscopy, spectroscopy and combined NMR/optical techniques to the study of biofilms. Objectives include: time and depth-resolved metabolite concentrations with isotropic spatial resolution on the order of 10 microns, metabolic pathways and flux rates, mass transport and ultimately their correlation with gene expression by optical microscopy in biofilms. These methods are being developed with Shewanella oneidensis MR-1 as a model system, but are equally applicable to other biofilm systems of interest. Thus, spatially resolved NMR of biofilms is expected to contribute significantly to the understanding of adherent cell metabolism.

  4. Spatially and Temporally Resolved Studies of the Human Microbiome (2011 JGI User Meeting)

    ScienceCinema

    Knight, Rob [University of Colorado

    2016-07-12

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Rob Knight of the University of Colorado gives a presentation on "Spatially and Temporally Resolved Studies of the Human Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  5. Spatially and Temporally Resolved Studies of the Human Microbiome (2011 JGI User Meeting)

    SciTech Connect

    Knight, Rob

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Rob Knight of the University of Colorado gives a presentation on "Spatially and Temporally Resolved Studies of the Human Microbiome" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  6. Study of nanosecond laser-produced plasmas in atmosphere by spatially resolved optical emission spectroscopy

    SciTech Connect

    Wei, Wenfu; Wu, Jian; Li, Xingwen; Jia, Shenli; Qiu, Aici

    2013-09-21

    We investigate the evolution of the species from both the target and the air, and the plasma parameter distribution of the nanosecond laser-produced plasmas in atmospheric air. The technique used is spatially resolved optical emission spectroscopy. It is argued that the N II from the air, which is distributed over a wider region than the target species in the early stages of the discharge, is primarily formed by the shock wave. The ionized species have a larger expansion velocity than the excited atoms in the first ∼100 ns, providing direct evidence for space-charge effects. The electron density decreases with the distance from the target surface in the early stages of the discharge, and both the electron density and the excited temperature variation in the axial direction are found to become insignificant at later stages.

  7. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  8. In situ spatial and time-resolved studies of electrochemical reactions by scanning transmission X-ray microscopy.

    PubMed

    Guay, Daniel; Stewart-Ornstein, Jacob; Zhang, Xuerong; Hitchcock, Adam P

    2005-06-01

    The first in situ measurements with scanning transmission X-ray microscopy (STXM) of an active electrochemical cell are reported. An electrochemical wet cell, consisting of an electrodeposited polyaniline thin film on a thin Au film covered by an overlayer of 1 M HCl solution sitting between two X-ray transparent silicon nitride windows, was assembled. X-ray absorption images and spatial and time-resolved spectra of this system under potential control were examined using the beamline 5.3.2 STXM at the Advanced Light Source. The chemical state of the polyaniline film was reversibly converted between reduced (leucoemeraldine) and oxidized (emeraldine chloride) states by changing the applied potential. The electrochemical changes were monitored by spatially resolved C 1s and N 1s X-ray absorption spectroscopy and chemical-state selective imaging. Comparison of differences between images at two energies at different potentials provided electrochemical contrast with a resolution better than 50 nm, thereby monitoring that component of the polyaniline film that was electrochemically active. Kinematic studies in the subsecond regime are demonstrated.

  9. Spatially resolved in vitro molecular ecology.

    PubMed

    McCaskill, J S

    1997-06-30

    Sensitive CCD-based fluorescence detection has made spatially resolved studies of evolving cell-free molecular systems possible. In recent years our attention has focussed on making the transition to open and interacting spatially-resolved amplification systems using silicon microreactor technology and on providing a hardware platform for individual based simulation of such systems. Significant progress has been achieved in this direction. Open microflow reactors have been realized in zero (well-mixed), one and two dimensions with volumes small enough to allow long-time studies with limited biochemical materials. The primer directed 3SR reaction (amplifying DNA and RNA) has been used as a basis for constructing interacting model systems with both predator-prey and cooperative amplification character. Theoretical work has demonstrated the need for individual based modeling of such systems: a significant fraction of the population consists of distinct sequence polymers in any case. A massively parallel processor-configurable computer NGEN has been designed and constructed which allows the high speed simulation in hardware of relatively large populations of locally interacting individual strings of chosen length (e.g. up to 2000*2000 for 64 bases), in addition to its application as an evolvable hardware machine. Simulations show self-replicating spots to stabilize the cooperative amplification in evolving systems (a mechanism proposed by the author in 1994). Both oscillatory kinetics and pattern formation are expected in the experimental model systems under investigation which profoundly affect the course of evolution. Such in vitro model systems serve both to test current theories of cooperative evolution and provide clues for optimisation strategies in molecular biotechnology. PMID:9362557

  10. Exploratory studies of PM10 receptor and source profiling by GC/MS and principal component analysis of temporally and spatially resolved ambient samples.

    PubMed

    Jeon, S J; Meuzelaar, H L; Sheya, S A; Lighty, J S; Jarman, W M; Kasteler, C; Sarofim, A F; Simoneit, B R

    2001-05-01

    For a recent exploratory study of particulate matter (PM) compositions, origins, and impacts in the El Paso/Juarez (Paso del Norte) airshed, the authors relied on solvent extraction (SX)-gas chromatography/mass spectrometry (GC/MS) procedures to characterize 24-hr quartz fiber (QF) filter samples obtained from nine spatially distributed high-volume (Hi-Vol) PM10 samplers as well as on thermal desorption (TD)-GC/MS methods to characterize 45 time-resolved (2-hr) filter samples obtained with modified 1-m3/hr PM10 samplers. Principal component analysis and related chemometric techniques were used for data reduction and data fusion as well as for multiway data correlation. A high degree of correspondence (R2 = 0.821) was found between the rapid TD-GC/MS method (which can be carried out on 2-hr filter slices containing only microgram amounts of sample) and conventional SX-GC/MS procedures. The four main source patterns of organic PM components observed in GC/MS profiles of both temporally and spatially resolved receptor samples obtained in the El Paso/Juarez border airshed during the study period are interpreted to represent (1) vehicular emissions plus resuspended urban dust; (2) biomass combustion; (3) native vegetation detritus and resuspended agricultural dust; and (4) waste burning. Moreover, principal component analysis of combined, variance-weighted, temporally resolved TD-GC/MS data and spatially resolved SX-GC/MS data was used to determine approximate source locations for specific PM components identified in time-resolved receptor sample profiles. The same approach can be used to determine approximate circadian concentration profiles of specific PM components identified in spatially resolved receptor sample profiles.

  11. Spatially resolved measurement of rock core porosity.

    PubMed

    Marica, F; Chen, Q; Hamilton, A; Hall, C; Al, T; Balcom, B J

    2006-01-01

    Density weighted, centric scan, Conical SPRITE MRI techniques are applied in the current work for local porosity measurements in fluid saturated porous media. The methodology is tested on a series of sandstone core samples. These samples vary in both porosity and degree of local heterogeneity due to bedding plane structure. The MRI porosity measurement is in good agreement with traditional gravimetric measurements of porosity. Spatially resolved porosity measurements reveal significant porosity variation in some samples. This novel MRI technique should have applications to the characterization of local porosity in a wide variety of porous media. PMID:16216540

  12. Spatially resolved measurement of rock core porosity.

    PubMed

    Marica, F; Chen, Q; Hamilton, A; Hall, C; Al, T; Balcom, B J

    2006-01-01

    Density weighted, centric scan, Conical SPRITE MRI techniques are applied in the current work for local porosity measurements in fluid saturated porous media. The methodology is tested on a series of sandstone core samples. These samples vary in both porosity and degree of local heterogeneity due to bedding plane structure. The MRI porosity measurement is in good agreement with traditional gravimetric measurements of porosity. Spatially resolved porosity measurements reveal significant porosity variation in some samples. This novel MRI technique should have applications to the characterization of local porosity in a wide variety of porous media.

  13. Synchrotron beam coherence: a spatially resolved measurement

    NASA Astrophysics Data System (ADS)

    Tran, C. Q.; Peele, A. G.; Roberts, A.; Nugent, K. A.; Paterson, D.; McNulty, I.

    2005-01-01

    We report a precise and spatially resolved measurement of the complex degree of coherence of a one-dimensional 1.5-keV beam produced by a third-generation synchrotron source. The method of phase-space tomography is used, which requires only measurements of the x-ray intensity. We find that the field is statistically stationary to within experimental error, the correlations are very well approximated by a Gaussian distribution, and the measured coherence length is in excellent agreement with expectations.

  14. Spatially resolved spectral-imaging device

    DOEpatents

    Bloom, Joshua Simon; Tyson, John Anthony

    2016-02-09

    A spatially resolved spectral device comprising a dispersive array to receive an incident light comprising a principal ray. The dispersive array comprising a plurality of dichroic layers, each of the plurality of dichroic layers disposed in a path of a direction of the principal ray. Each of the plurality of dichroic layers configured to at least one of reflect or transmit a different wavelength range of the incident light. The device further comprising a detection array operatively coupled with the dispersive array. The detection array comprising a photosensitive component including a plurality of detection pixels, each of the plurality of detection pixels having a light-receiving surface disposed parallel to the direction of the principal ray to detect a respective one of the different wavelength ranges of incident light reflected from a corresponding one of the plurality of dichroic layers.

  15. Spatially-resolved in-situ structural study of organic electronic devices with nanoscale resolution: the plasmonic photovoltaic case study.

    PubMed

    Paci, B; Bailo, D; Albertini, V Rossi; Wright, J; Ferrero, C; Spyropoulos, G D; Stratakis, E; Kymakis, E

    2013-09-14

    A novel high spatial resolution synchrotron X-ray diffraction stratigraphy technique has been applied in-situ to an integrated plasmonic nanoparticle-based organic photovoltaic device. This original approach allows for the disclosure of structure-property relations linking large scale organic devices to length scales of local nano/hetero structures and interfaces between the different components.

  16. A SPATIALLY RESOLVED STUDY OF THE SYNCHROTRON EMISSION AND TITANIUM IN TYCHO’S SUPERNOVA REMNANT USING NuSTAR

    SciTech Connect

    Lopez, Laura A.; Grefenstette, Brian W.; Harrison, Fiona A.; Madsen, Kristin K.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Craig, William W.; Zoglauer, Andreas; Christensen, Finn E.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; Stern, Daniel K.; Zhang, William W.

    2015-12-01

    We report results from deep observations (∼750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from {sup 44}Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity “stripes” associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of {sup 44}Ti, and we set limits on its presence and distribution within the SNR. These limits correspond to an upper-limit {sup 44}Ti mass of M{sub 44} < 2.4 × 10{sup −4} M{sub ⊙} for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.

  17. A spatially resolved study of the synchrotron emission and titanium in Tycho's supernova remnant using NuSTAR

    DOE PAGES

    Lopez, Laura A.; Grefenstette, Brian W.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; et al

    2015-11-30

    Here, we report results from deep observations (~750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity "stripes" associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set limits on its presence and distribution within the SNR. Furthermore,more » these limits correspond to an upper-limit 44Ti mass of M44 < 2.4 × 10-4 M⊙ for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We also find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.« less

  18. A spatially resolved study of the synchrotron emission and titanium in Tycho's supernova remnant using NuSTAR

    SciTech Connect

    Lopez, Laura A.; Grefenstette, Brian W.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; Harrison, Fiona A.; Madsen, Kristin K.; Stern, Daniel K.; Zhang, William W.; Zoglauer, Andreas

    2015-11-30

    Here, we report results from deep observations (~750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity "stripes" associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set limits on its presence and distribution within the SNR. Furthermore, these limits correspond to an upper-limit 44Ti mass of M44 < 2.4 × 10-4 M⊙ for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We also find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.

  19. A Spatially Resolved Study of the Synchrotron Emission and Titanium in Tycho’s Supernova Remnant Using NuSTAR

    NASA Astrophysics Data System (ADS)

    Lopez, Laura A.; Grefenstette, Brian W.; Reynolds, Stephen P.; An, Hongjun; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Eriksen, Kristoffer A.; Fryer, Chris L.; Hailey, Charles J.; Harrison, Fiona A.; Madsen, Kristin K.; Stern, Daniel K.; Zhang, William W.; Zoglauer, Andreas

    2015-12-01

    We report results from deep observations (˜750 ks) of Tycho's supernova remnant (SNR) with NuSTAR. Using these data, we produce narrow-band images over several energy bands to identify the regions producing the hardest X-rays and to search for radioactive decay line emission from 44Ti. We find that the hardest (>10 keV) X-rays are concentrated in the southwest of Tycho, where recent Chandra observations have revealed high emissivity “stripes” associated with particles accelerated to the knee of the cosmic-ray spectrum. We do not find evidence of 44Ti, and we set limits on its presence and distribution within the SNR. These limits correspond to an upper-limit 44Ti mass of M44 < 2.4 × 10-4 M⊙ for a distance of 2.3 kpc. We perform a spatially resolved spectroscopic analysis of 66 regions across Tycho. We map the best-fit rolloff frequency of the hard X-ray spectra, and we compare these results to measurements of the shock expansion and ambient density. We find that the highest energy electrons are accelerated at the lowest densities and in the fastest shocks, with a steep dependence of the rolloff frequency with shock velocity. Such a dependence is predicted by models where the maximum energy of accelerated electrons is limited by the age of the SNR rather than by synchrotron losses, but this scenario requires far lower magnetic field strengths than those derived from observations in Tycho. One way to reconcile these discrepant findings is through shock obliquity effects, and future observational work is necessary to explore the role of obliquity in the particle acceleration process.

  20. Spatially resolved winds on an exoplanet

    NASA Astrophysics Data System (ADS)

    Louden, Tom Michael; Wheatley, Peter

    2015-12-01

    We will present evidence that the atmosphere of the hot Jupiter HD 189733b has a strong eastward motion, with red-shifted absorption detected on the leading limb of the planet and blue-shifted absorption on the trailing limb. Our results are based on a time-resolved model of the sodium transmission spectrum measured with the HARPS spectrograph. The model includes limb darkening and stellar rotation, and it accounts implicitly for the Rossiter-McLaughlin effect.Our results can be understood as a combination of tidally locked planetary rotation and an eastward equatorial jet. The equatorial jet has long been predicted in atmospheric circulation models, and it helps to explain Spitzer maps of the dayside thermal emission of HD 189733b that show the hottest point of the planetary atmosphere offset to the east of the substellar point. In addition to testing atmospheric circulation models, our results demonstrate the feasibility of studying weather systems on distant planets.

  1. Spatially resolved solid-state MAS-NMR-spectroscopy.

    PubMed

    Scheler, U; Schauss, G; Blümich, B; Spiess, H W

    1996-07-01

    A comprehensive account of spatially resolved solid-state MAS NMR of 13C is given. A device generating field gradients rotating synchronously with the magic angle spinner is described. Spatial resolution and sensitivity are compared for phase and frequency encoding of spatial information. The suppression of spinning sidebands is demonstrated for both cases. Prior knowledge about the involved materials can be used for the reduction of data from spatially resolved spectra to map chemical structure. Indirect detection via 13C NMR gives access to the information about mobility from proton-wideline spectra. Two-dimensional solid-state spectroscopy with spatial resolution is demonstrated for a rotor synchronized MAS experiment which resolves molecular order as a function of space. By comparison of different experiments the factors affecting the spatial resolution are investigated.

  2. Passive background correction method for spatially resolved detection

    DOEpatents

    Schmitt, Randal L.; Hargis, Jr., Philip J.

    2011-05-10

    A method for passive background correction during spatially or angularly resolved detection of emission that is based on the simultaneous acquisition of both the passive background spectrum and the spectrum of the target of interest.

  3. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    SciTech Connect

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  4. Spatially-resolved microstructure in shear banding wormlike micellar solutions

    SciTech Connect

    Helgeson, Matthew E.; Reichert, Matthew D.; Wagner, Norman J.; Kaler, Eric W.

    2008-07-07

    Recently proposed theories for shear banding in wormlike micellar solutions (WLMs) rely on a shear-induced isotropic-nematic (I-N) phase separation as the mechanism for banding. Critical tests of such theories require spatially-resolved measurements of flow-kinematics and local mesoscale microstructure within the shear bands. We have recently developed such capabilities using a short gap Couette cell for flow-small angle neutron scattering (flow-SANS) measurements in the 1-2 plane of shear with collaborators at the NIST Center for Neutron Research. This work combines flow-SANS measurements with rheology, rheo-optics and velocimetry measurements to present the first complete spatially-resolved study of WLMs through the shear banding transition for a model shear banding WLM solution near the I-N phase boundary. The shear rheology is well-modeled by the Giesekus constitutive equation, with incorporated stress diffusion to predict shear banding. By fitting the stress diffusivity at the onset of banding, the model enables prediction of velocity profiles in the shear banded state which are in quantitative agreement with measured flow-kinematics. Quantitative analysis of the flow-SANS measurements shows a critical segmental alignment for banding and validates the Giesekus model predictions, linking segmental orientation to shear banding and providing the first rigorous evidence for the shear-induced I-N transition mechanism for shear banding.

  5. Spatially resolving antenna arrays using frequency diversity.

    PubMed

    Marks, Daniel L; Gollub, Jonah; Smith, David R

    2016-05-01

    Radio imaging devices and synthetic aperture radar typically use either mechanical scanning or phased arrays to illuminate a target with spatially varying radiation patterns. Mechanical scanning is unsuitable for many high-speed imaging applications, and phased arrays contain many active components and are technologically and cost prohibitive at millimeter and terahertz frequencies. We show that antennas deliberately designed to produce many different radiation patterns as the frequency is varied can reduce the number of active components necessary while still capturing high-quality images. This approach, called frequency-diversity imaging, can capture an entire two-dimensional image using only a single transmit and receive antenna with broadband illumination. We provide simple principles that ascertain whether a design is likely to achieve particular resolution specifications, and illustrate these principles with simulations. PMID:27140887

  6. The spatial resolving power of earth resources satellites: A review

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.

    1980-01-01

    The significance of spatial resolving power on the utility of current and future Earth resources satellites is critically discussed and the relative merits of different approaches in defining and estimating spatial resolution are outlined. It is shown that choice of a particular measure of spatial resolution depends strongly on the particular needs of the user. Several experiments have simulated the capabilities of future satellite systems by degradation of aircraft images. Surprisingly, many of these indicated that improvements in resolution may lead to a reduction in the classification accuracy of land cover types using computer assisted methods. However, where the frequency of boundary pixels is high, the converse relationship is found. Use of imagery dependent upon visual interpretation is likely to benefit more consistently from higher resolutions. Extraction of information from images will depend upon several other factors apart from spatial resolving power: these include characteristics of the terrain being sensed, the image processing methods that are applied as well as certain sensor characteristics.

  7. Investigation of real-time microstructure evolution in steep thermal gradients using in-situ spatially resolved X-ray diffraction: A case study for Ti fusion welds

    SciTech Connect

    Ressler, T.; Wong, J.; Elmer, J.W. |

    1998-12-24

    A recently developed spatially resolved X-ray diffraction (SRXRD) technique utilizing intense synchrotron radiation has been refined to yield phase and microstructural information down to 200 {micro}m in spatial extent in materials subjected to steep thermal gradients during processing. This SRXRD technique has been applied to map completely the phases and their solid-state transformation in the so-called heat-affected zone (HAZ) in titanium fusion welds in situ during the welding process. Detailed profile analysis of the SRXRD patterns revealed four principal microstructural regions at temperature in the vicinity of the HAZ surrounding the liquid weld pool: (i) a completely transformed {beta}-Ti zone 2--3 mm adjacent to the liquid weld pool; (ii) a mixed {alpha} + {beta}-it region surrounding the pure {beta}-Ti zone, (iii) a back-transformed {alpha}-Ti zone on the backside of the HAZ where pure {beta}-Ti once existed at temperature well above the {alpha} {r_arrow} {beta} transformation isotherm, and (iv) a more diffused region outside the HAZ where annealing and recrystallization of the {alpha}-it base metal occur. The high-temperature microstructures so derived corroborate well the expected transformation kinetics in pure titanium, and the observed phase transformation boundaries are in good agreement with those predicted from the transformation isotherms calculated from a simplified heat-flow model. Based on a detailed assessment of the SRXRD setup employed, improved experimentations such as a smaller beam spot emitted from third generation synchrotron sources, better mechanical stability (tighter scattering geometry), and use of an area detector would enable more quantitative structural information for future phase dynamics studies exemplified by this work.

  8. Spatially Resolved Star Formation Main Sequence of Galaxies

    NASA Astrophysics Data System (ADS)

    Cano-Díaz, M.; Sánchez, S. F.; Zibetti, S.; Ascaribar, Y.; Bland-Hawthorn, J.; Ziegler, B.; González-Delgado, R. M.; Walcher, C. J.; García-Benito, R.; Mast, D.; Mendoza-Pérez, M. A.; Falcón-Barroso, J.; Galbany, L.; Husemann, B.; Kehring, C.; Marino, R. A.; Sánchez-Blázquez, P.; López-Cobá, C.; López-Sánchez, A. R.; Vilchez, J. M.

    2016-06-01

    The relation known as Star Formation Main Sequence (SFMS) of galaxies is defined in terms of stellar mass and star formation rate. This approximately linear relation has been proven to be tight and holds for several star formation indicators at local and at high redshifts. In this talk I will show recent results about our first attempts to study the Spatially Resolved SFMS, using integral field spectroscopic data, coming primarily from the CALIFA survey. I will present as a main result that a local SFMS is found with a slope and zero point of 0.72 +/ 0.04, and -7.95 +/ 0.29 respectively. I will also discuss the influence of characteristics such as environment and morphology in the relation. Finally I will present some extensions of these results for data com in from the MaNGA survey.

  9. Spatially resolved argon microplasma diagnostics by diode laser absorption

    SciTech Connect

    Miura, Naoto; Hopwood, Jeffrey

    2011-01-01

    Microplasmas were diagnosed by spatially resolved diode laser absorption using the Ar 801.4 nm transition (1s{sub 5}-2p{sub 8}). A 900 MHz microstrip split ring resonator was used to excite the microplasma which was operated between 100-760 Torr (13-101 kPa). The gas temperatures and the Ar 1s{sub 5} line-integrated densities were obtained from the atomic absorption lineshape. Spatially resolved data were obtained by focusing the laser to a 30 {mu}m spot and translating the laser path through the plasma with an xyz microdrive. At 1 atm, the microplasma has a warm core (850 K) that spans 0.2 mm and a steep gradient to room temperature at the edge of the discharge. At lower pressure, the gas temperature decreases and the spatial profiles become more diffuse.

  10. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images

    SciTech Connect

    Tsekenis, S. A.; McCann, H.; Tait, N.

    2015-03-15

    We present a novel framework and experimental method for the quantification of spatial resolution of a tomography system. The framework adopts the “black box” view of an imaging system, considering only its input and output. The tomography system is locally stimulated with a step input, viz., a sharp edge. The output, viz., the reconstructed images, is analysed by Fourier decomposition of their spatial frequency components, and the local limiting spatial resolution is determined using a cut-off threshold. At no point is an observer involved in the process. The framework also includes a means of translating the quantification region in the imaging space, thus creating a spatially resolved map of objectively quantified spatial resolution. As a case-study, the framework is experimentally applied using a gaseous propane phantom measured by a well-established chemical species tomography system. A spatial resolution map consisting of 28 regions is produced. In isolated regions, the indicated performance is 4-times better than that suggested in the literature and varies by 57% across the imaging space. A mechanism based on adjacent but non-interacting beams is hypothesised to explain the observed behaviour. The mechanism suggests that, as also independently concluded by other methods, a geometrically regular beam array maintains maximum objectivity in reconstructions. We believe that the proposed framework, methodology, and findings will be of value in the design and performance evaluation of tomographic imaging arrays and systems.

  11. Spatially resolved scatter measurement of diffractive micromirror arrays.

    PubMed

    Sicker, Cornelius; Heber, Jörg; Berndt, Dirk

    2016-06-01

    Spatial light modulators (SLMs) support flexible system concepts in modern optics and especially phase-only SLMs such as micromirror arrays (MMAs) appear attractive for many applications. In order to achieve a precise phase modulation, which is crucial for optical performance, careful characterization and calibration of SLM devices is required. We examine an intensity-based measurement concept, which promises distinct advantages by means of a spatially resolved scatter measurement that is combined with the MMA's diffractive principle. Measurements yield quantitative results, which are consistent with measurements of micromirror roughness components, by white-light interferometry. They reveal relative scatter as low as 10-4, which corresponds to contrast ratios up to 10,000. The potential of the technique to resolve phase changes in the subnanometer range is experimentally demonstrated. PMID:27411205

  12. Spatially: resolved heterogeneous dynamics in a strong colloidal gel

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Alaimo, Matteo David; Secchi, Eleonora; Piazza, Roberto

    2015-05-01

    We re-examine the classical problem of irreversible colloid aggregation, showing that the application of Digital Fourier Imaging (DFI), a class of optical correlation methods that combine the power of light scattering and imaging, allows one to pick out novel useful evidence concerning the restructuring processes taking place in a strong colloidal gel. In particular, the spatially-resolved displacement fields provided by DFI strongly suggest that the temporally-intermittent local rearrangements taking place in the course of gel ageing are characterized by very long-ranged spatial correlations.

  13. Spatially resolved concentration measurements based on backscatter absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ze; Sanders, Scott T.; Robinson, Michael A.

    2016-06-01

    We demonstrate the feasibility of spatially resolved measurements of gas properties using direct absorption spectroscopy in conjunction with backscattered signals. We report a 1-D distribution of H2O mole fraction with a spatial resolution of 5 mm. The peak and average discrepancy between the measured and expected mole fraction are 21.1 and 8.0 %, respectively. The demonstration experiment is related to a diesel aftertreatment system; a selective catalytic reduction brick made of cordierite is used. The brick causes volume scattering interference; advanced baseline fitting based on a genetic algorithm is used to reduce the effects of this interference by a factor of 2.3.

  14. DUST GRAIN EVOLUTION IN SPATIALLY RESOLVED T TAURI BINARIES

    SciTech Connect

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Males, Jared R.; Greene, Thomas P.

    2011-10-10

    Core-accretion planet formation begins in protoplanetary disks with the growth of small, interstellar medium dust grains into larger particles. The progress of grain growth, which can be quantified using 10 {mu}m silicate spectroscopy, has broad implications for the final products of planet formation. Previous studies have attempted to correlate stellar and disk properties with the 10 {mu}m silicate feature in an effort to determine which stars are efficient at grain growth. Thus far there does not appear to be a dominant correlated parameter. In this paper, we use spatially resolved adaptive optics spectroscopy of nine T Tauri binaries as tight as 0.''25 to determine if basic properties shared between binary stars, such as age, composition, and formation history, have an effect on dust grain evolution. We find with 90%-95% confidence that the silicate feature equivalent widths of binaries are more similar than those of randomly paired single stars, implying that shared properties do play an important role in dust grain evolution. At lower statistical significance, we find with 82% confidence that the secondary has a more prominent silicate emission feature (i.e., smaller grains) than the primary. If confirmed by larger surveys, this would imply that spectral type and/or binarity are important factors in dust grain evolution.

  15. Retinal ganglion cell topography and spatial resolving power in penguins.

    PubMed

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  16. A spatially resolved surface kinetic model for forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Maher, Kate; Johnson, Natalie C.; Jackson, Ariel; Lammers, Laura N.; Torchinsky, Abe B.; Weaver, Karrie L.; Bird, Dennis K.; Brown, Gordon E.

    2016-02-01

    The development of complex alteration layers on silicate mineral surfaces undergoing dissolution is a widely observed phenomenon. Given the complexity of these layers, most kinetic models used to predict rates of mineral-fluid interactions do not explicitly consider their formation. As a result, the relationship between the development of the altered layers and the final dissolution rate is poorly understood. To improve our understanding of the relationship between the alteration layer and the dissolution rate, we developed a spatially resolved surface kinetic model for olivine dissolution and applied it to a series of closed-system experiments consisting of three-phases (water (±NaCl), olivine, and supercritical CO2) at conditions relevant to in situ mineral carbonation (i.e. 60 °C, 100 bar CO2). We also measured the corresponding δ26/24Mg of the dissolved Mg during early stages of dissolution. Analysis of the solid reaction products indicates the formation of Mg-depleted layers on the olivine surface as quickly as 2 days after the experiment was started and before the bulk solution reached saturation with respect to amorphous silica. The δ26/24Mg of the dissolved Mg decreased by approximately 0.4‰ in the first stages of the experiment and then approached the value of the initial olivine (-0.35‰) as the steady-state dissolution rate was approached. We attribute the preferential release of 24Mg to a kinetic effect associated with the formation of a Mg-depleted layer that develops as protons exchange for Mg2+. We used experimental data to calibrate a surface kinetic model for olivine dissolution that includes crystalline olivine, a distinct "active layer" from which Mg can be preferentially removed, and secondary amorphous silica precipitation. By coupling the spatial arrangement of ions with the kinetics, this model is able to reproduce both the early and steady-state long-term dissolution rates, and the kinetic isotope fractionation. In the early stages of

  17. Study of optoelectronic properties of thin film solar cell materials Cu2ZnSn(S,Se)4 using multiple correlative spatially-resolved spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Chen, Qiong

    Containing only earth abundant and environmental friendly elements, quaternary compounds Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe 4 (CZTSe) are considered as promising absorber materials for thin film solar cells. The best record efficiency for this type of thin film solar cell is now 12.6%. As a promising photovoltaic (PV) material, the electrical and optical properties of CZTS(Se) have not been well studied. In this work, an effort has been made to understand the optoelectronic and structural properties, in particular the spatial variations, of CZTS(Se) materials and devices by correlating multiple spatially resolved characterization techniques with sub-micron resolution. Micro-Raman (micro-Raman) spectroscopy was used to analyze the chemistry compositions in CZTS(Se) film; Micro-Photoluminescence (micro-PL) was used to determine the band gap and possible defects. Micro-Laser-Beam-Induced-Current (micro-LBIC) was used to examine the photo-response of CZTS(Se) solar cell in different illumination conditions. Micro-reflectance was used to estimate the reflectance loss. And Micro-I-V measurement was used to compare important electrical parameters from CZTS(Se) solar cells with different device structure or absorber compositions. Scanning electron microscopy and atomic force microscopy were used to characterize the surface morphology. Successfully integrating and correlating these techniques was first demonstrated during the course of this work in our laboratory, and this level of integration and correlation has been rare in the field of PV research. This effort is significant not only for this particular project and also for a wide range of research topics. Applying this approach, in conjunction with high-temperature and high-excitation-power optical spectroscopy, we have been able to reveal the microscopic scale variations among samples and devices that appeared to be very similar from macroscopic material and device characterizations, and thus serve as a very powerful tool

  18. The replacement of Celestine (SrSO4) by Strontianite (SrCO3) studied in situ, spatially resolved, and real-time by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sulzbach, Michael; Geisler, Thorsten

    2015-04-01

    The replacement reaction of celestine (SrSO4) by strontianite (SrCO3) is one of the most common ways to obtain pure strontianite that is an important industrial reagent. Thus, the replacement reaction has been studied extensively over the past decades. In this work the replacement serves as a model system to study solid-fluid reactions in particular, the behavior of oxygen isotopes during the reaction. Measurements of isotopically enriched compounds using Raman spectroscopy showed that oxo-anion groups perform localized vibrations with distinct frequencies. These vibrations reflect the oxygen-based isotopologues of the oxo-anion molecule and the relative intensities of these bands are proportional to the isotopologue fractions in the molecule species that allows the precise quantification of its isotope composition. Therefore, Raman spectroscopy provides us with a tool to monitor the behavior of oxygen isotopes at reaction interfaces and in the fluid. Combining a confocal Raman spectrometer with an in-house-made Teflon© fluid cell even enables spatially resolved, in situ, and real-time measurements. Two different experimental setups were used to obtain general information about the replacement kinetics using isotopically natural solutions. The first experimental setup consisted of an in-house-made Teflon© fluid cell (with an internal heating system) filled with a 1M Na2CO3 solution and an equimolar amount of celestine powder. Grain sizes ranged between 63 and 125 μm and experimental temperatures were 35° C, 40° C, 45° C, and 50° C. At the start of the experiments the aqueous ν1(CO3) band could be observed at 1065 cm-1 that lost intensity over the course of the reaction. Complementary, the aqueous sulfate ν1(SO4) band at 981 cm-1grows in intensity. From the relative changes between these bands we derived the reaction rates and the activation energy. The second experimental setup also consisted of an in-house-made Teflon© fluid cell (without heating system

  19. Nonuniform isotope patterns produced by collision-induced dissociation of homogeneously labeled ubiquitin: implications for spatially resolved hydrogen/deuterium exchange ESI-MS studies.

    PubMed

    Ferguson, Peter L; Konermann, Lars

    2008-06-01

    There is an ongoing debate whether collision-induced dissociation (CID) of electrosprayed proteins after solution-phase hydrogen/deuterium exchange (HDX) is a viable approach for determining spatially resolved deuteration patterns. This work explores the use of two methods, source-CID and hexapole tandem mass spectrometry (MS/MS) on a quadrupole time-of-flight (Q-TOF) mass spectrometer, for measuring the fragment deuteration levels of regioselectively labeled ubiquitin. Both methods reveal that b-ions exhibit HDX levels significantly below that of the intact protein, whereas several y'' fragments are labeled to a much greater extent. These results are consistent with earlier source-CID data (Akashi, S.; Naito, Y.; Takio, K. Anal. Chem. 1999, 71, 4974-4980). However, the measured b-ion deuteration levels are in disagreement with the known solution-phase behavior of ubiquitin. Partial agreement is observed for y''-ions. Control experiments on homogeneously labeled ubiquitin (having the same average deuteration level at every exchangeable site) result in highly nonuniform fragment HDX levels. In particular, b-ions exhibit deuteration levels significantly below that of intact ubiquitin, thereby mimicking the behavior seen for the regioselectively labeled protein. This effect is likely caused by isotope fractionation during collisional activation, facilitated by the high mobility of charge carriers (scrambling) in the gas phase. The observation that the b-ion labeling behavior is largely independent of the spatial isotope distribution within solution-phase ubiquitin invalidates these ions as reporters of the protein deuteration pattern. This work questions the common practice of interpreting any nonuniformities in fragment deuteration as being indicative of regioselective solution-phase labeling. Artifactual deuterium enrichment or depletion during collisional activation may have contributed to the current lack of consensus as to whether HDX/CID represents a potentially

  20. Spatially-Resolved Studies of Grain-Boundary Effects in Polycrystalline Solar Cells Using Micro-Photoluminescence and Near-Field Microscopy

    SciTech Connect

    Smith, S.; Dhere, R.; Gessert, T.; Stradins, P.; Mascarenhas, A.

    2005-01-01

    Photoluminescence and photocurrent spectroscopies combined with diffraction-limited and sub- diffraction-limited spatial resolution are achieved via micro-photoluminescence (m-PL) and near-field microscopy (NSOM). These methods are used to examine the photo-response of individual grain boundaries in thin-film, polycrystalline solar cells at room and cryogenic temperatures. A systematic m-PL study of the effect of CdCl2-treatment on recombination in CdTe/CdS solar cell structures of varying thickness directly reveals the grain-boundary and surface passivation action of this important post-growth processing step. We achieve 50nm (l/10) spatial resolution in near-field Optical Beam Induced Current imaging (n-OBIC) of polycrystalline silicon solar cells using NSOM, at varying stages of silicon nitride grain-boundary passivation, and measure lateral variations in photo-response of CdTe/CdS solar cells with subwavelength spatial resolution.

  1. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    NASA Astrophysics Data System (ADS)

    Lichtenberg, H.; Prange, A.; Steiner, U.; Oerke, E.-C.; Hormes, J.

    2009-11-01

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  2. Spatially resolved micro-X-ray fluorescence and micro-X-ray absorption fine structure study of a fractured granite bore core following a radiotracer experiment

    NASA Astrophysics Data System (ADS)

    Denecke, Melissa A.; Brendebach, Boris; De Nolf, Wout; Falkenberg, Gerald; Janssens, Koen; Simon, Rolf

    2009-08-01

    Spatially resolved X-ray absorption and fluorescence investigation with a micrometer-scale resolution on actinide-containing samples provide information necessary for safety assessment of nuclear waste disposal. In this paper one example of such an experiment is presented. This example entails neptunium speciation in a fractured granite bore core from the Swedish Äspö Hard Rock Laboratory following a radiotracer experiment using µ-XAFS and µ-XRF. In order to probe micro-volumes below the surface in the granite samples and thereby avoid potential changes in the Np speciation during cutting of the bore core, a confocal irradiation-detection geometry is employed. µ-XAFS results for a selected granite bore core cross section with ~ 3 nmol Np/g reveal that Np, originally introduced as Np(V) in the tracer cocktail, is present in the granite in its reduced Np(IV) form. The Np(IV) is often present as particles, tens of µm in size. Elemental distribution maps show the tracer Np to be located in fissures and permeable channels not larger than 100 µm. The Np distribution appears often correlated with Zn also present in some fissures. We observe small granite fissures containing Fe (presumably Fe(II)), where we do not detect any Np. It is feasible that inflowing Np(V) has a shorter residence time in large fractures, while in the smaller fissures migration is slower, leading to longer residence times, i.e., reaction times, where it is reduced to less soluble Np(IV) and becomes thereby immobilized.

  3. Spatially resolved photodiode response for simulating precise interferometers.

    PubMed

    Fernández Barranco, Germán; Tröbs, Michael; Müller, Vitali; Gerberding, Oliver; Seifert, Frank; Heinzel, Gerhard

    2016-08-20

    Quadrant photodiodes (QPDs) are used in laser interferometry systems to simultaneously detect longitudinal displacement of test masses and angular misalignment between the two interfering beams. The latter is achieved by means of the differential wavefront sensing (DWS) technique, which provides ultra-high precision for measuring angular displacements. We have developed a setup to obtain the spatially resolved response of QPDs that, together with an extension of the simulation software IfoCAD, allows us to use the measured response in simulations and accurately predict the desired longitudinal and DWS phase observables. Three different commercial off-the-shelf QPD candidates for space-based interferometry were characterized. The measured response of one QPD was used in optical simulations. Nonuniformities in the response of the device and crosstalk between segments do not introduce significant variations in the longitudinal and DWS measurands with respect to the standard case when a uniform QPD without crosstalk is used. PMID:27556990

  4. PHL 5038: a spatially resolved white dwarf + brown dwarf binary

    NASA Astrophysics Data System (ADS)

    Steele, P. R.; Burleigh, M. R.; Farihi, J.; Gänsicke, B. T.; Jameson, R. F.; Dobbie, P. D.; Barstow, M. A.

    2009-06-01

    A near-infrared excess is detected at the white dwarf PHL 5038 in UKIDSS photometry, consistent with the presence of a cool, substellar companion. We have obtained H- and K-grism spectra and images of PHL 5038 using NIRI on Gemini North. The target is spatially and spectrally resolved into two components: an 8000 K DA white dwarf, and a likely L8 brown dwarf companion, separated by 0.94 arcsec. The spectral type of the secondary was determined using standard spectral indices for late L and T dwarfs. The projected orbital separation of the binary is 55 AU, so it becomes only the second known wide WD+dL binary to be found after GD 165AB. This object could potentially be used as a benchmark for testing substellar evolutionary models at intermediate to older ages.

  5. Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons

    PubMed Central

    Huang, Han; Wei, Dacheng; Sun, Jiatao; Wong, Swee Liang; Feng, Yuan Ping; Neto, A. H. Castro; Wee, Andrew Thye Shen

    2012-01-01

    Graphene has attracted much interest in both academia and industry. The challenge of making it semiconducting is crucial for applications in electronic devices. A promising approach is to reduce its physical size down to the nanometer scale. Here, we present the surface-assisted bottom-up fabrication of atomically precise armchair graphene nanoribbons (AGNRs) with predefined widths, namely 7-, 14- and 21-AGNRs, on Ag(111) as well as their spatially resolved width-dependent electronic structures. STM/STS measurements reveal their associated electron scattering patterns and the energy gaps over 1 eV. The mechanism to form such AGNRs is addressed based on the observed intermediate products. Our results provide new insights into the local properties of AGNRs, and have implications for the understanding of their electrical properties and potential applications. PMID:23248746

  6. Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Huang, Han; Wei, Dacheng; Sun, Jiatao; Wong, Swee Liang; Feng, Yuan Ping; Neto, A. H. Castro; Wee, Andrew Thye Shen

    2012-12-01

    Graphene has attracted much interest in both academia and industry. The challenge of making it semiconducting is crucial for applications in electronic devices. A promising approach is to reduce its physical size down to the nanometer scale. Here, we present the surface-assisted bottom-up fabrication of atomically precise armchair graphene nanoribbons (AGNRs) with predefined widths, namely 7-, 14- and 21-AGNRs, on Ag(111) as well as their spatially resolved width-dependent electronic structures. STM/STS measurements reveal their associated electron scattering patterns and the energy gaps over 1 eV. The mechanism to form such AGNRs is addressed based on the observed intermediate products. Our results provide new insights into the local properties of AGNRs, and have implications for the understanding of their electrical properties and potential applications.

  7. Spatially and temporally resolved temperature measurement in laser media.

    PubMed

    Körner, Jörg; Yue, Fangxin; Hein, Joachim; Kaluza, Malte C

    2016-06-01

    A technique to measure the spatially resolved temperature distribution in a laser medium is presented. It is based on the temperature dependence of the absorption cross section close to the zero-phonon line of the active medium. Since other materials in the beam path exhibit a high (and constant) transmission at this wavelength, the method can easily be applied in realistic amplifier setups. The method was successfully tested on three different samples, which were pumped by a pulsed laser diode with up to 150 W average power: side-cooled Yb:YAG and Yb:fluoride-phosphate glass at room temperature and face-cooled Yb:CaF2 at 120 K.

  8. Performance of Orbital Neutron Instruments for Spatially Resolved Hydrogen Measurements of Airless Planetary Bodies

    PubMed Central

    Elphic, Richard C.; Feldman, William C.; Funsten, Herbert O.; Prettyman, Thomas H.

    2010-01-01

    Abstract Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1–1.5 times the spacecraft's altitude above the planetary surface (or 40–600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector—the Lunar Exploration Neutron Detector (LEND)—scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of ∼ 100 cm2 Sr (compared to the LEND geometric factor of ∼ 10.9 cm2 Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. Key Words: Planetary instrumentation—Planetary science—Moon—Spacecraft experiments—Hydrogen. Astrobiology 10, 183–200. PMID:20298147

  9. Performance of orbital neutron instruments for spatially resolved hydrogen measurements of airless planetary bodies.

    PubMed

    Lawrence, David J; Elphic, Richard C; Feldman, William C; Funsten, Herbert O; Prettyman, Thomas H

    2010-03-01

    Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1-1.5 times the spacecraft's altitude above the planetary surface (or 40-600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector--the Lunar Exploration Neutron Detector (LEND)--scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of approximately 100 cm(2) Sr (compared to the LEND geometric factor of approximately 10.9 cm(2) Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution.

  10. Performance of orbital neutron instruments for spatially resolved hydrogen measurements of airless planetary bodies.

    PubMed

    Lawrence, David J; Elphic, Richard C; Feldman, William C; Funsten, Herbert O; Prettyman, Thomas H

    2010-03-01

    Orbital neutron spectroscopy has become a standard technique for measuring planetary surface compositions from orbit. While this technique has led to important discoveries, such as the deposits of hydrogen at the Moon and Mars, a limitation is its poor spatial resolution. For omni-directional neutron sensors, spatial resolutions are 1-1.5 times the spacecraft's altitude above the planetary surface (or 40-600 km for typical orbital altitudes). Neutron sensors with enhanced spatial resolution have been proposed, and one with a collimated field of view is scheduled to fly on a mission to measure lunar polar hydrogen. No quantitative studies or analyses have been published that evaluate in detail the detection and sensitivity limits of spatially resolved neutron measurements. Here, we describe two complementary techniques for evaluating the hydrogen sensitivity of spatially resolved neutron sensors: an analytic, closed-form expression that has been validated with Lunar Prospector neutron data, and a three-dimensional modeling technique. The analytic technique, called the Spatially resolved Neutron Analytic Sensitivity Approximation (SNASA), provides a straightforward method to evaluate spatially resolved neutron data from existing instruments as well as to plan for future mission scenarios. We conclude that the existing detector--the Lunar Exploration Neutron Detector (LEND)--scheduled to launch on the Lunar Reconnaissance Orbiter will have hydrogen sensitivities that are over an order of magnitude poorer than previously estimated. We further conclude that a sensor with a geometric factor of approximately 100 cm(2) Sr (compared to the LEND geometric factor of approximately 10.9 cm(2) Sr) could make substantially improved measurements of the lunar polar hydrogen spatial distribution. PMID:20298147

  11. Spatially resolved contrast measurement of diffractive micromirror arrays

    NASA Astrophysics Data System (ADS)

    Sicker, Cornelius; Heber, Jörg; Berndt, Dirk; Rückerl, Florian; Tinevez, Jean-Yves; Shorte, Spencer; Wagner, Michael; Schenk, Harald

    2015-02-01

    Diffractive micromirror arrays (MMA) are a special class of optical MEMS, serving as spatial light modulators (SLM) that control the phase of reflected light. Since the surface profile is the determining factor for an accurate phase modulation, high-precision topographic characterization techniques are essential to reach highest optical performance. While optical profiling techniques such as white-light interferometry are still considered to be most suitable to this task, the practical limits of interferometric techniques start to become apparent with the current state of optical MEMS technology. Light scatter from structured surfaces carries information about their topography, making scatter techniques a promising alternative. Therefore, a spatially resolved scatter measurement technique, which takes advantage of the MMA's diffractive principle, has been implemented experimentally. Spectral measurements show very high contrast ratios (up to 10 000 in selected samples), which are consistent with calculations from micromirror roughness parameters obtained by white-light interferometry, and demonstrate a high sensitivity to changes in the surface topography. The technique thus seems promising for the fast and highly sensitive characterization of diffractive MMAs.

  12. A Spatially Resolved Optical Second Harmonic Generation (SHG) Study of the Perovskite Iridate Sr2IrO4 with Bulk Sensitivity

    NASA Astrophysics Data System (ADS)

    Zhao, Liuyan; Chu, Hao; Torchinsky, Darius; Qi, Tongfei; Cao, Gang; Hsieh, David

    2014-03-01

    There has been a lot of recent interest in the layered perovskite iridate, Sr2IrO4, owing to its novel spin-orbital entangled Mott insulator ground state and its potential to realize high-Tc superconductivity upon doping. Although its bulk structural and magnetic point group symmetries have been characterized by resonant x-ray and neutron diffraction, these measurements provide spatially integrated information. In fact, recent neutron diffraction studies on Sr2IrO4 suggest that such measurements may be averaging over crystallographic domains of reduced symmetry that in turn generate distinct magnetic domains. Therefore, spatial resolution is desirable in order to gain full understanding of the point group symmetries of Sr2IrO4. Here, we show that optical SHG can provide a bulk sensitive measurement of the point group symmetries. By performing such SHG measurements in an imaging mode, we study the possible microscopic domain structures recently suggested. More generally, our SHG imaging technique provides an alternative way to probe the point group symmetries of iridate crystals, which are not always amenable to neutron scattering due to their small sample sizes and strong neutron absorption cross section. This work is supported by Army Research Office Grant Nos. W911NF-13-0059 and (ARO-DURIP) W911NF-13-1-0293.

  13. Determining Chemically and Spatially Resolved Atomic Profile of Low Contrast Interface Structure with High Resolution

    PubMed Central

    Nayak, Maheswar; Pradhan, P. C.; Lodha, G. S.

    2015-01-01

    We present precise measurements of atomic distributions of low electron density contrast at a buried interface using soft x-ray resonant scattering. This approach allows one to construct chemically and spatially highly resolved atomic distribution profile upto several tens of nanometer in a non-destructive and quantitative manner. We demonstrate that the method is sensitive enough to resolve compositional differences of few atomic percent in nano-scaled layered structures of elements with poor electron density differences (0.05%). The present study near the edge of potential impurities in soft x-ray range for low-Z system will stimulate the activity in that field. PMID:25726866

  14. Response Surface Methods For Spatially-Resolved Optical Measurement Techniques

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Dorrington, A. A.; Cutler, A. D.; DeLoach, R.

    2003-01-01

    Response surface methods (or methodology), RSM, have been applied to improve data quality for two vastly different spatially-resolved optical measurement techniques. In the first application, modern design of experiments (MDOE) methods, including RSM, are employed to map the temperature field in a direct-connect supersonic combustion test facility at NASA Langley Research Center. The laser-based measurement technique known as coherent anti-Stokes Raman spectroscopy (CARS) is used to measure temperature at various locations in the combustor. RSM is then used to develop temperature maps of the flow. Even though the temperature fluctuations at a single point in the flowfield have a standard deviation on the order of 300 K, RSM provides analytic fits to the data having 95% confidence interval half width uncertainties in the fit as low as +/- 30 K. Methods of optimizing future CARS experiments are explored. The second application of RSM is to quantify the shape of a 5-meter diameter, ultra-lightweight, inflatable space antenna at NASA Langley Research Center. Photogrammetry is used to simultaneously measure the shape of the antenna at approximately 500 discrete spatial locations. RSM allows an analytic model to be developed that describes the shape of the majority of the antenna with an uncertainty of 0.4 mm, with 95% confidence. This model would allow a quantitative comparison between the actual shape of the antenna and the original design shape. Accurately determining this shape also allows confident interpolation between the measured points. Such a model could, for example, be used for ray tracing of radio-frequency waves up to 95 GHz. to predict the performance of the antenna.

  15. Orientation Characterisation of Aerospace Materials by Spatially Resolved Acoustic Spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Wenqi; Coulson, Jethro; Aveson, John W.; Smith, Richard J.; Clark, Matt; Somekh, Michael G.; Sharples, Steve D.

    2014-06-01

    Material characteristics in metals such as strength, stiffness and fracture resistance are strongly related to the underlying microstructure. The crystallographic structure and orientation are related to the ultrasonic properties through the stiffness matrix. In individual grains it is possible to analytically determine the ultrasonic velocity from the orientation and stiffness, or determine the stiffness from the known orientation and measured velocity. In this paper we present a technique for imaging the crystallographic orientation of grains in metals using spatially resolved acoustic spectroscopy (SRAS) and a novel inverse solver that can determine the crystallographic orientation from the known stiffness matrix for the material and the SRAS velocity measurement. Previously we have shown the ability of this technique to determine the orientation on single crystal nickel samples; we extended the technique to multigrain industrial metals, such as aluminium, nickel and Inconel. The comparison between SRAS and electron backscatter diffraction (EBSD) on the nickel sample is presented. SRAS is a fast, accurate, quantitative and robust technique for imaging material microstructure and orientation over a wide range of scales and industrial materials.

  16. The Lyman alpha reference sample. VII. Spatially resolved Hα kinematics

    NASA Astrophysics Data System (ADS)

    Herenz, Edmund Christian; Gruyters, Pieter; Orlitova, Ivana; Hayes, Matthew; Östlin, Göran; Cannon, John M.; Roth, Martin M.; Bik, Arjan; Pardy, Stephen; Otí-Floranes, Héctor; Mas-Hesse, J. Miguel; Adamo, Angela; Atek, Hakim; Duval, Florent; Guaita, Lucia; Kunth, Daniel; Laursen, Peter; Melinder, Jens; Puschnig, Johannes; Rivera-Thorsen, Thøger E.; Schaerer, Daniel; Verhamme, Anne

    2016-03-01

    We present integral field spectroscopic observations with the Potsdam Multi-Aperture Spectrophotometer of all 14 galaxies in the z ~ 0.1 Lyman Alpha Reference Sample (LARS). We produce 2D line-of-sight velocity maps and velocity dispersion maps from the Balmer α (Hα) emission in our data cubes. These maps trace the spectral and spatial properties of the LARS galaxies' intrinsic Lyα radiation field. We show our kinematic maps that are spatially registered onto the Hubble Space Telescope Hα and Lyman α (Lyα) images. We can conjecture a causal connection between spatially resolved Hα kinematics and Lyα photometry for individual galaxies, however, no general trend can be established for the whole sample. Furthermore, we compute the intrinsic velocity dispersion σ0, the shearing velocity vshear, and the vshear/σ0 ratio from our kinematic maps. In general LARS galaxies are characterised by high intrinsic velocity dispersions (54 km s-1 median) and low shearing velocities (65 km s-1 median). The vshear/σ0 values range from 0.5 to 3.2 with an average of 1.5. It is noteworthy that five galaxies of the sample are dispersion-dominated systems with vshear/σ0< 1, and are thus kinematically similar to turbulent star-forming galaxies seen at high redshift. When linking our kinematical statistics to the global LARS Lyα properties, we find that dispersion-dominated systems show higher Lyα equivalent widths and higher Lyα escape fractions than systems with vshear/σ0> 1. Our result indicates that turbulence in actively star-forming systems is causally connected to interstellar medium conditions that favour an escape of Lyα radiation. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).The reduced data cubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  17. Spatially resolved dust emission of extremely metal-poor galaxies*

    NASA Astrophysics Data System (ADS)

    Zhou, Luwenjia; Shi, Yong; Diaz-Santos, Taino; Armus, Lee; Helou, George; Stierwalt, Sabrina; Li, Aigen

    2016-05-01

    We present infrared (IR) spectral energy distributions (SEDs) of individual star-forming regions in four extremely metal-poor (EMP) galaxies with metallicity Z ≲ Z⊙/10 as observed by the Herschel Space Observatory. With the good wavelength coverage of the SED, it is found that these EMP star-forming regions show distinct SED shapes as compared to those of grand design Spirals and higher metallicity dwarfs: they have on average much higher f70μm/f160 μm ratios at a given f160 μm/f250 μm ratio; single modified blackbody (MBB) fittings to the SED at λ ≥ 100 μm still reveal higher dust temperatures and lower emissivity indices compared to that of Spirals, while two MBB fittings to the full SED with a fixed emissivity index (β = 2) show that even at 100 μm, about half of the emission comes from warm (50 K) dust, in contrast to the cold (˜20 K) dust component. Our spatially resolved images furthermore reveal that the far-IR colours including f70 μm/f160 μm, f160 μm/f250 μm and f250 μm/f350 μm are all related to the surface densities of young stars as traced by far-UV, 24 μm and star formation rates (SFRs), but not to the stellar mass surface densities. This suggests that the dust emitting at wavelengths from 70 to 350 μm is primarily heated by radiation from young stars.

  18. First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors.

    PubMed

    Kim, Yunseok; Kumar, Amit; Ovchinnikov, Oleg; Jesse, Stephen; Han, Hee; Pantel, Daniel; Vrejoiu, Ionela; Lee, Woo; Hesse, Dietrich; Alexe, Marin; Kalinin, Sergei V

    2012-01-24

    Spatially resolved polarization switching in ferroelectric nanocapacitors was studied on the sub-25 nm scale using the first-order reversal curve (FORC) method. The chosen capacitor geometry allows both high-veracity observation of the domain structure and mapping of polarization switching in a uniform field, synergistically combining microstructural observations and probing of uniform-field polarization responses as relevant to device operation. A classical Kolmogorov-Avrami-Ishibashi model has been adapted to the voltage domain, and the individual switching dynamics of the FORC response curves are well approximated by the adapted model. The comparison with microstructures suggests a strong spatial variability of the switching dynamics inside the nanocapacitors.

  19. Asteroids (21) Lutetia: global and spatially resolved photometric properties

    NASA Astrophysics Data System (ADS)

    Faury, G.; Lamy, P.; Vernazza, P.; Jorda, L.; Toth, I.

    2011-10-01

    Asteroids (21) Lutetia has recently been visited by the Rosetta spacecraft of the European Space Agency and imaged by its Rosetta narrow (NAC) and wide (WAC) angle cameras. The accurate photometric analysis of the images requires utmost care due to several instrumental problems, the most severe and complex to handle being the presence of optical ghosts which result from multiple reflections on the two filters inserted in the optical beam and on the thick window which protects the CCD detector from cosmic ray impacts. These ghosts prominently appears as either slighlty defocused images offset from the primary images or large round or elliptical halos. The appearance, the location and the radiance of each individual ghost depends upon the optical configuration (selected filters) and on the image itself so that no general model can be proposed. Consequently, a case-by-case approach must be adopted which requires a long and tedious work where each ghost is individually parametrized according to its specific geometry (defocused offset image or halo) and iteratively fitted to the original image. The procedure has been successfully applied to all NAC and WAC images and works extremely well with residuals and sometime artifacts at insignificant levels. Both NAC and WAC have further been recalibrated using the most recent observations of stellar calibrators VEGA and the solar analog 16 Cyg B allowing to correct the quantum efficiency response of the two CCD and the throughput for all channels (i.e., filters). We will present results on the global photometric properties of (21) Lutetia, albedo, phase function and spectral reflectivity as well as spatially resolved properties based on a novel method developed in the space of the facets representing the three-dimensional shape of the body. This method successfully implemented in the cases of the nucleus of comet 9P/Tempel 2 and of asteroid (2867) Steins (Spjuth et al. 2011) has the advantage of automatically tracking the same

  20. Spatially resolved chemical reaction monitoring using magnetic resonance imaging.

    PubMed

    Feindel, Kirk W

    2016-06-01

    Over the previous three decades, the use of MRI for studying dynamic physical and chemical processes of materials systems has grown significantly. This mini-review provides a brief introduction to relevant principles of MRI, including methods of spatial localization, factors contributing to image contrast, and chemical shift imaging. A few historical examples of (1) H MRI for reaction monitoring will be presented, followed by a review of recent research including (1) H MRI studies of gelation and biofilms, (1) H, (7) Li, and (11) B MRI studies of electrochemical systems, in vivo glucose metabolism monitored with (19) F MRI, and in situ temperature monitoring with (27) Al MRI. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Spin-resolved photoionization studies

    NASA Astrophysics Data System (ADS)

    Snell, G.; Berrah, N.; Langer, B.; Bozek, J. D.

    2000-06-01

    We performed spin-polarization measurements of the Xe N_45O_23O_23, Kr M_45N_23N_23 and Ar L_23M_23M_23 Auger electron with circularly polarized light from the ALS fom threshold up to 540 eV photon energy. The spin-resolved electron spectra were recorded by a new spectrometer system that combines our time-of flight spectrometers with a retarding field Mott polarimeter of the Burnett et al. design.footnote C. Burnett, T. J. Monroe, and F. B. Dunning, Rev. Sci. Instrum. 65,1893 (1994). From our measurements, the orientation parameter A_10 of the Xe 4d-1, Kr 3d-1 and Ar 2p-1 hole states were obtained over a broad photon energy range covering the shape resonance (≈ 100 eV) and the Cooper minimum (≈ 175 eV) of the photoionization cross section. Our measurements are the first direct experimental proof that in the Cooper minimum of a d-subshell photoionziation the outgoing electrons have a purely p character. This work was funded by DOE/BES/Chem.Sci.

  2. Spatially resolved study of polarized micro-photoluminescence spectroscopy on single GaAs nanowires with mixed zincblende and wurtzite phases

    SciTech Connect

    Mukherjee, Amlan; Ghosh, Sandip; Breuer, Steffen; Jahn, Uwe; Geelhaar, Lutz; Grahn, Holger T.

    2015-02-07

    Localized and polarized photoluminescence spectra are observed in single GaAs nanowires with mixed zincblende and wurtzite phases, grown using molecular beam epitaxy. For low excitation intensities, the photoluminescence emission exhibits narrow spectral features predominantly polarized perpendicular to the nanowire axis. For high excitation intensities, the photoluminescence spectra transform into dominant broadened features, which exhibit different peak energies and polarization properties. The strongly polarized emission at high excitation intensities is identified as being due to a spatially direct transition in wurtzite sections of the nanowires. The analysis, including band structure calculations suggests that carriers in the wurtzite sections diffuse into regions where the average low-temperature peak emission energy and crystal field parameter are 1.535 eV and 20 meV, respectively.

  3. THE ALGOL TRIPLE SYSTEM SPATIALLY RESOLVED AT OPTICAL WAVELENGTHS

    SciTech Connect

    Zavala, R. T.; Hutter, D. J.; Hummel, C. A.; Boboltz, D. A.; Ojha, R.; Shaffer, D. B.; Tycner, C.; Richards, M. T. E-mail: djh@nofs.navy.mi E-mail: dboboltz@usno.navy.mi E-mail: shaffer@alumni.caltech.ed E-mail: mrichards@astro.psu.ed

    2010-05-20

    Interacting binaries typically have separations in the milliarcsecond regime, and hence it has been challenging to resolve them at any wavelength. However, recent advances in optical interferometry have improved our ability to discern the components in these systems and have now enabled the direct determination of physical parameters. We used the Navy Prototype Optical Interferometer to produce for the first time images resolving all three components in the well-known Algol triple system. Specifically, we have separated the tertiary component from the binary and simultaneously resolved the eclipsing binary pair, which represents the nearest and brightest eclipsing binary in the sky. We present revised orbital elements for the triple system, and we have rectified the 180{sup 0} ambiguity in the position angle of Algol C. Our directly determined magnitude differences and masses for this triple star system are consistent with earlier light curve modeling results.

  4. Spatially Resolved Spectroscopy of the SNR IC443

    NASA Astrophysics Data System (ADS)

    Gorenstein, P.

    1998-07-01

    investigators examined the spatial structure of the thermal component and analyzed the GIS spectra with a non-equilibrium plasma model, and found no systematic variation of the interstellar absorption across the remnant. Evidence for shock acceleration of cosmic rays to high energies (10 TeV) was found by Keohane. X-ray imaging spectroscopy with ASCA reveals two regions of particularly hard emission: an unresolved source embedded in an extended emission region, and a ridge of emission coincident with the southeastern rim. Both features are located on part of the radio shell where the shock wave is interacting with molecular gas, and together they account for a majority of the emission at 7 keV. Though we would not have noticed it a priori, the unresolved feature is coincident with one resolved by the ROSAT HRI. The ASCA measurements were combined with higher energy data from the XTE and GRO missions and with radio and TeV gamma-ray data to produce a nonthermal multiwavelength spectrum for IC 443 which was fit with a cosmic ray interaction model. This model calculates the cynchrotron, bremsstrahlung, invers Compton, and neutral pion decay emission produced by locally accelerated cosmic ray interacting with ambient matter, soft photon fields, and magnetic fields.

  5. Spatially Resolved Spectroscopy of the SNR IC443

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1998-01-01

    investigators examined the spatial structure of the thermal component and analyzed the GIS spectra with a non-equilibrium plasma model, and found no systematic variation of the interstellar absorption across the remnant. Evidence for shock acceleration of cosmic rays to high energies (10 TeV) was found by Keohane. X-ray imaging spectroscopy with ASCA reveals two regions of particularly hard emission: an unresolved source embedded in an extended emission region, and a ridge of emission coincident with the southeastern rim. Both features are located on part of the radio shell where the shock wave is interacting with molecular gas, and together they account for a majority of the emission at 7 keV. Though we would not have noticed it a priori, the unresolved feature is coincident with one resolved by the ROSAT HRI. The ASCA measurements were combined with higher energy data from the XTE and GRO missions and with radio and TeV gamma-ray data to produce a nonthermal multiwavelength spectrum for IC 443 which was fit with a cosmic ray interaction model. This model calculates the cynchrotron, bremsstrahlung, invers Compton, and neutral pion decay emission produced by locally accelerated cosmic ray interacting with ambient matter, soft photon fields, and magnetic fields.

  6. In situ, spatially resolved biosignature detection at the microbial scale

    NASA Astrophysics Data System (ADS)

    Williford, K. H.; Eigenbrode, J. L.; Hallmann, C.; Kitajima, K.; Kozdon, R.; Summons, R. E.; Kudryavstev, A.; Lepot, K.; Schopf, J.; Spicuzza, M.; Sugitani, K.; Ushikubo, T.; van Kranendonk, M.; Valley, J. W.

