Sample records for spatially variable parameters

  1. Quantitative analysis of spatial variability of geotechnical parameters

    NASA Astrophysics Data System (ADS)

    Fang, Xing

    2018-04-01

    Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.

  2. Influence of spatial variability of hydraulic characteristics of soils on surface parameters obtained from remote sensing data in infrared and microwaves

    NASA Technical Reports Server (NTRS)

    Brunet, Y.; Vauclin, M.

    1985-01-01

    The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.

  3. Spatial variability versus parameter uncertainty in freshwater fate and exposure factors of chemicals.

    PubMed

    Nijhof, Carl O P; Huijbregts, Mark A J; Golsteijn, Laura; van Zelm, Rosalie

    2016-04-01

    We compared the influence of spatial variability in environmental characteristics and the uncertainty in measured substance properties of seven chemicals on freshwater fate factors (FFs), representing the residence time in the freshwater environment, and on exposure factors (XFs), representing the dissolved fraction of a chemical. The influence of spatial variability was quantified using the SimpleBox model in which Europe was divided in 100 × 100 km regions, nested in a regional (300 × 300 km) and supra-regional (500 × 500 km) scale. Uncertainty in substance properties was quantified by means of probabilistic modelling. Spatial variability and parameter uncertainty were expressed by the ratio k of the 95%ile and 5%ile of the FF and XF. Our analysis shows that spatial variability ranges in FFs of persistent chemicals that partition predominantly into one environmental compartment was up to 2 orders of magnitude larger compared to uncertainty. For the other (less persistent) chemicals, uncertainty in the FF was up to 1 order of magnitude larger than spatial variability. Variability and uncertainty in freshwater XFs of the seven chemicals was negligible (k < 1.5). We found that, depending on the chemical and emission scenario, accounting for region-specific environmental characteristics in multimedia fate modelling, as well as accounting for parameter uncertainty, can have a significant influence on freshwater fate factor predictions. Therefore, we conclude that it is important that fate factors should not only account for parameter uncertainty, but for spatial variability as well, as this further increases the reliability of ecotoxicological impacts in LCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Controls on the variability of net infiltration to desert sandstone

    USGS Publications Warehouse

    Heilweil, Victor M.; McKinney, Tim S.; Zhdanov, Michael S.; Watt, Dennis E.

    2007-01-01

    As populations grow in arid climates and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration becomes critically important for accurately inventorying water resources and mapping contamination vulnerability. This paper presents a conceptual model of net infiltration to desert sandstone and then develops an empirical equation for its spatial quantification at the watershed scale using linear least squares inversion methods for evaluating controlling parameters (independent variables) based on estimated net infiltration rates (dependent variables). Net infiltration rates used for this regression analysis were calculated from environmental tracers in boreholes and more than 3000 linear meters of vadose zone excavations in an upland basin in southwestern Utah underlain by Navajo sandstone. Soil coarseness, distance to upgradient outcrop, and topographic slope were shown to be the primary physical parameters controlling the spatial variability of net infiltration. Although the method should be transferable to other desert sandstone settings for determining the relative spatial distribution of net infiltration, further study is needed to evaluate the effects of other potential parameters such as slope aspect, outcrop parameters, and climate on absolute net infiltration rates.

  5. The significance of spatial variability of rainfall on streamflow: A synthetic analysis at the Upper Lee catchment, UK

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard

    2017-04-01

    Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.

  6. High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data

    NASA Astrophysics Data System (ADS)

    Gebler, S.; Hendricks Franssen, H.-J.; Kollet, S. J.; Qu, W.; Vereecken, H.

    2017-04-01

    The prediction of the spatial and temporal variability of land surface states and fluxes with land surface models at high spatial resolution is still a challenge. This study compares simulation results using TerrSysMP including a 3D variably saturated groundwater flow model (ParFlow) coupled to the Community Land Model (CLM) of a 38 ha managed grassland head-water catchment in the Eifel (Germany), with soil water content (SWC) measurements from a wireless sensor network, actual evapotranspiration recorded by lysimeters and eddy covariance stations and discharge observations. TerrSysMP was discretized with a 10 × 10 m lateral resolution, variable vertical resolution (0.025-0.575 m), and the following parameterization strategies of the subsurface soil hydraulic parameters: (i) completely homogeneous, (ii) homogeneous parameters for different soil horizons, (iii) different parameters for each soil unit and soil horizon and (iv) heterogeneous stochastic realizations. Hydraulic conductivity and Mualem-Van Genuchten parameters in these simulations were sampled from probability density functions, constructed from either (i) soil texture measurements and Rosetta pedotransfer functions (ROS), or (ii) estimated soil hydraulic parameters by 1D inverse modelling using shuffle complex evolution (SCE). The results indicate that the spatial variability of SWC at the scale of a small headwater catchment is dominated by topography and spatially heterogeneous soil hydraulic parameters. The spatial variability of the soil water content thereby increases as a function of heterogeneity of soil hydraulic parameters. For lower levels of complexity, spatial variability of the SWC was underrepresented in particular for the ROS-simulations. Whereas all model simulations were able to reproduce the seasonal evapotranspiration variability, the poor discharge simulations with high model bias are likely related to short-term ET dynamics and the lack of information about bedrock characteristics and an on-site drainage system in the uncalibrated model. In general, simulation performance was better for the SCE setups. The SCE-simulations had a higher inverse air entry parameter resulting in SWC dynamics in better correspondence with data than the ROS simulations during dry periods. This illustrates that small scale measurements of soil hydraulic parameters cannot be transferred to the larger scale and that interpolated 1D inverse parameter estimates result in an acceptable performance for the catchment.

  7. Investigating the relationship between a soils classification and the spatial parameters of a conceptual catchment-scale hydrological model

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.; Lilly, A.

    2001-10-01

    There are now many examples of hydrological models that utilise the capabilities of Geographic Information Systems to generate spatially distributed predictions of behaviour. However, the spatial variability of hydrological parameters relating to distributions of soils and vegetation can be hard to establish. In this paper, the relationship between a soil hydrological classification Hydrology of Soil Types (HOST) and the spatial parameters of a conceptual catchment-scale model is investigated. A procedure involving inverse modelling using Monte-Carlo simulations on two catchments is developed to identify relative values for soil related parameters of the DIY model. The relative values determine the internal variability of hydrological processes as a function of the soil type. For three out of the four soil parameters studied, the variability between HOST classes was found to be consistent across two catchments when tested independently. Problems in identifying values for the fourth 'fast response distance' parameter have highlighted a potential limitation with the present structure of the model. The present assumption that this parameter can be related simply to soil type rather than topography appears to be inadequate. With the exclusion of this parameter, calibrated parameter sets from one catchment can be converted into equivalent parameter sets for the alternate catchment on the basis of their HOST distributions, to give a reasonable simulation of flow. Following further testing on different catchments, and modifications to the definition of the fast response distance parameter, the technique provides a methodology whereby it is possible to directly derive spatial soil parameters for new catchments.

  8. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.

    PubMed

    El Sebai, T; Lagacherie, B; Soulas, G; Martin-Laurent, F

    2007-02-01

    We assessed the spatial variability of isoproturon mineralization in relation to that of physicochemical and biological parameters in fifty soil samples regularly collected along a sampling grid delimited across a 0.36 ha field plot (40 x 90 m). Only faint relationships were observed between isoproturon mineralization and the soil pH, microbial C biomass, and organic nitrogen. Considerable spatial variability was observed for six of the nine parameters tested (isoproturon mineralization rates, organic nitrogen, genetic structure of the microbial communities, soil pH, microbial biomass and equivalent humidity). The map of isoproturon mineralization rates distribution was similar to that of soil pH, microbial biomass, and organic nitrogen but different from those of structure of the microbial communities and equivalent humidity. Geostatistics revealed that the spatial heterogeneity in the rate of degradation of isoproturon corresponded to that of soil pH and microbial biomass.

  9. Modeling spatially-varying landscape change points in species occurrence thresholds

    USGS Publications Warehouse

    Wagner, Tyler; Midway, Stephen R.

    2014-01-01

    Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.

  10. Accounting for and predicting the influence of spatial autocorrelation in water quality modeling

    NASA Astrophysics Data System (ADS)

    Miralha, L.; Kim, D.

    2017-12-01

    Although many studies have attempted to investigate the spatial trends of water quality, more attention is yet to be paid to the consequences of considering and ignoring the spatial autocorrelation (SAC) that exists in water quality parameters. Several studies have mentioned the importance of accounting for SAC in water quality modeling, as well as the differences in outcomes between models that account for and ignore SAC. However, the capacity to predict the magnitude of such differences is still ambiguous. In this study, we hypothesized that SAC inherently possessed by a response variable (i.e., water quality parameter) influences the outcomes of spatial modeling. We evaluated whether the level of inherent SAC is associated with changes in R-Squared, Akaike Information Criterion (AIC), and residual SAC (rSAC), after accounting for SAC during modeling procedure. The main objective was to analyze if water quality parameters with higher Moran's I values (inherent SAC measure) undergo a greater increase in R² and a greater reduction in both AIC and rSAC. We compared a non-spatial model (OLS) to two spatial regression approaches (spatial lag and error models). Predictor variables were the principal components of topographic (elevation and slope), land cover, and hydrological soil group variables. We acquired these data from federal online sources (e.g. USGS). Ten watersheds were selected, each in a different state of the USA. Results revealed that water quality parameters with higher inherent SAC showed substantial increase in R² and decrease in rSAC after performing spatial regressions. However, AIC values did not show significant changes. Overall, the higher the level of inherent SAC in water quality variables, the greater improvement of model performance. This indicates a linear and direct relationship between the spatial model outcomes (R² and rSAC) and the degree of SAC in each water quality variable. Therefore, our study suggests that the inherent level of SAC in response variables can predict improvements in models even before performing spatial regression approaches. We also recognize the constraints of this research and suggest that further studies focus on better ways of defining spatial neighborhoods, considering the differences among stations set in tributaries near to each other and in upstream areas.

  11. Experimental assessment of the spatial variability of porosity, permeability and sorption isotherms in an ordinary building concrete

    NASA Astrophysics Data System (ADS)

    Issaadi, N.; Hamami, A. A.; Belarbi, R.; Aït-Mokhtar, A.

    2017-10-01

    In this paper, spatial variabilities of some transfer and storage properties of a concrete wall were assessed. The studied parameters deal with water porosity, water vapor permeability, intrinsic permeability and water vapor sorption isotherms. For this purpose, a concrete wall was built in the laboratory and specimens were periodically taken and tested. The obtained results allow highlighting a statistical estimation of the mean value, the standard deviation and the spatial correlation length of the studied fields for each parameter. These results were discussed and a statistical analysis was performed in order to assess for each of these parameters the appropriate probability density function.

  12. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.

  13. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  14. Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-05-29

    Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less

  15. Inter-annual variability of carbon fluxes in temperate forest ecosystems: effects of biotic and abiotic factors

    NASA Astrophysics Data System (ADS)

    Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.

    2014-12-01

    Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2 exchanges.

  16. SU-G-IeP4-13: PET Image Noise Variability and Its Consequences for Quantifying Tumor Hypoxia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kueng, R; Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario; Manser, P

    Purpose: The values in a PET image which represent activity concentrations of a radioactive tracer are influenced by a large number of parameters including patient conditions as well as image acquisition and reconstruction. This work investigates noise characteristics in PET images for various image acquisition and image reconstruction parameters. Methods: Different phantoms with homogeneous activity distributions were scanned using several acquisition parameters and reconstructed with numerous sets of reconstruction parameters. Images from six PET scanners from different vendors were analyzed and compared with respect to quantitative noise characteristics. Local noise metrics, which give rise to a threshold value defining themore » metric of hypoxic fraction, as well as global noise measures in terms of noise power spectra (NPS) were computed. In addition to variability due to different reconstruction parameters, spatial variability of activity distribution and its noise metrics were investigated. Patient data from clinical trials were mapped onto phantom scans to explore the impact of the scanner’s intrinsic noise variability on quantitative clinical analysis. Results: Local noise metrics showed substantial variability up to an order of magnitude for different reconstruction parameters. Investigations of corresponding NPS revealed reconstruction dependent structural noise characteristics. For the acquisition parameters, noise metrics were guided by Poisson statistics. Large spatial non-uniformity of the noise was observed in both axial and radial direction of a PET image. In addition, activity concentrations in PET images of homogeneous phantom scans showed intriguing spatial fluctuations for most scanners. The clinical metric of the hypoxic fraction was shown to be considerably influenced by the PET scanner’s spatial noise characteristics. Conclusion: We showed that a hypoxic fraction metric based on noise characteristics requires careful consideration of the various dependencies in order to justify its quantitative validity. This work may result in recommendations for harmonizing QA of PET imaging for multi-institutional clinical trials.« less

  17. Creative use of pilot points to address site and regional scale heterogeneity in a variable-density model

    USGS Publications Warehouse

    Dausman, Alyssa M.; Doherty, John; Langevin, Christian D.

    2010-01-01

    Pilot points for parameter estimation were creatively used to address heterogeneity at both the well field and regional scales in a variable-density groundwater flow and solute transport model designed to test multiple hypotheses for upward migration of fresh effluent injected into a highly transmissive saline carbonate aquifer. Two sets of pilot points were used within in multiple model layers, with one set of inner pilot points (totaling 158) having high spatial density to represent hydraulic conductivity at the site, while a second set of outer points (totaling 36) of lower spatial density was used to represent hydraulic conductivity further from the site. Use of a lower spatial density outside the site allowed (1) the total number of pilot points to be reduced while maintaining flexibility to accommodate heterogeneity at different scales, and (2) development of a model with greater areal extent in order to simulate proper boundary conditions that have a limited effect on the area of interest. The parameters associated with the inner pilot points were log transformed hydraulic conductivity multipliers of the conductivity field obtained by interpolation from outer pilot points. The use of this dual inner-outer scale parameterization (with inner parameters constituting multipliers for outer parameters) allowed smooth transition of hydraulic conductivity from the site scale, where greater spatial variability of hydraulic properties exists, to the regional scale where less spatial variability was necessary for model calibration. While the model is highly parameterized to accommodate potential aquifer heterogeneity, the total number of pilot points is kept at a minimum to enable reasonable calibration run times.

  18. Evaluating spatial and temporal variability in growth and mortality for recreational fisheries with limited catch data

    USGS Publications Warehouse

    Li, Yan; Wagner, Tyler; Jiao, Yan; Lorantas, Robert M.; Murphy, Cheryl

    2018-01-01

    Understanding the spatial and temporal variability in life-history traits among populations is essential for the management of recreational fisheries. However, valuable freshwater recreational fish species often suffer from a lack of catch information. In this study, we demonstrated the use of an approach to estimate the spatial and temporal variability in growth and mortality in the absence of catch data and apply the method to riverine smallmouth bass (Micropterus dolomieu) populations in Pennsylvania, USA. Our approach included a growth analysis and a length-based analysis that estimates mortality. Using a hierarchical Bayesian approach, we examined spatial variability in growth and mortality by assuming parameters vary spatially but remain constant over time and temporal variability by assuming parameters vary spatially and temporally. The estimated growth and mortality of smallmouth bass showed substantial variability over time and across rivers. We explored the relationships of the estimated growth and mortality with spring water temperature and spring flow. Growth rate was likely to be positively correlated with these two factors, while young mortality was likely to be positively correlated with spring flow. The spatially and temporally varying growth and mortality suggest that smallmouth bass populations across rivers may respond differently to management plans and disturbance such as environmental contamination and land-use change. The analytical approach can be extended to other freshwater recreational species that also lack of catch data. The approach could also be useful in developing population assessments with erroneous catch data or be used as a model sensitivity scenario to verify traditional models even when catch data are available.

  19. Spatial trends in Pearson Type III statistical parameters

    USGS Publications Warehouse

    Lichty, R.W.; Karlinger, M.R.

    1995-01-01

    Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors

  20. Advances in Parameter and Uncertainty Quantification Using Bayesian Hierarchical Techniques with a Spatially Referenced Watershed Model (Invited)

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.

    2013-12-01

    Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.

  1. Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport

    NASA Astrophysics Data System (ADS)

    Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike

    2017-04-01

    Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters spatially explicit including different directions and b) to use random-field stochastic models to assess the possible effects for gas-exchange models.

  2. Effect of spatial variability on solute velocity and dispersion in two soils of the Argentinian Pampas

    NASA Astrophysics Data System (ADS)

    Aparicio, Virginia; Costa, José; Domenech, Marisa; Castro Franco, Mauricio

    2013-04-01

    Predicting how solutes move through the unsaturated zone is essential to determine the potential risk of groundwater contamination (Costa et al., 1994). The estimation of the spatial variability of solute transport parameters, such as velocity and dispersion, enables a more accurate understanding of transport processes. Apparent electrical conductivity (ECa) has been used to characterize the spatial behavior of soil properties. The objective of this study was to characterize the spatial variability of soil transport parameters at field scale using ECa measurements. ECa measurements of 42 ha (Tres Arroyos) and 50 ha (Balcarce) farms were collected for the top 0-30 cm (ECa(s)) soil using the Veris® 3100. ECa maps were generated using geostatistical interpolation techniques. From these maps, three general areas were delineated, named high, medium, and low ECa zones. At each zone, three sub samples were collected. Soil samples were taken at 0-30 cm. Clay content and organic matter (OM) was analyzed. The transport assay was performed in the laboratory using undisturbed soil columns, under controlled conditions of T ° (22 ° C).Br- determinations were performed with a specific Br- electrode. The breakthrough curves were fitted using the model CXTFIT 2.1 (Toride et al., 1999) to estimate the transport parameters Velocity (V) and Dispersion (D). In this study we found no statistical significant differences for V and D between treatments. Also, there were no differences in V and D between sites. The average V and D value was 9.3 cm h-1 and 357.5 cm2 h-2, respectively. Despite finding statistically significant differences between treatments for the other measured physical and chemical properties, in our work it was not possible to detect the spatial variability of solute transport parameters.

  3. Aroma types of flue-cured tobacco in China: spatial distribution and association with climatic factors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wu, Wei; Wu, Shu-Cheng; Liu, Hong-Bin; Peng, Qing

    2014-02-01

    Aroma types of flue-cured tobacco (FCT) are classified into light, medium, and heavy in China. However, the spatial distribution of FCT aroma types and the relationships among aroma types, chemical parameters, and climatic variables were still unknown at national scale. In the current study, multi-year averaged chemical parameters (total sugars, reducing sugars, nicotine, total nitrogen, chloride, and K2O) of FCT samples with grade of C3F and climatic variables (mean, minimum and maximum temperatures, rainfall, relative humidity, and sunshine hours) during the growth periods were collected from main planting areas across China. Significant relationships were found between chemical parameters and climatic variables ( p < 0.05). A spatial distribution map of FCT aroma types were produced using support vector machine algorithms and chemical parameters. Significant differences in chemical parameters and climatic variables were observed among the three aroma types based on one-way analysis of variance ( p < 0.05). Areas with light aroma type had significantly lower values of mean, maximum, and minimum temperatures than regions with medium and heavy aroma types ( p < 0.05). Areas with heavy aroma type had significantly lower values of rainfall and relative humidity and higher values of sunshine hours than regions with light and medium aroma types ( p < 0.05). The output produced by classification and regression trees showed that sunshine hours, rainfall, and maximum temperature were the most important factors affecting FCT aroma types at national scale.

  4. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  5. Assessing variability in Orbiting Carbon Observatory-2 (OCO-2) XCO2 using high spatial resolution color slices and other retrieval parameters

    NASA Astrophysics Data System (ADS)

    Merrelli, A. J.; Taylor, T.; O'Dell, C.; Cronk, H. Q.; Eldering, A.; Crisp, D.

    2017-12-01

    The Orbiting Carbon Observatory-2 (OCO-2) measures reflected sunlight in the Oxygen A-band (0.76 μm), Weak CO2 band (1.61 μm) and Strong CO2 band (2.06 μm) with resolving powers 18,000, 19,500 and 19,500, respectively. Soundings are collected at 3Hz, yielding 8 contiguous <1.3 km x 2.3 km footprints across a narrow (<0.8°) swath. After cloud screening, these high-resolution spectra are used in an optimal estimation retrieval to produce estimates of the column averaged carbon dioxide dry air mole fraction (XCO2). In the absence of strong CO2 absorbers, e.g., intense agricultural regions, or strong emitters, e.g., mega-cities, the variability of XCO2 over small scales, e.g., tens of kilometers, is expected to be less than 1 ppm. However, deviations on the order of +/- 2 ppm, or more, are often observed in the production Version 7 (B7) data product. We hypothesize that most of this variability is spurious, with contributions from both retrieval errors and undetected cloud and aerosol contamination. The contiguous nature of the OCO-2 spatial sampling allows for analysis of the variability in XCO2 and correlation with variables, such as the full spatial resolution "color slices" and other retrieved parameters. Color slices avoid the on-board averaging across the detector focal plane array, providing increased spatial information compared to the nominal spectra. This work explores the new B8 production data set using MODIS visible imagery from the CSU Vistool to provide visual context to the OCO-2 parameters. The large volume of data that has been collected since September 2014 allows for statistical analysis of parameters in relation to XCO2 variability. Some detailed case studies are presented.

  6. Calibration of a distributed hydrologic model for six European catchments using remote sensing data

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.

    2017-12-01

    While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.

  7. Self-similarity in nature

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2000-02-01

    A general phenomenological approach to the analysis of experimental temporal, spatial and energetic series for extracting truly physical non-model parameters ("passport data") is presented, which may be used to characterize and distinguish the evolution as well as the spatial and energetic structure of any open nonlinear dissipative system. This methodology is based on a postulate concerning the crucial information contained in the sequences of non-regularities of the measured dynamic variable (temporal, spatial, energetic). In accordance with this approach, multi-parametric formulas for dynamic variable power spectra as well as for structural functions of different orders are identical for every spatial-temporal-energetic level of the system under consideration. In effect, this entails the introduction of a new kind of self-similarity in Nature. An algorithm has been developed for obtaining as many "passport data" as are necessary for the characterization of a dynamic system. Applications of this approach in the analysis of various experimental series (temporal, spatial, energetic) demonstrate its potential for defining adequate phenomenological parameters of different dynamic processes and structures.

  8. Atmospheric Parameter Climatologies from AIRS: Monitoring Short-, and Longer-Term Climate Variabilities and 'Trends'

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula; Susskind, Joel

    2008-01-01

    The AIRS instrument is currently the best space-based tool to simultaneously monitor the vertical distribution of key climatically important atmospheric parameters as well as surface properties, and has provided high quality data for more than 5 years. AIRS analysis results produced at the GODDARD/DAAC, based on Versions 4 & 5 of the AIRS retrieval algorithm, are currently available for public use. Here, first we present an assessment of interrelationships of anomalies (proxies of climate variability based on 5 full years, since Sept. 2002) of various climate parameters at different spatial scales. We also present AIRS-retrievals-based global, regional and 1x1 degree grid-scale "trend"-analyses of important atmospheric parameters for this 5-year period. Note that here "trend" simply means the linear fit to the anomaly (relative the mean seasonal cycle) time series of various parameters at the above-mentioned spatial scales, and we present these to illustrate the usefulness of continuing AIRS-based climate observations. Preliminary validation efforts, in terms of intercomparisons of interannual variabilities with other available satellite data analysis results, will also be addressed. For example, we show that the outgoing longwave radiation (OLR) interannual spatial variabilities from the available state-of-the-art CERES measurements and from the AIRS computations are in remarkably good agreement. Version 6 of the AIRS retrieval scheme (currently under development) promises to further improve bias agreements for the absolute values by implementing a more accurate radiative transfer model for the OLR computations and by improving surface emissivity retrievals.

  9. Evaluation of GIS Technology in Assessing and Modeling Land Management Practices

    NASA Technical Reports Server (NTRS)

    Archer, F.; Coleman, T. L.; Manu, A.; Tadesse, W.; Liu, G.

    1997-01-01

    There is an increasing concern of land owners to protect and maintain healthy and sustainable agroecosystems through the implementation of best management practices (BMP). The objectives of this study were: (1) To develop and evaluate the use of a Geographic Information System (GIS) technology for enhancing field-scale management practices; (2) evaluate the use of 2-dimensional displays of the landscape and (3) define spatial classes of variables from interpretation of geostatistical parameters. Soil samples were collected to a depth of 2 m at 15 cm increments. Existing data from topographic, land use, and soil survey maps of the Winfred Thomas Agricultural Research Station were converted to digital format. Additional soils data which included texture, pH, and organic matter were also generated. The digitized parameters were used to create a multilayered field-scale GIS. Two dimensional (2-D) displays of the parameters were generated using the ARC/INFO software. The spatial distribution of the parameters evaluated in both fields were similar which could be attributed to the similarity in vegetation and surface elevation. The ratio of the nugget to total semivariance, expressed as a percentage, was used to assess the degree of spatial variability. The results indicated that most of the parameters were moderate spatially dependent Biophysical constraint maps were generated from the database layers, and used in multiple combination to visualize results of the BMP. Understanding the spatial relationships of physical and chemical parameters that exists within a field should enable land managers to more effectively implement BMP to ensure a safe and sustainable environment.

  10. Investigating local controls on temporal stability of soil water content using sensor network data and an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.

    2013-12-01

    Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely estimated soil hydraulic parameters (log10(Ks), log10(α), n, and θs) at 5-cm, 20-cm and 50-cm depths. Solid circles represent parameters estimated by using prior information; open circles represent parameters estimated without using prior information.

  11. Sources of Uncertainty in the Prediction of LAI / fPAR from MODIS

    NASA Technical Reports Server (NTRS)

    Dungan, Jennifer L.; Ganapol, Barry D.; Brass, James A. (Technical Monitor)

    2002-01-01

    To explicate the sources of uncertainty in the prediction of biophysical variables over space, consider the general equation: where z is a variable with values on some nominal, ordinal, interval or ratio scale; y is a vector of input variables; u is the spatial support of y and z ; x and u are the spatial locations of y and z , respectively; f is a model and B is the vector of the parameters of this model. Any y or z has a value and a spatial extent which is called its support. Viewed in this way, categories of uncertainty are from variable (e.g. measurement), parameter, positional. support and model (e.g. structural) sources. The prediction of Leaf Area Index (LAI) and the fraction of absorbed photosynthetically active radiation (fPAR) are examples of z variables predicted using model(s) as a function of y variables and spatially constant parameters. The MOD15 algorithm is an example of f, called f(sub 1), with parameters including those defined by one of six biome types and solar and view angles. The Leaf Canopy Model (LCM)2, a nested model that combines leaf radiative transfer with a full canopy reflectance model through the phase function, is a simpler though similar radiative transfer approach to f(sub 1). In a previous study, MOD15 and LCM2 gave similar results for the broadleaf forest biome. Differences between these two models can be used to consider the structural uncertainty in prediction results. In an effort to quantify each of the five sources of uncertainty and rank their relative importance for the LAI/fPAR prediction problem, we used recent data for an EOS Core Validation Site in the broadleaf biome with coincident surface reflectance, vegetation index, fPAR and LAI products from the Moderate Resolution Imaging Spectrometer (MODIS). Uncertainty due to support on the input reflectance variable was characterized using Landsat ETM+ data. Input uncertainties were propagated through the LCM2 model and compared with published uncertainties from the MOD15 algorithm.

  12. Random field theory to interpret the spatial variability of lacustrine soils

    NASA Astrophysics Data System (ADS)

    Russo, Savino; Vessia, Giovanna

    2015-04-01

    The lacustrine soils are quaternary soils, dated from Pleistocene to Holocene periods, generated in low-energy depositional environments and characterized by soil mixture of clays, sands and silts with alternations of finer and coarser grain size layers. They are often met at shallow depth filling several tens of meters of tectonic or erosive basins typically placed in internal Appenine areas. The lacustrine deposits are often locally interbedded by detritic soils resulting from the failure of surrounding reliefs. Their heterogeneous lithology is associated with high spatial variability of physical and mechanical properties both along horizontal and vertical directions. The deterministic approach is still commonly adopted to accomplish the mechanical characterization of these heterogeneous soils where undisturbed sampling is practically not feasible (if the incoherent fraction is prevalent) or not spatially representative (if the cohesive fraction prevails). The deterministic approach consists on performing in situ tests, like Standard Penetration Tests (SPT) or Cone Penetration Tests (CPT) and deriving design parameters through "expert judgment" interpretation of the measure profiles. These readings of tip and lateral resistances (Rp and RL respectively) are almost continuous but highly variable in soil classification according to Schmertmann (1978). Thus, neglecting the spatial variability cannot be the best strategy to estimated spatial representative values of physical and mechanical parameters of lacustrine soils to be used for engineering applications. Hereafter, a method to draw the spatial variability structure of the aforementioned measure profiles is presented. It is based on the theory of the Random Fields (Vanmarcke 1984) applied to vertical readings of Rp measures from mechanical CPTs. The proposed method relies on the application of the regression analysis, by which the spatial mean trend and fluctuations about this trend are derived. Moreover, the scale of fluctuation is calculated to measure the maximum length beyond which profiles of measures are independent. The spatial mean trend can be used to identify "quasi-homogeneous" soil layers where the standard deviation and the scale of fluctuation can be calculated. In this study, five Rp profiles performed in the lacustrine deposits of the high River Pescara Valley have been analyzed. There, silty clay deposits with thickness ranging from a few meters to about 60m, and locally rich in sands and peats, are investigated. In this study, vertical trends of Rp profiles have been derived to be converted into design parameter mean trends. Furthermore, the variability structure derived from Rp readings can be propagated to design parameters to calculate the "characteristic values" requested by the European building codes. References Schmertmann J.H. 1978. Guidelines for Cone Penetration Test, Performance and Design. Report No. FHWA-TS-78-209, U.S. Department of Transportation, Washington, D.C., pp. 145. Vanmarcke E.H. 1984. Random Fields, analysis and synthesis. Cambridge (USA): MIT Press.

  13. Short-term to seasonal variability in factors driving primary productivity in a shallow estuary: Implications for modeling production

    NASA Astrophysics Data System (ADS)

    Canion, Andy; MacIntyre, Hugh L.; Phipps, Scott

    2013-10-01

    The inputs of primary productivity models may be highly variable on short timescales (hourly to daily) in turbid estuaries, but modeling of productivity in these environments is often implemented with data collected over longer timescales. Daily, seasonal, and spatial variability in primary productivity model parameters: chlorophyll a concentration (Chla), the downwelling light attenuation coefficient (kd), and photosynthesis-irradiance response parameters (Pmchl, αChl) were characterized in Weeks Bay, a nitrogen-impacted shallow estuary in the northern Gulf of Mexico. Variability in primary productivity model parameters in response to environmental forcing, nutrients, and microalgal taxonomic marker pigments were analysed in monthly and short-term datasets. Microalgal biomass (as Chla) was strongly related to total phosphorus concentration on seasonal scales. Hourly data support wind-driven resuspension as a major source of short-term variability in Chla and light attenuation (kd). The empirical relationship between areal primary productivity and a combined variable of biomass and light attenuation showed that variability in the photosynthesis-irradiance response contributed little to the overall variability in primary productivity, and Chla alone could account for 53-86% of the variability in primary productivity. Efforts to model productivity in similar shallow systems with highly variable microalgal biomass may benefit the most by investing resources in improving spatial and temporal resolution of chlorophyll a measurements before increasing the complexity of models used in productivity modeling.

  14. The spinal control of locomotion and step-to-step variability in left-right symmetry from slow to moderate speeds

    PubMed Central

    Dambreville, Charline; Labarre, Audrey; Thibaudier, Yann; Hurteau, Marie-France

    2015-01-01

    When speed changes during locomotion, both temporal and spatial parameters of the pattern must adjust. Moreover, at slow speeds the step-to-step pattern becomes increasingly variable. The objectives of the present study were to assess if the spinal locomotor network adjusts both temporal and spatial parameters from slow to moderate stepping speeds and to determine if it contributes to step-to-step variability in left-right symmetry observed at slow speeds. To determine the role of the spinal locomotor network, the spinal cord of 6 adult cats was transected (spinalized) at low thoracic levels and the cats were trained to recover hindlimb locomotion. Cats were implanted with electrodes to chronically record electromyography (EMG) in several hindlimb muscles. Experiments began once a stable hindlimb locomotor pattern emerged. During experiments, EMG and bilateral video recordings were made during treadmill locomotion from 0.1 to 0.4 m/s in 0.05 m/s increments. Cycle and stance durations significantly decreased with increasing speed, whereas swing duration remained unaffected. Extensor burst duration significantly decreased with increasing speed, whereas sartorius burst duration remained unchanged. Stride length, step length, and the relative distance of the paw at stance offset significantly increased with increasing speed, whereas the relative distance at stance onset and both the temporal and spatial phasing between hindlimbs were unaffected. Both temporal and spatial step-to-step left-right asymmetry decreased with increasing speed. Therefore, the spinal cord is capable of adjusting both temporal and spatial parameters during treadmill locomotion, and it is responsible, at least in part, for the step-to-step variability in left-right symmetry observed at slow speeds. PMID:26084910

  15. Spatial Dependence and Heterogeneity in Bayesian Factor Analysis: A Cross-National Investigation of Schwartz Values

    ERIC Educational Resources Information Center

    Stakhovych, Stanislav; Bijmolt, Tammo H. A.; Wedel, Michel

    2012-01-01

    In this article, we present a Bayesian spatial factor analysis model. We extend previous work on confirmatory factor analysis by including geographically distributed latent variables and accounting for heterogeneity and spatial autocorrelation. The simulation study shows excellent recovery of the model parameters and demonstrates the consequences…

  16. Sampling design for spatially distributed hydrogeologic and environmental processes

    USGS Publications Warehouse

    Christakos, G.; Olea, R.A.

    1992-01-01

    A methodology for the design of sampling networks over space is proposed. The methodology is based on spatial random field representations of nonhomogeneous natural processes, and on optimal spatial estimation techniques. One of the most important results of random field theory for physical sciences is its rationalization of correlations in spatial variability of natural processes. This correlation is extremely important both for interpreting spatially distributed observations and for predictive performance. The extent of site sampling and the types of data to be collected will depend on the relationship of subsurface variability to predictive uncertainty. While hypothesis formulation and initial identification of spatial variability characteristics are based on scientific understanding (such as knowledge of the physics of the underlying phenomena, geological interpretations, intuition and experience), the support offered by field data is statistically modelled. This model is not limited by the geometric nature of sampling and covers a wide range in subsurface uncertainties. A factorization scheme of the sampling error variance is derived, which possesses certain atttactive properties allowing significant savings in computations. By means of this scheme, a practical sampling design procedure providing suitable indices of the sampling error variance is established. These indices can be used by way of multiobjective decision criteria to obtain the best sampling strategy. Neither the actual implementation of the in-situ sampling nor the solution of the large spatial estimation systems of equations are necessary. The required values of the accuracy parameters involved in the network design are derived using reference charts (readily available for various combinations of data configurations and spatial variability parameters) and certain simple yet accurate analytical formulas. Insight is gained by applying the proposed sampling procedure to realistic examples related to sampling problems in two dimensions. ?? 1992.

  17. Spatial Variability of Snowpack Properties On Small Slopes

    NASA Astrophysics Data System (ADS)

    Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.

    The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.

  18. The role of impulse parameters in force variability

    NASA Technical Reports Server (NTRS)

    Carlton, L. G.; Newell, K. M.

    1986-01-01

    One of the principle limitations of the human motor system is the ability to produce consistent motor responses. When asked to repeatedly make the same movement, performance outcomes are characterized by a considerable amount of variability. This occurs whether variability is expressed in terms of kinetics or kinematics. Variability in performance is of considerable importance because for tasks requiring accuracy it is a critical variable in determining the skill of the performer. What has long been sought is a description of the parameter or parameters that determine the degree of variability. Two general experimental protocals were used. One protocal is to use dynamic actions and record variability in kinematic parameters such as spatial or temporal error. A second strategy was to use isometric actions and record kinetic variables such as peak force produced. What might be the important force related factors affecting variability is examined and an experimental approach to examine the influence of each of these variables is provided.

  19. Spatial design and strength of spatial signal: Effects on covariance estimation

    USGS Publications Warehouse

    Irvine, Kathryn M.; Gitelman, Alix I.; Hoeting, Jennifer A.

    2007-01-01

    In a spatial regression context, scientists are often interested in a physical interpretation of components of the parametric covariance function. For example, spatial covariance parameter estimates in ecological settings have been interpreted to describe spatial heterogeneity or “patchiness” in a landscape that cannot be explained by measured covariates. In this article, we investigate the influence of the strength of spatial dependence on maximum likelihood (ML) and restricted maximum likelihood (REML) estimates of covariance parameters in an exponential-with-nugget model, and we also examine these influences under different sampling designs—specifically, lattice designs and more realistic random and cluster designs—at differing intensities of sampling (n=144 and 361). We find that neither ML nor REML estimates perform well when the range parameter and/or the nugget-to-sill ratio is large—ML tends to underestimate the autocorrelation function and REML produces highly variable estimates of the autocorrelation function. The best estimates of both the covariance parameters and the autocorrelation function come under the cluster sampling design and large sample sizes. As a motivating example, we consider a spatial model for stream sulfate concentration.

  20. Spatial variability of organic matter molecular composition and elemental geochemistry in surface sediments of a small boreal Swedish lake

    NASA Astrophysics Data System (ADS)

    Tolu, Julie; Rydberg, Johan; Meyer-Jacob, Carsten; Gerber, Lorenz; Bindler, Richard

    2017-04-01

    The composition of sediment organic matter (OM) exerts a strong control on biogeochemical processes in lakes, such as those involved in the fate of carbon, nutrients and trace metals. While between-lake spatial variability of OM quality is increasingly investigated, we explored in this study how the molecular composition of sediment OM varies spatially within a single lake and related this variability to physical parameters and elemental geochemistry. Surface sediment samples (0-10 cm) from 42 locations in Härsvatten - a small boreal forest lake with a complex basin morphometry - were analyzed for OM molecular composition using pyrolysis gas chromatography mass spectrometry for the contents of 23 major and trace elements and biogenic silica. We identified 162 organic compounds belonging to different biochemical classes of OM (e.g., carbohydrates, lignin and lipids). Close relationships were found between the spatial patterns of sediment OM molecular composition and elemental geochemistry. Differences in the source types of OM (i.e., terrestrial, aquatic plant and algal) were linked to the individual basin morphometries and chemical status of the lake. The variability in OM molecular composition was further driven by the degradation status of these different source pools, which appeared to be related to sedimentary physicochemical parameters (e.g., redox conditions) and to the molecular structure of the organic compounds. Given the high spatial variation in OM molecular composition within Härsvatten and its close relationship with elemental geochemistry, the potential for large spatial variability across lakes should be considered when studying biogeochemical processes involved in the cycling of carbon, nutrients and trace elements or when assessing lake budgets.

  1. SPAGETTA: a Multi-Purpose Gridded Stochastic Weather Generator

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.

    2017-12-01

    SPAGETTA is a new multisite/gridded multivariate parametric stochastic weather generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using weather series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site weather series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact experiment, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this experiment, the WG is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be demonstrated by results obtained while developing the methodology for assessing collective significance of trends in multi-site weather series. The performance of the proposed test statistics is assessed based on large number of realisations of synthetic series produced by WG assuming a given statistical structure and trend of the weather series.

  2. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.

    PubMed

    Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre

    2014-12-05

    Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.

  3. Geochemical Characterization Using Geophysical Data and Markov Chain Monte Carlo Methods

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hubbard, S.; Rubin, Y.; Murray, C.; Roden, E.; Majer, E.

    2002-12-01

    Although the spatial distribution of geochemical parameters is extremely important for many subsurface remediation approaches, traditional characterization of those parameters is invasive and laborious, and thus is rarely performed sufficiently to describe natural hydrogeological variability at the field-scale. This study is an effort to jointly use multiple sources of information, including noninvasive geophysical data, for geochemical characterization of the saturated and anaerobic portion of the DOE South Oyster Bacterial Transport Site in Virginia. Our data set includes hydrogeological and geochemical measurements from five boreholes and ground-penetrating radar (GPR) and seismic tomographic data along two profiles that traverse the boreholes. The primary geochemical parameters are the concentrations of extractable ferrous iron Fe(II) and ferric iron Fe(III). Since iron-reducing bacteria can reduce Fe(III) to Fe(II) under certain conditions, information about the spatial distributions of Fe(II) and Fe(III) may indicate both where microbial iron reduction has occurred and in which zone it is likely to occur in the future. In addition, as geochemical heterogeneity influences bacterial transport and activity, estimates of the geochemical parameters provide important input to numerical flow and contaminant transport models geared toward bioremediation. Motivated by our previous research, which demonstrated that crosshole geophysical data could be very useful for estimating hydrogeological parameters, we hypothesize in this study that geochemical and geophysical parameters may be linked through their mutual dependence on hydrogeological parameters such as lithofacies. We attempt to estimate geochemical parameters using both hydrogeological and geophysical measurements in a Bayesian framework. Within the two-dimensional study domain (12m x 6m vertical cross section divided into 0.25m x 0.25m pixels), geochemical and hydrogeological parameters were considered as data if they were available from direct measurements or as variables otherwise. To estimate the geochemical parameters, we first assigned a prior model for each variable and a likelihood model for each type of data, which together define posterior probability distributions for each variable on the domain. Since the posterior probability distribution may involve hundreds of variables, we used a Markov Chain Monte Carlo (MCMC) method to explore each variable by generating and subsequently evaluating hundreds of realizations. Results from this case study showed that although geophysical attributes are not necessarily directly related to geochemical parameters, geophysical data could be very useful for providing accurate and high-resolution information about geochemical parameter distribution through their joint and indirect connections with hydrogeological properties such as lithofacies. This case study also demonstrated that MCMC methods were particularly useful for geochemical parameter estimation using geophysical data because they allow incorporation into the procedure of spatial correlation information, measurement errors, and cross correlations among different types of parameters.

  4. Estimation and correction of different flavors of surface observation biases in ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Lorente-Plazas, Raquel; Hacker, Josua P.; Collins, Nancy; Lee, Jared A.

    2017-04-01

    The impact of assimilating surface observations has been shown in several publications, for improving weather prediction inside of the boundary layer as well as the flow aloft. However, the assimilation of surface observations is often far from optimal due to the presence of both model and observation biases. The sources of these biases can be diverse: an instrumental offset, errors associated to the comparison of point-based observations and grid-cell average, etc. To overcome this challenge, a method was developed using the ensemble Kalman filter. The approach consists on representing each observation bias as a parameter. These bias parameters are added to the forward operator and they extend the state vector. As opposed to the observation bias estimation approaches most common in operational systems (e.g. for satellite radiances), the state vector and parameters are simultaneously updated by applying the Kalman filter equations to the augmented state. The method to estimate and correct the observation bias is evaluated using observing system simulation experiments (OSSEs) with the Weather Research and Forecasting (WRF) model. OSSEs are constructed for the conventional observation network including radiosondes, aircraft observations, atmospheric motion vectors, and surface observations. Three different kinds of biases are added to 2-meter temperature for synthetic METARs. From the simplest to more sophisticated, imposed biases are: (1) a spatially invariant bias, (2) a spatially varying bias proportional to topographic height differences between the model and the observations, and (3) bias that is proportional to the temperature. The target region characterized by complex terrain is the western U.S. on a domain with 30-km grid spacing. Observations are assimilated every 3 hours using an 80-member ensemble during September 2012. Results demonstrate that the approach is able to estimate and correct the bias when it is spatially invariant (experiment 1). More complex bias structure in experiments (2) and (3) are more difficult to estimate, but still possible. Estimated the parameter in experiments with unbiased observations results in spatial and temporal parameter variability about zero, and establishes a threshold on the accuracy of the parameter in further experiments. When the observations are biased, the mean parameter value is close to the true bias, but temporal and spatial variability in the parameter estimates is similar to the parameters used when estimating a zero bias in the observations. The distributions are related to other errors in the forecasts, indicating that the parameters are absorbing some of the forecast error from other sources. In this presentation we elucidate the reasons for the resulting parameter estimates, and their variability.

  5. Developing Accurate Spatial Maps of Cotton Fiber Quality Parameters

    USDA-ARS?s Scientific Manuscript database

    Awareness of the importance of cotton fiber quality (Gossypium, L. sps.) has increased as advances in spinning technology require better quality cotton fiber. Recent advances in geospatial information sciences allow an improved ability to study the extent and causes of spatial variability in fiber p...

  6. COMPARISON OF DIRECT AND INDIRECT IMPACTS OF FECAL CONTAMINATION IN TWO DIFFERENT WATERSHEDS

    EPA Science Inventory

    There are many environmental parameters that could affect the accuracy of microbial source tracking (MST) methods. Spatial and temporal determinants are among the most common factors missing in MST studies. To understand how spatial and temporal variability affect the level of fe...

  7. Deciphering factors controlling groundwater arsenic spatial variability in Bangladesh

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Yang, Q.; Zheng, C.; Zheng, Y.

    2017-12-01

    Elevated concentrations of geogenic arsenic in groundwater have been found in many countries to exceed 10 μg/L, the WHO's guideline value for drinking water. A common yet unexplained characteristic of groundwater arsenic spatial distribution is the extensive variability at various spatial scales. This study investigates factors influencing the spatial variability of groundwater arsenic in Bangladesh to improve the accuracy of models predicting arsenic exceedance rate spatially. A novel boosted regression tree method is used to establish a weak-learning ensemble model, which is compared to a linear model using a conventional stepwise logistic regression method. The boosted regression tree models offer the advantage of parametric interaction when big datasets are analyzed in comparison to the logistic regression. The point data set (n=3,538) of groundwater hydrochemistry with 19 parameters was obtained by the British Geological Survey in 2001. The spatial data sets of geological parameters (n=13) were from the Consortium for Spatial Information, Technical University of Denmark, University of East Anglia and the FAO, while the soil parameters (n=42) were from the Harmonized World Soil Database. The aforementioned parameters were regressed to categorical groundwater arsenic concentrations below or above three thresholds: 5 μg/L, 10 μg/L and 50 μg/L to identify respective controlling factors. Boosted regression tree method outperformed logistic regression methods in all three threshold levels in terms of accuracy, specificity and sensitivity, resulting in an improvement of spatial distribution map of probability of groundwater arsenic exceeding all three thresholds when compared to disjunctive-kriging interpolated spatial arsenic map using the same groundwater arsenic dataset. Boosted regression tree models also show that the most important controlling factors of groundwater arsenic distribution include groundwater iron content and well depth for all three thresholds. The probability of a well with iron content higher than 5mg/L to contain greater than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be more than 91%, 85% and 51%, respectively, while the probability of a well from depth more than 160m to contain more than 5 μg/L, 10 μg/L and 50 μg/L As is estimated to be less than 38%, 25% and 14%, respectively.

  8. Variability aware compact model characterization for statistical circuit design optimization

    NASA Astrophysics Data System (ADS)

    Qiao, Ying; Qian, Kun; Spanos, Costas J.

    2012-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.

  9. Aggregate Auto Travel Forecasting : State of the Art and Suggestions for Future Research

    DOT National Transportation Integrated Search

    1976-12-01

    The report reviews existing forecasting models of auto vehicle miles of travel (VMT), and presents evidence that such models incorrectly omit time cost and spatial form variables. The omission of these variables biases parameter estimates in existing...

  10. The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin

    USGS Publications Warehouse

    Dripps, W.R.; Bradbury, K.R.

    2010-01-01

    Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Balkovic, Juraj; van der Velde, M.

    Crop models are increasingly used to assess impacts of climate change/variability and management practices on productivity and environmental performance of alternative cropping systems. Calibration is an important procedure to improve reliability of model simulations, especially for large area applications. However, global-scale crop model calibration has rarely been exercised due to limited data availability and expensive computing cost. Here we present a simple approach to calibrate Environmental Policy Integrated Climate (EPIC) model for a global implementation of rice. We identify four parameters (potential heat unit – PHU, planting density – PD, harvest index – HI, and biomass energy ratio – BER)more » and calibrate them regionally to capture the spatial pattern of reported rice yield in 2000. Model performance is assessed by comparing simulated outputs with independent FAO national data. The comparison demonstrates that the global calibration scheme performs satisfactorily in reproducing the spatial pattern of rice yield, particularly in main rice production areas. Spatial agreement increases substantially when more parameters are selected and calibrated, but with varying efficiencies. Among the parameters, PHU and HI exhibit the highest efficiencies in increasing the spatial agreement. Simulations with different calibration strategies generate a pronounced discrepancy of 5–35% in mean yields across latitude bands, and a small to moderate difference in estimated yield variability and yield changing trend for the period of 1981–2000. Present calibration has little effects in improving simulated yield variability and trends at both regional and global levels, suggesting further works are needed to reproduce temporal variability of reported yields. This study highlights the importance of crop models’ calibration, and presents the possibility of a transparent and consistent up scaling approach for global crop simulations given current availability of global databases of weather, soil, crop calendar, fertilizer and irrigation management information, and reported yield.« less

  12. Quantitative predictions of streamflow variability in the Susquehanna River Basin

    NASA Astrophysics Data System (ADS)

    Alexander, R.; Boyer, E. W.; Leonard, L. N.; Duffy, C.; Schwarz, G. E.; Smith, R. A.

    2012-12-01

    Hydrologic researchers and water managers have increasingly sought an improved understanding of the major processes that control fluxes of water and solutes across diverse environmental settings and large spatial scales. Regional analyses of observed streamflow data have led to advances in our knowledge of relations among land use, climate, and streamflow, with methodologies ranging from statistical assessments of multiple monitoring sites to the regionalization of the parameters of catchment-scale mechanistic simulation models. However, gaps remain in our understanding of the best ways to transfer the knowledge of hydrologic response and governing processes among locations, including methods for regionalizing streamflow measurements and model predictions. We developed an approach to predict variations in streamflow using the SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling infrastructure, with mechanistic functions, mass conservation constraints, and statistical estimation of regional and sub-regional parameters. We used the model to predict discharge in the Susquehanna River Basin (SRB) under varying hydrological regimes that are representative of contemporary flow conditions. The resulting basin-scale water balance describes mean monthly flows in stream reaches throughout the entire SRB (represented at a 1:100,000 scale using the National Hydrologic Data network), with water supply and demand components that are inclusive of a range of hydrologic, climatic, and cultural properties (e.g., precipitation, evapotranspiration, soil and groundwater storage, runoff, baseflow, water use). We compare alternative models of varying complexity that reflect differences in the number and types of explanatory variables and functional expressions as well as spatial and temporal variability in the model parameters. Statistical estimation of the models reveals the levels of complexity that can be uniquely identified, subject to the information content and uncertainties of the hydrologic and climate measurements. Assessment of spatial variations in the model parameters and predictions provides an improved understanding of how much of the hydrologic response to land use, climate, and other properties is unique to specific locations versus more universally observed across catchments of the SRB. This approach advances understanding of water cycle variability at any location throughout the stream network, as a function of both landscape characteristics (e.g., soils, vegetation, land use) and external forcings (e.g., precipitation quantity and frequency). These improvements in predictions of streamflow dynamics will advance the ability to predict spatial and temporal variability in key solutes, such as nutrients, and their delivery to the Chesapeake Bay.

  13. Mapping extreme rainfall in the Northwest Portugal region: statistical analysis and spatial modelling

    NASA Astrophysics Data System (ADS)

    Santos, Monica; Fragoso, Marcelo

    2010-05-01

    Extreme precipitation events are one of the causes of natural hazards, such as floods and landslides, making its investigation so important, and this research aims to contribute to the study of the extreme rainfall patterns in a Portuguese mountainous area. The study area is centred on the Arcos de Valdevez county, located in the northwest region of Portugal, the rainiest of the country, with more than 3000 mm of annual rainfall at the Peneda-Gerês mountain system. This work focus on two main subjects related with the precipitation variability on the study area. First, a statistical analysis of several precipitation parameters is carried out, using daily data from 17 rain-gauges with a complete record for the 1960-1995 period. This approach aims to evaluate the main spatial contrasts regarding different aspects of the rainfall regime, described by ten parameters and indices of precipitation extremes (e.g. mean annual precipitation, the annual frequency of precipitation days, wet spells durations, maximum daily precipitation, maximum of precipitation in 30 days, number of days with rainfall exceeding 100 mm and estimated maximum daily rainfall for a return period of 100 years). The results show that the highest precipitation amounts (from annual to daily scales) and the higher frequency of very abundant rainfall events occur in the Serra da Peneda and Gerês mountains, opposing to the valleys of the Lima, Minho and Vez rivers, with lower precipitation amounts and less frequent heavy storms. The second purpose of this work is to find a method of mapping extreme rainfall in this mountainous region, investigating the complex influence of the relief (e.g. elevation, topography) on the precipitation patterns, as well others geographical variables (e.g. distance from coast, latitude), applying tested geo-statistical techniques (Goovaerts, 2000; Diodato, 2005). Models of linear regression were applied to evaluate the influence of different geographical variables (altitude, latitude, distance from sea and distance to the highest orographic barrier) on the rainfall behaviours described by the studied variables. The techniques of spatial interpolation evaluated include univariate and multivariate methods: cokriging, kriging, IDW (inverse distance weighted) and multiple linear regression. Validation procedures were used, assessing the estimated errors in the analysis of descriptive statistics of the models. Multiple linear regression models produced satisfactory results in relation to 70% of the rainfall parameters, suggested by lower average percentage of error. However, the results also demonstrates that there is no an unique and ideal model, depending on the rainfall parameter in consideration. Probably, the unsatisfactory results obtained in relation to some rainfall parameters was motivated by constraints as the spatial complexity of the precipitation patterns, as well as to the deficient spatial coverage of the territory by the rain-gauges network. References Diodato, N. (2005). The influence of topographic co-variables on the spatial variability of precipitation over small regions of complex terrain. Internacional Journal of Climatology, 25(3), 351-363. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113 - 129.

  14. Drivers and Spatio-Temporal Extent of Hyporheic Patch Variation: Implications for Sampling

    PubMed Central

    Braun, Alexander; Auerswald, Karl; Geist, Juergen

    2012-01-01

    The hyporheic zone in stream ecosystems is a heterogeneous key habitat for species across many taxa. Consequently, it attracts high attention among freshwater scientists, but generally applicable guidelines on sampling strategies are lacking. Thus, the objective of this study was to develop and validate such sampling guidelines. Applying geostatistical analysis, we quantified the spatio-temporal variability of parameters, which characterize the physico-chemical substratum conditions in the hyporheic zone. We investigated eight stream reaches in six small streams that are typical for the majority of temperate areas. Data was collected on two occasions in six stream reaches (development data), and once in two additional reaches, after one year (validation data). In this study, the term spatial variability refers to patch contrast (patch to patch variance) and patch size (spatial extent of a patch). Patch contrast of hyporheic parameters (specific conductance, pH and dissolved oxygen) increased with macrophyte cover (r2 = 0.95, p<0.001), while patch size of hyporheic parameters decreased from 6 to 2 m with increasing sinuosity of the stream course (r2 = 0.91, p<0.001), irrespective of the time of year. Since the spatial variability of hyporheic parameters varied between stream reaches, our results suggest that sampling design should be adapted to suit specific stream reaches. The distance between sampling sites should be inversely related to the sinuosity, while the number of samples should be related to macrophyte cover. PMID:22860053

  15. A new spatial snow distribution in hydrological models parameterized from observed spatial variability of precipitation.

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn

    2016-04-01

    The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.

  16. A Method to Categorize 2-Dimensional Patterns Using Statistics of Spatial Organization.

    PubMed

    López-Sauceda, Juan; Rueda-Contreras, Mara D

    2017-01-01

    We developed a measurement framework of spatial organization to categorize 2-dimensional patterns from 2 multiscalar biological architectures. We propose that underlying shapes of biological entities can be approached using the statistical concept of degrees of freedom, defining it through expansion of area variability in a pattern. To help scope this suggestion, we developed a mathematical argument recognizing the deep foundations of area variability in a polygonal pattern (spatial heterogeneity). This measure uses a parameter called eutacticity . Our measuring platform of spatial heterogeneity can assign particular ranges of distribution of spatial areas for 2 biological architectures: ecological patterns of Namibia fairy circles and epithelial sheets. The spatial organizations of our 2 analyzed biological architectures are demarcated by being in a particular position among spatial order and disorder. We suggest that this theoretical platform can give us some insights about the nature of shapes in biological systems to understand organizational constraints.

  17. Spatial and temporal variability of throughfall and soil moisture in a deciduous forest in the low mountain ranges (Hesse, Germany)

    NASA Astrophysics Data System (ADS)

    Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin

    2017-04-01

    Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.

  18. Using Bayesian hierarchical models to better understand nitrate sources and sinks in agricultural watersheds.

    PubMed

    Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan

    2016-11-15

    Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R 2  = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope, while instream nitrate retention was positively correlated with nitrate concentration. By quantifying spatial and temporal variability in sources and sinks, the DPM provides new information to better target management actions to the most effective times and places. Given the wide use of ECMs as research and management tools, our approach can be broadly applied in other watersheds and to other materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  20. The relative roles of environment, history and local dispersal in controlling the distributions of common tree and shrub species in a tropical forest landscape, Panama

    USGS Publications Warehouse

    Svenning, J.-C.; Engelbrecht, B.M.J.; Kinner, D.A.; Kursar, T.A.; Stallard, R.F.; Wright, S.J.

    2006-01-01

    We used regression models and information-theoretic model selection to assess the relative importance of environment, local dispersal and historical contingency as controls of the distributions of 26 common plant species in tropical forest on Barro Colorado Island (BCI), Panama. We censused eighty-eight 0.09-ha plots scattered across the landscape. Environmental control, local dispersal and historical contingency were represented by environmental variables (soil moisture, slope, soil type, distance to shore, old-forest presence), a spatial autoregressive parameter (??), and four spatial trend variables, respectively. We built regression models, representing all combinations of the three hypotheses, for each species. The probability that the best model included the environmental variables, spatial trend variables and ?? averaged 33%, 64% and 50% across the study species, respectively. The environmental variables, spatial trend variables, ??, and a simple intercept model received the strongest support for 4, 15, 5 and 2 species, respectively. Comparing the model results to information on species traits showed that species with strong spatial trends produced few and heavy diaspores, while species with strong soil moisture relationships were particularly drought-sensitive. In conclusion, history and local dispersal appeared to be the dominant controls of the distributions of common plant species on BCI. Copyright ?? 2006 Cambridge University Press.

  1. Collocation mismatch uncertainties in satellite aerosol retrieval validation

    NASA Astrophysics Data System (ADS)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodríguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2018-02-01

    Satellite-based aerosol products are routinely validated against ground-based reference data, usually obtained from sun photometer networks such as AERONET (AEROsol RObotic NETwork). In a typical validation exercise a spatial sample of the instantaneous satellite data is compared against a temporal sample of the point-like ground-based data. The observations do not correspond to exactly the same column of the atmosphere at the same time, and the representativeness of the reference data depends on the spatiotemporal variability of the aerosol properties in the samples. The associated uncertainty is known as the collocation mismatch uncertainty (CMU). The validation results depend on the sampling parameters. While small samples involve less variability, they are more sensitive to the inevitable noise in the measurement data. In this paper we study systematically the effect of the sampling parameters in the validation of AATSR (Advanced Along-Track Scanning Radiometer) aerosol optical depth (AOD) product against AERONET data and the associated collocation mismatch uncertainty. To this end, we study the spatial AOD variability in the satellite data, compare it against the corresponding values obtained from densely located AERONET sites, and assess the possible reasons for observed differences. We find that the spatial AOD variability in the satellite data is approximately 2 times larger than in the ground-based data, and the spatial variability correlates only weakly with that of AERONET for short distances. We interpreted that only half of the variability in the satellite data is due to the natural variability in the AOD, and the rest is noise due to retrieval errors. However, for larger distances (˜ 0.5°) the correlation is improved as the noise is averaged out, and the day-to-day changes in regional AOD variability are well captured. Furthermore, we assess the usefulness of the spatial variability of the satellite AOD data as an estimate of CMU by comparing the retrieval errors to the total uncertainty estimates including the CMU in the validation. We find that accounting for CMU increases the fraction of consistent observations.