    2013-12-01

    Whether life has ever existed beyond Earth is one of the great human questions. The Science Definition Team (SDT) for the proposed NASA Mars 2020 rover mission recently announced a suggested approach for NASA to 'demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth' in part 'to investigate whether Mars was ever inhabited by microbial life.' The SDT further recommended a per-sample volume of 8 cm3 [1] (e.g., a core with a diameter of 1 cm and length of 10 cm). Such samples would be the first available for scientific inquiry with the potential to definitively answer the fundamental question of astrobiology, and their small volume would necessitate analysis with non- or minimally destructive techniques. Potential biosignatures include 'chemical, isotopic, mineralogical, and morphological features that can be created by life and also appear to be inconsistent with nonbiological processes'[1]. Guidelines for biosignature detection in extraterrestrial samples derive in part from the search for evidence of life in the most ancient sedimentary rocks on Earth, wherein the most compelling case for biogenicity is made when these 'chemical, isotopic, mineralogical, and morphological features' occur in association. Sedimentary rocks deposited on Earth prior to ~3.5 billion years ago (i.e., when persistent surface water [e.g., 2] likely supported habitable environments on Mars) have only very rarely escaped severe alteration by metamorphism and metasomatism. Understanding how these processes have operated on Earth through strategic interrogation of biosignature alteration records in (meta)sedimentary rocks is thus a critical task in the search for extraterrestrial life. Here we present techniques for and results of in situ, spatially resolved, non- or minimally destructive detection of morphological, elemental, molecular, and light stable isotopic biosignatures, as well as records of alteration, in

  7. Time-resolved spatially offset Raman spectroscopy for depth analysis of diffusely scattering layers.

    PubMed

    Iping Petterson, Ingeborg E; Dvořák, Patrick; Buijs, Joost B; Gooijer, Cees; Ariese, Freek

    2010-12-01

    The objective of this study is to use time-resolved (TR) Raman spectroscopy, spatially offset Raman spectroscopy (SORS), and a combination of these approaches to obtain high quality Raman spectra from materials hidden underneath an opaque layer. Both TR Raman and SORS are advanced techniques that allow for an increased relative selectivity of photons from deeper layers within a sample. Time-resolved detection reduces fluorescence background, and the selectivity for the second layer is improved. By combining this with spatially offset excitation we additionally increased selectivity for deeper layers. Test samples were opaque white polymer blocks of several mm thicknesses. Excitation was carried out with a frequency-doubled Ti:sapphire laser at 460 nm, 3 ps pulse width and 76 MHz repetition rate. Detection was either with a continuous-wave CCD camera or in time-resolved mode using an intensified CCD camera with a 250 ps gate width. The Raman photons were collected in backscatter mode, with or without lateral offset. By measuring the delay of the Raman signal from the second layer (polyethylene terephthalate/PET/Arnite), the net photon migration speeds through Teflon, polythene, Delrin and Nylon were determined. Raman spectra could be obtained from a second layer of PET through Teflon layers up to 7 mm of thickness. The ability to obtain chemical information through layers of diffusely scattering materials has powerful potential for biomedical applications.

  8. The Spatially Resolved Bipolar Nebula of Sakurai's Object

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth H.; Joyce, Richard R.

    2014-04-01

    Sakurai's object (V4334 Sgr), the final flash object discovered in the mid-1990s, underwent rapid cooling during the first decade of the 21st century becoming as faint as K ~ 25. This stage of evolution has ceased. Between observations in 2010 September and 2013 April V4334 Sgr brightened >2 mag to K = 14.2 and the effective temperature increased to ~590 K. AO images show a central source and two extended globules defining a 13° position angle. The globules span a spatial extent of ~0.''3 in 2013. This spatial extent is consistent with sizes derived from spectral energy distributions taken over the previous decade and a debris cloud expanding at 0.055 mas d-1 since late 1998. Near-simultaneous 0.85-2.5 μm spectra reveal helium lines attributed to a wind-interaction shock. The He I 1.0830 μm emission has a spectral width of ~1000 km s-1 and a spatial extent of ~1.''4. The helium shell is fragmented, spatially asymmetric, and five times larger than the dust debris cloud. [C I] and [N I] forbidden lines are present in the 1 μm region spectrum. The forbidden line spectrum is similar to that of proto-planetary nebulae. The [C I] 9850 Å line is spatially extended. The expansion velocity and change of angular size limit the distance to 2.1-3.7 kpc.

  9. An in situ sample environment reaction cell for spatially resolved x-ray absorption spectroscopy studies of powders and small structured reactors

    SciTech Connect

    Zhang, Chu; Gustafson, Johan; Merte, Lindsay R.; Evertsson, Jonas; Norén, Katarina; Carlson, Stefan; Svensson, Håkan; Carlsson, Per-Anders

    2015-03-15

    An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 ml{sub n}/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25–500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al{sub 2}O{sub 3} powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al{sub 2}O{sub 3} and 2% Ag − Al{sub 2}O{sub 3} powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al{sub 2}O{sub 3} monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

  10. An in situ sample environment reaction cell for spatially resolved x-ray absorption spectroscopy studies of powders and small structured reactors

    NASA Astrophysics Data System (ADS)

    Zhang, Chu; Gustafson, Johan; Merte, Lindsay R.; Evertsson, Jonas; Norén, Katarina; Carlson, Stefan; Svensson, Hâkan; Carlsson, Per-Anders

    2015-03-01

    An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 mln/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25-500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al2O3 powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al2O3 and 2% Ag - Al2O3 powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al2O3 monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

  11. SPATIALLY RESOLVED SPECTROSCOPY OF SDSS J0952+2552: A CONFIRMED DUAL ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    McGurk, R. C.; Max, C. E.; Rosario, D. J.; Shields, G. A.; Smith, K. L.; Wright, S. A. E-mail: max@ucolick.org E-mail: shieldsga@mail.utexas.edu E-mail: saw@astro.berkeley.edu

    2011-09-01

    Most massive galaxies contain supermassive black holes (SMBHs) in their cores. When galaxies merge, gas is driven to nuclear regions and can accrete onto the central black hole. Thus, one expects to see dual active galactic nuclei (AGNs) in a fraction of galaxy mergers. Candidates for galaxies containing dual AGNs have been identified by the presence of double-peaked narrow [O III] emission lines and by high spatial resolution images of close galaxy pairs. Spatially resolved spectroscopy is needed to confirm these galaxy pairs as systems with spatially separated double SMBHs. With the Keck 2 Laser Guide Star Adaptive Optics system and the OH Suppressing InfraRed Imaging Spectrograph near-infrared integral field spectrograph, we obtained spatially resolved spectra for SDSS J09527.62+255257.2, a radio-quiet quasar shown by previous imaging to consist of a galaxy and its close (1.''0) companion. We find that the main galaxy is a Type 1 AGN with both broad and narrow AGN emission lines in its spectrum, while the companion galaxy is a Type 2 AGN with narrow emission lines only. The two AGNs are separated by 4.8 kpc, and their redshifts correspond to those of the double peaks of the [O III] emission line seen in the Sloan Digital Sky Survey spectrum. Line diagnostics indicate that both components of the double emission lines are due to AGN photoionization. These results confirm that J0952+2552 contains two spatially separated AGNs. As one of the few confirmed dual AGNs at an intermediate separation of <10 kpc, this system offers a unique opportunity to study galaxy mergers and their effect on black hole growth.

  12. Effects of Polytypism on Optical Properties and Band Structure of Individual Ga(N)P Nanowires from Correlative Spatially Resolved Structural and Optical Studies.

    PubMed

    Dobrovolsky, Alexander; Persson, Per O Å; Sukrittanon, Supanee; Kuang, Yanjin; Tu, Charles W; Chen, Weimin M; Buyanova, Irina A

    2015-06-10

    III-V semiconductor nanowires (NWs) have gained significant interest as building blocks in novel nanoscale devices. The one-dimensional (1D) nanostructure architecture allows one to extend band structure engineering beyond quantum confinement effects by utilizing formation of different crystal phases that are thermodynamically unfavorable in bulk materials. It is therefore of crucial importance to understand the influence of variations in the NWs crystal structure on their fundamental physical properties. In this work we investigate effects of structural polytypism on the optical properties of gallium phosphide and GaP/GaNP core/shell NW structures by a correlative investigation on the structural and optical properties of individual NWs. The former is monitored by transmission electron microscopy, whereas the latter is studied via cathodoluminescence (CL) mapping. It is found that structural defects, such as rotational twins in zinc blende (ZB) GaNP, have detrimental effects on light emission intensity at low temperatures by promoting nonradiative recombination processes. On the other hand, formation of the wurtzite (WZ) phase does not notably affect the CL intensity neither in GaP nor in the GaNP alloy. This suggests that zone folding in WZ GaP does not enhance its radiative efficiency, consistent with theoretical predictions. We also show that the change in the lattice structure have negligible effects on the bandgap energies of the GaNP alloys, at least within the range of the investigated nitrogen compositions of <2%. Both WZ and ZB GaNP are found to have a significantly higher efficiency of radiative recombination as compared with that in parental GaP, promising for potential applications of GaNP NWs as efficient nanoscale light emitters within the desirable amber-red spectral range.

  13. Spatial Grouping Resolves Ambiguity to Drive Temporal Recalibration

    ERIC Educational Resources Information Center

    Yarrow, Kielan; Roseboom, Warrick; Arnold, Derek H.

    2011-01-01

    Cross-modal temporal recalibration describes a shift in the point of subjective simultaneity (PSS) between 2 events following repeated exposure to asynchronous cross-modal inputs--the adaptors. Previous research suggested that audiovisual recalibration is insensitive to the spatial relationship between the adaptors. Here we show that audiovisual…

  14. The spatially resolved bipolar nebula of Sakurai's object

    SciTech Connect

    Hinkle, Kenneth H.; Joyce, Richard R. E-mail: rjoyce@noao.edu

    2014-04-20

    Sakurai's object (V4334 Sgr), the final flash object discovered in the mid-1990s, underwent rapid cooling during the first decade of the 21st century becoming as faint as K ∼ 25. This stage of evolution has ceased. Between observations in 2010 September and 2013 April V4334 Sgr brightened >2 mag to K = 14.2 and the effective temperature increased to ∼590 K. AO images show a central source and two extended globules defining a 13° position angle. The globules span a spatial extent of ∼0.''3 in 2013. This spatial extent is consistent with sizes derived from spectral energy distributions taken over the previous decade and a debris cloud expanding at 0.055 mas d{sup –1} since late 1998. Near-simultaneous 0.85-2.5 μm spectra reveal helium lines attributed to a wind-interaction shock. The He I 1.0830 μm emission has a spectral width of ∼1000 km s{sup –1} and a spatial extent of ∼1.''4. The helium shell is fragmented, spatially asymmetric, and five times larger than the dust debris cloud. [C I] and [N I] forbidden lines are present in the 1 μm region spectrum. The forbidden line spectrum is similar to that of proto-planetary nebulae. The [C I] 9850 Å line is spatially extended. The expansion velocity and change of angular size limit the distance to 2.1-3.7 kpc.

  15. Spatially resolved, in situ potential measurements through porous electrodes as applied to fuel cells.

    PubMed

    Hess, Katherine C; Epting, William K; Litster, Shawn

    2011-12-15

    We report the development and use of a microstructured electrode scaffold (MES) to make spatially resolved, in situ, electrolyte potential measurements through the thickness of a polymer electrolyte fuel cell (PEFC) electrode. This new approach uses a microfabricated apparatus to analyze the coupled transport and electrochemical phenomena in porous electrodes at the microscale. In this study, the MES allows the fuel cell to run under near-standard operating conditions, while providing electrolyte potential measurements at discrete distances through the electrode's thickness. Here we use spatial distributions of electrolyte potential to evaluate the effects of Ohmic and mass transport resistances on the through-plane reaction distribution for various operating conditions. Additionally, we use the potential distributions to estimate the ionic conductivity of the electrode. Our results indicate the in situ conductivity is higher than typically estimated for PEFC electrodes based on bulk polymer electrolyte membrane (PEM) conductivity.

  16. Spatially resolved micro-photoluminescence imaging of porphyrin single crystals

    NASA Astrophysics Data System (ADS)

    Marin, Dawn M.; Castaneda, Jose; Kaushal, Meesha; Kaouk, Ghallia; Jones, Daniel S.; Walter, Michael G.

    2016-08-01

    We describe the collection of both time-resolved and steady-state micro-photoluminescence data from solution-grown single crystals of 5,15-bis(4-carbomethoxyphenyl)porphyrin (BCM2PP). Linking molecular orientation and structure with excited-state dynamics is crucial for engineering efficient organic solar cells, light-emitting diodes, and related molecular electronics. Photoluminescence features of single porphyrin crystals were imaged using a laser scanning confocal microscope equipped with time-correlated single photon counting (TCSPC). We show enhanced exciton lifetimes (τs1 = 2.6 ns) and stronger steady-state emission in crystalline BCM2PP samples relative to semicrystalline thin films (τs1 = 1.8 ns).

  17. Spatially resolved SO2 flux emissions from Mt Etna

    NASA Astrophysics Data System (ADS)

    D'Aleo, R.; Bitetto, M.; Delle Donne, D.; Tamburello, G.; Battaglia, A.; Coltelli, M.; Patanè, D.; Prestifilippo, M.; Sciotto, M.; Aiuppa, A.

    2016-07-01

    We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure-fed eruption in the upper Valle del Bove. We demonstrate that our vent-resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive vent gradually vanished on 10 August, marking a switch of degassing toward the NSEC. Onset of degassing at the NSEC was a precursory to explosive paroxysmal activity on 11-15 August.

  18. Mass Spectrometry Based Imaging Techniques for Spatially Resolved Analysis of Molecules

    PubMed Central

    Matros, Andrea; Mock, Hans-Peter

    2013-01-01

    Higher plants are composed of a multitude of tissues with specific functions, reflected by distinct profiles for transcripts, proteins, and metabolites. Comprehensive analysis of metabolites and proteins has advanced tremendously within recent years, and this progress has been driven by the rapid development of sophisticated mass spectrometric techniques. In most of the current “omics”-studies, analysis is performed on whole organ or whole plant extracts, rendering to the loss of spatial information. Mass spectrometry imaging (MSI) techniques have opened a new avenue to obtain information on the spatial distribution of metabolites and of proteins. Pioneered in the field of medicine, the approaches are now applied to study the spatial profiles of molecules in plant systems. A range of different plant organs and tissues have been successfully analyzed by MSI, and patterns of various classes of metabolites from primary and secondary metabolism could be obtained. It can be envisaged that MSI approaches will substantially contribute to build spatially resolved biochemical networks. PMID:23626593

  19. Spatially Resolved Spectroscopy of Submillimeter Galaxies at z ≃ 2

    NASA Astrophysics Data System (ADS)

    Olivares, V.; Treister, E.; Privon, G. C.; Alaghband-Zadeh, S.; Casey, Caitlin M.; Schawinski, K.; Kurczynski, P.; Gawiser, E.; Nagar, N.; Chapman, S.; Bauer, F. E.; Sanders, D.

    2016-08-01

    We present near-infrared integral-field spectroscopic observations targeting Hα in eight submillimeter galaxies (SMGs) at z = 1.3-2.5 using the Very Large Telescope/Spectrograph for Integral Field Observations in the Near Infrared, obtaining significant detections for six of them. The star formation rates derived from the Hα emission are ˜100 M ⊙ yr-1, which account for only ˜20%-30% of the infrared-derived values, thus suggesting that these systems are very dusty. Two of these systems present [N ii]/Hα ratios indicative of the presence of an active galactic nucleus. We mapped the spatial distribution and kinematics of the star-forming regions in these galaxies on kiloparsec scales. In general, the Hα morphologies tend to be highly irregular and/or clumpy, showing spatial extents of ˜3-11 kpc. We find evidence for significant spatial offsets, of ˜0.″1-0.″4 or 1.2-3.4 kpc, between the Hα and the continuum emission in three of the sources. Performing a kinemetry analysis, we conclude that the majority of the sample is not consistent with disk-like rotation-dominated kinematics. Instead, they tend to show irregular and/or clumpy and turbulent velocity and velocity dispersion fields. This can be interpreted as evidence for a scenario in which these extreme star formation episodes are triggered by galaxy-galaxy interactions and major mergers. In contrast to recent results for SMGs, these sources appear to follow the same relations between gas and star-forming rate densities as less luminous and/or normal star-forming galaxies. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.A-0452 and 090.A-0464.

  20. Tunable optical microwave source using spatially resolved laser eigenstates.

    PubMed

    Brunel, M; Bretenaker, F; Le Floch, A

    1997-03-15

    A two-propagation-axis solid-state laser is shown to provide a widely tunable optical microwave source. The spatial separation of the laser eigenstates is shown to enable an étalon to act as a coarse tuner, forcing oscillation in any nonadjacent cavity modes. The frequency difference between opposite helicoidal eigenstates operating in nonadjacent cavity modes can then be tuned continuously. The beat note from such a solid-state laser is shown to vary from dc to 26 GHz, i.e., 30 times the laser free-spectral range, and is limited only by the free-spectral range of the étalon.

  1. Spatially resolved SO2 flux emissions from Mt Etna

    PubMed Central

    Bitetto, M.; Delle Donne, D.; Tamburello, G.; Battaglia, A.; Coltelli, M.; Patanè, D.; Prestifilippo, M.; Sciotto, M.; Aiuppa, A.

    2016-01-01

    Abstract We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure‐fed eruption in the upper Valle del Bove. We demonstrate that our vent‐resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive vent gradually vanished on 10 August, marking a switch of degassing toward the NSEC. Onset of degassing at the NSEC was a precursory to explosive paroxysmal activity on 11–15 August. PMID:27773952

  2. Spatially resolved photoresponse on individual ZnO nanorods: correlating morphology, defects and conductivity.

    PubMed

    Bandopadhyay, K; Mitra, J

    2016-01-01

    Electrically active native point defects have a significant impact on the optical and electrical properties of ZnO nanostructures. Control of defect distribution and a detailed understanding of their physical properties are central to designing ZnO in novel functional forms and architecture, which ultimately decides device performance. Defect control is primarily achieved by either engineering nanostructure morphology by tailoring growth techniques or doping. Here, we report conducting atomic force microscopy studies of spatially resolved photoresponse properties on ZnO nanorod surfaces. The photoresponse for super-band gap, ultraviolet excitations show a direct correlation between surface morphology and photoactivity localization. Additionally, the system exhibits significant photoresponse with sub-bandgap, green illumination; the signature energy associated with the deep level oxygen vacancy states. While the local current-voltage characteristics provide evidence of multiple transport processes and quantifies the photoresponse, the local time-resolved photoresponse data evidences large variations in response times (90 ms-50 s), across the surface of a nanorod. The spatially varied photoconductance and the range in temporal response display a complex interplay of morphology, defects and connectivity that brings about the true colour of these ZnO nanostructures. PMID:27334573

  3. Spatially resolved photoresponse on individual ZnO nanorods: correlating morphology, defects and conductivity

    NASA Astrophysics Data System (ADS)

    Bandopadhyay, K.; Mitra, J.

    2016-06-01

    Electrically active native point defects have a significant impact on the optical and electrical properties of ZnO nanostructures. Control of defect distribution and a detailed understanding of their physical properties are central to designing ZnO in novel functional forms and architecture, which ultimately decides device performance. Defect control is primarily achieved by either engineering nanostructure morphology by tailoring growth techniques or doping. Here, we report conducting atomic force microscopy studies of spatially resolved photoresponse properties on ZnO nanorod surfaces. The photoresponse for super-band gap, ultraviolet excitations show a direct correlation between surface morphology and photoactivity localization. Additionally, the system exhibits significant photoresponse with sub-bandgap, green illumination; the signature energy associated with the deep level oxygen vacancy states. While the local current-voltage characteristics provide evidence of multiple transport processes and quantifies the photoresponse, the local time-resolved photoresponse data evidences large variations in response times (90 ms-50 s), across the surface of a nanorod. The spatially varied photoconductance and the range in temporal response display a complex interplay of morphology, defects and connectivity that brings about the true colour of these ZnO nanostructures.

  4. Spatially resolved photoresponse on individual ZnO nanorods: correlating morphology, defects and conductivity

    PubMed Central

    Bandopadhyay, K.; Mitra, J.

    2016-01-01

    Electrically active native point defects have a significant impact on the optical and electrical properties of ZnO nanostructures. Control of defect distribution and a detailed understanding of their physical properties are central to designing ZnO in novel functional forms and architecture, which ultimately decides device performance. Defect control is primarily achieved by either engineering nanostructure morphology by tailoring growth techniques or doping. Here, we report conducting atomic force microscopy studies of spatially resolved photoresponse properties on ZnO nanorod surfaces. The photoresponse for super-band gap, ultraviolet excitations show a direct correlation between surface morphology and photoactivity localization. Additionally, the system exhibits significant photoresponse with sub-bandgap, green illumination; the signature energy associated with the deep level oxygen vacancy states. While the local current-voltage characteristics provide evidence of multiple transport processes and quantifies the photoresponse, the local time-resolved photoresponse data evidences large variations in response times (90 ms–50 s), across the surface of a nanorod. The spatially varied photoconductance and the range in temporal response display a complex interplay of morphology, defects and connectivity that brings about the true colour of these ZnO nanostructures. PMID:27334573

  5. Mode resolved bend-loss analysis in few-mode fibers using spatially and spectrally resolved imaging.

    PubMed

    Leandro, Lorenzo; Grüner-Nielsen, Lars; Rottwitt, Karsten

    2015-10-15

    The increasing use of few-mode fibers for high-speed optical communication systems in space division multiplexing has created a need for mode resolved characterization of few-mode fibers. In this Letter, we present a new method to characterize the bend loss of the individual modes in a few-mode fiber. This procedure uses a simple setup for spatially and spectrally resolved imaging and allows the measurement of the bend loss of each and every guided mode at once. It does not require the use of mode converters in contrast to other methods. Results for graded-index two- and four-mode fibers are presented, together with comparisons against direct bend-loss measurements for the four-mode and standard single-mode fibers.

  6. Spatially resolved organic analysis of the allende meteorite.

    PubMed

    Zenobi, R; Philippoz, J M; Zare, R N; Buseck, P R

    1989-11-24

    The distribution of polycyclic aromatic hydrocarbons(PAHs) in the Allende meteorite has been probed with two-step laser desorption/laser multiphoton ionization mass spectrometry. This method allows direct in situ analysis with a spatial resolution of 1 square millimeter or better of selected organic molecules. Spectra from freshly fractured interior surfaces of the meteorite show that PAH concentrations are locally high compared to the average concentrations found by wet chemical analysis of pulverized samples. The data suggest that the PAHs are primarily associated with the fine-grained matrix, where the organic polymer occurs. In addition, highly substituted PAH skeletons were observed. Interiors of individual chondrules were devoid of PAHs at our detection limit(about 0.05 parts per million).

  7. Spatially resolved flamelet statistics for reaction rate modeling

    SciTech Connect

    Chew, T.C.; Bray, K.N.C.; Britter, R.E. . Dept. of Engineering)

    1990-04-01

    Using two-dimensional laser sheet tomography of Bunsen flames, important spatial statistics relating to premixed turbulent combustion modeling are measured. The integral length scale of flame wrinkling, evaluated along contours of reaction progress variable ({bar {ital c}}), is found to be almost constant for all values of {bar {ital c}}. Its magnitude is measured to be very close to the integral length scale in the unreacted turbulent flow. The flamelet crossing angle distribution in the plane of visualization is found to vary along a {bar {ital c}} contour reflecting the nonhomogeneity in the flame, but the overall distributions for different {bar {ital c}} values are approximately the same. The overall mean cosine value is found to be very close to 0.5. Other parameters of interest, including {bar {ital c}} contours, flamelet crossing lengths, and crossing frequencies, are also examined.

  8. Spatially resolved organic analysis of the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Zenobi, Renato; Philippoz, Jean-Michel; Zare, Richard N.; Buseck, Peter R.

    1989-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in the Allende meteorite has been probed with two-step laser desorption/laser multiphoton ionization mass spectrometry. This method allows direct in situ analysis with a spatial resolution of 1 sq mm or better of selected organic molecules. Spectra from freshly fractured interior surfaces of the meteorite show that PAH concentrations are locally high compared to the average concentrations found by wet chemical analysis of pulverized samples. The data suggest that the PAHs are primarily associated with the fine-grained matrix, where the organic polymer occurs. In addition, highly substituted PAH skeletons were observed. Interiors of individual chondrules were devoid of PAHs at the detection limit (about 0.05 ppm).

  9. Spatially resolved spectrophotometry of Comet P/Stephan-Oterma

    NASA Technical Reports Server (NTRS)

    Cochran, A. L.; Barker, E. S.

    1985-01-01

    Observations of Comet P/Stephan-Oterma were made with an Intensified Dissector Scanner spectrograph on the McDonald Observatory 2.7-m telescope during the period from July 1980 to February 1981. These spectra cover a range of heliocentric distances from 2.3 AU preperihelion to 1.8 AU postperihelion. A small aperture was used to map the spatial distributions of the gases in the coma. Column densities of the observed cometary emissions (CN, C3, CH, and C2) were calculated, and it is shown that Stephan-Oterma appeared nearly spherically symmetric. These date are used by Cochran (1985) to constrain chemical models of Stephan-Oterma.

  10. Spatially-resolved, three-dimensional spray characterization of impinging jets by digital in-line holography

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Rodrigues, Neil; Sojka, Paul; Chen, Jun

    2014-11-01

    The impinging jet injector is a preferred method for the atomization of liquid rocket propellants. The majority of experimental studies in literature are not spatially-resolved due to the limitations of widely available point-wise and two-dimensional (2D) diagnostic techniques such as phase Doppler anemometry (PDA), which requires significant experimental repetitions to give spatially-resolved measurements. In the present study, digital in-line holography (DIH) is used to provide spatially-resolved, three-dimensional (3D) characteristics of impinging jet sprays. A double-exposure DIH setup is configured to measure droplet 3D, three-component velocity as well as the size distribution. The particle information is extracted by the hybrid method, which is recently proposed as a particle detection method. To enlarge the detection volume, two parallel, collimated laser beams are used to simultaneously probe the spray at two locations, and two identical cameras are used to record the corresponding holograms. Such a setup has a detection volume of approximately 20 cm by 3.6 cm by 4.8 cm. Sprays of both Newtonian and non-Newtonian liquids corresponding to regimes at relatively lower jet Reynolds and Weber numbers are investigated. Measurements from DIH are further verified by comparison with experimental data obtained from shadowgraph and PDA. It is revealed that DIH is particularly suitable to provide spatially-resolved, 3D measurements of impinging jet sprays that are not particularly dense.

  11. Spatially Resolved Atomic and Molecular Spectroscopy in Microelectronics Processing Plasmas

    SciTech Connect

    Hebner, G.A.

    1998-10-14

    Plasma processing of microelectronic materials is strongly dependent on the generation and control of neutral radial and ion species generated in a plasma. For example, process uniformity across a #er is drken by a combination of plasma charged particle and neutral uniformity. Due to extensive rexarch and engineering the current generation of commercial plasma reactors can generate very radially uniform ion distributions, usually better than ~ 2 perwnt as determined by ion saturation measurements. Due in part to the difficulty associated with determining the neutral radial distributions, control of the neutral radical uniformity is less well developed. This abstract will review our recent measurements of the spatial distribution of severaI important atomic and molecukw species in inductively coupled plasmas through C12 / BCIJ / Ar containing gas mixtures. Measured species include the ground state Cl and BC1 densities as well as the metastable argon density. The fbeus of this review will be on the experimental techniques and results. In addition to assisting in the development of a fbndarnental understanding of the important pkunna physics, these measurements have been used to benchmark multi dimensional plasma discharge codes.

  12. Spatially-resolved intracellular sensing of hydrogen peroxide in living cells.

    PubMed

    Warren, Emilie A K; Netterfield, Tatiana S; Sarkar, Saheli; Kemp, Melissa L; Payne, Christine K

    2015-11-20

    Understanding intracellular redox chemistry requires new tools for the site-specific visualization of intracellular oxidation. We have developed a spatially-resolved intracellular sensor of hydrogen peroxide, HyPer-Tau, for time-resolved imaging in live cells. This sensor consists of a hydrogen peroxide-sensing protein tethered to microtubules. We demonstrate the use of the HyPer-Tau sensor for three applications; dose-dependent response of human cells to exogenous hydrogen peroxide, a model immune response of mouse macrophages to stimulation by bacterial toxin, and a spatially-resolved response to localized delivery of hydrogen peroxide. These results demonstrate that HyPer-Tau can be used as an effective tool for tracking changes in spatially localized intracellular hydrogen peroxide and for future applications in redox signaling.

  13. Unbiased Clustering of Molecular Dynamics for Spatially Resolved Analysis of Chemically Heterogeneous Surfaces.

    PubMed

    Nelson, Nathaniel; Schwartz, Daniel K

    2015-06-01

    A technique is described for resolving and interpreting molecular interactions with a chemically heterogeneous surface. Using total internal reflection fluorescence microscopy, dynamic single molecule trajectories were accumulated simultaneously for fluorescently labeled fatty acid (interacting primarily via hydrophobic interactions) and dextran (interacting via hydrogen-bonding interactions) probe molecules at the interface between an aqueous solvent and a photopatterned solid surface with distinct regions of amine-terminated and poly(ethylene glycol) self-assembled monolayers. Using dynamic properties of the probe molecules (adsorption rate, surface diffusion coefficient, residence time), an unsupervised Gaussian mixture model algorithm was used to identify areas of the surface that were chemically related to each other, and the dynamic behaviors of the probe molecules were studied statistically on these distinct regions. The dynamic data were compared to data from homogeneous surfaces of known chemistry to provide a chemical identification of each location on the surface. Spatial maps were also constructed, allowing for spatial visualization of surface chemistry on a hydrophilic substrate. This work enables the direct study of interactions between single-molecule probes and distinct surface chemistries, even in the presence of spatial heterogeneity, without human bias, assumptions about surface structure, or model-dependent analysis.

  14. Spatially resolvable optical emission spectrometer for analyzing density uniformity of semiconductor process plasma

    SciTech Connect

    Oh, Changhoon; Ryoo, Hoonchul; Lee, Hyungwoo; Hahn, Jae W.; Kim, Se-Yeon; Yi, Hun-Jung

    2010-10-15

    We proposed a spatially resolved optical emission spectrometer (SROES) for analyzing the uniformity of plasma density for semiconductor processes. To enhance the spatial resolution of the SROES, we constructed a SROES system using a series of lenses, apertures, and pinholes. We calculated the spatial resolution of the SROES for the variation of pinhole size, and our calculated results were in good agreement with the measured spatial variation of the constructed SROES. The performance of the SROES was also verified by detecting the correlation between the distribution of a fluorine radical in inductively coupled plasma etch process and the etch rate of a SiO{sub 2} film on a silicon wafer.

  15. Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Paliwal, Umed; Sharma, Mukesh; Burkhart, John F.

    2016-10-01

    Black carbon (BC) emissions from India for the year 2011 are estimated to be 901.11 ± 151.56 Gg yr-1 based on a new ground-up, GIS-based inventory. The grid-based, spatially resolved emission inventory includes, in addition to conventional sources, emissions from kerosene lamps, forest fires, diesel-powered irrigation pumps and electricity generators at mobile towers. The emissions have been estimated at district level and were spatially distributed onto grids at a resolution of 40 × 40 km2. The uncertainty in emissions has been estimated using a Monte Carlo simulation by considering the variability in activity data and emission factors. Monthly variation of BC emissions has also been estimated to account for the seasonal variability. To the total BC emissions, domestic fuels contributed most significantly (47 %), followed by industry (22 %), transport (17 %), open burning (12 %) and others (2 %). The spatial and seasonal resolution of the inventory will be useful for modeling BC transport in the atmosphere for air quality, global warming and other process-level studies that require greater temporal resolution than traditional inventories.

  16. Spatially resolved quantification of organic matter in synthetic organo-mineral associations by NanoSIMS

    NASA Astrophysics Data System (ADS)

    Schurig, Christian; Schrank, Thomas; Müller, Carsten W.; Pohl, Lydia; Höschen, Carmen; Totsche, Kai-Uwe; Kögel-Knabner, Ingrid

    2016-04-01

    Soil structure is resulting from soil forming processes at the molecular scale, but has feedbacks on soil functions on macroscopic or even global scales. In this framework, soil organic matter (SOM) is of special importance as a gluing agent for soil structure, besides being a carbon sink. Conventional bulk-scale analyses allows for quantification and for a characterisation of the chemical bonding types of OM. However, all information of the spatial distribution of OM on the relevant scale of few nano- to micrometres is lost during this kind of analyses. While nano-scale secondary ion mass-spectroscopy (NanoSIMS) delivers qualitative data on the spatial distribution of SOM at the nano-scale, receiving quantitative data from this method remains challenging due to matrix and charging effects. In order to overcome this problem, the aim of this study was to develop scaling factors between conventional bulk-scale methods and NanoSIMS. For developing these factors, dissolved organic matter (DOM) was extracted from organic material, which was sampled from a podzol. Subsequently, model minerals, such as boehmite and illite, were loaded with defined amounts of this DOM by means of sorption experiments. After the end of the experiments the liquid and solid phases were divided by means of centrifugation and the solid phase was subjected to freeze drying. Carbon and nitrogen content of the solid and liquid phases were measured via C/N and TOC analyses, respectively. The measured data was fitted with Freundlich-type adsorption isotherms. Samples for NanoSIMS analyses were distributed onto silicon wafers as individual particles. The following elements were analysed: C, N, O, Si, S and Al. Spatially resolved analysis of the NanoSIMS data yielded a increased detection of SOM on the minerals in higher concentration steps. Linear relationships with high correlation and low deviation were found when comparing the spatially resolved NanoSIMS data with the bulk scale methods. The

  17. Spatially resolved modal spectroscopy of Er:Yb doped multifilament-core fiber amplifier.

    PubMed

    Le Gouët, Julien; Delaporte, Julien; Lombard, Laurent; Canat, Guillaume

    2012-02-27

    The spatially resolved spectral (S2) imaging method is applied on an active microstructured fiber, with a multi-filament core (MFC). This type of fiber has been designed to be the last amplifying stage of a source for a long range coherent lidar. Studying the influence of the bending radius on the modal content with or without gain, we demonstrate that an upper-bound of the high-order modes content can be found by performing the S2 imaging on the bleached fiber. S2 imaging is then used to verify that the output beam of the MFC fiber can be made effectively single-mode. We also show that it can be simply adapted for measuring the fiber birefringence. Finally, a comparison of the MFC fiber mode area with that of a standard large mode area Erbium doped step index fiber illustrates the interest of the MFC structure for high power amplifiers.

  18. Imaging buried organic islands by spatially resolved ballistic electron emission spectroscopy.

    PubMed

    Goh, Kuan Eng J; Bannani, A; Troadec, C

    2008-11-01

    The well-known Au/n-Si(111) Schottky interface is modified by a discontinuous pentacene film (∼1.5 nm thick) and studied using spatially resolved ballistic electron emission spectroscopy (BEES). The pentacene film introduced subtle changes to the interface which cannot be definitively detected by current-voltage measurements or a standard BEES analysis of the barrier height. In contrast, analyzing the BEES results in a dual-parameter (transmission attenuation and barrier height) space allows the effect of the pentacene film on the Au/n-Si(111) interface to be clearly demonstrated. We found that the pentacene film behaves like a tunneling barrier and increases the distribution of local barrier heights with a tendency toward lower values. Our results highlight the potential of the dual-parameter BEES analysis for understanding local interface modification by molecules.

  19. Spatially resolved modal spectroscopy of Er:Yb doped multifilament-core fiber amplifier.

    PubMed

    Le Gouët, Julien; Delaporte, Julien; Lombard, Laurent; Canat, Guillaume

    2012-02-27

    The spatially resolved spectral (S2) imaging method is applied on an active microstructured fiber, with a multi-filament core (MFC). This type of fiber has been designed to be the last amplifying stage of a source for a long range coherent lidar. Studying the influence of the bending radius on the modal content with or without gain, we demonstrate that an upper-bound of the high-order modes content can be found by performing the S2 imaging on the bleached fiber. S2 imaging is then used to verify that the output beam of the MFC fiber can be made effectively single-mode. We also show that it can be simply adapted for measuring the fiber birefringence. Finally, a comparison of the MFC fiber mode area with that of a standard large mode area Erbium doped step index fiber illustrates the interest of the MFC structure for high power amplifiers. PMID:22418363

  20. Spatially Resolved Eastward Winds and Rotation of HD 189733b

    NASA Astrophysics Data System (ADS)

    Louden, Tom; Wheatley, Peter J.

    2015-12-01

    We measure wind velocities on opposite sides of the hot Jupiter HD 189733b by modeling sodium absorption in high-resolution transmission spectra from the High Accuracy Radial Velocity Planet Searcher. Our model implicitly accounts for the Rossiter-McLaughlin effect, which we show can explain the high wind velocities suggested by previous studies. Our results reveal a strong eastward motion of the atmosphere of HD 189733b, with a redshift of {2.3}-1.5+1.3 km s-1 on the leading limb of the planet and a blueshift of {5.3}-1.4+1.0 km s-1 on the trailing limb. These velocities can be understood as a combination of tidally locked planetary rotation and an eastward equatorial jet, closely matching the predictions of atmospheric circulation models. Our results show that the sodium absorption of HD 189733b is intrinsically velocity broadened, so previous studies of the average transmission spectrum are likely to have overestimated the role of pressure and thermal broadening.

  1. Spatially resolved nanoscale observations of soil carbon multidecadal persistence

    NASA Astrophysics Data System (ADS)

    Lutfalla, S.; Chenu, C.; Bernard, S.; Le Guillou, C.; Barré, P.

    2015-12-01

    Assessing how mineral surfaces, especially at small scale, can protect soil organic carbon (SOC) from biodegradation is crucial. The question we address in this work is whether different mineral species lead to different organo-mineral interactions and stabilize different quantities of SOM and different types of SOC. Here we used the unique opportunity offered by long term bare fallows (BF) to study in situ C dynamics in several fine fractions of a silty loam soil. With no vegetation i.e. no external input of fresh C, the plant-free soil of the Versailles 42 Plots (INRA, France) has been progressively enriched in persistent SOC during the 80 years of BF. Contrasted mineral phases of the clay size fraction were isolated by size fractionation on samples from 5 different dates (0, 10, 22, 52, and 79 years after the beginning of the BF, four field replicates per date). Four fractions were studied: total clays (< 2 μm), and three sub fractions in the clay (fine clay: 0 - 0.05 μm, intermediate clay: 0.05 - 0.2 μm, and coarse clay: 0.2 - 2 μm). X-ray diffraction analyses showed contrasted mineralogies in the fine and intermediate clay (smectite and mixed layered illite/smectite) as opposed to the coarse clay (smectite, illite, kaolinite and mixed layered I/S). We performed CHN elemental analysis and synchrotron based spectroscopy and microscopy (NEXAFS bulk and STXM at the carbon K edge of 280 eV, CLS Saskatoon, Canada) to study the dynamics, the distribution and the chemical speciation of the SOC in these fractions. The quantity of C appears to be stabilized after 50 years of BF, even though the dynamics are different for the three clay fractions. Indeed, coarse and intermediate clays have the same final C content but coarse clays lose more C. Fine clay experiences the highest C losses and displays the highest final C content suggesting that fine clays contained more labile C and more persistent C. In all fractions, C:N ratios are really low (below 8) and are

  2. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    PubMed

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  3. Spatially resolved determination of thermal conductivity by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Stoib, B.; Filser, S.; Stötzel, J.; Greppmair, A.; Petermann, N.; Wiggers, H.; Schierning, G.; Stutzmann, M.; Brandt, M. S.

    2014-12-01

    We review the Raman shift method as a non-destructive optical tool to investigate the thermal conductivity and demonstrate the possibility to map this quantity with a micrometer resolution by studying thin film and bulk materials for thermoelectric applications. In this method, a focused laser beam both thermally excites a sample and undergoes Raman scattering at the excitation spot. The temperature dependence of the phonon energies measured is used as a local thermometer. We discuss that the temperature measured is an effective one and describe how the thermal conductivity is deduced from single temperature measurements to full temperature maps, with the help of analytical or numerical treatments of heat diffusion. We validate the method and its analysis on three- and two-dimensional single crystalline samples before applying it to more complex Si-based materials. A suspended thin mesoporous film of phosphorus-doped laser-sintered S{{i}78}G{{e}22} nanoparticles is investigated to extract the in-plane thermal conductivity from the effective temperatures, measured as a function of the distance to the heat sink. Using an iterative multigrid Gauss-Seidel algorithm the experimental data can be modelled yielding a thermal conductivity of 0.1 W/m K after normalizing by the porosity. As a second application we map the surface of a phosphorus-doped three-dimensional bulk-nanocrystalline Si sample which exhibits anisotropic and oxygen-rich precipitates. Thermal conductivities as low as 11 W/m K are found in the regions of the precipitates, significantly lower than the 17 W/m K in the surrounding matrix. The present work serves as a basis to more routinely use the Raman shift method as a versatile tool for thermal conductivity investigations, both for samples with high and low thermal conductivity and in a variety of geometries.

  4. Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy

    NASA Astrophysics Data System (ADS)

    Hillman, Timothy R.; Alexandrov, Sergey A.; Gutzler, Thomas; Sampson, David D.

    2006-11-01

    We utilize Fourier-holographic light scattering angular spectroscopy to record the spatially resolved complex angular scattering spectra of samples over wide fields of view in a single or few image captures. Without resolving individual scatterers, we are able to generate spatially-resolved particle size maps for samples composed of spherical scatterers, by comparing generated spectra with Mie-theory predictions. We present a theoretical discussion of the fundamental principles of our technique and, in addition to the sphere samples, apply it experimentally to a biological sample which comprises red blood cells. Our method could possibly represent an efficient alternative to the time-consuming and laborious conventional procedure in light microscopy of image tiling and inspection, for the characterization of microscopic morphology over wide fields of view.

  5. Spatially-resolved spectroscopic technique for measuring optical properties of food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantification of optical properties is important to understand light interaction with biological materials, and to develop effective optical sensing techniques for property characterization and quality measurement of food products. This chapter reviews spatially-resolved method, with the focus on f...

  6. An interferometric study of the post-AGB binary 89 Herculis. I. Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array

    NASA Astrophysics Data System (ADS)

    Hillen, M.; Verhoelst, T.; Van Winckel, H.; Chesneau, O.; Hummel, C. A.; Monnier, J. D.; Farrington, C.; Tycner, C.; Mourard, D.; ten Brummelaar, T.; Banerjee, D. P. K.; Zavala, R. T.

    2013-11-01

    Context. Binary post-asymptotic giant branch (post-AGB) stars are interesting laboratories to study both the evolution of binaries as well as the structure of circumstellar disks. Aims: A multiwavelength high angular resolution study of the prototypical object 89 Herculis is performed with the aim of identifying and locating the different emission components seen in the spectral energy distribution. Methods: A large interferometric data set, collected over the past decade and covering optical and near-infrared wavelengths, is analyzed in combination with the spectral energy distribution and flux-calibrated optical spectra. In this first paper only simple geometric models are applied to fit the interferometric data. Combining the interferometric constraints with the photometry and the optical spectra, we re-assess the energy budget of the post-AGB star and its circumstellar environment. Results: We report the first (direct) detection of a large (35-40%) optical circumstellar flux contribution and spatially resolve its emission region. Given this large amount of reprocessed and/or redistributed optical light, the fitted size of the emission region is rather compact and fits with(in) the inner rim of the circumbinary dust disk. This rim dominates our K band data through thermal emission and is rather compact, emitting significantly already at a radius of twice the orbital separation. We interpret the circumstellar optical flux as due to a scattering process, with the scatterers located in the extremely puffed-up inner rim of the disk and possibly also in a bipolar outflow seen pole-on. A non-local thermodynamic equilibrium gaseous origin in an inner disk cannot be excluded but is considered highly unlikely. Conclusions: This direct detection of a significant amount of circumbinary light at optical wavelengths poses several significant questions regarding our understanding of both post-AGB binaries and the physics in their circumbinary disks. Although the

  7. Spatially Resolved Mapping of Disorder Type and Distribution in Random Systems using Artificial Neural Network Recognition

    SciTech Connect

    Jesse, Stephen; Kalinin, Sergei V; Kumar, Amit; Ovchinnikov, Oleg S; Guo, Senli; Griggio, Flavio; Trolier-Mckinstry, Susan E

    2011-01-01

    The spatial variability of the polarization dynamics in thin film ferroelectric capacitors was probed by recognition analysis of spatially-resolved spectroscopic data. Switching spectroscopy piezoresponse force microscopy was used to measure local hysteresis loops and map them on a 2D random-bond, random-field Ising model. A neural-network based recognition approach was utilized to analyze the hysteresis loops and their spatial variability. Strong variability is observed in the polarization dynamics around macroscopic cracks due to the modified local elastic and electric boundary conditions, with most pronounced effect on the length scale of ~100 nm away from the crack.

  8. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    DOE PAGES

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-07-08

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with ~100 μm resolution) distribution of some microstructure properties, such as residual strain,more » texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. Additionally, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.« less

  9. Geocoding large population-level administrative datasets at highly resolved spatial scales

    PubMed Central

    Edwards, Sharon E.; Strauss, Benjamin; Miranda, Marie Lynn

    2014-01-01

    Using geographic information systems to link administrative databases with demographic, social, and environmental data allows researchers to use spatial approaches to explore relationships between exposures and health. Traditionally, spatial analysis in public health has focused on the county, zip code, or tract level because of limitations to geocoding at highly resolved scales. Using 2005 birth and death data from North Carolina, we examine our ability to geocode population-level datasets at three spatial resolutions – zip code, street, and parcel. We achieve high geocoding rates at all three resolutions, with statewide street geocoding rates of 88.0% for births and 93.2% for deaths. We observe differences in geocoding rates across demographics and health outcomes, with lower geocoding rates in disadvantaged populations and the most dramatic differences occurring across the urban-rural spectrum. Our results suggest highly resolved spatial data architectures for population-level datasets are viable through geocoding individual street addresses. We recommend routinely geocoding administrative datasets to the highest spatial resolution feasible, allowing public health researchers to choose the spatial resolution used in analysis based on an understanding of the spatial dimensions of the health outcomes and exposures being investigated. Such research, however, must acknowledge how disparate geocoding success across subpopulations may affect findings. PMID:25383017

  10. Spatially resolved TiOx phases in switched RRAM devices using soft X-ray spectromicroscopy

    NASA Astrophysics Data System (ADS)

    Carta, D.; Hitchcock, A. P.; Guttmann, P.; Regoutz, A.; Khiat, A.; Serb, A.; Gupta, I.; Prodromakis, T.

    2016-02-01

    Reduction in metal-oxide thin films has been suggested as the key mechanism responsible for forming conductive phases within solid-state memory devices, enabling their resistive switching capacity. The quantitative spatial identification of such conductive regions is a daunting task, particularly for metal-oxides capable of exhibiting multiple phases as in the case of TiOx. Here, we spatially resolve and chemically characterize distinct TiOx phases in localized regions of a TiOx–based memristive device by combining full-field transmission X-ray microscopy with soft X-ray spectroscopic analysis that is performed on lamella samples. We particularly show that electrically pre-switched devices in low-resistive states comprise reduced disordered phases with O/Ti ratios around 1.37 that aggregate in a ~100 nm highly localized region electrically conducting the top and bottom electrodes of the devices. We have also identified crystalline rutile and orthorhombic-like TiO2 phases in the region adjacent to the main reduced area, suggesting that the temperature increases locally up to 1000 K, validating the role of Joule heating in resistive switching. Contrary to previous studies, our approach enables to simultaneously investigate morphological and chemical changes in a quantitative manner without incurring difficulties imposed by interpretation of electron diffraction patterns acquired via conventional electron microscopy techniques.

  11. Spatially resolved TiOx phases in switched RRAM devices using soft X-ray spectromicroscopy.

    PubMed

    Carta, D; Hitchcock, A P; Guttmann, P; Regoutz, A; Khiat, A; Serb, A; Gupta, I; Prodromakis, T

    2016-01-01

    Reduction in metal-oxide thin films has been suggested as the key mechanism responsible for forming conductive phases within solid-state memory devices, enabling their resistive switching capacity. The quantitative spatial identification of such conductive regions is a daunting task, particularly for metal-oxides capable of exhibiting multiple phases as in the case of TiOx. Here, we spatially resolve and chemically characterize distinct TiOx phases in localized regions of a TiOx-based memristive device by combining full-field transmission X-ray microscopy with soft X-ray spectroscopic analysis that is performed on lamella samples. We particularly show that electrically pre-switched devices in low-resistive states comprise reduced disordered phases with O/Ti ratios around 1.37 that aggregate in a ~100 nm highly localized region electrically conducting the top and bottom electrodes of the devices. We have also identified crystalline rutile and orthorhombic-like TiO2 phases in the region adjacent to the main reduced area, suggesting that the temperature increases locally up to 1000 K, validating the role of Joule heating in resistive switching. Contrary to previous studies, our approach enables to simultaneously investigate morphological and chemical changes in a quantitative manner without incurring difficulties imposed by interpretation of electron diffraction patterns acquired via conventional electron microscopy techniques. PMID:26891776

  12. Spatially resolved TiOx phases in switched RRAM devices using soft X-ray spectromicroscopy

    PubMed Central

    Carta, D.; Hitchcock, A. P.; Guttmann, P.; Regoutz, A.; Khiat, A.; Serb, A.; Gupta, I.; Prodromakis, T.

    2016-01-01

    Reduction in metal-oxide thin films has been suggested as the key mechanism responsible for forming conductive phases within solid-state memory devices, enabling their resistive switching capacity. The quantitative spatial identification of such conductive regions is a daunting task, particularly for metal-oxides capable of exhibiting multiple phases as in the case of TiOx. Here, we spatially resolve and chemically characterize distinct TiOx phases in localized regions of a TiOx–based memristive device by combining full-field transmission X-ray microscopy with soft X-ray spectroscopic analysis that is performed on lamella samples. We particularly show that electrically pre-switched devices in low-resistive states comprise reduced disordered phases with O/Ti ratios around 1.37 that aggregate in a ~100 nm highly localized region electrically conducting the top and bottom electrodes of the devices. We have also identified crystalline rutile and orthorhombic-like TiO2 phases in the region adjacent to the main reduced area, suggesting that the temperature increases locally up to 1000 K, validating the role of Joule heating in resistive switching. Contrary to previous studies, our approach enables to simultaneously investigate morphological and chemical changes in a quantitative manner without incurring difficulties imposed by interpretation of electron diffraction patterns acquired via conventional electron microscopy techniques. PMID:26891776

  13. Analyzing Spatially Resolved Z-pinch Spectra to Determine the Nature of ``Bright Spots''*

    NASA Astrophysics Data System (ADS)

    Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.; Ampleford, D. J.; Jones, B.; Coverdale, C. A.

    2011-10-01

    Wire array Z-pinch implosions which access the K-shell stages of their load elements are usually characterized by spatially nonuniform emission. But, is the existence of the ``bright spots'' due to density enhancement, higher temperature, or some combination of the two? Does the answer vary with atomic number of the load? To investigate this issue we have analyzed spatially resolved spectra from Cu and Al pinches driven by the Z generator. Correlation studies and regression analyses from the derived conditions are employed in order to infer the cause(s) of the local enhancements of K-shell powers. Work supported by U. S. Department of Energy, National Nuclear Security Administration. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's NNSA under contract DE-AC04-94AL85000. JPA is a consultant to NRL through L3 Communications, Chantilly, VA 20151.

  14. Quantifying Star Formation in Early-Type Galaxies using Spatially-Resolved UV-Optical Photometry

    NASA Astrophysics Data System (ADS)

    Kaviraj, Sugata

    2013-01-01

    Our understanding of star formation in nearby early-type galaxies (ETGs) has evolved rapidly in recent years, due to new UV data from GALEX and HST. Contrary to the classical notion of them being old, passively-evolving systems, recent work has demonstrated widespread late-epoch star formation in ETGs, which builds ~20% of their stellar mass after 1, via minor mergers between ETGs and gas-rich dwarfs. While survey data from GALEX has indicated the average properties of star formation in the ETG population as a whole, I demonstrate how spatially-resolved UV studies can offer detailed insights into the star formation histories of individual galaxies, using an HST-WFC3 case study of NGC 4150. Using a pixel-by-pixel analysis in 5 WFC3 filters, spanning UV to i-band, reveals a central 0.9 Gyr old young stellar population, with a median metallicity of 0.5 solar, that contributes around 3% of the stellar mass and coincides spatially with a small, kinematically-decoupled core (indicating a recent minor merger). Assuming that the metallicity of the young stars traces the gas-phase metallicity of the satellite that fuels the star formation, we use the mass-metallicity relation to estimate the mass ratio of the merger to be ~1:20. An WFC3 study of globular clusters reveals a substantial population of young star clusters coincident with the central region of star formation and indicates that the bulk of the stellar mass in this galaxy probably formed 6-8 Gyrs in the past. This study demonstrates the utility of high-resolution imaging from future instruments such as the extremely large telescopes. (Based on Early Release Science observations by the WFC3 Scientific Oversight Committee. We are grateful to the Director of the Space Telescope Science Institute for awarding Director's Discretionary time for this program.)

  15. Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy

    PubMed Central

    Chen, Yu-Wen; Guo, Jun-Yen; Tzeng, Shih-Yu; Chou, Ting-Chun; Lin, Ming-Jen; Huang, Lynn Ling-Huei; Yang, Chao-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao

    2016-01-01

    Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis. PMID:26977361

  16. Spatially resolved velocity maps of halo gas around two intermediate-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen; Gauthier, Jean-René; Sharon, Keren; Johnson, Sean D.; Nair, Preethi; Liang, Cameron J.

    2014-02-01

    Absorption-line spectroscopy of multiply-lensed QSOs near a known foreground galaxy provides a unique opportunity to go beyond the traditional one-dimensional application of QSO probes and establish a crude three-dimensional map of halo gas around the galaxy that records the line-of-sight velocity field at different locations in the gaseous halo. Two intermediate-redshift galaxies are targeted in the field around the quadruply-lensed QSO HE 0435-1223 at redshift z = 1.689, and absorption spectroscopy along each of the lensed QSOs is carried out in the vicinities of these galaxies. One galaxy is a typical, star-forming L* galaxy at z = 0.4188 and projected distance of ρ = 50 kpc from the lensing galaxy. The other is a super-L* barred spiral at z = 0.7818 and ρ = 33 kpc. Combining known orientations of the quadruply-lensed QSO to the two foreground galaxies with the observed Mg II λλ2796, 2803 absorption profiles along individual QSO sightlines has for the first time led to spatially resolved kinematics of tenuous halo gas on scales of 5-10 kpc at z > 0.2. A Mg II absorber is detected in every sightline observed through the haloes of the two galaxies, and the recorded absorber strength is typical of what is seen in previous close QSO-galaxy pair studies. While the multisightline study confirms the unity covering fraction of Mg II absorbing gas at ρ < 50 kpc from star-forming discs, the galaxies also present two contrasting examples of complex halo gas kinematics. Different models, including a rotating disc, collimated outflows and gaseous streams from either accretion or tidal/ram-pressure stripping, are considered for comparisons with the absorption-line observations, and infalling streams/stripped gas of width ≳10 kpc are found to best describe the observed gas kinematics across multiple sightlines. In addition, the observed velocity dispersion between different sightlines offers a crude estimate of turbulence in the Mg II absorbing halo gas. The

  17. Time-Resolved High-Spatial-Resolution Measurements of Underwater Laser Ionization and Filamentation

    NASA Astrophysics Data System (ADS)

    Jones, T. G.; Kaganovich, D.; Helle, M. H.; Penano, J.; Ting, A.; Gordon, D.

    2013-10-01

    Laser triggering and guiding of underwater electrical discharges are being investigated and developed at NRL for applications including advanced micromachining and low-frequency laser acoustic generation. As part of this development we recently made several high-spatial-resolution, time-resolved measurements of underwater optical filamentation and laser ionization. Using 2-laser pump-probe backlit imaging techniques, we were able to achieve time resolution as short as 35 fs and spatial resolution down to 1 micron. Shadowgraph images show few-micron diameter gas bubbles forming throughout the pump beam path in ps timescales. Microbubble numbers and density increased with pulse energy and time during the pump pulse. We also obtained time-resolved spectra of ns-laser-ionized water, revealing black-body radiation lasting more than 100 ns after the ionizing pulse. Results from ongoing underwater laser ionization, filamentation, and discharge-guiding experiments will be presented. This work is supported by NRL Base Funds.

  18. Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation

    NASA Astrophysics Data System (ADS)

    Smith, Richard J.; Li, Wenqi; Coulson, Jethro; Clark, Matt; Somekh, Michael G.; Sharples, Steve D.

    2014-05-01

    Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data.

  19. Grazing incidence technique to obtain spatially resolved spectra from laser heated plasmas

    NASA Technical Reports Server (NTRS)

    Behring, W. E.; Underwood, J. H.; Brown, C. M.; Feldman, U.; Seely, John F.

    1988-01-01

    An experimental method is described in which a grazing incidence spectrograph is used to obtain spatially resolved spectra of laser heated plasmas in the 6-370-A region. In the experiment, small target spheres were irradiated by tightly focused laser beams. A tilted grazing incidence elliptical mirror placed 1.3 m from the target focuses the plasma radiation on the spectrograph slit at a distance of 0.7 m producing a useful degree of spatial resolution in the recorded spectral lines. The spectrum from a copper target is presented together with an X-ray pinhole camera image of the plasma.

  20. Laser-induced explosion of H2O droplets: spatially resolved spectra.

    PubMed

    Eickmans, J H; Hsieh, W F; Chang, R K

    1987-01-01

    Photographs and spatially resolved spectra were obtained with radiation generated by an exploding water droplet. The emission within the droplet consists of stimulated Raman scattering and a continuum associated with the created plasma. The forward plume (outside the shadow face) contains plasma and atomic hydrogen ejected from the droplet. The backward plume (behind the illuminated face) contains plasma, H, and ionized O and N, resulting from ionized air. Mechanisms for laser-induced explosion of large transparent water droplets are briefly discussed.

  1. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    NASA Technical Reports Server (NTRS)

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  2. A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions

    NASA Astrophysics Data System (ADS)

    Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.

    2015-12-01

    A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.

  3. Probing the limitations of Sigmund's model of spatially resolved sputtering using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hobler, Gerhard; Bradley, R. Mark; Urbassek, Herbert M.

    2016-05-01

    Sigmund's model of spatially resolved sputtering is the underpinning of many models of nanoscale pattern formation induced by ion bombardment. It is based on three assumptions: (i) the number of sputtered atoms is proportional to the nuclear energy deposition (NED) near the surface, (ii) the NED distribution is independent of the orientation and shape of the solid surface and is identical to the one in an infinite medium, and (iii) the NED distribution in an infinite medium can be approximated by a Gaussian. We test the validity of these assumptions using Monte Carlo simulations of He, Ar, and Xe impacts on Si at energies of 2, 20, and 200 keV with incidence angles from perpendicular to grazing. We find that for the more commonly-employed beam parameters (Ar and Xe ions at 2 and 20 keV and nongrazing incidence), the Sigmund model's predictions are within a factor of 2 of the Monte Carlo results for the total sputter yield and the first two moments of the spatially resolved sputter yield. This is partly due to a compensation of errors introduced by assumptions (i) and (ii). The Sigmund model, however, does not describe the skewness of the spatially resolved sputter yield, which is almost always significant. The approximation is much poorer for He ions and/or high energies (200 keV). All three of Sigmund's assumptions break down at grazing incidence angles. In all cases, we discuss the origin of the deviations from Sigmund's model.

  4. Spatially Resolved Characterization of Biogenic Manganese Oxide Production within a Bacterial Biofilm

    PubMed Central

    Toner, Brandy; Fakra, Sirine; Villalobos, Mario; Warwick, Tony; Sposito, Garrison

    2005-01-01

    Pseudomonas putida strain MnB1, a biofilm-forming bacterial culture, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of aqueous Mn+2 [Mn+2(aq)] by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm, using scanning transmission X-ray microscopy (STXM) combined with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy at the Mn L2,3 absorption edges. Subsamples were collected from growth flasks containing 0.1 and 1 mM total Mn at 16, 24, 36, and 48 h after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at a 40-nm resolution. Manganese NEXAFS spectra were extracted from X-ray energy sequences of STXM images (stacks) and fit with linear combinations of well-characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III), and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn+2(aq) was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission X-ray microscopy is a promising tool for advancing the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained. PMID:15746332

  5. Development and application of an instrument for spatially resolved Seebeck coefficient measurements

    NASA Astrophysics Data System (ADS)

    Zakutayev, Andriy; Luciano, Frank J.; Bollinger, Vincent P.; Sigdel, Ajaya K.; Ndione, Paul F.; Perkins, John D.; Berry, Joseph J.; Parilla, Philip A.; Ginley, David S.

    2013-05-01

    The Seebeck coefficient is a key indicator of the majority carrier type (electrons or holes) in a material. The recent trend toward the development of combinatorial materials research methods has necessitated the development of a new high-throughput approach to measuring the Seebeck coefficient at spatially distinct points across any sample. The overall strategy of the high-throughput experiments is to quickly identify the region of interest on the sample at some expense of accuracy, and then study this region by more conventional techniques. The instrument for spatially resolved Seebeck coefficient measurements reported here relies on establishing a temperature difference across the entire compositionally graded thin-film and consecutive mapping of the resulting voltage as a function of position, which facilitates the temperature-dependent measurements up to 400 °C. The results of the designed instrument are verified at ambient temperature to be repeatable over 10 identical samples and accurate to within 10% versus conventional Seebeck coefficient measurements over the -100 to +150 μV/K range using both n-type and p-type conductive oxides as test cases. The developed instrument was used to determine the sign of electrical carriers of compositionally graded Zn-Co-O and Ni-Co-O libraries prepared by combinatorial sputtering. As a result of this study, both cobalt-based materials were determined to have p-type conduction over a broad single-phase region of chemical compositions and small variation of the Seebeck coefficient over the entire investigated range of compositions and temperature.

  6. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    DOE PAGES

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity andmore » the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).« less

  7. Spatially resolved characterization of biogenic manganese oxideproduction within a bacterial biofilm

    SciTech Connect

    Toner, Brandy; Fakra, Sirine; Villalobos, Mario; Warwick, Tony; Sposito, Garrison

    2004-10-01

    Pseudomonas putida strain MnB1, a biofilm forming bacteria, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of Mn{sub (aq)}{sup +2} by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm using scanning transmission x-ray microscopy (STXM) combined with near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Mn-L{sub 2,3} absorption edges. Subsamples were collected from growth flasks containing 0.1 mM and 1 mM total Mn at 16, 24, 36 and 48 hours after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at 40 nm resolution. Manganese NEXAFS spectra were extracted from x-ray energy sequences of STXM images (stacks) and fit with linear combinations of well characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III) and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn{sub (aq)}{sup +2} was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission x-ray microscopy is a promising tool to advance the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.

  8. Time-resolved and spatially-resolved infrared spectroscopic observation of seeded nucleation controlling geopolymer gel formation.

    PubMed

    Hajimohammadi, Ailar; Provis, John L; van Deventer, Jannie S J

    2011-05-15

    The effect of seeded nucleation on the formation and structural evolution of one-part ("just add water") geopolymer gels is investigated. Gel-forming systems are seeded with each of three different oxide nanoparticles, and seeding is shown to have an important role in controlling the silica release rate from the solid geothermal silica precursor, and in the development of physical properties of the gels. Nucleation accelerates the chemical changes taking place during geopolymer formation. The nature of the seeds affects the structure of the growing gel by affecting the extent of phase separation, identified by the presence of a distinct silica-rich gel in addition to the main, more alumina-rich gel phase. Synchrotron radiation-based infrared microscopy (SR-FTIR) shows the effect of nucleation on the heterogeneous nanostructure and microstructure of geopolymer gels, and is combined with data obtained by time-resolved FTIR analysis to provide a more holistic view of the reaction processes at a level of detail that has not previously been available. While spatially averaged (ATR-FTIR) infrared results show similar spectra for seeded and unseeded samples which have been cured for more than 3 weeks, SR-FTIR results show marked differences in gel structure as a result of seeding.

  9. Distribution of Nanoflares as Spatially Resolved Current Sheets in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Lin, L.

    2014-05-01

    In a recent numerical study [Ng et al., Astrophys. J. 747, 109, 2012], based on a three-dimensional model of coronal heating using reduced magnetohydrodynamics, we have obtained scaling results of heating rate versus Lundquist number S based on a series of runs in which random photospheric motions are imposed for hundreds to thousands of Alfvén time in order to obtain converged statistical values. The heating rate found in these simulations saturates to a level that is independent of S in the high S limit and is consistent with the required level for coronal heating. In a previous study based on the total heating rate time series [Ng and Lin, AIP Conf. Proc. 1500, 38, 2012] in these simulations, we have also calculated heating events distributions, which are consistent with observations but do not support the nanoflares scenario [Parker, Astrophys. J. 330, 474, 1988]. This method has a limitation of not distinguishing individual heating events. We now extend this analysis to investigate the distribution of energy release events defined as spatially resolved current sheets [Lin et el., ASP Conf. Ser. 474, 159, 2013]. We report preliminary results and compare to results obtained using only time-series analysis.