  2. Spatial variability of theaflavins and thearubigins fractions and their impact on black tea quality.

    PubMed

    Bhuyan, Lakshi Prasad; Borah, Paban; Sabhapondit, Santanu; Gogoi, Ramen; Bhattacharyya, Pradip

    2015-12-01

    The spatial distribution of theaflavin and thearubigin fractions and their impact on black tea quality were investigated using multivariate and geostatistics techniques. Black tea samples were collected from tea gardens of six geographical regions of Assam and West Bengal, India. Total theaflavin (TF) and its four fractions of upper Assam, south bank and North Bank teas were higher than the other regions. Simple theaflavin showed highest significant correlation with tasters' quality. Low molecular weight thearubigins of south bank and North Bank were significantly higher than other regions. Total thearubigin (TR) and its fractions revealed significant positive correlation with tasters' organoleptic valuations. Tea tasters' parameters were significantly and positively correlated with each other. The semivariogram for quality parameters were best represented by gaussian models. The nugget/sill ratio indicated a strong/moderate spatial dependence of the studied parameters. Spatial variation of tea quality parameters may be used for quality assessment in the tea growing areas of India.

  3. Usefulness of Derived Frank Lead Parameters in Screening for Coronary Artery Disease and Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    DePalma, J. L.; Schlegel, T. T.; Arenare, B.; Greco, E. C.; Starc, V.; Rahman, M. A.; Delgado, R.

    2007-01-01

    We investigated the accuracy of several known as well as newly-introduced derived Frank-lead ECG parameters in differentiating healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. The following derived Frank lead parameters were studied for their accuracy in detecting CAD and CM: the spatial ventricular gradient (VG), including its beat-to-beat coefficient of variability (VG CV); the spatial mean QRS (SM-QRS) and T-waves (SM-T) and their beat-to-beat coefficients of variability; the spatial ventricular activation time (VAT); the mean and maximum spatial QRS-T angles; and standard late potentials parameters (RMS40, fQRSD and LAS). Several of these parameters were accurate in discriminating between the control group and both diseased groups at p less than 0.0001. For example the fQRSD, VG CV, mean spatial QRS-T angle and VG minus SM-QRS (which is similar to the SM-T) had retrospective areas under the ROC curve of 0.78, 0.78, 0.80, and 0.84 (CAD vs. controls) and 0.93, 0.88, 0.98 and 0.99 (CM vs. controls), respectively. The single most effective parameter in discriminating between the CAD and CM groups was the spatial VAT (44 plus or minus 5.8 vs. 53 plus or minus 9.9 ms, p less than 0.0001), with an area under the ROC curve of 0.80. Since subsequent prospective analyses using new groups of patients and healthy subjects have yielded only slightly less accurate results, we conclude that derived Frank-lead parameters show great promise for potentially contributing to the development of a rapid and inexpensive resting ECG-based screening test for heart disease.

  4. Impact of land-use on groundwater quality: GIS-based study from an alluvial aquifer in the western Ganges basin

    NASA Astrophysics Data System (ADS)

    Khan, Arina; Khan, Haris Hasan; Umar, Rashid

    2017-12-01

    In this study, groundwater quality of an alluvial aquifer in the western Ganges basin is assessed using a GIS-based groundwater quality index (GQI) concept that uses groundwater quality data from field survey and laboratory analysis. Groundwater samples were collected from 42 wells during pre-monsoon and post-monsoon periods of 2012 and analysed for pH, EC, TDS, Anions (Cl, SO4, NO3), and Cations (Ca, Mg, Na). To generate the index, several parameters were selected based on WHO recommendations. The spatially variable grids of each parameter were modified by normalizing with the WHO standards and finally integrated into a GQI grid. The mean GQI values for both the season suggest good groundwater quality. However, spatial variations exist and are represented by GQI map of both seasons. This spatial variability was compared with the existing land-use, prepared using high-resolution satellite imagery available in Google earth. The GQI grids were compared to the land-use map using an innovative GIS-based method. Results indicate that the spatial variability of groundwater quality in the region is not fully controlled by the land-use pattern. This probably reflects the diffuse nature of land-use classes, especially settlements and plantations.

  5. Reliability and Reproducibility of Advanced ECG Parameters in Month-to-Month and Year-to-Year Recordings in Healthy Subjects

    NASA Technical Reports Server (NTRS)

    Starc, Vito; Abughazaleh, Ahmed S.; Schlegel, Todd T.

    2014-01-01

    Advanced resting ECG parameters such the spatial mean QRS-T angle and the QT variability index (QTVI) have important diagnostic and prognostic utility, but their reliability and reproducibility (R&R) are not well characterized. We hypothesized that the spatial QRS-T angle would have relatively higher R&R than parameters such as QTVI that are more responsive to transient changes in the autonomic nervous system. The R&R of several conventional and advanced ECG para-meters were studied via intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) in: (1) 15 supine healthy subjects from month-to-month; (2) 27 supine healthy subjects from year-to-year; and (3) 25 subjects after transition from the supine to the seated posture. As hypothesized, for the spatial mean QRS-T angle and many conventional ECG parameters, ICCs we-re higher, and CVs lower than QTVI, suggesting that the former parameters are more reliable and reproducible.

  6. [Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].

    PubMed

    Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin

    2016-10-01

    In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.

  7. Quantile regression models of animal habitat relationships

    USGS Publications Warehouse

    Cade, Brian S.

    2003-01-01

    Typically, all factors that limit an organism are not measured and included in statistical models used to investigate relationships with their environment. If important unmeasured variables interact multiplicatively with the measured variables, the statistical models often will have heterogeneous response distributions with unequal variances. Quantile regression is an approach for estimating the conditional quantiles of a response variable distribution in the linear model, providing a more complete view of possible causal relationships between variables in ecological processes. Chapter 1 introduces quantile regression and discusses the ordering characteristics, interval nature, sampling variation, weighting, and interpretation of estimates for homogeneous and heterogeneous regression models. Chapter 2 evaluates performance of quantile rankscore tests used for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). A permutation F test maintained better Type I errors than the Chi-square T test for models with smaller n, greater number of parameters p, and more extreme quantiles τ. Both versions of the test required weighting to maintain correct Type I errors when there was heterogeneity under the alternative model. An example application related trout densities to stream channel width:depth. Chapter 3 evaluates a drop in dispersion, F-ratio like permutation test for hypothesis testing and constructing confidence intervals for linear quantile regression estimates (0 ≤ τ ≤ 1). Chapter 4 simulates from a large (N = 10,000) finite population representing grid areas on a landscape to demonstrate various forms of hidden bias that might occur when the effect of a measured habitat variable on some animal was confounded with the effect of another unmeasured variable (spatially and not spatially structured). Depending on whether interactions of the measured habitat and unmeasured variable were negative (interference interactions) or positive (facilitation interactions), either upper (τ > 0.5) or lower (τ < 0.5) quantile regression parameters were less biased than mean rate parameters. Sampling (n = 20 - 300) simulations demonstrated that confidence intervals constructed by inverting rankscore tests provided valid coverage of these biased parameters. Quantile regression was used to estimate effects of physical habitat resources on a bivalve mussel (Macomona liliana) in a New Zealand harbor by modeling the spatial trend surface as a cubic polynomial of location coordinates.

  8. Determining the spatial variability of crop yields of two different climatic regions in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Eshonkulov, Ravshan; Poyda, Arne; Ingwersen, Joachim; Streck, Thilo

    2017-04-01

    Assessing the spatial variability of soil physical properties is crucial for agricultural land management. We determined the spatial variability within two agricultural fields in the regions of Kraichgau and Swabian Jura in Southwest Germany. We determined soil physical properties and recorded the temporal development of soil mineral nitrogen (N) and water content as well as that of plant variables (phenology, biomass, leaf area index (LAI), N content, green vegetation fraction (GVF). The work was conducted during the vegetation periods of 2015 and 2016 in winter wheat, and winter rapeseed in Kraichgau and winter barley and silage maize on Swabian Jura. Measurements were taken in three-weekly intervals. On each field, we identified three plots with reduced plant development using high-resolution (RapidEye) satellite images ("cold spots"). Measurements taken on these cold spots were compared to those from five established (long-term) reference plots representing the average field variability. The software EXPERT-N was used to simulate the soil crop system at both cold spots and reference plots. Sensitivity analyses were conducted to identify the most important parameters for the determination of spatial variability in crop growth dynamics.

  9. Stochastic analysis of multiphase flow in porous media: II. Numerical simulations

    NASA Astrophysics Data System (ADS)

    Abin, A.; Kalurachchi, J. J.; Kemblowski, M. W.; Chang, C.-M.

    1996-08-01

    The first paper (Chang et al., 1995b) of this two-part series described the stochastic analysis using spectral/perturbation approach to analyze steady state two-phase (water and oil) flow in a, liquid-unsaturated, three fluid-phase porous medium. In this paper, the results between the numerical simulations and closed-form expressions obtained using the perturbation approach are compared. We present the solution to the one-dimensional, steady-state oil and water flow equations. The stochastic input processes are the spatially correlated logk where k is the intrinsic permeability and the soil retention parameter, α. These solutions are subsequently used in the numerical simulations to estimate the statistical properties of the key output processes. The comparison between the results of the perturbation analysis and numerical simulations showed a good agreement between the two methods over a wide range of logk variability with three different combinations of input stochastic processes of logk and soil parameter α. The results clearly demonstrated the importance of considering the spatial variability of key subsurface properties under a variety of physical scenarios. The variability of both capillary pressure and saturation is affected by the type of input stochastic process used to represent the spatial variability. The results also demonstrated the applicability of perturbation theory in predicting the system variability and defining effective fluid properties through the ergodic assumption.

  10. Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin

    NASA Astrophysics Data System (ADS)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.

    2017-07-01

    Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.

  11. Capability of Hyperspectral data in Spatial Variability Distribution of Chlorophyll and Water Stress in Rice Agriculture System

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2016-12-01

    Abstract : The mapping and analysis of spatial variability within the field is a challenging task. However, field variability of a single vegetation cover does not give satisfactory results mainly due to low spectral resolution and non-availability of remote sensing data. From the NASA Earth Observing-1 (EO-1) satellite data, spatial distribution of biophysical parameters like chlorophyll and relative water content in a rice agriculture system is carried out in the present study. Hyperion L1R product composed of 242 spectral bands with 30m spatial resolution was acquired for Assam, India. This high dimensional data is allowed for pre-processing to get an atmospherically corrected imagery. Moreover, ground based hyperspectral measurements are collected from experimental rice fields from the study site using hand held ASD spectroradiometer (350-1050 nm). Published indices specifically designed for chlorophyll (OASVI, mSR, and MTCI indices) and water content (WI and WBI indices) are selected based on stastical performance of the in-situ hyperspectral data. Index models are established for the respective biophysical parameters and observed that the aforementioned indices followed different linear and nonlinear relationships which are completely different from the published indices. By employing the presently developed relationships, spatial variation of total chlorophyll and water stress are mapped for a rice agriculture system from Hyperion imagery. The findings showed that, the variation of chlorophyll and water content ranged from 1.77-10.61mg/g and 40-90% respectively for the studied rice agriculture system. The spatial distribution of these parameters resulted from presently developed index models are well captured from Hyperion imagery and they have good agreement with observed field based chlorophyll (1.14-7.26 mg/g) and water content (60-95%) of paddy crop. This study can be useful in providing essential information to assess the paddy field heterogeneity in an agriculture system. Keywords: Paddy crop, vegetation index, hyperspectral data, chlorophyll, water content

  12. How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed

    NASA Astrophysics Data System (ADS)

    Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.

    2017-12-01

    Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.

  13. Spatial trends in tidal flat shape and associated environmental parameters in South San Francisco Bay

    USGS Publications Warehouse

    Bearman, J.A.; Friedrichs, Carl T.; Jaffe, B.E.; Foxgrover, A.C.

    2010-01-01

    Spatial trends in the shape of profiles of South San Francisco Bay (SSFB) tidal flats are examined using bathymetric and lidar data collected in 2004 and 2005. Eigenfunction analysis reveals a dominant mode of morphologic variability related to the degree of convexity or concavity in the cross-shore profileindicative of (i) depositional, tidally dominant or (ii) erosional, wave impacted conditions. Two contrasting areas of characteristic shapenorth or south of a constriction in estuary width located near the Dumbarton Bridgeare recognized. This pattern of increasing or decreasing convexity in the inner or outer estuary is correlated to spatial variability in external and internal environmental parameters, and observational results are found to be largely consistent with theoretical expectations. Tidal flat convexity in SSFB is observed to increase (in decreasing order of significance) in response to increased deposition, increased tidal range, decreased fetch length, decreased sediment grain size, and decreased tidal flat width. ?? 2010 Coastal Education and Research Foundation.

  14. Does Encope emarginata (Echinodermata: Echinoidea) affect spatial variation patterns of estuarine subtidal meiofauna and microphytobenthos?

    NASA Astrophysics Data System (ADS)

    Brustolin, Marco C.; Thomas, Micheli C.; Mafra, Luiz L.; Lana, Paulo da Cunha

    2014-08-01

    Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons - (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.

  15. Spatial and temporal variability of cv. Tempranillo phenology and grape quality within the Ribera del Duero DO (Spain) and relationships with climate.

    PubMed

    Ramos, M C; Jones, G V; Yuste, J

    2015-12-01

    The aim of this work was to analyze spatial phenology and grape quality variability related to the climatic characteristics within the Ribera del Duero Designation of Origin (DO). Twenty plots planted with cv. Tempranillo and distributed within the DO were analyzed for phenology from 2004 to 2013. Grape quality parameters at ripening (berry weight, sugar content, acidity and pH, and anthocyanins) were analyzed in 26 plots for the period 2003-2013. The relationships between phenology and grape parameters with different climatic variables were confirmed with a multivariate analysis. On average, bud break was April 27(th), bloom June 17(th), and veraison August 12th. However, phenology during the time period showed high variability, with differences between years of up to 21 days for a phenology stage. The earliest dates were observed in dry years (2005, 2006, and to a lesser degree in 2009) while the later phenology dates occurred in the wettest year of the period (2008). High correlations were found between veraison date and temperature variables as well as with precipitation-evapotranspiration recorded during the bloom-veraison period. These effects tended to be higher in the central part of the DO. Grape quality parameters also showed high variability among the dry and the wet years, and the influence of extreme temperatures on color development as well as the effect of available water on acidity were observed.

  16. Spatial and temporal variability of cv. Tempranillo phenology and grape quality within the Ribera del Duero DO (Spain) and relationships with climate

    NASA Astrophysics Data System (ADS)

    Ramos, M. C.; Jones, G. V.; Yuste, J.

    2015-12-01

    The aim of this work was to analyze spatial phenology and grape quality variability related to the climatic characteristics within the Ribera del Duero Designation of Origin (DO). Twenty plots planted with cv. Tempranillo and distributed within the DO were analyzed for phenology from 2004 to 2013. Grape quality parameters at ripening (berry weight, sugar content, acidity and pH, and anthocyanins) were analyzed in 26 plots for the period 2003-2013. The relationships between phenology and grape parameters with different climatic variables were confirmed with a multivariate analysis. On average, bud break was April 27th, bloom June 17th, and veraison August 12th. However, phenology during the time period showed high variability, with differences between years of up to 21 days for a phenology stage. The earliest dates were observed in dry years (2005, 2006, and to a lesser degree in 2009) while the later phenology dates occurred in the wettest year of the period (2008). High correlations were found between veraison date and temperature variables as well as with precipitation-evapotranspiration recorded during the bloom-veraison period. These effects tended to be higher in the central part of the DO. Grape quality parameters also showed high variability among the dry and the wet years, and the influence of extreme temperatures on color development as well as the effect of available water on acidity were observed.

  17. Precision Viticulture : is it relevant to manage the vineyard according to the within field spatial variability of the environment ?

    NASA Astrophysics Data System (ADS)

    Tisseyre, Bruno

    2015-04-01

    For more than 15 years, research projects are conducted in the precision viticulture (PV) area around the world. These research projects have provided new insights into the within-field variability in viticulture. Indeed, access to high spatial resolution data (remote sensing, embedded sensors, etc.) changes the knowledge we have of the fields in viticulture. In particular, the field which was until now considered as a homogeneous management unit, presents actually a high spatial variability in terms of yield, vigour an quality. This knowledge will lead (and is already causing) changes on how to manage the vineyard and the quality of the harvest at the within field scale. From the experimental results obtained in various countries of the world, the goal of the presentation is to provide figures on: - the spatial variability of the main parameters (yield, vigor, quality), and how this variability is organized spatially, - the temporal stability of the observed spatial variability and the potential link with environmental parameters like soil, topography, soil water availability, etc. - information sources available at a high spatial resolution conventionally used in precision agriculture likely to highlight this spatial variability (multi-spectral images, soil electrical conductivity, etc.) and the limitations that these information sources are likely to present in viticulture. Several strategies are currently being developed to take into account the within field variability in viticulture. They are based on the development of specific equipments, sensors, actuators and site specific strategies with the aim of adapting the vineyard operations at the within-field level. These strategies will be presented briefly in two ways : - Site specific operations (fertilization, pruning, thinning, irrigation, etc.) in order to counteract the effects of the environment and to obtain a final product with a controlled and consistent wine quality, - Differential harvesting with the objective to take advantage of the observed spatial variability to produce different quality of wines. These later approach tends to produce very different quality wines which will be blended to control the final quality and/or marketed differently. These applications show that the environment and its spatial variability can be valued with the goal of controlling the final quality of the wine produced. Technologies to characterize the spatial variability of vine fields are currently in rapid evolution. They will significantly impact production methods and management strategies of the vineyard. In its last part, the presentation will summarize the technologies likely to impact the knowledge and the vineyard management either at the field level, at the vineyard level or at the regional level. A brief overview of the needs in terms of information processing will be also performed. A reflection on the difficulties that might limit the adoption of precision viticulture technologies (PV) will be done. Indeed, although very informative, PV entails high costs of information acquisition and data processing. Cost is one of the major obstacles to the dissemination of these tools and services to the majority of wine producers. In this context, the pooling of investments is a choke point to make the VP accessible to the highest number of growers. Thus, to be adopted, the VP will necessarily satisfy the operational requirements at the field level, but also throughout the whole production area (at the regional level). This working scale raises new scientific questions to be addressed.

  18. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.

  19. Descriptive statistics and spatial distributions of geochemical variables associated with manganese oxide-rich phases in the northern Pacific

    USGS Publications Warehouse

    Botbol, Joseph Moses; Evenden, Gerald Ian

    1989-01-01

    Tables, graphs, and maps are used to portray the frequency characteristics and spatial distribution of manganese oxide-rich phase geochemical data, to characterize the northern Pacific in terms of publicly available nodule geochemical data, and to develop data portrayal methods that will facilitate data analysis. Source data are a subset of the Scripps Institute of Oceanography's Sediment Data Bank. The study area is bounded by 0° N., 40° N., 120° E., and 100° W. and is arbitrarily subdivided into 14-20°x20° geographic subregions. Frequency distributions of trace metals characterized in the original raw data are graphed as ogives, and salient parameters are tabulated. All variables are transformed to enrichment values relative to median concentration within their host subregions. Scatter plots of all pairs of original variables and their enrichment transforms are provided as an aid to the interpretation of correlations between variables. Gridded spatial distributions of all variables are portrayed as gray-scale maps. The use of tables and graphs to portray frequency statistics and gray-scale maps to portray spatial distributions is an effective way to prepare for and facilitate multivariate data analysis.

  20. Spatial parameters of walking gait and footedness.

    PubMed

    Zverev, Y P

    2006-01-01

    The present study was undertaken to assess whether footedness has effects on selected spatial and angular parameters of able-bodied gait by evaluating footprints of young adults. A total of 112 males and 93 females were selected from among students and staff members of the University of Malawi using a simple random sampling method. Footedness of subjects was assessed by the Waterloo Footedness Questionnaire Revised. Gait at natural speed was recorded using the footprint method. The following spatial parameters of gait were derived from the inked footprint sequences of subjects: step and stride lengths, gait angle and base of gait. The anthropometric measurements taken were weight, height, leg and foot length, foot breadth, shoulder width, and hip and waist circumferences. The prevalence of right-, left- and mix-footedness in the whole sample of young Malawian adults was 81%, 8.3% and 10.7%, respectively. One-way analysis of variance did not reveal a statistically significant difference between footedness categories in the mean values of anthropometric measurements (p > 0.05 for all variables). Gender differences in step and stride length values were not statistically significant. Correction of these variables for stature did not change the trend. Males had significantly broader steps than females. Normalized values of base of gait had similar gender difference. The group means of step length and normalized step length of the right and left feet were similar, for males and females. There was a significant side difference in the gait angle in both gender groups of volunteers with higher mean values on the left side compared to the right one (t = 2.64, p < 0.05 for males, and t = 2.78, p < 0.05 for females). One-way analysis of variance did not demonstrate significant difference between footedness categories in the mean values of step length, gait angle, bilateral differences in step length and gait angle, stride length, gait base and normalized gait variables of male and female volunteers (p > 0.05 for all variables). The present study demonstrated that footedness does not affect spatial and angular parameters of walking gait.

  1. The stochastic runoff-runon process: Extending its analysis to a finite hillslope

    NASA Astrophysics Data System (ADS)

    Jones, O. D.; Lane, P. N. J.; Sheridan, G. J.

    2016-10-01

    The stochastic runoff-runon process models the volume of infiltration excess runoff from a hillslope via the overland flow path. Spatial variability is represented in the model by the spatial distribution of rainfall and infiltration, and their ;correlation scale;, that is, the scale at which the spatial correlation of rainfall and infiltration become negligible. Notably, the process can produce runoff even when the mean rainfall rate is less than the mean infiltration rate, and it displays a gradual increase in net runoff as the rainfall rate increases. In this paper we present a number of contributions to the analysis of the stochastic runoff-runon process. Firstly we illustrate the suitability of the process by fitting it to experimental data. Next we extend previous asymptotic analyses to include the cases where the mean rainfall rate equals or exceeds the mean infiltration rate, and then use Monte Carlo simulation to explore the range of parameters for which the asymptotic limit gives a good approximation on finite hillslopes. Finally we use this to obtain an equation for the mean net runoff, consistent with our asymptotic results but providing an excellent approximation for finite hillslopes. Our function uses a single parameter to capture spatial variability, and varying this parameter gives us a family of curves which interpolate between known upper and lower bounds for the mean net runoff.

  2. Acute effects of anesthetic lumbar spine injections on temporal spatial parameters of gait in individuals with chronic low back pain: A pilot study.

    PubMed

    Herndon, Carl L; Horodyski, MaryBeth; Vincent, Heather K

    2017-10-01

    This study examined whether epidural injection-induced anesthesia acutely and positively affected temporal spatial parameters of gait in patients with chronic low back pain (LBP) due to lumbar spinal stenosis. Twenty-five patients (61.7±13.6years) who were obtaining lumbar epidural injections for stenosis-related LBP participated. Oswestry Disability Index (ODI) scores, Medical Outcomes Short Form (SF-36) scores, 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained prior to, and 11-point Numerical pain rating (NRS pain ) scores, and temporal spatial parameters of walking gait were obtained after the injection. Gait parameters were measured using an instrumented gait mat. Patients received transforaminal epidural injections in the L1-S1 vertebral range (1% lidocaine, corticosteroid) under fluoroscopic guidance. Patients with post-injection NRS pain ratings of "0" or values greater than "0" were stratified into two groups: 1) full pain relief, or 2) partial pain relief, respectively. Post-injection, 48% (N=12) of patients reported full pain relief. ODI scores were higher in patients with full pain relief (55.3±21.4 versus 33.7 12.8; p=0.008). Post-injection, stride length and step length variability were significantly improved in the patients with full pain relief compared to those with partial pain relief. Effect sizes between full and partial pain relief for walking velocity, step length, swing time, stride and step length variability were medium to large (Cohen's d>0.50). Patients with LBP can gain immediate gait improvements from complete pain relief from transforaminal epidural anesthetic injections for LBP, which could translate to better stability and lower fall risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Eigenvectors phase correction in inverse modal problem

    NASA Astrophysics Data System (ADS)

    Qiao, Guandong; Rahmatalla, Salam

    2017-12-01

    The solution of the inverse modal problem for the spatial parameters of mechanical and structural systems is heavily dependent on the quality of the modal parameters obtained from the experiments. While experimental and environmental noises will always exist during modal testing, the resulting modal parameters are expected to be corrupted with different levels of noise. A novel methodology is presented in this work to mitigate the errors in the eigenvectors when solving the inverse modal problem for the spatial parameters. The phases of the eigenvector component were utilized as design variables within an optimization problem that minimizes the difference between the calculated and experimental transfer functions. The equation of motion in terms of the modal and spatial parameters was used as a constraint in the optimization problem. Constraints that reserve the positive and semi-positive definiteness and the inter-connectivity of the spatial matrices were implemented using semi-definite programming. Numerical examples utilizing noisy eigenvectors with augmented Gaussian white noise of 1%, 5%, and 10% were used to demonstrate the efficacy of the proposed method. The results showed that the proposed method is superior when compared with a known method in the literature.

  4. Spatial and Temporal Variation of Water Quality in the Bertam Catchment, Cameron Highlands, Malaysia.

    PubMed

    Rasul, M G; Islam, Mir Sujaul; Yunus, Rosli Bin Mohd; Mokhtar, Mazlin Bin; Alam, Lubna; Yahaya, F M

    2017-12-01

      The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.

  5. Catchment Tomography - Joint Estimation of Surface Roughness and Hydraulic Conductivity with the EnKF

    NASA Astrophysics Data System (ADS)

    Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.

    2017-12-01

    Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of biased initial parameter ensembles. The computational experiments additionally show to which degree of spatial heterogeneity and to which degree of uncertainty of subsurface flow parameters the Manning's coefficient and hydraulic conductivity can be estimated efficiently.

  6. Towards robust quantification and reduction of uncertainty in hydrologic predictions: Integration of particle Markov chain Monte Carlo and factorial polynomial chaos expansion

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, G. H.; Baetz, B. W.; Ancell, B. C.

    2017-05-01

    The particle filtering techniques have been receiving increasing attention from the hydrologic community due to its ability to properly estimate model parameters and states of nonlinear and non-Gaussian systems. To facilitate a robust quantification of uncertainty in hydrologic predictions, it is necessary to explicitly examine the forward propagation and evolution of parameter uncertainties and their interactions that affect the predictive performance. This paper presents a unified probabilistic framework that merges the strengths of particle Markov chain Monte Carlo (PMCMC) and factorial polynomial chaos expansion (FPCE) algorithms to robustly quantify and reduce uncertainties in hydrologic predictions. A Gaussian anamorphosis technique is used to establish a seamless bridge between the data assimilation using the PMCMC and the uncertainty propagation using the FPCE through a straightforward transformation of posterior distributions of model parameters. The unified probabilistic framework is applied to the Xiangxi River watershed of the Three Gorges Reservoir (TGR) region in China to demonstrate its validity and applicability. Results reveal that the degree of spatial variability of soil moisture capacity is the most identifiable model parameter with the fastest convergence through the streamflow assimilation process. The potential interaction between the spatial variability in soil moisture conditions and the maximum soil moisture capacity has the most significant effect on the performance of streamflow predictions. In addition, parameter sensitivities and interactions vary in magnitude and direction over time due to temporal and spatial dynamics of hydrologic processes.

  7. Geophysical testing of rock and its relationships to physical properties

    DOT National Transportation Integrated Search

    2011-02-01

    Testing techniques were designed to characterize spatial variability in geotechnical engineering physical parameters of : rock formations. Standard methods using seismic waves, which are routinely used for shallow subsurface : investigation, have lim...

  8. APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER

    EPA Science Inventory

    Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requ...

  9. Impact of spatial and temporal aggregation of input parameters on the assessment of irrigation scheme performance

    NASA Astrophysics Data System (ADS)

    Lorite, I. J.; Mateos, L.; Fereres, E.

    2005-01-01

    SummaryThe simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually. The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive). It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results within 1% of those obtained by providing spatially specific values for about 800 parcels.

  10. Global Variability and Changes in Ocean Total Alkalinity from Aquarius Satellite

    NASA Astrophysics Data System (ADS)

    Fine, R. A.; Willey, D. A.; Millero, F. J., Jr.

    2016-02-01

    To document effects of ocean acidification it is important to have an understanding of the processes and parameters that influence alkalinity. Alkalinity is a gauge on the ability of seawater to neutralize acids. We use Aquarius satellite data, which allow unprecedented global mapping of surface total alkalinity as it correlates strongly with salinity and to a lesser extent with temperature. Spatial variability in total alkalinity and salinity exceed temporal variability, the latter includes seasonal and differences compared to climatological data. The northern hemisphere has more spatial and monthly variability in total alkalinity and salinity, while less variability in Southern Ocean alkalinity is due to less salinity variability and upwelling of waters enriched in alkalinity. Satellite alkalinity data are providing a global baseline that can be used for comparing with future carbon data, and for evaluating spatial and temporal variability and past trends. For the first time it is shown that recent satellite derived total alkalinity in the subtropics have increased as compared with climatological data; this is reflective of large scale changes in the global water cycle. Total alkalinity increases imply increased dissolution of calcareous minerals and difficulty for calcifying organisms to make their shells.

  11. Predicting the spatial extent of liquefaction from geospatial and earthquake specific parameters

    USGS Publications Warehouse

    Zhu, Jing; Baise, Laurie G.; Thompson, Eric M.; Wald, David J.; Knudsen, Keith L.; Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M.