  10. Measurement of the optical properties of rat brain tissue using contact spatially resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Gysbrechts, Barbara; Nguyen Do Trong, Nghia; Wang, Ling; Cabral, Henrique; Navratilova, Zaneta; Battaglia, Francesco P.; Saeys, Wouter; Bartic, Carmen

    2014-05-01

    Nowadays, biophotonics is widely used in neuroscience. The effectiveness of biophotonic techniques, such as fluorescence imaging and optogenetics, is affected by the optical properties of the examined tissue. Therefore, knowledge of these properties is essential to carefully plan experiments. Mice and rats are widely used in neuroscience studies. However, reports about optical properties of their brains are very rare. We measured optical absorption μa and reduced scattering μ's coefficients of native rat brain in the visible and near-infrared wavelength region, using contact spatially resolved spectroscopy (SRS). In this study, we estimate μa and μ's for the rat cortex and discuss their stability in time. Additionally, variations in optical properties within and between samples were characterized. The results extend the range of known optical properties for the rat cortex, especially in the visible range, relevant to optogenetics. μa and μ's are stable within a time span of four hours, and show low variation in and between brain samples. This indicates that a suitable protocol was used to estimate optical properties of rodent brain tissue. Since contact SRS is a non-destructive method, this technique could be used also to measure μa and μ's in living animals. Moreover, the probe has small dimensions, allowing the characterization of optical properties in different structures of the brain.

  11. Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region.

    PubMed

    Lyon, David R; Zavala-Araiza, Daniel; Alvarez, Ramón A; Harriss, Robert; Palacios, Virginia; Lan, Xin; Talbot, Robert; Lavoie, Tegan; Shepson, Paul; Yacovitch, Tara I; Herndon, Scott C; Marchese, Anthony J; Zimmerle, Daniel; Robinson, Allen L; Hamburg, Steven P

    2015-07-01

    Methane emissions from the oil and gas industry (O&G) and other sources in the Barnett Shale region were estimated by constructing a spatially resolved emission inventory. Eighteen source categories were estimated using multiple data sets, including new empirical measurements at regional O&G sites and a national study of gathering and processing facilities. Spatially referenced activity data were compiled from federal and state databases and combined with O&G facility emission factors calculated using Monte Carlo simulations that account for high emission sites representing the very upper portion, or fat-tail, in the observed emissions distributions. Total methane emissions in the 25-county Barnett Shale region in October 2013 were estimated to be 72,300 (63,400-82,400) kg CH4 h(-1). O&G emissions were estimated to be 46,200 (40,000-54,100) kg CH4 h(-1) with 19% of emissions from fat-tail sites representing less than 2% of sites. Our estimate of O&G emissions in the Barnett Shale region was higher than alternative inventories based on the United States Environmental Protection Agency (EPA) Greenhouse Gas Inventory, EPA Greenhouse Gas Reporting Program, and Emissions Database for Global Atmospheric Research by factors of 1.5, 2.7, and 4.3, respectively. Gathering compressor stations, which accounted for 40% of O&G emissions in our inventory, had the largest difference from emission estimates based on EPA data sources. Our inventory's higher O&G emission estimate was due primarily to its more comprehensive activity factors and inclusion of emissions from fat-tail sites.

  12. SDSS IV MaNGA - spatially resolved diagnostic diagrams: a proof that many galaxies are LIERs

    NASA Astrophysics Data System (ADS)

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Heckman, Timothy M.; Law, David R.; Roman-Lopes, Alexandre; Pan, Kaike; Stanghellini, Letizia; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.

    2016-09-01

    We study the spatially resolved excitation properties of the ionized gas in a sample of 646 galaxies using integral field spectroscopy data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) programme. Making use of Baldwin-Philips-Terlevich diagnostic diagrams we demonstrate the ubiquitous presence of extended (kpc scale) low-ionization emission-line regions (LIERs) in both star-forming and quiescent galaxies. In star-forming galaxies LIER emission can be associated with diffuse ionized gas, most evident as extraplanar emission in edge-on systems. In addition, we identify two main classes of galaxies displaying LIER emission: `central LIER' (cLIER) galaxies, where central LIER emission is spatially extended, but accompanied by star formation at larger galactocentric distances, and `extended LIER' (eLIER) galaxies, where LIER emission is extended throughout the whole galaxy. In eLIER and cLIER galaxies, LIER emission is associated with radially flat, low H α equivalent width of line emission (<3 Å) and stellar population indices demonstrating the lack of young stellar populations, implying that line emission follows tightly the continuum due to the underlying old stellar population. The H α surface brightness radial profiles are always shallower than 1/r2 and the line ratio [O III] λ5007/[O II] λλ3727,29 (a tracer of the ionization parameter of the gas) shows a flat gradient. This combined evidence strongly supports the scenario in which LIER emission is not due to a central point source but to diffuse stellar sources, the most likely candidates being hot, evolved (post-asymptotic giant branch) stars. Shocks are observed to play a significant role in the ionization of the gas only in rare merging and interacting systems.

  13. Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region.

    PubMed

    Lyon, David R; Zavala-Araiza, Daniel; Alvarez, Ramón A; Harriss, Robert; Palacios, Virginia; Lan, Xin; Talbot, Robert; Lavoie, Tegan; Shepson, Paul; Yacovitch, Tara I; Herndon, Scott C; Marchese, Anthony J; Zimmerle, Daniel; Robinson, Allen L; Hamburg, Steven P

    2015-07-01

    Methane emissions from the oil and gas industry (O&G) and other sources in the Barnett Shale region were estimated by constructing a spatially resolved emission inventory. Eighteen source categories were estimated using multiple data sets, including new empirical measurements at regional O&G sites and a national study of gathering and processing facilities. Spatially referenced activity data were compiled from federal and state databases and combined with O&G facility emission factors calculated using Monte Carlo simulations that account for high emission sites representing the very upper portion, or fat-tail, in the observed emissions distributions. Total methane emissions in the 25-county Barnett Shale region in October 2013 were estimated to be 72,300 (63,400-82,400) kg CH4 h(-1). O&G emissions were estimated to be 46,200 (40,000-54,100) kg CH4 h(-1) with 19% of emissions from fat-tail sites representing less than 2% of sites. Our estimate of O&G emissions in the Barnett Shale region was higher than alternative inventories based on the United States Environmental Protection Agency (EPA) Greenhouse Gas Inventory, EPA Greenhouse Gas Reporting Program, and Emissions Database for Global Atmospheric Research by factors of 1.5, 2.7, and 4.3, respectively. Gathering compressor stations, which accounted for 40% of O&G emissions in our inventory, had the largest difference from emission estimates based on EPA data sources. Our inventory's higher O&G emission estimate was due primarily to its more comprehensive activity factors and inclusion of emissions from fat-tail sites. PMID:26148553

  14. Spatially-resolved x-ray scattering measurements of a planar blast wave

    NASA Astrophysics Data System (ADS)

    Gamboa, E. J.; Montgomery, D. S.; Benage, J. F.; Falk, K.; Kuranz, C. C.; Keiter, P. A.; Drake, R. P.

    2012-10-01

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal is typically measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. An experiment is described in which we used the IXTS to measure the spatial temperature profile of a novel system. A low-density carbon foam was irradiated with intensities on the order of 10^15 W/cm^2, launching a planar blast wave. After a delay of several nanoseconds, x-rays created from irradiation of a nickel foil, scattered at 90 and were recorded by the IXTS. The resulting spatially resolved scattering spectra were analyzed to extract the temperature profile across the blast wave.

  15. Spatially-resolved Spectral Analysis of the Hot Gaseous Emission in the M31 Bulge

    NASA Astrophysics Data System (ADS)

    Yukita, Mihoko; Irwin, J.; Wong, K.; Million, E.

    2013-04-01

    We report results from a deep, ~400 ks archival Chandra ACIS study of the galactic bulge in M31. We aim to greater understand the properties of the hot gas in galactic bulges, which play an important role in galaxy evolution via outflows. Detailed, spatially resolved, spectral analysis of the central 3 arcmin reveal that the hot gas is well characterized by a two-temperature, collisionally ionized, optically-thin plasma model with temperatures k 0.2 and 0.5 keV. The radial temperature profile of the k 0.2 keV component is approximately flat, while the temperature profile of the k 0.5 component contains a potential small central peak. The surface brightness of the k 0.2 keV gas follows a beta model distribution that is comparable to the stellar distribution of the bulge. The surface brightness of the hotter k 0.5 keV component follows a significantly different trend. We discuss the interpretation of our results.

  16. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    NASA Astrophysics Data System (ADS)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  17. DARK MATTER SUBSTRUCTURE DETECTION USING SPATIALLY RESOLVED SPECTROSCOPY OF LENSED DUSTY GALAXIES

    SciTech Connect

    Hezaveh, Yashar; Holder, Gilbert; Dalal, Neal; Kuhlen, Michael; Marrone, Daniel; Murray, Norman; Vieira, Joaquin

    2013-04-10

    We investigate how strong lensing of dusty, star-forming galaxies (DSFGs) by foreground galaxies can be used as a probe of dark matter halo substructure. We find that spatially resolved spectroscopy of lensed sources allows dramatic improvements to measurements of lens parameters. In particular, we find that modeling of the full, three-dimensional (angular position and radial velocity) data can significantly facilitate substructure detection, increasing the sensitivity of observables to lower mass subhalos. We carry out simulations of lensed dusty sources observed by early ALMA (Cycle 1) and use a Fisher matrix analysis to study the parameter degeneracies and mass detection limits of this method. We find that even with conservative assumptions, it is possible to detect galactic dark matter subhalos of {approx}10{sup 8} M{sub Sun} with high significance in most lensed DSFGs. Specifically, we find that in typical DSFG lenses, there is a {approx}55% probability of detecting a substructure with M > 10{sup 8} M{sub Sun} with more than 5{sigma} detection significance in each lens, if the abundance of substructure is consistent with previous lensing results. The full ALMA array, with its significantly enhanced sensitivity and resolution, should improve these estimates considerably. Given the sample of {approx}100 lenses provided by surveys such as the South Pole Telescope, our understanding of dark matter substructure in typical galaxy halos is poised to improve dramatically over the next few years.

  18. Spatially resolved scanning tunneling spectroscopy of single-layer steps on Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Xiqiao; Namboodiri, Pradeep; Li, Kai; Deng, Xiao; Silver, Richard

    2016-09-01

    Single-layer steps at Si(100) surfaces/interfaces present significant challenges to the quantitative characterization of buried dopant devices as well as the accurate imaging and relocation of fabricated quantum structures. We demonstrate the detailed spatially resolved scanning tunneling spectroscopy study across monolayer step edges on Si(100) surfaces and quantitative determination of the local density of state distributions and behavior of the band gap at step edges. The influence on the local electrostatic environment due to step edge states has been quantified while accounting for the effects of scanning tunneling measurement conditions. The dangling bond states on Si(100) surfaces are utilized as a fingerprint to quantify the local band bending landscape and to make corrections to the experimentally observed surface state energy levels and band gap values at the step edge regions. We observe a significant band gap narrowing behavior along a rebonded single-layer type B step edge on a degenerately boron-doped p -type Si substrate.

  19. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    NASA Astrophysics Data System (ADS)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I–VI. The MSRRS sensor is commercially available under the brand name biozoom.

  20. Using broadband spatially resolved NIRS to assess muscle oxygenation during altered running protocols

    NASA Astrophysics Data System (ADS)

    Koukourakis, Georg; Vafiadou, Maria; Steimers, André; Geraskin, Dmitri; Neary, Patrick; Kohl-Bareis, Matthias

    2009-07-01

    We used spatially resolved near-infrared spectroscopy (SRS-NIRS) to assess calf and thigh muscle oxygenation during running on a motor-driven treadmill. Two protocols were used: An incremental speed protocol (velocity = 6 - 12 km/h, ▵v = 2 km/h) was performed in 3 minute stages, while a pacing paradigm modulated step frequency alternatively (2.3 Hz [SLow]; 3.3 Hz [SHigh]) during a constant velocity for 2 minutes each. A SRS-NIRS broadband system (600 - 1000 nm) was used to measure total haemoglobin concentration and oxygen saturation (SO2). An accelerometer was placed on the hip joints to measure limb acceleration through the experiment. The data showed that the calf (SO2 58 to 42%) desaturated to a significantly lower level than the thigh (61 to 54%). During the pacing protocol, SO2 was significantly different between the SLow vs. SHigh trials. Additionally, physiological data as measured by spirometry were different between the SLow vs. SHigh pacing trials (VO2 (2563+/- 586 vs. 2503 +/- 605 mL/min). Significant differences in VO2 at the same workload (speed) indicate alterations in mechanical efficiency. These data suggest that SRS broadband NIRS can be used to discern small changes in muscle oxygenation, making this device useful for metabolic exercise studies in addition to spirometry and movement monitoring by accelerometers.

  1. Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light.

    PubMed

    Naik, Nikhil; Barsi, Christopher; Velten, Andreas; Raskar, Ramesh

    2014-05-01

    Imaging through complex media is a well-known challenge, as scattering distorts a signal and invalidates imaging equations. For coherent imaging, the input field can be reconstructed using phase conjugation or knowledge of the complex transmission matrix. However, for incoherent light, wave interference methods are limited to small viewing angles. On the other hand, time-resolved methods do not rely on signal or object phase correlations, making them suitable for reconstructing wide-angle, larger-scale objects. Previously, a time-resolved technique was demonstrated for uniformly reflecting objects. Here, we generalize the technique to reconstruct the spatially varying reflectance of shapes hidden by angle-dependent diffuse layers. The technique is a noninvasive method of imaging three-dimensional objects without relying on coherence. For a given diffuser, ultrafast measurements are used in a convex optimization program to reconstruct a wide-angle, three-dimensional reflectance function. The method has potential use for biological imaging and material characterization.

  2. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry.

    PubMed

    Muramoto, Shin; Forbes, Thomas P; van Asten, Arian C; Gillen, Greg

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal intensity to the amount of drug deposited on the surface were generated from inkjet-printed arrays of cocaine, methamphetamine, and heroin with a deposited-mass ranging nominally from 10 pg to 50 ng per spot. These curves were used to construct concentration maps that visualized the spatial distribution of the drugs on top of a fingerprint, as well as being able to quantify the amount of drugs in a given area within the map. For the drugs on the fingerprint on silicon, ToF-SIMS showed great success, as it was able to generate concentration maps of all three drugs. On the fingerprint on paper, only the concentration map of cocaine could be constructed using ToF-SIMS and DESI-MS, as the signals of methamphetamine and heroin were completely suppressed by matrix and substrate effects. Spatially resolved quantification of illicit drugs using imaging mass spectrometry is possible, but the choice of substrates could significantly affect the results.

  3. Based on time and spatial-resolved SERS mapping strategies for detection of pesticides.

    PubMed

    Ma, Bingbing; Li, Pan; Yang, Liangbao; Liu, Jinhuai

    2015-08-15

    For the sensitive and convenient detection of pesticides, several sensing methods and materials have been widely explored. However, it is still a challenge to obtain sensitive, simple detection techniques for pesticides. Here, the simple and sensitive Time-resolved SERS mapping (T-SERS) and Spatial-resolved SERS mapping (S-SERS) are presented for detection of pesticides by using Au@Ag NPs as SERS substrate. The Time-resolved SERS mapping (T-SERS) is based on state translation nanoparticles from the wet state to the dry state to realize SERS measurements. During the SERS measurement, adhesive force drives the particles closer together and then average interparticle gap becomes smaller. Following, air then begins to intersperse into the liquid network and the particles are held together by adhesive forces at the solid-liquid-air interface. In the late stage of water evaporation, all particles are uniformly distributed. Thus, so called hotspots matrix that can hold hotspots between every two adjacent particles in efficient space with minimal polydispersity of particle size are achieved, accompanying the red-shift of surface plasmon peak and appearance of an optimal SPR resonated sharply with excitation wavelength. Here, we found that the T-SERS method exhibits the detection limits of 1-2 orders of magnitude higher than that of S-SERS. On the other hand, the T-SERS is very simple method with high detection sensitivity, better reproducibility (RSD=10.8%) and is beneficial to construction of a calibration curve in comparison with that of Spatial-resolved SERS mapping (S-SERS). Most importantly, as a result of its remarkable sensitivity, T-SERS mapping strategies have been applied to detection of several pesticides and the detect limit can down to 1nM for paraoxon, 0.5nM for sumithion. In short, T-SERS mapping measurement promises to open a market for SERS practical detection with prominent advantages.

  4. Community 15N isoscapes to resolve plant-plant-interactions at the spatial scale

    NASA Astrophysics Data System (ADS)

    Hellmann, Christine; Rascher, Katherine G.; Máguas, Cristina; Werner, Christiane

    2014-05-01

    Isoscapes have greatly improved our ability to understand biogeochemical processes on continental to global scales. However, the isoscapes framework may also have significant potential to resolve the spatial component of within-community interactions. For example, exotic plant invaders often exert strong impacts on ecosystem functioning, particularly regarding water-, carbon- and nutrient-cycles, but the spatial extent of such alterations is largely unknown. Here we show that massive N input by the N2-fixing exotic invasive Acacia longifolia to a Portuguese dune system can be traced using spatially resolved information on native plants' leaf δ15N. We found isotopic signatures of N to differ strongly between the native system (δ15N c. -10 o) and the atmospherically derived N in A. longifolia phyllodes (δ15N c. 0 o). Thus, sources of N for native plants could be readily distinguished. Leaf δ15N of a native, non-fixing species was increasingly enriched the closer the plant grew to the invader, indicating uptake of fixed N provided by A. longifolia. The enrichment was evident far beyond the stands of the invader, demonstrating that A. longifolia affected N budgets of native species up to a distance of 8 m exceeding the margin of the canopy. Furthermore, using the isoscapes approach, we were able to quantify the total area of N enrichment and could thus show that the area affected by invasion was at least 3.5 times larger than the area actually occupied by the invader. However, a native N2-fixing species had no such effects. Thus, downscaling isoscapes to the community level opens new frontiers in quantifying the spatial dimension of functional changes associated with plant invasions. Moreover, considering the feasibility and applicability of this approach, it may provide a promising tool to identify, quantify and monitor different types of functional plant-plant interactions within communities at a spatially explicit scale.

  5. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

    SciTech Connect

    Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.

    2011-04-15

    Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of {sup 125}I, {sup 103}Pd, and {sup 137}Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, {Delta}, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE{sub preplan}, in a 5x5x5 cm{sup 3} volume for {sup 125}I (Oncura 6711), {sup 103}Pd (Theragenics 200), and {sup 131}Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes ({Delta}=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000

  6. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    SciTech Connect

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Keel, W. C.; Rafter, S.; Bennert, V. N.; Schawinski, K.

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  7. Investigation of the Spatially Resolved Electronic Structure of Single Layer WS2 on Transition Metal Oxide Surfaces

    NASA Astrophysics Data System (ADS)

    Katoch, Jyoti; Ulstrup, Søren; Koch, Roland; Schwarz, Daniel; Singh, Simranjeet; McCreary, Kathy; Keun Yoo, Hyang; Xu, Jinsong; Jonker, Berry; Kawakami, Roland; Bostwick, Aaron; Rotenberg, Eli; Jozwiak, Chris

    The family of semiconducting single layer (SL) transition metal dichalcogenides (TMDs) have lately been intensely studied, owing to the strong coupling between spin and valley degrees of freedom as well as the presence of strongly bound excitons. The choice of supporting substrate is known to strongly influence these properties. We set out to investigate the electronic properties of CVD grown SL WS2 transferred onto the dielectric oxide materials SrTiO3 and TiO2. By using a combination of photoemission electron microscopy (PEEM) and angle-resolved photoemission (ARPES) with micrometer focus we obtain simultaneous spatial, momentum and energy-resolved information about SL WS2 on a polar (SrTiO3) and a nonpolar (TiO2) surface for the first time.

  8. Spatially Resolved Mid-IR Spectra from Meteorites; Linking Composition, Crystallographic Orientation and Spectra on the Micro-Scale

    NASA Astrophysics Data System (ADS)

    Stephen, N. R.

    2016-08-01

    IR spectroscopy is used to infer composition of extraterrestrial bodies, comparing bulk spectra to databases of separate mineral phases. We extract spatially resolved meteorite-specific spectra from achondrites with respect to zonation and orientation.

  9. Spatially resolved Fe- and S-isotope composition of sedimentary pyrite

    NASA Astrophysics Data System (ADS)

    Rouxel, O.; Bekker, A.; Germain, Y.; Ponzevera, E.

    2012-04-01

    Past studies of iron and sulfur isotope records of sedimentary sulfides over geological time have placed important constraints on the biogeochemical cycle of sulfur and iron and the evolution of ocean chemistry. Since biogeochemical cycles of Fe and S are closely coupled in marine systems, Fe-limitation and S-limitation for pyrite formation in black shales should leave an imprint on the isotopic record of both elements. We developed a technique for accurate and spatially-resolved measurement of 34S/32S, 33S/32S, 56Fe/54Fe, and 57Fe/54Fe isotope ratios in sedimentary pyrite using a combination of solution and laser ablation analysis. Fe- and S-isotope ratios were measured by high-resolution MC-ICP-MS (ThermoElectron Neptune), enabling us to resolve major isobaric interferences on S isotopes and Fe isotopes from O2+, ArN+, and ArO+. A CETAC LSX 213 nm laser was used as the ablation source with He as the sample carrier gas. Fe- and S-isotope ratios were calibrated against several pyrite standards using the conventional "sample-standard bracketing technique". Instrumental mass bias of Fe and S isotopes were also corrected through an internal normalization technique using respectively Ni and Mg of known isotope composition. The long-term reproducibility of S- and Fe-isotope compositions was typically better than 0.2 per mil. We investigated the fine scale variations of d56Fe, d34S and d33S values of diagenetic pyrite nodules in several Devonian, Paleoproterozoic and Archean black shales in order to (1) explore biosignature potential of co-variations of Fe- and S-isotopes at the grain-size scale; (2) assess potential diagenetic effects on Fe-isotope fractionation during sulfide formation; and (3) assess potential mixing between isotopically distinct Fe- and S-pools using multiple S isotope data. Those results will be presented together with bulk stratigraphic S- and Fe-isotopic variations and Fe speciation data in order to establish an Fe isotope mass balance in black

  10. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    NASA Astrophysics Data System (ADS)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J.-E.; Wan, W. C.; Drake, R. P.

    2016-09-01

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  11. Monochromated, spatially resolved electron energy-loss spectroscopic measurements of gold nanoparticles in the plasmon range.

    PubMed

    Schaffer, B; Riegler, K; Kothleitner, G; Grogger, W; Hofer, F

    2009-02-01

    Gold nanoparticles show optical properties different from bulk material due to resonance phenomena which depend on local structure and geometry. Electron energy-loss spectrometry (EELS) in scanning transmission electron microscopy (STEM) allows the spatially resolved measurement of these properties at a resolution of few nanometers. In this work, the first monochromated measurements of gold nanoparticles (spheres, rods and triangles) are presented. Due to the improved energy resolution of about 0.2 eV, surface plasmon excitations at energies below 1 eV could be accurately measured from raw experimental data. PMID:18722779

  12. Microbe-Mineral Interactions in Extinct Hydrothermal Chimneys at East Pacific Rise: Spatially-Resolved Chemical and Mineralogical Approaches

    NASA Astrophysics Data System (ADS)

    Toner, B. M.; Santelli, C. M.; Marlow, J. J.; Rouxel, O.; Edwards, K. J.

    2006-12-01

    The mid-ocean ridge system is a 60,000 km seam along the ocean floor where greater than 200 known or suspected sites of hydrothermal venting are present. Hydrothermal processes result in the precipitation of sulfide minerals, which represent an estimated 4.9 kJ (kg vented fluid)-1 of energy to microorganisms capable of growing lithotrophically via oxidation of Fe and S derived from sulfide minerals. Low-temperature seafloor weathering of sulfide minerals represents an important biogeochemical process where chemical energy may harvested from sulfide minerals by primary producers of an ecosystem that is underpinned by chemolithoautotrophy. The role of these microbial communities in deep-sea rock alteration, mineral deposition, and rock-derived primary productivity is largely unknown. Research into these areas presents significant challenges in regard to Fe and S speciation in heterogeneous materials, microbial processes at mineral surfaces, and metabolic processes of uncultured microorganisms. To overcome these challenges and conclusively link microbial processes to biogeochemical cycles, research tools must provide molecular-level chemical speciation, spatially-resolved analyses of geochemical and microbiological features at the mm-, micro-, and nm- scales, in situ measurements of microbial activity, and cultured microorganisms representative of the environment. The focus of this presentation will be on the mineralogical and Fe speciation data obtained from spatially-resolved X-ray diffraction and X-ray absorption spectroscopy studies of Fe oxide- encrusted biofilms associated with extinct hydrothermal chimneys at East Pacific Rise 9 o N. Special attention will be given to how this study, and future studies, may select from existing spatially-resolved techniques to describe the interactions among parent minerals, microbial growth, and secondary mineral formation. In addition, the need for methodological development in the area of microbe-mineral interactions will be

  13. Diffusion and spatially resolved NMR in Berea and Venezuelan oil reservoir rocks.

    PubMed

    Murgich, J; Corti, M; Pavesi, L; Voltini, F

    1992-01-01

    Conventional and spatially resolved proton NMR and relaxation measurements are used in order to study the molecular motions and the equilibrium and nonequilibrium diffusion of oils in Berea sandstone and Venezuelan reservoir rocks. In the water-saturated Berea a single line with T*2 congruent to 150 microseconds is observed, while the relaxation recovery is multiexponential. In an oil reservoir rock (Ful 13) a single narrow line is present while a distribution of relaxation rates is evidenced from the recovery plots. On the contrary, in the Ful 7 sample (extracted at a deeper depth in a different zone) two NMR components are present, with 3.5 and 30 KHz linewidths, and the recovery plot exhibits biexponential law. No echo signal could be reconstructed in the oil reservoir rocks. These findings can be related to the effects in the micropores, where motions at very low frequency can occur in a thin layer. From a comparison of the diffusion constant in water-saturated Berea, D congruent to 5*10(-6) cm2/sec, with the ones in model systems, the average size of the pores is estimated around 40 A. The density profiles at the equilibrium show uniform distribution of oils or of water, and the relaxation rates appear independent from the selected slice. The nonequilibrium diffusion was studied as a function of time in a Berea cylinder with z axis along H0, starting from a thin layer of oil at the base, and detecting the spin density profiles d(z,t) with slice-selection techniques. Simultaneously, the values of T1's were measured locally, and the distribution of the relaxation rates was observed to be present in any slice.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Spatially resolved NMR spectra for the Swiss cheese model in heavy fermion PuCoGa5 superconductor

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Balatsky, A. V.; Graf, M. J.

    2011-03-01

    Spatially resolved NMR experiments, which probe the local electronic excitations, play a vital role for studying the pairing symmetry of unconventional superconductors. Here we calculate the spatial modulation of the NMR spin-lattice relaxation rate (1/T1) for the Swiss cheese model as a function of impurity concentration in PuCoGa5 superconductor. The local suppression of the superconducting order parameter due to impurities is related to the number of holes in the Swiss cheese model. Our results indicate that Friedel-like oscillations,as seen in the local-density of states near an impurity, are also present in the behavior of 1/T1 as one moves away from the impurity site. We demonstrate that the gap nodes, which are filled by disorder, can be probed by NMR through the local information encoded in the spectra. The advantage of spatially resolved NMR compared to STM measurements is that the former probe is not sensitive to surface states. Work is supported by US DOE.

  15. High-fidelity spatially resolved multiphoton counting for quantum imaging applications.

    PubMed

    Chrapkiewicz, Radosław; Wasilewski, Wojciech; Banaszek, Konrad

    2014-09-01

    We present a method for spatially resolved multiphoton counting based on an intensified camera with the retrieval of multimode photon statistics fully accounting for nonlinearities in the detection process. The scheme relies on one-time quantum tomographic calibration of the detector. Faithful, high-fidelity reconstruction of single- and two-mode statistics of multiphoton states is demonstrated for coherent states and their statistical mixtures. The results consistently exhibit classical values of the Mandel parameter and the noise reduction factor in contrast to raw statistics of camera photo-events. Detector operation is reliable for illumination levels up to the average of one detected photon per an event area-substantially higher than in previous approaches to characterize quantum statistical properties of light with spatial resolution. PMID:25166081

  16. Monochromatic imaging camera for spectrally and spatially resolved optical emission spectroscopy

    SciTech Connect

    Hareland, W.A.

    1994-12-31

    Spectrally and spatially resolved emissions have been measured from argon plasmas in an experimental radio-frequency plasma reactor. The monochromatic imaging camera records 2-dimensional images at a single wavelength of light, and the 2-dimensional images are treated by Abel inversion to produce 3-dimensional maps of single excited species in radio-frequency plasmas. Monochromatic images of argon were measured at a spectral bandwidth of 2.4 nm over the wavelength range from 394 to 912 nm. The spatial distribution of excited argon varies with excitation state. Lower-energy argon (< 13 eV) is found throughout the plasma, whereas, higher-energy argon is observed in and directly above the sheath in capacitively coupled discharges. Monochromatic imaging provides new optical diagnostics for measuring and monitoring plasmas.

  17. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma

    SciTech Connect

    Knapp, P. F.; Hansen, S. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2012-07-15

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of {+-}14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 {mu}m spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within {+-}25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.

  18. Properties of solar flare electrons, deduced from hard X-ray and spatially resolved microwave observations

    NASA Technical Reports Server (NTRS)

    Marsh, K. A.; Hurford, G. J.; Zirin, H.; Dulk, G. A.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1981-01-01

    An important question concerning an understanding of impulsive solar flares is related to the energetic electrons responsible for the microwave and the hard X-ray emission. A description is presented of an investigation in which spatially resolved microwave observations of an impulsive flare and hard X-ray data from the Solar Maximum Mission (SMM) are used to test the hypothesis that the two types of emission come from the same basic electron population. The considered observations are found to imply that the microwaves and hard X-rays were not produced by a common population of electrons with either a Maxwellian or single power-law energy distribution. It is suggested that the calculations should be repeated when observations of stronger events become available, for which a better determination of the X-ray spectrum is possible. The possibility is considered that microwaves and moderately hard X-rays come from spatially different regions.

  19. Spatially resolved excitation temperature measurements in a hypersonic flow using the hook method.

    PubMed

    Sandeman, R J; Ebrahim, N A

    1977-05-01

    The extension of the hook method to include spatial resolution of nonuniformities in the test plane as suggested by Huber (1971) and Sandeman (1971) is demonstrated experimentally by measurements of the variation of the integrated line density of ground state sodium in a flame. Experiments are also described in which the variations in the flow of CO(2) in a hypersonic shock tunnel are spatially resolved along the spectrometer slit. The variations in the hook separations of the 425.4-nm Cr1 resonance and the 434.4-nm CrI 1-eV lower state line are simultaneously measured. The chromium exists as an impurity in the hypersonic flow of CO(2) over a cylinder in a shock tunnel. The populations of the levels so obtained have enabled the comparison of the excitation temperature of the Cr 1-eV level with the calculated gas temperature.

  20. Spatially resolved determination of the dark saturation current of silicon solar cells from electroluminescence images

    NASA Astrophysics Data System (ADS)

    Glatthaar, Markus; Giesecke, Johannes; Kasemann, Martin; Haunschild, Jonas; The, Manuel; Warta, Wilhem; Rein, Stefan

    2009-06-01

    We present a novel method to determine spatially resolved the dark saturation current of standard silicon solar cells. For this two electroluminescence images are taken at two different voltages. From these two images, first the spatial voltage distribution can be calculated. Second by applying the Laplacian to the voltage image from Ohm's law and the continuity equation, the current through the device at a certain position can be determined. Knowing the local current through the device, the local voltage, and the emitter sheet resistance allows to determine the local dark saturation current. The clue of this method is to cope with the noise by using an appropriate noise reduction algorithm. By simulating electroluminescence images with realistic noise and known dark saturation current we demonstrate the applicability of the method with our noise reduction algorithm. Experimentally we compare our method with spectral response light beam induced current on multicrystalline solar cell.

  1. Novel characterization of the nonlinear refractive response of materials using spatially and spectrally resolved interferometry

    NASA Astrophysics Data System (ADS)

    Meier, Amanda; Adams, Daniel; Squier, Jeff; Durfee, Charles

    2010-10-01

    Characterization of the nonlinear refractive index of a material is important in order to fully understand the nonlinear propagation of femtosecond laser pulses. The most common method to obtaining the nonlinear refractive index is Z-scan. However, since it averages over pulse duration and beam profile, Z-scan is not reliable when there is time- and intensity-dependence of the nonlinear response. The new method we are exploring to make these nonlinear refractive index measurements is spatially and spectrally resolved interferometry (SSRI). SSRI is a method that can give a simultaneous measurement of the spatial wave-front across the frequency or temporal profile of the pulse. The SSRI method proves better in measuring response at specific y and t, allowing it to measure both delayed response and saturation effects. The ability to make a measurement in both dimensions enables understanding of spatiotemporal dynamics in other experiments as cross-wave polarization and filamentation.

  2. Evidencing the need for high spatial resolution in angle-resolved photoemission experiments

    NASA Astrophysics Data System (ADS)

    Joucken, Frédéric; Reckinger, Nicolas; Lorcy, Stéphane; Avila, José; Chen, Chaoyu; Lagoute, Jérôme; Colomer, Jean-François; Ghijsen, Jacques; Asensio, Maria Carmen; Sporken, Robert

    2016-06-01

    Angle-resolved photoemission spectroscopy (ARPES) is the most direct tool to measure the electronic structure of materials. In particular, fine features of the spectra can be analyzed for evaluating the electron self-energy. Owing to a setup allowing ARPES investigation with submicron resolution and state-of-the-art energy and momentum resolution, we show here first that ARPES spectra of pristine and virtually undoped monolayer graphene acquired on a small spot do not display manifestations of self-energy. We next demonstrate that, although the region of the sample investigated is a unique graphene domain, it displays faint spatial inhomogeneity, both in its crystallographic orientation and its thickness, which is undetectable with conventional ARPES but renders the spectra improper for self-energy extraction. These results indicate that care should be taken when analyzing ARPES spectra obtained with poor spatial resolution.

  3. Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model

    NASA Astrophysics Data System (ADS)

    Nair, Maya S.; Ghosh, Nirmalya; Raju, Narisetti Sundar; Pradhan, Asima

    2002-07-01

    We report the measurement of optical transport parameters of pathologically characterized malignant tissues, normal tissues, and different types of benign tumors of the human breast in the visible wavelength region. A spatially resolved steady-state diffuse fluorescence reflectance technique was used to estimate the values for the reduced-scattering coefficient (mu's) and the absorption coefficient (mua) of human breast tissues at three wavelengths (530, 550, and 590 nm). Different breast tissues could be well differentiated from one another, and different benign tumors could also be distinguished by their measured transport parameters. A diffusion theory model was developed to describe fluorescence light energy distribution, especially its spatial variation in a turbid and multiply scattering medium such as human tissue. The validity of the model was checked with a Monte Carlo simulation and also with different tissue phantoms prepared with polystyrene microspheres as scatterers, riboflavin as fluorophores, and methylene blue as absorbers.

  4. A SPATIALLY RESOLVED VERTICAL TEMPERATURE GRADIENT IN THE HD 163296 DISK

    SciTech Connect

    Rosenfeld, Katherine A.; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua; Hughes, A. Meredith

    2013-09-01

    We analyze sensitive, sub-arcsecond resolution ALMA science verification observations of CO emission lines in the protoplanetary disk hosted by the young, isolated Ae star HD 163296. The observed spatial morphology of the {sup 12}CO J = 3-2 emission line is asymmetric across the major axis of the disk; the {sup 12}CO J = 2-1 line features a much less pronounced, but similar, asymmetry. The J = 2-1 emission from {sup 12}CO and its main isotopologues have no resolved spatial asymmetry. We associate this behavior with the direct signature of a vertical temperature gradient and layered molecular structure in the disk. This is demonstrated using both toy models and more sophisticated calculations assuming non-local thermodynamic equilibrium conditions. A model disk structure is developed to reproduce both the distinctive spatial morphology of the {sup 12}CO J = 3-2 line as well as the J = 2-1 emission from the CO isotopologues assuming relative abundances consistent with the interstellar medium. This model disk structure has {tau} = 1 emitting surfaces for the {sup 12}CO emission lines that make an angle of {approx}15 Degree-Sign with respect to the disk midplane. Furthermore, we show that the spatial and spectral sensitivity of these data can distinguish between models that have sub-Keplerian gas velocities due to the vertical extent of the disk and its associated radial pressure gradient (a fractional difference in the bulk gas velocity field of {approx}> 5%)

  5. Monochromatic heterodyne fiber-optic profile sensor for spatially resolved velocity measurements with frequency division multiplexing

    SciTech Connect

    Pfister, Thorsten; Buettner, Lars; Shirai, Katsuaki; Czarske, Juergen

    2005-05-01

    Investigating shear flows is important in technical applications as well as in fundamental research. Velocity measurements with high spatial resolution are necessary. Laser Doppler anemometry allows nonintrusive precise measurements, but the spatial resolution is limited by the size of the measurement volume to {approx}50 {mu}m. A new laser Doppler profile sensor is proposed, enabling determination of the velocity profile inside the measurement volume. Two fringe systems with contrary fringe spacing gradients are generated to determine the position as well as the velocity of passing tracer particles. Physically discriminating between the two measuring channels is done by a frequency-division-multiplexing technique with acousto-optic modulators. A frequency-doubled Nd:YAG laser and a fiber-optic measuring head were employed, resulting in a portable and flexible sensor. In the center of the measurement volume of {approx}1-mm length, a spatial resolution of {approx}5 {mu}m was obtained. Spatially resolved measurements of the Blasius velocity profile are presented. Small velocities as low as 3 cm/s are measured. The sensor is applied in a wind tunnel to determine the wall shear stress of a boundary layer flow. All measurement results show good agreement with the theoretical prediction.

  6. Differentiation of microstructures of sugar foams by means of spatially resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen Do Trong, Nghia; Watte, Rodrigo; Aernouts, Ben; Verhoelst, Eva; Tsuta, Mizuki; Jakubczyk, Ewa; Gondek, Ewa; Verboven, Pieter; Nicolaï, Bart M.; Saeys, Wouter

    2012-04-01

    Food quality is critically determined by its microstructure and composition. These properties could be quantified noninvasively by means of optical properties (absorption and reduced scattering coefficients) of the food samples. In this research, a spatially-resolved spectroscopy setup based on a fiber-optic probe was developed for acquiring spatiallyresolved diffuse reflectance of three sugar foams with different designed microstructures in the range 500 - 1000 nm. A model for light propagation in turbid media based on diffusion approximation for solving the radiative transport equation was employed to derive optical properties (absorption and reduced scattering coefficients) of these foams. The accuracy of this light propagation model was validated on four liquid phantoms with known optical properties. The obtained results indicated that the optical properties estimation was successfully validated on these liquid phantoms. The estimated reduced scattering coefficients μs' of the foams clearly showed the effect of foaming time on their microstructures. The acquired absorption coefficients μa were also in good agreement with the designed ingredients of these sugar foams. The research results clearly support the potential of spatially-resolved spectroscopy for nondestructive food quality inspection and process monitoring in the food industry.

  7. Relevance for food sciences of quantitative spatially resolved element profile investigations in wheat (Triticum aestivum) grain.

    PubMed

    Pongrac, Paula; Kreft, Ivan; Vogel-Mikus, Katarina; Regvar, Marjana; Germ, Mateja; Vavpetic, Primoz; Grlj, Natasa; Jeromel, Luka; Eichert, Diane; Budic, Bojan; Pelicon, Primoz

    2013-07-01

    Bulk element concentrations of whole grain and element spatial distributions at the tissue level were investigated in wheat (Triticum aestivum) grain grown in Zn-enriched soil. Inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry were used for bulk analysis, whereas micro-proton-induced X-ray emission was used to resolve the two-dimensional localization of the elements. Soil Zn application did not significantly affect the grain yield, but did significantly increase the grain Ca, Fe and Zn concentrations, and decrease the grain Na, P and Mo concentrations; bulk Mg, S, K, Mn, Cu, Cd and Pb concentrations remained unchanged. These changes observed in bulk element concentrations are the reflection of tissue-specific variations within the grain, revealing that Zn application to soil can lead to considerable alterations in the element distributions within the grain, which might ultimately influence the quality of the milling fractions. Spatially resolved investigations into the partitioning of the element concentrations identified the tissues with the highest element concentrations, which is of utmost importance for accurate prediction of element losses during the grain milling and polishing processes.

  8. Nitrogenase FeMoco investigated by spatially resolved anomalous dispersion refinement

    PubMed Central

    Spatzal, Thomas; Schlesier, Julia; Burger, Eva-Maria; Sippel, Daniel; Zhang, Limei; Andrade, Susana L.A.; Rees, Douglas C.; Einsle, Oliver

    2016-01-01

    The [Mo:7Fe:9S:C] iron-molybdenum cofactor (FeMoco) of nitrogenase is the largest known metal cluster and catalyses the 6-electron reduction of dinitrogen to ammonium in biological nitrogen fixation. Only recently its atomic structure was clarified, while its reactivity and electronic structure remain under debate. Here we show that for its resting S=3/2 state the common iron oxidation state assignments must be reconsidered. By a spatially resolved refinement of the anomalous scattering contributions of the 7 Fe atoms of FeMoco, we conclude that three irons (Fe1/3/7) are more reduced than the other four (Fe2/4/5/6). Our data are in agreement with the recently revised oxidation state assignment for the molybdenum ion, providing the first spatially resolved picture of the resting-state electron distribution within FeMoco. This might provide the long-sought experimental basis for a generally accepted theoretical description of the cluster that is in line with available spectroscopic and functional data. PMID:26973151

  9. Spatially resolved resistance of NiO nanostructures under humid environment

    SciTech Connect

    Jacobs, Christopher B; Ievlev, Anton; Collins, Liam F; Muckley, Eric S; Joshi, Pooran C; Ivanov, Ilia N

    2016-01-01

    The spatially resolved electrical response of polycrystalline NiO films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized with sub 25nm resolution using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy under argon atmosphere at 0%, 50%, and 80% relative humidity. The dimensionality of surface features obtained through autocorrelation analysis of topological maps increased linearly with increased relative humidity, as water was adsorbed onto the film surface. Surface potential decreased from about 280mV to about 100 mV and resistance decreased from about 5 G to about 3 G , in a nonlinear fashion when relative humidity was increased from 0% to 80%. Spatially resolved surface potential and resistance of the NiO films was found to be heterogeneous throughout the film, with distinct domains that grew in size from about 60 nm to 175 nm at 0% and 80% RH levels, respectively. The heterogeneous character of the topological, surface potential, and resistance properties of the polycrystalline NiO film observed under dry conditions decreased with increased relative humidity, yielding nearly homogeneous surface properties at 80% RH, suggesting that the nanoscale potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO film.

  10. Dwarf Galaxies with Ionizing Radiation Feedback. II. Spatially Resolved Star Formation Relation

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hoon; Krumholz, Mark R.; Wise, John H.; Turk, Matthew J.; Goldbaum, Nathan J.; Abel, Tom

    2013-12-01

    We investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 1011 M ⊙, we find that the correlation between SFR density (estimated from mock Hα emission) and H2 density shows large scatter, especially at high resolutions of lsim75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H2 peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  11. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry

    DOE PAGES

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-01-14

    Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during amore » field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.« less

  12. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry

    SciTech Connect

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-01-14

    Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.

  13. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insighs into particle origin and chemistry

    SciTech Connect

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-04-21

    Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. 1 Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.

  14. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insights into particle origin and chemistry

    NASA Astrophysics Data System (ADS)

    Ghosal, S.; Weber, P. K.; Laskin, A.

    2014-12-01

    Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.

  15. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    NASA Technical Reports Server (NTRS)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  16. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.

    PubMed

    Marica, Florea; Jofré, Sergio Andrés Bea; Mayer, K Ulrich; Balcom, Bruce J; Al, Tom A

    2011-07-01

    This work is focused on measuring the concentration distribution of a conservative tracer in a homogeneous synthetic porous material and in heterogeneous natural sandstone using MRI techniques, and on the use of spatially resolved porosity data to define spatially variable diffusion coefficients in heterogeneous media. The measurements are made by employing SPRITE, a fast MRI method that yields quantitative, spatially-resolved tracer concentrations in porous media. Diffusion experiments involving the migration of H(2)O into D(2)O-saturated porous media are conducted. One-dimensional spatial distributions of H(2)O-tracer concentrations acquired from experiments with the homogeneous synthetic calcium silicate are fitted with the one-dimensional analytical solution of Fick's second law to confirm that the experimental method provides results that are consistent with expectations for Fickian diffusion in porous media. The MRI-measured concentration profiles match well with the solution for Fick's second law and provide a pore-water diffusion coefficient of 1.75×10(-9)m(2)s(-1). The experimental approach was then extended to evaluate diffusion in a heterogeneous natural sandstone in three dimensions. The relatively high hydraulic conductivity of the sandstone, and the contrast in fluid density between the H(2)O tracer and the D(2)O pore fluid, lead to solute transport by a combination of diffusion and density-driven advection. The MRI measurements of spatially distributed tracer concentration, combined with numerical simulations allow for the identification of the respective influences of advection and diffusion. The experimental data are interpreted with the aid of MIN3P-D - a multicomponent reactive transport code that includes the coupled processes of diffusion and density-driven advection. The model defines local diffusion coefficients as a function of spatially resolved porosity measurements. The D(e) values calculated for the heterogeneous sandstone and used to

  17. Determination of spatially-resolved porosity, tracer distributions and diffusion coefficients in porous media using MRI measurements and numerical simulations.

    PubMed

    Marica, Florea; Jofré, Sergio Andrés Bea; Mayer, K Ulrich; Balcom, Bruce J; Al, Tom A

    2011-07-01

    This work is focused on measuring the concentration distribution of a conservative tracer in a homogeneous synthetic porous material and in heterogeneous natural sandstone using MRI techniques, and on the use of spatially resolved porosity data to define spatially variable diffusion coefficients in heterogeneous media. The measurements are made by employing SPRITE, a fast MRI method that yields quantitative, spatially-resolved tracer concentrations in porous media. Diffusion experiments involving the migration of H(2)O into D(2)O-saturated porous media are conducted. One-dimensional spatial distributions of H(2)O-tracer concentrations acquired from experiments with the homogeneous synthetic calcium silicate are fitted with the one-dimensional analytical solution of Fick's second law to confirm that the experimental method provides results that are consistent with expectations for Fickian diffusion in porous media. The MRI-measured concentration profiles match well with the solution for Fick's second law and provide a pore-water diffusion coefficient of 1.75×10(-9)m(2)s(-1). The experimental approach was then extended to evaluate diffusion in a heterogeneous natural sandstone in three dimensions. The relatively high hydraulic conductivity of the sandstone, and the contrast in fluid density between the H(2)O tracer and the D(2)O pore fluid, lead to solute transport by a combination of diffusion and density-driven advection. The MRI measurements of spatially distributed tracer concentration, combined with numerical simulations allow for the identification of the respective influences of advection and diffusion. The experimental data are interpreted with the aid of MIN3P-D - a multicomponent reactive transport code that includes the coupled processes of diffusion and density-driven advection. The model defines local diffusion coefficients as a function of spatially resolved porosity measurements. The D(e) values calculated for the heterogeneous sandstone and used to

  18. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS₂ by hyperspectral imaging.

    PubMed

    Castellanos-Gomez, Andres; Quereda, Jorge; van der Meulen, Herko P; Agraït, Nicolás; Rubio-Bollinger, Gabino

    2016-03-18

    The possibility of spatially resolving the optical properties of atomically thin materials is especially appealing as they can be modulated at the micro- and nanoscale by reducing their thickness, changing the doping level or applying a mechanical deformation. Therefore, optical spectroscopy techniques with high spatial resolution are necessary to get a deeper insight into the properties of two-dimensional (2D) materials. Here we study the optical absorption of single- and few-layer molybdenum disulfide (MoS2) in the spectral range from 1.24 eV to 3.22 eV (385 nm to 1000 nm) by developing a hyperspectral imaging technique that allows one to probe the optical properties with diffraction limited spatial resolution. We find hyperspectral imaging very suited to study indirect bandgap semiconductors, unlike photoluminescence which only provides high luminescence yield for direct gap semiconductors. Moreover, this work opens the door to study the spatial variation of the optical properties of other 2D systems, including non-semiconducting materials where scanning photoluminescence cannot be employed. PMID:26876671

  19. The CALIFA survey across the Hubble sequence. Spatially resolved stellar population properties in galaxies

    NASA Astrophysics Data System (ADS)

    González Delgado, R. M.; García-Benito, R.; Pérez, E.; Cid Fernandes, R.; de Amorim, A. L.; Cortijo-Ferrero, C.; Lacerda, E. A. D.; López Fernández, R.; Vale-Asari, N.; Sánchez, S. F.; Mollá, M.; Ruiz-Lara, T.; Sánchez-Blázquez, P.; Walcher, C. J.; Alves, J.; Aguerri, J. A. L.; Bekeraité, S.; Bland-Hawthorn, J.; Galbany, L.; Gallazzi, A.; Husemann, B.; Iglesias-Páramo, J.; Kalinova, V.; López-Sánchez, A. R.; Marino, R. A.; Márquez, I.; Masegosa, J.; Mast, D.; Méndez-Abreu, J.; Mendoza, A.; del Olmo, A.; Pérez, I.; Quirrenbach, A.; Zibetti, S.

    2015-09-01

    Various different physical processes contribute to the star formation and stellar mass assembly histories of galaxies. One important approach to understanding the significance of these different processes on galaxy evolution is the study of the stellar population content of today's galaxies in a spatially resolved manner. The aim of this paper is to characterize in detail the radial structure of stellar population properties of galaxies in the nearby universe, based on a uniquely large galaxy sample, considering the quality and coverage of the data. The sample under study was drawn from the CALIFA survey and contains 300 galaxies observed with integral field spectroscopy. These cover a wide range of Hubble types, from spheroids to spiral galaxies, while stellar masses range from M⋆ ~ 109 to 7 × 1011 M⊙. We apply the fossil record method based on spectral synthesis techniques to recover the following physical properties for each spatial resolution element in our target galaxies: the stellar mass surface density (μ⋆), stellar extinction (AV), light-weighted and mass-weighted ages (⟨log age⟩L, ⟨log age⟩M), and mass-weighted metallicity (⟨log Z⋆⟩M). To study mean trends with overall galaxy properties, the individual radial profiles are stacked in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd). We confirm that more massive galaxies are more compact, older, moremetal rich, and less reddened by dust. Additionally, we find that these trends are preserved spatially with the radial distance to the nucleus. Deviations from these relations appear correlated with Hubble type: earlier types are more compact, older, and more metal rich for a given M⋆, which is evidence that quenching is related to morphology, but not driven by mass. Negative gradients of ⟨log age⟩L are consistent with an inside-out growth of galaxies, with the largest ⟨log age⟩L gradients in Sb-Sbc galaxies. Further, the mean stellar ages of disks and bulges are

  20. A comparison of magnetic resonance methods for spatially resolved T2 distribution measurements in porous media

    NASA Astrophysics Data System (ADS)

    Vashaee, S.; Marica, F.; Newling, B.; Balcom, B. J.

    2015-05-01

    Naturally occurring porous media are usually characterized by a distribution of pore sizes. If the material is fluid saturated, the 1H magnetic resonance (MR) signal depends on the pore size, the surface relaxivity and the fluid itself. Measurement of the transverse relaxation time T2 is a well-established technique to characterize material samples by means of MR. T2 distribution measurements, including T2 distribution mapping, are widely employed in clinical applications and in petroleum engineering. T2 distribution measurements are the most basic measurement employed to determine the fluid-matrix properties in MR core analysis. Three methods for T2 distribution mapping, namely spin-echo single point imaging (SE-SPI), DANTE-Z Carr-Purcell-Meiboom-Gill (CPMG) and adiabatic inversion CPMG are compared in terms of spatial resolution, minimum observable T2 and sensitivity. Bulk CPMG measurement is considered to be the gold standard for T2 determination. Bulk measurement of uniform samples is compared to the three spatially resolved measurements. SE-SPI is an imaging method, which measures spatially resolved T2s in samples of interest. A variant is introduced in this work that employs pre-equalized magnetic field gradient waveforms and is therefore able to measure shorter T2s than previously reported. DANTE-Z CPMG and adiabatic inversion CPMG are faster, non-imaging, local T2 distribution measurements. The DANTE-Z pulse train and adiabatic inversion pulse are compared in terms of T1 or T2 relaxation time effects during the RF pulse application, minimum pulse duration, requisite RF pulse power, and inversion profile quality. In addition to experimental comparisons, simulation results are presented.

  1. Spatially resolved measurements of mean spin-spin relaxation time constants.

    PubMed

    Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J

    2014-02-01

    Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples. PMID:24361482

  2. Spatially resolved measurements of mean spin-spin relaxation time constants

    NASA Astrophysics Data System (ADS)

    Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J.

    2014-02-01

    Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples.

  3. Peach maturity/quality assessment using hyperspectral imaging-based spatially resolved technique

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan; Lu, Renfu; Mendoza, Fernando A.; Ariana, Diwan P.

    2011-06-01

    The objective of this research was to measure the absorption (μa) and reduced scattering coefficients (μs') of peaches, using a hyperspectral imaging-based spatially-resolved method, for their maturity/quality assessment. A newly developed optical property measuring instrument was used for acquiring hyperspectral reflectance images of 500 'Redstar' peaches. μa and μs' spectra for 515-1,000 nm were extracted from the spatially-resolved reflectance profiles using a diffusion model coupled with an inverse algorithm. The absorption spectra of peach fruit presented several absorption peaks around 525 nm for anthocyanin, 620 nm for chlorophyll-b, 675 nm for chlorophyll-a, and 970 nm for water, while μs' decreased consistently with the increase of wavelength for most of the tested samples. Both μa and μs' were correlated with peach firmness, soluble solids content (SSC), and skin and flesh color parameters. Better prediction results for partial least squares models were obtained using the combined values of μa and μs' (i.e., μa × μs' and μeff) than using μa or μs', where μeff = [3 μa (μa + μs')]1/2 is the effective attenuation coefficient. The results were further improved using least squares support vector machine models with values of the best correlation coefficient for firmness, SSC, skin lightness and flesh lightness being 0.749 (standard error of prediction or SEP = 17.39 N), 0.504 (SEP = 0.92 °Brix), 0.898 (SEP = 3.45), and 0.741 (SEP = 3.27), respectively. These results compared favorably to acoustic and impact firmness measurements with the correlation coefficient of 0.639 and 0.631, respectively. Hyperspectral imaging-based spatially-resolved technique is useful for measuring the optical properties of peach fruit, and it also has good potential for assessing fruit maturity/quality attributes.

  4. In situ spatially and temporally resolved measurements of salt concentration between charging porous electrodes for desalination by capacitive deionization.

    PubMed

    Suss, Matthew E; Biesheuvel, P M; Baumann, Theodore F; Stadermann, Michael; Santiago, Juan G

    2014-01-01

    Capacitive deionization (CDI) is an emerging water desalination technique. In CDI, pairs of porous electrode capacitors are electrically charged to remove salt from brackish water present between the electrodes. We here present a novel experimental technique allowing measurement of spatially and temporally resolved salt concentration between the CDI electrodes. Our technique measures the local fluorescence intensity of a neutrally charged fluorescent probe which is collisionally quenched by chloride ions. To our knowledge, our system is the first to measure in situ and spatially resolved chloride concentration in a laboratory CDI cell. We here demonstrate good agreement between our dynamic measurements of salt concentration in a charging, millimeter-scale CDI system to the results of a modified Donnan porous electrode transport model. Further, we utilize our dynamic measurements to demonstrate that salt removal between our charging CDI electrodes occurs on a longer time scale than the capacitive charging time scales of our CDI cell. Compared to typical measurements of CDI system performance (namely, measurements of outflow ionic conductivity), our technique can enable more advanced and better-controlled studies of ion transport in CDI systems, which can potentially catalyze future performance improvements.

  5. Spatially resolved integral field spectroscopy of the ionized gas in IZw18

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Hernández-Fernández, J. D.; Duarte Puertas, S.; Brinchmann, J.; Durret, F.; Kunth, D.

    2016-07-01

    We present a detailed 2D study of the ionized ionized interstellar medium (ISM) of IZw18 using new Potsdam Multi-Aperture Spectrophotometer-integral field unit (PMAS-IFU) optical observations. IZw18 is a high-ionization galaxy which is among the most metal-poor starbursts in the local Universe. This makes IZw18 a local benchmark for understanding the properties most closely resembling those prevailing at distant starbursts. Our IFU aperture (˜1.4 × 1.4 kpc2) samples the entire IZw18 main body and an extended region of its ionized gas. Maps of relevant emission lines and emission line ratios show that higher-excitation gas is preferentially located close to the north-west knot and thereabouts. We detect a Wolf-Rayet feature near the north-west knot. We derive spatially resolved and integrated physical-chemical properties for the ionized gas in IZw18. We find no dependence between the metallicity indicator R23 and the ionization parameter (as traced by [O III]/[O II]) across IZw18. Over ˜0.30 kpc2, using the [O III] λ4363 line, we compute Te[O III] values (˜15 000-25 000 K), and oxygen abundances are derived from the direct determinations of Te[O III]. More than 70 per cent of the higher-Te[O III] (≳22 000 K) spaxels are He IIλ4686-emitting spaxels too. From a statistical analysis, we study the presence of variations in the ISM physical-chemical properties. A galaxy-wide homogeneity, across hundreds of parsecs, is seen in O/H. Based on spaxel-by-spaxel measurements, the error-weighted mean of 12 + log(O/H) = 7.11 ± 0.01 is taken as the representative O/H for IZw18. Aperture effects on the derivation of O/H are discussed. Using our IFU data we obtain, for the first time, the IZw18 integrated spectrum.

  6. ALMA Observation of Neptune's Spatially-resolved Stratospheric HCN ( J = 4-3)

    NASA Astrophysics Data System (ADS)

    Iino, Takahiro; Nakamoto, Satoru; Tsukagoshi, Takashi; Tanaka, Kunihiko; Tanaka, Yuki; Hirahara, Yasuhiro

    2016-10-01

    Neptune's stratospheric HCN(J = 4 - 3) rotational transition was observed by Atacama Large Millimeter-submillimeter Array (ALMA). 19 12-m antennas with the Band-7 receivers spatially resolved Neptune's 2.3'' diameter disk with 0.4'' times 0.6'' synthesized beam. The HCN emission line was clearly detected on the entire disk. The wind velocity map of the stratosphere was illustrated by the Doppler-shift analysis of the HCN emission, and the structured zonal wind whose maximum velocity reaches as high as 600 m/s in the high latitude region of the southern hemisphere was detected. Respective the westward and eastward zonal winds were observed for the northern and southern hemisphere.

  7. The Fossil Record of Black Hole Seeds, with Spatially Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; CANDELS, 3D-HST

    2016-01-01

    I will present the first robust measurement of black hole occupation over a wide range of host galaxy mass (8spatially resolved spectroscopy, which reliably distinguishes a nuclear AGN from extended star formation and largely avoids the star-formation dilution bias plaguing traditional low-mass AGN selection. The observations suggest bimodal seed formation: while many low-mass galaxies host massive black holes, their black hole occupation is ~10% that of massive galaxies. The measured black hole occupation qualitatively agrees with theoretical models of black hole formation, with massive direct-collapse seeds forming only in massive halos and black hole formation confined to lower-mass Pop III remnants in small halos.

  8. Spatially resolved element analysis of historical violin varnishes by use of muPIXE.

    PubMed

    von Bohlen, Alex; Röhrs, Stefan; Salomon, Joseph

    2007-02-01

    External muPIXE has been used for characterisation of small samples of varnish from historical violins, and pieces of varnished wood from historical and modern stringed instruments. To obtain spatially resolved information about the distribution of elements across the varnish layers single-spot analysis, line-scans, and area-mapping were performed. Local resolution of approximately 20 mum was obtained from the 3 MeV, 1 nA proton micro-probe. Results from simultaneous multi-element determination of Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Ag, Cd, Sn, Ba, and Pb in historical varnishes are presented. Semi-quantitative evaluation of line-scans recorded on diverse historical varnishes is reported. The applied method is discussed in detail and the results obtained are critically reviewed and compared with those in the literature. PMID:17047941

  9. Spatially-resolved X-ray scattering measurements of a planar blast wave

    NASA Astrophysics Data System (ADS)

    Gamboa, E. J.; Keiter, P. A.; Drake, R. P.; Falk, K.; Montgomery, D. S.; Benage, J. F.

    2014-06-01

    We present X-ray scattering measurements characterizing the spatial temperature and ionization profile of a blast wave driven in a near-solid density foam. Several-keV X-rays scattered from a laser-driven blast wave in a carbon foam. We resolved the scattering in high resolution in space and wavelength to extract the plasma conditions along the propagation direction of the blast wave. We infer temperatures of 20-40 eV and ionizations of 2-4 in the shock and rarefaction regions of the blast wave. This range of measured ionization states allows for a detailed comparison between different models for the bound-free scattering. FLYCHK simulations of the temperature-ionization balance generally agree with the experimental values in the shocked region while consistently underestimating the ionization in the rarefaction.

  10. Spatially-resolved investigation of transport in semiconductors: a photothermal deflection approach

    SciTech Connect

    Skumanich, A.; Fournier, D.; Boccara, A.C.; Amer, N.M.

    1985-06-01

    The unique ability of photothermal deflection spectroscopy to probe the local index of refraction of matter is exploited to investigate, in a spatially-resolved manner, thermal and electronic transport in semiconductors. An added advantage of this approach is that it is contactless; hence, it obviates the classical problems associated with electrodes and contacts. The basic premise of the technique is the use of the heat associated with non-radiative processes (e.g., recombination of carriers) to deflect a focussed laser probe beam (sub-gap energy) propagating through the semiconductor. The deflection of the probe beam is caused by a change in the refractive index of the sample which is in turn governed by carrier diffusion and recombination.

  11. Instrument for spatially resolved simultaneous measurements of forces and currents in particle beams

    SciTech Connect

    Spethmann, A. Trottenberg, T. Kersten, H.

    2015-01-15

    The article presents a device for spatially resolved and simultaneous measurements of forces and currents in particle beams, especially in beams composed of ions and neutral atoms. The forces are exerted by the impinging beam particles on a plane circular conductive target plate of 20 mm diameter mounted on a pendulum with electromagnetic force compensation. The force measurement in the micronewton range is achieved by electromagnetic compensation by means of static Helmholtz coils and permanent magnets attached to the pendulum. Exemplary measurements are performed in the 1.2 keV beam of a broad beam ion source. The simultaneous measurements of forces and currents onto the same target are compared with each other and with Faraday cup measurements.

  12. Electronic transport characterization of silicon wafers by spatially resolved steady-state photocarrier radiometric imaging

    SciTech Connect

    Wang, Qian; Li, Bincheng

    2015-09-28

    Spatially resolved steady-state photocarrier radiometric (PCR) imaging technique is developed to characterize the electronic transport properties of silicon wafers. Based on a nonlinear PCR theory, simulations are performed to investigate the effects of electronic transport parameters (the carrier lifetime, the carrier diffusion coefficient, and the front surface recombination velocity) on the steady-state PCR intensity profiles. The electronic transport parameters of an n-type silicon wafer are simultaneously determined by fitting the measured steady-state PCR intensity profiles to the three-dimensional nonlinear PCR model. The determined transport parameters are in good agreement with the results obtained by the conventional modulated PCR technique with multiple pump beam radii.

  13. Growth-induced Stacking Faults of ZnO Nanorods Probed by Spatial Resolved Cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Xie, Yong; Jie, Wan-Qi; Wang, Tao; Wiedenmann, Michael; Neuschl, Benjamin; Madel, Manfred; Wang, Ya-Bin; Feneberg, Martin; Thonke, Klaus

    2012-07-01

    Low density ZnO nanorods are grown by modified chemical vapor deposition on silicon substrates using gold as a catalyst. We use high resolution photoluminescence spectroscopy to gain the optical properties of these nanorods in large scale. The as-grown samples show sharp near-band-gap luminescence with a full width at half maximum of bound exciton peaks at about 300 μeV, and the ratio of ultraviolet/yellow luminescence larger than 100. Highly spatial and spectral resolved scanning electron microscope-cathodoluminescence is performed to excite the ZnO nanorods in single rods or different positions of single rods with the vapour-solid growth mechanism. The bottom of the nanorod has a 3.31-eV luminescence, which indicates that basal plane stacking faults are related to the defects that are created at the first stage of growth due to the misfit between ZnO and Si.

  14. Muscle oxygenation during exercise under hypoxic conditions assessed by spatially resolved broadband NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Geraskin, Dmitri; Platen, Petra; Franke, Julia; Andre, Christiane; Bloch, Wilhelm; Kohl-Bareis, Matthias

    2005-08-01

    Near-infrared spectroscopy (NIRS) is used for the non-invasive measurement of muscle oxygenation during an incremental cycle test in healthy volunteers. A broad band spatially resolved system is used that allows the reliability of current algorithms to be inspected with the main emphasis on tissue oxygen saturation (SO2) and oxygenated and deoxygenated haemoglobin concentrations. Physiological conditions were modulated by changing oxygen supply from normal (21 % O2 in inspired air) to conditions corresponding to 2000 and 4000 m altitude above sea level (15.4 and 11.9 % O2). Under these hypoxic conditions the decrease in SO2 with increased exercise power is highly correlated with the oxygen content of the inspired air. There is a clear correlation with physiological parameters (heart rate, pulse oxymetry, blood gas, lactate, spirometric data). Skin oxygenation parameters are compared to those of muscle.

  15. Spatially-resolved X-ray Scattering off shock-compressed carbon at the LCLS

    NASA Astrophysics Data System (ADS)

    Zastrau, Ulf

    2015-06-01

    The diversity of the electronic properties of carbon makes it of key interest to the material science community; nowhere is this more evident than in the myriad potential applications of structured allotropes like grapheme and nano tubes. By contrast, at the high pressures typical of planetary and stellar interiors, the behavior of carbon is poorly understood with large uncertainties in the conductivity and even the material phase. There is growing evidence of the abundance of diamond in the interiors of the ice giant planets Uranus and Neptune; the conductivity of which could potentially influence models for the origin of the unusual magnetic fields of these planets. In laboratory experiments, practical issues with gradients in the temperature and density of shock compressed matter have hindered accurate measurement and further from distinguishing theoretical models. Here, we present spatially resolved x-ray scattering experiments using LCLS free electron laser to examine and understand the gradients of thermal properties under dynamic shock loading. We employed curved mosaic and perfect imaging crystals. Compared with hydro-dynamic simulations, we present time-resolved data on plasmon dispersion, axial compression gradients and finally carbon melting at shock coalescence.

  16. Spatially resolved observations of a split-band coronal type II radio burst

    NASA Astrophysics Data System (ADS)

    Zimovets, I.; Vilmer, N.; Chian, A. C.-L.; Sharykin, I.; Struminsky, A.

    2012-11-01

    Context. The origin of coronal type II radio bursts and the nature of their band splitting are still not fully understood, though a number of scenarios have been proposed to explain them. This is largely due to the lack of detailed spatially resolved observations of type II burst sources and of their relations to magnetoplasma structure dynamics in parental active regions. Aims: To make progress in solving this problem on the basis of one extremely well observed solar eruptive event. Methods: The relative dynamics of multithermal eruptive plasmas, observed in detail by the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory, and of harmonic type II burst sources, observed by the Nançay Radioheliograph at ten frequencies from 445 to 151 MHz, was studied for the 3 November 2010 event arising from an active region behind the east solar limb. Special attention was given to the band splitting of the burst. Analysis was supplemented by investigation of coronal hard X-ray (HXR) sources observed by the Reuven Ramaty High-Energy Solar Spectroscopic Imager. Results: We found that the flare impulsive phase was accompanied by the formation of a double coronal HXR source, whose upper part coincided with the hot (T ≈ 10 MK) eruptive plasma blob. The leading edge (LE) of the eruptive plasmas (T ≈ 1-2 MK) moved upward from the flare region with a speed of v ≈ 900-1400 km s-1. The type II burst source initially appeared just above the LE apex and moved with the same speed and in the same direction. After ≈ 20 s, it started to move about twice as fast, but still in the same direction. At any given moment, the low-frequency component (LFC) source of the splitted type II burst was situated above the high-frequency component (HFC) source, which in turn was situated above the LE. We also found that at a given frequency the HFC source was located slightly closer to the photosphere than the LFC source. Conclusions: Based on the set of established observational

  17. Spatially and momentum resolved energy electron loss spectra from an ultra-thin PrNiO{sub 3} layer

    SciTech Connect

    Kinyanjui, M. K. Kaiser, U.; Benner, G.; Pavia, G.; Boucher, F.; Habermeier, H.-U.; Keimer, B.

    2015-05-18

    We present an experimental approach which allows for the acquisition of spectra from ultra-thin films at high spatial, momentum, and energy resolutions. Spatially and momentum (q) resolved electron energy loss spectra have been obtained from a 12 nm ultra-thin PrNiO{sub 3} layer using a nano-beam electron diffraction based approach which enabled the acquisition of momentum resolved spectra from individual, differently oriented nano-domains and at different positions of the PrNiO{sub 3} thin layer. The spatial and wavelength dependence of the spectral excitations are obtained and characterized after the analysis of the experimental spectra using calculated dielectric and energy loss functions. The presented approach makes a contribution towards obtaining momentum-resolved spectra from nanostructures, thin film, heterostructures, surfaces, and interfaces.

  18. Scanning magnetic resonance microscopy: Spatially resolved imaging of ferromagnetic resonance on yttrium iron garnet disk.

    NASA Astrophysics Data System (ADS)

    An, Toshu; Eguchi, Toyoaki; Hasegawa, Yukio

    2009-03-01

    We developed a radio frequency (RF) probe which can be implemented into scanning probe microscope aiming for its spatially resolved imaging. The probe is composed of a sharp tip attached at the end of a semi-rigid coaxial cable which transmits RF over 10 GHz. To measure ferromagnetic resonance (FMR) of a sample, the probe is set close to the sample, and the S11 parameter was measured by using a network analyzer. As a test magnetic sample, a 10 mm-diameter and 1 mm-thickness polycrystalline YIG (yttrium iron garnet) disk was used. By locating the RF probe at the center of the YIG disk, FMR signal was detected as an absorption dip at 2.8 GHz in the S11 measurements under in-plane static magnetic field of 458 Oe. The detected FMR signal has a sharper dip compared with that obtained in the coplanar wave guide method, and by moving the RF probe to the edge of the YIG disk, two different frequencies of FMR signal appears depending on the moving direction parallel or perpendicular to the applied magnetic field. The detected spatially dependent FMR signals are well explained by the magnetostatic waves.

  19. Spatially resolved observations of coronal type II radio bursts with multiple lanes

    NASA Astrophysics Data System (ADS)

    Zimovets, Ivan; Vilmer, Nicole; Sadykov, Viacheslav

    We have analyzed two coronal type II radio bursts occurred during solar flare and CME events of 3 November 2010 and 16 February 2011. Characteristic feature of both these bursts is a separation into three bands (lanes) of emission. Joint analysis of spatially-resolved observations made by the Nancay Radioheliograph and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory have shown that in both cases all three lanes were most probably emitted from above the CMEs. Radio sources of the first and the second lanes of each burst were located very close to each other and it is difficult to say unambiguously whether they were emitted from slightly different parts of a hypothetical shock front or from its upstream and downstream regions. However, emission region of the third lane, at least of the type II burst on 16 February 2011, was significantly different from emission region of the first two lanes. This confirms an old idea that different parts of a spatially extended non-planar shock wave can emit radiowaves from its different parts interacting with different coronal structures. Properties of these coronal structures are discussed.

  20. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy.

    PubMed

    Hager, J D; Lanier, N E; Kline, J L; Flippo, K A; Bruns, H C; Schneider, M; Saculla, M; McCarville, T

    2014-11-01

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO2 foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured. PMID:25430177

  1. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    SciTech Connect

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B; Morreale, Bryan D; Gellman, Andrew J

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  2. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2

    PubMed Central

    Hung, Victoria; Udeshi, Namrata D; Lam, Stephanie S; Loh, Ken H; Cox, Kurt J; Pedram, Kayvon; Carr, Steven A; Ting, Alice Y

    2016-01-01

    This protocol describes a method to obtain spatially resolved proteomic maps of specific compartments within living mammalian cells. An engineered peroxidase, APEX2, is genetically targeted to a cellular region of interest. Upon the addition of hydrogen peroxide for 1 min to cells preloaded with a biotin-phenol substrate, APEX2 generates biotin-phenoxyl radicals that covalently tag proximal endogenous proteins. Cells are then lysed, and biotinylated proteins are enriched with streptavidin beads and identified by mass spectrometry. We describe the generation of an appropriate APEX2 fusion construct, proteomic sample preparation, and mass spectrometric data acquisition and analysis. A two-state stable isotope labeling by amino acids in cell culture (SILAC) protocol is used for proteomic mapping of membrane-enclosed cellular compartments from which APEX2-generated biotin-phenoxyl radicals cannot escape. For mapping of open cellular regions, we instead use a ‘ratiometric’ three-state SILAC protocol for high spatial specificity. Isotopic labeling of proteins takes 5–7 cell doublings. Generation of the biotinylated proteomic sample takes 1 d, acquiring the mass spectrometric data takes 2–5 d and analysis of the data to obtain the final proteomic list takes 1 week. PMID:26866790

  3. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy

    SciTech Connect

    Hager, J. D. Lanier, N. E.; Kline, J. L.; Flippo, K. A.; Bruns, H. C.; Schneider, M.; Saculla, M.; McCarville, T.

    2014-11-15

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO{sub 2} foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

  4. SPATIALLY RESOLVED SPECTROSCOPY OF THE GLOBULAR CLUSTER RZ 2109 AND THE NATURE OF ITS BLACK HOLE

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.; Kundu, Arunav; Maccarone, Thomas J.; Rhode, Katherine L.; Salzer, John J.; Waters, Christopher Z.; Ciardullo, Robin; Gronwall, Caryl; Stern, Daniel

    2012-11-10

    We present optical Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) spectroscopy of RZ 2109, a globular cluster (GC) in the elliptical galaxy NGC 4472. This GC is notable for hosting an ultraluminous X-ray source as well as associated strong and broad [O III] {lambda}{lambda}4959, 5007 emission. We show that the HST/STIS spectroscopy spatially resolves the [O III] emission in RZ 2109. While we are unable to make a precise determination of the morphology of the emission-line nebula, the best-fitting models all require that the [O III] {lambda}5007 emission has a half-light radius in the range 3-7 pc. The extended nature of the [O III] {lambda}5007 emission is inconsistent with published models that invoke an intermediate-mass black hole origin. It is also inconsistent with the ionization of ejecta from a nova in the cluster. The spatial scale of the nebula could be produced via the photoionization of a strong wind driven from a stellar mass black hole accreting at roughly its Eddington rate.

  5. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis.

    PubMed

    Horn, R; Korup, O; Geske, M; Zavyalova, U; Oprea, I; Schlögl, R

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 degrees C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with microm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated alpha-Al(2)O(3) foam supports. PMID:20590252

  6. Spatial resolving power and spectral sensitivity of the saltwater crocodile, Crocodylus porosus, and the freshwater crocodile, Crocodylus johnstoni.

    PubMed

    Nagloo, Nicolas; Collin, Shaun P; Hemmi, Jan M; Hart, Nathan S

    2016-05-01

    Crocodilians are apex amphibious predators that occupy a range of tropical habitats. In this study, we examined whether their semi-aquatic lifestyle and ambush hunting mode are reflected in specific adaptations in the peripheral visual system. Design-based stereology and microspectrophotometry were used to assess spatial resolving power and spectral sensitivity of saltwater (Crocodylus porosus) and freshwater crocodiles (Crocodylus johnstoni). Both species possess a foveal streak that spans the naso-temporal axis and mediates high spatial acuity across the central visual field. The saltwater crocodile and freshwater crocodile have a peak spatial resolving power of 8.8 and 8.0 cycles deg(-1), respectively. Measurement of the outer segment dimensions and spectral absorbance revealed five distinct photoreceptor types consisting of three single cones, one twin cone and a rod. The three single cones (saltwater/freshwater crocodile) are violet (424/426 nm λmax), green (502/510 nm λmax) and red (546/554 nm λmax) sensitive, indicating the potential for trichromatic colour vision. The visual pigments of both members of the twin cones have the same λmax as the red-sensitive single cone and the rod has a λmax at 503/510 nm (saltwater/freshwater). The λmax values of all types of visual pigment occur at longer wavelengths in the freshwater crocodile compared with the saltwater crocodile. Given that there is a greater abundance of long wavelength light in freshwater compared with a saltwater environment, the photoreceptors would be more effective at detecting light in their respective habitats. This suggests that the visual systems of both species are adapted to the photic conditions of their respective ecological niche. PMID:27208035

  7. Spatial resolving power and spectral sensitivity of the saltwater crocodile, Crocodylus porosus, and the freshwater crocodile, Crocodylus johnstoni.

    PubMed

    Nagloo, Nicolas; Collin, Shaun P; Hemmi, Jan M; Hart, Nathan S

    2016-05-01

    Crocodilians are apex amphibious predators that occupy a range of tropical habitats. In this study, we examined whether their semi-aquatic lifestyle and ambush hunting mode are reflected in specific adaptations in the peripheral visual system. Design-based stereology and microspectrophotometry were used to assess spatial resolving power and spectral sensitivity of saltwater (Crocodylus porosus) and freshwater crocodiles (Crocodylus johnstoni). Both species possess a foveal streak that spans the naso-temporal axis and mediates high spatial acuity across the central visual field. The saltwater crocodile and freshwater crocodile have a peak spatial resolving power of 8.8 and 8.0 cycles deg(-1), respectively. Measurement of the outer segment dimensions and spectral absorbance revealed five distinct photoreceptor types consisting of three single cones, one twin cone and a rod. The three single cones (saltwater/freshwater crocodile) are violet (424/426 nm λmax), green (502/510 nm λmax) and red (546/554 nm λmax) sensitive, indicating the potential for trichromatic colour vision. The visual pigments of both members of the twin cones have the same λmax as the red-sensitive single cone and the rod has a λmax at 503/510 nm (saltwater/freshwater). The λmax values of all types of visual pigment occur at longer wavelengths in the freshwater crocodile compared with the saltwater crocodile. Given that there is a greater abundance of long wavelength light in freshwater compared with a saltwater environment, the photoreceptors would be more effective at detecting light in their respective habitats. This suggests that the visual systems of both species are adapted to the photic conditions of their respective ecological niche.

  8. Direct asymmetry measurement of temperature and density spatial distributions in inertial confinement fusion plasmas from pinhole space-resolved spectra

    SciTech Connect

    Nagayama, T.; Mancini, R. C.; Florido, R.; Mayes, D.; Tommasini, R.; Koch, J. A.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.

    2014-05-15

    Two-dimensional space-resolved temperature and density images of an inertial confinement fusion (ICF) implosion core have been diagnosed for the first time. Argon-doped, direct-drive ICF experiments were performed at the Omega Laser Facility and a collection of two-dimensional space-resolved spectra were obtained from an array of gated, spectrally resolved pinhole images recorded by a multi-monochromatic x-ray imager. Detailed spectral analysis revealed asymmetries of the core not just in shape and size but in the temperature and density spatial distributions, thus characterizing the core with an unprecedented level of detail.

  9. Vertical carbon-14 profiles for resolving spatial variability in recharge in arid environments

    NASA Astrophysics Data System (ADS)

    Wood, Cameron; Cook, Peter G.; Harrington, Glenn A.

    2015-01-01

    Groundwater age tracers are often measured to help constrain estimates of groundwater recharge, especially in arid environments where other methods are unsuitable. However multiple processes can influence the shape of vertical tracer profiles in an aquifer including (1) variation in tracer input concentrations from the unsaturated zone, (2) the role of diffusion in transporting tracer into the aquifer when fluxes are low and (3) spatial variability in recharge. This study demonstrates the influence of spatially variable recharge and spatially variable carbon-14 (14C) activities in the unsaturated zone on vertical 14C profiles in groundwater. Through groundwater flow and solute transport modelling, we demonstrate that recharge estimated from single point measurements of 14C may be wrong more than an order of magnitude when unsaturated zone 14C activities and recharge vary spatially. We then present a case study from the Ti Tree Basin in arid central Australia, where detailed profiles of 14C activity in unsaturated zone gas and groundwater have been measured, and spatial variability in unsaturated zone 14C is observed (ranging from 54 to 106 pMC above the watertable). Through modelling our data, we show that when unsaturated zone 14C activities are known, measurement of the 14C profile can help constrain estimates of recharge and its spatial variability. This approach improves our understanding of groundwater flow in the Ti Tree Basin, by showing mountain front recharge to be an important mechanism.

  10. Spatially-resolved mean flow and turbulence help explain observed erosion and deposition patterns of snow over Antarctic sea ice

    NASA Astrophysics Data System (ADS)

    Trujillo, E.; Giometto, M. G.; Leonard, K. C.; Maksym, T. L.; Meneveau, C. V.; Parlange, M. B.; Lehning, M.

    2014-12-01

    Sea ice-atmosphere interactions are major drivers of patterns of sea ice drift and deformations in the Polar regions, and affect snow erosion and deposition at the surface. Here, we combine analyses of sea ice surface topography at very high-resolutions (1-10 cm), and Large Eddy Simulations (LES) to study surface drag and snow erosion and deposition patterns from process scales to floe scales (1 cm - 100 m). The snow/ice elevations were obtained using a Terrestrial Laser Scanner during the SIPEX II (Sea Ice Physics and Ecosystem eXperiment II) research voyage to East Antarctica (September-November 2012). LES are performed on a regular domain adopting a mixed pseudo-spectral/finite difference spatial discretization. A scale-dependent dynamic subgrid-scale model based on Lagrangian time averaging is adopted to determine the eddy-viscosity in the bulk of the flow. Effects of larger-scale features of the surface on wind flows (those features that can be resolved in the LES) are accounted for through an immersed boundary method. Conversely, drag forces caused by subgrid-scale features of the surface should be accounted for through a parameterization. However, the effective aerodynamic roughness parameter z0 for snow/ice is not known. Hence, a novel dynamic approach is utilized, in which z0 is determined using the constraint that the total momentum flux (drag) must be independent on grid-filter scale. We focus on three ice floe surfaces. The first of these surfaces (October 6, 2012) is used to test the performance of the model, validate the algorithm, and study the spatial distributed fields of resolved and modeled stress components. The following two surfaces, scanned at the same location before and after a snow storm event (October 20/23, 2012), are used to propose an application to study how spatially resolved mean flow and turbulence relates to observed patterns of snow erosion and deposition. We show how erosion and deposition patterns are correlated with the

  11. Spatially resolved penetration depth measurements and vortex manipulation in the ferromagnetic superconductor ErNi2B2C

    DOE PAGES

    Wulferding, Dirk; Yang, Ilkyu; Yang, Jinho; Lee, Minkyung; Choi, Hee Cheul; Bud'ko, Sergey L.; Canfield, Paul C.; Yeom, Han Woong; Kim, Jeehoon

    2015-07-31

    We present a local probe study of the magnetic superconductor ErNi2B2C, using magnetic force microscopy at sub-Kelvin temperatures. ErNi2B2C is an ideal system to explore the effects of concomitant superconductivity and ferromagnetism. At 500 mK, far below the transition to a weakly ferromagnetic state, we directly observe a structured magnetic background on the micrometer scale. We determine spatially resolved absolute values of the magnetic penetration depth λ and study its temperature dependence as the system undergoes magnetic phase transitions from paramagnetic to antiferromagnetic, and to weak ferromagnetic, all within the superconducting regime. We estimate the absolute pinning force of Abrikosovmore » vortices, which shows a position dependence and temperature dependence as well, and discuss the possibility of the purported spontaneous vortex formation.« less

  12. [A Time-Spatial Resolvable High Speed Spectrograph and Its Application on Spectrum Measurement of a Nanosecond Pulsed Underwater Spark Discharge].

    PubMed

    Niu, Zhi-wen; Yan, Xian-feng; Li, Shu-han; Wen, Xiao-qiong; Liu, Jin-yuan

    2015-10-01

    Recently, the diagnosis of the characteristic of pulsed underwater electrical discharges plasma have received significant attention. The measurement of a time-spatial resolved spectrum emitted from a single discharge pulse is important for understanding the time-spatial evolution characteristics of plasma generated by a pulsed high-voltage discharge in water. In this paper, a high speed time-spatial resolvable spectrograph for measuring the emission spectrum of a single electrical discharge pulse was reported. The high speed time-spatial resolvable spectrograph has been constructed by combining an ultrahigh-speed frame camera system with monochromator. Software for the spectral analyzing was also developed. The performance of the spectrograph was tested by using a 632.8 nm He-Ne laser beam at a 1 200 g x mm(-1) grating. The pixel resolution for 632.8 nm spectra is 0.013 nm. The instrument broadening for 632.8 nm spectra is (0.150 ± 0.009)nm when the exposure.time of the camera is 20 ns and the width of entrance slit is 0.2 mm, and increases with increasing the slit width. The change of exposure time of the camera has no influence on the instrument broadening, ensuring the spectrograph in a steady performance while adjusting the exposure time of the camera. With the spectrograph, time-spatial resolved spectra emitted from a single discharge pulse of an underwater nanoseconds spark discharge were obtained. It provides good data for investigating the time-spatial evolution characteristics of the discharge plasma during a single discharge pulse. The spectrograph developed in this work provides a technical approach for studying the time-spatial evolution characteristic of, plasma generated by a single electrical discharge pulse. PMID:26904843

  13. [A Time-Spatial Resolvable High Speed Spectrograph and Its Application on Spectrum Measurement of a Nanosecond Pulsed Underwater Spark Discharge].

    PubMed

    Niu, Zhi-wen; Yan, Xian-feng; Li, Shu-han; Wen, Xiao-qiong; Liu, Jin-yuan

    2015-10-01

    Recently, the diagnosis of the characteristic of pulsed underwater electrical discharges plasma have received significant attention. The measurement of a time-spatial resolved spectrum emitted from a single discharge pulse is important for understanding the time-spatial evolution characteristics of plasma generated by a pulsed high-voltage discharge in water. In this paper, a high speed time-spatial resolvable spectrograph for measuring the emission spectrum of a single electrical discharge pulse was reported. The high speed time-spatial resolvable spectrograph has been constructed by combining an ultrahigh-speed frame camera system with monochromator. Software for the spectral analyzing was also developed. The performance of the spectrograph was tested by using a 632.8 nm He-Ne laser beam at a 1 200 g x mm(-1) grating. The pixel resolution for 632.8 nm spectra is 0.013 nm. The instrument broadening for 632.8 nm spectra is (0.150 ± 0.009)nm when the exposure.time of the camera is 20 ns and the width of entrance slit is 0.2 mm, and increases with increasing the slit width. The change of exposure time of the camera has no influence on the instrument broadening, ensuring the spectrograph in a steady performance while adjusting the exposure time of the camera. With the spectrograph, time-spatial resolved spectra emitted from a single discharge pulse of an underwater nanoseconds spark discharge were obtained. It provides good data for investigating the time-spatial evolution characteristics of the discharge plasma during a single discharge pulse. The spectrograph developed in this work provides a technical approach for studying the time-spatial evolution characteristic of, plasma generated by a single electrical discharge pulse.

  14. A DEBRIS disk around the planet hosting M-star GJ 581 spatially resolved with Herschel

    NASA Astrophysics Data System (ADS)

    Lestrade, J.-F.; Matthews, B. C.; Sibthorpe, B.; Kennedy, G. M.; Wyatt, M. C.; Bryden, G.; Greaves, J. S.; Thilliez, E.; Moro-Martín, A.; Booth, M.; Dent, W. R. F.; Duchêne, G.; Harvey, P. M.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Phillips, N. M.; Rodriguez, D. R.; Su, K. Y. L.; Wilner, D. J.

    2012-12-01

    Debris disks have been found primarily around intermediate and solar mass stars (spectral types A-K) but rarely around low mass M-type stars. We have spatially resolved a debris disk around the remarkable M3-type star GJ 581 hosting multiple planets using deep PACS images at 70, 100 and 160 μm as part of the DEBRIS Program on the Herschel Space Observatory. This is the second spatially resolved debris disk found around an M-type star, after the one surrounding the young star AU Mic (12 Myr). However, GJ 581 is much older (2-8 Gyr), and is X-ray quiet in the ROSAT data. We fit an axisymmetric model of the disk to the three PACS images and found that the best fit model is for a disk extending radially from 25 ± 12 AU to more than 60 AU. Such a cold disk is reminiscent of the Kuiper belt but it surrounds a low mass star (0.3 M⊙) and its fractional dust luminosity Ldust/L∗ of ~ 10-4 is much higher. The inclination limits of the disk found in our analysis make the masses of the planets small enough to ensure the long-term stability of the system according to some dynamical simulations. The disk is collisionally dominated down to submicron-sized grains and the dust cannot be expelled from the system by radiation or wind pressures because of the low luminosity and low X-ray luminosity of GJ 581. We suggest that the correlation between low-mass planets and debris disks recently found for G-type stars also applies to M-type stars. Finally, the known planets, of low masses and orbiting within 0.3 AU from the star, cannot dynamically perturb the disk over the age of the star, suggesting that an additional planet exists at larger distance that is stirring the disk to replenish the dust. Herschel in an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation by NASA.

  15. Millifluidics for Chemical Synthesis and Time-resolved Mechanistic Studies

    PubMed Central

    Krishna, Katla Sai; Biswas, Sanchita; Navin, Chelliah V.; Yamane, Dawit G.; Miller, Jeffrey T.; Kumar, Challa S.S.R.

    2013-01-01

    Procedures utilizing millifluidic devices for chemical synthesis and time-resolved mechanistic studies are described by taking three examples. In the first, synthesis of ultra-small copper nanoclusters is described. The second example provides their utility for investigating time resolved kinetics of chemical reactions by analyzing gold nanoparticle formation using in situ X-ray absorption spectroscopy. The final example demonstrates continuous flow catalysis of reactions inside millifluidic channel coated with nanostructured catalyst. PMID:24327099

  16. Millifluidics for chemical synthesis and time-resolved mechanistic studies.

    PubMed

    Krishna, Katla Sai; Biswas, Sanchita; Navin, Chelliah V; Yamane, Dawit G; Miller, Jeffrey T; Kumar, Challa S S R

    2013-01-01

    Procedures utilizing millifluidic devices for chemical synthesis and time-resolved mechanistic studies are described by taking three examples. In the first, synthesis of ultra-small copper nanoclusters is described. The second example provides their utility for investigating time resolved kinetics of chemical reactions by analyzing gold nanoparticle formation using in situ X-ray absorption spectroscopy. The final example demonstrates continuous flow catalysis of reactions inside millifluidic channel coated with nanostructured catalyst. PMID:24327099

  17. Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration.

    PubMed

    Wu, Chi-Chung; Kruse, Fabian; Vasudevarao, Mohankrishna Dalvoy; Junker, Jan Philipp; Zebrowski, David C; Fischer, Kristin; Noël, Emily S; Grün, Dominic; Berezikov, Eugene; Engel, Felix B; van Oudenaarden, Alexander; Weidinger, Gilbert; Bakkers, Jeroen

    2016-01-11

    In contrast to mammals, zebrafish regenerate heart injuries via proliferation of cardiomyocytes located near the wound border. To identify regulators of cardiomyocyte proliferation, we used spatially resolved RNA sequencing (tomo-seq) and generated a high-resolution genome-wide atlas of gene expression in the regenerating zebrafish heart. Interestingly, we identified two wound border zones with distinct expression profiles, including the re-expression of embryonic cardiac genes and targets of bone morphogenetic protein (BMP) signaling. Endogenous BMP signaling has been reported to be detrimental to mammalian cardiac repair. In contrast, we find that genetic or chemical inhibition of BMP signaling in zebrafish reduces cardiomyocyte dedifferentiation and proliferation, ultimately compromising myocardial regeneration, while bmp2b overexpression is sufficient to enhance it. Our results provide a resource for further studies on the molecular regulation of cardiac regeneration and reveal intriguing differential cellular responses of cardiomyocytes to a conserved signaling pathway in regenerative versus non-regenerative hearts.

  18. Investigation of Solar Flares Using Spectrally, Spatially, and Temporally Resolved Observations in Gamma Rays, Hard X Rays, and Microwaves

    NASA Technical Reports Server (NTRS)

    Crannell, Carol Jo; Oegerle, William (Technical Monitor)

    2003-01-01

    The high-energy components of solar flares radiate at a wide range of wavelengths. We are using spatially, spectrally, and temporally resolved hard X-ray, gamma-ray, and microwave observations of solar flares to investigate flare models and to understand the flare acceleration process. The hard X-ray and gamma-ray observations are obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) spacecraft that was launched on February 5, 2002. The microwave observations are obtained with the Owens Valley Radio Observatory (OVRO), which has been dedicated to daily observations of solar flares in microwaves with a five-element interferometer since June 1992. These studies are expected to yield exciting new insights into the fundamental physics of the flare acceleration processes.

  19. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    SciTech Connect

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.; Paduch, M.; Zielinska, E.; Rosmej, O.; Yongtao, Zhao; Gojska, A.

    2010-10-15

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  20. PMAS optical integral field spectroscopy of luminous infrared galaxies. II. Spatially resolved stellar populations and excitation conditions

    NASA Astrophysics Data System (ADS)

    Alonso-Herrero, A.; García-Marín, M.; Rodríguez Zaurín, J.; Monreal-Ibero, A.; Colina, L.; Arribas, S.

    2010-11-01

    Context. The general properties (e.g., activity class, star formation rates, metallicities, extinctions, average ages, etc.) of luminous (LIRGs) and ultraluminous infrared galaxies (ULIRGs) in the local universe are well known because large samples of these objects have been the subject of numerous spectroscopic works over the past three decades. There are, however, relatively few studies of the spatially-resolved spectroscopic properties of large samples of LIRGs and ULIRGs using integral field spectroscopy (IFS). Aims: We are carrying out an IFS survey of local (z<0.26) samples of LIRGs and ULIRGs to characterize their two-dimensional spectroscopic properties. The main goal of this paper is to study the spatially resolved properties of the stellar populations and the excitation conditions in a sample of LIRGs. Methods: We analyze optical (3800-7200 Å) IFS data taken with the Potsdam Multi-Aperture Spectrophotometer (PMAS) of the central few kiloparsecs of eleven LIRGs. To study these stellar populations, we fit the optical stellar continuum and the hydrogen recombination lines of selected regions in the galaxies. We analyzed the excitation conditions of the gas using the spatially resolved properties of the brightest optical emission lines. We complemented the PMAS observations with existing HST/NICMOS near-infrared continuum and Paα imaging. Results: The optical continua of selected regions in our LIRGs are well fitted with a combination of an evolved (~0.7-10 Gyr) stellar population with an ionizing stellar population (1-20 Myr). The latter population is more obscured than the evolved population, and has visual extinctions in good agreement with those obtained from the Balmer decrement. Except for NGC 7771, we find no clear that there is an important contribution to the optical light from an intermediate-aged stellar population (~100-500 Myr). Even after correcting for the presence of stellar absorption, a large number of spaxels with low observed equivalent

  1. EMCCD based luminescence imaging system for spatially resolved geo-chronometric and radiation dosimetric applications

    NASA Astrophysics Data System (ADS)

    Chauhan, N.; Adhyaru, P.; Vaghela, H.; Singhvi, A. K.

    2014-11-01

    We report the development of an Electron Multiplier Charge Coupled Device (EMCCD) based luminescence dating system. The system enables position sensitive measurements of luminescence for the estimation of spatially resolved distribution of equivalent dose for complex geological samples. The system includes: 1) a sample stimulation unit (with both thermal and optical stimulations), 2) an optics unit that comprises imaging optics and, 3) a data acquisition and processing unit. The system works in a LabVIEW environment with a graphical user interface (GUI). User specified stimulation protocols enable thermal and optical stimulation in any desired combination. The optics unit images the luminescence on to a EMCCD (512 × 512 pixels, each of 16μm × 16μm size) and maintains a unit magnification. This unit has flexible focusing and a filter housing that enables change of filters combinations without disturbing the setup. Time integrated EMCCD images of luminescence from the sample are acquired as a function of programmable dwell time and these images are processed using indigenously developed MATLAB based programs. Additionally, the programs align the acquired images using a set of control points (identifier features on the images) to a single pixel accuracy. The dose evaluation is based on integrated intensity from selected pixels followed by generation of a growth curve giving luminescence as a function of applied beta doses. Development of this EMCCD camera based luminescence system will enable in-situ luminescence measurements of the samples, without the requirement of separating mineral grains from their matrix. It will also allow age estimation of samples such as lithic artifacts/structures via dating of their surfaces, fusion crust of meteorites, pedogenic carbonates, etc and will additionally open up possibilities of application like testing spatial uniformity of doping in artificial luminescence phosphors, dating/dosimetry of inclusions etc.

  2. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz. PMID:26253286

  3. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  4. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in themore » intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.« less

  5. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    SciTech Connect

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  6. Spatially resolved electroluminescence of InGaN-MQW-LEDs[Multiple Quantum Wells-Light Emitting Diodes

    SciTech Connect

    Schwegler, V.; Seyboth, M.; Kirchner, C.; Scherer, M.; Kamp, M.; Fischer, P.; Christen, J.; Zacharias, M.

    2000-07-01

    Electroluminescence (EL) is the most significant measure for light-emitting diodes since it probes the most relevant properties of the fully processed device during operation. In addition to the information gained by conventional spectrally resolved EL, scanning micro-EL provides spatially resolved information. The devices under investigation are InGaN/GaN-LEDs with single peak band-band emission at about 400 nm grown by MOVPE on sapphire substrates. The {mu}-EL-characterization is performed as a function of injection current densities and the emission is investigated from the epitaxial layer as well as from substrate side. Spatially resolved wavelength images reveal emission peaks between 406 nm and 417 nm, corresponding either to In fluctuations of 1--1.5% or local fluctuations of piezo electric fields. Beside the information on the emission wavelength fluctuations {mu}-EL is used to determine the temperature distribution in the LEDs and to investigate transparent contacts.

  7. Spatially resolved micro-absorption spectroscopy with a broadband source and confocal detection

    NASA Astrophysics Data System (ADS)

    Arora, Silki; Mauser, Jennifer; Chakrabarti, Debopam; Schulte, Alfons

    2015-11-01

    We present a novel approach to measure optical absorption spectra with spatial resolution at the micron scale. The setup combines a continuous white light excitation beam in transmission geometry with a confocal microscope. The spatial resolution is found to be better than 1.4 μm in the lateral and 3.6 μm in the axial direction. Employing multichannel detection the absorption spectrum of hemoglobin in a single red blood cell is measured on the timescale of seconds. Through measurements of the transmitted intensity in solutions in nanoliter quantities we establish that the absorbance varies linearly with concentration. Our setup enables the investigation of spatial variations in the optical density of small samples on the micron scale and can be applied to the study of biological assemblies at the single cell level, in optical diagnostics, and in micro-fluidics.

  8. Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration.

    PubMed

    Brewer, Jonathan; Bloksgaard, Maria; Kubiak, Jakub; Sørensen, Jens Ahm; Bagatolli, Luis A

    2013-05-01

    A multiphoton excitation-based fluorescence fluctuation spectroscopy method, Raster image correlation spectroscopy (RICS), was used to measure the local diffusion coefficients of distinct model fluorescent substances in excised human skin. In combination with structural information obtained by multiphoton excitation fluorescence microscopy imaging, the acquired diffusion information was processed to construct spatially resolved diffusion maps at different depths of the stratum corneum (SC). Experiments using amphiphilic and hydrophilic fluorescently labeled molecules show that their diffusion in SC is very heterogeneous on a microscopic scale. This diffusion-based strategy was further exploited to investigate the integrity of liposomes during transdermal penetration. Specifically, the diffusion of dual-color fluorescently labeled liposomes--containing an amphiphilic fluorophore in the lipid bilayer and a hydrophilic fluorophore encapsulated in the liposome lumen--was measured using cross-correlation RICS. This type of experiment allows discrimination between separate (uncorrelated) and joint (correlated) diffusion of the two different fluorescent probes, giving information about liposome integrity. Independent of the liposome composition (phospholipids or transfersomes), our results show a clear lack of cross-correlation below the skin surface, indicating that the penetration of intact liposomes is highly compromised by the skin barrier. PMID:23223136

  9. Resolving the spatial relationship between intracellular components by dual color super resolution optical fluctuations imaging (SOFI)

    PubMed Central

    Gallina, Maria Elena; Xu, Jianmin; Dertinger, Thomas; Aizer, Adva; Shav-Tal, Yaron; Weiss, Shimon

    2013-01-01

    Background Multi-color super-resolution (SR) imaging microscopy techniques can resolve ultrastructura relationships between- and provide co-localization information of- different proteins inside the cell or even within organelles at a higher resolution than afforded by conventional diffraction-limited imaging. While still very challenging, important SR colocalization results have been reported in recent years using STED, PALM and STORM techniques. Results In this work, we demonstrate dual-color Super Resolution Optical Fluctuations Imaging (SOFI) using a standard far-field fluorescence microscope and different color blinking quantum dots. We define the spatial relationship between hDcp1a, a processing body (P-body, PB) protein, and the tubulin cytoskeletal network. Our finding could open up new perspectives on the role of the cytoskeleton in PB formation and assembly. Further insights into PB internal organization are also reported and discussed. Conclusions Our results demonstrate the suitability and facile use of multi-color SOFI for the investigation of intracellular ultrastructures. PMID:24324919

  10. Microstructure Imaging Using Frequency Spectrum Spatially Resolved Acoustic Spectroscopy F-Sras

    NASA Astrophysics Data System (ADS)

    Sharples, S. D.; Li, W.; Clark, M.; Somekh, M. G.

    2010-02-01

    Material microstructure can have a profound effect on the mechanical properties of a component, such as strength and resistance to creep and fatigue. SRAS—spatially resolved acoustic spectroscopy—is a laser ultrasonic technique which can image microstructure using highly localized surface acoustic wave (SAW) velocity as a contrast mechanism, as this is sensitive to crystallographic orientation. The technique is noncontact, nondestructive, rapid, can be used on large components, and is highly tolerant of acoustic aberrations. Previously, the SRAS technique has been demonstrated using a fixed frequency excitation laser and a variable grating period (к-vector) to determine the most efficiently generated SAWs, and hence the velocity. Here, we demonstrate an implementation which uses a fixed grating period with a broadband laser excitation source. The velocity is determined by analyzing the measured frequency spectrum. Experimental results using this "frequency spectrum SRAS" (f-SRAS) method are presented. Images of microstructure on an industrially relevant material are compared to those obtained using the previous SRAS method ("k-SRAS"), excellent agreement is observed. Moreover, f-SRAS is much simpler and potentially much more rapid than k-SRAS as the velocity can be determined at each sample point in one single laser shot, rather than scanning the grating period.

  11. A new pixel-based method for analyzing spatially resolved, gravitationally lensed images

    NASA Astrophysics Data System (ADS)

    Tagore, Amitpal S.; Keeton, C. R.; Baker, A. J.

    2014-01-01

    Gravitational lens modeling of spatially resolved sources is a challenging inverse problem that requires careful handling of parameter degeneracies. I describe a new pixel-based source reconstruction method and analyze statistical and systematic effects, including pixelization, noise, telescope pointing, and resolution. I show applications of the method to observations of two lensed, high-redshift galaxies. For SDSS J120602.09+514229.5 (also known as the Clone), a z=2.001 star-forming galaxy lensed by a foreground galaxy at z=0.42, the errors on the model are appropriately accounted for, and the results are in agreement with previous analyses. For SDSS J0901+1814 (J0901), a z=2.26 ultraluminous infrared star-forming galaxy lensed by a foreground group of galaxies at z=0.35, I constrain the lens model using CO rotational line maps of multiple velocity channels, in addition to optical and infrared data. The reconstructed velocity fields in the source plane make it possible to infer J0901's intrinsic dynamical mass and gas mass fraction. Combining the CO maps with H-alpha observations allows us to test the applicability of the local Kennicutt-Schmidt relation at high redshift.

  12. Spatially Resolved Spectroscopy of Europa: The Distinct Spectrum of Large-scale Chaos

    NASA Astrophysics Data System (ADS)

    Fischer, P. D.; Brown, M. E.; Hand, K. P.

    2015-11-01

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is of particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative.

  13. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS

    SciTech Connect

    Fischer, P. D.; Brown, M. E.; Hand, K. P.

    2015-11-15

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is of particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative.

  14. Spatially resolved two-color diffusion measurements in human skin applied to transdermal liposome penetration.

    PubMed

    Brewer, Jonathan; Bloksgaard, Maria; Kubiak, Jakub; Sørensen, Jens Ahm; Bagatolli, Luis A

    2013-05-01

    A multiphoton excitation-based fluorescence fluctuation spectroscopy method, Raster image correlation spectroscopy (RICS), was used to measure the local diffusion coefficients of distinct model fluorescent substances in excised human skin. In combination with structural information obtained by multiphoton excitation fluorescence microscopy imaging, the acquired diffusion information was processed to construct spatially resolved diffusion maps at different depths of the stratum corneum (SC). Experiments using amphiphilic and hydrophilic fluorescently labeled molecules show that their diffusion in SC is very heterogeneous on a microscopic scale. This diffusion-based strategy was further exploited to investigate the integrity of liposomes during transdermal penetration. Specifically, the diffusion of dual-color fluorescently labeled liposomes--containing an amphiphilic fluorophore in the lipid bilayer and a hydrophilic fluorophore encapsulated in the liposome lumen--was measured using cross-correlation RICS. This type of experiment allows discrimination between separate (uncorrelated) and joint (correlated) diffusion of the two different fluorescent probes, giving information about liposome integrity. Independent of the liposome composition (phospholipids or transfersomes), our results show a clear lack of cross-correlation below the skin surface, indicating that the penetration of intact liposomes is highly compromised by the skin barrier.

  15. Spatially resolved measurements of electron cyclotron resonance ion source beam profile characteristics

    SciTech Connect

    Panitzsch, Lauri; Stalder, Michael; Wimmer-Schweingruber, Robert F.

    2011-03-15

    Simulations predict that the concentric rings and the triangular structures in the profiles of strongly focused ion beams that are found in different experiments should be dominated by ion species with the same or at least similar m/q-ratio. To verify these theoretical predictions we have tuned our ECR ion source to deliver a beam consisting of multiple ion species whose particular m/q-depending focusing ranges from weakly focused to overfocused. We then recorded spatially resolved charge-state distributions of the beam profile at characteristic positions in the plane perpendicular to the beam line. The results validate theoretical predictions and are summarized in this paper. To achieve the required beam profile characteristics we moved the extraction along the beam line to achieve stronger focusing than by only changing the extraction voltage. To fit the regions of interest of the beam profile into the transmission area of the sector magnet, we steered the beam by moving the extraction in the plane perpendicular to the beam axis. The results of both investigations, beam focusing and beam steering by using a 3D-movable extraction, are also reported in this paper. A brief overview of the new beam monitor extensively used during these measurements, the Faraday cup array, is also given.

  16. Spatially Resolved HCN Absorption Features in the Circumnuclear Region of NGC 1052

    NASA Astrophysics Data System (ADS)

    Sawada-Satoh, Satoko; Roh, Duk-Gyoo; Oh, Se-Jin; Lee, Sang-Sung; Byun, Do-Young; Kameno, Seiji; Yeom, Jae-Hwan; Jung, Dong-Kyu; Kim, Hyo-Ryoung; Hwang, Ju-Yeon

    2016-10-01

    We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s‑1, redshifted by 149 and 212 km s‑1 with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 1015–1016 cm‑2, assuming an excitation temperature of 100–230 K. The absorption features show high optical depth localized on the receding jet side, where the free–free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.

  17. Spatially resolved electrical characterisation of graphene layers by an evanescent field microwave microscope

    NASA Astrophysics Data System (ADS)

    Gregory, Andrew; Hao, Ling; Klein, Norbert; Gallop, John; Mattevi, Cecilia; Shaforost, Olena; Lees, Kevin; Clarke, Bob

    2014-02-01

    An evanescent field microwave microscope has been developed at the National Physical Laboratory. This instrument has multiple applications and has been developed to allow traceable measurements of local complex permittivity, unlike most other microwave scanning microscopes. In this paper we describe basic operation of the microscope and show measurements on graphene samples produced at Imperial College. The microscope obtains images by raster scanning of a wire probe in ‘contact mode’. Of particular interest to the graphene community is the possibility of being able to scan over large areas (up to 4×4 mm2), and to be able to measure actual values of surface resistance without a requirement for metal contacts. As an ultrathin semimetal, a graphene layer being placed in the evanescent field of the probe is expected to behave like a lossy dielectric material, its microwave loss tangent is proportional to its conductivity. Employing a high Q dual mode re-entrant cavity as host resonator and a spherical metal probe of 180 μm diameter, we found that spatial variations of the conductivity of graphene can be clearly resolved.

  18. Spatially Resolved WFC3/Grism Spectral Line Imaging of Gravitational Lensed Herschel-selected Luminous Dusty Starbursts

    NASA Astrophysics Data System (ADS)

    Cooray, Asantha

    2013-10-01

    We propose WFC3 G102 and G141 grism spectral imaging of two gravitationally lensed dusty, starburst galaxies found with the 600 square degree Herschel-ATLAS survey. One galaxy is the brightest {both in far-IR at 250 micron and in near-IR in J/K-band}, while the second is the largest {11 arcsec on the sky} of the lensed sub-mm galaxies in a sample of 200 imaged with WFC3/F110W. The two galaxies are at redshifts that are optimal for grism observations with HST/WFC3. The lensing flux magnification and spatial enhancement makes them very unique for the study proposed hereand will increase the number of lensed galaxies imaged in spectral lines with WFC3 grisms to three from existing single serendipitous lens studied in HST-3D survey. With WFC3 grism spectra taken in a specific orientation to minimize foreground and lensing galaxy confusion we can map each of these galaxies in a variety of spatially-resolved spectral lines in the rest-frame optical, including impostant Balmer lines for studies on the interstellar medium. The grism spectra will allow us to determine the gas-phase metallicities of these two galaxies and to study the extinction of optically-thin regions compared to direct sub-mm emission seen in interferometric continuum images of optically thick dust in starbursting knots and clumps. With spatial resolution provided by gravitational lensing combined with HST/WFC3 resolution, we will be able to study the dependence of line ratios in high density/SFR regions to low dense diffuse environments.

  19. Hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products

    NASA Astrophysics Data System (ADS)

    Cen, Haiyan

    Hyperspectral imaging-based spatially-resolved technique is promising for determining the optical properties and quality attributes of horticultural and food products. However, considerable challenges still exist for accurate determination of spectral absorption and scattering properties from intact horticultural products. The objective of this research was, therefore, to develop and optimize hyperspectral imaging-based spatially-resolved technique for accurate measurement of the optical properties of horticultural products. Monte Carlo simulations and experiments for model samples of known optical properties were performed to optimize the inverse algorithm of a single-layer diffusion model and the optical designs, for extracting the absorption (micro a) and reduced scattering (micros') coefficients from spatially-resolved reflectance profiles. The logarithm and integral data transformation and the relative weighting methods were found to greatly improve the parameter estimation accuracy with the relative errors of 10.4%, 10.7%, and 11.4% for micro a, and 6.6%, 7.0%, and 7.1% for micros', respectively. More accurate measurements of optical properties were obtained when the light beam was of Gaussian type with the diameter of less than 1 mm, and the minimum and maximum source-detector distances were 1.5 mm and 10--20 transport mean free paths, respectively. An optical property measuring prototype was built, based on the optimization results, and evaluated for automatic measurement of absorption and reduced scattering coefficients for the wavelengths of 500--1,000 nm. The instrument was used to measure the optical properties, and assess quality/maturity, of 500 'Redstar' peaches and 1039 'Golden Delicious' (GD) and 1040 'Delicious' (RD) apples. A separate study was also conducted on confocal laser scanning and scanning electron microscopic image analysis and compression test of fruit tissue specimens to measure the structural and mechanical properties of 'Golden

  20. Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO

    DOE PAGES

    Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; Strelcov, Evgheni; Kumar, Amit; Tselev, Alexander; Rahani, Ehasan Kabiri; Shenoy, Vivek B.; Yamamoto, Takahisa; Shibata, Naoya; et al

    2014-10-22

    Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were furthermore » correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. In conclusion, these studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.« less

  1. Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO

    SciTech Connect

    Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; Strelcov, Evgheni; Kumar, Amit; Tselev, Alexander; Rahani, Ehasan Kabiri; Shenoy, Vivek B.; Yamamoto, Takahisa; Shibata, Naoya; Ikuhara, Yuichi; Kalinin, Sergei V.

    2014-10-22

    Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were further correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. In conclusion, these studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.

  2. Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO.

    PubMed

    Sugiyama, Issei; Kim, Yunseok; Jesse, Stephen; Strelcov, Evgheni; Kumar, Amit; Tselev, Alexander; Rahani, Ehasan Kabiri; Shenoy, Vivek B; Yamamoto, Takahisa; Shibata, Naoya; Ikuhara, Yuichi; Kalinin, Sergei V

    2014-01-01

    Bias-induced oxygen ion dynamics underpins a broad spectrum of electroresistive and memristive phenomena in oxide materials. Although widely studied by device-level and local voltage-current spectroscopies, the relationship between electroresistive phenomena, local electrochemical behaviors, and microstructures remains elusive. Here, the interplay between history-dependent electronic transport and electrochemical phenomena in a NiO single crystalline thin film with a number of well-defined defect types is explored on the nanometer scale using an atomic force microscopy-based technique. A variety of electrochemically-active regions were observed and spatially resolved relationship between the electronic and electrochemical phenomena was revealed. The regions with pronounced electroresistive activity were further correlated with defects identified by scanning transmission electron microscopy. Using fully coupled mechanical-electrochemical modeling, we illustrate that the spatial distribution of strain plays an important role in electrochemical and electroresistive phenomena. These studies illustrate an approach for simultaneous mapping of the electronic and ionic transport on a single defective structure level such as dislocations or interfaces, and pave the way for creating libraries of defect-specific electrochemical responses.

  3. Visualisation of structural inhomogeneities in strongly scattering media using the method of spatially-resolved reflectometry: Monte Carlo simulation

    SciTech Connect

    Bykov, A V; Priezzhev, A V; Myllylae, Risto A

    2011-06-30

    Two-dimensional spatial intensity distributions of diffuse scattering of near-infrared laser radiation from a strongly scattering medium, whose optical properties are close to those of skin, are obtained using Monte Carlo simulation. The medium contains a cylindrical inhomogeneity with the optical properties, close to those of blood. It is shown that stronger absorption and scattering of light by blood compared to the surrounding medium leads to the fact that the intensity of radiation diffusely reflected from the surface of the medium under study and registered at its surface has a local minimum directly above the cylindrical inhomogeneity. This specific feature makes the method of spatially-resolved reflectometry potentially applicable for imaging blood vessels and determining their sizes. It is also shown that blurring of the vessel image increases almost linearly with increasing vessel embedment depth. This relation may be used to determine the depth of embedment provided that the optical properties of the scattering media are known. The optimal position of the sources and detectors of radiation, providing the best imaging of the vessel under study, is determined. (biophotonics)

  4. Spatially resolved electron energy loss spectroscopy of crescent-shaped plasmonic antennas.

    PubMed

    Křápek, V; Koh, A L; Břínek, L; Hrtoň, M; Tomanec, O; Kalousek, R; Maier, S A; Šikola, T

    2015-05-01

    We present a study of the optical properties of gold crescent-shaped antennas by means of electron energy loss spectroscopy. These structures exhibit particularly large field enhancement near their sharp features, support two non-degenerate dipolar (i.e., optically active) localised surface plasmon resonances, and are widely tunable by a choice of their shape and dimensions. Depending on the volume and shape, we resolved up to four plasmon resonances in metallic structures under study in the energy range of 0.8 - 2.4 eV: two dipolar and quadrupolar mode and a multimodal assembly. The boundary-element-method calculations reproduced the observed spectra and helped to identify the character of the resonances. The two lowest modes are of particular importance owing to their dipolar nature. Remarkably, they are both concentrated near the tips of the crescent, spectrally well resolved and their energies can be tuned between 0.8 - 1.5 eV and 1.2 - 2.0 eV, respectively. As the lower spectral range covers the telecommunication wavelengths 1.30 and 1.55 μm, we envisage the possible use of such nanostructures in infrared communication technology.

  5. Spatially resolved genomic, stable isotopic, and lipid analyses of a modern freshwater microbialite from Cuatro Ciénegas, Mexico.

    PubMed

    Nitti, Anthony; Daniels, Camille A; Siefert, Janet; Souza, Valeria; Hollander, David; Breitbart, Mya

    2012-07-01

    Microbialites are biologically mediated carbonate deposits found in diverse environments worldwide. To explore the organisms and processes involved in microbialite formation, this study integrated genomic, lipid, and both organic and inorganic stable isotopic analyses to examine five discrete depth horizons spanning the surface 25 mm of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Distinct bacterial communities and geochemical signatures were observed in each microbialite layer. Photoautotrophic organisms accounted for approximately 65% of the sequences in the surface community and produced biomass with distinctive lipid biomarker and isotopic (δ(13)C) signatures. This photoautotrophic biomass was efficiently degraded in the deeper layers by heterotrophic organisms, primarily sulfate-reducing proteobacteria. Two spatially distinct zones of carbonate precipitation were observed within the microbialite, with the first zone corresponding to the phototroph-dominated portion of the microbialite and the second zone associated with the presence of sulfate-reducing heterotrophs. The coupling of photoautotrophic production, heterotrophic decomposition, and remineralization of organic matter led to the incorporation of a characteristic biogenic signature into the inorganic CaCO(3) matrix. Overall, spatially resolved multidisciplinary analyses of the microbialite enabled correlations to be made between the distribution of specific organisms, precipitation of carbonate, and preservation of unique lipid and isotopic geochemical signatures. These findings are critical for understanding the formation of modern microbialites and have implications for the interpretation of ancient microbialite records.

  6. Spatially and spectrally resolved particle swarm optimization for precise optical property estimation using diffuse-reflectance spectroscopy.

    PubMed

    Kholodtsova, Maria N; Daul, Christian; Loschenov, Victor B; Blondel, Walter C P M

    2016-06-13

    This paper presents a new approach to estimate optical properties (absorption and scattering coefficients µa and µs) of biological tissues from spatially-resolved spectroscopy measurements. A Particle Swarm Optimization (PSO)-based algorithm was implemented and firstly modified to deal with spatial and spectral resolutions of the data, and to solve the corresponding inverse problem. Secondly, the optimization was improved by fitting exponential decays to the two best points among all clusters of the "particles" randomly distributed all over the parameter space (µs, µa) of possible solutions. The consequent acceleration of all the groups of particles to the "best" curve leads to significant error decrease in the optical property estimation. The study analyzes the estimated optical property error as a function of the various PSO parameter combinations, and several performance criteria such as the cost-function error and the number of iterations in the algorithms proposed. The final one led to error values between ground truth and estimated values of µs and µa less than 6%. PMID:27410289

  7. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    PubMed

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  8. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    PubMed Central

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites produced by microbial biofilms, which can drastically affect colony development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. “Images” over a 3.25 × 0.9 mm area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify, and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression. PMID:24510163

  9. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms

    NASA Astrophysics Data System (ADS)

    Bellin, Daniel L.; Sakhtah, Hassan; Rosenstein, Jacob K.; Levine, Peter M.; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E. P.; Shepard, Kenneth L.

    2014-02-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. ‘Images’ over a 3.25 × 0.9 mm2 area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  10. Towards a Novel Spatially-Resolved Hemolysis Detection Method Using a Fluorescent Indicator and Loaded Ghost Cells: Proof-of-Principle.

    PubMed

    Jansen, Sebastian V; Müller, Indra; Kiesendahl, Nicole; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2015-09-01

    It is of the utmost importance to reduce flow-induced hemolysis in devices such as heart-valve prostheses and blood pumps. Thus, in vitro measurements of hemolysis are performed in order to optimize their design in this regard. However, with existing measurement methods, hemolysis can only be assessed as an integrated value over the complete test-circuit. Currently, there are no spatially-resolved in vitro hemolysis measurement techniques known to the authors that would allow for a determination of the critical regions within a device. In this study, a novel spatially-resolved measurement principle is proposed. Ghost cells (i.e. erythrocytes with a lower hemoglobin concentration) were loaded with a calcium-dicitrato complex, and a fluorescent calcium indicator was suspended in the extracellular medium. Calcium and indicator are separated until the cell membrane ruptures (i.e. hemolysis occurs). In the moment of hemolysis, the two compounds bind to each other and emit a fluorescent signal that can be recorded and spatially-resolved in a setup very similar to a standard Particle Image Velocimetry measurement. A proof-of-principle experiment was performed by intentionally inducing hemolysis in a flow-model with a surfactant. The surfactant-induced hemolysis demonstrated a clear increase of the fluorescent signal compared to that of a negative reference. Furthermore, the signal was spatially restricted to the area of hemolysis. Although further challenges need to be addressed, a successful proof-of-principle for novel spatially-resolved hemolysis detection is presented. This method can contribute to better design optimization of devices with respect to flow-induced hemolysis.

  11. Temporally and spatially resolved imaging of laser-nucleated bubble cloud sonoluminescence.

    PubMed

    Sukovich, Jonathan R; Sampathkumar, Ashwin; Anderson, Phillip A; Holt, R Glynn; Pishchalnikov, Yuri A; Gaitan, D Felipe

    2012-05-01

    Imaging techniques have been used to capture the temporal and spatial evolution of light emissions from collapsing bubble clouds at high static pressures. Emission events lasting up to 70 ns with peak diameters nearing 1 mm have been observed. Observations of the cloud evolution before and after emission events have been made. Photomultiplier tube monitoring has been employed in conjunction with imaging to study the temporal characteristics of light emission.

  12. Temporally and spatially resolved imaging of laser-nucleated bubble cloud sonoluminescence.

    PubMed

    Sukovich, Jonathan R; Sampathkumar, Ashwin; Anderson, Phillip A; Holt, R Glynn; Pishchalnikov, Yuri A; Gaitan, D Felipe

    2012-05-01

    Imaging techniques have been used to capture the temporal and spatial evolution of light emissions from collapsing bubble clouds at high static pressures. Emission events lasting up to 70 ns with peak diameters nearing 1 mm have been observed. Observations of the cloud evolution before and after emission events have been made. Photomultiplier tube monitoring has been employed in conjunction with imaging to study the temporal characteristics of light emission. PMID:23004893

  13. Temporally and spatially resolved imaging of laser-nucleated bubble cloud sonoluminescence

    NASA Astrophysics Data System (ADS)

    Sukovich, Jonathan R.; Sampathkumar, Ashwin; Anderson, Phillip A.; Holt, R. Glynn; Pishchalnikov, Yuri A.; Gaitan, D. Felipe

    2012-05-01

    Imaging techniques have been used to capture the temporal and spatial evolution of light emissions from collapsing bubble clouds at high static pressures. Emission events lasting up to 70 ns with peak diameters nearing 1 mm have been observed. Observations of the cloud evolution before and after emission events have been made. Photomultiplier tube monitoring has been employed in conjunction with imaging to study the temporal characteristics of light emission.

  14. Spatially resolved assessment of hepatic function using 99mTc-IDA SPECT

    SciTech Connect

    Wang, Hesheng; Cao, Yue

    2013-09-15

    Purpose: 99mTc-iminodiacetic acid (IDA) hepatobiliary imaging is usually quantified for hepatic function on the entire liver or regions of interest (ROIs) in the liver. The authors presented a method to estimate the hepatic extraction fraction (HEF) voxel-by-voxel from single-photon emission computed tomography (SPECT)/CT with a 99mTc-labeled IDA agent of mebrofenin and evaluated the spatially resolved HEF measurements with an independent physiological measurement.Methods: Fourteen patients with intrahepatic cancers were treated with radiation therapy (RT) and imaged by 99mTc-mebrofenin SPECT before and 1 month after RT. The dynamic SPECT volumes were with a resolution of 3.9 × 3.9 × 2.5 mm{sup 3}. Throughout the whole liver with approximate 50 000 voxels, voxelwise HEF quantifications were estimated and compared between using arterial input function (AIF) from the heart and using vascular input function (VIF) from the spleen. The correlation between mean of the HEFs over the nontumor liver tissue and the overall liver function measured by Indocyanine green clearance half-time (T1/2) was assessed. Variation of the voxelwise estimation was evaluated in ROIs drawn in relatively homogeneous regions of the livers. The authors also examined effects of the time range parameter on the voxelwise HEF quantification.Results: Mean of the HEFs over the liver estimated using AIF significantly correlated with the physiological measurement T1/2 (r= 0.52, p= 0.0004), and the correlation was greatly improved by using VIF (r= 0.79, p < 0.0001). The parameter of time range for the retention phase did not lead to a significant difference in the means of the HEFs in the ROIs. Using VIF and a retention phase time range of 7–30 min, the relative variation of the voxelwise HEF in the ROIs was 10%± 6% of respective mean HEF.Conclusions: The voxelwise HEF derived from 99mTc-IDA SPECT by the deconvolution analysis is feasible to assess the spatial distribution of hepatic function in the

  15. Temporally and spatially resolved characterization of microwave induced argon plasmas: Experiment and modeling

    SciTech Connect

    Baeva, M. Andrasch, M.; Ehlbeck, J.; Loffhagen, D.; Weltmann, K.-D.

    2014-04-14

    Experiments and modeling of the plasma-microwave interaction have been performed in a coaxial microwave plasma source at a field frequency of 2.45 GHz generating argon plasmas at pressures of 20 and 40 millibars and a ratio of flow rate to pressure of 0.125 sccm/Pa. The incident microwave power between 100 W and 300 W is supplied in a regime of a pulse-width modulation with cycle duration of 110 ms and a power-on time of 23 ms. The experiments are based on heterodyne reflectometry and microwave interferometry at 45.75 GHz. They provide the temporal behaviour of the complex reflection coefficient, the microwave power in the plasma, as well as the electron density in the afterglow zone of the discharge. The self-consistent spatially two-dimensional and time-dependent modeling complements the analysis of the plasma-microwave interaction delivering the plasma and electromagnetic field parameters. The consolidating experimental observations and model predictions allow further characterizing the plasma source. The generated plasma has a core occupying the region close to the end of the inner electrode, where maximum electron densities above 10{sup 20} m{sup −3} and electron temperatures of about 1 eV are observed. Due to a longer outer electrode of the coaxial structure, the plasma region is extended and fills the volume comprised by the outer electrode. The electron density reaches values of the order of 10{sup 19} m{sup −3}. The heating of the gas occurs in its great part due to elastic collisions with the plasma electrons. However, the contribution of the convective heating is important especially in the extended plasma region, where the gas temperature reaches its maximum values up to approximately 1400 K. The temporally and spatially resolved modeling enables a thorough investigation of the plasma-microwave interaction which clearly shows that the power in-coupling occurs in the region of the highest electron density during the early stage of

  16. A comparative analysis of two highly spatially resolved European atmospheric emission inventories

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Guevara, M.; Baldasano, J. M.; Tchepel, O.; Schaap, M.; Miranda, A. I.; Borrego, C.

    2013-08-01

    A reliable emissions inventory is highly important for air quality modelling applications, especially at regional or local scales, which require high resolutions. Consequently, higher resolution emission inventories have been developed that are suitable for regional air quality modelling. This research performs an inter-comparative analysis of different spatial disaggregation methodologies of atmospheric emission inventories. This study is based on two different European emission inventories with different spatial resolutions: 1) the EMEP (European Monitoring and Evaluation Programme) inventory and 2) an emission inventory developed by the TNO (Netherlands Organisation for Applied Scientific Research). These two emission inventories were converted into three distinct gridded emission datasets as follows: (i) the EMEP emission inventory was disaggregated by area (EMEParea) and (ii) following a more complex methodology (HERMES-DIS - High-Elective Resolution Modelling Emissions System - DISaggregation module) to understand and evaluate the influence of different disaggregation methods; and (iii) the TNO gridded emissions, which are based on different emission data sources and different disaggregation methods. A predefined common grid with a spatial resolution of 12 × 12 km2 was used to compare the three datasets spatially. The inter-comparative analysis was performed by source sector (SNAP - Selected Nomenclature for Air Pollution) with emission totals for selected pollutants. It included the computation of difference maps (to focus on the spatial variability of emission differences) and a linear regression analysis to calculate the coefficients of determination and to quantitatively measure differences. From the spatial analysis, greater differences were found for residential/commercial combustion (SNAP02), solvent use (SNAP06) and road transport (SNAP07). These findings were related to the different spatial disaggregation that was conducted by the TNO and HERMES

  17. Spatial-resolved electrochemiluminescence ratiometry based on bipolar electrode for bioanalysis.

    PubMed

    Wang, Yin-Zhu; Zhao, Wei; Dai, Pan-Pan; Lu, Hai-Jie; Xu, Jing-Juan; Pan, Jing; Chen, Hong-Yuan

    2016-12-15

    Herein, a spatial-resolved electrochemiluminescene (ECL) ratiometry based on a closed biopolar electrode (BPE) is reported for the highly sensitive detection of prostate specific antigen (PSA). Au@g-C3N4 NCs as one ECL emitter were firstly coated on the cathode of BPE, while the anode of the BPE served for calibration via another ECL substance, Ru(bpy)3(2+). The electroneutrality across the BPE makes the reactions on each pole of BPE electrically coupled. Thus one electrochemical sensing reaction at one pole of BPE could be quantified at both ends. A composite, Pt-PAMAM-DNAzyme was assembled on the surface of cathode via DNA hybridization between probe DNA and PSA aptamer. It acted as an ECL quencher of g-C3N4 via resonance energy transfer (RET) and catalyzing the reduction of O2, the co-reactant of g-C3N4. Meanwhile, it could promote the ECL of Ru(bpy)3(2+) at anode, since the catalytic reduction of O2 at the cathode increased the faradiac current flowing through the BPE. Based on this signal composite, an ECL "off-on" phenomenon was observed at the cathode, after Pt-PAMAM-DNAzyme was "peeled off" by PSA. Conversely, at the anode, an "on-off" ECL changing was obtained. Therefore, a sensitive ratiometry for PSA detection was achieved with a linear range from 0.10 to 200ng/mL. Since the two ECL emitters were physically separated, the ratiometric system was relatively simple and neither optical filters nor spectrometer were required. The strategy combining the ECL ratiometry and BPE broadens the applications of BPE-ECL and shows good perspective in clinical application. PMID:27472402

  18. The SAMI Galaxy Survey: Spatially resolving the environmental quenching of star formation in GAMA galaxies

    NASA Astrophysics Data System (ADS)

    Schaefer, A. L.; Croom, S. M.; Allen, J. T.; Brough, S.; Medling, A. M.; Ho, I.-T.; Scott, N.; Richards, S. N.; Pracy, M. B.; Gunawardhana, M. L. P.; Norberg, P.; Alpaslan, M.; Bauer, A. E.; Bekki, K.; Bland-Hawthorn, J.; Bloom, J. V.; Bryant, J. J.; Couch, W. J.; Driver, S. P.; Fogarty, L. M. R.; Foster, C.; Goldstein, G.; Green, A. W.; Hopkins, A. M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, A. R.; Lorente, N. P. F.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.; van de Sande, J.; Walcher, C. J.; Wong, O. I.