    2014-01-01

    The spatially extensive damage from the 2010-2011 Christchurch, New Zealand earthquake events are a reminder of the need for liquefaction hazard maps for anticipating damage from future earthquakes. Liquefaction hazard mapping as traditionally relied on detailed geologic mapping and expensive site studies. These traditional techniques are difficult to apply globally for rapid response or loss estimation. We have developed a logistic regression model to predict the probability of liquefaction occurrence in coastal sedimentary areas as a function of simple and globally available geospatial features (e.g., derived from digital elevation models) and standard earthquake-specific intensity data (e.g., peak ground acceleration). Some of the geospatial explanatory variables that we consider are taken from the hydrology community, which has a long tradition of using remotely sensed data as proxies for subsurface parameters. As a result of using high resolution, remotely-sensed, and spatially continuous data as a proxy for important subsurface parameters such as soil density and soil saturation, and by using a probabilistic modeling framework, our liquefaction model inherently includes the natural spatial variability of liquefaction occurrence and provides an estimate of spatial extent of liquefaction for a given earthquake. To provide a quantitative check on how the predicted probabilities relate to spatial extent of liquefaction, we report the frequency of observed liquefaction features within a range of predicted probabilities. The percentage of liquefaction is the areal extent of observed liquefaction within a given probability contour. The regional model and the results show that there is a strong relationship between the predicted probability and the observed percentage of liquefaction. Visual inspection of the probability contours for each event also indicates that the pattern of liquefaction is well represented by the model.

  12. Investigatigating inter-/intra-annual variability of surface hydrology at northern high latitude from spaceborne measurements

    NASA Astrophysics Data System (ADS)

    Kang, K.; Duguay, C. R.

    2014-12-01

    Lakes encompass a large part of the surface cover in the northern boreal and tundra areas of northern Canada and are therefore a significant component of the terrestrial hydrological system. To understand the hydrologic cycle over subarctic and arctic landscapes, estimating surface parameters such as surface net radiation, soil moisture, and surface albedo is important. Although ground-based field measurements provide a good temporal resolution, these data provide a limited spatial representation and are often restricted to the summer period (from June to August), and few surface-based stations are located in high-latitude regions. In this respect, spaceborne remote sensing provides the means to monitor surface hydrology and to estimate components of the surface energy balance with reasonable spatial and temporal resolutions required for hydrological investigations, as well as for providing more spatially representative lake-relevant information than available from in situ measurements. The primary objective of this study is to quantify the sources of temporal and spatial variability in surface albedo over subarctic wetland from satellite derived albedo measurements in the Hudson Bay Lowlands near Churchill, Manitoba. The spatial variability in albedo within each land-cover type is investigated through optical satellite imagery from Landsat-5 Thematic Mapper, Landsat-7 Enhanced Thematic Mapper Plus, and Landsat-8 Operational Land Imager obtained in different seasons from spring into fall (April and October) over a 30-year period (1984-2013). These data allowed for an examination of the spatial variability of surface albedo under relatively dry and wet summer conditions (i.e. 1984, 1998 versus 1991, 2005). A detailed analysis of Landsat-derived surface albedo (ranging from 0.09 to 0.15) conducted in the Churchill region for August is inversely related to surface water fraction calculated from Landsat images. Preliminary analysis of surface albedo observed between July and August are 0.10 to 0.15, and vary due to differences in meteorological parameters such as rainfall, surface moisture and surface air temperature. Overall, spaceborne optical data are an invaluable source for investigating changes and variability in surface albedo in relation to surface hydrology over subarctic regions.

  13. A Field Study of Pixel-Scale Variability of Raindrop Size Distribution in the MidAtlantic Region

    NASA Technical Reports Server (NTRS)

    Tokay, Ali; D'adderio, Leo Pio; Wolff, David P.; Petersen, Walter A.

    2016-01-01

    The spatial variability of parameters of the raindrop size distribution and its derivatives is investigated through a field study where collocated Particle Size and Velocity (Parsivel2) and two-dimensional video disdrometers were operated at six sites at Wallops Flight Facility, Virginia, from December 2013 to March 2014. The three-parameter exponential function was employed to determine the spatial variability across the study domain where the maximum separation distance was 2.3 km. The nugget parameter of the exponential function was set to 0.99 and the correlation distance d0 and shape parameter s0 were retrieved by minimizing the root-mean-square error, after fitting it to the correlations of physical parameters. Fits were very good for almost all 15 physical parameters. The retrieved d0 and s0 were about 4.5 km and 1.1, respectively, for rain rate (RR) when all 12 disdrometers were reporting rainfall with a rain-rate threshold of 0.1 mm h1 for 1-min averages. The d0 decreased noticeably when one or more disdrometers were required to report rain. The d0 was considerably different for a number of parameters (e.g., mass-weighted diameter) but was about the same for the other parameters (e.g., RR) when rainfall threshold was reset to 12 and 18 dBZ for Ka- and Ku-band reflectivity, respectively, following the expected Global Precipitation Measurement missions spaceborne radar minimum detectable signals. The reduction of the database through elimination of a site did not alter d0 as long as the fit was adequate. The correlations of 5-min rain accumulations were lower when disdrometer observations were simulated for a rain gauge at different bucket sizes.

  14. Spatial Variability of Streambed Hydraulic Conductivity of a Lowland River

    NASA Astrophysics Data System (ADS)

    Schneidewind, Uwe; Thornton, Steven; Van De Vijver, Ellen; Joris, Ingeborg; Seuntjens, Piet

    2015-04-01

    Streambed hydraulic conductivity K is a key physical parameter, which describes flow processes in the hyporheic zone (HZ), i.e. the dynamic interface between aquifers and streams or rivers. Knowledge of the spatial variability of K is also important for the interpretation of contaminant transport processes in the HZ. Streambed K can vary over several magnitudes at small spatial scales. It depends mostly on streambed sediment characteristics (e.g. effective porosity, grain size, packing), streambed processes (e.g. sedimentation, colmation and erosion) and the development of stream channel geometry and streambed morphology (e.g. dunes, anti-dunes, pool-riffle sequences, etc.). Although heterogeneous in natural streambeds, streambed K is often considered to be a constant parameter due to a lack of information on its spatial distribution. Here we show the spatial variability of streambed K for a small section of the River Tern, a lowland river in the UK. Streambed K was determined for more than 120 vertically and horizontally distributed locations from grain size analyses using four empirical approaches (Hazen, Beyer, Kozeny and the USBR model). Additionally, streambed K was estimated from falling head tests in 36 piezometers installed into the streambed on a 4 m by 16 m grid, by applying the Springer-Gelhar Model. For both methods streambed K followed a log-normal distribution. Variogram analysis was used to deduce the spatial variability of the streambed K values within several streambed profiles parallel and perpendicular to the main flow direction in the stream. Hydraulic conductivity Kg estimated from grain size analyses varied between 1 m/d and 155 m/d with standard deviations of 79% to 99% depending on the empirical approach used. Kh estimated from falling head tests varied between 1 m/d and 22 m/d with a standard deviation of about 50%, depending on the degree of anisotropy assumed. After rescaling the data to obtain a common sample support, Pearson correlation coefficients r were calculated between Kg and Kh. Overall, a relatively weak correlation (r < 0.3) was found between both parameters. This is most probably a result from soil coring that destroys the original sediment structure and any anisotropy within it. Analysis of streambed K improved our understanding of the flow behavior in the HZ on a local scale. This will be of importance for the subsequent assessment of nitrate transport and attenuation in the river section.

  15. Cathodal Transcranial Direct Current Stimulation (tDCS) to the Right Cerebellar Hemisphere Affects Motor Adaptation During Gait.

    PubMed

    Fernandez, Lara; Albein-Urios, Natalia; Kirkovski, Melissa; McGinley, Jennifer L; Murphy, Anna T; Hyde, Christian; Stokes, Mark A; Rinehart, Nicole J; Enticott, Peter G

    2017-02-01

    The cerebellum appears to play a key role in the development of internal rules that allow fast, predictive adjustments to novel stimuli. This is crucial for adaptive motor processes, such as those involved in walking, where cerebellar dysfunction has been found to increase variability in gait parameters. Motor adaptation is a process that results in a progressive reduction in errors as movements are adjusted to meet demands, and within the cerebellum, this seems to be localised primarily within the right hemisphere. To examine the role of the right cerebellar hemisphere in adaptive gait, cathodal transcranial direct current stimulation (tDCS) was administered to the right cerebellar hemisphere of 14 healthy adults in a randomised, double-blind, crossover study. Adaptation to a series of distinct spatial and temporal templates was assessed across tDCS condition via a pressure-sensitive gait mat (ProtoKinetics Zeno walkway), on which participants walked with an induced 'limp' at a non-preferred pace. Variability was assessed across key spatial-temporal gait parameters. It was hypothesised that cathodal tDCS to the right cerebellar hemisphere would disrupt adaptation to the templates, reflected in a failure to reduce variability following stimulation. In partial support, adaptation was disrupted following tDCS on one of the four spatial-temporal templates used. However, there was no evidence for general effects on either the spatial or temporal domain. This suggests, under specific conditions, a coupling of spatial and temporal processing in the right cerebellar hemisphere and highlights the potential importance of task complexity in cerebellar function.

  16. Comparison Between Two Methods for Estimating the Vertical Scale of Fluctuation for Modeling Random Geotechnical Problems

    NASA Astrophysics Data System (ADS)

    Pieczyńska-Kozłowska, Joanna M.

    2015-12-01

    The design process in geotechnical engineering requires the most accurate mapping of soil. The difficulty lies in the spatial variability of soil parameters, which has been a site of investigation of many researches for many years. This study analyses the soil-modeling problem by suggesting two effective methods of acquiring information for modeling that consists of variability from cone penetration test (CPT). The first method has been used in geotechnical engineering, but the second one has not been associated with geotechnics so far. Both methods are applied to a case study in which the parameters of changes are estimated. The knowledge of the variability of parameters allows in a long term more effective estimation, for example, bearing capacity probability of failure.

  17. Evaluation of a semi-distributed model through an assessment of the spatial coherence of Intercatchment Groundwater Flows

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2016-04-01

    Semi-distributed hydrological models aim to provide useful information to understand and manage the spatial distribution of water resources. However, their evaluation is often limited to independent and single evaluations at each sub-catchment within larger catchments. This enables to qualify model performance at different points, but does not provide a coherent assessment of the overall spatial consistency of the model. To cope with these methodological deficiencies, we propose a two-step strategy. First, we apply a sequential spatial calibration procedure to define spatially consistent model parameters. Secondly, we evaluate the hydrological simulations using variables that involve some dependency between sub-catchments to evaluate the overall coherence of model outputs. In this study, we particularly choose to look at the simulated Intercatchment Groundwater Flows (IGF). The idea is that the water that is lost in one place should be recovered somewhere else within the catchment to guarantee a spatially coherent water balance in time. The model used is a recently developed daily semi-distributed model, which is based on a spatial distribution of the lumped GR5J model. The model has five parameters for each sub-catchments and a streamflow velocity parameter for flow routing between them. It implements two reservoirs, one for production and one for routing, and estimates IGF according to the level of the second in a way that catchment can release water to IGF during high flows and receive water through IGF during low flows. The calibration of the model is performed from upstream to downstream, making an efficient use of spatially distributed streamflow measurements. To take model uncertainty into account, we implemented three variants of the original model structure, each one computing in a different way the IGF in each sub-catchment. The study is applied on over 1000 catchments in France. By exploring a wide area and a variability of hydrometeorological conditions, we aim to detect IGF even between catchments which can be quite distant from one another.

  18. Spatial analysis of trace elements in a moss bio-monitoring data over France by accounting for source, protocol and environmental parameters.

    PubMed

    Lequy, Emeline; Saby, Nicolas P A; Ilyin, Ilia; Bourin, Aude; Sauvage, Stéphane; Leblond, Sébastien

    2017-07-15

    Air pollution in trace elements (TE) remains a concern for public health in Europe. For this reasons, networks of air pollution concentrations or exposure are deployed, including a moss bio-monitoring programme in Europe. Spatial determinants of TE concentrations in mosses remain unclear. In this study, the French dataset of TE in mosses is analyzed by spatial autoregressive model to account for spatial structure of the data and several variables proven or suspected to affect TE concentrations in mosses. Such variables include source (atmospheric deposition and soil concentrations), protocol (sampling month, collector, and moss species), and environment (forest type and canopy density, distance to the coast or the highway, and elevation). Modeled atmospheric deposition was only available for Cd and Pb and was one of the main explanatory variables of the concentrations in mosses. Predicted soil content was also an important explanatory variable except for Cr, Ni, and Zn. However, the moss species was the main factor for all the studied TE. The other environmental variables affected differently the TE. In particular, the forest type and canopy density were important in most cases. These results stress the need for further research on the effect of the moss species on the capture and retention of TE, as well as for accounting for several variables and the spatial structure of the data in statistical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  20. Age-related differences in finger force control are characterized by reduced force production.

    PubMed

    Vieluf, Solveig; Godde, Ben; Reuter, Eva-Maria; Voelcker-Rehage, Claudia

    2013-01-01

    It has been repeatedly shown that precise finger force control declines with age. The tasks and evaluation parameters used to reveal age-related differences vary between studies. In order to examine effects of task characteristics, young adults (18-25 years) and late middle-aged adults (55-65 years) performed precision grip tasks with varying speed and force requirements. Different outcome variables were used to evaluate age-related differences. Age-related differences were confirmed for performance accuracy (TWR) and variability (relative root mean square error, rRMSE). The task characteristics, however, influenced accuracy and variability in both age groups: Force modulation performance at higher speed was poorer than at lower speed and at fixed force levels than at force levels adjusted to the individual maximum forces. This effect tended to be stronger for older participants for the rRMSE. A curve fit confirmed the age-related differences for both spatial force tracking parameters (amplitude and intercept) and for one temporal parameter (phase shift), but not for the temporal parameter frequency. Additionally, matching the timing parameters of the sine wave seemed to be more important than matching the spatial parameters in both young adults and late middle-aged adults. However, the effect was stronger for the group of late middle-aged, even though maximum voluntary contraction was not significantly different between groups. Our data indicate that changes in the processing of fine motor control tasks with increasing age are caused by difficulties of late middle-aged adults to produce a predefined amount of force in a short time.

  1. Bayesian spatio-temporal discard model in a demersal trawl fishery

    NASA Astrophysics Data System (ADS)

    Grazia Pennino, M.; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José M.

    2014-07-01

    Spatial management of discards has recently been proposed as a useful tool for the protection of juveniles, by reducing discard rates and can be used as a buffer against management errors and recruitment failure. In this study Bayesian hierarchical spatial models have been used to analyze about 440 trawl fishing operations of two different metiers, sampled between 2009 and 2012, in order to improve our understanding of factors that influence the quantity of discards and to identify their spatio-temporal distribution in the study area. Our analysis showed that the relative importance of each variable was different for each metier, with a few similarities. In particular, the random vessel effect and seasonal variability were identified as main driving variables for both metiers. Predictive maps of the abundance of discards and maps of the posterior mean of the spatial component show several hot spots with high discard concentration for each metier. We argue how the seasonal/spatial effects, and the knowledge about the factors influential to discarding, could potentially be exploited as potential mitigation measures for future fisheries management strategies. However, misidentification of hotspots and uncertain predictions can culminate in inappropriate mitigation practices which can sometimes be irreversible. The proposed Bayesian spatial method overcomes these issues, since it offers a unified approach which allows the incorporation of spatial random-effect terms, spatial correlation of the variables and the uncertainty of the parameters in the modeling process, resulting in a better quantification of the uncertainty and accurate predictions.

  2. Sea-level rise impacts on the temporal and spatial variability of extreme water levels: A case study for St. Peter-Ording, Germany

    NASA Astrophysics Data System (ADS)

    Santamaria-Aguilar, S.; Arns, A.; Vafeidis, A. T.

    2017-04-01

    Both the temporal and spatial variability of storm surge water level (WL) curves are usually not taken into account in flood risk assessments as observational data are often scarce. In addition, sea-level rise (SLR) can further affect the variability of WLs. We analyze the temporal and spatial variability of the WL curve of 75 historical storm surge events that have been numerically simulated for St. Peter-Ording at the German North Sea coast, considering the effects induced by three SLR scenarios (RCP 4.5, RCP 8.5, and a RCP 8.5 high end scenario). We assess potential impacts of these scenarios on two parameters related to flooding: overflow volumes and fullness. Our results indicate that due to both the temporal and spatial variability of those events the resulting overflow volume can be two or even three times greater. We observe a steepening of the WL curve with an increase of the tidal range under the three SLR scenarios, although SLR induced effects are relatively higher for the RCP 4.5. The steepening of the WL curve with SLR produces a reduction of the fullness, but the changes in overflow volumes also depend on the magnitude of the storm surge event.

  3. Implementations of geographically weighted lasso in spatial data with multicollinearity (Case study: Poverty modeling of Java Island)

    NASA Astrophysics Data System (ADS)

    Setiyorini, Anis; Suprijadi, Jadi; Handoko, Budhi

    2017-03-01

    Geographically Weighted Regression (GWR) is a regression model that takes into account the spatial heterogeneity effect. In the application of the GWR, inference on regression coefficients is often of interest, as is estimation and prediction of the response variable. Empirical research and studies have demonstrated that local correlation between explanatory variables can lead to estimated regression coefficients in GWR that are strongly correlated, a condition named multicollinearity. It later results on a large standard error on estimated regression coefficients, and, hence, problematic for inference on relationships between variables. Geographically Weighted Lasso (GWL) is a method which capable to deal with spatial heterogeneity and local multicollinearity in spatial data sets. GWL is a further development of GWR method, which adds a LASSO (Least Absolute Shrinkage and Selection Operator) constraint in parameter estimation. In this study, GWL will be applied by using fixed exponential kernel weights matrix to establish a poverty modeling of Java Island, Indonesia. The results of applying the GWL to poverty datasets show that this method stabilizes regression coefficients in the presence of multicollinearity and produces lower prediction and estimation error of the response variable than GWR does.

  4. Patterns in Temporal Variability of Temperature, Oxygen and pH along an Environmental Gradient in a Coral Reef

    PubMed Central

    Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.

    2014-01-01

    Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364

  5. Estimating recharge rates with analytic element models and parameter estimation

    USGS Publications Warehouse

    Dripps, W.R.; Hunt, R.J.; Anderson, M.P.

    2006-01-01

    Quantifying the spatial and temporal distribution of recharge is usually a prerequisite for effective ground water flow modeling. In this study, an analytic element (AE) code (GFLOW) was used with a nonlinear parameter estimation code (UCODE) to quantify the spatial and temporal distribution of recharge using measured base flows as calibration targets. The ease and flexibility of AE model construction and evaluation make this approach well suited for recharge estimation. An AE flow model of an undeveloped watershed in northern Wisconsin was optimized to match median annual base flows at four stream gages for 1996 to 2000 to demonstrate the approach. Initial optimizations that assumed a constant distributed recharge rate provided good matches (within 5%) to most of the annual base flow estimates, but discrepancies of >12% at certain gages suggested that a single value of recharge for the entire watershed is inappropriate. Subsequent optimizations that allowed for spatially distributed recharge zones based on the distribution of vegetation types improved the fit and confirmed that vegetation can influence spatial recharge variability in this watershed. Temporally, the annual recharge values varied >2.5-fold between 1996 and 2000 during which there was an observed 1.7-fold difference in annual precipitation, underscoring the influence of nonclimatic factors on interannual recharge variability for regional flow modeling. The final recharge values compared favorably with more labor-intensive field measurements of recharge and results from studies, supporting the utility of using linked AE-parameter estimation codes for recharge estimation. Copyright ?? 2005 The Author(s).

  6. The contribution of hydroxylamine content to spatial variability of N2O formation in soil of a Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Liu, Shurong; Herbst, Michael; Bol, Roland; Gottselig, Nina; Pütz, Thomas; Weymann, Daniel; Wiekenkamp, Inge; Vereecken, Harry; Brüggemann, Nicolas

    2016-04-01

    Hydroxylamine (NH2OH), a reactive intermediate of several microbial nitrogen turnover processes, is a potential precursor of nitrous oxide (N2O) formation in the soil. However, the contribution of soil NH2OH to soil N2O emission rates in natural ecosystems is unclear. Here, we determined the spatial variability of NH2OH content and potential N2O emission rates of organic (Oh) and mineral (Ah) soil layers of a Norway spruce forest, using a recently developed analytical method for the determination of soil NH2OH content, combined with a geostatistical Kriging approach. Potential soil N2O emission rates were determined by laboratory incubations under oxic conditions, followed by gas chromatographic analysis and complemented by ancillary measurements of soil characteristics. Stepwise multiple regressions demonstrated that the potential N2O emission rates, NH2OH and nitrate (NO3-) content were spatially highly correlated, with hotspots for all three parameters observed in the headwater of a small creek flowing through the sampling area. In contrast, soil ammonium (NH4+) was only weakly correlated with potential N2O emission rates, and was excluded from the multiple regression models. While soil NH2OH content explained the potential soil N2O emission rates best for both layers, also NO3- and Mn content turned out to be significant parameters explaining N2O formation in both soil layers. The Kriging approach was improved markedly by the addition of the co-variable information of soil NH2OH and NO3- content. The results indicate that determination of soil NH2OH content could provide crucial information for the prediction of the spatial variability of soil N2O emissions.

  7. Effects of input uncertainty on cross-scale crop modeling

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input data from very little to very detailed information, and compare the models' abilities to represent the spatial variability and temporal variability in crop yields. We display the uncertainty in crop yield simulations from different input data and crop models in Taylor diagrams which are a graphical summary of the similarity between simulations and observations (Taylor, 2001). The observed spatial variability can be represented well from both models (R=0.6-0.8) but APSIM predicts higher spatial variability than LPJmL due to its sensitivity to soil parameters. Simulations with the same crop model, climate and sowing dates have similar statistics and therefore similar skill to reproduce the observed spatial variability. Soil data is less important for the skill of a crop model to reproduce the observed spatial variability. However, the uncertainty in simulated spatial variability from the two crop models is larger than from input data settings and APSIM is more sensitive to input data then LPJmL. Even with a detailed, point-scale crop model and detailed input data it is difficult to capture the complexity and diversity in maize cropping systems.

  8. Using genetic algorithms to achieve an automatic and global optimization of analogue methods for statistical downscaling of precipitation

    NASA Astrophysics Data System (ADS)

    Horton, Pascal; Weingartner, Rolf; Obled, Charles; Jaboyedoff, Michel

    2017-04-01

    Analogue methods (AMs) rely on the hypothesis that similar situations, in terms of atmospheric circulation, are likely to result in similar local or regional weather conditions. These methods consist of sampling a certain number of past situations, based on different synoptic-scale meteorological variables (predictors), in order to construct a probabilistic prediction for a local weather variable of interest (predictand). They are often used for daily precipitation prediction, either in the context of real-time forecasting, reconstruction of past weather conditions, or future climate impact studies. The relationship between predictors and predictands is defined by several parameters (predictor variable, spatial and temporal windows used for the comparison, analogy criteria, and number of analogues), which are often calibrated by means of a semi-automatic sequential procedure that has strong limitations. AMs may include several subsampling levels (e.g. first sorting a set of analogs in terms of circulation, then restricting to those with similar moisture status). The parameter space of the AMs can be very complex, with substantial co-dependencies between the parameters. Thus, global optimization techniques are likely to be necessary for calibrating most AM variants, as they can optimize all parameters of all analogy levels simultaneously. Genetic algorithms (GAs) were found to be successful in finding optimal values of AM parameters. They allow taking into account parameters inter-dependencies, and selecting objectively some parameters that were manually selected beforehand (such as the pressure levels and the temporal windows of the predictor variables), and thus obviate the need of assessing a high number of combinations. The performance scores of the optimized methods increased compared to reference methods, and this even to a greater extent for days with high precipitation totals. The resulting parameters were found to be relevant and spatially coherent. Moreover, they were obtained automatically and objectively, which reduces efforts invested in exploration attempts when adapting the method to a new region or for a new predictand. In addition, the approach allowed for new degrees of freedom, such as a weighting between the pressure levels, and non overlapping spatial windows. Genetic algorithms were then used further in order to automatically select predictor variables and analogy criteria. This resulted in interesting outputs, providing new predictor-criterion combinations. However, some limitations of the approach were encountered, and the need of the expert input is likely to remain necessary. Nevertheless, letting GAs exploring a dataset for the best predictor for a predictand of interest is certainly a useful tool, particularly when applied for a new predictand or a new region under different climatic characteristics.

  9. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  10. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data. Part II: Using Maximum Covariance Analysis to Effectively Compare Spatiotemporal Variability of Satellite and AERONET Measured Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.

  11. Effects of spatial variability and scale on areal -average evapotranspiration

    NASA Technical Reports Server (NTRS)

    Famiglietti, J. S.; Wood, Eric F.

    1993-01-01

    This paper explores the effect of spatial variability and scale on areally-averaged evapotranspiration. A spatially-distributed water and energy balance model is employed to determine the effect of explicit patterns of model parameters and atmospheric forcing on modeled areally-averaged evapotranspiration over a range of increasing spatial scales. The analysis is performed from the local scale to the catchment scale. The study area is King's Creek catchment, an 11.7 sq km watershed located on the native tallgrass prairie of Kansas. The dominant controls on the scaling behavior of catchment-average evapotranspiration are investigated by simulation, as is the existence of a threshold scale for evapotranspiration modeling, with implications for explicit versus statistical representation of important process controls. It appears that some of our findings are fairly general, and will therefore provide a framework for understanding the scaling behavior of areally-averaged evapotranspiration at the catchment and larger scales.

  12. Spatial variability in plankton biomass and hydrographic variables along an axial transect in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Roman, M.; Kimmel, D.; McGilliard, C.; Boicourt, W.

    2006-05-01

    High-resolution, axial sampling surveys were conducted in Chesapeake Bay during April, July, and October from 1996 to 2000 using a towed sampling device equipped with sensors for depth, temperature, conductivity, oxygen, fluorescence, and an optical plankton counter (OPC). The results suggest that the axial distribution and variability of hydrographic and biological parameters in Chesapeake Bay were primarily influenced by the source and magnitude of freshwater input. Bay-wide spatial trends in the water column-averaged values of salinity were linear functions of distance from the main source of freshwater, the Susquehanna River, at the head of the bay. However, spatial trends in the water column-averaged values of temperature, dissolved oxygen, chlorophyll-a and zooplankton biomass were nonlinear along the axis of the bay. Autocorrelation analysis and the residuals of linear and quadratic regressions between each variable and latitude were used to quantify the patch sizes for each axial transect. The patch sizes of each variable depended on whether the data were detrended, and the detrending techniques applied. However, the patch size of each variable was generally larger using the original data compared to the detrended data. The patch sizes of salinity were larger than those for dissolved oxygen, chlorophyll-a and zooplankton biomass, suggesting that more localized processes influence the production and consumption of plankton. This high-resolution quantification of the zooplankton spatial variability and patch size can be used for more realistic assessments of the zooplankton forage base for larval fish species.

  13. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  14. Regional patterns of interannual variability of catchment water balances across the continental U.S.: A Budyko framework

    NASA Astrophysics Data System (ADS)

    Carmona, Alejandra M.; Sivapalan, Murugesu; Yaeger, Mary A.; Poveda, Germán.

    2014-12-01

    Patterns of interannual variability of the annual water balance are explored using data from 190 MOPEX catchments across the continental U.S. This analysis has led to the derivation of a quantitative, dimensionless, Budyko-type framework to characterize the observed interannual variability of annual water balances. The resulting model is expressed in terms of a humidity index that measures the competition between water and energy availability at the annual time scale, and a similarity parameter (α) that captures the net effects of other short-term climate features and local landscape characteristics. This application of the model to the 190 study catchments revealed the existence of space-time symmetry between spatial (between-catchment) variability and general trends in the temporal (between-year) variability of the annual water balances. The MOPEX study catchments were classified into eight similar catchment groups on the basis of magnitudes of the similarity parameter α. Interesting regional trends of α across the continental U.S. were brought out through identification of similarities between the spatial positions of the catchment groups with the mapping of distinctive ecoregions that implicitly take into account common climatic and vegetation characteristics. In this context, this study has introduced a deep sense of similarity that is evident in observed space-time variability of water balances that also reflect the codependence and coevolution of climate and landscape properties.

  15. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    DOE PAGES

    Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.; ...

    2017-11-22

    Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less

  16. Temporal and Spatial Variation in Peatland Carbon Cycling and Implications for Interpreting Responses of an Ecosystem-Scale Warming Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Hanson, Paul J.; Ricciuto, Daniel M.

    Here, we are conducting a large-scale, long-term climate change response experiment in an ombrotrophic peat bog in Minnesota to evaluate the effects of warming and elevated CO 2 on ecosystem processes using empirical and modeling approaches. To better frame future assessments of peatland responses to climate change, we characterized and compared spatial vs. temporal variation in measured C cycle processes and their environmental drivers. We also conducted a sensitivity analysis of a peatland C model to identify how variation in ecosystem parameters contributes to model prediction uncertainty. High spatial variability in C cycle processes resulted in the inability to determinemore » if the bog was a C source or sink, as the 95% confidence interval ranged from a source of 50 g C m –2 yr –1 to a sink of 67 g C m –2 yr –1. Model sensitivity analysis also identified that spatial variation in tree and shrub photosynthesis, allocation characteristics, and maintenance respiration all contributed to large variations in the pretreatment estimates of net C balance. Variation in ecosystem processes can be more thoroughly characterized if more measurements are collected for parameters that are highly variable over space and time, and especially if those measurements encompass environmental gradients that may be driving the spatial and temporal variation (e.g., hummock vs. hollow microtopographies, and wet vs. dry years). Together, the coupled modeling and empirical approaches indicate that variability in C cycle processes and their drivers must be taken into account when interpreting the significance of experimental warming and elevated CO 2 treatments.« less

  17. APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER (EPA/600/R-98/058)

    EPA Science Inventory

    Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requi...

  18. APPLICATION OF THE ELECTROMAGNETIC BOREHOLE FLOWMETER (EPA/600/SR-98/058)

    EPA Science Inventory

    Spatial variability of saturated zone hydraulic properties has important implications with regard to sampling wells for water quality parameters, use of conventional methods to estimate transmissivity, and remedial system design. Characterization of subsurface heterogeneity requi...

  19. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation.