    2016-09-01

    We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph (SAMI) Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially-resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass ({M}_{*}; 108.1-1010.95 M⊙) and in 5th nearest neighbour local environment density (Σ5; 10-1.3- 102.1 Mpc-2). We show that star formation rate gradients in galaxies are steeper in dense (log10(Σ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re-1 in galaxies with stellar masses in the range 1010 < M★/M⊙ < 1011 and that this steepening is accompanied by a reduction in the integrated star formation rate. However, for any given stellar mass or environment density the star-formation morphology of galaxies shows large scatter. We also measure the degree to which the star formation is centrally concentrated using the unitless scale-radius ratio (r50, Hα/r50, cont), which compares the extent of ongoing star formation to previous star formation. With this metric we find that the fraction of galaxies with centrally concentrated star formation increases with environment density, from ˜5 ± 4% in low-density environments (log10(Σ5/Mpc2) < 0.0) to 30 ± 15% in the highest density environments (log10(Σ5/Mpc2) > 1.0). These lines of evidence strongly suggest that with increasing local environment density the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous.

  19. Fueling active galactic nuclei. II. Spatially resolved molecular inflows and outflows

    SciTech Connect

    Davies, R. I.; Erwin, P.; Burtscher, L.; Lin, M.; Orban de Xivry, G.; Rosario, D. J.; Schnorr-Müller, A.; Maciejewski, W.; Hicks, E. K. S.; Emsellem, E.; Dumas, G.; Malkan, M. A.; Müller-Sánchez, F.; Tran, A.

    2014-09-10

    We analyze the two-dimensional distribution and kinematics of the stars as well as molecular and ionized gas in the central few hundred parsecs of five active and five matched inactive galaxies. The equivalent widths of the Brγ line indicate that there is no ongoing star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0 S(1) H{sub 2} kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H{sub 2} kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three active galactic nuclei (AGNs), and hydrodynamical models indicate it can be driven by a large-scale bar. In three of the five AGNs, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk, which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall back onto the disk, and with moderate outflow rates, they will have only a local impact on the host galaxy. H{sub 2} was detected in two inactive galaxies. These exhibit chaotic circumnuclear dust morphologies and have molecular structures that are counter-rotating with respect to the main gas component, which could lead to gas inflow in the near future. In our sample, all four galaxies with chaotic dust morphology in the circumnuclear region exist in moderately dense groups with 10-15 members where accretion of stripped gas can easily occur.

  20. Spatially resolved confocal resonant Raman microscopic analysis of anode-grown Geobacter sulfurreducens biofilms.

    PubMed

    Lebedev, Nikolai; Strycharz-Glaven, Sarah M; Tender, Leonard M

    2014-02-01

    When grown on the surface of an anode electrode, Geobacter sulfurreducens forms a multi-cell thick biofilm in which all cells appear to couple the oxidation of acetate with electron transport to the anode, which serves as the terminal metabolic electron acceptor. Just how electrons are transported through such a biofilm from cells to the underlying anode surface over distances that can exceed 20 microns remains unresolved. Current evidence suggests it may occur by electron hopping through a proposed network of redox cofactors composed of immobile outer membrane and/or extracellular multi-heme c-type cytochromes. In the present work, we perform a spatially resolved confocal resonant Raman (CRR) microscopic analysis to investigate anode-grown Geobacter biofilms. The results confirm the presence of an intra-biofilm redox gradient whereby the probability that a heme is in the reduced state increases with increasing distance from the anode surface. Such a gradient is required to drive electron transport toward the anode surface by electron hopping via cytochromes. The results also indicate that at open circuit, when electrons are expected to accumulate in redox cofactors involved in electron transport due to the inability of the anode to accept electrons, nearly all c-type cytochrome hemes detected in the biofilm are oxidized. The same outcome occurs when a comparable potential to that measured at open circuit (-0.30 V vs. SHE) is applied to the anode, whereas nearly all hemes are reduced when an exceedingly negative potential (-0.50 V vs. SHE) is applied to the anode. These results suggest that nearly all c-type cytochrome hemes detected in the biofilm can be electrochemically accessed by the electrode, but most have oxidation potentials too negative to transport electrons originating from acetate metabolism. The results also reveal a lateral heterogeneity (x-y dimensions) in the type of c-type cytochromes within the biofilm that may affect electron transport to the

  1. Scene from above: retinal ganglion cell topography and spatial resolving power in the giraffe (Giraffa camelopardalis).

    PubMed

    Coimbra, João Paulo; Hart, Nathan S; Collin, Shaun P; Manger, Paul R

    2013-06-15

    The giraffe (Giraffa camelopardalis) is a browser that uses its extensible tongue to selectively collect leaves during foraging. As the tallest extant terrestrial mammal, its elevated head height provides panoramic surveillance of the environment. These aspects of the giraffe's ecology and phenotype suggest that vision is of prime importance. Using Nissl-stained retinal wholemounts and stereological methods, we quantitatively assessed the retinal specializations in the ganglion cell layer of the giraffe. The mean total number of retinal ganglion cells was 1,393,779 and their topographic distribution revealed the presence of a horizontal visual streak and a temporal area. With a mean peak of 14,271 cells/mm(2), upper limits of spatial resolving power in the temporal area ranged from 25 to 27 cycles/degree. We also observed a dorsotemporal extension (anakatabatic area) that tapers toward the nasal retina giving rise to a complete dorsal arch. Using neurofilament-200 immunohistochemistry, we also detected a dorsal arch formed by alpha ganglion cells with density peaks in the temporal (14-15 cells/mm(2)) and dorsonasal (10 cells/mm(2)) regions. As with other artiodactyls, the giraffe shares the presence of a horizontal streak and a temporal area which, respectively, improve resolution along the horizon and in the frontal visual field. The dorsal arch is related to the giraffe's head height and affords enhanced resolution in the inferior visual field. The alpha ganglion cell distribution pattern is unique to the giraffe and enhances acquisition of motion information for the control of tongue movement during foraging and the detection of predators. PMID:23595815

  2. Fueling Active Galactic Nuclei. II. Spatially Resolved Molecular Inflows and Outflows

    NASA Astrophysics Data System (ADS)

    Davies, R. I.; Maciejewski, W.; Hicks, E. K. S.; Emsellem, E.; Erwin, P.; Burtscher, L.; Dumas, G.; Lin, M.; Malkan, M. A.; Müller-Sánchez, F.; Orban de Xivry, G.; Rosario, D. J.; Schnorr-Müller, A.; Tran, A.

    2014-09-01

    We analyze the two-dimensional distribution and kinematics of the stars as well as molecular and ionized gas in the central few hundred parsecs of five active and five matched inactive galaxies. The equivalent widths of the Brγ line indicate that there is no ongoing star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0 S(1) H2 kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H2 kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three active galactic nuclei (AGNs), and hydrodynamical models indicate it can be driven by a large-scale bar. In three of the five AGNs, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk, which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall back onto the disk, and with moderate outflow rates, they will have only a local impact on the host galaxy. H2 was detected in two inactive galaxies. These exhibit chaotic circumnuclear dust morphologies and have molecular structures that are counter-rotating with respect to the main gas component, which could lead to gas inflow in the near future. In our sample, all four galaxies with chaotic dust morphology in the circumnuclear region exist in moderately dense groups with 10-15 members where accretion of stripped gas can easily occur.

  3. Analysis for nonlinear inversion technique developed to estimate depth-distribution of absorption by spatially resolved backscattering measurement

    NASA Astrophysics Data System (ADS)

    Nishida, Kazuhiro; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi

    2015-03-01

    We have proposed a new nonlinear inversion technique to estimate the spatial distribution of the absorption coefficient (μa) in the depth direction of a turbid medium by spatially resolved backscattering measurement. With this technique, we can obtain cross-sectional image of μa as deep as the backscattered light traveled even when the transmitted light through the medium cannot be detected. In this technique, the depth distribution of absorption coefficient is determined by iterative calculation using the spatial path-length distribution (SPD) of traveled photons as a function of source-detector distance. In this calculation, the variance of path-length of many photons in each layer is also required. The SPD and the variance of path-length are obtained by Monte Carlo simulation using a known reduced scattering coefficient (μs'). Therefore, we need to know the μs' of the turbid medium beforehand. We have shown in computer simulation that this technique works well when the μs' is the typical values of mammalian body tissue, or 1.0 /mm. In this study, the accuracy of the μa estimation was analyzed and its dependence on the μs' was clarified quantitatively in various situations expected in practice. 10% deviations in μs' resulted in about 30% error in μa estimation, in average. This suggested that the measurement or the appropriate estimation of μs' is required to utilize the proposed technique effectively. Through this analysis, the effectiveness and the limitation of the newly proposed technique were clarified, and the problems to be solved were identified.

  4. Experimental measurement of spatially resolved electron density in a filament of a pulsed positive streamer discharge in water

    SciTech Connect

    Wen, Xiao Qiong; Niu, Zhi Wen; Ren, Chun-Sheng; Hou, Bo

    2015-06-29

    By combining a high-speed frame camera with a monochromator, the spatially resolved optical emission spectrum of hydrogen α line in a single filament of a pulsed positive streamer discharge in water has been experimentally measured. The spatially resolved electron densities in a single filament of a pulsed positive streamer discharge in water with a conductivity of 200 μS/cm were investigated. During the experiment, the average energy per pulse of discharge was 90.6 ± 13.6 mJ. The results show that the electron density in the streamer filament is 10{sup 17–18}/cm{sup 3}, and present a decreasing tendency along the axial direction of the streamer filament with increasing distance from the tip of the anode.

  5. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    SciTech Connect

    Fertig, Fabian Greulich, Johannes; Rein, Stefan

    2014-05-19

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  6. Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water

    NASA Astrophysics Data System (ADS)

    Niu, Zhiwen; Wen, Xiaoqiong; Ren, Chunsheng; Qiu, Yuliang

    2016-08-01

    The temporally and spatially resolved optical emission spectrum of Hα of a pulsed spark discharge in water was experimentally measured. The temporally and spatially resolved electron densities, along the radial direction of the spark filament, for a pulsed spark discharge in water with a conductivity of 100 μS/cm were investigated. The electron density in the spark filament was found to be in the 1018/cm3 order of magnitude. The highest electron density was measured at the primary stage of the spark filament, and it decreased with time. The radial distribution of electron density increased from the center to the edge of the spark filament. supported in part by National Natural Science Foundation of China (Nos. 11275040 and 51437002)

  7. Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Driebe, T.; Hofmann, K.-H.; Weigelt, G.; Wittkowski, M.

    2008-06-01

    Aims: We present N-band spectro-interferometric observations of the red supergiant WOH G64 in the Large Magellanic Cloud (LMC) using MIDI at the Very Large Telescope Interferometer (VLTI). While the very high luminosity (˜ 5 × 105 L⊙) previously estimated for WOH G64 suggests that it is a very massive star with an initial mass of ~40 M⊙, its low effective temperature (~3200 K) is in serious disagreement with the current stellar evolution theory. Methods: WOH G64 was observed with VLTI/MIDI using the UT2-UT3 and UT3-UT4 baseline configurations. Results: The dust envelope around WOH G64 has been spatially resolved with a baseline of ~60 m - the first MIDI observations to resolve an individual stellar source in an extragalactic system. The observed N-band visibilities show a slight decrease from 8 to ~10 μm and a gradual increase longward of ~10 μm, reflecting the 10 μm silicate feature in self-absorption. This translates into a steep increase of the uniform-disk diameter from 8 to 10 μm (from 18 to 26 mas) and a roughly constant diameter above 10 μm. The visibilities measured at four position angles differing by ~60° but at approximately the same baseline length (~60 m) do not show a noticeable difference, suggesting that the object appears nearly centrosymmetric. The observed N-band visibilities and spectral energy distribution can be reproduced by an optically and geometrically thick silicate torus model viewed close to pole-on. The luminosity of the central star is derived to be ˜ 2.8 × 105 L⊙, which is by a factor of 2 lower than the previous estimates based on spherical models. We also identify the H2O absorption features at 2.7 and 6 μm in the spectra obtained with the Infrared Space Observatory and the Spitzer Space Telescope. The 2.7 μm feature originates in the photosphere and/or the extended molecular layers, while the 6 μm feature is likely to be of circumstellar origin. Conclusions: The lower luminosity newly derived from our MIDI

  8. Early Results from the VENGA Integral Field Spectroscopy Survey: Current and Past Spatially-Resolved Star Formation in NGC2903

    NASA Astrophysics Data System (ADS)

    Song, Mimi; Gebhardt, K.; Jogee, S.; VENGA

    2012-01-01

    We present spatially-resolved integral field spectroscopy of the nearby isolated spiral galaxy NGC 2903 from the VIRUS-P Exploration of Nearby Spiral Galaxies (VENGA) survey. Among science goals that the survey aims at, here we focus on its star formation activity, stellar population modeling and constraining its star formation history. We acknowledge support from the Norman Hackerman Advanced Research Program (NHARP) ARP-03658-0234-2009.

  9. The beauty of resolution: The SN Ib factory NGC 2770 spatially resolved

    NASA Astrophysics Data System (ADS)

    Thöne, C. C.; Christensen, L.; Gorosabel, J.; de Ugarte Postigo, A.

    2015-02-01

    The late-type spiral NGC 2770 hosted 3 Type Ib supernovae (SNe) in or next to star-forming regions in its outer spiral arms. We study the properties of the SN sites and the galaxy at different spatial resolutions to infer propeties of the SN progenitors and the SF history of the galaxy. Several 3D techniques are used and, for the first time, we present images of metallicity, shocks and stellar population ages from OSIRIS/GTC imaging with tunable narrowband filters.

  10. Spatially Resolved HST/STIS Observations of io's Dayside Equatorial Atmosphere

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis-Lea; Spencer, John

    2013-10-01

    We present a detailed analysis of 2011/2012 HST/STIS near ultraviolet (NUV) observations of Io’s dayside equatorial atmosphere. Our results indicate that i) Io’s atmosphere is not in instantaneous equilibrium with the surface frosts; ii) that the level of SO2 continuum emission on Io’s dayside in regions free of any known persistent volcanic plume source is 50x greater than the volcano free disk average brightness of Io during eclipse; and iii) that Io’s dayside SO2 gas density is longitudinally variant, peaking near 167W. This latter result is also evident in previously obtained NUV and near infrared observations (c.f. Tsang et al. 2013); thus, supporting the idea that Io’s dayside SO2 longitudinal variability is static. At the same time, comparison of spatially resolved spectral observations of Io obtained in 2011 and 2001 indicates that Io’s equatorial gas density was higher by a factor of 2 in 2011. This result is consistent with the gas density variation predicted by vapor pressure equilibrium, based on the frost temperature variation expected as a function of heliocentric distance and the relative difference in the heliocentric distance of Io on those dates. Thus, this result suggests that Io’s atmosphere is sublimation dominated. Trends in Io’s SO2 gas density distribution map closely to the variability of Io’s NUV surface reflectance levels. Because the NUV brightness does not map directly to the total SO2 frost abundance (Doute et al. 2001), the reason for the close correlation between the SO2 gas density and the NUV brightness is not fully understood. The NUV brightness seems to correlate with 200-400 μm SO2 frost grains (McEwen et al. 1988, Calrson et al. 1997), but it may also represent the level of molecular contamination of the SO2frost by other volcanic constituents (Doute et al. 2001). Since each of these properties uniquely impacts the rate of gas production for a sublimation supported atmosphere, these relationships must be

  11. Spatially Resolved Far-Ultraviolet Spectroscopy of the Nuclear Region of NGC 1068

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Jun-Xian; Kriss, Gerard A.; Sahnow, David; Allen, Mark; Dopita, Michael; Tsvetanov, Zlatan; Bicknell, Geoffrey

    2008-10-01

    We carry out high-resolution FUSE spectroscopy of the nuclear region of NGC 1068. The first set of spectra was obtained with a 30'' square aperture that collected all emission from the narrow-line region. The data reveal a strong broad O VI component of FWHM ~3500 km s-1 and two narrow O VI λλ1031, 1037 components of ~350 km s-1. The C III λ977 and N III λ991 emission lines in this spectrum can be fitted with a narrow component of FWHM ~1000 km s-1 and a broad one of ~2500 km s-1. Another set of seven spatially resolved spectra was made using a long slit of 1.25'' × 20'' at steps of ~1'' along the axis of the emission-line cone. We find the following: (1) Major emission lines in the FUSE wavelength range consist of a broad and a narrow component. (2) There is a gradient in the velocity field for the narrow O VI component of ~200 km s-1 from ~2'' southwest of the nucleus to ~4'' northeast. A similar pattern is also observed with the broad O VI component, with a gradient of ~3000 km s-1. These are consistent with the HST STIS findings and suggest a biconical structure in which the velocity field is mainly radial outflow. (3) A major portion of the C III and N III line flux is produced in the compact core. They are therefore not effective temperature diagnostics for the conical region. (4) The best-fit UV continuum suggests virtually no reddening, and the He II I(λ1640)/I(λ1085) ratio suggests a consistently low extinction factor across the cone. At ~2'' northeast of the nucleus there is a region characterized by (a) a strong Lyα flux but normal C IV flux, (b) a broad O VI line, and (c) a significantly enhanced C III flux. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer (FUSE), which is operated for NASA by The Johns Hopkins University under NASA contract NAS5-32985, and observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of

  12. Spatially-resolved stable isotope analysis of a hypersaline microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Cory, A. B.; Lindemann, S. R.; Fredrickson, J. K.

    2012-12-01

    Hot Lake is a hypersaline, meromictic lake located in north-central Washington. High rates of evapotranspiration coupled with its location in an endorrheic basin contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate; hypolimnion waters may seasonally exceed 2 M magnesium sulfate concentrations. In addition to extreme salinity, horizons within the lake seasonally exceed 50 °C, in part due to the enhanced light absorption by magnesium sulfate-saturated water. Despite extreme and highly variable seasonal conditions (salinity, temperature, photon flux), dense benthic microbial mats composed of cyanobacteria and bacterial heterotroph populations develop annually at the lake. These mats may exceed 5 mm in thickness and display stratification observable by eye associated with dominant bacterial phototrophic pigments. Typical mat stratification includes an orange surface layer followed by green and purple layers at increasing depth into the mat. Carbonates including aragonite and magnesite are observed within the mat and their formation is likely induced or influenced by microbial activities. While not exclusively limited to the green stratum in the mat, maximum carbonate content is within this layer. We are exploring the role Hot Lake's microbial mats play in carbon cycling within the system. Namely, we seek to understand the rates of carbon accumulation in the mat and associated sediments and the various forms this carbon takes (organic or inorganic species). We are assessing mat development, community composition, and carbon accumulation in pre-cleaned devices installed at the lake as they are colonized by native mat. We are using laser ablation isotope ratio mass spectrometry (LA-IRMS) to provide spatially-resolved stable isotope analysis of mat cross-sections. Currently, this technique permits isotope analysis at the 50 μm scale, and can provide multiple isotope analyses within the thickness of each major layer of the mat. We

  13. Spatially-resolved carbon flow through a hypersaline phototrophic microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Lindemann, S. R.; Cory, A. B.; Courtney, S.; Cole, J. K.; Fredrickson, J.

    2013-12-01

    analysis (via elemental analysis IRMS and gas bench IRMS) we are employing laser ablation IRMS (LA-IRMS) to provide a spatially-resolved accounting of label uptake through the mat cross section. This technique permits isotope analysis at the 50 μm scale, and can provide multiple isotope analyses within each mat strata. By coupling LA-IRMS analysis with laminar sectioning of the mat and amplicon sequencing of the rrnA gene, we seek to establish linkages between phylogeny and function over the course of a diel cycle with highlighted emphasis on evidence of carbon transfer between mat laminae and the phylotypes that inhabit them. We are also using a series of carbon accumulation microcosms to quantify net carbon fixation over the seasonal cycle. These microcosms are deployed at multiple depths to provide an accounting of carbon cycling under the specific geochemical conditions experienced at variable depth. Coupling the data from these individual microcosms to our bathymetric survey of Hot Lake permits us to estimate total mat carbon fixation, and therefore to begin to assess the impact of the mat on the greater lake carbon cycle.

  14. Robust metamodel-based inverse estimation of bulk optical properties of turbid media from spatially resolved diffuse reflectance measurements.

    PubMed

    Watté, Rodrigo; Aernouts, Ben; Van Beers, Robbe; Saeys, Wouter

    2015-10-19

    Estimation of the bulk optical properties of turbid samples from spatially resolved reflectance measurements remains challenging, as the relation between the bulk optical properties and the acquired spatially resolved reflectance profiles is influenced by wavelength-dependent properties of the measurement system. The resulting measurement noise is apparent in the estimation of the bulk optical properties. In this study, a constrained inverse metamodeling approach is proposed to overcome these problems. First, a metamodel has been trained on a set of intralipid phantoms covering a wide range of optical properties to link the acquired spatially resolved reflectance profiles to the respective combinations of bulk optical properties (absorption coefficient and reduced scattering coefficient). In this metamodel, the wavelength (500 - 1700 nm) is considered as a third input parameter for the model to account for the wavelength dependent effects introduced by the measurement system. Secondly, a smoothness constraint on the reduced scattering coefficient spectra was implemented in the iterative inverse estimation procedure to robustify it against measurement noise and increase the reliability of the obtained bulk absorption and reduced scattering coefficient spectra. As the estimated values in some regions may be more reliable than others, the difference between simulated and measured values as a function of the evaluated absorption and scattering coefficients was combined in a 2D cost function. This cost function was used as a weight in the fitting procedure to find the parameters of the µ(s)' function giving the lowest cost over all the wavelengths together. In accordance with previous research, an exponential function was considered to represent the µ(s)' spectra of intralipid phantoms. The fitting procedure also provides an absorption coefficient spectrum which is in accordance with the measurements and the estimated parameters of the exponential function. This

  15. A SCR Model Calibration Approach with Spatially Resolved Measurements and NH3 Storage Distributions

    SciTech Connect

    Song, Xiaobo; Parker, Gordon G.; Johnson, John H.; Naber, Jeffrey D.; Pihl, Josh A.

    2014-11-27

    The selective catalytic reduction (SCR) is a technology used for reducing NO x emissions in the heavy-duty diesel (HDD) engine exhaust. In this study, the spatially resolved capillary inlet infrared spectroscopy (Spaci-IR) technique was used to study the gas concentration and NH3 storage distributions in a SCR catalyst, and to provide data for developing a SCR model to analyze the axial gaseous concentration and axial distributions of NH3 storage. A two-site SCR model is described for simulating the reaction mechanisms. The model equations and a calculation method was developed using the Spaci-IR measurements to determine the NH3 storage capacity and the relationships between certain kinetic parameters of the model. Moreover, a calibration approach was then applied for tuning the kinetic parameters using the spatial gaseous measurements and calculated NH3 storage as a function of axial position instead of inlet and outlet gaseous concentrations of NO, NO2, and NH3. The equations and the approach for determining the NH3 storage capacity of the catalyst and a method of dividing the NH3 storage capacity between the two storage sites are presented. It was determined that the kinetic parameters of the adsorption and desorption reactions have to follow certain relationships for the model to simulate the experimental data. Finally, the modeling results served as a basis for developing full model calibrations to SCR lab reactor and engine data and state estimator development as described in the references (Song et al. 2013a, b; Surenahalli et al. 2013).

  16. THE ZURICH ENVIRONMENTAL STUDY OF GALAXIES IN GROUPS ALONG THE COSMIC WEB. III. GALAXY PHOTOMETRIC MEASUREMENTS AND THE SPATIALLY RESOLVED COLOR PROPERTIES OF EARLY- AND LATE-TYPE SATELLITES IN DIVERSE ENVIRONMENTS

    SciTech Connect

    Cibinel, A.; Carollo, C. M.; Lilly, S. J.; Miniati, F.; Pipino, A.; Cameron, E.; Peng, Y.; Rudick, C. S.; Bonoli, S.; Silverman, J. D.; Van Gorkom, J. H.; Finoguenov, A.; Norberg, P. E-mail: marcella@phys.ethz.ch

    2013-11-10

    We present photometric measurements for the galaxies—and when possible their bulges and disks—in the 0.05 < z < 0.0585 groups of the Zurich Environmental Study (ZENS); these measurements include (B – I) colors, color gradients and maps, color dispersions, as well as stellar masses and star formation rates. The ZENS galaxies are classified into quenched, moderately star-forming, and strongly star-forming using a combination of spectral features and far-UV-to-optical colors; this approach optimally distinguishes quenched systems from dust-reddened star-forming galaxies. The latter contribute up to 50% to the (B – I) 'red sequence' at ∼10{sup 10} M{sub ☉}. At fixed morphological or spectral type, we find that galaxy stellar masses are largely independent of environment, and especially of halo mass. As a first utilization of our photometric database, we study, at fixed stellar mass and Hubble type, how (B – I) colors, color gradients, and color dispersion of disk satellites depend on group mass M{sub GROUP}, group-centric distance R/R{sub 200}, and large-scale structure overdensity δ{sub LSS}. The strongest environmental trend is found for disk-dominated satellites with M{sub GROUP} and R/R{sub 200}. At M ∼< 10{sup 10} M{sub ☉}, disk-dominated satellites are redder in the inner regions of the groups than in the outer parts. At M ∼> 10{sup 10} M{sub ☉}, these satellites have shallower color gradients in higher mass groups and in the cores of groups compared with lower mass groups and the outskirts of groups. Stellar population analyses and semi-analytic models suggest that disk-dominated satellites undergo quenching of star formation in their outer disks, on timescales τ{sub quench} ∼ 2 Gyr, as they progressively move inside the group potential.

  17. In-Situ Observations of Phase Transformations During Welding of 1045 Steel using Spatially Resolved and Time Resolved X-Ray Diffraction

    SciTech Connect

    Elmer, J; Palmer, T; DebRoy, T

    2005-10-28

    Synchrotron-based methods have been developed at Lawrence Livermore National Laboratory (LLNL) for the direct observation of microstructure evolution during welding. These techniques, known as spatially resolved (SRXRD) and time resolved (TRXRD) x-ray diffraction, allow in-situ experiments to be performed during welding and provide direct observations of high temperature phases that form under the intense thermal cycles that occur. This paper presents observations of microstructural evolution that occur during the welding of a medium carbon AISI 1045 steel, using SRXRD to map the phases that are present during welding, and TRXRD to dynamically observe transformations during rapid heating and cooling. SRXRD was further used to determine the influence of welding heat input on the size of the high temperature austenite region, and the time required to completely homogenize this region during welding. These data can be used to determine the kinetics of phase transformations under the steep thermal gradients of welds, as well as benchmark and verify phase transformation models.

  18. The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII): Spatially Resolved Spectroscopy in the Far-Infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen

    2009-01-01

    Astronomical studies at infrared wavelengths have dramatically improved our understanding of the universe, and observations with Spitzer, the upcoming Herschel mission, and SOFIA will continue to provide exciting new discoveries. The relatively low angular resolution of these missions, however, is insufficient to resolve the physical scale on which mid-to far-infrared emission arises, resulting in source and structure ambiguities that limit our ability to answer key science questions. Interferometry enables high angular resolution at these wavelengths - a powerful tool for scientific discovery. We will build the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), an eight-meter baseline Michelson stellar interferometer to fly on a high-altitude balloon. BETTII's spectral-spatial capability, provided by an instrument using double-Fourier techniques, will address key questions about the nature of disks in young star clusters and active galactic nuclei and the envelopes of evolved stars. BETTII will also lay the technological groundwork for future space interferometers and for suborbital programs optimized for studying extrasolar planets.

  19. Spatially resolved variations of the IMF mass normalisation in early-type galaxies as probed by molecular gas kinematics

    NASA Astrophysics Data System (ADS)

    Davis, Timothy A.; McDermid, Richard M.

    2016-09-01

    We here present the first spatially-resolved study of the IMF in external galaxies derived using a dynamical tracer of the mass-to-light ratio. We use the kinematics of relaxed molecular gas discs in seven early-type galaxies (ETGs) selected from the ATLAS3D survey to dynamically determine mass-to-light ratio (M/L) gradients. These M/L gradients are not very strong in the inner parts of these objects, and galaxies that do show variations are those with the highest specific star formation rates. Stellar population parameters derived from star formation histories are then used in order to estimate the stellar initial mass function function (IMF) mismatch parameter, and shed light on its variation within ETGs. Some of our target objects require a light IMF, otherwise their stellar population masses would be greater than their dynamical masses. In contrast, other systems seem to require heavier IMFs to explain their gas kinematics. Our analysis again confirms that IMF variation seems to be occurring within massive ETGs. We find good agreement between our IMF normalisations derived using molecular gas kinematics and those derived using other techniques. Despite this, we do not see find any correlation between the IMF normalisation and galaxy dynamical properties or stellar population parameters, either locally or globally. In the future larger studies which use molecules as tracers of galaxy dynamics can be used to help us disentangle the root cause of IMF variation.

  20. Dynamics of Spatially and Temporally Resolved Laser Induced Al-plasma

    SciTech Connect

    Imam, H.; Harith, M. A.; E-El Gamal, Yosr; Abdellatif, G.; Palleschi, V.

    2007-02-14

    In the present study the temporal and spatial evolution of the plasma produced by interaction of Q-switched Nd:YAG laser pulses at 532 nm with pure aluminum target are investigated via optical emission spectroscopy (OES) in vacuum (10-5 torr). Comparison of the spectra taken at different distances from the target surface facilitates discussing fundamental concepts of the Laser Induced Plasma (LIP). Such measurements have been exploited to understand the main processes involved and must be taken into account for the analysis of this kind of plasma. The LIP mean expansion velocity has been determined by measuring the ionic emission temporal profiles usually referred to as the Time of Flight (TOF) profiles. The temporal behavior of the spectral emission has been explained and interpreted in view of the three body recombination processes. Problems concerning the existence of and departure from the local thermodynamic equilibrium (LTE) in the LIP are studied carefully as observed in the performed experiment.

  1. Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines.

    PubMed

    Miles, P C

    1999-03-20

    An optical diagnostic system based on line imaging of Raman-scattered light has been developed to study the mixing processes in internal combustion engines. The system permits multipoint, single laser-shot measurements of CO(2), O(2), N(2), C(3)H(8), and H(2)O mole fractions with submillimeter spatial resolution. Selection of appropriate system hardware is discussed, as are subsequent data reduction and analysis procedures. Results are reported for data obtained at multiple crank angles and in two different engine flow fields. Measurements are made at 12 locations simultaneously, each location having measurement volume dimensions of 0.5 mm x 0.5 mm x 0.9 mm. The data are analyzed to obtain statistics of species mole fractions: mean, rms, histograms, and both spatial and cross-species covariance functions. The covariance functions are used to quantify the accuracy of the measured rms mole fraction fluctuations, to determine the integral length scales of the mixture inhomogeneities, and to quantify the cycle-to-cycle fluctuations in bulk mixture composition under well-mixed conditions. PMID:18305796

  2. Spatially Resolved Measurements of Emitting Species in Low Temperature Plasma Microjets

    NASA Astrophysics Data System (ADS)

    Razavi Barzoki, Syed Hamid; Mohades, Soheila; Barekzi, Nazir; Laroussi, Mounir

    2013-09-01

    Non-thermal atmospheric pressure plasma microjets have recently been investigated for plasma processing including biomedical applications. This is due to their ability of providing geometrically well-defined plasma plumes at room temperature and pressure, in air and not confined by electrodes. These microjets can be thought of as vehicles transporting reactive chemical species to a remote substrate. To study the chemical makeup of the plasma Optical Emission Spectroscopy (OES) is used. Since the plasma plume is in fact a series of plasma packets/bullets traveling at high velocities, the spatial distribution of the chemical species is a dynamic quantity that varies with the temporal location of the plasma bullet. This is due to substantial changes in size and content that the plasma bullet undergoes as it mixes with the surrounding air along its propagation path. In this paper we present OES measurements of various species generated by a low temperature plasma microjet. The spatial distributions of the emitting species along the axis of propagation of the plasma plume are measured and correlated with the physical position of the plasma bullet.

  3. Raman line imaging for spatially and temporally resolved mole fraction measurements in internal combustion engines.

    PubMed

    Miles, P C

    1999-03-20

    An optical diagnostic system based on line imaging of Raman-scattered light has been developed to study the mixing processes in internal combustion engines. The system permits multipoint, single laser-shot measurements of CO(2), O(2), N(2), C(3)H(8), and H(2)O mole fractions with submillimeter spatial resolution. Selection of appropriate system hardware is discussed, as are subsequent data reduction and analysis procedures. Results are reported for data obtained at multiple crank angles and in two different engine flow fields. Measurements are made at 12 locations simultaneously, each location having measurement volume dimensions of 0.5 mm x 0.5 mm x 0.9 mm. The data are analyzed to obtain statistics of species mole fractions: mean, rms, histograms, and both spatial and cross-species covariance functions. The covariance functions are used to quantify the accuracy of the measured rms mole fraction fluctuations, to determine the integral length scales of the mixture inhomogeneities, and to quantify the cycle-to-cycle fluctuations in bulk mixture composition under well-mixed conditions.

  4. Near-infrared spatially resolved spectroscopy of 136108 Haumea's multiple system

    NASA Astrophysics Data System (ADS)

    Dumas, Christophe; Gourgeot, Florian; Carry, Benoit; Lacerda, Pedro; Merlin, Frederic; Vachier, Frederic; Antonieta Barucci, Maria; Berthier, Jerome

    2015-01-01

    The trans-Neptunian 136108 Haumea is a very fast rotator (~3.9h). It also displays a highly elongated shape and hosts two small moons, all covered with crystalline water ice, similarly to their central body. Haumea is also known to be the largest member of a TNO family, itself the outcome of a catastrophic collision likely responsible for Haumea's unique characteristics.We report here on the analysis of a new set of near-infrared Laser Guide Star assisted observations of Haumea obtained with the IFU spectrograph SINFONI at the ESO-Very Large Telescope Observatory. Combined with previous data published by Dumas et al. (2011), and using photometric light curve measurements (Lacerda 2009, Lellouch et al. 2011) to associate each spectrum with Haumea's corresponding rotational phase, we were able to derive an accurate rotationally resolved spectroscopic study of the surface of this trans-neptunian. A particular region of interest was the dark-red spot identified on the surface of Haumea from multi-band light curve analysis (Lacerda et al. 2008). We will present the results of applying Hapke modeling to our data-set, and our conclusions regarding the surface heterogeneity of Haumea. Additionally, thanks to the IFU capabilities to reconstruct images from our spectral cube, we were able to obtain relative astrometric position measurements for the two satellites and constrain dynamical models for their orbital motion.

  5. Photoassisted spatially resolved STM measurements of dye-sensitized nanocrystalline TiO2 films

    NASA Astrophysics Data System (ADS)

    Jacobsen, Volker; Knoll, Wolfgang; Kreiter, Maximilian; Dürr, Michael; Yasuda, Akio; Nelles, Gabriele

    2007-04-01

    Photoassisted scanning tunneling microscopy was used to investigate photoinduced currents in a dye-sensitized nanoporous TiO2 network in a locally resolved experiment. The light-induced tunneling current (LITC) was studied with respect to its dependence on the modulation frequency of the exciting light as well as on the externally applied bias. By this, two main contributions to the LITC were identified and assigned to both a tunneling current of photoelectrons from the TiO2 conduction band to the tip and a tunneling current driven by a photoinduced change of the voltage drop over the tunneling gap. Additionally, the observed frequency dependence of the LITC components is in agreement with the time scales expected for a hopping transport via localized energy states. Lateral variations in the LITC signal are found between aggregates of TiO2 particles, directly reflecting different electronic properties. These results might be important for further optimization of porous materials in applications such as dye-sensitized solar cells.

  6. Spatially Resolved Genomic, Stable Isotopic, and Lipid Analyses of a Modern Freshwater Microbialite from Cuatro Ciénegas, Mexico

    PubMed Central

    Nitti, Anthony; Daniels, Camille A.; Siefert, Janet; Souza, Valeria; Hollander, David

    2012-01-01

    Abstract Microbialites are biologically mediated carbonate deposits found in diverse environments worldwide. To explore the organisms and processes involved in microbialite formation, this study integrated genomic, lipid, and both organic and inorganic stable isotopic analyses to examine five discrete depth horizons spanning the surface 25 mm of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Distinct bacterial communities and geochemical signatures were observed in each microbialite layer. Photoautotrophic organisms accounted for approximately 65% of the sequences in the surface community and produced biomass with distinctive lipid biomarker and isotopic (δ13C) signatures. This photoautotrophic biomass was efficiently degraded in the deeper layers by heterotrophic organisms, primarily sulfate-reducing proteobacteria. Two spatially distinct zones of carbonate precipitation were observed within the microbialite, with the first zone corresponding to the phototroph-dominated portion of the microbialite and the second zone associated with the presence of sulfate-reducing heterotrophs. The coupling of photoautotrophic production, heterotrophic decomposition, and remineralization of organic matter led to the incorporation of a characteristic biogenic signature into the inorganic CaCO3 matrix. Overall, spatially resolved multidisciplinary analyses of the microbialite enabled correlations to be made between the distribution of specific organisms, precipitation of carbonate, and preservation of unique lipid and isotopic geochemical signatures. These findings are critical for understanding the formation of modern microbialites and have implications for the interpretation of ancient microbialite records. Key Words: Microbial ecology—Microbe-mineral interactions—Microbial mats—Stromatolites—Genomics. Astrobiology 12, 685–698. PMID:22882001

  7. Spatially resolved HST/STIS observations of Io's dayside equatorial atmosphere

    NASA Astrophysics Data System (ADS)

    Jessup, Kandis Lea; Spencer, John R.

    2015-03-01

    We report on an investigation of the spatial distribution of Io's atmosphere, and its diurnal variability, using Hubble's Space Telescope Imaging Spectrograph (HST/STIS). From December 2010 to January 2012, we obtained spatially resolved limb-to-limb 2100-3100 Å spectra at low latitudes (<30°), with the STIS 0.1″ slit. Spectra taken at two central meridian longitudes (CMLs), 200 and 250W, over regions that are both bright and dark at near-UV (3000-4000 Å) wavelengths, allowed investigation of the variation in atmospheric density with terrain type and local time. The combined longitudinal coverage of these observations extends from 120 to 320W longitude, and observations of the 200-250W longitude region are obtained at 2 distinct times of day, differing by 50° of rotation of Io. Using primarily SO2 gas absorptions from 2100 to 2300 Å, we detect SO2 gas densities ranging from 0.3 to 2.2 × 1017 cm-2, and 100-200 K gas temperatures. Because we avoided known persistent plume sites, and see little enhancement of SO2 density near known active volcanic centers, we conclude that SO2 gas densities ∼2 × 1017 cm-2 can be obtained via sublimation alone. We correct column densities at each location to equatorial values by assuming vapor-pressure equilibrium with frost at temperatures that vary as cosine1/4(latitude), as inferred from earlier low latitude HST/STIS observations (Jessup, K.L., Spencer, J.R., Ballester, G.E., Howell, R.R., Roesler, F., Vigil, M., Yelle, R. [2004]. Icarus 169, 197-215). Inferred equatorial SO2 gas densities in the 120-320W longitude range show the following behavior: (i) rapid decrease from longitude 170W to 310W, consistent with previous disk-integrated 19 μm and 2100 Å spectroscopy (Spencer, J.R., Lellouch, E., Richter, M.J., López-Valverde, M.A., Jessup, K.L., Greathouse, T.K., Flaud, J.M. [2005]. Icarus 176, 283-304; Tsang, C.C.C., Spencer, J.R., Jessup, K.L. [2013]. Icarus 226, 604-616) and Ly-α imaging (Feaga, L.M., McGrath, M

  8. Computer simulation of the distribution of hexane in a lipid bilayer: spatially resolved free energy, entropy, and enthalpy profiles.

    PubMed

    MacCallum, Justin L; Tieleman, D Peter

    2006-01-11

    The partitioning behavior of small molecules in lipid bilayers is important in a variety of areas including membrane protein folding and pharmacology. However, the inhomogeneous nature of lipid bilayers on a nanometer length scale complicates experimental studies of membrane partitioning. To gain more insight in the partitioning of a small molecule into the lipid bilayer, we have carried out atomistic computer simulations of hexane in a dioleoyl phosphatidylcholine model membrane. We have been able to obtain spatially resolved free energy, entropy, enthalpy, and heat capacity profiles based on umbrella sampling calculations at three different temperatures. In agreement with experiment, hexane partitions preferentially to the center of the bilayer. This process is driven almost entirely by a favorable entropy change, consistent with the hydrophobic effect. In contrast, partitioning to the densest region of the acyl chains is dominated by a favorable enthalpy change with a small entropy change, which is consistent with the "nonclassical" hydrophobic effect or "bilayer" effect. We explain the features of the entropy and enthalpy profiles in terms of density and free volume in the system. PMID:16390139

  9. Time and spatially resolved LIF of OH in a plasma filament in atmospheric pressure He-H2O

    NASA Astrophysics Data System (ADS)

    Verreycken, T.; van der Horst, R. M.; Baede, A. H. F. M.; Van Veldhuizen, E. M.; Bruggeman, P. J.

    2012-02-01

    The production of OH in a nanosecond pulsed filamentary discharge generated in pin-pin geometry in a He-H2O mixture is studied by time and spatially resolved laser-induced fluorescence. Apart from the OH density the gas temperature and the electron density are also measured. Depending on the applied voltage the discharge is in a different mode. The maximum electron densities in the low- (1.3 kV) and high-density (5 kV) modes are 2 × 1021 m-3 and 7 × 1022 m-3, respectively. The gas temperature in both modes does not exceed 600 K. In the low-density mode the maximum OH density is at the centre of the discharge filament, while in the high-density mode the largest OH density is observed on the edge of the discharge. A chemical model is used to obtain an estimate of the absolute OH density. The chemical model also shows that charge exchange and dissociative recombination can explain the production of OH in the case of the high-density mode.

  10. Spatially resolved bimodal spectroscopy for classification/evaluation of mouse skin inflammatory and pre-cancerous stages

    NASA Astrophysics Data System (ADS)

    Díaz-Ayil, Gilberto; Amouroux, Marine; Clanché, Fabien; Granjon, Yves; Blondel, Walter C. P. M.

    2009-07-01

    Spatially-resolved bimodal spectroscopy (multiple AutoFluorescence AF excitation and Diffuse Reflectance DR), was used in vivo to discriminate various healthy and precancerous skin stages in a pre-clinical model (UV-irradiated mouse): Compensatory Hyperplasia CH, Atypical Hyperplasia AH and Dysplasia D. A specific data preprocessing scheme was applied to intensity spectra (filtering, spectral correction and intensity normalization), and several sets of spectral characteristics were automatically extracted and selected based on their discrimination power, statistically tested for every pair-wise comparison of histological classes. Data reduction with Principal Components Analysis (PCA) was performed and 3 classification methods were implemented (k-NN, LDA and SVM), in order to compare diagnostic performance of each method. Diagnostic performance was studied and assessed in terms of Sensibility (Se) and Specificity (Sp) as a function of the selected features, of the combinations of 3 different inter-fibres distances and of the numbers of principal components, such that: Se and Sp ~ 100% when discriminating CH vs. others; Sp ~ 100% and Se > 95% when discriminating Healthy vs. AH or D; Sp ~ 74% and Se ~ 63% for AH vs. D.

  11. Spatially resolved observations of a coronal type II radio burst with multiple lanes

    NASA Astrophysics Data System (ADS)

    Zimovets, I. V.; Sadykov, V. M.

    2015-12-01

    Relative dynamics of the radio sources of the metric type II burst with three emission lanes and coronal mass ejection (CME) occurred in the lower corona (r≲ 1.5R⊙) during the SOL2011-02-16T14:19 event is studied. The observational data of the Nancay Radioheliograph (NRH) and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) are used. These observations are also supplemented by the data sets obtained with the STEREO-A and -B, RHESSI, and GOES spacecraft, as well as with the ground-based solar radio spectrometers. It is found that the sources of the radio burst were located ahead of the expanding CME and had a complex spatial structure. The first and the second lanes were both emitted from the "magnetic funnel" - a bundle of open magnetic field lines separated the south and north systems of magnetic loops of the active region. Due to the projection effect and limited angular resolution of the NRH it is not possible to determine, whether the spatial locations of the radio sources of the two first emission lanes differed or not. It is argued that the observations support the hypothesis that the radio sources of the first and second lanes could be emitted respectively ahead of and behind a front of the same weak (the Alfvén Mach number MA ≈ 1.1-1.2), fast mode, quasi-parallel piston MHD shock wave. However, the third lane of the burst was definitely emitted from a different place. Its radio sources were situated ahead of the north-west part of the CME propagated through the north system of magnetic loops. This indicates clearly that different emission lanes of the same type II burst can be a result of propagation of different parts of a single CME through regions with different physical conditions (geometries and plasma densities) in the lower corona.

  12. Conflict resolved: On the role of spatial attention in reading and color naming tasks.

    PubMed

    Robidoux, Serje; Besner, Derek

    2015-12-01

    The debate about whether or not visual word recognition requires spatial attention has been marked by a conflict: the results from different tasks yield different conclusions. Experiments in which the primary task is reading based show no evidence that unattended words are processed, whereas when the primary task is color identification, supposedly unattended words do affect processing. However, the color stimuli used to date does not appear to demand as much spatial attention as explicit word reading tasks. We first identify a color stimulus that requires as much spatial attention to identify as does a word. We then demonstrate that when spatial attention is appropriately captured, distractor words in unattended locations do not affect color identification. We conclude that there is no word identification without spatial attention.

  13. Conflict resolved: On the role of spatial attention in reading and color naming tasks.

    PubMed

    Robidoux, Serje; Besner, Derek

    2015-12-01

    The debate about whether or not visual word recognition requires spatial attention has been marked by a conflict: the results from different tasks yield different conclusions. Experiments in which the primary task is reading based show no evidence that unattended words are processed, whereas when the primary task is color identification, supposedly unattended words do affect processing. However, the color stimuli used to date does not appear to demand as much spatial attention as explicit word reading tasks. We first identify a color stimulus that requires as much spatial attention to identify as does a word. We then demonstrate that when spatial attention is appropriately captured, distractor words in unattended locations do not affect color identification. We conclude that there is no word identification without spatial attention. PMID:25862427

  14. SPATIALLY RESOLVED STAR FORMATION IMAGE AND THE ULTRALUMINOUS X-RAY SOURCE POPULATION IN NGC 2207/IC 2163

    SciTech Connect

    Mineo, S.; Rappaport, S.; Steinhorn, B.; Levine, A.; Gilfanov, M.; Pooley, D. E-mail: sar@mit.edu E-mail: bsteinho@mit.edu E-mail: gilfanov@mpa-garching.mpg.de

    2013-07-10

    The colliding galaxy pair NGC 2207/IC 2163, at a distance of {approx}39 Mpc, was observed with Chandra, and an analysis reveals 28 well resolved X-ray sources, including 21 ultraluminous X-ray sources (ULXs) with L{sub X} {approx}> 10{sup 39} erg s{sup -1}, as well as the nucleus of NGC 2207. The number of ULXs is comparable with the largest numbers of ULXs per unit mass in any galaxy yet reported. In this paper we report on these sources, and quantify how their locations correlate with the local star formation rates seen in spatially resolved star formation rate density images that we have constructed using combinations of GALEX FUV and Spitzer 24 {mu}m images. We show that the numbers of ULXs are strongly correlated with the local star formation rate densities surrounding the sources, but that the luminosities of these sources are not strongly correlated with star formation rate density.

  15. Spatially and temporally resolved temperature and shock-speed measurements behind a laser-induced blast wave of energetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Jiang, Naibo; Stauffer, Hans U.; Schmidt, Jacob B.; Kulatilaka, Waruna D.; Meyer, Terrence R.; Bunker, Christopher E.; Gord, James R.

    2013-05-01

    Spatially and temporally resolved temperature measurements behind an expanding blast wave are made using picosecond (ps) N2 coherent anti-Stokes Raman scattering (CARS) following laser flash heating of mixtures containing aluminum nanoparticles embedded in ammonium-nitrate oxidant. Production-front ps-CARS temperatures as high as 3600 ± 180 K—obtained for 50-nm-diameter commercially produced aluminum-nanoparticle samples—are observed. Time-resolved shadowgraph images of the evolving blast waves are also obtained to determine the shock-wave position and corresponding velocity. These results are compared with near-field blast-wave theory to extract relative rates of energy release for various particle diameters and passivating-layer compositions.

  16. Spatially resolved shock response at dry metallic multi-material interfaces

    NASA Astrophysics Data System (ADS)

    Collinson, Mark A.; Chapman, David J.; Eakins, Daniel E.

    2014-05-01

    The high strain-rate behaviour of multi-component systems is often dominated by mediation at material interfaces. The extent to which a materials microstructure influences dynamic friction and relative sliding response remains an area of active study. Initial results from a study on the behaviour of dry metallic interfaces under the passage of a controlled loading wave are presented. Held in close contact along a single planar interface, oblique shock waves were generated along the boundary by direct copper flyer impact at velocities in the range 250 ms-1 - 300 ms-1. Both the 100 mm and 13 mm bore gas guns located at Imperial College London were utilised for this purpose. A line-imaging velocity interferometer system for any reflector (VISAR) system was used to directly record the velocity profile across the contact interface, providing a measure of any spatially dependent response while photon doppler velocimetry (PDV) was used to determine the far field response. Comparisons of these results against current generation hydrocode models are presented, with significant deviations from the computationally predicted results identified in the peak shock state immediately following shock breakout.

  17. Spatially Resolved One-Dimensional Boundary States in Graphene-Hexagonal Boron Nitride Planar Heterostructures

    SciTech Connect

    Li, An-Ping; Park, Jewook; Lee, Jaekwang; Liu, Lei; Baddorf, Arthur P.; Gu, Gong; Yoon, Mina; Park, Changwon; Durand, Corentin P.; Sumpter, Bobby G.

    2014-01-01

    Two-dimensional (2D) interfaces between crystalline materials have been shown to generate unusual interfacial electronic states in complex oxides1-4. Recently, a onedimensional (1D) polar-on-nonpolar interface has been realized in hexagonal boron nitride (hBN) and graphene heterostructures 5-10, where a coherent 1D boundary is expected to possess peculiar electronic states dictated by edge states of graphene and the polarity of hBN 11-13. Here we present a combined scanning tunneling microscopy (STM) and firstprinciples theory study of the graphene-hBN boundary to provide a rare glimpse into the spatial and energetic distributions of the 1D boundary states in real-space. The interfaces studied here are crystallographically coherent with sharp transitions from graphene zigzag edges to B (or N) terminated hBN atomic layers on a Cu foil substrate5. The revealed boundary states are about 0.6 eV below or above the Fermi energy depending on the termination of the hBN at the boundary, and are extended along but localized at the boundary with a lateral thickness of 2-3nm. These results suggest that unconventional physical effects similar to those observed at 2D interfaces can also exist in lower dimensions, opening a route for tuning of electronic properties at interfaces in 2D heterostructures.

  18. Spatially Resolved One-Dimensional Boundary States in Graphene-Hexagonal Boron Nitride Planar Heterostructures

    DOE PAGES

    Li, An-Ping; Park, Jewook; Lee, Jaekwang; Liu, Lei; Baddorf, Arthur P.; Gu, Gong; Yoon, Mina; Park, Changwon; Durand, Corentin P.; Sumpter, Bobby G.

    2014-01-01

    Two-dimensional (2D) interfaces between crystalline materials have been shown to generate unusual interfacial electronic states in complex oxides1-4. Recently, a onedimensional (1D) polar-on-nonpolar interface has been realized in hexagonal boron nitride (hBN) and graphene heterostructures 5-10, where a coherent 1D boundary is expected to possess peculiar electronic states dictated by edge states of graphene and the polarity of hBN 11-13. Here we present a combined scanning tunneling microscopy (STM) and firstprinciples theory study of the graphene-hBN boundary to provide a rare glimpse into the spatial and energetic distributions of the 1D boundary states in real-space. The interfaces studied here aremore » crystallographically coherent with sharp transitions from graphene zigzag edges to B (or N) terminated hBN atomic layers on a Cu foil substrate5. The revealed boundary states are about 0.6 eV below or above the Fermi energy depending on the termination of the hBN at the boundary, and are extended along but localized at the boundary with a lateral thickness of 2-3nm. These results suggest that unconventional physical effects similar to those observed at 2D interfaces can also exist in lower dimensions, opening a route for tuning of electronic properties at interfaces in 2D heterostructures.« less

  19. The Future of Spatially-Resolved Polychromatic Neutron and X-Ray Microdiffraction

    SciTech Connect

    Ice, Gene E.

    2009-09-25

    Polychromatic microdiffraction is an emerging materials-characterization tool made practical by powerful X-ray and neutron sources, and by advanced optics and software. With polychromatic techniques, local crystalline properties including phase, texture (orientation), elastic strain, and defect density can be mapped with submicron spatial resolution in three dimensions. Here, we describe the evolving ability to nondestructively map local crystal structure in three dimensions and discuss how future advances will help address long-standing issues of inhomogeneous grain growth, deformation, fracture, and elastic strain. Current and future applications impact virtually all materials including electronic, solar, and light-emitting-diode (LED) materials, nanomaterials, structural materials, and joining materials. In addition, the ability to focus small beams on small samples dramatically increases signal-to-noise and greatly reduces the cost for extreme environmental chambers required for high-pressure, high-temperature, high-magnetic field or corrosive environments. Polychromatic techniques efficiently use source brilliance and minimize the required sample volume, which is essential for hard-to-make materials, irreplaceable materials, and for radioactive, toxic, or otherwise dangerous materials. New polychromatic neutron capabilities will significantly extend the range of samples that can be studied with neutrons and presents important new scientific opportunities for studies of magnetic materials, low Z elements, fragile crystal structures, and small samples in extreme environments.

  20. Time-resolved spatial phase measurements with 2-dimensional spectral interferometry

    NASA Astrophysics Data System (ADS)

    Childress, Colby; Planchon, Thomas; Amir, Wafa; Squier, Jeff A.; Durfee, Charles G.

    2007-03-01

    We are using 2-dimensional spectral interferometry for sensitive measurements of spatial phase distortions. The reference pulse and the time-delayed probe pulse are coincident on an imaging spectrometer, yielding spectral and spatial phase information. This technique offers the potential of higher sensitivity than traditional spatial interferometry since there are many fringes of data for each spatial point. We illustrate this technique with measurements of the thermal lensing profile in a cryogenically cooled Ti:sapphire amplifier crystal that is pumped by tens of watts of power from four frequency-doubled Nd:YLF lasers running at 1 kHz. By adjusting the relative delay of the probe and reference pulses, we characterize the thermal transients during and after the pump pulses. We compare the measured transient thermal profiles with those calculated with a finite-element model.

  1. Spatially resolved analysis of plutonium isotopic signatures in environmental particle samples by laser ablation-MC-ICP-MS.

    PubMed

    Konegger-Kappel, Stefanie; Prohaska, Thomas

    2016-01-01

    Laser ablation-multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) was optimized and investigated with respect to its performance for determining spatially resolved Pu isotopic signatures within radioactive fuel particle clusters. Fuel particles had been emitted from the Chernobyl nuclear power plant (ChNPP) where the 1986 accident occurred and were deposited in the surrounding soil, where weathering processes caused their transformation into radioactive clusters, so-called micro-samples. The size of the investigated micro-samples, which showed surface alpha activities below 40 mBq, ranged from about 200 to 1000 μm. Direct single static point ablations allowed to identify variations of Pu isotopic signatures not only between distinct fuel particle clusters but also within individual clusters. The resolution was limited to 100 to 120 μm as a result of the applied laser ablation spot sizes and the resolving power of the nuclear track radiography methodology that was applied for particle pre-selection. The determined (242)Pu/(239)Pu and (240)Pu/(239)Pu isotope ratios showed a variation from low to high Pu isotope ratios, ranging from 0.007(2) to 0.047(8) for (242)Pu/(239)Pu and from 0.183(13) to 0.577(40) for (240)Pu/(239)Pu. In contrast to other studies, the applied methodology allowed for the first time to display the Pu isotopic distribution in the Chernobyl fallout, which reflects the differences in the spent fuel composition over the reactor core. The measured Pu isotopic signatures are in good agreement with the expected Pu isotopic composition distribution that is typical for a RBMK-1000 reactor, indicating that the analyzed samples are originating from the ill-fated Chernobyl reactor. The average Pu isotope ratios [(240)Pu/(239)Pu = 0.388(86), (242)Pu/(239)Pu = 0.028(11)] that were calculated from all investigated samples (n = 48) correspond well to previously published results of Pu analyses in contaminated samples from

  2. Spatially resolved analysis of plutonium isotopic signatures in environmental particle samples by laser ablation-MC-ICP-MS.

    PubMed

    Konegger-Kappel, Stefanie; Prohaska, Thomas

    2016-01-01

    Laser ablation-multi-collector-inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) was optimized and investigated with respect to its performance for determining spatially resolved Pu isotopic signatures within radioactive fuel particle clusters. Fuel particles had been emitted from the Chernobyl nuclear power plant (ChNPP) where the 1986 accident occurred and were deposited in the surrounding soil, where weathering processes caused their transformation into radioactive clusters, so-called micro-samples. The size of the investigated micro-samples, which showed surface alpha activities below 40 mBq, ranged from about 200 to 1000 μm. Direct single static point ablations allowed to identify variations of Pu isotopic signatures not only between distinct fuel particle clusters but also within individual clusters. The resolution was limited to 100 to 120 μm as a result of the applied laser ablation spot sizes and the resolving power of the nuclear track radiography methodology that was applied for particle pre-selection. The determined (242)Pu/(239)Pu and (240)Pu/(239)Pu isotope ratios showed a variation from low to high Pu isotope ratios, ranging from 0.007(2) to 0.047(8) for (242)Pu/(239)Pu and from 0.183(13) to 0.577(40) for (240)Pu/(239)Pu. In contrast to other studies, the applied methodology allowed for the first time to display the Pu isotopic distribution in the Chernobyl fallout, which reflects the differences in the spent fuel composition over the reactor core. The measured Pu isotopic signatures are in good agreement with the expected Pu isotopic composition distribution that is typical for a RBMK-1000 reactor, indicating that the analyzed samples are originating from the ill-fated Chernobyl reactor. The average Pu isotope ratios [(240)Pu/(239)Pu = 0.388(86), (242)Pu/(239)Pu = 0.028(11)] that were calculated from all investigated samples (n = 48) correspond well to previously published results of Pu analyses in contaminated samples from

  3. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  4. Spatially resolved diffuse reflectance spectroscopy of two-layer turbid media by densely packed multi-pixel photodiode reflectance probe

    NASA Astrophysics Data System (ADS)

    Senlik, Ozlem; Greening, Gage; Muldoon, Timothy J.; Jokerst, Nan M.

    2016-03-01

    Spatially-resolved diffuse reflectance (SRDR) measurements provide photon path information, and enable layered tissue analysis. This paper presents experimental SRDR measurements on two-layer PDMS skin tissue-mimicking phantoms of varying top layer thicknesses, and bulk phantoms of varying optical properties using concentric multi-pixel photodiode array (CMPA) probes, and corresponding forward Monte Carlo simulations. The CMPA is the most densely packed semiconductor SRDR probe reported to date. Signal contrasts between the single layer phantom and bi-layer phantoms with varying top layer thicknesses are as high as 80%. The mean error between the Monte Carlo simulations and the experiment is less than 6.2 %.

  5. Spatially resolved quantitative magnetic order measurement in spinel CuCr{sub 2}S{sub 4} nanocrystals

    SciTech Connect

    Negi, D. S.; Loukya, B.; Datta, R.; Ramasamy, K.; Gupta, A.

    2015-05-04

    We have utilized spatially resolved high resolution electron energy loss spectroscopy to quantify the relative percentage of ferromagnetic order in the core and the surface regions of CuCr{sub 2}S{sub 4} nanoparticles with nanocube and nanocluster morphology. The organic capping layer is found to play a significant role in restoring magnetic order at the surface. The technique is based on recording the fine features of the Cr L{sub 3} absorption edge and matching them with the theoretical spectra. The nanoscale probing technique we have developed is quite versatile and can be extended to understand magnetic ordering in a number of nanodimensional magnetic materials.

  6. Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation.

    PubMed

    Detterbeck, Amelie; Pongrac, Paula; Rensch, Stefan; Reuscher, Stefan; Pečovnik, Matic; Vavpetič, Primož; Pelicon, Primož; Holzheu, Stefan; Krämer, Ute; Clemens, Stephan

    2016-09-01

    Genetic biofortification requires knowledge on natural variation and the underlying mechanisms of micronutrient accumulation. We therefore studied diversity in grain micronutrient concentrations and spatial distribution in barley (Hordeum vulgare), a genetically tractable model cereal and an important crop with widespread cultivation. We assembled a diverse collection of barley cultivars and landraces and analysed grain micronutrient profiles in genebank material and after three independent cultivations. Lines with contrasting grain zinc (Zn) accumulation were selected for in-depth analysis of micronutrient distribution within the grain by micro-proton-induced X-ray emission (μ-PIXE). Also, we addressed association with grain cadmium (Cd) accumulation. The analysis of > 120 lines revealed substantial variation, especially in grain Zn concentrations. A large fraction of this variation is due to genetic differences. Grain dissection and μ-PIXE analysis of contrasting lines showed that differences in grain Zn accumulation apply to all parts of the grain including the endosperm. Cd concentrations exceeded the Codex Alimentarius threshold in most of the representative barley lines after cultivation in a Cd-contaminated agricultural soil. Two important conclusions for biofortification are: first, high-Zn grains contain more Zn also in the consumed parts of the grain; and second, higher micronutrient concentrations are strongly associated with higher Cd accumulation. PMID:27125321

  7. Spatially resolved time-frequency analysis of odour coding in the insect antennal lobe.

    PubMed

    Paoli, Marco; Weisz, Nathan; Antolini, Renzo; Haase, Albrecht

    2016-09-01

    Antennal lobes constitute the first neurophils in the insect brain involved in coding and processing of olfactory information. With their stereotyped functional and anatomical organization, they provide an accessible model with which to investigate information processing of an external stimulus in a neural network in vivo. Here, by combining functional calcium imaging with time-frequency analysis, we have been able to monitor the oscillatory components of neural activity upon olfactory stimulation. The aim of this study is to investigate the presence of stimulus-induced oscillatory patterns in the honeybee antennal lobe, and to analyse the distribution of those patterns across the antennal lobe glomeruli. Fast two-photon calcium imaging reveals the presence of low-frequency oscillations, the intensity of which is perturbed by an incoming stimulus. Moreover, analysis of the spatial arrangement of this activity indicates that it is not homogeneous throughout the antennal lobe. On the contrary, each glomerulus displays an odorant-specific time-frequency profile, and acts as a functional unit of the oscillatory activity. The presented approach allows simultaneous recording of complex activity patterns across several nodes of the antennal lobe, providing the means to better understand the network dynamics regulating olfactory coding and leading to perception. PMID:27452956

  8. Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Deckert-Gaudig, Tanja; Kurouski, Dmitry; Hedegaard, Martin A. B.; Singh, Pushkar; Lednev, Igor K.; Deckert, Volker

    2016-09-01

    The formation of insoluble β-sheet-rich protein structures known as amyloid fibrils is associated with numerous neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. A detailed understanding of the molecular structure of the fibril surface is of interest as the first contact with the physiological environment in vivo and plays a decisive role in biological activity and associated toxicity. Recent studies reveal that the inherent sensitivity and specificity of tip-enhanced Raman scattering (TERS) renders this technique a compelling method for fibril surface analysis at the single-particle level. Here, the reproducibility of TERS is demonstrated, indicating its relevance for detecting molecular variations. Consequently, individual fibrils are systematically investigated at nanometer spatial resolution. Spectral parameters were obtained by band-fitting, particularly focusing on the identification of the secondary structure via the amide III band and the differentiation of hydrophobic and hydrophilic domains on the surface. In addition multivariate data analysis, specifically the N-FINDR procedure, was employed to generate structure-specific maps. The ability of TERS to localize specific structural domains on fibril surfaces shows promise to the development of new fibril dissection strategies and can be generally applied to any (bio)chemical surface when structural variations at the nanometer level are of interest.

  9. Spatially resolved time-frequency analysis of odour coding in the insect antennal lobe.

    PubMed

    Paoli, Marco; Weisz, Nathan; Antolini, Renzo; Haase, Albrecht

    2016-09-01

    Antennal lobes constitute the first neurophils in the insect brain involved in coding and processing of olfactory information. With their stereotyped functional and anatomical organization, they provide an accessible model with which to investigate information processing of an external stimulus in a neural network in vivo. Here, by combining functional calcium imaging with time-frequency analysis, we have been able to monitor the oscillatory components of neural activity upon olfactory stimulation. The aim of this study is to investigate the presence of stimulus-induced oscillatory patterns in the honeybee antennal lobe, and to analyse the distribution of those patterns across the antennal lobe glomeruli. Fast two-photon calcium imaging reveals the presence of low-frequency oscillations, the intensity of which is perturbed by an incoming stimulus. Moreover, analysis of the spatial arrangement of this activity indicates that it is not homogeneous throughout the antennal lobe. On the contrary, each glomerulus displays an odorant-specific time-frequency profile, and acts as a functional unit of the oscillatory activity. The presented approach allows simultaneous recording of complex activity patterns across several nodes of the antennal lobe, providing the means to better understand the network dynamics regulating olfactory coding and leading to perception.

  10. Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils.

    PubMed

    Deckert-Gaudig, Tanja; Kurouski, Dmitry; Hedegaard, Martin A B; Singh, Pushkar; Lednev, Igor K; Deckert, Volker

    2016-01-01

    The formation of insoluble β-sheet-rich protein structures known as amyloid fibrils is associated with numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's disease. A detailed understanding of the molecular structure of the fibril surface is of interest as the first contact with the physiological environment in vivo and plays a decisive role in biological activity and associated toxicity. Recent studies reveal that the inherent sensitivity and specificity of tip-enhanced Raman scattering (TERS) renders this technique a compelling method for fibril surface analysis at the single-particle level. Here, the reproducibility of TERS is demonstrated, indicating its relevance for detecting molecular variations. Consequently, individual fibrils are systematically investigated at nanometer spatial resolution. Spectral parameters were obtained by band-fitting, particularly focusing on the identification of the secondary structure via the amide III band and the differentiation of hydrophobic and hydrophilic domains on the surface. In addition multivariate data analysis, specifically the N-FINDR procedure, was employed to generate structure-specific maps. The ability of TERS to localize specific structural domains on fibril surfaces shows promise to the development of new fibril dissection strategies and can be generally applied to any (bio)chemical surface when structural variations at the nanometer level are of interest. PMID:27650589

  11. Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation.

    PubMed

    Detterbeck, Amelie; Pongrac, Paula; Rensch, Stefan; Reuscher, Stefan; Pečovnik, Matic; Vavpetič, Primož; Pelicon, Primož; Holzheu, Stefan; Krämer, Ute; Clemens, Stephan

    2016-09-01

    Genetic biofortification requires knowledge on natural variation and the underlying mechanisms of micronutrient accumulation. We therefore studied diversity in grain micronutrient concentrations and spatial distribution in barley (Hordeum vulgare), a genetically tractable model cereal and an important crop with widespread cultivation. We assembled a diverse collection of barley cultivars and landraces and analysed grain micronutrient profiles in genebank material and after three independent cultivations. Lines with contrasting grain zinc (Zn) accumulation were selected for in-depth analysis of micronutrient distribution within the grain by micro-proton-induced X-ray emission (μ-PIXE). Also, we addressed association with grain cadmium (Cd) accumulation. The analysis of > 120 lines revealed substantial variation, especially in grain Zn concentrations. A large fraction of this variation is due to genetic differences. Grain dissection and μ-PIXE analysis of contrasting lines showed that differences in grain Zn accumulation apply to all parts of the grain including the endosperm. Cd concentrations exceeded the Codex Alimentarius threshold in most of the representative barley lines after cultivation in a Cd-contaminated agricultural soil. Two important conclusions for biofortification are: first, high-Zn grains contain more Zn also in the consumed parts of the grain; and second, higher micronutrient concentrations are strongly associated with higher Cd accumulation.

  12. Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils

    PubMed Central

    Deckert-Gaudig, Tanja; Kurouski, Dmitry; Hedegaard, Martin A. B.; Singh, Pushkar; Lednev, Igor K.; Deckert, Volker

    2016-01-01

    The formation of insoluble β-sheet-rich protein structures known as amyloid fibrils is associated with numerous neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease. A detailed understanding of the molecular structure of the fibril surface is of interest as the first contact with the physiological environment in vivo and plays a decisive role in biological activity and associated toxicity. Recent studies reveal that the inherent sensitivity and specificity of tip-enhanced Raman scattering (TERS) renders this technique a compelling method for fibril surface analysis at the single-particle level. Here, the reproducibility of TERS is demonstrated, indicating its relevance for detecting molecular variations. Consequently, individual fibrils are systematically investigated at nanometer spatial resolution. Spectral parameters were obtained by band-fitting, particularly focusing on the identification of the secondary structure via the amide III band and the differentiation of hydrophobic and hydrophilic domains on the surface. In addition multivariate data analysis, specifically the N-FINDR procedure, was employed to generate structure-specific maps. The ability of TERS to localize specific structural domains on fibril surfaces shows promise to the development of new fibril dissection strategies and can be generally applied to any (bio)chemical surface when structural variations at the nanometer level are of interest. PMID:27650589

  13. Spatially-resolved spectral image of a microwave-induced plasma with Okamoto-cavity for nitridation of steel substrate.

    PubMed

    Sato, Shigeo; Arai, Yuuki; Wagatsuma, Kazuaki

    2014-01-01

    When a nitrogen microwave-induced plasma produced with an Okamoto-cavity was employed as a source for the nitridation of steel samples, the characteristics of the plasma were investigated by analyzing a spatially-resolved emission image of nitrogen excited species obtained with a two-dimensionally imaging spectrograph. Our previous study had reported on an excellent performance of the Okamoto-cavity microwave-induced plasma (MIP), enabling a nitrided layer having a several-micrometer-thickness to form on an iron substrate, even if the treatment is completed within 1 min, which is superior to a conventional plasma nitriding using low-pressure glow discharges requiring a prolonged treatment time. In this paper, the reason for this is discussed based on a spectrometric investigation. The emission images of band heads of nitrogen molecule and nitrogen molecule ion extended toward the axial/radial directions of the plasma at larger microwave powers supplied to the MIP, thus elevating the number density of the excited species of nitrogen, which would activate any chemical reaction on the iron substrate. However, a drastic increase in the growth rate of the nitrided layer when increasing the microwave power from 600 to 700 W, which had been observed in our previous study, could not be explained only from such a variation in the excited species of nitrogen. This result is probably because the growth process is dominantly controlled by thermal diffusion of nitrogen atom after it enters into the iron substrate, where the substrate temperature is the most important parameter concerning the mobility in the iron lattice. Therefore, the Okamoto-cavity MIP could contribute to a thermal source through radiative heating as well as a source of nitrogen excited species, especially in the growth process of the nitrided layer.

  14. Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films

    SciTech Connect

    Glavin, Nicholas R. E-mail: andrey.voevodin@us.af.mil; Muratore, Christopher; Jespersen, Michael L.; Hu, Jianjun; Fisher, Timothy S.; Voevodin, Andrey A. E-mail: andrey.voevodin@us.af.mil

    2015-04-28

    Physical vapor deposition (PVD) has recently been investigated as a viable, alternative growth technique for two-dimensional materials with multiple benefits over other vapor deposition synthesis methods. The high kinetic energies and chemical reactivities of the condensing species formed from PVD processes can facilitate growth over large areas and at reduced substrate temperatures. In this study, chemistry, kinetic energies, time of flight data, and spatial distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated. Time resolved spectroscopy and wavelength specific imaging were used to identify and track atomic neutral and ionized species including B{sup +}, B*, N{sup +}, N*, and molecular species including N{sub 2}*, N{sub 2}{sup +}, and BN. Formation and decay of these species formed both from ablation of the target and from interactions with the background gas were investigated and provided insights into fundamental growth mechanisms of continuous, amorphous boron nitride thin films. The correlation of the plasma diagnostic results with film chemical composition and thickness uniformity studies helped to identify that a predominant mechanism for BN film formation is condensation surface recombination of boron ions and neutral atomic nitrogen species. These species arrive nearly simultaneously to the substrate location, and BN formation occurs microseconds before arrival of majority of N{sup +} ions generated by plume collisions with background molecular nitrogen. The energetic nature and extended dwelling time of incident N{sup +} ions at the substrate location was found to negatively impact resulting BN film stoichiometry and thickness. Growth of stoichiometric films was optimized at enriched concentrations of ionized boron and neutral atomic nitrogen in plasma near the condensation surface, providing few nanometer thick films with 1:1 BN stoichiometry and good

  15. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy

    PubMed Central

    Wang, Y. F.; Singh, Shashi B.; Limaye, Mukta V.; Shao, Y. C.; Hsieh, S. H.; Chen, L. Y.; Hsueh, H. C.; Wang, H. T.; Chiou, J. W.; Yeh, Y. C.; Chen, C. W.; Chen, C. H.; Ray, Sekhar C.; Wang, J.; Pong, W. F.; Takagi, Y.; Ohigashi, T.; Yokoyama, T.; Kosugi, N.

    2015-01-01

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets. PMID:26481557

  16. Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer-Lambert near-infrared spectroscopy.

    PubMed

    Messere, Alessandro; Roatta, Silvestro

    2013-12-01

    The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near-infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer-Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS-based), total hemoglobin concentration (tHb, BL-based), tissue oxygenation index (TOI, SRS-based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10-fold increase in SBF. Contraction-induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL-based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded. PMID:24744858

  17. SPATIALLY RESOLVED OBSERVATIONS OF THE BIPOLAR OPTICAL OUTFLOW FROM THE BROWN DWARF 2MASS J12073347-3932540

    SciTech Connect

    Whelan, E. T.; Ray, T. P.; Comeron, F.; Bacciotti, F.; Kavanagh, P. J.

    2012-12-20

    Studies of brown dwarf (BD) outflows provide information pertinent to questions on BD formation, as well as allowing outflow mechanisms to be investigated at the lowest masses. Here new observations of the bipolar outflow from the 24 M{sub JUP} BD 2MASS J12073347-3932540 are presented. The outflow was originally identified through the spectro-astrometric analysis of the [O I]{lambda}6300 emission line. Follow-up observations consisting of spectra and [S II], R-band and I-band images were obtained. The new spectra confirm the original results and are used to constrain the outflow position angle (P.A.) at {approx}65 Degree-Sign . The [O I]{lambda}6300 emission line region is spatially resolved and the outflow is detected in the [S II] images. The detection is firstly in the form of an elongation of the point-spread function (PSF) along the direction of the outflow P.A. Four faint knot-like features (labeled A-D) are also observed to the southwest of 2MASS J12073347-3932540 along the same P.A. suggested by the spectra and the elongation in the PSF. Interestingly, D, the feature furthest from the source, is bow shaped with the apex pointing away from 2MASS J12073347-3932540. A color-color analysis allows us to conclude that at least feature D is part of the outflow under investigation while A is likely a star or galaxy. Follow-up observations are needed to confirm the origin of B and C. This is a first for a BD, as BD optical outflows have to date only been detected using spectro-astrometry. This result also demonstrates for the first time that BD outflows can be collimated and episodic.

  18. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy.

    PubMed

    Wang, Y F; Singh, Shashi B; Limaye, Mukta V; Shao, Y C; Hsieh, S H; Chen, L Y; Hsueh, H C; Wang, H T; Chiou, J W; Yeh, Y C; Chen, C W; Chen, C H; Ray, Sekhar C; Wang, J; Pong, W F; Takagi, Y; Ohigashi, T; Yokoyama, T; Kosugi, N

    2015-10-20

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.

  19. Spatially Resolved Spectroscopy and Chemical History of Star-forming Galaxies in the Hercules Cluster: The Effects of the Environment

    NASA Astrophysics Data System (ADS)

    Petropoulou, V.; Vílchez, J.; Iglesias-Páramo, J.; Papaderos, P.; Magrini, L.; Cedrés, B.; Reverte, D.

    2011-06-01

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep Hα survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT and have obtained fundamental parameters of stellar components such as mean metallicity and age. The emission-line spectra were corrected for underlying stellar absorption using these spectral synthesis models. Line fluxes were measured and O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. We have derived the masses and total luminosities of the galaxies using available Sloan Digital Sky Survey broadband photometry. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied by combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of the galaxies, and their existing H I data. Our Hercules SF galaxies are divided into three main subgroups: (1) chemically evolved spirals with truncated ionized-gas disks and nearly flat oxygen gradients, demonstrating the effect of ram-pressure stripping; (2) chemically evolved dwarfs/irregulars populating the highest local densities, possible products of tidal interactions in preprocessing events; and (3) less metallic dwarf galaxies that appear to be "newcomers" to the cluster and are experiencing pressure-triggered star formation. Most Hercules SF galaxies follow well-defined MZ and LZ sequences (for both O/H and N/O), though the dwarf/irregular galaxies located at the densest regions appear to be outliers to these global relations, suggesting a physical reason for the dispersion in these fundamental relations. The Hercules cluster appears to be currently assembling via the merger of smaller substructures, providing an ideal laboratory where the local

  20. SPATIALLY RESOLVED SPECTROSCOPY AND CHEMICAL HISTORY OF STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: THE EFFECTS OF THE ENVIRONMENT

    SciTech Connect

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J.; Cedres, B.; Papaderos, P.; Magrini, L.; Reverte, D.

    2011-06-10

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep H{alpha} survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT and have obtained fundamental parameters of stellar components such as mean metallicity and age. The emission-line spectra were corrected for underlying stellar absorption using these spectral synthesis models. Line fluxes were measured and O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. We have derived the masses and total luminosities of the galaxies using available Sloan Digital Sky Survey broadband photometry. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied by combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of the galaxies, and their existing H I data. Our Hercules SF galaxies are divided into three main subgroups: (1) chemically evolved spirals with truncated ionized-gas disks and nearly flat oxygen gradients, demonstrating the effect of ram-pressure stripping; (2) chemically evolved dwarfs/irregulars populating the highest local densities, possible products of tidal interactions in preprocessing events; and (3) less metallic dwarf galaxies that appear to be 'newcomers' to the cluster and are experiencing pressure-triggered star formation. Most Hercules SF galaxies follow well-defined MZ and LZ sequences (for both O/H and N/O), though the dwarf/irregular galaxies located at the densest regions appear to be outliers to these global relations, suggesting a physical reason for the dispersion in these fundamental relations. The Hercules cluster appears to be currently assembling via the merger of smaller substructures, providing an ideal laboratory where the

  1. Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes.

    PubMed

    Bartlett, M K; Zhang, Y; Yang, J; Kreidler, N; Sun, S w; Lin, L; Hu, Y H; Cao, K F; Sack, L

    2016-02-01

    Spatial patterns in trait variation reflect underlying community assembly processes, allowing us to test hypotheses about their trait and environmental drivers by identifying the strongest correlates of characteristic spatial patterns. For 43 evergreen tree species (> 1 cm dbh) in a 20-ha seasonal tropical rainforest plot in Xishuangbanna, China, we compared the ability of drought-tolerance traits, other physiological traits, and commonly measured functional traits to predict the spatial patterns expected from the assembly processes of habitat associations, niche-overlap-based competition, and hierarchical competition. We distinguished the neighborhood-scale (0-20 m) patterns expected from competition from larger-scale habitat associations with a wavelet method. Species' drought tolerance and habitat variables related to soil water supply were strong drivers of habitat associations, and drought tolerance showed a significant spatial signal for influencing competition. Overall, the traits most strongly associated with habitat, as quantified using multivariate models, were leaf density, leaf turgor loss point (π(tlp); also known as the leaf wilting point), and stem hydraulic conductivity (r2 range for the best fit models = 0.27-0.36). At neighborhood scales, species spatial associations were positively correlated with similarity in π(tlp), consistent with predictions for hierarchical competition. Although the correlation between π(tlp) and interspecific spatial associations was weak (r2 < 0.01), this showed a persistent influence of drought tolerance on neighborhood interactions and community assembly. Quantifying the full impact of traits on competitive interactions in forests may require incorporating plasticity among individuals within species, especially among specific life stages, and moving beyond individual traits to integrate the impact of multiple traits on whole-plant performance and resource demand. PMID:27145624

  2. Drought tolerance as a driver of tropical forest assembly: resolving spatial signatures for multiple processes.

    PubMed

    Bartlett, M K; Zhang, Y; Yang, J; Kreidler, N; Sun, S w; Lin, L; Hu, Y H; Cao, K F; Sack, L

    2016-02-01

    Spatial patterns in trait variation reflect underlying community assembly processes, allowing us to test hypotheses about their trait and environmental drivers by identifying the strongest correlates of characteristic spatial patterns. For 43 evergreen tree species (> 1 cm dbh) in a 20-ha seasonal tropical rainforest plot in Xishuangbanna, China, we compared the ability of drought-tolerance traits, other physiological traits, and commonly measured functional traits to predict the spatial patterns expected from the assembly processes of habitat associations, niche-overlap-based competition, and hierarchical competition. We distinguished the neighborhood-scale (0-20 m) patterns expected from competition from larger-scale habitat associations with a wavelet method. Species' drought tolerance and habitat variables related to soil water supply were strong drivers of habitat associations, and drought tolerance showed a significant spatial signal for influencing competition. Overall, the traits most strongly associated with habitat, as quantified using multivariate models, were leaf density, leaf turgor loss point (π(tlp); also known as the leaf wilting point), and stem hydraulic conductivity (r2 range for the best fit models = 0.27-0.36). At neighborhood scales, species spatial associations were positively correlated with similarity in π(tlp), consistent with predictions for hierarchical competition. Although the correlation between π(tlp) and interspecific spatial associations was weak (r2 < 0.01), this showed a persistent influence of drought tolerance on neighborhood interactions and community assembly. Quantifying the full impact of traits on competitive interactions in forests may require incorporating plasticity among individuals within species, especially among specific life stages, and moving beyond individual traits to integrate the impact of multiple traits on whole-plant performance and resource demand.

  3. Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films

    DOE PAGES

    Farrow, Tim; Yang, Nan; Doria, Sandra; Belianinov, Alex; Jesse, Stephen; Arruda, Thomas M.; Balestrino, Giuseppe; Kalinin, Sergei V.; Kumar, Amit

    2015-03-17

    Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunnelingmore » barriers« less

  4. Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films

    SciTech Connect

    Farrow, Tim; Yang, Nan; Doria, Sandra; Belianinov, Alex; Jesse, Stephen; Arruda, Thomas M.; Balestrino, Giuseppe; Kalinin, Sergei V.; Kumar, Amit

    2015-03-17

    Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers

  5. Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films

    SciTech Connect

    Farrow, Tim; Kumar, Amit; Yang, Nan; Doria, Sandra; Balestrino, Giuseppe; Belianinov, Alex; Jesse, Stephen; Kalinin, Sergei V.; Arruda, Thomas M.

    2015-03-01

    Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO{sub 2}. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.

  6. Spatially resolved dynamic structure factor of finite systems from molecular dynamics simulations

    SciTech Connect

    Raitza, Thomas; Roepke, Gerd; Reinholz, Heidi; Morozov, Igor

    2011-09-15

    The dynamical response of metallic clusters up to 10{sup 3} atoms is investigated using the restricted molecular dynamics simulations scheme. Exemplarily, a sodium like material is considered. Correlation functions are evaluated to investigate the spatial structure of collective electron excitations and the optical response of laser-excited clusters. In particular, the spectrum of bilocal correlation functions shows resonances representing different modes of collective excitations inside the nano plasma. The spatial structure, the resonance energy, and the width of the eigenmodes have been investigated for various values of electron density, temperature, cluster size, and ionization degree. Comparison with bulk properties is performed and the dispersion relation of collective excitations is discussed.

  7. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating.

    PubMed

    Uribe-Patarroyo, Néstor; Bouma, Brett E

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements. PMID:27627357

  8. Velocity gradients in spatially-resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    PubMed Central

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-01-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially-resolved velocity field in three dimensions. It has been thought that spatially-resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, non-turbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements. PMID:27627357

  9. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating.

    PubMed

    Uribe-Patarroyo, Néstor; Bouma, Brett E

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements.

  10. Velocity gradients in spatially resolved laser Doppler flowmetry and dynamic light scattering with confocal and coherence gating

    NASA Astrophysics Data System (ADS)

    Uribe-Patarroyo, Néstor; Bouma, Brett E.

    2016-08-01

    Dynamic light scattering (DLS) is widely used to characterize diffusive motion to obtain precise information on colloidal suspensions by calculating the autocorrelation function of the signal from a heterodyne optical system. DLS can also be used to determine the flow velocity field in systems that exhibit mass transport by incorporating the effects of the deterministic motion of scatterers on the autocorrelation function, a technique commonly known as laser Doppler flowmetry. DLS measurements can be localized with confocal and coherence gating techniques such as confocal microscopy and optical coherence tomography, thereby enabling the determination of the spatially resolved velocity field in three dimensions. It has been thought that spatially resolved DLS can determine the axial velocity as well as the lateral speed in a single measurement. We demonstrate, however, that gradients in the axial velocity of scatterers exert a fundamental influence on the autocorrelation function even in well-behaved, nonturbulent flow. By obtaining the explicit functional relation between axial-velocity gradients and the autocorrelation function, we show that the velocity field and its derivatives are intimately related and their contributions cannot be separated. Therefore, a single DLS measurement cannot univocally determine the velocity field. Our extended theoretical model was found to be in good agreement with experimental measurements.

  11. Near-infrared spatially resolved spectroscopy of (136108) Haumea's multiple system

    NASA Astrophysics Data System (ADS)

    Gourgeot, F.; Carry, B.; Dumas, C.; Vachier, F.; Merlin, F.; Lacerda, P.; Barucci, M. A.; Berthier, J.

    2016-08-01

    Context. The transneptunian region of the solar system is populated by a wide variety of icy bodies showing great diversity in orbital behavior, size, surface color, and composition. Aims: The dwarf planet (136108) Haumea is among the largest transneptunian objects (TNOs) and is a very fast rotator (~3.9 h). This dwarf planet displays a highly elongated shape and hosts two small moons that are covered with crystalline water ice, similar to their central body. A particular region of interest is the Dark Red Spot (DRS) identified on the surface of Haumea from multiband light-curve analysis (Lacerda et al. 2008). Haumea is also known to be the largest member of the sole TNO family known to date, and an outcome of a catastrophic collision that is likely responsible for the unique characteristics of Haumea. Methods: We report here on the analysis of a new set of near-infrared Laser Guide Star assisted observations of Haumea obtained with the Integral Field Unit (IFU) Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) at the European Southern Observatory (ESO) Very Large Telescope (VLT) Observatory. Combined with previous data published by Dumas et al. (2011), and using light-curve measurements in the optical and far infrared to associate each spectrum with its corresponding rotational phase, we were able to carry out a rotationally resolved spectroscopic study of the surface of Haumea. Results: We describe the physical characteristics of the crystalline water ice present on the surface of Haumea for both regions, in and out of the DRS, and analyze the differences obtained for each individual spectrum. The presence of crystalline water ice is confirmed over more than half of the surface of Haumea. Our measurements of the average spectral slope (1.45 ± 0.82% by 100 nm) confirm the redder characteristic of the spot region. Detailed analysis of the crystalline water-ice absorption bands do not show significant differences between the DRS and the

  12. Quantifying Seagrass Light Requirements Using an Algorithm to Spatially Resolve Depth of Colonization

    EPA Science Inventory

    The maximum depth of colonization (Zc) is a useful measure of seagrass growth that describes response to light attenuation in the water column. However, lack of standardization among methods for estimating Zc has limited the description of habitat requirements at spatial scales m...

  13. Spatially Resolved Chemical Imaging for Biosignature Analysis: Terrestrial and Extraterrestrial Examples

    NASA Astrophysics Data System (ADS)

    Bhartia, R.; Wanger, G.; Orphan, V. J.; Fries, M.; Rowe, A. R.; Nealson, K. H.; Abbey, W. J.; DeFlores, L. P.; Beegle, L. W.

    2014-12-01

    Detection of in situ biosignatures on terrestrial and planetary missions is becoming increasingly more important. Missions that target the Earth's deep biosphere, Mars, moons of Jupiter (including Europa), moons of Saturn (Titan and Enceladus), and small bodies such as asteroids or comets require methods that enable detection of materials for both in-situ analysis that preserve context and as a means to select high priority sample for return to Earth. In situ instrumentation for biosignature detection spans a wide range of analytical and spectroscopic methods that capitalize on amino acid distribution, chirality, lipid composition, isotopic fractionation, or textures that persist in the environment. Many of the existing analytical instruments are bulk analysis methods and while highly sensitive, these require sample acquisition and sample processing. However, by combining with triaging spectroscopic methods, biosignatures can be targeted on a surface and preserve spatial context (including mineralogy, textures, and organic distribution). To provide spatially correlated chemical analysis at multiple spatial scales (meters to microns) we have employed a dual spectroscopic approach that capitalizes on high sensitivity deep UV native fluorescence detection and high specificity deep UV Raman analysis.. Recently selected as a payload on the Mars 2020 mission, SHERLOC incorporates these optical methods for potential biosignatures detection on Mars. We present data from both Earth analogs that operate as our only examples known biosignatures and meteorite samples that provide an example of abiotic organic formation, and demonstrate how provenance effects the spatial distribution and composition of organics.

  14. Greenland Ice Sheet Annually-resolved Accumulation Rates (1958-2007), a Spatially Calibrated Model

    NASA Astrophysics Data System (ADS)

    Burgess, E. W.; Forster, R. R.; Box, J. W.; Smith, L. C.; Bromwich, D. H.

    2008-12-01

    The Greenland Ice Sheet (GIS) has responded dramatically to recent temperature increases, making it an important contributor to sea level rise. Accurate predictions of Greenland's future contribution to sea level will require a scrupulous understanding of the GIS system and refining our understanding of accumulation is a critical step towards this goal. The most accurate existing estimates of Greenland accumulation rates are multi-year averages; existing annual estimates contain poorly quantified uncertainties. This project developed a superior Greenland accumulation dataset that is spatially comprehensive, has annual resolution, is calibrated to field observations and contains sound uncertainty estimates. Accumulation output from a 1958- 2007 run of the Fifth Generation Mesoscale Model modified for polar climates (PMM5) was calibrated against 133 firn cores and coastal meteorological stations. PMM5 accumulation rate estimates contained spatially dependent systematic biases that were modeled and removed using spatial interpolation of zonally derived regressions. The calibrated accumulation dataset contains residual uncertainties exhibiting a strong spatial pattern that was modeled to estimate ice-sheet wide uncertainty. No significant 1958-2007 trends in Greenland accumulation are evident. Average annual accumulation rate is estimated at 0.339m.w.e. or 593km3 with an RMSE uncertainty of +/-83 km3 or +/-14%. The accumulation dataset will be made publicly available.

  15. A Bayesian partition modelling approach to resolve spatial variability in climate records from borehole temperature inversion

    NASA Astrophysics Data System (ADS)

    Hopcroft, Peter O.; Gallagher, Kerry; Pain, Christopher C.

    2009-08-01

    Collections of suitably chosen borehole profiles can be used to infer large-scale trends in ground-surface temperature (GST) histories for the past few hundred years. These reconstructions are based on a large database of carefully selected borehole temperature measurements from around the globe. Since non-climatic thermal influences are difficult to identify, representative temperature histories are derived by averaging individual reconstructions to minimize the influence of these perturbing factors. This may lead to three potentially important drawbacks: the net signal of non-climatic factors may not be zero, meaning that the average does not reflect the best estimate of past climate; the averaging over large areas restricts the useful amount of more local climate change information available; and the inversion methods used to reconstruct the past temperatures at each site must be mathematically identical and are therefore not necessarily best suited to all data sets. In this work, we avoid these issues by using a Bayesian partition model (BPM), which is computed using a trans-dimensional form of a Markov chain Monte Carlo algorithm. This then allows the number and spatial distribution of different GST histories to be inferred from a given set of borehole data by partitioning the geographical area into discrete partitions. Profiles that are heavily influenced by non-climatic factors will be partitioned separately. Conversely, profiles with climatic information, which is consistent with neighbouring profiles, will then be inferred to lie in the same partition. The geographical extent of these partitions then leads to information on the regional extent of the climatic signal. In this study, three case studies are described using synthetic and real data. The first demonstrates that the Bayesian partition model method is able to correctly partition a suite of synthetic profiles according to the inferred GST history. In the second, more realistic case, a series of

  16. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.

    PubMed

    Sweers, Kim K M; van der Werf, Kees O; Bennink, Martin L; Subramaniam, Vinod

    2012-03-21

    Recently several atomic force microscopy (AFM)-based surface property mapping techniques like pulsed force microscopy (PFM), harmonic force microscopy or Peakforce QNM® have been introduced to measure the nano- and micro-mechanical properties of materials. These modes all work at different operating frequencies. However, complex materials are known to display viscoelastic behavior, a combination of solid and fluid-like responses, depending on the frequency at which the sample is probed. In this report, we show that the frequency-dependent mechanical behavior of complex materials, such as polymer blends that are frequently used as calibration samples, is clearly measurable with AFM. Although this frequency-dependent mechanical behavior is an established observation, we demonstrate that the new high frequency mapping techniques enable AFM-based rheology with nanoscale spatial resolution over a much broader frequency range compared to previous AFM-based studies. We further highlight that it is essential to account for the frequency-dependent variation in mechanical properties when using these thin polymer samples as calibration materials for elasticity measurements by high-frequency surface property mapping techniques. These results have significant implications for the accurate interpretation of the nanomechanical properties of polymers or complex biological samples. The calibration sample is composed of a blend of soft and hard polymers, consisting of low-density polyethylene (LDPE) islands in a polystyrene (PS) surrounding, with a stiffness of 0.2 GPa and 2 GPa respectively. The spring constant of the AFM cantilever was selected to match the stiffness of LDPE. From 260 Hz to 1100 Hz the sample was imaged with the PFM method. At low frequencies (0.5-35 Hz), single-point nanoindentation was performed. In addition to the material's stiffness, the relative heights of the LDPE islands (with respect to the PS) were determined as a function of the frequency. At the lower

  17. Time-resolved fluorescence study of all-trans-retinal

    NASA Astrophysics Data System (ADS)

    Erez, Yuval; Presiado, Itay; Gepshtein, Rinat; Simkovitch, Ron; Huppert, Dan

    2014-11-01

    UV-vis steady-state and time-resolved emission techniques were employed to study the ultrafast relaxation path of all-trans-retinal. We found that the steady-state emission spectrum consists mainly of two bands that we assign to the allowed transition from the ? state and the forbidden transition from the ?(ππ*) state. The time-resolved emission signal is dependent on the excitation wavelength, and is composed of three decay components. The short-time component of less than 80 fs, irrespective of the solvent, is assigned to the transition from the ? state. The intermediate-time decay component is assigned to the transition from the ?(ππ*) state, depends on the solvent's polarity and not on the existence of hydrogen bonds between the solute and the solvent or the viscosity of the latter. It has a lifetime of ~1 ps in polar solvents, and of 0.6 and 0.4 ps in the non-polar solvents n-octane and cyclohexane, respectively.

  18. Spatially resolved transport data for electrons in gases: Definition, interpretation and calculation

    NASA Astrophysics Data System (ADS)

    Dujko, S.; White, R. D.; Raspopović, Z. M.; Petrović, Z. Lj.

    2012-05-01

    The spatiotemporal evolution of electron swarms in the presence of electric and magnetic fields is investigated to facilitate understanding temporal and spatial non-locality in low-temperature plasmas. Using two independent techniques, a multi-term solution of Boltzmann's equation and a Monte Carlo simulation technique, the synergism of an applied magnetic field and non-conservative collisions (ionization and/or electron attachment) is demonstrated as a means to control the non-locality of relaxation processes. In particular, oscillatory features in the spatial and temporal profiles are demonstrated, and shown to be enhanced or suppressed through the magnetic field strength, the angle between the electric and magnetic fields, and the degree of ionization. Finally we discuss the impact of field configurations and strengths on the transport properties, highlighting the distinctions in the measured transport properties between various experimental configurations when non-conservative processes are present.

  19. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    SciTech Connect

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena Safa; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  20. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena S.; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1-xSex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  1. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    PubMed

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  2. Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions

    SciTech Connect

    Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.

    2009-01-21

    A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.

  3. Spatially Resolving Spectroscopic Binaries with the CHARA Array: The SFP Project

    NASA Astrophysics Data System (ADS)

    Farrington, C. D.; ten Brummelaar, T. A.

    2013-02-01

    When observed with optical long-baseline interferometers (OLBI), components of a binary star which are sufficiently separated such that their interferometric fringe packets do not overlap are referred to as Separated Fringe Packet (SFP) binaries. These SFP binaries extend out into the regime of systems resolvable by speckle interferometry at single, large-aperture telescopes and can provide additional measurements for preliminary orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the undersampled regime between the bounds of spectroscopic surveys and speckle interferometry. In this process, a visibility calibration star is not needed, and the separated fringe packets can provide an accurate vector separation. Presented here we describe the method, usage, and modified orbits for several systems used to validate the procedure.

  4. Time-Resolved High-Spatial-Resolution Measurements of Underwater Laser Ionization and Filamentation

    NASA Astrophysics Data System (ADS)

    Jones, Ted; Helle, Mike; Kaganovich, Dmitri; Ting, Antonio; Penano, Joe; Hafizi, Bahman; Chen, Yu-Hsin

    2014-10-01

    Intense underwater laser propagation, filamentation, and ionization are being investigated at NRL for applications including laser-guided discharges, advanced micromachining, and low-frequency laser acoustic generation. Time-resolved spectroscopy of intense underwater propagation and filamentation reveal strong Stimulated molecular Raman Scattering with ps temporal structure and frequency chirp. In addition, fs-time-resolution perpendicular shadowgraph images of ns underwater laser ionization reveal gas microbubble generation throughout the pump beam path. These microbubbles form in ps timescales with remarkably uniform initial diameters of a few-microns. Simulations using the HELCAP 4D nonlinear laser propagation code accurately predict measured filament fluence profiles and propagation, but also indicate complex, time-dependent and axially non-uniform plasma behavior. Results from recent experiments and simulations will be presented. This work is supported by NRL Base Funds.

  5. Spatially-resolved molecular Quantum Dots at the Surface of a Gated Graphene Device

    NASA Astrophysics Data System (ADS)

    Tsai, Hsin-Zon; Wickenburg, Sebastian; Lu, Jiong; Omrani, Arash A.; Coh, Sinisa; Jung, Han Sae; Wong, Dillon; Lischner, Johannes; Khajeh, Ramin; Riss, Alexander; Bradley, Aaron J.; Piatti, Erik; Zettl, Alex; Louie, Steven G.; Cohen, Marvin L.; Crommie, Michael F.

    2015-03-01

    The ability to modify the electronic properties of monolayer graphene via charge-donating or charge-accepting molecules creates new opportunities for fabricating nano-scale hybrid devices. Understanding the charge transfer process at the single molecule level is essential for tuning the electronic and magnetic characteristics of such hybrid devices. We have used scanning tunneling microscopy (STM) to locally probe how different molecular assemblies (including single molecules, molecular chains, and 2D molecular islands) exchange charge with a graphene substrate as the device backgate voltage is varied. Different molecular configurations exhibit substantially different charging behavior - some are permanently charged while others can be controllably ionized using the device backgate. Electrostatic interactions lead to charge heterogeneity at the molecular level. Single-chemical-bond-resolved atomic force microscopy allows us to correlate chemical structure and adsorption geometry of the molecules with their electronic properties.

  6. Spatially Resolved H2 Emission In The GG Tau A Binary System

    NASA Astrophysics Data System (ADS)

    Bary, Jeffrey S.; Beck, T. L.; Dutrey, A.; Guilloteau, S.; Pietu, V.

    2012-01-01

    We present a high-resolution image of molecular hydrogen emission from the GG Tau A binary system. Using NIFS+AO on Gemini North to achieve 0.1" resolution, we clearly resolve the emitting gas to be located within the unstable region between the stellar cores and the circumbinary ring. The brightest arc of H2 emission observed to the northeast of the companions closely aligns with the location of a accretion "streamer" suggested by the high resolution millimeter observations presented in Pietu et al. 2011. The proximity of the H2 emission to the infalling streamer strongly suggests that the H2 emission is the result of a shocked gas residing in the orbital environment of the stellar companions. Near-infrared H2 line ratios predict an excitation temperature on the order of 1700 K and are compared to standard shock models.

  7. Spatially resolved characterization of cellulose nanocrystal-polypropylene composite by confocal Raman microscopy.

    PubMed

    Agarwal, Umesh P; Sabo, Ronald; Reiner, Richard S; Clemons, Craig M; Rudie, Alan W

    2012-07-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC) -polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nano-scale fraction of microcrystalline cellulose) and two of the three composites investigated used maleated PP as a coupling agent. Raman maps, based on cellulose and PP bands at 1098 and 1460 cm(-1), respectively, obtained at 1 μm spatial resolution showed that the CNCs were aggregated to various degrees in the PP matrix. Of the three composites analyzed, two showed clear existence of phase-separated regions: Raman images with strong PP and absent/weak cellulose or vice versa. For the third composite, the situation was slightly improved but a clear transition interface between the PP-abundant and CNC-abundant regions was observed, indicating that the CNC remained poorly dispersed. The spectroscopic approach to investigating spatial distribution of the composite components was helpful in evaluating CNC dispersion in the composite at the microscopic level, which helped explain the relatively modest reinforcement of PP by the CNCs.

  8. Polarized and spatially resolved Raman scattering from composition-graded wurtzite InGaAs nanowires

    NASA Astrophysics Data System (ADS)

    Kim, H.; Rho, H.; Lee, E. H.; Song, J. D.

    2016-05-01

    We report Raman scattering from wurtzite single-crystalline InGaAs nanowires (NWs) to probe optical phonon behaviors associated with spatial grading in alloy composition along the NW length. Polarized Raman spectra revealed several optical phonons and their scattering symmetries: (i) InAs-like A 1(LO) and A 1(TO) phonons and (ii) GaAs-like A 1(LO), A 1(TO), and E 2(high) phonons. In addition, strong anisotropic behavior was observed in the Raman tensor elements of the A 1(TO) phonon mode. Interestingly, a spatial mapping of the GaAs-like A 1(TO) phonon along the NW length direction showed a systematic increase in energy from the NW top (~255 cm‑1) to the midpoint (~263 cm‑1), indicating an increase in the Ga mole fraction from about 0.5 to about 0.8. Further toward the NW bottom, the GaAs-like A 1(TO) phonon energy saturated to the peak value at about 264 cm‑1. In the upper half of the NW, the phonon linewidths broadened significantly due to the spatial grading in In/Ga composition along the NW length. When the composition grading was negligible in the bottom half of the NW, the spectral widths were considerably narrowed. The GaAs-like E 2(high) phonon showed similar variations in both energy and spectral width along the NW length.

  9. Evaluation study of building-resolved urban dispersion models

    SciTech Connect

    Flaherty, Julia E.; Allwine, K Jerry; Brown, Mike J.; Coirier, WIlliam J.; Ericson, Shawn C.; Hansen, Olav R.; Huber, Alan H.; Kim, Sura; Leach, Martin J.; Mirocha, Jeff D.; Newsom, Rob K.; Patnaik, Gopal; Senocak, Inanc

    2007-09-10

    For effective emergency response and recovery planning, it is critically important that building-resolved urban dispersion models be evaluated using field data. Several full-physics computational fluid dynamics (CFD) models and semi-empirical building-resolved (SEB) models are being advanced and applied to simulating flow and dispersion in urban areas. To obtain an estimate of the current state-of-readiness of these classes of models, the Department of Homeland Security (DHS) funded a study to compare five CFD models and one SEB model with tracer data from the extensive Midtown Manhattan field study (MID05) conducted during August 2005 as part of the DHS Urban Dispersion Program (UDP; Allwine and Flaherty 2007). Six days of tracer and meteorological experiments were conducted over an approximately 2-km-by-2-km area in Midtown Manhattan just south of Central Park in New York City. A subset of these data was used for model evaluations. The study was conducted such that an evaluation team, independent of the six modeling teams, provided all the input data (e.g., building data, meteorological data and tracer release rates) and run conditions for each of four experimental periods simulated. Tracer concentration data for two of the four experimental periods were provided to the modeling teams for their own evaluation of their respective models to ensure proper setup and operation. Tracer data were not provided for the second two experimental periods to provide for an independent evaluation of the models. The tracer concentrations resulting from the model simulations were provided to the evaluation team in a standard format for consistency in inter-comparing model results. An overview of the model evaluation approach will be given followed by a discussion on the qualitative comparison of the respective models with the field data. Future model developments efforts needed to address modeling gaps identified from this study will also be discussed.

  10. Measurements of Spatially Resolved Velocity Variations in Shock Compressed Heterogeneous Materials Using a Line-Imaging Velocity Interferometer

    SciTech Connect

    ASAY,JAMES R.; CHHABILDAS,LALIT C.; KNUDSON,MARCUS D.; TROTT,WAYNE M.

    1999-09-01

    Relatively straightforward changes in the optical design of a conventional optically recording velocity interferometer system (ORVIS) can be used to produce a line-imaging velocity interferometer wherein both temporal and spatial resolution can be adjusted over a wide range. As a result line-imaging ORVIS can be tailored to a variety of specific applications involving dynamic deformation of heterogeneous materials as required by the characteristic length scale of these materials (ranging from a few {micro}m for ferroelectric ceramics to a few mm for concrete). A line-imaging ORVIS has been successfully interfaced to the target chamber of a compressed gas gun driver and fielded on numerous tests in combination with simultaneous measurements using a dual delay-leg, ''push-pull'' VISAR system. These tests include shock loading of glass-reinforced polyester composites, foam reverberation experiments (measurements at the free surface of a thin aluminum plate impacted by foam), and measurements of dispersive velocity in a shock-loaded explosive simulant (sugar). Comparison of detailed spatially-resolved material response to the spatially averaged VISAR measurements will be discussed.

  11. Spatially Resolved Spectroscopy of Submillimeter Galaxies at z ≃ 2

    NASA Astrophysics Data System (ADS)

    Olivares, V.; Treister, E.; Privon, G. C.; Alaghband-Zadeh, S.; Casey, Caitlin M.; Schawinski, K.; Kurczynski, P.; Gawiser, E.; Nagar, N.; Chapman, S.; Bauer, F. E.; Sanders, D.

    2016-08-01

    We present near-infrared integral-field spectroscopic observations targeting Hα in eight submillimeter galaxies (SMGs) at z = 1.3–2.5 using the Very Large Telescope/Spectrograph for Integral Field Observations in the Near Infrared, obtaining significant detections for six of them. The star formation rates derived from the Hα emission are ˜100 M ⊙ yr‑1, which account for only ˜20%–30% of the infrared-derived values, thus suggesting that these systems are very dusty. Two of these systems present [N ii]/Hα ratios indicative of the presence of an active galactic nucleus. We mapped the spatial distribution and kinematics of the star-forming regions in these galaxies on kiloparsec scales. In general, the Hα morphologies tend to be highly irregular and/or clumpy, showing spatial extents of ˜3–11 kpc. We find evidence for significant spatial offsets, of ˜0.″1–0.″4 or 1.2–3.4 kpc, between the Hα and the continuum emission in three of the sources. Performing a kinemetry analysis, we conclude that the majority of the sample is not consistent with disk-like rotation-dominated kinematics. Instead, they tend to show irregular and/or clumpy and turbulent velocity and velocity dispersion fields. This can be interpreted as evidence for a scenario in which these extreme star formation episodes are triggered by galaxy–galaxy interactions and major mergers. In contrast to recent results for SMGs, these sources appear to follow the same relations between gas and star-forming rate densities as less luminous and/or normal star-forming galaxies. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 088.A-0452 and 090.A-0464.

  12. Spatially resolved measurements of two-dimensional turbulent structures in DIII-D plasmas

    NASA Astrophysics Data System (ADS)

    Zemedkun, S. E.; Che, S.; Chen, Y.; Domier, C. W.; Luhmann, N. C.; Munsat, T.; Parker, S. E.; Tobias, B.; Wan, W.; Yu, L.

    2015-12-01

    Two-dimensional observations of spatially coherent electron temperature fluctuations at drift-wave scales (k ˜ 1 cm-1) have been made using the electron cyclotron emission imaging diagnostic on the DIII-D tokamak. These measurements enable the extraction of spectral properties, including poloidal dispersion relations. Temperature fluctuation levels are found to be Te ˜/⟨Te⟩=1.2 % , and the phase velocity of the fluctuations is found to be constant across frequencies, consistent with modes having real frequencies low compared to the rotation-induced Doppler shifts. Comparisons with radially global linear gyrokinetic simulations suggest that the observed modes may be trapped electron modes.

  13. Angle-resolved photoemission study of Ag(1 1 1)

    NASA Astrophysics Data System (ADS)

    Edamoto, K.; Miyazaki, E.; Shimokoshi, K.; Kato, H.

    1990-01-01

    The (1 1 1) face of Ag has been studied by angle-resolved photoemission spectroscopy utilizing synchrotron radiation as the excitation source (25 <= hv <= 50eV). The overlapping Ag 4d bands were deconvolved by the modified FIRO method. The peak positions thus determined are used to map the dispersion curves along the lang1 1 1rang (Γ-L) direction. The results show general agreement with calculated band structure, so far as the energy levels and symmetries are concerned. However, it is found that the density of state effect is dominant in the spectra obtained in the present photon energy region. The emission from the Ag 5s, p bands is observed to be broadened due to the indirect transition process.

  14. Spatially resolved measurement of singlet delta oxygen by radar resonance-enhanced multiphoton ionization.

    PubMed

    Wu, Yue; Zhang, Zhili; Ombrello, Timothy M

    2013-07-01

    Coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization (REMPI) was demonstrated to directly and nonintrusively measure singlet delta oxygen, O(2)(a(1)Δ(g)), with high spatial resolution. Two different approaches, photodissociation of ozone and microwave discharge plasma in an argon and oxygen flow, were utilized for O(2)(a(1)Δ(g)) generation. The d(1)Π(g)←a(1)Δ(g) (3-0) and d(1)Π(g)←a(1)Δ(g) (1-0) bands of O(2)(a(1)Δ(g)) were detected by Radar REMPI for two different flow conditions. Quantitative absorption measurements using sensitive off-axis integrated cavity output spectroscopy (ICOS) was used simultaneously to evaluate the accuracy and sensitivity of the Radar REMPI technique. The detection limit of Radar REMPI was found to be comparable to the ICOS technique with a detection threshold of approximately 10(14) molecules/cm(3) but with a spatial resolution that was 8 orders of magnitude smaller than the ICOS technique.

  15. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    DOE PAGES

    Belianinov, Alex; Panchapakesan, G.; Lin, Wenzhi; Sales, Brian C.; Sefat, Athena Safa; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.

    2014-12-02

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe0.55Se0.45 (Tc = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe1 x Sex structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signaturemore » and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.« less

  16. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    SciTech Connect

    Belianinov, Alex Ganesh, Panchapakesan; Lin, Wenzhi; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.; Sales, Brian C.; Sefat, Athena S.

    2014-12-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe{sub 0.55}Se{sub 0.45} (T{sub c} = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe{sub 1−x}Se{sub x} structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces.

  17. Spatially and temporally resolved exciton dynamics and transport in single nanostructures and assemblies

    NASA Astrophysics Data System (ADS)

    Huang, Libai

    2015-03-01

    The frontier in solar energy conversion now lies in learning how to integrate functional entities across multiple length scales to create optimal devices. To address this new frontier, I will discuss our recent efforts on elucidating multi-scale energy transfer, migration, and dissipation processes with simultaneous femtosecond temporal resolution and nanometer spatial resolution. We have developed ultrafast microscopy that combines ultrafast spectroscopy with optical microscopy to map exciton dynamics and transport with simultaneous ultrafast time resolution and diffraction-limited spatial resolution. We have employed pump-probe transient absorption microscopy to elucidate morphology and structure dependent exciton dynamics and transport in single nanostructures and molecular assemblies. More specifically, (1) We have applied transient absorption microscopy (TAM) to probe environmental and structure dependent exciton relaxation pathways in sing-walled carbon nanotubes (SWNTs) by mapping dynamics in individual pristine SWNTs with known structures. (2) We have systematically measured and modeled the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical microscopy and stochastic exciton modeling, we address exciton transport and relaxation pathways, especially those related to disorder.

  18. Application of Spatially Resolved High Resolution Crystal Spectrometry to ICF Plasmas

    SciTech Connect

    Kenneth W. Hill, et. al.

    2012-09-15

    High resolution (λ/Δ λ ~ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm 55 Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10-8 -10-6 times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  19. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas

    SciTech Connect

    Hill, K. W.; Bitter, M.; Delgado-Aparacio, L.; Pablant, N. A.; Beiersdorfer, P.; Schneider, M.; Widmann, K.; Sanchez del Rio, M.; Zhang, L.

    2012-10-15

    High resolution ({lambda}/{Delta}{lambda}{approx} 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-{mu}m {sup 55}Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10{sup -8}-10{sup -6} times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  20. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers

    SciTech Connect

    Yau, Waifan.

    1988-04-01

    Substitutional carbon on an arsenic lattice site is the shallowest and one of the most dominant acceptors in semi-insulating Liquid Encapsulated Czochralski (LEC) GaAs. However, the role of this acceptor in determining the well known W'' shape spatial variation of neutral EL2 concentration along the diameter of a LEC wafer is not known. In this thesis, we attempt to clarify the issue of the carbon acceptor's effect on this W'' shaped variation by measuring spatial profiles of this acceptor along the radius of three different as-grown LEC GaAs wafers. With localized vibrational mode absorption spectroscopy, we find that the profile of the carbon acceptor is relatively constant along the radius of each wafer. Average values of concentration are 8 {times} 10E15 cm{sup -3}, 1.1 {times} 10E15 cm{sup -3}, and 2.2 {times} 10E15 cm{sup -3}, respectively. In addition, these carbon acceptor LVM measurements indicate that a residual donor with concentration comparable to carbon exists in these wafers and it is a good candidate for the observed neutral EL2 concentration variation. 22 refs., 39 figs.

  1. Spatially Resolving the Very High Energy Emission from MGRO J2019+37 with VERITAS

    NASA Astrophysics Data System (ADS)

    Aliu, E.; Aune, T.; Behera, B.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Dwarkadas, V. V.; Errando, M.; Falcone, A.; Federici, S.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Fortin, P.; Fortson, L.; Furniss, A.; Galante, N.; Gillanders, G. H.; Gotthelf, E. V.; Griffin, S.; Griffiths, S. T.; Grube, J.; Gyuk, G.; Hanna, D.; Holder, J.; Hughes, G.; Humensky, T. B.; Johnson, C. A.; Kaaret, P.; Kargaltsev, O.; Kertzman, M.; Khassen, Y.; Kieda, D.; Krennrich, F.; Lang, M. J.; Madhavan, A. S.; Maier, G.; McArthur, S.; McCann, A.; Millis, J.; Moriarty, P.; Mukherjee, R.; Nieto, D.; O'Faoláin de Bhróithe, A.; Ong, R. A.; Otte, A. N.; Pandel, D.; Park, N.; Pohl, M.; Popkow, A.; Prokoph, H.; Quinn, J.; Ragan, K.; Rajotte, J.; Reyes, L. C.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Roberts, M.; Sembroski, G. H.; Shahinyan, K.; Smith, A. W.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Vincent, S.; Wakely, S. P.; Weinstein, A.; Welsing, R.; Wilhelm, A.; Williams, D. A.; Zitzer, B.

    2014-06-01

    We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (~2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (~1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2-104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

  2. Energy release in the solar corona from spatially resolved magnetic braids.

    PubMed

    Cirtain, J W; Golub, L; Winebarger, A R; De Pontieu, B; Kobayashi, K; Moore, R L; Walsh, R W; Korreck, K E; Weber, M; McCauley, P; Title, A; Kuzin, S; DeForest, C E

    2013-01-24

    It is now apparent that there are at least two heating mechanisms in the Sun's outer atmosphere, or corona. Wave heating may be the prevalent mechanism in quiet solar periods and may contribute to heating the corona to 1,500,000 K (refs 1-3). The active corona needs additional heating to reach 2,000,000-4,000,000 K; this heat has been theoretically proposed to come from the reconnection and unravelling of magnetic 'braids'. Evidence favouring that process has been inferred, but has not been generally accepted because observations are sparse and, in general, the braided magnetic strands that are thought to have an angular width of about 0.2 arc seconds have not been resolved. Fine-scale braiding has been seen in the chromosphere but not, until now, in the corona. Here we report observations, at a resolution of 0.2 arc seconds, of magnetic braids in a coronal active region that are reconnecting, relaxing and dissipating sufficient energy to heat the structures to about 4,000,000 K. Although our 5-minute observations cannot unambiguously identify the field reconnection and subsequent relaxation as the dominant heating mechanism throughout active regions, the energy available from the observed field relaxation in our example is ample for the observed heating. PMID:23344359

  3. Spatially resolving the very high energy emission from MGRO J2019+37 with VERITAS

    SciTech Connect

    Aliu, E.; Errando, M.; Aune, T.; Behera, B.; Chen, X.; Federici, S.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Bouvier, A.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Dwarkadas, V. V.; Falcone, A. E-mail: nahee@uchicago.edu; and others

    2014-06-10

    We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (∼2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (∼1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

  4. Spatially resolved dielectric constant of confined water and its connection to the non-local nature of bulk water

    NASA Astrophysics Data System (ADS)

    Schaaf, Christian; Gekle, Stephan

    2016-08-01

    We use molecular dynamics simulations to compute the spatially resolved static dielectric constant of water in cylindrical and spherical nanopores as occurring, e.g., in protein water pockets or carbon nanotubes. For this, we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions in the considered geometries. We find that in cylindrical confinement, the axial component behaves similar as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some oscillatory features when approaching the surface if their radius is larger than about 2 nm. Most importantly, however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising features are traced back quantitatively to the non-local dielectric nature of bulk water.

  5. Spatially resolved dielectric constant of confined water and its connection to the non-local nature of bulk water.

    PubMed

    Schaaf, Christian; Gekle, Stephan

    2016-08-28

    We use molecular dynamics simulations to compute the spatially resolved static dielectric constant of water in cylindrical and spherical nanopores as occurring, e.g., in protein water pockets or carbon nanotubes. For this, we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions in the considered geometries. We find that in cylindrical confinement, the axial component behaves similar as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some oscillatory features when approaching the surface if their radius is larger than about 2 nm. Most importantly, however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising features are traced back quantitatively to the non-local dielectric nature of bulk water. PMID:27586940

  6. Spatially resolved spectroscopy of AG Carinae, and direct evidence for stellar evolution: The central star of NGC 2392

    NASA Technical Reports Server (NTRS)

    Altner, Bruce; Shore, Steven N.

    1993-01-01

    We have performed spatially-resolved low dispersion long-slit spectroscopy for the circumstellar shell of the luminous blue variable AG Carinae with IUE between lambda lambda 1200 - 3200 A. At all positions a strong dust-scattered stellar continuum is detected. Only a few emission lines, FE II 2600 and O I (?) 1304, have been detected; the emission is stronger on the southern side of the shell. The UV surface brightness and derived dust properties are completely consistent with the groundbased and KAO FIR observations: the grains are large (0.1 - 1 micron), warm (45 - 100 K depending on composition), highly reflecting (C(sub sca)/C(sub abs) approximately equal to 1), and tie up about 10(exp -4) to 10(exp -3) solar mass of material. We also observe similarities of the results for HR Car and LBV's to those reported here.

  7. Thermomechanical Response of a Gas to Spatially Resolved Power Deposition Transients

    NASA Astrophysics Data System (ADS)

    Kassoy, David R.

    2015-11-01

    Liquid propellant rocket engine (LPRE) instability is characterized by growing pressure oscillations that affect the integrity and performance of the system. Modeling and prediction have been topics of intense interest to designers for more than 60 years. LPRE combustion provides a wonderful opportunity to employ thermomechanical concepts and mathematical methodologies to quantify the response of combustion chamber gases to spatially distributed, transient thermal energy deposition. Nondimensional Euler equations, including a power deposition term in the energy equation are used to identify crucial parameters, time and length scales, as well as levels of energy deposition, relevant to LPRE performance. The objective is to provide first principles explanations of physical phenomena responsible for mechanical disturbances observed in operating LPRE's.

  8. Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence

    PubMed Central

    Zetterberg, Johan; Blomberg, Sara; Gustafson, Johan; Evertsson, Jonas; Zhou, Jianfeng; Adams, Emma C.; Carlsson, Per-Anders; Aldén, Marcus; Lundgren, Edvin

    2015-01-01

    Visualizing and measuring the gas distribution in close proximity to a working catalyst is crucial for understanding how the catalytic activity depends on the structure of the catalyst. However, existing methods are not able to fully determine the gas distribution during a catalytic process. Here we report on how the distribution of a gas during a catalytic reaction can be imaged in situ with high spatial (400 μm) and temporal (15 μs) resolution using infrared planar laser-induced fluorescence. The technique is demonstrated by monitoring, in real-time, the distribution of carbon dioxide during catalytic oxidation of carbon monoxide above powder catalysts. Furthermore, we demonstrate the versatility and potential of the technique in catalysis research by providing a proof-of-principle demonstration of how the activity of several catalysts can be measured simultaneously, either in the same reactor chamber, or in parallel, in different reactor tubes. PMID:25953006

  9. Spatially Resolved Gas Kinematics within a Lyα Nebula: Evidence for Large-scale Rotation

    NASA Astrophysics Data System (ADS)

    Prescott, Moire K. M.; Martin, Crystal L.; Dey, Arjun

    2015-01-01

    We use spatially extended measurements of Lyα as well as less optically thick emission lines from an ≈80 kpc Lyα nebula at z ≈ 1.67 to assess the role of resonant scattering and to disentangle kinematic signatures from Lyα radiative transfer effects. We find that the Lyα, C IV, He II, and C III] emission lines all tell a similar story in this system, and that the kinematics are broadly consistent with large-scale rotation. First, the observed surface brightness profiles are similar in extent in all four lines, strongly favoring a picture in which the Lyα photons are produced in situ instead of being resonantly scattered from a central source. Second, we see low kinematic offsets between Lyα and the less optically thick He II line (~100-200 km s-1), providing further support for the argument that the Lyα and other emission lines are all being produced within the spatially extended gas. Finally, the full velocity field of the system shows coherent velocity shear in all emission lines: ≈500 km s-1 over the central ≈50 kpc of the nebula. The kinematic profiles are broadly consistent with large-scale rotation in a gas disk that is at least partially stable against collapse. These observations suggest that the Lyα nebula represents accreting material that is illuminated by an offset, hidden active galactic nucleus or distributed star formation, and that is undergoing rotation in a clumpy and turbulent gas disk. With an implied mass of M(

  10. SPATIALLY RESOLVED GAS KINEMATICS WITHIN A Lyα NEBULA: EVIDENCE FOR LARGE-SCALE ROTATION

    SciTech Connect

    Prescott, Moire K. M.; Martin, Crystal L.; Dey, Arjun

    2015-01-20

    We use spatially extended measurements of Lyα as well as less optically thick emission lines from an ≈80 kpc Lyα nebula at z ≈ 1.67 to assess the role of resonant scattering and to disentangle kinematic signatures from Lyα radiative transfer effects. We find that the Lyα, C IV, He II, and C III] emission lines all tell a similar story in this system, and that the kinematics are broadly consistent with large-scale rotation. First, the observed surface brightness profiles are similar in extent in all four lines, strongly favoring a picture in which the Lyα photons are produced in situ instead of being resonantly scattered from a central source. Second, we see low kinematic offsets between Lyα and the less optically thick He II line (∼100-200 km s{sup –1}), providing further support for the argument that the Lyα and other emission lines are all being produced within the spatially extended gas. Finally, the full velocity field of the system shows coherent velocity shear in all emission lines: ≈500 km s{sup –1} over the central ≈50 kpc of the nebula. The kinematic profiles are broadly consistent with large-scale rotation in a gas disk that is at least partially stable against collapse. These observations suggest that the Lyα nebula represents accreting material that is illuminated by an offset, hidden active galactic nucleus or distributed star formation, and that is undergoing rotation in a clumpy and turbulent gas disk. With an implied mass of M(

  11. Probing microscopic material properties inside simulated membranes through spatially resolved three-dimensional local pressure fields and surface tensions

    PubMed Central

    Kasson, Peter M.; Hess, Berk; Lindahl, Erik

    2013-01-01

    Cellular lipid membranes are spatially inhomogeneous soft materials. Materials properties such as pressure and surface tension thus show important microscopic-scale variation that is critical to many biological functions. We present a means to calculate pressure and surface tension in a 3D-resolved manner within molecular-dynamics simulations and show how such measurements can yield important insight. We also present the first corrections to local virial and pressure fields to account for the constraints typically used in lipid simulations that otherwise cause problems in highly oriented systems such as bilayers. Based on simulations of an asymmetric bacterial ion channel in a POPC bilayer, we demonstrate how 3D-resolved pressure can probe for both short-range and long-range effects from the protein on the membrane environment. We also show how surface tension is a sensitive metric for inter-leaflet equilibrium and can be used to detect even subtle imbalances between bilayer leaflets in a membrane-protein simulation. Since surface tension is known to modulate the function of many proteins, this effect is an important consideration for predictions of ion channel function. We outline a strategy by which our local pressure measurements, which we make available within a version of the GROMACS simulation package, may be used to design optimally equilibrated membrane-protein simulations. PMID:23318532

  12. SPATIALLY RESOLVED HCN J = 4-3 AND CS J = 7-6 EMISSION FROM THE DISK AROUND HD 142527

    SciTech Connect

    Van der Plas, G.; Casassus, S.; Perez, S.; Christiaens, V.; Ménard, F.; Thi, W. F.; Pinte, C.

    2014-09-10

    The disk around HD 142527 attracts a great amount of attention compared to others because of its resolved (sub-)millimeter dust continuum that is concentrated into the shape of a horseshoe toward the north of the star. In this Letter we present spatially resolved ALMA detections of the HCN J = 4-3 and CS J = 7-6 emission lines. These lines give us a deeper view into the disk compared to the (optically thicker) CO isotopes. This is the first detection of CS J = 7-6 coming from a protoplanetary disk. Both emission lines are azimuthally asymmetric and are suppressed under the horseshoe-shaped continuum emission peak. A possible mechanism for explaining the decrease under the horseshoe-shaped continuum is the increased opacity coming from the higher dust concentration at the continuum peak. Lower dust and/or gas temperatures and an optically thick radio-continuum reduce line emission by freezing out and shielding emission from the far side of the disk.

  13. SPATIALLY RESOLVING SUBSTRUCTURES WITHIN THE MASSIVE ENVELOPE AROUND AN INTERMEDIATE-MASS PROTOSTAR: MMS 6/OMC-3

    SciTech Connect

    Takahashi, Satoko; Ho, Paul T. P.; Saigo, Kazuya; Tomida, Kengo

    2012-06-10

    With the Submillimeter Array, the brightest (sub)millimeter continuum source in the Orion Molecular Cloud-2/3 region, MMS 6, has been observed in the 850 {mu}m continuum emission with approximately 10 times better angular resolution than previous studies ( Almost-Equal-To 0.''3, Almost-Equal-To 120 AU at Orion). The deconvolved size, the mass, and the column density of MMS 6-main are estimated to be 0.''32 Multiplication-Sign 0.''29 (132 AU Multiplication-Sign 120 AU), 0.29 M{sub Sun }, and 2.1 Multiplication-Sign 10{sup 25} cm{sup -2}, respectively. The estimated extremely high mean number density, 1.5 Multiplication-Sign 10{sup 10} cm{sup -3}, suggests that MMS 6-main is likely optically thick at 850 {mu}m. We compare our observational data with three theoretical core models: prestellar core, protostellar core + disk-like structure, and first adiabatic core. These comparisons clearly show that the observational data cannot be modeled as a simple prestellar core with a gas temperature of 20 K. A self-luminous source is necessary to explain the observed flux density in the (sub)millimeter wavelengths. Our recent detection of a very compact and energetic outflow in the CO (3-2) and HCN (4-3) lines supports the presence of a protostar. We suggest that MMS 6 is one of the first cases of an intermediate-mass protostellar core at an extremely young stage. In addition to the MMS 6-main peak, we have also spatially resolved a number of spiky structures and sub-clumps, distributed over the central 1000 AU. The masses of these sub-clumps are estimated to be 0.066-0.073 M{sub Sun }, which are on the order of brown dwarf masses. Higher angular resolution and higher sensitivity observations with ALMA and EVLA will reveal the origin and nature of these structures such as whether they are originated from fragmentations, spiral arms, or inhomogeneity within the disk-like structures/envelope.