    PubMed

    Yang, Y; Liu, A Q; Chin, L K; Zhang, X M; Tsai, D P; Lin, C L; Lu, C; Wang, G P; Zheludev, N I

    2012-01-31

    Transformation optics represents a new paradigm for designing light-manipulating devices, such as cloaks and field concentrators, through the engineering of electromagnetic space using materials with spatially variable parameters. Here we analyse liquid flowing in an optofluidic waveguide as a new type of controllable transformation optics medium. We show that a laminar liquid flow in an optofluidic channel exhibits spatially variable dielectric properties that support novel wave-focussing and interference phenomena, which are distinctively different from the discrete diffraction observed in solid waveguide arrays. Our work provides new insight into the unique optical properties of optofluidic waveguides and their potential applications.

  20. Mesoscale spatial variability of selected aquatic invertebrate community metrics from a minimally impaired stream segment

    USGS Publications Warehouse

    Gebler, J.B.

    2004-01-01

    The related topics of spatial variability of aquatic invertebrate community metrics, implications of spatial patterns of metric values to distributions of aquatic invertebrate communities, and ramifications of natural variability to the detection of human perturbations were investigated. Four metrics commonly used for stream assessment were computed for 9 stream reaches within a fairly homogeneous, minimally impaired stream segment of the San Pedro River, Arizona. Metric variability was assessed for differing sampling scenarios using simple permutation procedures. Spatial patterns of metric values suggest that aquatic invertebrate communities are patchily distributed on subsegment and segment scales, which causes metric variability. Wide ranges of metric values resulted in wide ranges of metric coefficients of variation (CVs) and minimum detectable differences (MDDs), and both CVs and MDDs often increased as sample size (number of reaches) increased, suggesting that any particular set of sampling reaches could yield misleading estimates of population parameters and effects that can be detected. Mean metric variabilities were substantial, with the result that only fairly large differences in metrics would be declared significant at ?? = 0.05 and ?? = 0.20. The number of reaches required to obtain MDDs of 10% and 20% varied with significance level and power, and differed for different metrics, but were generally large, ranging into tens and hundreds of reaches. Study results suggest that metric values from one or a small number of stream reach(es) may not be adequate to represent a stream segment, depending on effect sizes of interest, and that larger sample sizes are necessary to obtain reasonable estimates of metrics and sample statistics. For bioassessment to progress, spatial variability may need to be investigated in many systems and should be considered when designing studies and interpreting data.

  1. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    PubMed

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  2. Biogeochemical typology and temporal variability of lagoon waters in a coral reef ecosystem subject to terrigeneous and anthropogenic inputs (New Caledonia).

    PubMed

    Fichez, R; Chifflet, S; Douillet, P; Gérard, P; Gutierrez, F; Jouon, A; Ouillon, S; Grenz, C

    2010-01-01

    Considering the growing concern about the impact of anthropogenic inputs on coral reefs and coral reef lagoons, surprisingly little attention has been given to the relationship between those inputs and the trophic status of lagoon waters. The present paper describes the distribution of biogeochemical parameters in the coral reef lagoon of New Caledonia where environmental conditions allegedly range from pristine oligotrophic to anthropogenically influenced. The study objectives were to: (i) identify terrigeneous and anthropogenic inputs and propose a typology of lagoon waters, (ii) determine temporal variability of water biogeochemical parameters at time-scales ranging from hours to seasons. Combined ACP-cluster analyses revealed that over the 2000 km(2) lagoon area around the city of Nouméa, "natural" terrigeneous versus oceanic influences affecting all stations only accounted for less than 20% of the spatial variability whereas 60% of that spatial variability could be attributed to significant eutrophication of a limited number of inshore stations. ACP analysis allowed to unambiguously discriminating between the natural trophic enrichment along the offshore-inshore gradient and anthropogenically induced eutrophication. High temporal variability in dissolved inorganic nutrients concentrations strongly hindered their use as indicators of environmental status. Due to longer turn over time, particulate organic material and more specifically chlorophyll a appeared as more reliable nonconservative tracer of trophic status. Results further provided evidence that ENSO occurrences might temporarily lower the trophic status of the New Caledonia lagoon. It is concluded that, due to such high frequency temporal variability, the use of biogeochemical parameters in environmental surveys require adapted sampling strategies, data management and environmental alert methods. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1 to 2 m. Temporal variability was a result of differential surface lowering, spatial variability in glacier surface velocities and intermittent input of debris to the glacier surface through mass movement. Most debris thickening is seen in initially thin areas of debris (< 0.4 m) or within ~1 km of the glacier terminus. Surface energy balance modelling is currently underway to determine the effect of these variations in debris thickness, and other parameters mentioned previously. Future work will be to calculate debris transport flux on the surface of Khumbu Glacier using the time series of debris thickness maps. Debris flux and refined energy balance calculations will then be incorporated into a 3-D ice flow model to determine the response of Khumbu Glacier to debris transport and climatic changes.

  4. The concurrent multiplicative-additive approach for gauge-radar/satellite multisensor precipitation estimates

    NASA Astrophysics Data System (ADS)

    Garcia-Pintado, J.; Barberá, G. G.; Erena Arrabal, M.; Castillo, V. M.

    2010-12-01

    Objective analysis schemes (OAS), also called ``succesive correction methods'' or ``observation nudging'', have been proposed for multisensor precipitation estimation combining remote sensing data (meteorological radar or satellite) with data from ground-based raingauge networks. However, opposite to the more complex geostatistical approaches, the OAS techniques for this use are not optimized. On the other hand, geostatistical techniques ideally require, at the least, modelling the covariance from the rain gauge data at every time step evaluated, which commonly cannot be soundly done. Here, we propose a new procedure (concurrent multiplicative-additive objective analysis scheme [CMA-OAS]) for operational rainfall estimation using rain gauges and meteorological radar, which does not require explicit modelling of spatial covariances. On the basis of a concurrent multiplicative-additive (CMA) decomposition of the spatially nonuniform radar bias, within-storm variability of rainfall and fractional coverage of rainfall are taken into account. Thus both spatially nonuniform radar bias, given that rainfall is detected, and bias in radar detection of rainfall are handled. The interpolation procedure of CMA-OAS is built on the OAS, whose purpose is to estimate a filtered spatial field of the variable of interest through a successive correction of residuals resulting from a Gaussian kernel smoother applied on spatial samples. The CMA-OAS, first, poses an optimization problem at each gauge-radar support point to obtain both a local multiplicative-additive radar bias decomposition and a regionalization parameter. Second, local biases and regionalization parameters are integrated into an OAS to estimate the multisensor rainfall at the ground level. The approach considers radar estimates as background a priori information (first guess), so that nudging to observations (gauges) may be relaxed smoothly to the first guess, and the relaxation shape is obtained from the sequential optimization. The procedure is suited to relatively sparse rain gauge networks. To show the procedure, six storms are analyzed at hourly steps over 10,663 km2. Results generally indicated an improved quality with respect to other methods evaluated: a standard mean-field bias adjustment, an OAS spatially variable adjustment with multiplicative factors, ordinary cokriging, and kriging with external drift. In theory, it could be equally applicable to gauge-satellite estimates and other hydrometeorological variables.

  5. Mapping the spatial distribution of chloride deposition across Australia

    NASA Astrophysics Data System (ADS)

    Davies, P. J.; Crosbie, R. S.

    2018-06-01

    The high solubility and conservative behaviour of chloride make it ideal for use as an environmental tracer of water and salt movement through the hydrologic cycle. For such use the spatial distribution of chloride deposition in rainfall at a suitable scale must be known. A number of authors have used point data acquired from field studies of chloride deposition around Australia to construct relationships to characterise chloride deposition as a function of distance from the coast; these relationships have allowed chloride deposition to be interpolated in different regions around Australia. In this paper we took this a step further and developed a chloride deposition map for all of Australia which includes a quantification of uncertainty. A previously developed four parameter model of chloride deposition as a function of distance from the coast for Australia was used as the basis for producing a continental scale chloride deposition map. Each of the four model parameters were made spatially variable by creating parameter surfaces that were interpolated using a pilot point regularisation approach within a parameter estimation software. The observations of chloride deposition were drawn from a literature review that identified 291 point measurements of chloride deposition over a period of 80 years spread unevenly across all Australian States and Territories. A best estimate chloride deposition map was developed from the resulting surfaces on a 0.05 degree grid. The uncertainty in the chloride deposition map was quantified as the 5th and 95th percentile of 1000 calibrated models produced via Null Space Monte Carlo analysis and the spatial variability of chloride deposition across the continent was consistent with landscape morphology. The temporal variability in chloride deposition on a decadal scale was investigated in the Murray-Darling Basin, this highlighted the need for long-term monitoring of chloride deposition if the uncertainty of the continental scale map is to be reduced. Use of the derived chloride deposition map was demonstrated for a probabilistic estimation of groundwater recharge for the southeast of South Australia using the chloride mass balance method.

  6. Behavior of sensitivities in the one-dimensional advection-dispersion equation: Implications for parameter estimation and sampling design

    USGS Publications Warehouse

    Knopman, Debra S.; Voss, Clifford I.

    1987-01-01

    The spatial and temporal variability of sensitivities has a significant impact on parameter estimation and sampling design for studies of solute transport in porous media. Physical insight into the behavior of sensitivities is offered through an analysis of analytically derived sensitivities for the one-dimensional form of the advection-dispersion equation. When parameters are estimated in regression models of one-dimensional transport, the spatial and temporal variability in sensitivities influences variance and covariance of parameter estimates. Several principles account for the observed influence of sensitivities on parameter uncertainty. (1) Information about a physical parameter may be most accurately gained at points in space and time with a high sensitivity to the parameter. (2) As the distance of observation points from the upstream boundary increases, maximum sensitivity to velocity during passage of the solute front increases and the consequent estimate of velocity tends to have lower variance. (3) The frequency of sampling must be “in phase” with the S shape of the dispersion sensitivity curve to yield the most information on dispersion. (4) The sensitivity to the dispersion coefficient is usually at least an order of magnitude less than the sensitivity to velocity. (5) The assumed probability distribution of random error in observations of solute concentration determines the form of the sensitivities. (6) If variance in random error in observations is large, trends in sensitivities of observation points may be obscured by noise and thus have limited value in predicting variance in parameter estimates among designs. (7) Designs that minimize the variance of one parameter may not necessarily minimize the variance of other parameters. (8) The time and space interval over which an observation point is sensitive to a given parameter depends on the actual values of the parameters in the underlying physical system.

  7. Spatial and temporal variability in rates of landsliding in seismically active mountain ranges

    NASA Astrophysics Data System (ADS)

    Parker, R.; Petley, D.; Rosser, N.; Densmore, A.; Gunasekera, R.; Brain, M.

    2012-04-01

    Where earthquake and precipitation driven disasters occur in steep, mountainous regions, landslides often account for a large proportion of the associated damage and losses. This research addresses spatial and temporal variability in rates of landslide occurrence in seismically active mountain ranges as a step towards developing better regional scale prediction of losses in such events. In the first part of this paper we attempt to explain reductively the variability in spatial rates of landslide occurrence, using data from five major earthquakes. This is achieved by fitting a regression-based conditional probability model to spatial probabilities of landslide occurrence, using as predictor variables proxies for spatial patterns of seismic ground motion and modelled hillslope stability. A combined model for all earthquakes performs well in hindcasting spatial probabilities of landslide occurrence as a function of readily-attainable spatial variables. We present validation of the model and demonstrate the extent to which it may be applied globally to derive landslide probabilities for future earthquakes. In part two we examine the temporal behaviour of rates of landslide occurrence. This is achieved through numerical modelling to simulate the behaviour of a hypothetical landscape. The model landscape is composed of hillslopes that continually weaken, fail and reset in response to temporally-discrete forcing events that represent earthquakes. Hillslopes with different geometries require different amounts of weakening to fail, such that they fail and reset at different temporal rates. Our results suggest that probabilities of landslide occurrence are not temporally constant, but rather vary with time, irrespective of changes in forcing event magnitudes or environmental conditions. Various parameters influencing the magnitude and temporal patterns of this variability are identified, highlighting areas where future research is needed. This model has important implications for landslide hazard and risk analysis in mountain areas as existing techniques usually assume that susceptibility to failure does not change with time.

  8. Total ozone trend significance from space time variability of daily Dobson data

    NASA Technical Reports Server (NTRS)

    Wilcox, R. W.

    1981-01-01

    Estimates of standard errors of total ozone time and area means, as derived from ozone's natural temporal and spatial variability and autocorrelation in middle latitudes determined from daily Dobson data are presented. Assessing the significance of apparent total ozone trends is equivalent to assessing the standard error of the means. Standard errors of time averages depend on the temporal variability and correlation of the averaged parameter. Trend detectability is discussed, both for the present network and for satellite measurements.

  9. Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability.

    PubMed

    Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves

    2015-12-01

    This paper presents an unsupervised Bayesian algorithm for hyperspectral image unmixing, accounting for endmember variability. The pixels are modeled by a linear combination of endmembers weighted by their corresponding abundances. However, the endmembers are assumed random to consider their variability in the image. An additive noise is also considered in the proposed model, generalizing the normal compositional model. The proposed algorithm exploits the whole image to benefit from both spectral and spatial information. It estimates both the mean and the covariance matrix of each endmember in the image. This allows the behavior of each material to be analyzed and its variability to be quantified in the scene. A spatial segmentation is also obtained based on the estimated abundances. In order to estimate the parameters associated with the proposed Bayesian model, we propose to use a Hamiltonian Monte Carlo algorithm. The performance of the resulting unmixing strategy is evaluated through simulations conducted on both synthetic and real data.

  10. Characterizing Heterogeneity in Infiltration Rates During Managed Aquifer Recharge.

    PubMed

    Mawer, Chloe; Parsekian, Andrew; Pidlisecky, Adam; Knight, Rosemary

    2016-11-01

    Infiltration rate is the key parameter that describes how water moves from the surface into a groundwater aquifer during managed aquifer recharge (MAR). Characterization of infiltration rate heterogeneity in space and time is valuable information for MAR system operation. In this study, we utilized fiber optic distributed temperature sensing (FO-DTS) observations and the phase shift of the diurnal temperature signal between two vertically co-located fiber optic cables to characterize infiltration rate spatially and temporally in a MAR basin. The FO-DTS measurements revealed spatial heterogeneity of infiltration rate: approximately 78% of the recharge water infiltrated through 50% of the pond bottom on average. We also introduced a metric for quantifying how the infiltration rate in a recharge pond changes over time, which enables FO-DTS to be used as a method for monitoring MAR and informing maintenance decisions. By monitoring this metric, we found high-spatial variability in how rapidly infiltration rate changed during the test period. We attributed this variability to biological pore clogging and found a relationship between high initial infiltration rate and the most rapid pore clogging. We found a strong relationship (R 2  = 0.8) between observed maximum infiltration rates and electrical resistivity measurements from electrical resistivity tomography data taken in the same basin when dry. This result shows that the combined acquisition of DTS and ERT data can improve the design and operation of a MAR pond significantly by providing the critical information needed about spatial variability in parameters controlling infiltration rates. © 2016, National Ground Water Association.

  11. Spatial Distribution of Fate and Transport Parameters Using Cxtfit in a Karstified Limestone Model

    NASA Astrophysics Data System (ADS)

    Toro, J.; Padilla, I. Y.

    2017-12-01

    Karst environments have a high capacity to transport and store large amounts of water. This makes karst aquifers a productive resource for human consumption and ecological integrity, but also makes them vulnerable to potential contamination of hazardous chemical substances. High heterogeneity and anisotropy of karst aquifer properties make them very difficult to characterize for accurate prediction of contaminant mobility and persistence in groundwater. Current technologies to characterize and quantify flow and transport processes at field-scale is limited by low resolution of spatiotemporal data. To enhance this resolution and provide the essential knowledge of karst groundwater systems, studies at laboratory scale can be conducted. This work uses an intermediate karstified lab-scale physical model (IKLPM) to study fate and transport processes and assess viable tools to characterize heterogeneities in karst systems. Transport experiments are conducted in the IKLPM using step injections of calcium chloride, uranine, and rhodamine wt tracers. Temporal concentration distributions (TCDs) obtained from the experiments are analyzed using the method of moments and CXTFIT to quantify fate and transport parameters in the system at various flow rates. The spatial distribution of the estimated fate and transport parameters for the tracers revealed high variability related to preferential flow heterogeneities and scale dependence. Results are integrated to define spatially-variable transport regions within the system and assess their fate and transport characteristics.

  12. Sensitivity of geological, geochemical and hydrologic parameters in complex reactive transport systems for in-situ uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Yang, G.; Maher, K.; Caers, J.

    2015-12-01

    Groundwater contamination associated with remediated uranium mill tailings is a challenging environmental problem, particularly within the Colorado River Basin. To examine the effectiveness of in-situ bioremediation of U(VI), acetate injection has been proposed and tested at the Rifle pilot site. There have been several geologic modeling and simulated contaminant transport investigations, to evaluate the potential outcomes of the process and identify crucial factors for successful uranium reduction. Ultimately, findings from these studies would contribute to accurate predictions of the efficacy of uranium reduction. However, all these previous studies have considered limited model complexities, either because of the concern that data is too sparse to resolve such complex systems or because some parameters are assumed to be less important. Such simplified initial modeling, however, limits the predictive power of the model. Moreover, previous studies have not yet focused on spatial heterogeneity of various modeling components and its impact on the spatial distribution of the immobilized uranium (U(IV)). In this study, we study the impact of uncertainty on 21 parameters on model responses by means of recently developed distance-based global sensitivity analysis (DGSA), to study the main effects and interactions of parameters of various types. The 21 parameters include, for example, spatial variability of initial uranium concentration, mean hydraulic conductivity, and variogram structures of hydraulic conductivity. DGSA allows for studying multi-variate model responses based on spatial and non-spatial model parameters. When calculating the distances between model responses, in addition to the overall uranium reduction efficacy, we also considered the spatial profiles of the immobilized uranium concentration as target response. Results show that the mean hydraulic conductivity and the mineral reaction rate are the two most sensitive parameters with regard to the overall uranium reduction. But in terms of spatial distribution of immobilized uranium, initial conditions of uranium concentration and spatial uncertainty in hydraulic conductivity also become important. These analyses serve as the first step of further prediction practices of the complex uranium transport and reaction systems.

  13. Soil Erosion as a stochastic process

    NASA Astrophysics Data System (ADS)

    Casper, Markus C.

    2015-04-01

    The main tools to provide estimations concerning risk and amount of erosion are different types of soil erosion models: on the one hand, there are empirically based model concepts on the other hand there are more physically based or process based models. However, both types of models have substantial weak points. All empirical model concepts are only capable of providing rough estimates over larger temporal and spatial scales, they do not account for many driving factors that are in the scope of scenario related analysis. In addition, the physically based models contain important empirical parts and hence, the demand for universality and transferability is not given. As a common feature, we find, that all models rely on parameters and input variables, which are to certain, extend spatially and temporally averaged. A central question is whether the apparent heterogeneity of soil properties or the random nature of driving forces needs to be better considered in our modelling concepts. Traditionally, researchers have attempted to remove spatial and temporal variability through homogenization. However, homogenization has been achieved through physical manipulation of the system, or by statistical averaging procedures. The price for obtaining this homogenized (average) model concepts of soils and soil related processes has often been a failure to recognize the profound importance of heterogeneity in many of the properties and processes that we study. Especially soil infiltrability and the resistance (also called "critical shear stress" or "critical stream power") are the most important empirical factors of physically based erosion models. The erosion resistance is theoretically a substrate specific parameter, but in reality, the threshold where soil erosion begins is determined experimentally. The soil infiltrability is often calculated with empirical relationships (e.g. based on grain size distribution). Consequently, to better fit reality, this value needs to be corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.

  14. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    NASA Astrophysics Data System (ADS)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  15. Usefulness of AIRS-Derived OLR, Temperature, Water Vapor and Cloudiness Anomaly Trends for GCM Validation

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.

    2010-01-01

    Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of climate variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly "trends" based on the first 7+ years of AIRS Version 5 Leve13 data. We suggest that modelers should compare these with their (coupled) GCM's performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Nino-related variability scales, and show the effects of El-Nino-La Nina activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallman, Ann Renee; Neary, Vincent Sinclair

    Spatial variability of sea states is an important consideration when performing wave resource assessments and wave resource characterization studies for wave energy converter (WEC) test sites and commercial WEC deployments. This report examines the spatial variation of sea states offshore of Humboldt Bay, CA, using the wave model SWAN . The effect of depth and shoaling on bulk wave parameters is well resolved using the model SWAN with a 200 m grid. At this site, the degree of spatial variation of these bulk wave parameters, with shoaling generally perpendicular to the depth contours, is found to depend on the season.more » The variation in wave height , for example, was higher in the summer due to the wind and wave sheltering from the protruding land on the coastline north of the model domain. Ho wever, the spatial variation within an area of a potential Tier 1 WEC test site at 45 m depth and 1 square nautical mile is almost negligible; at most about 0.1 m in both winter and summer. The six wave characterization parameters recommended by the IEC 6 2600 - 101 TS were compared at several points along a line perpendicular to shore from the WEC test site . As expected, these parameters varied based on depth , but showed very similar seasonal trends.« less

  17. Hyper-Spectral Image Analysis With Partially Latent Regression and Spatial Markov Dependencies

    NASA Astrophysics Data System (ADS)

    Deleforge, Antoine; Forbes, Florence; Ba, Sileye; Horaud, Radu

    2015-09-01

    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.

  18. Variability of 4D flow parameters when subjected to changes in MRI acquisition parameters using a realistic thoracic aortic phantom.

    PubMed

    Montalba, Cristian; Urbina, Jesus; Sotelo, Julio; Andia, Marcelo E; Tejos, Cristian; Irarrazaval, Pablo; Hurtado, Daniel E; Valverde, Israel; Uribe, Sergio

    2018-04-01

    To assess the variability of peak flow, mean velocity, stroke volume, and wall shear stress measurements derived from 3D cine phase contrast (4D flow) sequences under different conditions of spatial and temporal resolutions. We performed controlled experiments using a thoracic aortic phantom. The phantom was connected to a pulsatile flow pump, which simulated nine physiological conditions. For each condition, 4D flow data were acquired with different spatial and temporal resolutions. The 2D cine phase contrast and 4D flow data with the highest available spatio-temporal resolution were considered as a reference for comparison purposes. When comparing 4D flow acquisitions (spatial and temporal resolution of 2.0 × 2.0 × 2.0 mm 3 and 40 ms, respectively) with 2D phase-contrast flow acquisitions, the underestimation of peak flow, mean velocity, and stroke volume were 10.5, 10 and 5%, respectively. However, the calculated wall shear stress showed an underestimation larger than 70% for the former acquisition, with respect to 4D flow, with spatial and temporal resolution of 1.0 × 1.0 × 1.0 mm 3 and 20 ms, respectively. Peak flow, mean velocity, and stroke volume from 4D flow data are more sensitive to changes of temporal than spatial resolution, as opposed to wall shear stress, which is more sensitive to changes in spatial resolution. Magn Reson Med 79:1882-1892, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Characterization of soil spatial variability for site-specific management using soil electrical conductivity and other remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bang, Jisu

    Field-scale characterization of soil spatial variability using remote sensing technology has potential for achieving the successful implementation of site-specific management (SSM). The objectives of this study were to: (i) examine the spatial relationships between apparent soil electrical conductivity (EC a) and soil chemical and physical properties to determine if EC a could be useful to characterize soil properties related to crop productivity in the Coastal Plain and Piedmont of North Carolina; (ii) evaluate the effects of in-situ soil moisture variation on ECa mapping as a basis for characterization of soil spatial variability and as a data layer in cluster analysis as a means of delineating sampling zones; (iii) evaluate clustering approaches using different variable sets for management zone delineation to characterize spatial variability in soil nutrient levels and crop yields. Studies were conducted in two fields in the Piedmont and three fields in the Coastal Plain of North Carolina. Spatial measurements of ECa via electromagnetic induction (EMI) were compared with soil chemical parameters (extractable P, K, and micronutrients; pH, cation exchange capacity [CEC], humic matter or soil organic matter; and physical parameters (percentage sand, silt, and clay; and plant-available water [PAW] content; bulk density; cone index; saturated hydraulic conductivity [Ksat] in one of the coastal plain fields) using correlation analysis across fields. We also collected ECa measurements in one coastal plain field on four days with significantly different naturally occurring soil moisture conditions measured in five increments to 0.75 m using profiling time-domain reflectometry probes to evaluate the temporal variability of ECa associated with changes in in-situ soil moisture content. Nonhierarchical k-means cluster analysis using sensor-based field attributes including vertical ECa, near-infrared (NIR) radiance of bare-soil from an aerial color infrared (CIR) image, elevation, slope, and their combinations was performed to delineate management zones. The strengths and signs of the correlations between ECa and measured soil properties varied among fields. Few strong direct correlations were found between ECa and the soil chemical and physical properties studied (r2 < 0.50), but correlations improved considerably when zone mean ECa and zone means of selected soil properties among ECa zones were compared. The results suggested that field-scale ECa survey is not able to directly predict soil nutrient levels at any specific location, but could delimit distinct zones of soil condition among which soil nutrient levels differ, providing an effective basis for soil sampling on a zone basis. (Abstract shortened by UMI.)

  20. Soil Parameter Mapping and Ad Hoc Power Analysis to Increase Blocking Efficiency Prior to Establishing a Long-Term Field Experiment.

    PubMed

    Collins, Doug; Benedict, Chris; Bary, Andy; Cogger, Craig

    2015-01-01

    The spatial heterogeneity of soil and weed populations poses a challenge to researchers. Unlike aboveground variability, below-ground variability is more difficult to discern without a strategic soil sampling pattern. While blocking is commonly used to control environmental variation, this strategy is rarely informed by data about current soil conditions. Fifty georeferenced sites were located in a 0.65 ha area prior to establishing a long-term field experiment. Soil organic matter (OM) and weed seed bank populations were analyzed at each site and the spatial structure was modeled with semivariograms and interpolated with kriging to map the surface. These maps were used to formulate three strategic blocking patterns and the efficiency of each pattern was compared to a completely randomized design and a west to east model not informed by soil variability. Compared to OM, weeds were more variable across the landscape and had a shorter range of autocorrelation, and models to increase blocking efficiency resulted in less increase in power. Weeds and OM were not correlated, so no model examined improved power equally for both parameters. Compared to the west to east blocking pattern, the final blocking pattern chosen resulted in a 7-fold increase in power for OM and a 36% increase in power for weeds.

  1. Accounting for the influence of vegetation and landscape improves model transferability in a tropical savannah region

    NASA Astrophysics Data System (ADS)

    Gao, Hongkai; Hrachowitz, Markus; Sriwongsitanon, Nutchanart; Fenicia, Fabrizio; Gharari, Shervan; Savenije, Hubert H. G.

    2016-10-01

    Understanding which catchment characteristics dominate hydrologic response and how to take them into account remains a challenge in hydrological modeling, particularly in ungauged basins. This is even more so in nontemperate and nonhumid catchments, where—due to the combination of seasonality and the occurrence of dry spells—threshold processes are more prominent in rainfall runoff behavior. An example is the tropical savannah, the second largest climatic zone, characterized by pronounced dry and wet seasons and high evaporative demand. In this study, we investigated the importance of landscape variability on the spatial variability of stream flow in tropical savannah basins. We applied a stepwise modeling approach to 23 subcatchments of the Upper Ping River in Thailand, where gradually more information on landscape was incorporated. The benchmark is represented by a classical lumped model (FLEXL), which does not account for spatial variability. We then tested the effect of accounting for vegetation information within the lumped model (FLEXLM), and subsequently two semidistributed models: one accounting for the spatial variability of topography-based landscape features alone (FLEXT), and another accounting for both topographic features and vegetation (FLEXTM). In cross validation, each model was calibrated on one catchment, and then transferred with its fitted parameters to the remaining catchments. We found that when transferring model parameters in space, the semidistributed models accounting for vegetation and topographic heterogeneity clearly outperformed the lumped model. This suggests that landscape controls a considerable part of the hydrological function and explicit consideration of its heterogeneity can be highly beneficial for prediction in ungauged basins in tropical savannah.

  2. Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.

    2017-12-01

    Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.

  3. Assessing the importance of rainfall uncertainty on hydrological models with different spatial and temporal scale

    NASA Astrophysics Data System (ADS)

    Nossent, Jiri; Pereira, Fernando; Bauwens, Willy

    2015-04-01

    Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.

  4. Simultaneous estimation of local-scale and flow path-scale dual-domain mass transfer parameters using geoelectrical monitoring

    USGS Publications Warehouse

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Curtis, Gary P.; Lane, John W.

    2013-01-01

    Anomalous solute transport, modeled as rate-limited mass transfer, has an observable geoelectrical signature that can be exploited to infer the controlling parameters. Previous experiments indicate the combination of time-lapse geoelectrical and fluid conductivity measurements collected during ionic tracer experiments provides valuable insight into the exchange of solute between mobile and immobile porosity. Here, we use geoelectrical measurements to monitor tracer experiments at a former uranium mill tailings site in Naturita, Colorado. We use nonlinear regression to calibrate dual-domain mass transfer solute-transport models to field data. This method differs from previous approaches by calibrating the model simultaneously to observed fluid conductivity and geoelectrical tracer signals using two parameter scales: effective parameters for the flow path upgradient of the monitoring point and the parameters local to the monitoring point. We use regression statistics to rigorously evaluate the information content and sensitivity of fluid conductivity and geophysical data, demonstrating multiple scales of mass transfer parameters can simultaneously be estimated. Our results show, for the first time, field-scale spatial variability of mass transfer parameters (i.e., exchange-rate coefficient, porosity) between local and upgradient effective parameters; hence our approach provides insight into spatial variability and scaling behavior. Additional synthetic modeling is used to evaluate the scope of applicability of our approach, indicating greater range than earlier work using temporal moments and a Lagrangian-based Damköhler number. The introduced Eulerian-based Damköhler is useful for estimating tracer injection duration needed to evaluate mass transfer exchange rates that range over several orders of magnitude.