  14. Intense-field ionization of atoms and molecules: Spatially resolved ion detection and ultrashort optical vortices

    NASA Astrophysics Data System (ADS)

    Strohaber, James

    The interaction of light and matter has for many years provided a venue in which scientists have been able to increase their understanding of fundamental quantum mechanics and electromagnetism. The advent of the laser in the early sixties significantly changed the way in which experiments were performed. These coherent sources of radiation played a pivotal role in the investigations of new phenomenon such as multiphoton ionization. As time progressed many significant advances have been made in laser technology. For instance, the development of mode-locking techniques such as Q-switching and the nonlinear Kerr effect have made pulsed lasers possible (now down to ˜ 5 fs), the discovery of Chirped-Pulse-Amplification allowed for these ultrashort pulses to be amplified up to Joules in energy per pulse. As a result of these new advances in laser technology, new and exciting physics have been illuminated. When ultrashort intense laser fields interact with matter, one possible outcome is the ionization of the target into its constituents (atoms, molecules, electrons or photons). Because the constituents are usually ions which may have different masses and charges, time-of-flight (TOF) techniques are often employed in the analysis of the ionization yields. In these experiments, the usual quantity of physical interest is the ionization probability as a function of a well known intensity. However, in reality the impinging laser radiation possesses a distribution of intensities. To further add to this annoyance, it is difficult for a TOF spectrometer to distinguish between ions created at different intensities and the usual course of action is to integrate ions from over the entire focal volume. The inevitable result of this so-called spatial averaging is to limit information about the underlying physical process. Additionally, coherent sources of radiation have captured the attention of researchers whose main interests are in spatially modulating the phase and amplitude of

  15. Spatially Resolved Photoexcited Charge-Carrier Dynamics in Phase-Engineered Monolayer MoS2

    DOE PAGES

    Yamaguchi, Hisato; Blancon, Jean-Christophe; Kappera, Rajesh; Lei, Sidong; Najmaei, Sina; Mangum, Benjamin D.; Gupta, Gautam; Ajayan, Pulickel M.; Lou, Jun; Chhowalla, Manish; et al

    2014-12-18

    A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. We investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photo-excitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS2, after the metallic phase transformation (1T-phase), the photocurrent peak is observed towardsmore » the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are few meV for 1T- and ~200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photo responsivity by more than one order of magnitude, a crucial parameter in achieving high performance optoelectronic devices. The obtained results pave a pathway for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where Ohmic contacts are necessary for achieving high efficiency devices with low power consumption.« less

  16. Spatially resolved electron tunneling spectroscopy on single crystalline Rb{sub 3}C{sub 60}

    SciTech Connect

    Jess, P.; Hubler, U.; Behler, S.; Thommen-Geiser, V.; Lang, H.P.; Guentherodt, H.

    1996-03-01

    A Rb{sub 3}C{sub 60} single crystal ({ital T}{sub {ital c}}=30.5 K) is investigated in the superconducting state at 2.8 K by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). STS data reveals a spatial variation of the superconducting energy gap {Delta} on a scale of 50 nm ({Delta}=2.6{endash}5.2 meV; 2{Delta}/{ital k}{sub {ital BT}}{sub {ital c}}=2.0{endash}4.0). This behavior is attributed to varying stoichiometry on the sample surface. An investigation of a Rb{sub 3}C{sub 60} facet shows that {ital I}({ital V}) characteristics even vary on molecular scale. {ital I}({ital V}) curves acquired between fullerene molecules exhibit a nonvanishing slope at zero bias whereas {ital I}({ital V}) characteristics measured above molecules exhibit vanishing slope at zero bias. {copyright} {ital 1996 American Vacuum Society}

  17. THE SPATIALLY RESOLVED H{alpha}-EMITTING WIND STRUCTURE OF P CYGNI

    SciTech Connect

    Balan, Aurelian; Tycner, C.; Zavala, R. T.; Benson, J. A.; Hutter, D. J.; Templeton, M. E-mail: c.tycner@cmich.ed E-mail: jbenson@nofs.navy.mi E-mail: matthewt@aavso.or

    2010-06-15

    High spatial resolution observations of the H{alpha}-emitting wind structure associated with the luminous blue variable star P Cygni were obtained with the Navy Prototype Optical Interferometer. These observations represent the most comprehensive interferometric data set on P Cyg to date. We demonstrate how the apparent size of the H{alpha}-emitting region of the wind structure of P Cyg compares between the 2005, 2007, and 2008 observing seasons and how this relates to the H{alpha} line spectroscopy. Using the data sets from 2005, 2007, and 2008 observing seasons, we fit a circularly symmetric Gaussian model to the interferometric signature from the H{alpha}-emitting wind structure of P Cyg. Based on our results, we conclude that the radial extent of the H{alpha}-emitting wind structure around P Cyg is stable at the 10% level. We also show how the radial distribution of the H{alpha} flux from the wind structure deviates from a Gaussian shape, whereas a two-component Gaussian model is sufficient to fully describe the H{alpha}-emitting region around P Cyg.

  18. Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test

    SciTech Connect

    Lewis, L. A.; Knight, K. B.; Matzel, J. E.; Prussin, S. G.; Zimmer, M. M.; Kinman, W S; Ryerson, F. J.; Hutcheon, I. D.

    2015-07-28

    The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U (238U/235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/238U < 11.84 among all five spherules and 0.02 < 235U/238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/238U ratio is correlated with changes in major element composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/238U, 235U/238U, and 236U/238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.

  19. Spatially-Resolved Analyses of Aerodynamic Fallout from a Uranium-Fueled Nuclear Test

    DOE PAGES

    Lewis, L. A.; Knight, K. B.; Matzel, J. E.; Prussin, S. G.; Zimmer, M. M.; Kinman, W S; Ryerson, F. J.; Hutcheon, I. D.

    2015-07-28

    The fiive silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U (238U/235U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < 235U/238U < 11.84 among all five spherules and 0.02 < 235U/238U < 7.41 within a single spherule. Moreover, in two spherules, the 235U/238U ratio is correlated with changes in major element composition, suggesting the agglomeration ofmore » chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between 234U/238U, 235U/238U, and 236U/238U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.« less

  20. Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test.

    PubMed

    Lewis, L A; Knight, K B; Matzel, J E; Prussin, S G; Zimmer, M M; Kinman, W S; Ryerson, F J; Hutcheon, I D

    2015-10-01

    Five silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U ((238)U/(235)U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < (235)U/(238)U < 11.84 among all five spherules and 0.02 < (235)U/(238)U < 7.41 within a single spherule. In two spherules, the (235)U/(238)U ratio is correlated with changes in major element composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between (234)U/(238)U, (235)U/(238)U, and (236)U/(238)U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members. PMID:26225462

  1. Spatially resolved photoexcited charge-carrier dynamics in phase-engineered monolayer MoS2.

    PubMed

    Yamaguchi, Hisato; Blancon, Jean-Christophe; Kappera, Rajesh; Lei, Sidong; Najmaei, Sina; Mangum, Benjamin D; Gupta, Gautam; Ajayan, Pulickel M; Lou, Jun; Chhowalla, Manish; Crochet, Jared J; Mohite, Aditya D

    2015-01-27

    A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition-metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. Here, we investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photoexcitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS2, after the metallic phase transformation (1T-phase), the photocurrent peak is observed toward the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are a few millielectron volts for 1T- and ∼ 200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photoresponsivity by more than 1 order of magnitude, a crucial parameter in achieving high-performance optoelectronic devices. The obtained results pave a way for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where ohmic contacts are necessary for achieving high-efficiency devices with low power consumption.

  2. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.

    PubMed

    Peer, Rebecca A M; Garrison, Jared B; Timms, Craig P; Sanders, Kelly T

    2016-04-19

    The US power sector is a leading contributor of emissions that affect air quality and climate. It also requires a lot of water for cooling thermoelectric power plants. Although these impacts affect ecosystems and human health unevenly in space and time, there has been very little quantification of these environmental trade-offs on decision-relevant scales. This work quantifies hourly water consumption, emissions (i.e., carbon dioxide, nitrogen oxides, and sulfur oxides), and marginal heat rates for 252 electricity generating units (EGUs) in the Electric Reliability Council of Texas (ERCOT) region in 2011 using a unit commitment and dispatch model (UC&D). Annual, seasonal, and daily variations, as well as spatial variability are assessed. When normalized over the grid, hourly average emissions and water consumption intensities (i.e., output per MWh) are found to be highest when electricity demand is the lowest, as baseload EGUs tend to be the most water and emissions intensive. Results suggest that a large fraction of emissions and water consumption are caused by a small number of power plants, mainly baseload coal-fired generators. Replacing 8-10 existing power plants with modern natural gas combined cycle units would result in reductions of 19-29%, 51-55%, 60-62%, and 13-27% in CO2 emissions, NOx emissions, SOx emissions, and water consumption, respectively, across the ERCOT region for two different conversion scenarios. PMID:26967826

  3. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.

    PubMed

    Peer, Rebecca A M; Garrison, Jared B; Timms, Craig P; Sanders, Kelly T

    2016-04-19

    The US power sector is a leading contributor of emissions that affect air quality and climate. It also requires a lot of water for cooling thermoelectric power plants. Although these impacts affect ecosystems and human health unevenly in space and time, there has been very little quantification of these environmental trade-offs on decision-relevant scales. This work quantifies hourly water consumption, emissions (i.e., carbon dioxide, nitrogen oxides, and sulfur oxides), and marginal heat rates for 252 electricity generating units (EGUs) in the Electric Reliability Council of Texas (ERCOT) region in 2011 using a unit commitment and dispatch model (UC&D). Annual, seasonal, and daily variations, as well as spatial variability are assessed. When normalized over the grid, hourly average emissions and water consumption intensities (i.e., output per MWh) are found to be highest when electricity demand is the lowest, as baseload EGUs tend to be the most water and emissions intensive. Results suggest that a large fraction of emissions and water consumption are caused by a small number of power plants, mainly baseload coal-fired generators. Replacing 8-10 existing power plants with modern natural gas combined cycle units would result in reductions of 19-29%, 51-55%, 60-62%, and 13-27% in CO2 emissions, NOx emissions, SOx emissions, and water consumption, respectively, across the ERCOT region for two different conversion scenarios.

  4. Spatially resolved observation of the fundamental and second harmonic standing kink modes using SDO/AIA

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.

    2016-09-01

    Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  5. Spatially-resolved analyses of aerodynamic fallout from a uranium-fueled nuclear test.

    PubMed

    Lewis, L A; Knight, K B; Matzel, J E; Prussin, S G; Zimmer, M M; Kinman, W S; Ryerson, F J; Hutcheon, I D

    2015-10-01

    Five silicate fallout glass spherules produced in a uranium-fueled, near-surface nuclear test were characterized by secondary ion mass spectrometry, electron probe microanalysis, autoradiography, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. Several samples display compositional heterogeneity suggestive of incomplete mixing between major elements and natural U ((238)U/(235)U = 0.00725) and enriched U. Samples exhibit extreme spatial heterogeneity in U isotopic composition with 0.02 < (235)U/(238)U < 11.84 among all five spherules and 0.02 < (235)U/(238)U < 7.41 within a single spherule. In two spherules, the (235)U/(238)U ratio is correlated with changes in major element composition, suggesting the agglomeration of chemically and isotopically distinct molten precursors. Two samples are nearly homogenous with respect to major element and uranium isotopic composition, suggesting extensive mixing possibly due to experiencing higher temperatures or residing longer in the fireball. Linear correlations between (234)U/(238)U, (235)U/(238)U, and (236)U/(238)U ratios are consistent with a two-component mixing model, which is used to illustrate the extent of mixing between natural and enriched U end members.

  6. Optophysiological Approach to Resolve Neuronal Action Potentials with High Spatial and Temporal Resolution in Cultured Neurons

    PubMed Central

    Pagès, Stéphane; Côté, Daniel; De Koninck, Paul

    2011-01-01

    Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm). Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs) have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser-scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (>10% of fluorescence change for 100 mV depolarization) and time response (sub millisecond) of the dye allows the robust detection of action potentials (APs) even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive, and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms) resolution and high spatial (μm) resolution. PMID:22016723

  7. Time-resolved and spectral-resolved optical imaging to study brain hemodynamics in songbirds

    NASA Astrophysics Data System (ADS)

    Mottin, Stéphane; Montcel, Bruno; Guillet de Chatellus, Hugues; Ramstein, Stéphane; Vignal, Clémentine; Mathevon, Nicolas

    2011-07-01

    Contrary to the intense debate about brain oxygen dynamics and its uncoupling in mammals, very little is known in birds. In zebra finches, picosecond optical tomography (POT) with a white laser and a streak camera can measure in vivo oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) concentration changes following physiological stimulation (familiar calls and songs). POT demonstrated sufficient sub-micromolar sensitivity to resolve the fast changes in hippocampus and auditory forebrain areas with 250 μm resolution. The time-course is composed of (i) an early 2s-long event with a significant decrease in Hb and HbO2, respectively -0.7 μMoles/L and -0.9 μMoles/L (ii) a subsequent increase in blood oxygen availability with a plateau of HbO2 (+0.3μMoles/L) and (iii) pronounced vasodilatation events immediately following the end of the stimulus. One of the findings of our work is the direct link between the blood oxygen level-dependent (BOLD) signals previously published in birds and our results. Furthermore, the early vasoconstriction event and post-stimulus ringing seem to be more pronounced in birds than in mammals. These results in bird, a tachymetabolic vertebrate with a long lifespan, can potentially yield new insights for example in brain aging.

  8. Spatially resolved, diffuse reflectance imaging for subsurface pattern visualization toward development of a lensless imaging platform: phantom experiments

    NASA Astrophysics Data System (ADS)

    Schelkanova, Irina; Pandya, Aditya; Saiko, Guennadi; Nacy, Lidia; Babar, Hannan; Shah, Duoaud; Lilge, Lothar; Douplik, Alexandre

    2016-01-01

    A portable, spatially resolved, diffuse reflectance lensless imaging technique based on the charge-coupled device or complementary metal-oxide semiconductor sensor directly coupled to the fiber optic bundle is proposed for visualization of subsurface structures such as superficial microvasculature in the epithelium. We discuss an experimental method for emulating a lensless imaging setup via raster scanning a single fiber-optic cable over a microfluidic phantom containing periodic hemoglobin absorption contrast. To evaluate the ability of the technique to recover information about the subsurface linear structures, scattering layers formed of the Sylgard® 184 Silicone Elastomer and titanium dioxide were placed atop the microfluidic phantom. Thickness of the layers ranged from 0.2 to 0.7 mm, and the values of the reduced scattering coefficient (μs‧) were between 0.85 and 4.25 mm-1. The results demonstrate that fiber-optic, lensless platform can be used for two-dimensional imaging of absorbing inclusions in diffuse reflectance mode. In these experiments, it was shown that diffuse reflectance imaging can provide sufficient spatial sampling of the phantom for differentiation of 30 μm structural features of the embedded absorbing pattern inside the scattering media.

  9. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging

    PubMed Central

    Rice, Tyler B.; Kwan, Elliott; Hayakawa, Carole K.; Durkin, Anthony J.; Choi, Bernard; Tromberg, Bruce J.

    2013-01-01

    Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better. PMID:24409388

  10. High-speed detector for time-resolved diffraction studies

    PubMed Central

    Singh, Bipin; Miller, Stuart R.; Bhandari, Harish B.; Graceffa, Rita; Irving, Thomas C.; Nagarkar, Vivek V.

    2013-01-01

    There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 µm, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline. PMID:24489595

  11. High-speed detector for time-resolved diffraction studies

    NASA Astrophysics Data System (ADS)

    Singh, Bipin; Miller, Stuart R.; Bhandari, Harish B.; Graceffa, Rita; Irving, Thomas C.; Nagarkar, Vivek V.

    2013-03-01

    There are a growing number of high brightness synchrotron sources that require high-frame-rate detectors to provide the time-scales required for performing time-resolved diffraction experiments. We report on the development of a very high frame rate CMOS X-ray detector for time-resolved muscle diffraction and time-resolved solution scattering experiments. The detector is based on a low-afterglow scintillator, provides a megapixel resolution with frame rates of up to 120,000 frames per second, an effective pixel size of 64 um, and can be adapted for various X-ray energies. The paper describes the detector design and initial results of time-resolved diffraction experiments on a synchrotron beamline.

  12. Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories.

    PubMed

    Vaughan, Adam R; Lee, James D; Misztal, Pawel K; Metzger, Stefan; Shaw, Marvin D; Lewis, Alastair C; Purvis, Ruth M; Carslaw, David C; Goldstein, Allen H; Hewitt, C Nicholas; Davison, Brian; Beevers, Sean D; Karl, Thomas G

    2016-07-18

    To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest fluxes were observed over central London, with lower fluxes measured in suburban areas. A footprint model was used to estimate the spatial area from which the measured emissions occurred. This allowed comparison of the flux measurements to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the measurement. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road measurement data taken from the London Atmospheric Emissions Inventory (LAEI). The measurement to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with flux measurements, suggesting significant improvements are still required in the NOx emissions inventory.

  13. Spatially resolved solid-state 1H NMR for evaluation of gradient-composition polymeric libraries.

    PubMed

    Leisen, Johannes; Gomez, Ismael J; Roper, John A; Meredith, J Carson; Beckham, Haskell W

    2012-07-01

    Polyurethane libraries consisting of films with composition gradients of aliphatic polyisocyanate and hydroxy-terminated polyacrylate resin were characterized using methods of (1)H NMR microimaging (i.e., magnetic resonance imaging, (MRI)) and solid-state NMR. Molecular mobilities and underlying structural information were extracted as a function of the relative content of each of the two components. Routine NMR microimaging using the spin-echo sequence only allows investigations of transverse relaxation of magnetization at echo times >2 ms. A single-exponential decay was found, which is likely due to free, noncross-linked polymer chains. The mobility of these chains decreases with increasing content of the aliphatic polyisocyanate. The concept of a 1D NMR profiler is introduced as a novel modality for library screening, which allows the convenient measurement of static solid-state NMR spectra as a function of spatial location along a library sample that is repositioned in the rf coil between experiments. With this setup the complete transverse relaxation function was measured using Bloch decays and spin echoes. For all positions within the gradient-composition film, relaxation data consisted of at least three components that were attributed to a rigid highly cross-linked resin, an intermediate cross-linked but mobile constituent, and the highly mobile free polymer chains (the latter is also detectable by MRI). Analysis of this overall relaxation function measured via Bloch decays and spin echoes revealed only minor changes in the mobilities of the individual fractions. Findings with respect to the most mobile components are consistent with the results obtained by NMR microimaging. The major effect is the significant increase in the rigid-component fraction with the addition of the hydroxy-terminated polyacrylate resin. PMID:22676634

  14. Spatially resolved galactic wind in lensed galaxy RCSGA 032727-132609

    NASA Astrophysics Data System (ADS)

    Bordoloi, Rongmon; Rigby, Jane R.; Tumlinson, Jason; Bayliss, Matthew B.; Sharon, Keren; Gladders, Michael G.; Wuyts, Eva

    2016-05-01

    We probe the spatial distribution of outflowing gas along four lines of sight separated by up to 6 kpc in a gravitationally lensed star-forming galaxy at z = 1.70. Using Mg II and Fe II emission and absorption as tracers, we find that the clumps of star formation are driving galactic outflows with velocities of -170 to -250 km s-1. The velocities of Mg II emission are redshifted with respect to the systemic velocities of the galaxy, consistent with being back-scattered. By contrast, the Fe II fluorescent emission lines are either slightly blueshifted or at the systemic velocity of the galaxy. Taken together, the velocity structure of the Mg II and Fe II emission is consistent with arising through scattering in galactic winds. Assuming a thin shell geometry for the outflowing gas, the estimated masses carried out by these outflows are large (≳30-50 M⊙ yr- 1), with mass loading factors several times the star formation rate. Almost 20 per cent to 50 per cent of the blueshifted absorption probably escapes the gravitational potential of the galaxy. In this galaxy, the outflow is `locally sourced', that is, the properties of the outflow in each line of sight are dominated by the properties of the nearest clump of star formation; the wind is not global to the galaxy. The mass outflow rates and the momentum flux carried out by outflows in individual star-forming knots of this object are comparable to that of starburst galaxies in the local Universe.

  15. SPATIALLY RESOLVED CHEMISTRY IN NEARBY GALAXIES. II. THE NUCLEAR BAR IN MAFFEI 2

    SciTech Connect

    Meier, David S.; Turner, Jean L. E-mail: turner@astro.ucla.edu

    2012-08-20

    We present 2''-10'' imaging of 11 transitions from 9 molecular species across the nuclear bar in Maffei 2. The data were obtained with the BIMA and OVRO interferometers. The 10 detected transitions are compared with existing CO isotopologues, HCN, CS, and millimeter continuum data. Dramatic spatial variations among the mapped species are observed across the nuclear bar. A principal component analysis is performed to characterize correlations between the transitions, star formation, and molecular column density. The analysis reveals that HCN, HNC, HCO{sup +}, and 3 mm continuum are tightly correlated, indicating a direct connection to massive star formation. We find two main morphologically distinct chemical groups, CH{sub 3}OH, SiO, and HNCO comprising the grain chemistry molecules, versus HCN, HNC, HCO{sup +}, and C{sub 2}H, molecules strong in the presence of star formation. The grain chemistry molecules, HNCO, CH{sub 3}OH, and SiO, trace hydrodynamical bar shocks. The near constancy of the HNCO/CH{sub 3}OH, SiO/CH{sub 3}OH, and SiO/HNCO ratios argues that shock properties are uniform across the nucleus. HCN/HCO{sup +}, HCN/HNC, HCN/CS, and HCN/CO ratios are explained primarily by variations in density. High HCO{sup +}/N{sub 2}H{sup +} ratios are correlated with the C{sub 2}H line, suggesting that this ratio may be a powerful new dense photon-dominated region probe in external galaxies. C{sub 2}H reveals a molecular outflow along the minor axis. The morphology and kinematics of the outflow are consistent with an outflow age of 6-7 Myr.

  16. Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories.

    PubMed

    Vaughan, Adam R; Lee, James D; Misztal, Pawel K; Metzger, Stefan; Shaw, Marvin D; Lewis, Alastair C; Purvis, Ruth M; Carslaw, David C; Goldstein, Allen H; Hewitt, C Nicholas; Davison, Brian; Beevers, Sean D; Karl, Thomas G

    2016-07-18

    To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest fluxes were observed over central London, with lower fluxes measured in suburban areas. A footprint model was used to estimate the spatial area from which the measured emissions occurred. This allowed comparison of the flux measurements to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the measurement. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road measurement data taken from the London Atmospheric Emissions Inventory (LAEI). The measurement to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with flux measurements, suggesting significant improvements are still required in the NOx emissions inventory. PMID:27098421

  17. Local Luminous Infrared Galaxies. I. Spatially Resolved Observations with the Spitzer Infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Pereira-Santaella, Miguel; Alonso-Herrero, Almudena; Rieke, George H.; Colina, Luis; Díaz-Santos, Tanio; Smith, J.-D. T.; Pérez-González, Pablo G.; Engelbracht, Charles W.

    2010-06-01

    We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K

  18. A Concept for the Development of Spatially Resolved Measurements for Soil Moisture with TEM Waveguides

    NASA Astrophysics Data System (ADS)

    Lapteva, Yulia; Schmidt, Felix; Bumberger, Jan

    2014-05-01

    Soil water content plays a leading role in delimitating water and energy fluxes at the land surface and controlling groundwater recharging. The information about water content in the soil would be very useful in overcoming the challenge of managing water resources under conditions of increasing scarcity in Southern Europe and the Mediterranean region.For collecting data about the water content in soil, it is possible to use remote sensing and groundwater monitoring, built wireless sensor networks for water monitoring. Remote sensing provides a unique capability to get the information of soil moisture at global and regional scales. Wireless environmental sensor networks enable to connect local and regional-scale soil water content observations. There exist different ground based soil moisture measurement methods such as TDR, FDR, electromagnetic waves (EW), electrical and acoustic methods. Among these methods, the time domain reflectometry (TDR) is considered to be the most important and widely used electromagnetic approach. The special techniques for the reconstruction of the layered soil with TDR are based on differential equations in the time domain and numerical optimization algorithms. However, these techniques are time- consuming and suffering from some problems, like multiple reflections at the boundary surfaces. To overcome these limitations, frequency domain measurement (FDM) techniques could be used. With devices like vector network analyzers (VNA) the accuracy of the measurement itself and of the calibration can be improved. For field applicable methods the reflection coefficient is mathematically transformed in the time domain, which can be treated like TDR-data and the same information can be obtained. There are already existed some experiments using the frequency domain data directly as an input for inversion algorithms to find the spatial distribution of the soil parameters. The model that is used represents an exact solution of the Maxwell

  19. Spatially Resolved, In Situ Carbon Isotope Analysis of Archean Organic Matter

    NASA Technical Reports Server (NTRS)

    Williford, Kenneth H.; Ushikubo, Takayuki; Lepot, Kevin; Hallmann, Christian; Spicuzza, Michael J.; Eigenbrode, Jennifer L.; Summons, Roger E.; Valley, John W.

    2011-01-01

    Spatiotemporal variability in the carbon isotope composition of sedimentary organic matter (OM) preserves information about the evolution of the biosphere and of the exogenic carbon cycle as a whole. Primary compositions, and imprints of the post-depositional processes that obscure them, exist at the scale of individual sedimentary grains (mm to micron). Secondary ion mass spectrometry (SIMS) (1) enables analysis at these scales and in petrographic context, (2) permits morphological and compositional characterization of the analyte and associated minerals prior to isotopic analysis, and (3) reveals patterns of variability homogenized by bulk techniques. Here we present new methods for in situ organic carbon isotope analysis with sub-permil precision and spatial resolution to 1 micron using SIMS, as well as new data acquired from a suite of Archean rocks. Three analytical protocols were developed for the CAMECA ims1280 at WiscSIMS to analyze domains of varying size and carbon concentration. Average reproducibility (at 2SD) using a 6 micron spot size with two Faraday cup detectors was 0.4 %, and 0.8 % for analyses using 1 micron and 3 micron spot sizes with a Faraday cup (for C-12) and an electron multiplier (for C-13). Eight coals, two ambers, a shungite, and a graphite were evaluated for micron-scale isotopic heterogeneity, and LCNN anthracite (delta C-13 = -23.56 +/- 0.1 %, 2SD) was chosen as the working standard. Correlation between instrumental bias and H/C was observed and calibrated for each analytical session using organic materials with H/C between 0.1 and 1.5 (atomic), allowing a correction based upon a C-13H/C-13 measurement included in every analysis. Matrix effects of variable C/SiO2 were evaluated by measuring mm to sub-micron graphite domains in quartzite from Bogala mine, Sri Lanka. Apparent instrumental bias and C-12 count rate are correlated in this case, but this may be related to a crystal orientation effect in graphite. Analyses of amorphous

  20. Time resolved strain dependent morphological study of electrically conducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Mitchell, Geoffrey; Mateus, Artur; Kamma-Lorger, Christina S.

    2015-10-01

    An efficient and reliable method is introduced to understand the network behaviour of nano-fillers in a polymeric matrix under uniaxial strain coupled with small angle x-ray scattering measurements. The nanoparticles (carbon nanotubes) are conductive and the particles form a percolating network that becomes apparent source of electrical conduction and consequently the samples behave as a bulk conductor. Polyurethane based nanocomposites containing 2% w/w multiwall carbon nanotubes are studied. The electrical conductivity of the nanocomposite was (3.28×10-5s/m).The sample was able to be extended to an extension ratio of 1.7 before fracture. A slight variation in the electrical conductivity is observed under uniaxial strain which we attribute to the disturbance of conductive pathways. Further, this work is coupled with in- situ time resolved small angle x-ray scattering measurements using a synchrotron beam line to enable its measurements to be made during the deformation cycle. We use a multiscale structure to model the small angle x-ray data. The results of the analysis are interpreted as the presence of aggregates which would also go some way towards understanding why there is no alignment of the carbon nanotubes.

  1. Time-resolved study of Higgs mode in superconductors

    NASA Astrophysics Data System (ADS)

    Shimano, Ryo

    The behavior of superconductors far from equilibrium has been intensively studied over decades. Goals of these studies are the elucidation of bosonic fluctuations essential for the pairing mechanisms, the manifestation of competing orders or hidden phases, and the optical manipulation of superconductivity. The study of collective modes is crucially important for these perspectives as it provides the information on the dynamics of order parameters in non-equilibirium states. Generally, collective modes in ordered phases associated with spontaneous symmetry breaking are classified into 1) gapless phase modes and 2) gapped amplitude modes. In superconductors, the phase mode is eaten by gauge field, according to the Anderson-Higgs mechanism. The remaining amplitude mode is recently termed as Higgs mode from its analogy to the Higgs boson in particle physics. Despite its long history of investigation, unambiguous observation of Higgs mode has remained elusive. This is because the Higgs mode does not have a charge nor electric dipole and therefore it does not couple directly to the electromagnetic field. Here we report on our recent observation of Higgs mode in s-wave superconductors by using THz-pump and THz-probe spectroscopy technique. After nonadiabatic excitation near the superconducting gap energy with monocycle THz pulses, Higgs mode was observed as oscillations in the transmission of THz probe pulse. The resonant nonlinear coupling between the Higgs mode and coherent radiation field was also discovered, resulting in an efficient third order harmonic generation of the incident THz radiation. The extension of experiments to multiband superconductors and unconventional superconductors will be discussed. Time-resolved study of Higgs mode in superconductors.

  2. Short-pulse Laser Induced Transient Structure Formation and Ablation Studied with Time-resolved Coherent XUV-scattering

    NASA Astrophysics Data System (ADS)

    Sokolowski-Tinten, Klaus; Barty, Anton; Boutet, Sebastien; Shymanovich, Uladzimir; Chapman, Henry; Bogan, Mike; Marchesini, Stefano; Hau-Riege, Stefan; Stojanovic, Nikola; Bonse, Jörn; Rosandi, Yudi; Urbassek, Herbert M.; Tobey, Ra'anan; Ehrke, Henri; Cavalleri, Andrea; Düsterer, Stefan; Redlin, Harald; Frank, Matthias; Bajt, Sasa; Schulz, Joachim; Seibert, Marvin; Hajdu, Janos; Treusch, Rolf; Bostedt, Christoph; Hoener, M.; Möller, T.

    2010-10-01

    The structural dynamics of short-pulse laser irradiated surfaces and nano-structures has been studied with nm spatial and ultrafast temporal resolution by means of single-shot coherent XUV-scattering techniques. The experiments allowed us to time-resolve the formation of laser-induced periodic surface structures, and to follow the expansion and disintegration of nano-objects during laser ablation.

  3. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    SciTech Connect

    Palczewski, Ari Deibert

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent

  4. Temporally and spatially resolved flow in a two-stage axial compressor. Part 2: Computational assessment

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen L.; Rai, Man Mohan; Stauter, R. Charles; Dring, Robert P.

    1990-01-01

    Fluid dynamics of turbomachines are complicated due to aerodynamic interactions between rotors and stators. It is necessary to understand the aerodynamics associated with these interactions in order to design turbomachines that are both light and compact as well as reliable and efficient. The current study uses an unsteady, thin-layer Navier-Stokes zonal approach to investigate the unsteady aerodynamics of a multi-stage compressor. Relative motion between rotors and stators is made possible by use of systems of patched and overlaid grids. Results have been computed for a 2 1/2-stage compressor configuration. The numerical data compares well with experimental data for surface pressures and wake data. In addition, the effect of grid refinement on the solution is studied.

  5. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Banerjee, S. S.

    2014-05-01

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance characteristics of the composite nanowire we estimate a Pt shell growth rate of ˜0.9 nms-1. The study is analyzed to suggest that the Pt shell growth mechanism is primarily governed by the sticking coefficient of the organometallic vapor on the C nanowire core.

  6. Spatially resolved energy dispersive x-ray spectroscopic method for in-situ evaluation of mechanical properties during the growth of a C - Pt composite nanowire

    SciTech Connect

    Banerjee, Amit; Banerjee, S. S.

    2014-05-15

    A core-shell type C-Pt composite nanowire is fabricated using focused ion and electron beam induced chemical vapor deposition techniques. Using information from spatially resolved energy dispersive x-ray spectra, we detect the resonance vibration in the C-Pt composite nanowire. We use this method to measure the Young's moduli of the constituents (C, Pt) of the composite nanowire and also estimate the density of the FEB CVD grown Pt shell surrounding the C core. By measuring the resonance characteristics of the composite nanowire we estimate a Pt shell growth rate of ∼0.9 nms{sup −1}. The study is analyzed to suggest that the Pt shell growth mechanism is primarily governed by the sticking coefficient of the organometallic vapor on the C nanowire core.

  7. Spatially Resolved Characterization of Water and Ion Incorporation in Bacillus Spores▿

    PubMed Central

    Ghosal, Sutapa; Leighton, Terrance J.; Wheeler, Katherine E.; Hutcheon, Ian D.; Weber, Peter K.

    2010-01-01

    We present the first direct visualization and quantification of water and ion uptake into the core of individual dormant Bacillus thuringiensis subsp. israelensis (B. thuringiensis subsp. israelensis) endospores. Isotopic and elemental gradients in the B. thuringiensis subsp. israelensis spores show the permeation and incorporation of deuterium in deuterated water (D2O) and solvated ions throughout individual spores, including the spore core. Under hydrated conditions, incorporation into a spore occurs on a time scale of minutes, with subsequent uptake of the permeating species continuing over a period of days. The distribution of available adsorption sites is shown to vary with the permeating species. Adsorption sites for Li+, Cs+, and Cl− are more abundant within the spore outer structures (exosporium, coat, and cortex) relative to the core, while F− adsorption sites are more abundant in the core. The results presented here demonstrate that elemental abundance and distribution in dormant spores are influenced by the ambient environment. As such, this study highlights the importance of understanding how microbial elemental and isotopic signatures can be altered postproduction, including during sample preparation for analysis, and therefore, this study is immediately relevant to the use of elemental and isotopic markers in environmental microbiology and microbial forensics. PMID:20348293

  8. A method for spatially resolved local intracellular mechanochemical sensing and organelle manipulation.

    PubMed

    Shekhar, S; Cambi, A; Figdor, C G; Subramaniam, V; Kanger, J S

    2012-08-01

    Because both the chemical and mechanical properties of living cells play crucial functional roles, there is a strong need for biophysical methods to address these properties simultaneously. Here we present a novel (to our knowledge) approach to measure local intracellular micromechanical and chemical properties using a hybrid magnetic chemical biosensor. We coupled a fluorescent dye, which serves as a chemical sensor, to a magnetic particle that is used for measurement of the viscoelastic environment by studying the response of the particle to magnetic force pulses. As a demonstration of the potential of this approach, we applied the method to study the process of phagocytosis, wherein cytoskeletal reorganization occurs in parallel with acidification of the phagosome. During this process, we measured the shear modulus and viscosity of the phagosomal environment concurrently with the phagosomal pH. We found that it is possible to manipulate phagocytosis by stalling the centripetal movement of the phagosome using magnetic force. Our results suggest that preventing centripetal phagosomal transport delays the onset of acidification. To our knowledge, this is the first report of manipulation of intracellular phagosomal transport without interfering with the underlying motor proteins or cytoskeletal network through biochemical methods. PMID:22947855

  9. Spatially resolved force spectroscopy of bacterial surfaces using force-volume imaging.

    PubMed

    Gaboriaud, Fabien; Parcha, Bhargava S; Gee, Michelle L; Holden, James A; Strugnell, Richard A

    2008-04-01

    Force spectroscopy using the atomic force microscope (AFM) is a powerful technique for measuring physical properties and interaction forces at microbial cell surfaces. Typically for such a study, the point at which a force measurement will be made is located by first imaging the cell using AFM in contact mode. In this study, we image the bacterial cell Shewanella putrefaciens for subsequent force measurements using AFM in force-volume mode and compare this to contact-mode images. It is known that contact-mode imaging does not accurately locate the apical surface and periphery of the cell since, in contact mode, a component of the applied load laterally deforms the cell during the raster scan. Here, we illustrate that contact-mode imaging does not accurately locate the apical surface and periphery of the cell since, in contact mode, a component of the applied load laterally deforms the cell during the raster scan. This is an artifact due to the deformability and high degree of curvature of bacterial cells. We further show that force-volume mode imaging avoids the artifacts associated with contact-mode imaging due to surface deformation since it involves the measurement of a grid of individual force profiles. The topographic image is subsequently reconstructed from the zero-force height (the contact distance between the AFM tip and the surface) at each point on the cell surface. We also show how force-volume measurements yield applied load versus indentation data from which mechanical properties of the cell such as Young's modulus, cell turgor pressure and elastic and plastic energies can be extracted.

  10. Spatially Resolving Spin-split Edge States of Chiral Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Crommie, M. F.

    2011-03-01

    A central question in the field of graphene-related research is how graphene behaves when it is patterned at the nanometer scale with different edge geometries. The most fundamental shape in this regard is the graphene nanoribbon (GNR), a narrow strip of graphene that is characterized by its width and chirality. GNRs have been predicted to exhibit a wide range of behavior that includes tunable energy gaps and unique 1D edge states with unusual magnetic structure. I will discuss a scanning tunneling microscopy and spectroscopy (STS) study of GNRs that allows us to examine how GNR electronic structure depends on the chirality of atomically well-defined GNR edges. Our STS measurements reveal the presence of 1D GNR edge states that closely match theoretical expectations for GNRs of similar width and chirality. We additionally observe width-dependent energy splitting in GNR edge states, providing compelling evidence of their magnetic nature. This work performed in collaboration with Chenggang Tao, Liying Jiao, Oleg V. Yazyev, Yen-Chia Chen, Juanjuan Feng, Xiaowei Zhang, Rodrigo B. Capaz, James M. Tour, Alex Zettl, Steven G. Louie, and Hongjie Dai.

  11. SPATIALLY RESOLVED SPECTROSCOPY OF A PULSAR WIND NEBULA IN MSH 15-56

    SciTech Connect

    Yatsu, Yoichi; Kawai, Nobuyuki; Yano, Yuki; Asano, Katsuaki; Nakamori, Takeshi

    2013-08-10

    We report the study of a pulsar wind nebula (PWN) in the middle-aged supernova remnant (SNR) MSH 15-56. High-resolution X-ray imaging observations using XMM-Newton and Chandra provided clear images of its comet-like structure, as seen in other PWNe moving rapidly through interstellar mediums. At the PWN apex, Chandra detected a point source emitting a power-law spectrum with a photon index of {Gamma} = 1.3. The photon index of the PWN steepens from 1.7 to 2.5 along the flow line from the apex toward the tail, implying that the PWN is powered by the point source. The opening angle of the tail implies a pulsar velocity of v{sub PSR} = 1900 km s{sup -1}. We also discovered a thin X-ray filament at the edge of the SNR and just near the PWN. Assuming that the SNR is in the Sedov phase, the shell is expanding at 860 km s{sup -1}, which is consistent with the existence of the non-thermal filament. Based on the physical relationship, the PWN will run through the blast wave in the near future.

  12. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  13. IROCKS: Spatially Resolved Kinematics of z ∼ 1 Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Mieda, Etsuko; Wright, Shelley A.; Larkin, James E.; Armus, Lee; Juneau, Stéphanie; Salim, Samir; Murray, Norman

    2016-11-01

    We present results from the Intermediate Redshift OSIRIS Chemo-Kinematic Survey (IROCKS) for sixteen z ∼ 1 and one z ∼ 1.4 star-forming galaxies. All galaxies were observed with OSIRIS with the laser guide star adaptive optics system at Keck Observatory. We use rest-frame nebular Hα emission lines to trace morphologies and kinematics of ionized gas in star-forming galaxies on sub-kiloparsec physical scales. We observe elevated velocity dispersions (σ ≳ 50 km s‑1) seen in z > 1.5 galaxies persist at z ∼ 1 in the integrated galaxies. Using an inclined disk model and the ratio of v/σ , we find that 1/3 of the z ∼ 1 sample are disk candidates while the other 2/3 of the sample are dominated by merger-like and irregular sources. We find that including extra attenuation toward H ii regions derived from stellar population synthesis modeling brings star formation rates (SFRs) using Hα and stellar population fit into a better agreement. We explore the properties of the compact Hα sub-component, or “clump,” at z ∼ 1 and find that they follow a similar size–luminosity relation as local H ii regions but are scaled-up by an order of magnitude with higher luminosities and sizes. Comparing the z ∼ 1 clumps to other high-redshift clump studies, we determine that the clump SFR surface density evolves as a function of redshift. This suggests clump formation is directly related to the gas fraction in these systems and may support disk fragmentation as their formation mechanism since gas fraction scales with redshift.

  14. Discovery of a Strongly Lensed Massive Quiescent Galaxy at z = 2.636: Spatially Resolved Spectroscopy and Indications of Rotation

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Belli, Sirio; Ellis, Richard S.

    2015-11-01

    We report the discovery of RG1M0150, a massive, recently quenched galaxy at z = 2.636 that is multiply imaged by the cluster MACSJ0150.3-1005. We derive a stellar mass of {log}{M}*={11.49}-0.16+0.10 and a half-light radius of {R}e,{maj}=1.8+/- 0.4 {{kpc}}. Taking advantage of the lensing magnification, we are able to spatially resolve a remarkably massive yet compact quiescent galaxy at z\\gt 2 in ground-based near-infrared spectroscopic observations using Magellan/FIRE and Keck/MOSFIRE. We find no gradient in the strength of the Balmer absorption lines over 0.6{R}e-1.6{R}e, which are consistent with an age of 760 Myr. Gas emission in [N ii] broadly traces the spatial distribution of the stars and is coupled with weak Hα emission (log [N ii]/{{H}}α =0.6+/- 0.2), indicating that OB stars are not the primary ionizing source. The velocity dispersion within the effective radius is {σ }e,{stars}=271+/- 41 km s{}-1. We detect rotation in the stellar absorption lines for the first time beyond z∼ 1. Using a two-integral Jeans model that accounts for observational effects, we measure a dynamical mass of {log}{M}{{dyn}}=11.24+/- 0.14 and V/σ =0.70+/- 0.21. This is a high degree of rotation considering the modest observed ellipticity of 0.12 ± 0.08, but it is consistent with predictions from dissipational merger simulations that produce compact remnants. The mass of RG1M0150 implies that it is likely to become a slowly rotating elliptical. If it is typical, this suggests that the progenitors of massive ellipticals retain significant net angular momentum after quenching which later declines, perhaps through accretion of satellites.

  15. Tempo-spatially resolved cellular dynamics of human immunodeficiency virus transacting activator of transcription (Tat) peptide-modified nanocargos in living cells

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Yang, Qiaoyu; Xiao, Lehui

    2014-08-01

    Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs could not actively target the cell nuclei, which is contrary to previous observations based on fixed cell results. More importantly, the inheritance of TGNPs to the daughter cells through mitosis was found to be the major route to metabolize TGNPs by HeLa cells. These understandings on the cellular uptake mechanism and intracellular fate of nanocargos in living cells would provide deep insight on how to improve and controllably manipulate their translocation efficiency for targeted drug delivery.Understanding the cellular uptake mechanism and intracellular fate of nanocarriers in living cells is of great importance for the rational design of efficient drug delivery cargos as well as the development of robust biomedical diagnostic probes. In present study, with a dual wavelength view darkfield microscope (DWVD), the tempo-spatially resolved dynamics of Tat peptide-functionalized gold nanoparticles (TGNPs, with size similar to viruses) in living HeLa cells were extensively explored. It was found that energy-dependent endocytosis (both clathrin- and caveolae-mediated processes were involved) was the prevailing pathway for the cellular uptake of TGNPs. The time-correlated dynamic spatial distribution information revealed that TGNPs

  16. Multidecadal persistence of organic matter in soils: insights from spatially resolved investigations at the submicrometer scale

    NASA Astrophysics Data System (ADS)

    Lutfalla, Suzanne; Barré, Pierre; Bernard, Sylvain; Le Guillou, Corentin; Alléon, Julien; Chenu, Claire

    2016-04-01

    CC fraction. Altogether, the present study suggests that smectite have more efficient protection capabilities than those of illite and kaolinite.

  17. Multidimensional spectroscopic data fusion improves precancerous tissue discrimination based on spatially resolved autofluorescence and diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Abdat, F.; Amouroux, M.; Guermeur, Y.; Blondel, W.

    2015-07-01

    The current study deals with new perspectives to perform more efficient classification of mouse skin precancerous stages by means of a decision fusion scheme based on belief functions and exploiting the spatial resolution of the autofluorescence and diffuse reflectance spectroscopic data.

  18. HST Spatially Resolved Spectra of the Accretion Disc and Gas Stream of the Nova-Like Variable UX Ursae Majoris

    NASA Technical Reports Server (NTRS)

    Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.

    1998-01-01

    Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November

  19. Spatially-Resolved Analysis of Glycolipids and Metabolites in Living Synechococcus sp. PCC7002 Using Nanospray Desorption Electrospray Ionization

    SciTech Connect

    Lanekoff, Ingela T.; Geydebrekht, Oleg V.; Pinchuk, Grigoriy E.; Konopka, Allan; Laskin, Julia

    2013-04-07

    Microorganisms release a diversity of organic compounds that couple interspecies metabolism, enable communication, or provide benefits to other microbes. Increased knowledge of microbial metabolite production will contribute to understanding of the dynamic microbial world and can potentially lead to new developments in drug discovery, biofuel production, and clinical research. Nanospray desorption electrospray ionization (nano-DESI) is an ambient ionization technique that enables detailed chemical characterization of molecules from a specific location on a surface without special sample pretreatment. Due to its ambient nature, living bacterial colonies growing on agar plates can be rapidly and non-destructively analyzed. We performed spatially resolved nano-DESI analysis of living Synechococcus sp. PCC 7002 colonies on agar plates. We use high resolution mass spectrometry and MS/MS analysis of the living Synechococcus sp. PCC 7002 colonies to detect metabolites and lipids, and confirm their identities. We found that despite the high salt content of the agar (osmolarity ca. 700 mM), nano-DESI analysis enables detailed characterization of metabolites produced by the colony. Using this technique, we identified several glycolipids found on the living colonies and examined the effect of the age of the colony on the chemical gradient of glucosylglycerol secreted onto agar.

  20. Solid-State Selective 13C Excitation and Spin Diffusion NMR to Resolve Spatial Dimensions in Plant Cell Walls

    SciTech Connect

    Foston, M.; Katahira, R.; Gjersing, E.; Davis, M. F.; Ragauskas, A. J.

    2012-02-15

    The average spatial dimensions between major biopolymers within the plant cell wall can be resolved using a solid-state NMR technique referred to as a {sup 13}C cross-polarization (CP) SELDOM (selectively by destruction of magnetization) with a mixing time delay for spin diffusion. Selective excitation of specific aromatic lignin carbons indicates that lignin is in close proximity to hemicellulose followed by amorphous and finally crystalline cellulose. {sup 13}C spin diffusion time constants (T{sub SD}) were extracted using a two-site spin diffusion theory developed for {sup 13}C nuclei under magic angle spinning (MAS) conditions. These time constants were then used to calculate an average lower-limit spin diffusion length between chemical groups within the plant cell wall. The results on untreated {sup 13}C enriched corn stover stem reveal that the lignin carbons are, on average, located at distances {approx}0.7-2.0 nm from the carbons in hemicellulose and cellulose, whereas the pretreated material had larger separations.

  1. GS-3D Simulator: An Interactive IDL Widget Tool for Simulating Spatially Resolved Gyrosynchrotron Spectra Emitted by Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, G. D.; Gary, D. E.

    2009-05-01

    An interactive IDL widget application intended to provide a flexible tool that allows the user to generate spatially resolved gyrosynchrotron spectra is presented. The object-based architecture of this application provides full 3D interaction with a user-specified magnetic loop geometry. Alternatively, the user may define and pass to the same interface arbitrary analytical or numerical models, including those derived from magnetic field extrapolation, provided that they inherit the generic properties of the base class defined in this package. The default code generating the GS emission from the input geometrical model was developed in FORTRAN based on the Petrosian-Klein approximation, and compiled as a DLL callable by IDL. However, the interactive interface allows interchanging this default library with any user-defined callable code. To illustrate the concept, a simple dipole magnetic loop object is analytically defined, and GS radio maps at 100 frequencies in the 1-100 GHz frequency range are produced. Similar maps produced by this tool were used as input test data in a forward-fitting algorithm that makes the subject of another presentation at this meeting (Fleishman et al. 09-D-83-SPD40). This work was supported by NSF grants AST-0607544 and ATM-0707319 and NASA grant NNG06GJ40G to New Jersey Institute of Technology.

  2. Policy applications of a highly resolved spatial and temporal onroad carbon dioxide emissions data product for the U.S.: Analyses and their implications for mitigation

    NASA Astrophysics Data System (ADS)

    Mendoza Lebrun, Daniel

    Onroad CO2 emissions were analyzed as part of overall GHG emissions, but those studies have suffered from one or more of these five shortcomings: 1) the spatial resolution was coarse, usually encompassing a region, or the entire U.S.; 2) the temporal resolution was coarse (annual or monthly); 3) the study region was limited, usually a metropolitan planning organization (MPO) or state; 4) fuel sales were used as a proxy to quantify fuel consumption instead of focusing on travel; 5) the spatial heterogeneity of fleet and road network composition was not considered and instead national averages are used. Normalized vehicle-type state-level spatial biases range from 2.6% to 8.1%, while the road type classification biases range from -6.3% to 16.8%. These biases are found to cause errors in reduction estimates as large as ±60%, corresponding to ±0.2 MtC, for a national-average emissions mitigation strategy focused on a 10% emissions reduction from a single vehicle class. Temporal analysis shows distinct emissions seasonality that is particularly visible in the northernmost latitudes, demonstrating peak-to-peak deviations from the annual mean of up to 50%. The hourly structure shows peak-to-peak deviation from a weekly average of up to 200% for heavy-duty (HD) vehicles and 140% for light-duty (LD) vehicles. The present study focuses on reduction of travel and fuel economy improvements by putting forth several mitigation scenarios aimed at reducing VMT and increasing vehicle fuel efficiency. It was found that the most effective independent reduction strategies are those that increase fuel efficiency by extending standards proposed by the corporate average fuel economy (CAFE) or reduction of fuel consumption due to price increases. These two strategies show cumulative emissions reductions of approximately 11% and 12%, respectively, from a business as usual (BAU) approach over the 2000-2050 period. The U.S. onroad transportation sector is long overdue a comprehensive study

  3. Vibrationally resolved negative ion photoelectron spectroscopic studies of niobium clusters

    SciTech Connect

    Green, S.M.E.; Alex, S.; Leopold, D.G.

    1996-12-31

    Negative ion photoelectron spectroscopy provides a means of obtaining vibrational data for atoms and small molecules {open_quotes}chemisorbed{close_quotes} on size-selected metal clusters. In the present study, Nb{sub 3}O{sup -}, Nb{sub 4}O{sup -} and Nb{sub 4}CO{sup -} were prepared in a flowing afterglow ion-molecule reactor equipped with a metal cathode cluster source. The 488 nm photoelectron spectrum of the mass-selected Nb{sub 3}O{sup -} anions shows a vertical transition to the ground state of neutral Nb{sub 3}O, with weak progressions in the Nb{sub 3}-O stretching (710{+-}20 cm{sup -1} in Nb{sub 3}O) and Nb, bending (320{+-}15 cm{sup -1}-in both Nb{sub 3}O and Nb{sub 3}O{sup -}) vibrational modes. These results indicate that the Nb{sub 3}O{sup -} anion, like Nb{sub 3}O and Nb{sub 3}O{sup +}, has a planar Ca{sub 2v} structure with the O atom bridging two Nb atoms. The Nb{sub 4}O{sup -} spectrum shows resolved transitions to the ground state of Nb{sub 3}O and to an excited electronic state lying 3050{+-}20 cm{sup -1} higher in energy. In analogy with the Nb{sub 4}O results, the 670{+-}20 cm{sup -1} frequency observed for the Nb{sub 4}O ground state is assigned to a metal-oxygen stretching mode, and the 215{+-}15 cm{sup -1} and 195{+-}15 cm{sup -1} frequencies observed in the ground and excited states, respectively, to a bending mode of the metal cluster. The electron affinities of Nb{sub 3}O and Nb{sub 4}O are 1.402 and 1.178 ({+-}0.006) eV, respectively. Preliminary, ongoing studies of mass selected Nb{sub 4}CO{sup -} anions prepared under a variety of source conditions thus far suggest the presence of two isomers, one with a greatly weakened but intact CO bond as indicated by a very low CO stretching frequency of about 1300 cm{sup -1} and the other with the dissociated C and O atoms bound separately to the niobium cluster.

  4. Spatially resolved quantification of gadolinium(III)-based magnetic resonance agents in tissue by MALDI imaging mass spectrometry after in vivo MRI.

    PubMed

    Aichler, Michaela; Huber, Katharina; Schilling, Franz; Lohöfer, Fabian; Kosanke, Katja; Meier, Reinhard; Rummeny, Ernst J; Walch, Axel; Wildgruber, Moritz

    2015-03-27

    Gadolinium(III)-based contrast agents improve the sensitivity and specificity of magnetic resonance imaging (MRI), especially when targeted contrast agents are applied. Because of nonlinear correlation between the contrast agent concentration in tissue and the MRI signal obtained in vivo, quantification of certain biological or pathophysiological processes by MRI remains a challenge. Up to now, no technology has been able to provide a spatially resolved quantification of MRI agents directly within the tissue, which would allow a more precise verification of in vivo imaging results. MALDI imaging mass spectrometry for spatially resolved in situ quantification of gadolinium(III) agents, in correlation to in vivo MRI, were evaluated. Enhanced kinetics of Gadofluorine M were determined dynamically over time in a mouse model of myocardial infarction. MALDI imaging was able to corroborate the in vivo imaging MRI signals and enabled in situ quantification of the gadolinium probe with high spatial resolution.

  5. Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS

    NASA Astrophysics Data System (ADS)

    Wagner, Steven; Klein, Moritz; Kathrotia, Trupti; Riedel, Uwe; Kissel, Thilo; Dreizler, Andreas; Ebert, Volker

    2012-11-01

    We developed a new, spatially traversing, direct tunable diode laser absorption spectrometer (TDLAS) for quantitative, calibration-free, and spatially resolved in situ measurements of CO profiles in atmospheric, laminar, non-premixed CH4/air model flames stabilized at a Tsuji counter-flow burner. The spectrometer employed a carefully characterized, room temperature distributed feedback diode laser to detect the R20 line of CO near 2,313 nm (4,324.4 cm-1), which allows to minimize spectral CH4 interference and detect CO even in very fuel-rich zones of the flame. The burner head was traversed through the 0.5 mm diameter laser beam in order to derive spatially resolved CO profiles in the only 60-mm wide CH4/air flame. Our multiple Voigt line Levenberg-Marquardt fitting algorithm and the use of highly efficient optical disturbance correction algorithms for treating transmission and background emission fluctuations as well as careful fringe interference suppression permitted to achieve a fractional optical resolution of up to 2.4 × 10-4 OD (1σ) in the flame ( T up to 1,965 K). Highly accurate, spatially resolved, absolute gas temperature profiles, needed to compute mole fraction and correct for spectroscopic temperature dependencies, were determined with a spatial resolution of 65 μm using ro-vibrational N2-CARS (Coherent anti-Stokes Raman spectroscopy). With this setup we achieved temperature-dependent CO detection limits at the R20 line of 250-2,000 ppmv at peak CO concentrations of up to 4 vol.%. This permitted local CO detection with signal to noise ratios of more than 77. The CO TDLAS spectrometer was then used to determine absolute, spatially resolved in situ CO concentrations in the Tsuji flame, investigate the strain dependence of the CO Profiles and favorably compare the results to a new flame-chemistry model.

  6. Highly spatially resolved structural and optical investigation of Bi nanoparticles in Y-Er disilicate thin films

    NASA Astrophysics Data System (ADS)

    Scarangella, A.; Amiard, G.; Reitano, R.; Priolo, F.; Boninelli, S.; Miritello, M.

    2016-08-01

    Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O2 or N2 environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discerned in the Si and O rich environments by means of scanning transmission electron microscopy-energy dispersive X-ray and scanning transmission electron microscopy-electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N2 environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O2, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.

  7. SPATIALLY RESOLVING A STARBURST GALAXY AT HARD X-RAY ENERGIES: NuSTAR, CHANDRA, AND VLBA OBSERVATIONS OF NGC 253

    SciTech Connect

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.; Yukita, M.; Ptak, A.; Venters, T.; Zhang, W. W.; Zezas, A.; Antoniou, V.; Argo, M. K.; Bechtol, K.; Boggs, S.; Craig, W.; Krivonos, R.; Christensen, F.; Hailey, C.; Harrison, F.; Maccarone, T. J.; Stern, D.

    2014-12-20

    Prior to the launch of NuSTAR, it was not feasible to spatially resolve the hard (E > 10 keV) emission from galaxies beyond the Local Group. The combined NuSTAR data set, comprised of three ∼165 ks observations, allows spatial characterization of the hard X-ray emission in the galaxy NGC 253 for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and Very Long Baseline Array monitoring of the local starburst galaxy NGC 253. Above ∼10 keV, nearly all the emission is concentrated within 100'' of the galactic center, produced almost exclusively by three nuclear sources, an off-nuclear ultraluminous X-ray source (ULX), and a pulsar candidate that we identify for the first time in these observations. We detect 21 distinct sources in energy bands up to 25 keV, mostly consisting of intermediate state black hole X-ray binaries. The global X-ray emission of the galaxy—dominated by the off-nuclear ULX and nuclear sources, which are also likely ULXs—falls steeply (photon index ≳ 3) above 10 keV, consistent with other NuSTAR-observed ULXs, and no significant excess above the background is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the γ-ray emission detected with Fermi and H.E.S.S. If NGC 253 is typical of starburst galaxies at higher redshift, their contribution to the E > 10 keV cosmic X-ray background is <1%.

  8. Resolving the spatial variability of sediment geochemistry within a seagrass (Zostera marina) meadow in the coastal bays of Virginia

    NASA Astrophysics Data System (ADS)

    Egge, N. E.; Macko, S. A.; O'connell, M. T.

    2013-12-01

    The environmental degradation of the areas of coastal Chesapeake Bay has been linked with explosive urbanization associated with human population growth and dramatic increases in agricultural activities. Possible impacts of these have been associated with diminishing seagrass (Zostera marina) coverage. Numerous efforts have been made to restore seagrass meadows. As a result of large-scale, seed-based restorations in South Bay (2001) and Hog Island Bay (2007), Z. marina has come to dominate portions of these bays. In this study, a spatially random sampling pattern was used to assess the frequency at which a variety of geochemical characteristics within the South Bay study area were correlated. Initial sampling is within a hectare window; cores were collected in a plot of samples simulated as a homogeneous Poisson distribution. Stable isotope and geochemical proxies are used to suggest the source of organic material within the coastal bays. Carbon and nitrogen isotope analyses were conducted on freeze-dried and acidified samples; sediments dominated by seagrass contain organic matter more enriched in 13C relative to autochthonous algal and planktonic marine materials. These data have been used to establish the spatial autocorrelation of sediment geochemistry for the surface, as well as deeper sediments. After the initial geostatistical parameter estimation, a random systematic grid pattern has been applied that satisfies assumptions of non-preferential design by randomly locating sampling points within the grid space. The systematic grid thus allows for the representation of the plot as a whole, as well as evaluation of spatial trends within the data. Fitting of geostatistical models will be presented using both conventional and Bayesian Kriging models. Results from this study may be able to be used to evaluate potential for carbon sequestration in these system as well as guide future restoration projects.

  9. Spatially-resolved chemical analysis of frozen ice cores by cryo-cell-UV-laser-ablation-ICPMS

    NASA Astrophysics Data System (ADS)

    Müller, Wolfgang; Della Lunga, Damiano; Rasmussen, Sune O.; Svensson, Anders

    2015-04-01

    High-latitude ice cores have become the master records of late Pleistocene climate variability. Especially the high-resolution data from Greenland of the past ~125 ka reveal a remarkably changeable glacial climate, and these rapid climate oscillations have been shown to take place within a few years only [1, 2]. The requirement for an improvement in spatial resolution in ice core analysis arises from 1) the continuous thinning of annual layers in deep parts of ice cores to below what is routinely resolvable by continuous flow analysis and 2) the concomitant recrystallization of ice that potentially affects the location of impurities and thus the identification of annual layers. We developed a new technique to analyze elemental concentrations at ppb-levels in frozen ice cores at ~100 um (0.1 mm) resolution, which focuses on seasalt and dust tracers (e.g. Na, Mg, Ca, Al, Fe). It utilizes a custom-built, peltier-cooled cryo-sample holder fully compatible with the two-volume Laurin LA-cell of our RESOlution M-50 excimer (193 nm ArF) LA system, which is coupled to an Agilent 7500cs ICPMS, operated in reaction cell gas mode with H2 to eliminate 40Ar and 40Ar16O to access 40Ca and 56Fe [3]. Using 3 x 5 cm strips of ice cores per sample holder, this setup allows elemental concentrations to be acquired using both depth-profiling along (chains of) spots and/or as continuous lateral profiles, following surface cleaning with a major-element-free ceramic blade. Ice crystal boundaries can be observed with transmitted or reflected light illumination. We focus on NGRIP samples from Greenland Stadial 22 (GS22; ~84-88 ka; ~2695-2720 m) with its corresponding transitions. Owing to analysis in frozen ice, we can easily identify - relative to ice crystal boundaries - the location of cation impurities in both clear ice and so-called cloudy bands that are enriched in impurities. We find a remarkable difference in the location of impurities between these different ice domains [4]. Lower

  10. Resolving Earthquake Directivity with Relative Centroid Location : A Case Study for the 18 April 2008 Illinois Earthquake

    NASA Astrophysics Data System (ADS)

    He, X.; Ni, S.

    2014-12-01

    Earthquake rupture directivity is essential for studying seismic hazard and understanding seismogenic processes by resolving the ruptured fault. Point source approximation with centroid moment tensor (CMT) or fault plane solution only provides two nodal planes instead of specifying the physical rupture plane, thus leading to fault plane ambiguity. For mega-earthquakes (M7+), slip distribution can be resolved through finite fault modeling (Ji et al., 2002). For moderate earthquakes (M4~6), relative source time function (RSTF) can be obtained from deconvolving the empirical green's functions or forward modeling, and the rupture directivity can be determined from fitting RSTF of stations with small azimuth gap in a dense seismic network(Luo et al., 2010). But for sparse network, station azimuthal coverage is not sufficient for such studies.We propose a technique to determine the rupture plane via measuring the spatial difference between centroid location and hypocenter. The technique involves of waveform time shift difference of mainshock and refer events (smaller events with similar focal mechanism), which calibrates errors due to velocity heterogeneity and absolute location error. Relative hypocenter locations and relative centroid locations are resolved by relative location method of onset travel times and waveform cross-correlation respectively. The difference between onset travel times and waveform-derived centroid times against the azimuthal variations is then used to infer the mainshock rupture directivity.We apply the method to the 2008 Illinois Mw5.2 earthquake. Four M3.4+ aftershocks are chosen as refer events, we generate synthetics using focal mechanism from SLU earthquake center, and measure the time shift difference for stations. The resolved rupture plane strikes northwest-southeast, consistent with spatial distribution of relocated aftershocks using hypoDD (Hongfeng Yang et al., 2009). The method works for earthquakes of unilateral rupture, which

  11. Stable Isotope Resolved Metabolomics Studies in Ex Vivo TIssue Slices

    PubMed Central

    Fan, Teresa W-M.; Lane, Andrew N.; Higashi, Richard M.

    2016-01-01

    An important component of this methodology is to assess the role of the tumor microenvironment on tumor growth and survival. To tackle this problem, we have adapted the original approach of Warburg 1, by combining thin tissue slices with Stable Isotope Resolved Metabolomics (SIRM) to determine detailed metabolic activity of human tissues. SIRM enables the tracing of metabolic transformations of source molecules such as glucose or glutamine over defined time periods, and is a requirement for detailed pathway tracing and flux analysis. In our approach, we maintain freshly resected tissue slices (both cancerous and non- cancerous from the same organ of the same subject) in cell culture media, and treat with appropriate stable isotope-enriched nutrients, e.g. 13C6-glucose or 13C5, 15N2 -glutamine. These slices are viable for at least 24 h, and make it possible to eliminate systemic influence on the target tissue metabolism while maintaining the original 3D cellular architecture. It is therefore an excellent pre-clinical platform for assessing the effect of therapeutic agents on target tissue metabolism and their therapeutic efficacy on individual patients 2,3. PMID:27158639

  12. An examination of population exposure to traffic related air pollution: Comparing spatially and temporally resolved estimates against long-term average exposures at the home location.