  5. Modeling sugar cane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-01-01

    Agro-Land Surface Models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, a particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of Agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugar cane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS' phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte-Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte-Carlo sampling method associated with the calculation of Partial Ranked Correlation Coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugar cane cultivation in Australia and Brazil. Ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting climate-mediated different sensitivities of modeled sugar cane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  6. Modeling sugarcane yield with a process-based model from site to continental scale: uncertainties arising from model structure and parameter values

    NASA Astrophysics Data System (ADS)

    Valade, A.; Ciais, P.; Vuichard, N.; Viovy, N.; Caubel, A.; Huth, N.; Marin, F.; Martiné, J.-F.

    2014-06-01

    Agro-land surface models (agro-LSM) have been developed from the integration of specific crop processes into large-scale generic land surface models that allow calculating the spatial distribution and variability of energy, water and carbon fluxes within the soil-vegetation-atmosphere continuum. When developing agro-LSM models, particular attention must be given to the effects of crop phenology and management on the turbulent fluxes exchanged with the atmosphere, and the underlying water and carbon pools. A part of the uncertainty of agro-LSM models is related to their usually large number of parameters. In this study, we quantify the parameter-values uncertainty in the simulation of sugarcane biomass production with the agro-LSM ORCHIDEE-STICS, using a multi-regional approach with data from sites in Australia, La Réunion and Brazil. In ORCHIDEE-STICS, two models are chained: STICS, an agronomy model that calculates phenology and management, and ORCHIDEE, a land surface model that calculates biomass and other ecosystem variables forced by STICS phenology. First, the parameters that dominate the uncertainty of simulated biomass at harvest date are determined through a screening of 67 different parameters of both STICS and ORCHIDEE on a multi-site basis. Secondly, the uncertainty of harvested biomass attributable to those most sensitive parameters is quantified and specifically attributed to either STICS (phenology, management) or to ORCHIDEE (other ecosystem variables including biomass) through distinct Monte Carlo runs. The uncertainty on parameter values is constrained using observations by calibrating the model independently at seven sites. In a third step, a sensitivity analysis is carried out by varying the most sensitive parameters to investigate their effects at continental scale. A Monte Carlo sampling method associated with the calculation of partial ranked correlation coefficients is used to quantify the sensitivity of harvested biomass to input parameters on a continental scale across the large regions of intensive sugarcane cultivation in Australia and Brazil. The ten parameters driving most of the uncertainty in the ORCHIDEE-STICS modeled biomass at the 7 sites are identified by the screening procedure. We found that the 10 most sensitive parameters control phenology (maximum rate of increase of LAI) and root uptake of water and nitrogen (root profile and root growth rate, nitrogen stress threshold) in STICS, and photosynthesis (optimal temperature of photosynthesis, optimal carboxylation rate), radiation interception (extinction coefficient), and transpiration and respiration (stomatal conductance, growth and maintenance respiration coefficients) in ORCHIDEE. We find that the optimal carboxylation rate and photosynthesis temperature parameters contribute most to the uncertainty in harvested biomass simulations at site scale. The spatial variation of the ranked correlation between input parameters and modeled biomass at harvest is well explained by rain and temperature drivers, suggesting different climate-mediated sensitivities of modeled sugarcane yield to the model parameters, for Australia and Brazil. This study reveals the spatial and temporal patterns of uncertainty variability for a highly parameterized agro-LSM and calls for more systematic uncertainty analyses of such models.

  7. Snowpack spatial and temporal variability assessment using SMP high-resolution penetrometer

    NASA Astrophysics Data System (ADS)

    Komarov, Anton; Seliverstov, Yuriy; Sokratov, Sergey; Grebennikov, Pavel

    2017-04-01

    This research is focused on study of spatial and temporal variability of structure and characteristics of snowpack, quick identification of layers based on hardness and dispersion values received from snow micro penetrometer (SMP). We also discuss the detection of weak layers and definition of their parameters in non-alpine terrain. As long as it is the first SMP tool available in Russia, our intent is to test it in different climate and weather conditions. During two separate snowpack studies in plain and mountain landscapes, we derived density and grain size profiles by comparing snow density and grain size from snowpits and SMP measurements. The first case study was MSU meteorological observatory test site in Moscow. SMP data was obtained by 6 consecutive measurements along 10 m transects with a horizontal resolution of approximately 50 cm. The detailed description of snowpack structure, density, grain size, air and snow temperature was also performed. By comparing this information, the detailed scheme of snowpack evolution was created. The second case study was in Khibiny mountains. One 10-meter-long transect was made. SMP, density, grain size and snow temperature data was obtained with horizontal resolution of approximately 50 cm. The high-definition profile of snowpack density variation was acquired using received data. The analysis of data reveals high spatial and temporal variability in snow density and layer structure in both horizontal and vertical dimensions. It indicates that the spatial variability is exhibiting similar spatial patterns as surface topology. This suggests a strong influence from such factors as wind and liquid water pressure on the temporal and spatial evolution of snow structure. It was also defined, that spatial variation of snowpack characteristics is substantial even within homogeneous plain landscape, while in high-latitude mountain regions it grows significantly.

  8. Modelisation numerique de l'hydrologie pour l'aide a la gestion des bassins versants, par l'utilisation conjointe des systemes d'information geographique et de la methode des elements finis un nouvel outil pour le developpement durable SAGESS

    NASA Astrophysics Data System (ADS)

    Bel Hadj Kacem, Mohamed Salah

    All hydrological processes are affected by the spatial variability of the physical parameters of the watershed, and also by human intervention on the landscape. The water outflow from a watershed strictly depends on the spatial and temporal variabilities of the physical parameters of the watershed. It is now apparent that the integration of mathematical models into GIS's can benefit both GIS and three-dimension environmental models: a true modeling capability can help the modeling community bridge the gap between planners, scientists, decision-makers and end-users. The main goal of this research is to design a practical tool to simulate run-off water surface using Geographic design a practical tool to simulate run-off water surface using Geographic Information Systems and the simulation of the hydrological behavior by the Finite Element Method.

  9. Characterization of spatial and temporal variability in hydrochemistry of Johor Straits, Malaysia.

    PubMed

    Abdullah, Pauzi; Abdullah, Sharifah Mastura Syed; Jaafar, Othman; Mahmud, Mastura; Khalik, Wan Mohd Afiq Wan Mohd

    2015-12-15

    Characterization of hydrochemistry changes in Johor Straits within 5 years of monitoring works was successfully carried out. Water quality data sets (27 stations and 19 parameters) collected in this area were interpreted subject to multivariate statistical analysis. Cluster analysis grouped all the stations into four clusters ((Dlink/Dmax) × 100<90) and two clusters ((Dlink/Dmax) × 100<80) for site and period similarities. Principal component analysis rendered six significant components (eigenvalue>1) that explained 82.6% of the total variance of the data set. Classification matrix of discriminant analysis assigned 88.9-92.6% and 83.3-100% correctness in spatial and temporal variability, respectively. Times series analysis then confirmed that only four parameters were not significant over time change. Therefore, it is imperative that the environmental impact of reclamation and dredging works, municipal or industrial discharge, marine aquaculture and shipping activities in this area be effectively controlled and managed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Can tintinnids be used for discriminating water quality status in marine ecosystems?

    PubMed

    Feng, Meiping; Zhang, Wuchang; Wang, Weiding; Zhang, Guangtao; Xiao, Tian; Xu, Henglong

    2015-12-30

    Ciliated protozoa have many advantages in bioassessment of water quality. The ability of tintinnids for assessing water quality status was studied during a 7-yearcycle in Jiaozhou Bay of the Yellow Sea, northern China. The samples were collected monthly at four sites with a spatial gradient of environmental pollution. Environmental variables, e.g., temperature, salinity, chlorophyll a (Chl a), dissolved inorganic nitrogen, soluble reactive phosphate (SRP), and soluble active silicate (SRSi), were measured synchronously for comparison with biotic parameters. Results showed that: (1) tintinnid community structures represented significant differences among the four sampling sites; (2) spatial patterns of the tintinnid communities were significantly correlated with environmental variables, especially SRSi and nutrients; and (3) the community structural parameters and the five dominant species were significantly correlated with SRSi and nutrients. We suggested that tintinnids may be used as a potential bioindicator for discriminating water quality status in marine ecosystems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Time evolution of atmospheric parameters and their influence on sea level pressure over the head Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Patra, Anindita; Bhaskaran, Prasad K.; Jose, Felix

    2018-06-01

    A zonal dipole in the observed trends of wind speed and significant wave height over the Head Bay of Bengal region was recently reported in the literature attributed due to the variations in sea level pressure (SLP). The SLP in turn is governed by prevailing atmospheric conditions such as local temperature, humidity, rainfall, atmospheric pressure, wind field distribution, formation of tropical cyclones, etc. The present study attempts to investigate the inter-annual variability of atmospheric parameters and its role on the observed zonal dipole trend in sea level pressure, surface wind speed and significant wave height. It reports on the aspects related to linear trend as well as its spatial variability for several atmospheric parameters: air temperature, geopotential height, omega (vertical velocity), and zonal wind, over the head Bay of Bengal, by analyzing National Centers for Environmental Prediction (NCEP) Reanalysis 2 dataset covering a period of 38 years (1979-2016). Significant warming from sea level to 200 mb pressure level and thereafter cooling above has been noticed during all the seasons. Warming within the troposphere exhibits spatial difference between eastern and western side of the domain. This led to fall in lower tropospheric geopotential height and its east-west variability, exhibiting a zonal dipole pattern across the Head Bay. In the upper troposphere, uplift in geopotential height was found as a result of cooling in higher levels (10-100 mb). Variability in omega also substantiated the observed variations in geopotential height. The study also finds weakening in the upper level westerlies and easterlies. Interestingly, a linear trend in lower tropospheric u-wind component also reveals an east-west dipole pattern over the study region. Further, the study corroborates the reported dipole in trends of sea level pressure, wind speed and significant wave height by evaluating the influence of atmospheric variability on these parameters.

  12. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    NASA Astrophysics Data System (ADS)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  13. Essential climatic variables estimation with satellite imagery

    NASA Astrophysics Data System (ADS)

    Kolotii, A.; Kussul, N.; Shelestov, A.; Lavreniuk, M. S.

    2016-12-01

    According to Sendai Framework for Disaster Risk Reduction 2015 - 2030 Leaf Area Index (LAI) is considered as one of essential climatic variables. This variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes and enables monitoring and quantitative assessment of vegetation state. LAI has added value for such important global resources monitoring tasks as drought mapping and crop yield forecasting with use of data from different sources [1-2]. Remote sensing data from space can be used to estimate such biophysical parameter at regional and national scale. High temporal satellite imagery is usually required to capture main parameters of crop growth [3]. Sentinel-2 mission launched in 2015 be ESA is a source of high spatial and temporal resolution satellite imagery for mapping biophysical parameters. Products created with use of automated Sen2-Agri system deployed during Sen2-Agri country level demonstration project for Ukraine will be compared with our independent results of biophysical parameters mapping. References Shelestov, A., Kolotii, A., Camacho, F., Skakun, S., Kussul, O., Lavreniuk, M., & Kostetsky, O. (2015, July). Mapping of biophysical parameters based on high resolution EO imagery for JECAM test site in Ukraine. In 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 1733-1736 Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., ... & Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 39-44. Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. Parcel-Based Crop Classification in Ukraine Using Landsat-8 Data and Sentinel-1A Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 9 (6), 2500-2508.

  14. Spatial scale of land-use impacts on riverine drinking source water quality

    NASA Astrophysics Data System (ADS)

    Hurley, Tim; Mazumder, Asit

    2013-03-01

    Drinking water purveyors are increasingly relying on land conservation and management to ensure the safety of the water that they provide to consumers. To cost-effectively implement any such landscape initiatives, resources must be targeted to the appropriate spatial scale to address quality impairments of concern in a cost-effective manner. Using data gathered from 40 Canadian rivers across four ecozones, we examined the spatial scales at which land use was most closely associated with drinking source water quality metrics. Exploratory linear mixed-effects models accounting for climatic, hydrological, and physiographic variation among sites suggested that different spatial areas of land-use influence drinking source water quality depending on the parameter and season investigated. Escherichia coli spatial variability was only associated with land use at a local (5-10 km) spatial scale. Turbidity measures exhibited a complex association with land use, suggesting that the land-use areas of greatest influence can range from a 1 km subcatchment to the entire watershed depending on the season. Total organic carbon concentrations were only associated with land use characterized at the entire watershed scale. The Canadian Council of Ministers of the Environment Water Quality Index was used to calculate a composite measure of seasonal drinking source water quality but did not provide additional information beyond the analyses of individual parameters. These results suggest that entire watershed management is required to safeguard drinking water sources with more focused efforts at targeted spatial scales to reduce specific risk parameters.

  15. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  16. Rupture Propagation for Stochastic Fault Models

    NASA Astrophysics Data System (ADS)

    Favreau, P.; Lavallee, D.; Archuleta, R.

    2003-12-01

    The inversion of strong motion data of large earhquakes give the spatial distribution of pre-stress on the ruptured faults and it can be partially reproduced by stochastic models, but a fundamental question remains: how rupture propagates, constrained by the presence of spatial heterogeneity? For this purpose we investigate how the underlying random variables, that control the pre-stress spatial variability, condition the propagation of the rupture. Two stochastic models of prestress distributions are considered, respectively based on Cauchy and Gaussian random variables. The parameters of the two stochastic models have values corresponding to the slip distribution of the 1979 Imperial Valley earthquake. We use a finite difference code to simulate the spontaneous propagation of shear rupture on a flat fault in a 3D continuum elastic body. The friction law is the slip dependent friction law. The simulations show that the propagation of the rupture front is more complex, incoherent or snake-like for a prestress distribution based on Cauchy random variables. This may be related to the presence of a higher number of asperities in this case. These simulations suggest that directivity is stronger in the Cauchy scenario, compared to the smoother rupture of the Gauss scenario.

  17. Black Sea spectral bio-optical models based on satellite data and their applications for assessment of spatial and temporal variability in waters transparency, chlorophyll a content and primary production

    NASA Astrophysics Data System (ADS)

    Churilova, T.; Suslin, V.

    2012-04-01

    Satellite observations of ocean color provide a unique opportunity in oceanography to assess productivity of the sea on different spatial and temporal scales. However it has been shown that the standard SeaWiFS algorithm generally overestimates summer chlorophyll concentration and underestimates pigment content during spring phytoplankton bloom in comparison with in situ measurements. It is required to develop regional algorithms which are based on biooptical characteristics typical for the Sea and consequently could be used for correct transformation of spectral features of water-leaving radiance to chlorophyll a concentrations (Chl), light absorption features of suspended and dissolved organic matter (CDM), downwelling light attenuation coefficient/euphotic zone depth (PAR1%) and rate of primary synthesis of organic substances (PP). The numerous measurements of light absorption spectra of phytoplankton, non-algal particles and coloured dissolved organic matter carried out since 1996 in different seasons and regions of the Black Sea allowed to make a parameterization of the light absorption by all optically active components. Taking into account regional peculiarities of the biooptical parameters, their difference between seasons, shallow and deep-waters, their depth-dependent variability within photosynthetic zone regional spectral models for estimation of chlorophyll a concentration (Chl Model), colored dissolved and suspended organic matter absorption (CDM Model), downwelling irradiance (PAR Model) and primary production (PP Model) have been developed based on satellite data. Test of validation of models showed appropriate accuracy of the models. The developed models have been applied for estimation of spatial/temporal variability of chlorophyll a, dissolved organic matter concentrations, waters transparency, euphotic zone depth and primary production based on SeaWiFS data. Two weeks averaged maps of spatial distribution of these parameters have been composed for period from 1998 to 2009 (most of them presented on site http://blackseacolor.com/browser3.html). Comparative analysis of long-term series (since 1998) of these parameters with subsurface water temperature (SST) and solar radiance of the sea surface (PAR-0m) revealed the key factors determining the seasonal and inter-annual variations of Chl, PAR1%, CDM, PP. The seasonal dynamics of these parameters were more pronounced compared with inter-annual variability. The later was related to climate effect. In deep-waters region relatively lower SST during cold winters were forcing more intensive winter-spring phytoplankton bloom. In north-western shelf inter-annual variability in river (Danube) run off, which was related to climate change as well, determined year-to-year changing in Chl, CDM, PAR1%, and PP.

  18. Effect of spatial averaging on multifractal properties of meteorological time series

    NASA Astrophysics Data System (ADS)

    Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika

    2016-04-01

    Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.

  19. Longterm and spatial variability of Aerosol optical properties measured by sky radiometer in Japan sites

    NASA Astrophysics Data System (ADS)

    Aoki, K.

    2016-12-01

    Aerosols and cloud play an important role in the climate change. We started the long-term monitoring of aerosol and cloud optical properties since 1990's by using sky radiometer (POM-01, 02; Prede Co. Ltd., Japan). We provide the information, in this presentation, on the aerosol optical properties with respect to their temporal and spatial variability in Japan site (ex. Sapporo, Toyama, Kasuga and etc). The global distributions of aerosols have been derived from earth observation satellite and have been simulated in numerical models, which assume optical parameters. However, these distributions are difficult to derive because of variability in time and space. Therefore, Aerosol optical properties were investigated using the measurements from ground-based and ship-borne sky radiometer. The sky radiometer is an automatic instrument that takes observations only in daytime under the clear sky conditions. Observation of diffuse solar intensity interval was made every ten or five minutes by once. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability in Japan area. In this study, we present the temporal and spatial variability of Aerosol optical properties at several Japan sites, applied to validation of satellite and numerical models. This project is validation satellite of GCOM-C, JAXA. The GCOM-C satellite scheduled to be launched in early 2017.

  20. Test systems for measuring ocular parameters and visual function in mice.

    PubMed

    Schaeffel, Frank

    2008-05-01

    New techniques are described to measure refractive state, pupil responses, corneal curvature, ocular dimensions and spatial vision in mice. These variables are important for studies on myopia development in mice, but they are also valuable for phenotyping mouse mutants and for pharmacological studies.

  1. Lake Superior: Nearshore Variability and a Landscape Driver Concept

    EPA Science Inventory

    High spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches are also observed and found to be robust across a seasonal time frame. Less is known about robustness of inter-annual variation wi...

  2. Assessing the Importance of Incorporating Spatial and Temporal Variability of Soil and Plant Parameters into Local Water Balance Models for Precision Agriculture: Investigations within a California Vineyard

    NASA Astrophysics Data System (ADS)

    Hubbard, S.; Pierce, L.; Grote, K.; Rubin, Y.

    2003-12-01

    Due Due to the high cash crop nature of premium winegrapes, recent research has focused on developing a better understanding of the factors that influence winegrape spatial and temporal variability. Precision grapevine irrigation schemes require consideration of the factors that regulate vineyard water use such as (1) plant parameters, (2) climatic conditions, and (3) water availability in the soil as a function of soil texture. The inability to sample soil and plant parameters accurately, at a dense enough resolution, and over large enough areas has limited previous investigations focused on understanding the influences of soil water and vegetation on water balance at the local field scale. We have acquired several novel field data sets to describe the small scale (decimeters to a hundred meters) spatial variability of soil and plant parameters within a 4 acre field study site at the Robert Mondavi Winery in Napa County, California. At this site, we investigated the potential of ground penetrating radar data (GPR) for providing estimates of near surface water content. Calibration of grids of 900 MHz GPR groundwave data with conventional soil moisture measurements revealed that the GPR volumetric water content estimation approach was valid to within 1 percent accuracy, and that the data grids provided unparalleled density of soil water content over the field site as a function of season. High-resolution airborne multispectral remote sensing data was also collected at the study site, which was converted to normalized difference vegetation index (NDVI) and correlated to leaf area index (LAI) using plant-based measurements within a parallel study. Meteorological information was available from a weather station of the California Irrigation management Information System, located less than a mile from our study area. The measurements were used within a 2-D Vineyard Soil Irrigation Model (VSIM), which can incorporate the spatially variable, high-resolution soil and plant-based information. VSIM, which is based on the concept that equilibrium exists between climate, soils, and LAI, was used to simulate vine water stress, water use, and irrigation requirements during a single year for the site. Using the simple water-balance model with the dense characterization data, we will discuss: (1) the ability to predict vineyard soil water content at the small scales of soil heterogeneity that are observed in nature at the local-scale, (2) the relative importance of plant, climate, and soil information to predictions of the soil water balance at the site, (3) the influence of crop cover in the water balance predictions.

  3. Scale effects on spatially varying relationships between urban landscape patterns and water quality.

    PubMed

    Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run

    2014-08-01

    Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.

  4. Relationships between northern Adriatic Sea mucilage events and climate variability.

    PubMed

    Deserti, Marco; Cacciamani, Carlo; Chiggiato, Jacopo; Rinaldi, Attilio; Ferrari, Carla R

    2005-12-15

    A long term analysis (1865-2002) of meteorological data collected in the Po Valley and Northern Adriatic Basin have been analysed to find possible links between variability in the climatic parameters and the phenomenon of mucilage. Seasonal anomalies of temperature, calculated as spatial mean over the Po Valley area, and anomalies of North Atlantic Oscillation were compared with the historical record of mucilage episodes. Both climatic indices were found to be positively correlated with mucilage events, suggesting a possible relationship between climatic variability and the increased appearance of mucilage aggregates.

  5. On the distributions of annual and seasonal daily rainfall extremes in central Arizona and their spatial variability

    NASA Astrophysics Data System (ADS)

    Mascaro, Giuseppe

    2018-04-01

    This study uses daily rainfall records of a dense network of 240 gauges in central Arizona to gain insights on (i) the variability of the seasonal distributions of rainfall extremes; (ii) how the seasonal distributions affect the shape of the annual distribution; and (iii) the presence of spatial patterns and orographic control for these distributions. For this aim, recent methodological advancements in peak-over-threshold analysis and application of the Generalized Pareto Distribution (GPD) were used to assess the suitability of the GPD hypothesis and improve the estimation of its parameters, while limiting the effect of short sample sizes. The distribution of daily rainfall extremes was found to be heavy-tailed (i.e., GPD shape parameter ξ > 0) during the summer season, dominated by convective monsoonal thunderstorms. The exponential distribution (a special case of GPD with ξ = 0) was instead showed to be appropriate for modeling wintertime daily rainfall extremes, mainly caused by cold fronts transported by westerly flow. The annual distribution exhibited a mixed behavior, with lighter upper tails than those found in summer. A hybrid model mixing the two seasonal distributions was demonstrated capable of reproducing the annual distribution. Organized spatial patterns, mainly controlled by elevation, were observed for the GPD scale parameter, while ξ did not show any clear control of location or orography. The quantiles returned by the GPD were found to be very similar to those provided by the National Oceanic and Atmospheric Administration (NOAA) Atlas 14, which used the Generalized Extreme Value (GEV) distribution. Results of this work are useful to improve statistical modeling of daily rainfall extremes at high spatial resolution and provide diagnostic tools for assessing the ability of climate models to simulate extreme events.

  6. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Moharana, Shreedevi; Dutta, Subashisa

    2016-12-01

    Chlorophyll and nitrogen are the most essential parameters for paddy crop growth. Spectroradiometric measurements were collected at canopy level during critical growth period of rice. Chemical analysis was performed to quantify the total leaf content. By exploiting the ground based measurements, regression models were established for chlorophyll and nitrogen aimed indices with their corresponding crop growth variables. Vegetation index models were developed for mapping these parameters from Hyperion imagery in an agriculture system. It was inferred that the present Simple Ratio (SR) and Leaf Nitrogen Concentration (LNC) indices, which followed a linear and nonlinear relationship respectively, were completely different from published Tian et al. (2011). The nitrogen content varied widely from 1 to 4% and only 2 to 3% for paddy crop using present modified index models and Tian et al. (2011) respectively. The modified LNC index model performed better than the established Tian et al. (2011) model as far as estimated nitrogen content from Hyperion imagery was concerned. Furthermore, within the observed chlorophyll range obtained from the studied rice varieties grown in the rice agriculture system, the index models (LNC, OASVI, Gitelson, mSR and MTCI) performed well in the spatial distribution of rice chlorophyll content from Hyperion imagery. Spatial distribution of total chlorophyll content varied widely from 1.77 to 5.81 mg/g (LNC), 3.0 to 13 mg/g (OASVI), 0.5 to 10.43 mg/g (Gitelson), 2.18 to 10.61 mg/g (mSR) and 2.90 to 5.40 mg/g (MTCI). The spatial information of these parameters will help in proper nutrient management, yield forecasting, and will serve as inputs for crop growth and forecasting models for a precision rice agriculture system.

  7. Spatiotemporal variation in reproductive parameters of yellow-bellied marmots.

    PubMed

    Ozgul, Arpat; Oli, Madan K; Olson, Lucretia E; Blumstein, Daniel T; Armitage, Kenneth B

    2007-11-01

    Spatiotemporal variation in reproductive rates is a common phenomenon in many wildlife populations, but the population dynamic consequences of spatial and temporal variability in different components of reproduction remain poorly understood. We used 43 years (1962-2004) of data from 17 locations and a capture-mark-recapture (CMR) modeling framework to investigate the spatiotemporal variation in reproductive parameters of yellow-bellied marmots (Marmota flaviventris), and its influence on the realized population growth rate. Specifically, we estimated and modeled breeding probabilities of two-year-old females (earliest age of first reproduction), >2-year-old females that have not reproduced before (subadults), and >2-year-old females that have reproduced before (adults), as well as the litter sizes of two-year old and >2-year-old females. Most reproductive parameters exhibited spatial and/or temporal variation. However, reproductive parameters differed with respect to their relative influence on the realized population growth rate (lambda). Litter size had a stronger influence than did breeding probabilities on both spatial and temporal variations in lambda. Our analysis indicated that lambda was proportionately more sensitive to survival than recruitment. However, the annual fluctuation in litter size, abetted by the breeding probabilities, accounted for most of the temporal variation in lambda.

  8. TU-C-12A-11: Comparisons Between Cu-ATSM PET and DCE-CT Kinetic Parameters in Canine Sinonasal Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Fontaine, M; Bradshaw, T; Kubicek, L

    2014-06-15

    Purpose: Regions of poor perfusion within tumors may be associated with higher hypoxic levels. This study aimed to test this hypothesis by comparing measurements of hypoxia from Cu-ATSM PET to vasculature kinetic parameters from DCE-CT kinetic analysis. Methods: Ten canine patients with sinonasal tumors received one Cu-ATSM PET/CT scan and three DCE-CT scans prior to treatment. Cu-ATSM PET/CT and DCE-CT scans were registered and resampled to matching voxel dimensions. Kinetic analysis was performed on DCE-CT scans and for each patient, the resulting kinetic parameter values from the three DCE-CT scans were averaged together. Cu-ATSM SUVs were spatially correlated (r{sub spatial})more » on a voxel-to-voxel basis against the following DCE-CT kinetic parameters: transit time (t{sub 1}), blood flow (F), vasculature fraction (v{sub 1}), and permeability (PS). In addition, whole-tumor comparisons were performed by correlating (r{sub ROI}) the mean Cu-ATSM SUV (SUV{sub mean}) with median kinetic parameter values. Results: The spatial correlations (r{sub spatial}) were poor and ranged from -0.04 to 0.21 for all kinetic parameters. These low spatial correlations may be due to high variability in the DCE-CT kinetic parameter voxel values between scans. In our hypothesis, t{sub 1} was expected to have a positive correlation, while F was expected to have a negative correlation to hypoxia. However, in wholetumor analysis the opposite was found for both t{sub 1} (r{sub ROI} = -0.25) and F (r{sub ROI} = 0.56). PS and v{sub 1} may depict angiogenic responses to hypoxia and found positive correlations to Cu-ATSM SUV for PS (r{sub ROI} = 0.41), and v{sub 1} (r{sub ROI} = 0.57). Conclusion: Low spatial correlations were found between Cu-ATSM uptake and DCE-CT vasculature parameters, implying that poor perfusion is not associated with higher hypoxic regions. Across patients, the most hypoxic tumors tended to have higher blood flow values, which is contrary to our initial hypothesis. Funding: R01 CA136927.« less

  9. Adaptation of a pattern-scaling approach for assessment of local (village/valley) scale water resources and related vulnerabilities in the Upper Indus Basin

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.

    2010-05-01

    The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential sites for medium-scale infrastructure projects. These catchments are placed in their context within the hydrological regime classification using the spatial data and (remote sensing) observations as well as river gauging measurements. The study assesses the degree of similarity with the larger basins of the same hydrological regime. This assessment focuses on the measured response to observed climate variable anomalies. The smallest scale considered is comprised of a number of case studies at the ungauged village/valley scale. These examples are based on the delineation of areas to which specific communities (villages) have customary (riparian) water rights. These examples were suggested by non-governmental organisations working on grassroots economic development initiatives and small-scale infrastructure projects in the region. The direct observations available for these subcatchments are limited to spatial data (elevation, snow parameters). The challenge at this level is to accurately extrapolate areal values (precipitation, temperature, runoff) from point observations at the basin scale. The study assesses both the degree of similarity in the distribution of spatial parameters to the larger gauged basins and the interannual variability (spatial heterogeneity) of remotely-sensed snow cover and snow-water-equivalent at this subcatchment scale. Based upon the characterisation of spatial and interannual variability at these three spatial scales, the challenges facing local water resource managers and infrastructure operators are enumerated. Local vulnerabilities include, but are not limited to, varying thresholds in irrigation water requirements based on crop-type, minimum base flows for micro-hydropower generation during winter (high load) months and relatively small but growing demand for domestic water usage. In conclusion the study posits potential strategies for managing interannual variability and potential emerging trends. Suggested strategies are guided by the principles of low-risk adaptation, participative decision making and local capacity building.

  10. On the potential for the Partial Triadic Analysis to grasp the spatio-temporal variability of groundwater hydrochemistry

    NASA Astrophysics Data System (ADS)

    Gourdol, L.; Hissler, C.; Pfister, L.

    2012-04-01

    The Luxembourg sandstone aquifer is of major relevance for the national supply of drinking water in Luxembourg. The city of Luxembourg (20% of the country's population) gets almost 2/3 of its drinking water from this aquifer. As a consequence, the study of both the groundwater hydrochemistry, as well as its spatial and temporal variations, are considered as of highest priority. Since 2005, a monitoring network has been implemented by the Water Department of Luxembourg City, with a view to a more sustainable management of this strategic water resource. The data collected to date forms a large and complex dataset, describing spatial and temporal variations of many hydrochemical parameters. The data treatment issue is tightly connected to this kind of water monitoring programs and complex databases. Standard multivariate statistical techniques, such as principal components analysis and hierarchical cluster analysis, have been widely used as unbiased methods for extracting meaningful information from groundwater quality data and are now classically used in many hydrogeological studies, in particular to characterize temporal or spatial hydrochemical variations induced by natural and anthropogenic factors. But these classical multivariate methods deal with two-way matrices, usually parameters/sites or parameters/time, while often the dataset resulting from qualitative water monitoring programs should be seen as a datacube parameters/sites/time. Three-way matrices, such as the one we propose here, are difficult to handle and to analyse by classical multivariate statistical tools and thus should be treated with approaches dealing with three-way data structures. One possible analysis approach consists in the use of partial triadic analysis (PTA). The PTA was previously used with success in many ecological studies but never to date in the domain of hydrogeology. Applied to the dataset of the Luxembourg Sandstone aquifer, the PTA appears as a new promising statistical instrument for hydrogeologists, in particular to characterize temporal and spatial hydrochemical variations induced by natural and anthropogenic factors. This new approach for groundwater management offers potential for 1) identifying a common multivariate spatial structure, 2) untapping the different hydrochemical patterns and explaining their controlling factors and 3) analysing the temporal variability of this structure and grasping hydrochemical changes.

  11. Separating foliar physiology from morphology reveals the relative roles of vertically structured transpiration factors within red maple crowns and limitations of larger scale models

    PubMed Central

    Bauerle, William L.; Bowden, Joseph D.

    2011-01-01

    A spatially explicit mechanistic model, MAESTRA, was used to separate key parameters affecting transpiration to provide insights into the most influential parameters for accurate predictions of within-crown and within-canopy transpiration. Once validated among Acer rubrum L. genotypes, model responses to different parameterization scenarios were scaled up to stand transpiration (expressed per unit leaf area) to assess how transpiration might be affected by the spatial distribution of foliage properties. For example, when physiological differences were accounted for, differences in leaf width among A. rubrum L. genotypes resulted in a 25% difference in transpiration. An in silico within-canopy sensitivity analysis was conducted over the range of genotype parameter variation observed and under different climate forcing conditions. The analysis revealed that seven of 16 leaf traits had a ≥5% impact on transpiration predictions. Under sparse foliage conditions, comparisons of the present findings with previous studies were in agreement that parameters such as the maximum Rubisco-limited rate of photosynthesis can explain ∼20% of the variability in predicted transpiration. However, the spatial analysis shows how such parameters can decrease or change in importance below the uppermost canopy layer. Alternatively, model sensitivity to leaf width and minimum stomatal conductance was continuous along a vertical canopy depth profile. Foremost, transpiration sensitivity to an observed range of morphological and physiological parameters is examined and the spatial sensitivity of transpiration model predictions to vertical variations in microclimate and foliage density is identified to reduce the uncertainty of current transpiration predictions. PMID:21617246

  12. Monte Carlo-based assessment of the trade-off between spatial resolution, field-of-view and scattered radiation in the variable resolution X-ray CT scanner.

    PubMed

    Arabi, Hossein; Kamali Asl, Ali Reza; Ay, Mohammad Reza; Zaidi, Habib

    2015-07-01

    The purpose of this work is to evaluate the impact of optimization of magnification on performance parameters of the variable resolution X-ray (VRX) CT scanner. A realistic model based on an actual VRX CT scanner was implemented in the GATE Monte Carlo simulation platform. To evaluate the influence of system magnification, spatial resolution, field-of-view (FOV) and scatter-to-primary ratio of the scanner were estimated for both fixed and optimum object magnification at each detector rotation angle. Comparison and inference between these performance parameters were performed angle by angle to determine appropriate object position at each opening half angle. Optimization of magnification resulted in a trade-off between spatial resolution and FOV of the scanner at opening half angles of 90°-12°, where the spatial resolution increased up to 50% and the scatter-to-primary ratio decreased from 4.8% to 3.8% at a detector angle of about 90° for the same FOV and X-ray energy spectrum. The disadvantage of magnification optimization at these angles is the significant reduction of the FOV (up to 50%). Moreover, magnification optimization was definitely beneficial for opening half angles below 12° improving the spatial resolution from 7.5 cy/mm to 20 cy/mm. Meanwhile, the FOV increased by more than 50% at these angles. It can be concluded that optimization of magnification is essential for opening half angles below 12°. For opening half angles between 90° and 12°, the VRX CT scanner magnification should be set according to the desired spatial resolution and FOV. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. A quantum relativistic battle of the sexes cellular automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Situ, Haozhen

    2017-02-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated battle of the sexes game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests. Despite the full range of quantum parameters initially accessible, they promptly converge into fairly stable configurations, that often show rich spatial structures in simulations with no negligible entanglement.

  14. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keser, Saniye; Duzgun, Sebnem; Department of Geodetic and Geographic Information Technologies, Middle East Technical University, 06800 Ankara

    Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation datamore » is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to plan waste management activities at local scale including waste minimization, collection, treatment, and disposal. At global scale, the MSW generation rates in Turkey are significantly related to unemployment rate and asphalt-paved roads ratio. Yet, significances of these variables may diminish at local scale for some provinces. At local scale, different factors may be important in affecting MSW generation rates.« less

  15. A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments

    NASA Technical Reports Server (NTRS)

    Franklin, Rima B.; Blum, Linda K.; McComb, Alison C.; Mills, Aaron L.

    2002-01-01

    Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia's eastern shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%); significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples (vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes controlled by distance from the creek bank. c2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  16. Multisite-multivariable sensitivity analysis of distributed watershed models: enhancing the perceptions from computationally frugal methods

    USDA-ARS?s Scientific Manuscript database

    This paper assesses the impact of different likelihood functions in identifying sensitive parameters of the highly parameterized, spatially distributed Soil and Water Assessment Tool (SWAT) watershed model for multiple variables at multiple sites. The global one-factor-at-a-time (OAT) method of Morr...

  17. Lake Superior: Nearshore Variability and a Landscape Driver Concept (journal article)

    EPA Science Inventory

    Spatial variation is well known to exist in water quality parameters of the Great Lakes nearshore, however strong patterns for extended reaches also have been observed and found to be robust across seasonal time frames. Less is known about robustness of inter-annual variation wi...

  18. Assessing spatial variability of soil properties and ions associated to salinity using the multifractal approach

    NASA Astrophysics Data System (ADS)

    Machado Siqueira, Glécio; Soares da Silva, Jucicleia; Farías França e Silva, Ênio; Lado, Marcos; Paz-González, Antonio; Vidal-Vázquez, Eva

    2017-04-01

    The lowlands coastal region of the state of Pernambuco, Northeast of Brazil, was formerly covered by humid Atlantic forest (Mata Atlântica) and then has been increasingly devoted to Sugar cane production. Because the water table is near to the soil surface salinity can occur in this area. The objective of this study was to assess the scale dependence of parameters associated to soil salinity and ions responsible for salination using multifractal analysis. The field work was conducted at an experimental field located in the Goiania municipality, Pernambuco, Brazil. This site is located 10 km east from the Atlantic coast. The field has been devoted to monoculture of sugarcane (Saccharum of?cinarum sp.) since 25 years. The climate of the region is tropical, with average annual temperature of 24°C and 1800 mm of precipitation per year. Soil was sampled every 3 m at 128 locations across a 384 m transect at a depth of 0-20 cm. The soil samples were analysed for pH, electrical conductivity (EC), Na+, K+, Ca2+, Mg2+, Cl- and SO4-2; also sodium adsorption ratio (SAR) was calculated. The spatial distributions of all the studied variables associated to soil salinity exhibited multifractal behaviour. Although all the variables studied exhibited a very strong power law scaling, different degrees of multifractality, assessed by differences in the amplitude and several selected parameters of the generalized dimension and singularity spectrum curves, have been appreciated. The multifractal approach gives a good description of the patterns of spatial variability of properties and ions describing soil salinity, and allows discriminating differences between them.

  19. Spatial effects of aboveground biomass on soil ecological parameters and trace gas fluxes in a savannah ecosystem of Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2015-04-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation in this area consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. Canopy structure is known to affect microclimate, throughfall and evapotranspiration and thereby controls soil moisture conditions. Consequently, the canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine trends and changes of soil parameters and relate their spatial variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. Distances were calculated in relation to the crown radius. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass carbon C and N, soil respiration as well as root biomass and -density, soil temperature and soil water content. Each tree was characterized by crown spread, leaf area index and basal area. Preliminary results show that C and N stocks decreased about 50% with depth independently of distance to the tree. Soil water content under the tree crown increased with depth while it decreased under grass cover. Microbial Biomass C and N in the upper 10 cm decreased with distance (C: r²=0.22, p<0.001; N: r²=0.3, p<0.001) as well as total soil respiration. This decrease was affected by tree size but independent from tree species. We conclude that savannah ecosystems exhibit a large spatial variability of soil parameters within the upper horizons which is strongly depend on the structure of aboveground biomass.

  20. An efficient deterministic-probabilistic approach to modeling regional groundwater flow: 2. Application to Owens Valley, California

    USGS Publications Warehouse

    Guymon, Gary L.; Yen, Chung-Cheng

    1990-01-01

    The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.

  1. An efficient deterministic-probabilistic approach to modeling regional groundwater flow: 2. Application to Owens Valley, California

    NASA Astrophysics Data System (ADS)

    Guymon, Gary L.; Yen, Chung-Cheng

    1990-07-01

    The applicability of a deterministic-probabilistic model for predicting water tables in southern Owens Valley, California, is evaluated. The model is based on a two-layer deterministic model that is cascaded with a two-point probability model. To reduce the potentially large number of uncertain variables in the deterministic model, lumping of uncertain variables was evaluated by sensitivity analysis to reduce the total number of uncertain variables to three variables: hydraulic conductivity, storage coefficient or specific yield, and source-sink function. Results demonstrate that lumping of uncertain parameters reduces computational effort while providing sufficient precision for the case studied. Simulated spatial coefficients of variation for water table temporal position in most of the basin is small, which suggests that deterministic models can predict water tables in these areas with good precision. However, in several important areas where pumping occurs or the geology is complex, the simulated spatial coefficients of variation are over estimated by the two-point probability method.

  2. Methodology to study the three-dimensional spatial distribution of prostate cancer and their dependence on clinical parameters

    PubMed Central

    Rojas, Kristians Diaz; Montero, Maria L.; Yao, Jorge; Messing, Edward; Fazili, Anees; Joseph, Jean; Ou, Yangming; Rubens, Deborah J.; Parker, Kevin J.; Davatzikos, Christos; Castaneda, Benjamin

    2015-01-01

    Abstract. A methodology to study the relationship between clinical variables [e.g., prostate specific antigen (PSA) or Gleason score] and cancer spatial distribution is described. Three-dimensional (3-D) models of 216 glands are reconstructed from digital images of whole mount histopathological slices. The models are deformed into one prostate model selected as an atlas using a combination of rigid, affine, and B-spline deformable registration techniques. Spatial cancer distribution is assessed by counting the number of tumor occurrences among all glands in a given position of the 3-D registered atlas. Finally, a difference between proportions is used to compare different spatial distributions. As a proof of concept, we compare spatial distributions from patients with PSA greater and less than 5  ng/ml and from patients older and younger than 60 years. Results suggest that prostate cancer has a significant difference in the right zone of the prostate between populations with PSA greater and less than 5  ng/ml. Age does not have any impact in the spatial distribution of the disease. The proposed methodology can help to comprehend prostate cancer by understanding its spatial distribution and how it changes according to clinical parameters. Finally, this methodology can be easily adapted to other organs and pathologies. PMID:26236756

  3. An Investigation on the Spatial Variability of Manning Roughness Coefficients in Continental-scale River Routing Simulations

    NASA Astrophysics Data System (ADS)

    Luo, X.; Hong, Y.; Lei, X.; Leung, L. R.; Li, H. Y.; Getirana, A.

    2017-12-01

    As one essential component of the Earth system modeling, the continental-scale river routing computation plays an important role in applications of Earth system models, such as evaluating the impacts of the global change on water resources and flood hazards. The streamflow timing, which depends on the modeled flow velocities, can be an important aspect of the model results. River flow velocities have been estimated by using the Manning's equation where the Manning roughness coefficient is a key and sensitive parameter. In some early continental-scale studies, the Manning coefficient was determined with simplified methods, such as using a constant value for the entire basin. However, large spatial variability is expected in the Manning coefficients for the numerous channels composing the river network in distributed continental-scale hydrologic modeling. In the application of a continental-scale river routing model in the Amazon Basin, we use spatially varying Manning coefficients dependent on channel sizes and attempt to represent the dominant spatial variability of Manning coefficients. Based on the comparisons of simulation results with in situ streamflow records and remotely sensed river stages, we investigate the comparatively optimal Manning coefficients and explicitly demonstrate the advantages of using spatially varying Manning coefficients. The understanding obtained in this study could be helpful in the modeling of surface hydrology at regional to continental scales.

  4. Time-dependent landslide probability mapping

    USGS Publications Warehouse

    Campbell, Russell H.; Bernknopf, Richard L.; ,

    1993-01-01

    Case studies where time of failure is known for rainfall-triggered debris flows can be used to estimate the parameters of a hazard model in which the probability of failure is a function of time. As an example, a time-dependent function for the conditional probability of a soil slip is estimated from independent variables representing hillside morphology, approximations of material properties, and the duration and rate of rainfall. If probabilities are calculated in a GIS (geomorphic information system ) environment, the spatial distribution of the result for any given hour can be displayed on a map. Although the probability levels in this example are uncalibrated, the method offers a potential for evaluating different physical models and different earth-science variables by comparing the map distribution of predicted probabilities with inventory maps for different areas and different storms. If linked with spatial and temporal socio-economic variables, this method could be used for short-term risk assessment.

  5. Spatial generalised linear mixed models based on distances.

    PubMed

    Melo, Oscar O; Mateu, Jorge; Melo, Carlos E

    2016-10-01

    Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.

  6. A dam-reservoir module for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2017-04-01

    Developing modeling tools that help to assess the spatial distribution of water resources is a key issue to achieve better solutions for the optimal management of water availability among users in a river basin. Streamflow dynamics depends on (i) the spatial variability of rainfall, (ii) the heterogeneity of catchment behavior and response, and (iii) local human regulations (e.g., reservoirs) that store and control surface water. These aspects can be successfully handled by distributed or semi-distributed hydrological models. In this study, we develop a dam-reservoir module within a semi-distributed rainfall-runoff model (de Lavenne et al. 2016). The model runs at the daily time step, and has five parameters for each sub-catchment as well as a streamflow velocity parameter for flow routing. Its structure is based on two stores, one for runoff production and one for routing. The calibration of the model is performed from upstream to downstream sub-catchments, which efficiently uses spatially-distributed streamflow measurements. In a previous study, Payan et al. (2008) described a strategy to implement a dam module within a lumped rainfall-runoff model. Here we propose to adapt this strategy to a semi-distributed hydrological modelling framework. In this way, the specific location of existing reservoirs inside a river basin is explicitly accounted for. Our goal is to develop a tool that can provide answers to the different issues involved in spatial water management in human-influenced contexts and at large modelling scales. The approach is tested for the Seine basin in France. Results are shown for model performance with and without the dam module. Also, a comparison with the lumped GR5J model highlights the improvements obtained in model performance by considering human influences more explicitly, and by facilitating parameter identifiability. This work opens up new perspectives for streamflow naturalization analyses and scenario-based spatial assessment of water resources under global change. References de Lavenne, A.; Thirel, G.; Andréassian, V.; Perrin, C. & Ramos, M.-H. (2016), 'Spatial variability of the parameters of a semi-distributed hydrological model', PIAHS 373, 87-94. Payan, J.-L.; Perrin, C.; Andréassian, V. & Michel, C. (2008), 'How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?', Water Resour. Res. 44(3), W03420.

  7. Analysis of variance in investigations on anisotropy of Cu ore deposits

    NASA Astrophysics Data System (ADS)

    Namysłowska-Wilczyńska, B.

    1986-10-01

    The problem of variability of copper grades and ore thickness in the Lubin copper ore deposit in southwestern Poland is presented. Results of statistical analysis of variations of ledge parameters carried out for three exploited regions of the mine, representing different types of lithological profile show considerable differences. Variability of copper grades occurs in vertical profiles, as well as on extension of field (the copper-bearing series). Against the background of a complex, well-substantiated description of the spatial variability in the Lubin deposit, a methodology is presented that has been applied for the determination of homogeneous ore blocks. The method is a two-factorial (cross) analysis of variance with the special tests of Tukey, Scheffe and Duncan. Blocks of homogeneous sandstone ore have dimensions of up to 160,000 m2 and 60,000 m2 in the case of the Cu content parameter and 200,000 m2 and 10,000 m2 for the thickness parameter.

  8. Soil Parameter Mapping and Ad Hoc Power Analysis to Increase Blocking Efficiency Prior to Establishing a Long-Term Field Experiment

    PubMed Central

    Collins, Doug; Benedict, Chris; Bary, Andy; Cogger, Craig

    2015-01-01

    The spatial heterogeneity of soil and weed populations poses a challenge to researchers. Unlike aboveground variability, below-ground variability is more difficult to discern without a strategic soil sampling pattern. While blocking is commonly used to control environmental variation, this strategy is rarely informed by data about current soil conditions. Fifty georeferenced sites were located in a 0.65 ha area prior to establishing a long-term field experiment. Soil organic matter (OM) and weed seed bank populations were analyzed at each site and the spatial structure was modeled with semivariograms and interpolated with kriging to map the surface. These maps were used to formulate three strategic blocking patterns and the efficiency of each pattern was compared to a completely randomized design and a west to east model not informed by soil variability. Compared to OM, weeds were more variable across the landscape and had a shorter range of autocorrelation, and models to increase blocking efficiency resulted in less increase in power. Weeds and OM were not correlated, so no model examined improved power equally for both parameters. Compared to the west to east blocking pattern, the final blocking pattern chosen resulted in a 7-fold increase in power for OM and a 36% increase in power for weeds. PMID:26247056

  9. Effects of gender, imagery ability, and sports practice on the performance of a mental rotation task.

    PubMed

    Habacha, Hamdi; Molinaro, Corinne; Dosseville, Fabrice

    2014-01-01

    Mental rotation is one of the main spatial abilities necessary in the spatial transformation of mental images and the manipulation of spatial parameters. Researchers have shown that mental rotation abilities differ between populations depending on several variables. This study uses a mental rotation task to investigate effects of several factors on the spatial abilities of 277 volunteers. The results demonstrate that high and low imagers performed equally well on this tasks. Athletes outperformed nonathletes regardless of their discipline, and athletes with greater expertise outperformed those with less experience. The results replicate the previously reported finding that men exhibit better spatial abilities than women. However, with high amounts of practice, the women in the current study were able to perform as well as men.

  10. Comprehensive non-dimensional normalization of gait data.

    PubMed

    Pinzone, Ornella; Schwartz, Michael H; Baker, Richard

    2016-02-01

    Normalizing clinical gait analysis data is required to remove variability due to physical characteristics such as leg length and weight. This is particularly important for children where both are associated with age. In most clinical centres conventional normalization (by mass only) is used whereas there is a stronger biomechanical argument for non-dimensional normalization. This study used data from 82 typically developing children to compare how the two schemes performed over a wide range of temporal-spatial and kinetic parameters by calculating the coefficients of determination with leg length, weight and height. 81% of the conventionally normalized parameters had a coefficient of determination above the threshold for a statistical association (p<0.05) compared to 23% of those normalized non-dimensionally. All the conventionally normalized parameters exceeding this threshold showed a reduced association with non-dimensional normalization. In conclusion, non-dimensional normalization is more effective that conventional normalization in reducing the effects of height, weight and age in a comprehensive range of temporal-spatial and kinetic parameters. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Estimation of improved resolution soil moisture in vegetated areas using passive AMSR-E data

    NASA Astrophysics Data System (ADS)

    Moradizadeh, Mina; Saradjian, Mohammad R.

    2018-03-01

    Microwave remote sensing provides a unique capability for soil parameter retrievals. Therefore, various soil parameters estimation models have been developed using brightness temperature (BT) measured by passive microwave sensors. Due to the low resolution of satellite microwave radiometer data, the main goal of this study is to develop a downscaling approach to improve the spatial resolution of soil moisture estimates with the use of higher resolution visible/infrared sensor data. Accordingly, after the soil parameters have been obtained using Simultaneous Land Parameters Retrieval Model algorithm, the downscaling method has been applied to the soil moisture estimations that have been validated against in situ soil moisture data. Advance Microwave Scanning Radiometer-EOS BT data in Soil Moisture Experiment 2003 region in the south and north of Oklahoma have been used to this end. Results illustrated that the soil moisture variability is effectively captured at 5 km spatial scales without a significant degradation of the accuracy.

  12. Aquifer Hydrogeologic Layer Zonation at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savelieva-Trofimova, Elena A.; Kanevski, Mikhail; timonin, v.

    2003-09-10

    Sedimentary aquifer layers are characterized by spatial variability of hydraulic properties. Nevertheless, zones with similar values of hydraulic parameters (parameter zones) can be distinguished. This parameter zonation approach is an alternative to the analysis of spatial variation of the continuous hydraulic parameters. The parameter zonation approach is primarily motivated by the lack of measurements that would be needed for direct spatial modeling of the hydraulic properties. The current work is devoted to the problem of zonation of the Hanford formation, the uppermost sedimentary aquifer unit (U1) included in hydrogeologic models at the Hanford site. U1 is characterized by 5 zonesmore » with different hydraulic properties. Each sampled location is ascribed to a parameter zone by an expert. This initial classification is accompanied by a measure of quality (also indicated by an expert) that addresses the level of classification confidence. In the current study, the coneptual zonation map developed by an expert geologist was used as an a priori model. The parameter zonation problem was formulated as a multiclass classification task. Different geostatistical and machine learning algorithms were adapted and applied to solve this problem, including: indicator kriging, conditional simulations, neural networks of different architectures, and support vector machines. All methods were trained using additional soft information based on expert estimates. Regularization methods were used to overcome possible overfitting. The zonation problem was complicated because there were few samples for some zones (classes) and by the spatial non-stationarity of the data. Special approaches were developed to overcome these complications. The comparison of different methods was performed using qualitative and quantitative statistical methods and image analysis. We examined the correspondence of the results with the geologically based interpretation, including the reproduction of the spatial orientation of the different classes and the spatial correlation structure of the classes. The uncertainty of the classification task was examined using both probabilistic interpretation of the estimators and by examining the results of a set of stochastic realizations. Characterization of the classification uncertainty is the main advantage of the proposed methods.« less

  13. Use of Climatic Information In Regional Water Resources Assessment

    NASA Astrophysics Data System (ADS)

    Claps, P.

    Relations between climatic parameters and hydrological variables at the basin scale are investigated, with the aim of evaluating in a parsimonious way physical parameters useful both for a climatic classification of an area and for supporting statistical models of water resources assessment. With reference to the first point, literature methods for distributed evaluation of parameters such as temperature, global and net solar radiation, precipitation, have been considered at the annual scale with the aim of considering the viewpoint of the robust evaluation of parameters based on few basic physical variables of simple determination. Elevation, latitude and average annual number of sunny days have demonstrated to be the essential parameters with respect to the evaluation of climatic indices related to the soil water deficit and to the radiative balance. The latter term was evaluated at the monthly scale and validated (in the `global' term) with measured data. in questo caso riferite al bilancio idrico a scala annuale. Budyko, Thornthwaite and Emberger climatic indices were evaluated on the 10,000 km2 territory of the Basilicata region (southern Italy) based on a 1.1. km grid. They were compared in terms of spatial variability and sensitivity to the variation of the basic variables in humid and semi-arid areas. The use of the climatic index data with respect to statistical parameters of the runoff series in some gauging stations of the region demonstrated the possibility to support regionalisation of the annual runoff using climatic information, with clear distinction of the variability of the coefficient of variation in terms of the humidity-aridity of the basin.

  14. Coupled Effects of non-Newtonian Rheology and Aperture Variability on Flow in a Single Fracture

    NASA Astrophysics Data System (ADS)

    Di Federico, V.; Felisa, G.; Lauriola, I.; Longo, S.

    2017-12-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing and drilling operations, EOR, environmental remediation, and to understand magma intrusions. An important step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is spatially variable. A large bibliography exists on Newtonian and non-Newtonian flow in variable aperture fractures. Ultimately, stochastic or deterministic modeling leads to the flowrate under a given pressure gradient as a function of the parameters describing the aperture variability and the fluid rheology. Typically, analytical or numerical studies are performed adopting a power-law (Oswald-de Waele) model. Yet the power-law model, routinely used e.g. for hydro-fracturing modeling, does not characterize real fluids at low and high shear rates. A more appropriate rheological model is provided by e.g. the four-parameter Carreau constitutive equation, which is in turn approximated by the more tractable truncated power-law model. Moreover, fluids of interest may exhibit yield stress, which requires the Bingham or Herschel-Bulkely model. This study employs different rheological models in the context of flow in variable aperture fractures, with the aim of understanding the coupled effect of rheology and aperture spatial variability with a simplified model. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and i) perpendicular; ii) parallel to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results for the different rheological models are compared with those obtained for the pure power-law. The adoption of the latter model leads to overestimation of the flowrate, more so for large aperture variability. The presence of yield stress also induces significant changes in the resulting flowrate for assigned external pressure gradient.

  15. Behavioral Dynamics in Swimming: The Appropriate Use of Inertial Measurement Units.

    PubMed

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Seifert, Ludovic

    2017-01-01

    Motor control in swimming can be analyzed using low- and high-order parameters of behavior. Low-order parameters generally refer to the superficial aspects of movement (i.e., position, velocity, acceleration), whereas high-order parameters capture the dynamics of movement coordination. To assess human aquatic behavior, both types have usually been investigated with multi-camera systems, as they offer high three-dimensional spatial accuracy. Research in ecological dynamics has shown that movement system variability can be viewed as a functional property of skilled performers, helping them adapt their movements to the surrounding constraints. Yet to determine the variability of swimming behavior, a large number of stroke cycles (i.e., inter-cyclic variability) has to be analyzed, which is impossible with camera-based systems as they simply record behaviors over restricted volumes of water. Inertial measurement units (IMUs) were designed to explore the parameters and variability of coordination dynamics. These light, transportable and easy-to-use devices offer new perspectives for swimming research because they can record low- to high-order behavioral parameters over long periods. We first review how the low-order behavioral parameters (i.e., speed, stroke length, stroke rate) of human aquatic locomotion and their variability can be assessed using IMUs. We then review the way high-order parameters are assessed and the adaptive role of movement and coordination variability in swimming. We give special focus to the circumstances in which determining the variability between stroke cycles provides insight into how behavior oscillates between stable and flexible states to functionally respond to environmental and task constraints. The last section of the review is dedicated to practical recommendations for coaches on using IMUs to monitor swimming performance. We therefore highlight the need for rigor in dealing with these sensors appropriately in water. We explain the fundamental and mandatory steps to follow for accurate results with IMUs, from data acquisition (e.g., waterproofing procedures) to interpretation (e.g., drift correction).

  16. Behavioral Dynamics in Swimming: The Appropriate Use of Inertial Measurement Units

    PubMed Central

    Guignard, Brice; Rouard, Annie; Chollet, Didier; Seifert, Ludovic

    2017-01-01

    Motor control in swimming can be analyzed using low- and high-order parameters of behavior. Low-order parameters generally refer to the superficial aspects of movement (i.e., position, velocity, acceleration), whereas high-order parameters capture the dynamics of movement coordination. To assess human aquatic behavior, both types have usually been investigated with multi-camera systems, as they offer high three-dimensional spatial accuracy. Research in ecological dynamics has shown that movement system variability can be viewed as a functional property of skilled performers, helping them adapt their movements to the surrounding constraints. Yet to determine the variability of swimming behavior, a large number of stroke cycles (i.e., inter-cyclic variability) has to be analyzed, which is impossible with camera-based systems as they simply record behaviors over restricted volumes of water. Inertial measurement units (IMUs) were designed to explore the parameters and variability of coordination dynamics. These light, transportable and easy-to-use devices offer new perspectives for swimming research because they can record low- to high-order behavioral parameters over long periods. We first review how the low-order behavioral parameters (i.e., speed, stroke length, stroke rate) of human aquatic locomotion and their variability can be assessed using IMUs. We then review the way high-order parameters are assessed and the adaptive role of movement and coordination variability in swimming. We give special focus to the circumstances in which determining the variability between stroke cycles provides insight into how behavior oscillates between stable and flexible states to functionally respond to environmental and task constraints. The last section of the review is dedicated to practical recommendations for coaches on using IMUs to monitor swimming performance. We therefore highlight the need for rigor in dealing with these sensors appropriately in water. We explain the fundamental and mandatory steps to follow for accurate results with IMUs, from data acquisition (e.g., waterproofing procedures) to interpretation (e.g., drift correction). PMID:28352243

  17. Quantifying the importance of spatial resolution and other factors through global sensitivity analysis of a flood inundation model

    NASA Astrophysics Data System (ADS)

    Thomas Steven Savage, James; Pianosi, Francesca; Bates, Paul; Freer, Jim; Wagener, Thorsten

    2016-11-01

    Where high-resolution topographic data are available, modelers are faced with the decision of whether it is better to spend computational resource on resolving topography at finer resolutions or on running more simulations to account for various uncertain input factors (e.g., model parameters). In this paper we apply global sensitivity analysis to explore how influential the choice of spatial resolution is when compared to uncertainties in the Manning's friction coefficient parameters, the inflow hydrograph, and those stemming from the coarsening of topographic data used to produce Digital Elevation Models (DEMs). We apply the hydraulic model LISFLOOD-FP to produce several temporally and spatially variable model outputs that represent different aspects of flood inundation processes, including flood extent, water depth, and time of inundation. We find that the most influential input factor for flood extent predictions changes during the flood event, starting with the inflow hydrograph during the rising limb before switching to the channel friction parameter during peak flood inundation, and finally to the floodplain friction parameter during the drying phase of the flood event. Spatial resolution and uncertainty introduced by resampling topographic data to coarser resolutions are much more important for water depth predictions, which are also sensitive to different input factors spatially and temporally. Our findings indicate that the sensitivity of LISFLOOD-FP predictions is more complex than previously thought. Consequently, the input factors that modelers should prioritize will differ depending on the model output assessed, and the location and time of when and where this output is most relevant.