    PubMed

    Shekarrizfard, Maryam; Faghih-Imani, Ahmadreza; Hatzopoulou, Marianne

    2016-05-01

    Air pollution in metropolitan areas is mainly caused by traffic emissions. This study presents the development of a model chain consisting of a transportation model, an emissions model, and atmospheric dispersion model, applied to dynamically evaluate individuals' exposure to air pollution by intersecting daily trajectories of individuals and hourly spatial variations of air pollution across the study domain. This dynamic approach is implemented in Montreal, Canada to highlight the advantages of the method for exposure analysis. The results for nitrogen dioxide (NO2), a marker of traffic related air pollution, reveal significant differences when relying on spatially and temporally resolved concentrations combined with individuals' daily trajectories compared to a long-term average NO2 concentration at the home location. We observe that NO2 exposures based on trips and activity locations visited throughout the day were often more elevated than daily NO2 concentrations at the home location. The percentage of all individuals with a lower 24-hour daily average at home compared to their 24-hour mobility exposure is 89.6%, of which 31% of individuals increase their exposure by more than 10% by leaving the home. On average, individuals increased their exposure by 23-44% while commuting and conducting activities out of home (compared to the daily concentration at home), regardless of air quality at their home location. We conclude that our proposed dynamic modelling approach significantly improves the results of traditional methods that rely on a long-term average concentration at the home location and we shed light on the importance of using individual daily trajectories to understand exposure.

  13. An examination of population exposure to traffic related air pollution: Comparing spatially and temporally resolved estimates against long-term average exposures at the home location.

    PubMed

    Shekarrizfard, Maryam; Faghih-Imani, Ahmadreza; Hatzopoulou, Marianne

    2016-05-01

    Air pollution in metropolitan areas is mainly caused by traffic emissions. This study presents the development of a model chain consisting of a transportation model, an emissions model, and atmospheric dispersion model, applied to dynamically evaluate individuals' exposure to air pollution by intersecting daily trajectories of individuals and hourly spatial variations of air pollution across the study domain. This dynamic approach is implemented in Montreal, Canada to highlight the advantages of the method for exposure analysis. The results for nitrogen dioxide (NO2), a marker of traffic related air pollution, reveal significant differences when relying on spatially and temporally resolved concentrations combined with individuals' daily trajectories compared to a long-term average NO2 concentration at the home location. We observe that NO2 exposures based on trips and activity locations visited throughout the day were often more elevated than daily NO2 concentrations at the home location. The percentage of all individuals with a lower 24-hour daily average at home compared to their 24-hour mobility exposure is 89.6%, of which 31% of individuals increase their exposure by more than 10% by leaving the home. On average, individuals increased their exposure by 23-44% while commuting and conducting activities out of home (compared to the daily concentration at home), regardless of air quality at their home location. We conclude that our proposed dynamic modelling approach significantly improves the results of traditional methods that rely on a long-term average concentration at the home location and we shed light on the importance of using individual daily trajectories to understand exposure. PMID:26970897

  14. A spatially resolved retarding field energy analyzer design suitable for uniformity analysis across the surface of a semiconductor wafer

    SciTech Connect

    Sharma, S.; Gahan, D. Hopkins, M. B.; Kechkar, S.; Daniels, S.

    2014-04-15

    A novel retarding field energy analyzer design capable of measuring the spatial uniformity of the ion energy and ion flux across the surface of a semiconductor wafer is presented. The design consists of 13 individual, compact-sized, analyzers, all of which are multiplexed and controlled by a single acquisition unit. The analyzers were tested to have less than 2% variability from unit to unit due to tight manufacturing tolerances. The main sensor assembly consists of a 300 mm disk to mimic a semiconductor wafer and the plasma sampling orifices of each sensor are flush with disk surface. This device is placed directly on top of the rf biased electrode, at the wafer location, in an industrial capacitively coupled plasma reactor without the need for any modification to the electrode structure. The ion energy distribution, average ion energy, and average ion flux were measured at the 13 locations over the surface of the powered electrode to determine the degree of spatial nonuniformity. The ion energy and ion flux are shown to vary by approximately 20% and 5%, respectively, across the surface of the electrode for the range of conditions investigated in this study.

  15. Tempo-spatially resolved dynamics of elec- trons and holes in bilayer MoS2 -WS2

    NASA Astrophysics Data System (ADS)

    Galicia-Hernandez, J. M.; Turkowski, V.; Hernandez-Cocoletzi, G.; Rahman, T. S.

    We have performed a Density-Matrix Time-Dependent Density-Functional Theory analysis of the response of bilayer MoS2-WS2 to external laser-pulse perturbations. Time-resolved study of the dynamics of electrons and holes, including formation and dissociation of strongly-bound intra- and inter-layer excitonic states, shows that the experimentally observed ultrafast inter-layer MoS2 to WS2 migration of holes may be attributed to unusually large delocalization of the hole state which extends far into the inter-layer region. We also argue that the velocity of the hole transfer may be further enhanced by its interaction with transfer phonon modes. We analyze other possible consequences of the hole delocalization in the system, including reduction of the effects of the electron-electron and hole-hole repulsion in the trions and biexcitons as compared to that in the monolayers Work supported in part by DOE Grant No. DOE-DE-FG02-07ER46354 and by CONACYT Scholarship No. 23210 (J.M.G.H.).

  16. Spatially resolved estimation of ozone-related mortality in the United States under two representative concentration pathways (RCPs) and their uncertainty

    DOE PAGES

    Kim, Young-Min; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent A.; Huang, Cheng; Liu, Yang

    2014-11-16

    We report that the spatial pattern of the uncertainty in air pollution-related health impacts due to climate change has rarely been studied due to the lack of high-resolution model simulations, especially under the Representative Concentration Pathways (RCPs), the latest greenhouse gas emission pathways. We estimated future tropospheric ozone (O3) and related excess mortality and evaluated the associated uncertainties in the continental United States under RCPs. Based on dynamically downscaled climate model simulations, we calculated changes in O3 level at 12 km resolution between the future (2057 and 2059) and base years (2001–2004) under a low-to-medium emission scenario (RCP4.5) and amore » fossil fuel intensive emission scenario (RCP8.5). We then estimated the excess mortality attributable to changes in O3. Finally, we analyzed the sensitivity of the excess mortality estimates to the input variables and the uncertainty in the excess mortality estimation using Monte Carlo simulations. O3-related premature deaths in the continental U.S. were estimated to be 1312 deaths/year under RCP8.5 (95 % confidence interval (CI): 427 to 2198) and ₋2118 deaths/year under RCP4.5 (95 % CI: ₋3021 to ₋1216), when allowing for climate change and emissions reduction. The uncertainty of O3-related excess mortality estimates was mainly caused by RCP emissions pathways. Finally, excess mortality estimates attributable to the combined effect of climate and emission changes on O3 as well as the associated uncertainties vary substantially in space and so do the most influential input variables. Spatially resolved data is crucial to develop effective community level mitigation and adaptation policy.« less

  17. Spatially resolved estimation of ozone-related mortality in the United States under two representative concentration pathways (RCPs) and their uncertainty

    SciTech Connect

    Kim, Young-Min; Zhou, Ying; Gao, Yang; Fu, Joshua S.; Johnson, Brent A.; Huang, Cheng; Liu, Yang

    2014-11-16

    We report that the spatial pattern of the uncertainty in air pollution-related health impacts due to climate change has rarely been studied due to the lack of high-resolution model simulations, especially under the Representative Concentration Pathways (RCPs), the latest greenhouse gas emission pathways. We estimated future tropospheric ozone (O3) and related excess mortality and evaluated the associated uncertainties in the continental United States under RCPs. Based on dynamically downscaled climate model simulations, we calculated changes in O3 level at 12 km resolution between the future (2057 and 2059) and base years (2001–2004) under a low-to-medium emission scenario (RCP4.5) and a fossil fuel intensive emission scenario (RCP8.5). We then estimated the excess mortality attributable to changes in O3. Finally, we analyzed the sensitivity of the excess mortality estimates to the input variables and the uncertainty in the excess mortality estimation using Monte Carlo simulations. O3-related premature deaths in the continental U.S. were estimated to be 1312 deaths/year under RCP8.5 (95 % confidence interval (CI): 427 to 2198) and ₋2118 deaths/year under RCP4.5 (95 % CI: ₋3021 to ₋1216), when allowing for climate change and emissions reduction. The uncertainty of O3-related excess mortality estimates was mainly caused by RCP emissions pathways. Finally, excess mortality estimates attributable to the combined effect of climate and emission changes on O3 as well as the associated uncertainties vary substantially in space and so do the most influential input variables. Spatially resolved data is crucial to develop effective community level mitigation and adaptation policy.

  18. The spatially resolved correlation between [NII] 205 μm line emission and the 24 μm continuum in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Hughes, T. M.; Baes, M.; Schirm, M. R. P.; Parkin, T. J.; Wu, R.; De Looze, I.; Wilson, C. D.; Viaene, S.; Bendo, G. J.; Boselli, A.; Cormier, D.; Ibar, E.; Karczewski, O. Ł.; Lu, N.; Spinoglio, L.

    2016-03-01

    A correlation between the 24 μm continuum and the [Nii] 205 μm line emission may arise if both quantities trace the star formation activity on spatially-resolved scales within a galaxy, yet has so far only been observed in the nearby edge-on spiral galaxy NGC 891. We therefore assess whether the [Nii] 205-24 μm emission correlation has some physical origin or is merely an artefact of line-of-sight projection effects in an edge-on disc. We search for the presence of a correlation in Herschel and Spitzer observations of two nearby face-on galaxies, M 51 and M 83, and the interacting Antennae galaxies NGC 4038 and 4039. We show that not only is this empirical relationship also observed in face-on galaxies, but also that the correlation appears to be governed by the star formation rate (SFR). Both the nuclear starburst in M 83 and the merger-induced star formation in NGC 4038/9 exhibit less [Nii] emission per unit SFR surface density than the normal star-forming discs. These regions of intense star formation exhibit stronger ionization parameters, as traced by the 70/160 μm far-infrared (FIR) colour. These observations suggest the presence of higher ionization lines that may become more important for gas cooling, thereby reducing the observed [Nii] 205 μm line emission in regions with higher star formation rates. Finally, we present a general relation between the [Nii] 205 μm line flux density and SFR density for normal star-forming galaxies, yet note that future studies should extend this analysis by including observations with wider spatial coverage for a larger sample of galaxies.

  19. Utility of spatially-resolved atmospheric pressure surface sampling and ionization techniques as alternatives to mass spectrometric imaging (MSI) in drug metabolism

    SciTech Connect

    Blatherwick, Eleanor Q.; Van Berkel, Gary J; Pickup, Kathryn; Johansson, Maria K.; Beaudoin, Marie-Eve; Cole, Roderic; Day, Jennifer M.; Iverson, Suzanne; Wilson, Ian D.; Scrivens, James H.; Weston, Daniel J.

    2011-01-01

    1. Tissue distribution studies of drug molecules play an essential role in the pharmaceutical industry and are commonly undertaken using quantitative whole body autoradiography (QWBA) methods. 2. The growing need for complementary methods to address some scientific gaps around radiography methods has led to increased use of mass spectrometric imaging (MSI) technology over the last 5 to 10 years. More recently, the development of novel mass spectrometric techniques for ambient surface sampling has redefined what can be regarded as fit-for-purpose for MSI in a drug metabolism and disposition arena. 3. Together with a review of these novel alternatives, this paper details the use of two liquid microjunction (LMJ)- based mass spectrometric surface sampling technologies. These approaches are used to provide qualitative determination of parent drug in rat liver tissue slices using liquid extraction surface analysis (LESA) and to assess the performance of a LMJ surface sampling probe (LMJ-SSP) interface for quantitative assessment of parent drug in brain, liver and muscle tissue slices. 4. An assessment of the utility of these spatially-resolved sampling methods is given, showing interdependence between mass spectrometric and QWBA methods, in particular there emerges a reason to question typical MSI workflows for drug metabolism; suggesting the expedient use of profile or region analysis may be more appropriate, rather than generating time-intensive molecular images of the entire tissue section.

  20. Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Knuettel, Alexander R.; Boehlau-Godau, Martin

    2000-01-01

    In the present applications of optical coherence tomography (OCT), parameters besides pure morphology are evaluated in skin tissue under in vivo conditions. Spatially mapped refractive indices and scattering coefficients may support tissue characterization for research and diagnostic purposes in cosmetics/pharmacy and medicine, respectively. The sample arm of our OCT setup has been arranged to permit refractive index evaluation with little mechanical adjustment of a lens within the objective. A simple algorithm has been derived. Known from atmospheric work, the Klett algorithm has been applied to the same data set for retrieval of scattering coefficients. Both parameters have been measured in layered structures in skin like stratum corneum, epidermis and dermis. Significant water content in a localized sweat gland duct has been observed by refractive index evaluation. Time studies over 1.5 h permitted a first understanding about physiological changes in skin which are not obtainable by intrusive methods.

  1. Global and Spatially Resolved Photometric Properties of the Nucleus of Comet 67P/C-G from OSIRIS Images

    NASA Astrophysics Data System (ADS)

    Lamy, P.

    2014-04-01

    photometric properties of the nucleus of comet 67P/C-G, albedo, phase function and spectral reflectivity and compare with previous results obtained with the Hubble and Spitzer space telescopes [2, 3, 4]. Then observations during the approach and first bound orbits in July-August 2014 will allow mapping the surface of the nucleus with OSIRIS at a scale of up to 1 meter per pixel. The images will be used to reconstruct the 3D surface of the nucleus at highresolution allowing separating true photometric variations from topographic effects. We will present results on the spatially resolved photometric properties of the nucleus based on a novel method developed in the space of the facets representing the three-dimensional shape of the body. This method successfully implemented in the cases of the nucleus of comet 9P/Tempel 2 and of asteroid (2867) Steins [5] has the advantage of automatically tracking the same local surface element on a series of images. The analysis will then proceed with the determination of the global Hapke and other standard photometric parameters as well as their two-dimensional variations across the surface. This allows defining, in the body-fixed reference frame, ``high residual regions'' (HRRs) which correspond to significant relative differences between the observed and modeled photometric parameters such as the singlescattering albedo (SSA), the mean roughness slope angle, and the reflectivity gradient. Of particular interest will be the search for ice patches and possible mineralogical differences resulting from the past activity of the comet.

  2. Magellanic Clues to Spatially-Resolved Extinction Corrections for Distant Galaxies in the HST/JWST Era

    NASA Astrophysics Data System (ADS)

    Jansen, Rolf

    element using the 2MASS, DENIS and OGLE-III data. That allows us to measure the observed and derive through modeling the inherent V-to- 3.6(3.4)micron flux ratio per IRAC(WISE) resolution element. Subsequent resampling and PSF-matching at geometrically increasing scales from pc to kpc resolution elements then allows us to assess the accuracy and fidelity of the method as a multi-variate function of the resolution, underlying stellar population mixture, physical environments, and projected distribution of dust. The resulting graphs and tables of biases, corrections, and predicted beta_{V,0} will serve as calibrations in the application of the spatially- resolved extinction correction method to galaxies at all redshifts or those redshifts where the method is proved reliable. The importance of an extinction-free census of galaxy properties throughout the history of the universe can hardly be overstated and goes to the core of the NASA ADAP science area objectives of understanding the origin and destiny of the universe and understanding the many phenomena and processes associated with galaxy formation and evolution from the earliest epochs to today.

  3. Spatially Resolved Star Formation History Along the Disk of M82 Using Multi-band Photometric Data

    NASA Astrophysics Data System (ADS)

    Rodríguez-Merino, L. H.; Rosa-González, D.; Mayya, Y. D.

    2011-01-01

    We present results on the star formation history and extinction in the disk of M82 over spatial scales of 10'' (~180 pc). Multi-band photometric data covering the far-ultraviolet to the near-infrared bands were fitted to a grid of synthetic spectral energy distributions. We obtained distribution functions of age and extinction for each of the 117 apertures analyzed, taking into account observational errors through Monte Carlo simulations. These distribution functions were fitted with Gaussian functions to obtain the mean ages and extinctions together with their errors. The zones analyzed include the high surface brightness complexes defined by O'Connell & Mangano. We found that these complexes share the same star formation history and extinction as the field stellar populations in the disk. There is an indication that the stellar populations are marginally older at the outer disk (450 Myr at ~3 kpc) as compared to the inner disk (100 Myr at 0.5 kpc). For the nuclear region (radius less than 500 pc), we obtained an age of less than 10 Myr. The results obtained in this work are consistent with the idea that the 0.5-3 kpc part of the disk of M82 formed around 90% of the stellar mass in a star-forming episode that started around 450 Myr ago and lasted for about 350 Myr. We found that field stars are the major contributors to the flux over the spatial scales analyzed in this study, with the stellar cluster contribution being 7% in the nucleus and 0.7% in the disk.

  4. High spatial resolution mid-infrared studies of planetary systems

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew

    I present the results of six papers related the formation and evolution of planets and planetary systems, all of which are based on high-resolution, ground-based, mid-infrared observations. The first three chapters are studies of T Tauri binaries. T Tauri stars are young, low mass stars, whose disks form the building blocks of extrasolar planets. The first chapter is a study of the 0.68"/0.12" triple system, T Tauri. Our spatially resolved N-band photometry reveals silicate absorption towards one component, T Tau Sa, indicating the presence of an edge-on disk, which is in contrast to the other components. The second chapter is an adaptive optics fed N-band spectroscopy study of the 0.88" binary, UY Aur. We find that the dust grains around UY Aur A are ISM-like, while the mineralogy of the dust around UY Aur B is more uncertain, due to self-extinction. The third chapter presents a survey of spatially resolved silicate spectroscopy for nine T Tauri binaries. We find with 90%-95% confidence that the silicate features of the binaries are more similar than those of randomly paired single stars. This implies that a shared binary property, such as age or composition, is an important parameter in dust grain evolution. The fourth chapter is a study of the planetary system, 2MASS 1207. We explore the source of 2MASS 1207 b's under-luminosity, which has typically been explained as the result of an edge-on disk of large, grey-extincting dust grains. We find that the edge-on disk theory is incompatible with several lines of evidence, and suggest that 2MASS 1207 b's appearance can be explained by a thick cloudy atmosphere, which might be typical among young, planetary systems. The fifth chapter is a study of the white dwarf, Sirius B, which in the context of this thesis is being studied as a post-planetary system. Our N-band imaging demonstrates that Sirius B does not have an infrared excess, in contrast to previous results. The sixth chapter is a study of mid

  5. Temporally and spatially resolved photoluminescence investigation of (112{sup ¯}2) semi-polar InGaN/GaN multiple quantum wells grown on nanorod templates

    SciTech Connect

    Liu, B.; Smith, R.; Athanasiou, M.; Yu, X.; Bai, J.; Wang, T.

    2014-12-29

    By means of time-resolved photoluminescence (PL) and confocal PL measurements, temporally and spatially resolved optical properties have been investigated on a number of In{sub x}Ga{sub 1−x}N/GaN multiple-quantum-well (MQW) structures with a wide range of indium content alloys from 13% to 35% on (112{sup ¯}2) semi-polar GaN with high crystal quality, obtained through overgrowth on nanorod templates. With increasing indium content, the radiative recombination lifetime initially increases as expected, but decreases if the indium content further increases to 35%, corresponding to emission in the green spectral region. The reduced radiative recombination lifetime leads to enhanced optical performance for the high indium content MQWs as a result of strong exciton localization, which is different from the behaviour of c-plane InGaN/GaN MQWs, where quantum confined Stark effect plays a dominating role in emission process.

  6. An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis

    DOE PAGES

    Van Berkel, Gary J.; Weiskittel, Taylor M.; Kertesz, Vilmos

    2014-11-07

    Droplet-based liquid microjunction surface sampling coupled with high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) for spatially resolved analysis provides the possibility of effective analysis of complex matrix samples and can provide a greater degree of chemical information from a single spot sample than is typically possible with a direct analysis of an extract. Described here is the setup and enhanced capabilities of a discrete droplet liquid microjunction surface sampling system employing a commercially available CTC PAL autosampler. The system enhancements include incorporation of a laser distance sensor enabling unattended analysis of samples and sample locations of dramatically disparatemore » height as well as reliably dispensing just 0.5 μL of extraction solvent to make the liquid junction to the surface, wherein the extraction spot size was confined to an area about 0.7 mm in diameter; software modifications improving the spatial resolution of sampling spot selection from 1.0 to 0.1 mm; use of an open bed tray system to accommodate samples as large as whole-body rat thin tissue sections; and custom sample/solvent holders that shorten sampling time to approximately 1 min per sample. Lastly, the merit of these new features was demonstrated by spatially resolved sampling, HPLC separation, and mass spectral detection of pharmaceuticals and metabolites from whole-body rat thin tissue sections and razor blade (“crude”) cut mouse tissue.« less

  7. An enhanced droplet-based liquid microjunction surface sampling system coupled with HPLC-ESI-MS/MS for spatially resolved analysis

    SciTech Connect

    Van Berkel, Gary J.; Weiskittel, Taylor M.; Kertesz, Vilmos

    2014-11-07

    Droplet-based liquid microjunction surface sampling coupled with high-performance liquid chromatography (HPLC)-electrospray ionization (ESI)-tandem mass spectrometry (MS/MS) for spatially resolved analysis provides the possibility of effective analysis of complex matrix samples and can provide a greater degree of chemical information from a single spot sample than is typically possible with a direct analysis of an extract. Described here is the setup and enhanced capabilities of a discrete droplet liquid microjunction surface sampling system employing a commercially available CTC PAL autosampler. The system enhancements include incorporation of a laser distance sensor enabling unattended analysis of samples and sample locations of dramatically disparate height as well as reliably dispensing just 0.5 μL of extraction solvent to make the liquid junction to the surface, wherein the extraction spot size was confined to an area about 0.7 mm in diameter; software modifications improving the spatial resolution of sampling spot selection from 1.0 to 0.1 mm; use of an open bed tray system to accommodate samples as large as whole-body rat thin tissue sections; and custom sample/solvent holders that shorten sampling time to approximately 1 min per sample. Lastly, the merit of these new features was demonstrated by spatially resolved sampling, HPLC separation, and mass spectral detection of pharmaceuticals and metabolites from whole-body rat thin tissue sections and razor blade (“crude”) cut mouse tissue.

  8. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils.

    PubMed

    Komprda, Jiří; Komprdová, Klára; Sáňka, Milan; Možný, Martin; Nizzetto, Luca

    2013-07-01

    The subject of this study is the assessment of the influence of climate and land use change on the potential re-emission of organochlorine pesticides (OCPs) from background and agricultural soils. A deterministic spatially and temporally explicit model of the air-surface exchange was created, fed with distributed data of soil and atmospheric concentrations from real measurements, and run under various scenarios of temperature and land use change for a case study area representative of central European conditions. To describe land use influence, some important features were implemented including effect of plowing, influence of land cover, temperature of soil, and seasonal changes of air layer stability. Results show that volatilization of pesticides from soil largely exceeded dry gas deposition in most of the area. Agricultural soils accounted for more than 90% of the total re-emissions both because of the generally higher soil fugacities (higher loads of chemicals and relatively low organic carbon content), but also due to physical characteristics and land management practices enhancing the dynamics of the exchange. An increase of 1 °C in air temperature produced an increase of 8% in the averaged total volatilization flux, however this effect can be neutralized by a change of land use of 10% of the arable lands to grassland or forest, which is consistent with projected land use change in Europe. This suggests that future assessment of climate impact on POP fate and distribution should take into consideration land use aspects.

  9. Resolving a Teacher-Student Conflict: An Intrinsic Case Study

    ERIC Educational Resources Information Center

    Isaacson, Atara

    2016-01-01

    This article presents an episode that occurred during a semester-long academic course called: Conduct Problems and Class Navigation. It focuses on investigating the behavior of a student who, because of her uniqueness, was an interesting candidate for an intrinsic case study. This paper presents a distinctive way of handling an interfering and…

  10. Quantification of the optical properties of two-layer turbid materials using a hyperspectral imaging-based spatially-resolved technique.

    PubMed

    Cen, Haiyan; Lu, Renfu

    2009-10-10

    Recent research has shown that a hyperspectral imaging-based spatially-resolved technique is useful for determining the optical properties of homogenous fruits and food products. To better characterize fruit properties and quality attributes, it is desirable to consider fruit to be composed of two homogeneous layers of skin and flesh. This research was aimed at developing a nondestructive method to determine the absorption and scattering properties of two-layer turbid materials with the characteristics of fruit. An inverse algorithm along with the sensitivity coefficient analysis for a two-layer diffusion model was developed for the extraction of optical properties from the spatially-resolved diffuse reflectance data acquired using a hyperspectral imaging system. The diffusion model and the inverse algorithm were validated with Monte Carlo simulations and experimental measurements from solid model samples of known optical properties. The average errors of determining two and four optical parameters were 6.8% and 15.3%, respectively, for Monte Carlo reflectance data. The optical properties of the first or top layer of the model samples were determined with errors of less than 23.0% for the absorption coefficient and 18.4% for the reduced scattering coefficient. The inverse algorithm did not give acceptable estimations for the second or lower layer of the model samples. While the hyperspectral imaging-based spatially-resolved technique has the potential to measure the optical properties of two-layer turbid materials like fruits and food products, further improvements are needed in determining the optical properties of the second layer.

  11. Spatially resolved X-ray emission measurements of the residual velocity during the stagnation phase of inertial confinement fusion implosion experiments

    NASA Astrophysics Data System (ADS)

    Ruby, J. J.; Pak, A.; Field, J. E.; Ma, T.; Spears, B. K.; Benedetti, L. R.; Bradley, D. K.; Berzak Hopkins, L. F.; Casey, D. T.; Döppner, T.; Eder, D.; Fittinghoff, D.; Grim, G.; Hatarik, R.; Hinkel, D. E.; Izumi, N.; Kilkenny, J. D.; Khan, S. F.; Knauer, J. P.; Kritcher, A. L.; Merrill, F. E.; Moody, J. D.; Nagel, S. R.; Park, H.-S.; Salmonson, J. D.; Sayre, D. B.; Callahan, D. A.; Hsing, W. W.; Hurricane, O. A.; Patel, P. K.; Edwards, M. J.

    2016-07-01

    A technique for measuring residual motion during the stagnation phase of an indirectly driven inertial confinement experiment has been implemented. This method infers a velocity from spatially and temporally resolved images of the X-ray emission from two orthogonal lines of sight. This work investigates the accuracy of recovering spatially resolved velocities from the X-ray emission data. A detailed analytical and numerical modeling of the X-ray emission measurement shows that the accuracy of this method increases as the displacement that results from a residual velocity increase. For the typical experimental configuration, signal-to-noise ratios, and duration of X-ray emission, it is estimated that the fractional error in the inferred velocity rises above 50% as the velocity of emission falls below 24 μm/ns. By inputting measured parameters into this model, error estimates of the residual velocity as inferred from the X-ray emission measurements are now able to be generated for experimental data. Details of this analysis are presented for an implosion experiment conducted with an unintentional radiation flux asymmetry. The analysis shows a bright localized region of emission that moves through the larger emitting volume at a relatively higher velocity towards the location of the imposed flux deficit. This technique allows for the possibility of spatially resolving velocity flows within the so-called central hot spot of an implosion. This information would help to refine our interpretation of the thermal temperature inferred from the neutron time of flight detectors and the effect of localized hydrodynamic instabilities during the stagnation phase. Across several experiments, along a single line of sight, the average difference in magnitude and direction of the measured residual velocity as inferred from the X-ray and neutron time of flight detectors was found to be ˜13 μm/ns and ˜14°, respectively.

  12. Ontogenetic changes in retinal ganglion cell distribution and spatial resolving power in the brown-banded bamboo shark Chiloscyllium punctatum (Elasmobranchii).

    PubMed

    Harahush, Blake K; Hart, Nathan S; Collin, Shaun P

    2014-01-01

    The development of the visual system in anamniotic vertebrates is a continual process, allowing for ontogenetic changes in retinal topography and spatial resolving power. We examined the number and distribution of retinal ganglion cells in wholemounted retinae throughout the protracted embryonic development (∼5 months) of a chondrichthyan, i.e. the brown-banded bamboo shark Chiloscyllium punctatum, from the beginning of retinal cell differentiation (approximately halfway through embryogenesis) to adulthood. We also identified and quantified the number of apoptosed cells within the ganglion cell layer to evaluate the contribution of apoptosis to changes in retinal topography. C. punctatum undergoes rapid changes in ganglion cell distribution during embryogenesis, where high levels of apoptosis, especially around the retinal periphery, result in relative increases in ganglion cell density in the central retina which progressively extend nasally and temporally to form a meridional band at hatching. After hatching, C. punctatum forms and maintains a horizontal streak, showing only minor changes in topography during growth, with basal levels of apoptosis. The total number of retinal ganglion cells reaches 547,881 in adult sharks, but the mean (3,228 cells·mm(-2)) and peak (4,983 cells·mm(-2)) retinal ganglion cell densities are highest around the time of hatching. Calculated estimates of spatial resolving power, based on ganglion cell spacing (assuming a hexagonal mosaic) and assessment of the focal length from cryosections of the eye, increase from 1.47 cycles·degree(-1) during embryogenesis to 4.29 cycles·degree(-1) in adults. The increase in spatial resolving power across the retinal meridian would allow this species to hunt and track faster, more mobile prey as it reaches maturity. PMID:24993335

  13. Compact all-fiber quartz-enhanced photoacoustic spectroscopy sensor with a 30.72 kHz quartz tuning fork and spatially resolved trace gas detection

    NASA Astrophysics Data System (ADS)

    Ma, Yufei; He, Ying; Yu, Xin; Zhang, Jingbo; Sun, Rui; Tittel, Frank K.

    2016-02-01

    An ultra compact all-fiber quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor using quartz tuning fork (QTF) with a low resonance frequency of 30.72 kHz was demonstrated. Such a sensor architecture has the advantages of easier optical alignment, lower insertion loss, lower cost, and more compact compared with a conventional QEPAS sensor using discrete optical components for laser delivery and coupling to the QTF. A fiber beam splitter and three QTFs were employed to perform multi-point detection and demonstrated the potential of spatially resolved measurements.

  14. Puerto Rico - 2002 : field studies to resolve aerosol processes.

    SciTech Connect

    Gaffney, J. S.; Marley, N. A.; Ravelo, R.

    1999-10-05

    A number of questions remain concerning homogeneous aerosol formation by natural organics interacting with anthropogenic pollutants. For example, chlorine has been proposed as a potential oxidant in the troposphere because of its very high reactivity with a wide range of organics (Finlayson-Pitts, 1993). Indeed, sea salt aerosol in the presence of ozone has been shown to produce chlorine atoms in heterogeneous photochemical reactions under laboratory conditions. Whether chlorine can initiate oxidation of natural organics such as monoterpene hydrocarbons and can generate homogeneous nucleation or condensable material that contributes to aerosol loadings needs to be assessed. The nighttime reactions of ozone and nitrate radical can also result in monoterpene reactions that contribute to aerosol mass. We are currently planning field studies in Puerto Rico to assess these aerosol issues and other atmospheric chemistry questions. Puerto Rico has a number of key features that make it very attractive for a field study of this sort. The principal feature is the island's very regular meteorology and its position in the Caribbean Sea relative to the easterly trade winds. This meteorology and the island's rectangular shape (100 x 35 miles) make it highly suitable for simplification of boundary layer conditions. In addition, the long stretch between Puerto Rico and the nearest pollution sources in Africa and southern Europe make the incoming background air relatively clean and constant. Furthermore, Puerto Rico has approximately 3.5 million people with a very well defined source region and a central area of rain forest vegetation. These features make Puerto Rico an ideal locale for assessing aerosol processes. The following sections describe specific areas of atmospheric chemistry that can be explored during the proposed field study.

  15. Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography.

    PubMed

    Knüttel, A; Boehlau-Godau, M

    2000-01-01

    In the present applications of optical coherence tomography (OCT), parameters besides pure morphology are evaluated in skin tissue under in vivo conditions. Spatially mapped refractive indices and scattering coefficients may support tissue characterization for research and diagnostic purposes in cosmetics/pharmacy and medicine, respectively. The sample arm of our OCT setup has been arranged to permit refractive index evaluation with little mechanical adjustment of a lens within the objective. A simple algorithm has been derived. Known from atmospheric work, the Klett algorithm [J. D. Klett, "Stable analytical inversion solution for processing LIDAR returns," Appl. Opt. 20(2), 211-220 (1981)] has been applied to the same data set for retrieval of scattering coefficients. Both parameters have been measured in layered structures in skin like stratum corneum, epidermis and dermis. Significant water content in a localized sweat gland duct has been observed by refractive index evaluation. Time studies over 1.5 h permitted a first understanding about physiological changes in skin which are not obtainable by intrusive methods.

  16. Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section.

    PubMed

    Dvorski, Sabine E-M; Gonsior, Michael; Hertkorn, Norbert; Uhl, Jenny; Müller, Hubert; Griebler, Christian; Schmitt-Kopplin, Philippe

    2016-06-01

    At numerous groundwater sites worldwide, natural dissolved organic matter (DOM) is quantitatively complemented with petroleum hydrocarbons. To date, research has been focused almost exclusively on the contaminants, but detailed insights of the interaction of contaminant biodegradation, dominant redox processes, and interactions with natural DOM are missing. This study linked on-site high resolution spatial sampling of groundwater with high resolution molecular characterization of DOM and its relation to groundwater geochemistry across a petroleum hydrocarbon plume cross-section. Electrospray- and atmospheric pressure photoionization (ESI, APPI) ultrahigh resolution mass spectrometry (FT-ICR-MS) revealed a strong interaction between DOM and reactive sulfur species linked to microbial sulfate reduction, i.e., the key redox process involved in contaminant biodegradation. Excitation emission matrix (EEM) fluorescence spectroscopy in combination with Parallel Factor Analysis (PARAFAC) modeling attributed DOM samples to specific contamination traits. Nuclear magnetic resonance (NMR) spectroscopy evaluated the aromatic compounds and their degradation products in samples influenced by the petroleum contamination and its biodegradation. Our orthogonal high resolution analytical approach enabled a comprehensive molecular level understanding of the DOM with respect to in situ petroleum hydrocarbon biodegradation and microbial sulfate reduction. The role of natural DOM as potential cosubstrate and detoxification reactant may improve future bioremediation strategies. PMID:27152868

  17. Geochemistry of Dissolved Organic Matter in a Spatially Highly Resolved Groundwater Petroleum Hydrocarbon Plume Cross-Section.

    PubMed

    Dvorski, Sabine E-M; Gonsior, Michael; Hertkorn, Norbert; Uhl, Jenny; Müller, Hubert; Griebler, Christian; Schmitt-Kopplin, Philippe

    2016-06-01

    At numerous groundwater sites worldwide, natural dissolved organic matter (DOM) is quantitatively complemented with petroleum hydrocarbons. To date, research has been focused almost exclusively on the contaminants, but detailed insights of the interaction of contaminant biodegradation, dominant redox processes, and interactions with natural DOM are missing. This study linked on-site high resolution spatial sampling of groundwater with high resolution molecular characterization of DOM and its relation to groundwater geochemistry across a petroleum hydrocarbon plume cross-section. Electrospray- and atmospheric pressure photoionization (ESI, APPI) ultrahigh resolution mass spectrometry (FT-ICR-MS) revealed a strong interaction between DOM and reactive sulfur species linked to microbial sulfate reduction, i.e., the key redox process involved in contaminant biodegradation. Excitation emission matrix (EEM) fluorescence spectroscopy in combination with Parallel Factor Analysis (PARAFAC) modeling attributed DOM samples to specific contamination traits. Nuclear magnetic resonance (NMR) spectroscopy evaluated the aromatic compounds and their degradation products in samples influenced by the petroleum contamination and its biodegradation. Our orthogonal high resolution analytical approach enabled a comprehensive molecular level understanding of the DOM with respect to in situ petroleum hydrocarbon biodegradation and microbial sulfate reduction. The role of natural DOM as potential cosubstrate and detoxification reactant may improve future bioremediation strategies.

  18. Time-resolved infrared studies of protein conformational dynamics

    SciTech Connect

    Woodruff, W.H.; Causgrove, T.P.; Dyer, R.B.; Callender, R.H.

    1994-12-01

    We have demonstrated that TRIR in the amide I region gives structural information regarding protein conformational changes in realtime, both on processes involved in the development of the functional structure (protein folding) and on protein structural changes that accompany the functional dynamics of the native structure. Assignment of many of the amide I peaks to specific amide or sidechain structures will require much additional effort. Specifically, the congestion and complexity of the protein vibrational spectra dictate that isotope studies are an absolute requirement for more than a qualitative notion of the structural interpretation of these measurements. It is clear, however, that enormous potential exists for elucidating structural relaxation dynamics and energetics with a high degree of structural specificity using this approach.

  19. High spatial resolution time-resolved magnetic resonance angiography of lower extremity tumors at 3T: Comparison with computed tomography angiography.

    PubMed

    Wu, Gang; Jin, Teng; Li, Ting; Morelli, John; Li, Xiaoming

    2016-09-01

    The aim of this study was to compare diagnostic value of high spatial resolution time-resolved magnetic resonance angiography with interleaved stochastic trajectory (TWIST) using Gadobutrol to Computed tomography angiography (CTA) for preoperative evaluation of lower extremity tumors.This prospective study was approved by the institutional review board. Fifty consecutive patients (31 men, 19 women, age range 18-80 years, average age 42.7 years) with lower extremity tumors underwent TWIST magnetic resonance angiography (MRA) and CTA. Digital subtraction angiography was available for 8 patients. Image quality of MRA was compared with CTA by 2 radiologists according to a 4-point Likert scale. Arterial involvement by tumor was compared using kappa test between MRA and CTA. The ability to identify feeding arteries and arterio-venous fistulae (AVF) was compared using Wilcoxon signed rank test and McNemar test, respectively.Image quality of MRA and CTA was rated without a statistically significant difference (3.88 ± 0.37 vs. 3.97 ± 0.16, P = 0.135). Intramodality agreement was high for the identification of arterial invasion (kappa = 0.806 ± 0.073 for Reader 1, kappa = 0.805 ± 0.073 for Reader 2). Readers found AVF in 27 of 50 MRA cases and 14 of 50 CTA cases (P < 0.001). Mean feeding arteries identified with MRA were significantly more than that with CTA (2.08 ± 1.72 vs. 1.62 ± 1.52, P = .02).TWIST MRA is a reliable imaging modality for the assessment of lower extremity tumors. TWIST MRA is comparable to CTA for the identification of AVF and feeding arteries. PMID:27631262

  20. In situ time resolved synchrotron powder diffraction study of thaumasite

    NASA Astrophysics Data System (ADS)

    Martucci, Annalisa; Cruciani, Giuseppe

    2006-12-01

    Structural changes during dehydration and subsequent decomposition in thaumasite Ca3Si(SO4)(CO3)(OH)6·12 H2O were studied by in situ synchrotron powder diffraction between 303 and 1,098 K. Evolution of the crystal structure was observed through 28 structure refinements, by full profile Rietveld analysis performed in the P63 space group, between 300 and 417 K, whereupon the thaumasite structure was observed to breakdown. Within this temperature range, the cell parameters of thaumasite increased as a function of temperature in a nearly linear fashion up to about 393 K, at which temperature, a slight slope change was observed. Above 400 K, the thermogravimetric analysis revealed that the dehydration process proceeded very rapidly while the refined occupancy of water molecules dropped below a critical level, leading to instability in the thaumasite structure. At a same time, a remarkable change in the unit cell parameters occurring at about 417 K indicated that the crystal structure of thaumasite collapsed on losing the crystallization water and it turned amorphous. This result indicated that the dehydration/decomposition of thaumasite was induced by the departure of the crystallization water. At about 950 K, anhydrite and cristobalite crystallized from the thaumasite glass.

  1. Development of a spatially resolving x-ray crystal spectrometer for measurement of ion-temperature (T(i)) and rotation-velocity (v) profiles in ITER.

    PubMed

    Hill, K W; Bitter, M; Delgado-Aparicio, L; Johnson, D; Feder, R; Beiersdorfer, P; Dunn, J; Morris, K; Wang, E; Reinke, M; Podpaly, Y; Rice, J E; Barnsley, R; O'Mullane, M; Lee, S G

    2010-10-01

    Imaging x-ray crystal spectrometer (XCS) arrays are being developed as a US-ITER activity for Doppler measurement of T(i) and v profiles of impurities (W, Kr, and Fe) with ∼7 cm (a/30) and 10-100 ms resolution in ITER. The imaging XCS, modeled after a prototype instrument on Alcator C-Mod, uses a spherically bent crystal and 2D x-ray detectors to achieve high spectral resolving power (E/dE>6000) horizontally and spatial imaging vertically. Two arrays will measure T(i) and both poloidal and toroidal rotation velocity profiles. The measurement of many spatial chords permits tomographic inversion for the inference of local parameters. The instrument design, predictions of performance, and results from C-Mod are presented.

  2. Spatial distribution of disease: three case studies

    SciTech Connect

    Selvin, S.; Shaw, G.; Schulman, J.; Merrill, D.W.

    1987-09-01

    Maps transformed so as to have constant density of residential population were used to analyze the spatial distribution of disease in three specific areas. Each area had received recent attention because of suspected environmental pollution. The area adjacent to the Rocky Flats Facility (CO) was examined to identify any association between possible plutonium releases and increases in lung cancer or leukemia incidence. The industrial area of northern Contra Costa County (CA) was studied to explore a relationship between petrochemical industrial emissions and histologic-specific lung cancers. Finally, a suspected increase in the risk of congenital cardiac defects possibly related to pollution of the Santa Clara County (CA) water supply was investigated. No evidence of elevated risk of disease was found to be associated with either the Rocky Flats Facility or the polluted water of Santa Clara County. An increase in lung cancer, found by other investigators in earlier years, was shown to persist in association with industrial emissions in Contra Costa County.

  3. Performance and Prospects of Khayyam, A Tunable Spatial Heterodyne Spectrometer (SHS) for High Spectral Resolving Power Observation of Extended Planetary Targets in Optical Wavelengths

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Harris, W.

    2014-12-01

    We present initial results, calibration and data reduction process from observations of wide-field targets using Khayyam at Mt. Hamilton, a new instrument based on a reflective spatial heterodyne spectrometer (SHS) at the focus of the Coudé Auxiliary Telescope (CAT). SHS instruments are common path two-beam Fourier transform spectrometers that produce 2-D spatial interference patterns without the requirement for moving parts. The utility of SHS comes from its combination of a wide input acceptance angle (0.5-1°), high resolving power (of order ~105), compact format, high dynamic range, and relaxed optical tolerances compared with other interferometer designs. This combination makes them extremely useful for velocity resolved for observations of wide field targets from both small and large telescopes. This report focuses on the tunable instrument at Mt Hamilton, The CAT provides a test case for on-axis use of SHS, and the impact of the resulting field non-uniformity caused by the spider pattern will be discussed. Observations of several targets will be presented that demonstrate the capabilities of SHS, including comet C/2014 E2 (Jacques), Jupiter, and both the day sky and night glow. Raw interferometric data and transformed power spectra will be shown and evaluated in terms of instrumental stability.

  4. Continuous Flow Liquid Microjunction Surface Sampling Probe Connected On-line with HPLC/MS for Spatially Resolved Analysis of Small Molecules and Proteins

    SciTech Connect

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-01-01

    RATIONALE: A continuous flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by MS. Demonstrated here is the on-line coupling of such a probe with HPLC/MS enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. Methods: A continuous flow liquid microjunction surface sampling probe was connected to a 6-port, 2-position valve for extract collection and injection to an HPLC column. A QTRAP 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V ion source operated in positive ESI mode was used for all experiments. System operation was tested with extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues and proteins from dried sheep blood spots on paper. Results: Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s extractions). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin and chains. Conclusions: Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.

  5. Methods and apparatus of spatially resolved electroluminescence of operating organic light-emitting diodes using conductive atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Hersam, Mark C. (Inventor); Pingree, Liam S. C. (Inventor)

    2008-01-01

    A conductive atomic force microscopy (cAFM) technique which can concurrently monitor topography, charge transport, and electroluminescence with nanometer spatial resolution. This cAFM approach is particularly well suited for probing the electroluminescent response characteristics of operating organic light-emitting diodes (OLEDs) over short length scales.

  6. A Coupled GCM-Cloud Resolving Modeling System to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Peters-Lidard, Christa; Hou, Arthur; Lin, Xin

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud resolving models (CRMs) agree with observations better than traditional single column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA Satellite and field campaign cloud related data sets can provide initial conditions as well as validation for both the MMF and CRMs. Also we have implemented a Land Information System (LIS that includes the CLM and NOAH land surface models into the MMF. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM) This modeling system has been applied and tested its performance for two different climate scenarios, El Nino (1998) and La Nina (1999). The coupled new modeling system produced more realistic propagation and intensity of tropical rainfall systems and intraseasonal oscillations, and diurnal variation of precipitation that are very difficult to forecast using even the state-of-the-art GCMs. In this talk I will present: (1) a brief review on GCE model and its applications on precipitation processes (both Microphysical and land processes) and (2) The Goddard MMF and the Major difference between two existing MMFs (CSU MMF and Goddard MMF) and preliminary results (the comparison with traditional GCMs).

  7. Infrared planar laser-induced fluorescence with a CW quantum-cascade laser for spatially resolved CO2 and gas properties

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Miller, Victor A.; Hanson, Ronald K.

    2015-08-01

    The design and demonstration of a new infrared laser-induced fluorescence (IR-LIF) technique that enables spatially resolved measurements of CO2, temperature, and pressure, with potential for velocity, are presented. A continuous-wave, wavelength-tunable, quantum-cascade laser (QCL) near with up to 120 mW was used to directly excite the asymmetric-stretch fundamental-vibration band of CO2 for approximately 200 to times more absorbance compared with previous IR-LIF techniques. This enabled LIF detection limits (signal-to-noise ratio of 1) of 20 and 70 ppm of CO2 in Ar and , respectively, at 1 bar and 296 K in static-cell experiments. Simplified and detailed kinetic models for simulating the LIF signal as a function of gas properties are presented and enable quantitative, calibration-free, IR-LIF measurements of CO2 mole fraction within 1-8 % of known values at 0.5-1 bar. By scanning the laser across two absorption transitions and performing a multi-line Voigt fit to the LIF signal, measurements of temperature, pressure, and within 2 % of known values were obtained. LIF measurements of gas pressure at a repetition rate up to 200 Hz (in argon) are also presented. Planar-LIF (PLIF) was used to image steady and unsteady CO2-Ar jets at 330 frames per second with a spatial signal-to-noise ratio (SNR) up to 25, corresponding to a detection limit (SNR = 1) of 200 ppm with a projected pixel size of . The gas pressure was measured within % of the known value (1 bar) at 5 Hz by scanning the QCL across the P(42) absorption transition and least-squares fitting a Voigt profile to the PLIF signal. Spatially resolved measurements of absolute CO2 mole fraction in a laminar jet are also presented.

  8. Growth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate.

    PubMed

    Burden, Daniel K; Spillmann, Christopher M; Everett, Richard K; Barlow, Daniel E; Orihuela, Beatriz; Deschamps, Jeffrey R; Fears, Kenan P; Rittschof, Daniel; Wahl, Kathryn J

    2014-01-01

    The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, Amphibalanus (= Balanus) amphitrite were resolved in situ and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide ex situ material identification of regions imaged by confocal microscopy. In situ and ex situ analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery.

  9. Time-resolved studies of particle effects in laser ablation inductively coupled plasma-mass spectrometry

    SciTech Connect

    Perdian, D.; Bajic, S.; Baldwin, D.; Houk, R.

    2007-11-13

    Time resolved signals in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are studied to determine the influence of experimental parameters on ICP-induced fractionation effects. Differences in sample composition and morphology, i.e., ablating brass, glass, or dust pellets, have a profound effect on the time resolved signal. Helium transport gas significantly decreases large positive signal spikes arising from large particles in the ICP. A binder for pellets also reduces the abundance and amplitude of spikes in the signal. MO{sup +} ions also yield signal spikes, but these MO{sup +} spikes generally occur at different times from their atomic ion counterparts.

  10. Spatial distribution of disease: three case studies.

    PubMed

    Selvin, S; Shaw, G; Schulman, J; Merrill, D W

    1987-09-01

    Maps transformed so as to have constant density of residential population were used to analyze the spatial distribution of disease in three specific areas. Each area had received recent attention because of suspected environmental pollution. The area adjacent to the Rocky Flats Facility (CO) was examined to identify any association between possible plutonium releases and increases in lung cancer or leukemia incidence. The industrial area of northern Contra Costa County (CA) was studied to explore a relationship between petrochemical industrial emissions and histologic-specific lung cancers. Finally, a suspected increase in the risk of congenital cardiac defects possibly related to pollution of the Santa Clara County (CA) water supply was investigated. No evidence of elevated risk of disease was found to be associated with either the Rocky Flats Facility or the polluted water of Santa Clara County. An increase in lung cancer, found by other investigators in earlier years, was shown to persist in association with industrial emissions in Contra Costa County. PMID:3476785

  11. Studies of multifrequency phase-resolved fluorescence spectroscopy for spectral fingerprinting

    SciTech Connect

    McGown, L.B.

    1990-01-01

    During the past two project periods (7/1/88--12/31/90), we have made significant advances towards our goal of characterizing samples in terms of their dynamic spectral characteristics through the use of phase-resolved fluorescence spectroscopy. Specific achievements are discussed, each of which describes a particular area of focus in our studies.

  12. Resolving Leadership Dilemmas in New Zealand Kindergartens: An Action Research Study

    ERIC Educational Resources Information Center

    Cardno, Carol; Reynolds, Bronwyn

    2009-01-01

    Purpose: The purpose of this paper is to examine dilemmas encountered by kindergarten head teachers with the further aim of developing their capability to recognise and resolve "leadership dilemmas". Design/methodology/approach: Action research was used to conduct a three-phase study involving 16 kindergarten head teachers and six system managers…

  13. A highly spatially resolved GIS-based model to assess the isoprenoid emissions from key Italian ecosystems

    NASA Astrophysics Data System (ADS)

    Pacheco, Claudia Kemper; Fares, Silvano; Ciccioli, Paolo

    2014-10-01

    The amount of Biogenic Volatile Organic Compounds (BVOC) emitted from terrestrial vegetation is of great importance in atmospheric reactivity, particularly for ozone-forming reactions and as condensation nuclei in aerosol formation and growth. This work presents a detailed inventory of isoprenoid emissions from vegetation in Italy using an original approach which combines state of the art models to estimate the species-specific isoprenoid emissions and a Geographic Information System (GIS) where emissions are spatially represented. Isoprenoid species and basal emission factors were obtained by combining results from laboratory experiments with those published in literature. For the first time, our investigation was not only restricted to isoprene and total monoterpenes, but our goal was to provide maps of isoprene and individual monoterpenes at a high-spatial (˜1 km2) and temporal resolution (daily runs, monthly trends in emissions are discussed in the text). Another novelty in our research was the inclusion of the effects of phenology on plant emissions. Our results show that: a) isoprene, a-pinene, sabinene and b-pinene are the most important compounds emitted from vegetation in Italy; b) annual biogenic isoprene and monoterpene fluxes for the year 2006 were ˜31.30 Gg and ˜37.70 Gg, respectively; and c) Quercus pubescens + Quercus petrea + Quercus robur, Quercus ilex, Quercus suber and Fagus sylvatica are the principal isoprenoid emitting species in the country. The high spatial and temporal resolution, combined with the species-specific emission output, makes the model particularly suitable for assessing local budgets, and for modeling photochemical pollution in Italy.

  14. Correlated observations of a spatially resolved type III solar radio burst group and the associated hard X-ray emission

    SciTech Connect

    Kane, S.R.; Pick, M.; Raoult, A.

    1980-10-15

    The first measurements of the spatial structure of a group of type III solar radio bursts associated with an impulsive hard X-ray burst are presented. At 169 MHz the radio source has been found to consist of two principal regions separated by approx.3 x 10/sup 5/ km. The two regions together produced a total of four component bursts in good time correlation with spikes in the hard X-ray emission. The observations indicate that electron acceleration/injection occurs over a region which covers a wide range of magnetic field lines.

  15. Correlated observations of a spatially resolved type III solar radio burst group and the associated hard X-ray emission

    NASA Technical Reports Server (NTRS)

    Kane, S. R.; Pick, M.; Raoult, A.

    1980-01-01

    The first measurements of the spatial structure of a group of type III solar radio bursts associated with an impulsive hard X-ray burst are presented. At 169 MHz the radio source has been found to consist of two principal regions separated by about 300,000 km. The two regions together produced a total of four component bursts in good time correlation with spikes in the hard X-ray emission. The observations indicate that electron acceleration/injection occurs over a region which covers a wide range of magnetic field lines.

  16. Spatially Localized Two-Dimensional J-Resolved NMR Spectroscopy via Intermolecular Double-Quantum Coherences for Biological Samples at 7 T

    PubMed Central

    Tan, Chunhua; Cai, Shuhui; Huang, Yuqing

    2015-01-01

    Background and Purpose Magnetic resonance spectroscopy (MRS) constitutes a mainstream technique for characterizing biological samples. Benefiting from the separation of chemical shifts and J couplings, spatially localized two-dimensional (2D) J-resolved spectroscopy (JPRESS) shows better identification of complex metabolite resonances than one-dimensional MRS does and facilitates the extraction of J coupling information. However, due to variations of macroscopic magnetic susceptibility in biological samples, conventional JPRESS spectra generally suffer from the influence of field inhomogeneity. In this paper, we investigated the implementation of the localized 2D J-resolved spectroscopy based on intermolecular double-quantum coherences (iDQCs) on a 7 T MRI scanner. Materials and Methods A γ-aminobutyric acid (GABA) aqueous solution, an intact pig brain tissue, and a whole fish (Harpadon nehereus) were explored by using the localized iDQC J-resolved spectroscopy (iDQCJRES) method, and the results were compared to those obtained by using the conventional 2D JPRESS method. Results Inhomogeneous line broadening, caused by the variations of macroscopic magnetic susceptibility in the detected biological samples (the intact pig brain tissue and the whole fish), degrades the quality of 2D JPRESS spectra, particularly when a large voxel is selected and some strongly structured components are included (such as the fish spinal cord). By contrast, high-resolution 2D J-resolved information satisfactory for metabolite analyses can be obtained from localized 2D iDQCJRES spectra without voxel size limitation and field shimming. From the contrastive experiments, it is obvious that the spectral information observed in the localized iDQCJRES spectra acquired from large voxels without field shimming procedure (i.e. in inhomogeneous fields) is similar to that provided by the JPRESS spectra acquired from small voxels after field shimming procedure (i.e. in relatively homogeneous fields

  17. Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution

    PubMed Central

    Zhang, Delong; Li, Chen; Zhang, Chi; Slipchenko, Mikhail N.; Eakins, Gregory; Cheng, Ji-Xin

    2016-01-01

    Chemical contrast has long been sought for label-free visualization of biomolecules and materials in complex living systems. Although infrared spectroscopic imaging has come a long way in this direction, it is thus far only applicable to dried tissues because of the strong infrared absorption by water. It also suffers from low spatial resolution due to long wavelengths and lacks optical sectioning capabilities. We overcome these limitations through sensing vibrational absorption–induced photothermal effect by a visible laser beam. Our mid-infrared photothermal (MIP) approach reached 10 μM detection sensitivity and submicrometer lateral spatial resolution. This performance has exceeded the diffraction limit of infrared microscopy and allowed label-free three-dimensional chemical imaging of live cells and organisms. Distributions of endogenous lipid and exogenous drug inside single cells were visualized. We further demonstrated in vivo MIP imaging of lipids and proteins in Caenorhabditis elegans. The reported MIP imaging technology promises broad applications from monitoring metabolic activities to high-resolution mapping of drug molecules in living systems, which are beyond the reach of current infrared microscopy. PMID:27704043

  18. An inverse method for determining the spatially resolved properties of viscoelastic–viscoplastic three-dimensional printed materials

    PubMed Central

    Chen, X.; Ashcroft, I. A.; Wildman, R. D.; Tuck, C. J.

    2015-01-01

    A method using experimental nanoindentation and inverse finite-element analysis (FEA) has been developed that enables the spatial variation of material constitutive properties to be accurately determined. The method was used to measure property variation in a three-dimensional printed (3DP) polymeric material. The accuracy of the method is dependent on the applicability of the constitutive model used in the inverse FEA, hence four potential material models: viscoelastic, viscoelastic–viscoplastic, nonlinear viscoelastic and nonlinear viscoelastic–viscoplastic were evaluated, with the latter enabling the best fit to experimental data. Significant changes in material properties were seen in the depth direction of the 3DP sample, which could be linked to the degree of cross-linking within the material, a feature inherent in a UV-cured layer-by-layer construction method. It is proposed that the method is a powerful tool in the analysis of manufacturing processes with potential spatial property variation that will also enable the accurate prediction of final manufactured part performance. PMID:26730216

  19. Growth and development of the barnacle Amphibalanus amphitrite: time and spatially resolved structure and chemistry of the base plate

    PubMed Central

    Burden, Daniel K.; Spillmann, Christopher M.; Everett, Richard K.; Barlow, Daniel E.; Orihuela, Beatriz; Deschamps, Jeffrey R.; Fears, Kenan P.; Rittschof, Daniel; Wahl, Kathryn J.

    2014-01-01

    The radial growth and advancement of the adhesive interface to the substratum of many species of acorn barnacles occurs underwater and beneath an opaque, calcified shell. Here, the time-dependent growth processes involving various autofluorescent materials within the interface of live barnacles are imaged for the first time using 3D time-lapse confocal microscopy. Key features of the interface development in the striped barnacle, Amphibalanus (= Balanus) amphitrite were resolved in situ and include advancement of the barnacle/substratum interface, epicuticle membrane development, protein secretion, and calcification. Microscopic and spectroscopic techniques provide ex situ material identification of regions imaged by confocal microscopy. In situ and ex situ analysis of the interface support the hypothesis that barnacle interface development is a complex process coupling sequential, timed secretory events and morphological changes. This results in a multi-layered interface that concomitantly fulfills the roles of strongly adhering to a substratum while permitting continuous molting and radial growth at the periphery. PMID:25115515

  20. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ(57/54)Fe Observations.

    PubMed

    Toner, Brandy M; Rouxel, Olivier J; Santelli, Cara M; Bach, Wolfgang; Edwards, Katrina J

    2016-01-01

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ(57)Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings

  1. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ(57/54)Fe Observations.

    PubMed

    Toner, Brandy M; Rouxel, Olivier J; Santelli, Cara M; Bach, Wolfgang; Edwards, Katrina J

    2016-01-01

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ(57)Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings

  2. Iron transformation pathways and redox micro-environments in seafloor sulfide-mineral deposits: Spatially resolved Fe XAS and δ57/54Fe observations

    DOE PAGES

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.

    2016-05-10

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50'N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffractionmore » (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The

  3. Iron Transformation Pathways and Redox Micro-Environments in Seafloor Sulfide-Mineral Deposits: Spatially Resolved Fe XAS and δ57/54Fe Observations

    PubMed Central

    Toner, Brandy M.; Rouxel, Olivier J.; Santelli, Cara M.; Bach, Wolfgang; Edwards, Katrina J.

    2016-01-01

    Hydrothermal sulfide chimneys located along the global system of oceanic spreading centers are habitats for microbial life during active venting. Hydrothermally extinct, or inactive, sulfide deposits also host microbial communities at globally distributed sites. The main goal of this study is to describe Fe transformation pathways, through precipitation and oxidation-reduction (redox) reactions, and examine transformation products for signatures of biological activity using Fe mineralogy and stable isotope approaches. The study includes active and inactive sulfides from the East Pacific Rise 9°50′N vent field. First, the mineralogy of Fe(III)-bearing precipitates is investigated using microprobe X-ray absorption spectroscopy (μXAS) and X-ray diffraction (μXRD). Second, laser-ablation (LA) and micro-drilling (MD) are used to obtain spatially-resolved Fe stable isotope analysis by multicollector-inductively coupled plasma-mass spectrometry (MC-ICP-MS). Eight Fe-bearing minerals representing three mineralogical classes are present in the samples: oxyhydroxides, secondary phyllosilicates, and sulfides. For Fe oxyhydroxides within chimney walls and layers of Si-rich material, enrichments in both heavy and light Fe isotopes relative to pyrite are observed, yielding a range of δ57Fe values up to 6‰. Overall, several pathways for Fe transformation are observed. Pathway 1 is characterized by precipitation of primary sulfide minerals from Fe(II)aq-rich fluids in zones of mixing between vent fluids and seawater. Pathway 2 is also consistent with zones of mixing but involves precipitation of sulfide minerals from Fe(II)aq generated by Fe(III) reduction. Pathway 3 is direct oxidation of Fe(II) aq from hydrothermal fluids to form Fe(III) precipitates. Finally, Pathway 4 involves oxidative alteration of pre-existing sulfide minerals to form Fe(III). The Fe mineralogy and isotope data do not support or refute a unique biological role in sulfide alteration. The findings

  4. High spatial and temporal resolution studies of ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Hubert, Charles Rankin, Jr.

    The subject of this thesis is the investigation of the polar structure and dynamics of ferroelectric thin films using newly developed high resolution optical, scanning- force microscopy and time-resolved methods. A technique based on confocal scanning optical microscopy (CSOM) is used to image the ferroelectric polarization of BaxSr1-xTiO 3 (BST) thin films at room temperature with sub-micron spatial resolution. Films of both paraelectric (x = 0.5) and ferroelectric ( x = 0.8) compositions show a coexistence of both paraelectric and ferroelectric phases on the smallest scale resolvable with this technique. These results suggest that non-uniform stress is responsible for the strong inhomogeneous thermal broadening of the ferroelectric phase transition, and that dielectric loss in thin films may be dominated by a relatively small fraction of nanometer-sized regions. Apertureless near-field scanning optical microscopy (ANSOM) is used to map the inhomogeneous ferroelectric polarization in BaxSr 1-xTiO3 thin films. Images of nanometer-scale ferroelectric domains in BaxSr1-xTiO3 thin films are obtained with 30 Å spatial resolution using ANSOM. The images exhibit inhomogeneities in the ferroelectric polarization over the smallest scales that can be observed, and are largely uncorrelated with topographic features. The application of an in-plane static electric field causes domain reorientation and domain-wall motion over distances as small as 40 Å. These results demonstrate the promise of ANSOM for imaging near-atomic-scale polarization fluctuations in ferroelectric materials. Interferometric ANSOM is described in detail, including a practical description of how ANSOM images are acquired. A discussion of the various contrast mechanisms in ANSOM is followed by a prescription for eliminating a certain class of topographic artifacts. For the imaging of polarization in ferroelectric thin films, the linear electro-optic effect provides the central contrast mechanism. High

  5. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  6. Exploratory study on a statistical method to analyse time resolved data obtained during nanomaterial exposure measurements

    NASA Astrophysics Data System (ADS)

    Clerc, F.; Njiki-Menga, G.-H.; Witschger, O.

    2013-04-01

    Most of the measurement strategies that are suggested at the international level to assess workplace exposure to nanomaterials rely on devices measuring, in real time, airborne particles concentrations (according different metrics). Since none of the instruments to measure aerosols can distinguish a particle of interest to the background aerosol, the statistical analysis of time resolved data requires special attention. So far, very few approaches have been used for statistical analysis in the literature. This ranges from simple qualitative analysis of graphs to the implementation of more complex statistical models. To date, there is still no consensus on a particular approach and the current period is always looking for an appropriate and robust method. In this context, this exploratory study investigates a statistical method to analyse time resolved data based on a Bayesian probabilistic approach. To investigate and illustrate the use of the this statistical method, particle number concentration data from a workplace study that investigated the potential for exposure via inhalation from cleanout operations by sandpapering of a reactor producing nanocomposite thin films have been used. In this workplace study, the background issue has been addressed through the near-field and far-field approaches and several size integrated and time resolved devices have been used. The analysis of the results presented here focuses only on data obtained with two handheld condensation particle counters. While one was measuring at the source of the released particles, the other one was measuring in parallel far-field. The Bayesian probabilistic approach allows a probabilistic modelling of data series, and the observed task is modelled in the form of probability distributions. The probability distributions issuing from time resolved data obtained at the source can be compared with the probability distributions issuing from the time resolved data obtained far-field, leading in a

  7. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).