  18. Patterns of Abundance of Seagrasses and Associated Infaunal Communities at Inhaca Island, Mozambique

    NASA Astrophysics Data System (ADS)

    Paula, J.; Fidalgo Ecosta, P.; Martins, A.; Gove, D.

    2001-09-01

    This study was conducted at Inhaca Island, south Mozambique, and focused on three different seagrass associations, dominated respectively by Thalassodendron ciliatum, Thalassia hemprichii and Zostera capensis. The main objective of this study was to compare the three seagrass associations, in what concerns vegetal and associated infaunal communities biomass. The approach was a nested design, which intended to provide information on seasonal effects and variability at decreasing spatial scales. Nested ANOVA was performed for all biological and porewater parameters and a cluster analysis of different biotic and abiotic parameters was performed. Nutrient concentration was consistently higher during the dry period as well as mean values of organic matter. Consistently lower values of chlorophyll a (chl a) were obtained at T. hemprichii meadow sites and the highest values were found at Z. capensis meadow. Phaeopigments have shown an opposite pattern when compared to chl a, and average values were consistently higher during the dry season. There were no net differences of seagrass standing crop during both sampled seasons, however at meadow level major differences were found, and higher biomass was obtained at T. ciliatum meadow, followed by T. hemprichii. Mean values of epibiota have shown that higher biomass was obtained at T. ciliatum meadow, the remaining meadows presented very low values. Meiofauna biomass showed fluctuations between seagrass meadows, stations and also between seasons. Macrofauna biomass showed clear fluctuations between seasons, being strongly more homogeneous during the dry season and highly variable in the wet season. ANOVA results have shown different significance at the different levels of the analysis, suggesting different spatial and temporal patterns and interactions between parameters. The dendrogram produced two main groups of variables, the first one comprised of OM, phaeopigments, nitrites, nitrates, meiofauna, grain size and chl a. The second group comprises pH, macrofauna, ammonia, both seagrass components and epibiota on above-ground seagrass fraction. These two groups of parameters may correspond to different functional components of the seagrass ecosystem. The sediment biotic structure seems largely dependent on detritus-based chains, and has a high degree of spatial variability. On the other hand, macrofauna seems to be more related to the direct influence of seagrass standing crop, probably caused by the increased habitat complexity provided by higher seagrass biomass.

  19. Under-Five Mortality in High Focus States in India: A District Level Geospatial Analysis

    PubMed Central

    Kumar, Chandan; Singh, Prashant Kumar; Rai, Rajesh Kumar

    2012-01-01

    Background This paper examines if, when controlling for biophysical and geographical variables (including rainfall, productivity of agricultural lands, topography/temperature, and market access through road networks), socioeconomic and health care indicators help to explain variations in the under-five mortality rate across districts from nine high focus states in India. The literature on this subject is inconclusive because the survey data, upon which most studies of child mortality rely, rarely include variables that measure these factors. This paper introduces these variables into an analysis of 284 districts from nine high focus states in India. Methodology/Principal Findings Information on the mortality indicator was accessed from the recently conducted Annual Health Survey of 2011 and other socioeconomic and geographic variables from Census 2011, District Level Household and Facility Survey (2007–08), Department of Economics and Statistics Divisions of the concerned states. Displaying high spatial dependence (spatial autocorrelation) in the mortality indicator (outcome variable) and its possible predictors used in the analysis, the paper uses the Spatial-Error Model in an effort to negate or reduce the spatial dependence in model parameters. The results evince that the coverage gap index (a mixed indicator of district wise coverage of reproductive and child health services), female literacy, urbanization, economic status, the number of newborn care provided in Primary Health Centers in the district transpired as significant correlates of under-five mortality in the nine high focus states in India. The study identifies three clusters with high under-five mortality rate including 30 districts, and advocates urgent attention. Conclusion Even after controlling the possible biophysical and geographical variables, the study reveals that the health program initiatives have a major role to play in reducing under-five mortality rate in the high focus states in India. PMID:22629412

  20. Spatial variability of detrended soil plow layer penetrometer resistance transect in a sugarcane field

    NASA Astrophysics Data System (ADS)

    Pérez, Luis D.; Cumbrera, Ramiro; Mato, Juan; Millán, Humberto; Tarquis, Ana M.

    2015-04-01

    Spatial variability of soil properties is relevant for identifying those zones with physical degradation. In this sense, one has to face the problem of identifying the origin and distribution of spatial variability patterns (Brouder et al., 2001; Millán et al., 2012). The objective of the present work was to quantify the spatial structure of soil penetrometer resistance (PR) collected from a transect data consisted of 221 points equidistant. In each sampling, readings were obtained from 0 cm till 70 cm of depth, with an interval of 5 cm (Pérez, 2012). The study was conducted on a Vertisol (Typic Hapludert) dedicated to sugarcane (Saccharum officinarum L.) production during the last sixty years (Pérez et al., 2010). Recently, scaling approach has been applied on the determination of the scaling data properties (Tarquis et al., 2008; Millán et al., 2012; Pérez, 2012). We focus in the Hurst analysis to characterize the data variability for each depth. Previously a detrended analysis was conducted in order to better study de intrinsic variability of the series. The Hurst exponent (H) for each depth was estimated showing a characteristic pattern and differentiating PR evolution in depth. References Brouder, S., Hofmann, B., Reetz, H.F., 2001. Evaluating spatial variability of soil parameters for input management. Better Crops 85, 8-11. Millán, H; AM Tarquís, Luís D. Pérez, Juan Mato, Mario González-Posada, 2012. Spatial variability patterns of some Vertisol properties at a field scale using standardized data. Soil and Tillage Research, 120, 76-84. Pérez, Luís D. 2012. Influencia de la maquinaria agrícola sobre la variabilidad espacial de la compactación del suelo. Aplicación de la metodología geoestadística-fractal. PhD thesis, UPM (In Spanish). Pérez, Luís D., Humberto Millán, Mario González-Posada 2010. Spatial complexity of soil plow layer penetrometer resistance as influenced by sugarcane harvesting: A prefractal approach. Soil and Tillage Research, 110(1), 77-86. Tarquis, A.M., N. Bird, M.C. Cartagena, A. Whitmore and Y. Pachepsky, 2008. Multiscale entropy-based analyses of soil transect data. Vadose Zone Journal, 7(2), 563-569.

  1. Stochastic, goal-oriented rapid impact modeling of uncertainty and environmental impacts in poorly-sampled sites using ex-situ priors

    NASA Astrophysics Data System (ADS)

    Li, Xiaojun; Li, Yandong; Chang, Ching-Fu; Tan, Benjamin; Chen, Ziyang; Sege, Jon; Wang, Changhong; Rubin, Yoram

    2018-01-01

    Modeling of uncertainty associated with subsurface dynamics has long been a major research topic. Its significance is widely recognized for real-life applications. Despite the huge effort invested in the area, major obstacles still remain on the way from theory and applications. Particularly problematic here is the confusion between modeling uncertainty and modeling spatial variability, which translates into a (mis)conception, in fact an inconsistency, in that it suggests that modeling of uncertainty and modeling of spatial variability are equivalent, and as such, requiring a lot of data. This paper investigates this challenge against the backdrop of a 7 km, deep underground tunnel in China, where environmental impacts are of major concern. We approach the data challenge by pursuing a new concept for Rapid Impact Modeling (RIM), which bypasses altogether the need to estimate posterior distributions of model parameters, focusing instead on detailed stochastic modeling of impacts, conditional to all information available, including prior, ex-situ information and in-situ measurements as well. A foundational element of RIM is the construction of informative priors for target parameters using ex-situ data, relying on ensembles of well-documented sites, pre-screened for geological and hydrological similarity to the target site. The ensembles are built around two sets of similarity criteria: a physically-based set of criteria and an additional set covering epistemic criteria. In another variation to common Bayesian practice, we update the priors to obtain conditional distributions of the target (environmental impact) dependent variables and not the hydrological variables. This recognizes that goal-oriented site characterization is in many cases more useful in applications compared to parameter-oriented characterization.

  2. Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system.

    PubMed

    Reed, Lloyd F; Urry, Stephen R; Wearing, Scott C

    2013-08-21

    Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within- and between-day repeatability of spatial, temporal and vertical ground reaction force parameters measured by a treadmill system instrumented with a capacitance-based pressure platform. Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM-THM-S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30-second capture period, equating to an average of 52 ± 5 steps of steady-state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between-session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P < .01). The minimum change that could be detected with 95% confidence ranged between 3% and 17% for temporal parameters, 14% and 33% for spatial parameters, and 4% and 20% for kinetic parameters between days. Within-day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. The limits of agreement in spatial parameters and ground reaction forces for the treadmill system encompass previously reported changes with neuromuscular pathology and footwear interventions. These findings provide clinicians and researchers with an indication of the repeatability and sensitivity of the Zebris treadmill system to detect changes in common spatiotemporal gait parameters and vertical ground reaction forces.

  3. Probabilistic prediction models for aggregate quarry siting

    USGS Publications Warehouse

    Robinson, G.R.; Larkins, P.M.

    2007-01-01

    Weights-of-evidence (WofE) and logistic regression techniques were used in a GIS framework to predict the spatial likelihood (prospectivity) of crushed-stone aggregate quarry development. The joint conditional probability models, based on geology, transportation network, and population density variables, were defined using quarry location and time of development data for the New England States, North Carolina, and South Carolina, USA. The Quarry Operation models describe the distribution of active aggregate quarries, independent of the date of opening. The New Quarry models describe the distribution of aggregate quarries when they open. Because of the small number of new quarries developed in the study areas during the last decade, independent New Quarry models have low parameter estimate reliability. The performance of parameter estimates derived for Quarry Operation models, defined by a larger number of active quarries in the study areas, were tested and evaluated to predict the spatial likelihood of new quarry development. Population density conditions at the time of new quarry development were used to modify the population density variable in the Quarry Operation models to apply to new quarry development sites. The Quarry Operation parameters derived for the New England study area, Carolina study area, and the combined New England and Carolina study areas were all similar in magnitude and relative strength. The Quarry Operation model parameters, using the modified population density variables, were found to be a good predictor of new quarry locations. Both the aggregate industry and the land management community can use the model approach to target areas for more detailed site evaluation for quarry location. The models can be revised easily to reflect actual or anticipated changes in transportation and population features. ?? International Association for Mathematical Geology 2007.

  4. Spatial variability of soils in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  5. Accounting for Rainfall Spatial Variability in Prediction of Flash Floods

    NASA Astrophysics Data System (ADS)

    Saharia, M.; Kirstetter, P. E.; Gourley, J. J.; Hong, Y.; Vergara, H. J.

    2016-12-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 20,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. Next the model is used to predict flash flooding characteristics all over the continental U.S., specifically over regions poorly covered by hydrological observations. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  6. Accounting for rainfall spatial variability in the prediction of flash floods

    NASA Astrophysics Data System (ADS)

    Saharia, Manabendra; Kirstetter, Pierre-Emmanuel; Gourley, Jonathan J.; Hong, Yang; Vergara, Humberto; Flamig, Zachary L.

    2017-04-01

    Flash floods are a particularly damaging natural hazard worldwide in terms of both fatalities and property damage. In the United States, the lack of a comprehensive database that catalogues information related to flash flood timing, location, causative rainfall, and basin geomorphology has hindered broad characterization studies. First a representative and long archive of more than 15,000 flooding events during 2002-2011 is used to analyze the spatial and temporal variability of flash floods. We also derive large number of spatially distributed geomorphological and climatological parameters such as basin area, mean annual precipitation, basin slope etc. to identify static basin characteristics that influence flood response. For the same period, the National Severe Storms Laboratory (NSSL) has produced a decadal archive of Multi-Radar/Multi-Sensor (MRMS) radar-only precipitation rates at 1-km spatial resolution with 5-min temporal resolution. This provides an unprecedented opportunity to analyze the impact of event-level precipitation variability on flooding using a big data approach. To analyze the impact of sub-basin scale rainfall spatial variability on flooding, certain indices such as the first and second scaled moment of rainfall, horizontal gap, vertical gap etc. are computed from the MRMS dataset. Finally, flooding characteristics such as rise time, lag time, and peak discharge are linked to derived geomorphologic, climatologic, and rainfall indices to identify basin characteristics that drive flash floods. The database has been subjected to rigorous quality control by accounting for radar beam height and percentage snow in basins. So far studies involving rainfall variability indices have only been performed on a case study basis, and a large scale approach is expected to provide a deeper insight into how sub-basin scale precipitation variability affects flooding. Finally, these findings are validated using the National Weather Service storm reports and a historical flood fatalities database. This analysis framework will serve as a baseline for evaluating distributed hydrologic model simulations such as the Flooded Locations And Simulated Hydrographs Project (FLASH) (http://flash.ou.edu).

  7. Effects of spatial allocation and parameter variability on lakewide estimates from surveys of Lake Superior, North America’s largest lake

    EPA Science Inventory

    Lake Superior was sampled in 2011 using a Generalized Random Tessellation Stratified design (n=54 sites) to characterize biological and chemical properties of this huge aquatic resource, with statistical confidence. The lake was divided into two strata (inshore <100m and offsh...

  8. Spatial variability in sensitivity of reference crop ET to accuracy of climate data in the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    A detailed sensitivity analysis was conducted to determine the relative effects of measurement errors in climate data input parameters on the accuracy of calculated reference crop evapotranspiration (ET) using the ASCE-EWRI Standardized Reference ET Equation. Data for the period of 1995 to 2008, fro...

  9. Optimal estimation of spatially variable recharge and transmissivity fields under steady-state groundwater flow. Part 2. Case study

    NASA Astrophysics Data System (ADS)

    Graham, Wendy D.; Neff, Christina R.

    1994-05-01

    The first-order analytical solution of the inverse problem for estimating spatially variable recharge and transmissivity under steady-state groundwater flow, developed in Part 1 is applied to the Upper Floridan Aquifer in NE Florida. Parameters characterizing the statistical structure of the log-transmissivity and head fields are estimated from 152 measurements of transmissivity and 146 measurements of hydraulic head available in the study region. Optimal estimates of the recharge, transmissivity and head fields are produced throughout the study region by conditioning on the nearest 10 available transmissivity measurements and the nearest 10 available head measurements. Head observations are shown to provide valuable information for estimating both the transmissivity and the recharge fields. Accurate numerical groundwater model predictions of the aquifer flow system are obtained using the optimal transmissivity and recharge fields as input parameters, and the optimal head field to define boundary conditions. For this case study, both the transmissivity field and the uncertainty of the transmissivity field prediction are poorly estimated, when the effects of random recharge are neglected.

  10. New spatial upscaling methods for multi-point measurements: From normal to p-normal

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Li, Xin

    2017-12-01

    Careful attention must be given to determining whether the geophysical variables of interest are normally distributed, since the assumption of a normal distribution may not accurately reflect the probability distribution of some variables. As a generalization of the normal distribution, the p-normal distribution and its corresponding maximum likelihood estimation (the least power estimation, LPE) were introduced in upscaling methods for multi-point measurements. Six methods, including three normal-based methods, i.e., arithmetic average, least square estimation, block kriging, and three p-normal-based methods, i.e., LPE, geostatistics LPE and inverse distance weighted LPE are compared in two types of experiments: a synthetic experiment to evaluate the performance of the upscaling methods in terms of accuracy, stability and robustness, and a real-world experiment to produce real-world upscaling estimates using soil moisture data obtained from multi-scale observations. The results show that the p-normal-based methods produced lower mean absolute errors and outperformed the other techniques due to their universality and robustness. We conclude that introducing appropriate statistical parameters into an upscaling strategy can substantially improve the estimation, especially if the raw measurements are disorganized; however, further investigation is required to determine which parameter is the most effective among variance, spatial correlation information and parameter p.

  11. Synaptic connectivity and spatial memory: a topological approach

    NASA Astrophysics Data System (ADS)

    Milton, Russell; Babichev, Andrey; Dabaghian, Yuri

    2015-03-01

    In the hippocampus, a network of place cells generates a cognitive map of space, in which each cell is responsive to a particular area of the environment - its place field. The peak response of each cell and the size of each place field have considerable variability. Experimental evidence suggests that place cells encode a topological map of space that serves as a basis of spatial memory and spatial awareness. Using a computational model based on Persistent Homology Theory we demonstrate that if the parameters of the place cells spiking activity fall inside of the physiological range, the network correctly encodes the topological features of the environment. We next introduce parameters of synaptic connectivity into the model and demonstrate that failures in synapses that detect coincident neuronal activity lead to spatial learning deficiencies similar to the ones that are observed in rodent models of neurodegenerative diseases. Moreover, we show that these learning deficiencies may be mitigated by increasing the number of active cells and/or by increasing their firing rate, suggesting the existence of a compensatory mechanism inherent to the cognitive map.

  12. Generation of High Resolution Land Surface Parameters in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Coleman, A. M.; Wigmosta, M. S.; Leung, L.; Huang, M.; Li, H.

    2010-12-01

    The Community Land Model (CLM) is the land surface model used for the Community Atmosphere Model (CAM) and the Community Climate System Model (CCSM). It examines the physical, chemical, and biological processes across a variety of spatial and temporal scales. Currently, efforts are being made to improve the spatial resolution of the CLM, in part, to represent finer scale hydrologic characteristics. Current land surface parameters of CLM4.0, in particular plant functional types (PFT) and leaf area index (LAI), are generated from MODIS and calculated at a 0.05 degree resolution. These MODIS-derived land surface parameters have also been aggregated to coarser resolutions (e.g., 0.5, 1.0 degrees). To evaluate the response of CLM across various spatial scales, higher spatial resolution land surface parameters need to be generated. In this study we examine the use of Landsat TM/ETM+ imagery and data fusion techniques for generating land surface parameters at a 1km resolution within the Pacific Northwest United States. . Land cover types and PFTs are classified based on Landsat multi-season spectral information, DEM, National Land Cover Database (NLCD) and the USDA-NASS Crop Data Layer (CDL). For each PFT, relationships between MOD15A2 high quality LAI values, Landsat-based vegetation indices, climate variables, terrain, and laser-altimeter derived vegetation height are used to generate monthly LAI values at a 30m resolution. The high-resolution PFT and LAI data are aggregated to create a 1km model grid resolution. An evaluation and comparison of CLM land surface response at both fine and moderate scale is presented.

  13. Quantitative photoacoustic imaging in the acoustic regime using SPIM

    NASA Astrophysics Data System (ADS)

    Beigl, Alexander; Elbau, Peter; Sadiq, Kamran; Scherzer, Otmar

    2018-05-01

    While in standard photoacoustic imaging the propagation of sound waves is modeled by the standard wave equation, our approach is based on a generalized wave equation with variable sound speed and material density, respectively. In this paper we present an approach for photoacoustic imaging, which in addition to the recovery of the absorption density parameter, the imaging parameter of standard photoacoustics, also allows us to reconstruct the spatially varying sound speed and density, respectively, of the medium. We provide analytical reconstruction formulas for all three parameters based in a linearized model based on single plane illumination microscopy (SPIM) techniques.

  14. A Parallel Stochastic Framework for Reservoir Characterization and History Matching

    DOE PAGES

    Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...

    2011-01-01

    The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.

  15. Improved assessment of gross and net primary productivity of Canada's landmass

    NASA Astrophysics Data System (ADS)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  16. Image quality phantom and parameters for high spatial resolution small-animal SPECT

    NASA Astrophysics Data System (ADS)

    Visser, Eric P.; Harteveld, Anita A.; Meeuwis, Antoi P. W.; Disselhorst, Jonathan A.; Beekman, Freek J.; Oyen, Wim J. G.; Boerman, Otto C.

    2011-10-01

    At present, generally accepted standards to characterize small-animal single photon emission tomographs (SPECT) do not exist. Whereas for small-animal positron emission tomography (PET), the NEMA NU 4-2008 guidelines are available, such standards are still lacking for small-animal SPECT. More specifically, a dedicated image quality (IQ) phantom and corresponding IQ parameters are absent. The structures of the existing PET IQ phantom are too large to fully characterize the sub-millimeter spatial resolution of modern multi-pinhole SPECT scanners, and its diameter will not fit into all scanners when operating in high spatial resolution mode. We therefore designed and constructed an adapted IQ phantom with smaller internal structures and external diameter, and a facility to guarantee complete filling of the smallest rods. The associated IQ parameters were adapted from NEMA NU 4. An additional parameter, effective whole-body sensitivity, was defined since this was considered relevant in view of the variable size of the field of view and the use of multiple bed positions as encountered in modern small-animal SPECT scanners. The usefulness of the phantom was demonstrated for 99mTc in a USPECT-II scanner operated in whole-body scanning mode using a multi-pinhole mouse collimator with 0.6 mm pinhole diameter.

  17. Seasonal and spatial variations of source and drinking water quality in small municipal systems of two Canadian regions.

    PubMed

    Scheili, A; Rodriguez, M J; Sadiq, R

    2015-03-01

    A one-year sampling program covering twenty-five small municipal systems was carried out in two Canadian regions to improve our understanding of the variability of water quality in small systems from water source to the end of the distribution system (DS). The database obtained was used to develop a global portrait of physical, chemical and microbiological water quality parameters. More precisely, the temporal and the spatial variability of these parameters were investigated. We observed that the levels of natural organic matter (NOM) were variable during different seasons, with maxima in the fall for both provinces. In the regions under study, the highest trihalomethane (THM) and haloacetic acid (HAA) levels were achieved in warmer seasons (summer, fall), as observed in previous studies involving large systems. Observed THM and HAA levels were three times higher in systems in the province of Newfoundland & Labrador than in the province of Quebec. Taste and odor indicators were detected during the summer and fall, and higher heterotrophic plate count (HPC) levels were associated with lower free chlorine levels. To determine spatial variations, stepwise statistical analysis was used to identify parameters and locations in the DS that act as indicators of drinking water quality. As observed for medium and large systems, free chlorine consumption, THM and HAA levels were dependent on their location in the DS. We also observed that the degradation of HAAs is more important in small systems than in medium or large DS reported in the literature, and this degradation can occur from the beginning of the DS. The results of this research may contribute to providing precious information on drinking water quality to small system operators and pave the way for several opportunities to improve water quality management. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Quantifying specific capacity and salinity variability in Amman Zarqa Basin, Central Jordan, using empirical statistical and geostatistical techniques.

    PubMed

    Shaqour, F; Taany, R; Rimawi, O; Saffarini, G

    2016-01-01

    Modeling groundwater properties is an important tool by means of which water resources management can judge whether these properties are within the safe limits or not. This is usually done regularly and in the aftermath of crises that are expected to reflect negatively on groundwater properties, as occurred in Jordan due to crises in neighboring countries. In this study, specific capacity and salinity of groundwater of B2/A7 aquifer in Amman Zarqa Basin were evaluated to figure out the effect of population increase in this basin as a result of refugee flux from neighboring countries to this heavily populated basin after Gulf crises 1990 and 2003. Both properties were found to exhibit a three-parameter lognormal distribution. The empirically calculated β parameter of this distribution mounted up to 0.39 m(3)/h/min for specific capacity and 238 ppm for salinity. This parameter is suggested to account for the global changes that took place all over the basin during the entire period of observation and not for local changes at every well or at certain localities in the basin. It can be considered as an exploratory result of data analysis. Formal and implicit evaluation followed this step using structural analysis and construction of experimental semivariograms that represent the spatial variability of both properties. The adopted semivariograms were then used to construct maps to illustrate the spatial variability of the properties under consideration using kriging interpolation techniques. Semivariograms show that specific capacity and salinity values are spatially dependent within 14,529 and 16,309 m, respectively. Specific capacity semivariogram exhibit a nugget effect on a small scale (324 m). This can be attributed to heterogeneity or inadequacies in measurement. Specific capacity and salinity maps show that the major changes exhibit a northwest southeast trend, near As-Samra Wastewater Treatment Plant. The results of this study suggest proper management practices.

  19. Geostatistical Characteristic of Space -Time Variation in Underground Water Selected Quality Parameters in Klodzko Water Intake Area (SW Part of Poland)

    NASA Astrophysics Data System (ADS)

    Namysłowska-Wilczyńska, Barbara

    2016-04-01

    This paper presents selected results of research connected with the development of a (3D) geostatistical hydrogeochemical model of the Klodzko Drainage Basin, dedicated to the spatial and time variation in the selected quality parameters of underground water in the Klodzko water intake area (SW part of Poland). The research covers the period 2011÷2012. Spatial analyses of the variation in various quality parameters, i.e, contents of: ammonium ion [gNH4+/m3], NO3- (nitrate ion) [gNO3/m3], PO4-3 (phosphate ion) [gPO4-3/m3], total organic carbon C (TOC) [gC/m3], pH redox potential and temperature C [degrees], were carried out on the basis of the chemical determinations of the quality parameters of underground water samples taken from the wells in the water intake area. Spatial and time variation in the quality parameters was analyzed on the basis of archival data (period 1977÷1999) for 22 (pump and siphon) wells with a depth ranging from 9.5 to 38.0 m b.g.l., later data obtained (November 2011) from tests of water taken from 14 existing wells. The wells were built in the years 1954÷1998. The water abstraction depth (difference between the terrain elevation and the dynamic water table level) is ranged from 276÷286 m a.s.l., with an average of 282.05 m a.s.l. Dynamic water table level is contained between 6.22 m÷16.44 m b.g.l., with a mean value of 9.64 m b.g.l. The latest data (January 2012) acquired from 3 new piezometers, with a depth of 9÷10m, which were made in other locations in the relevant area. Thematic databases, containing original data on coordinates X, Y (latitude, longitude) and Z (terrain elevation and time - years) and on regionalized variables, i.e. the underground water quality parameters in the Klodzko water intake area determined for different analytical configurations (22 wells, 14 wells, 14 wells + 3 piezometers), were created. Both archival data (acquired in the years 1977÷1999) and the latest data (collected in 2011÷2012) were analyzed. These data were subjected to spatial analyses using statistical and geostatistical methods. The evaluation of basic statistics of the investigated quality parameters, including their histograms of distributions, scatter diagrams between these parameters and also correlation coefficients r were presented in this article. The directional semivariogram function and the ordinary (block) kriging procedure were used to build the 3D geostatistical model. The geostatistical parameters of the theoretical models of directional semivariograms of the studied water quality parameters, calculated along the time interval and along the wells depth (taking into account the terrain elevation), were used in the ordinary (block) kriging estimation. The obtained results of estimation, i.e. block diagrams allowed to determine the levels of increased values Z* of studied underground water quality parameters. Analysis of the variability in the selected quality parameters of underground water for an analyzed area in Klodzko water intake was enriched by referring to the results of geostatistical studies carried out for underground water quality parameters and also for a treated water and in Klodzko water supply system (iron Fe, manganese Mn, ammonium ion NH4+ contents), discussed in earlier works. Spatial and time variation in the latter-mentioned parameters was analysed on the basis of the data (2007÷2011, 2008÷2011). Generally, the behaviour of the underground water quality parameters has been found to vary in space and time. Thanks to the spatial analyses of the variation in the quality parameters in the Kłodzko underground water intake area some regularities (trends) in the variation in water quality have been identified.

  20. Hydraulic Tomography and the Curse of Storativity

    NASA Astrophysics Data System (ADS)

    Cirpka, O. A.; Li, W.; Englert, A.

    2006-12-01

    Pumping tests are among the most common techniques for hydrogeological site investigation. Their traditional analysis is based on fitting analytical expressions to measured time series of drawdown. These expressions were derived for homogeneous conditions, whereas all natural aquifers are heterogeneous. The mentioned conceptual inconsistency complicates the hydrogeological interpretation of the obtained coefficients. In particularly, it has been shown that the heterogeneity of transmissivity is aliased to variability in the estimated storativity. In hydraulic tomography, multiple pumping tests are jointly analyzed. The hydraulic parameters to be estimated are allowed to fluctuate in space. For regularization, a geostatistical smoothness criterion may be introduced. Thus, the inversion results in the most likely spatial distribution of parameters that is consistent with the drawdown measurements and follows a predefined geostatistical model. Applying the restricted maximum likelihood approach, the parameters of the prior covariance function (i.e., the prior variance and correlation length) can be inferred from the data as well. We have applied the quasi-linear geostatistical approach of inverse modeling to drawdown measurements of multiple, overlapping pumping tests performed at the test site Krauthausen near Jülich, Germany. To reduce the computational costs, we have characterized the drawdown curves by their temporal moments. In the estimation of the geostatistical parameters, the measurement error of heads turned out to be of vital importance. The less we trust the data, the larger is the estimated correlation length, resulting in a more uniform distribution of transmissivity. Similar to conventional pumping test analysis, the data analysis point to a high variability of storativity although the properties making up storativity are known to be only mildly heterogeneous. We conjecture that the unresolved small-scale spatial variability of conductivity is mapped to variability of storativity. This is rather unfortunate since reliable field data on the variability of storativity are missing. The study underscores that structural information is difficult to extract from hydraulic data alone. Information on length scales and major deterministic features may be gained by geophysical surveying, even if rock-laws directly relating geophysical to hydraulic properties are considered unreliable.

  1. A simplified model to evaluate the effect of fluid rheology on non-Newtonian flow in variable aperture fractures

    NASA Astrophysics Data System (ADS)

    Felisa, Giada; Ciriello, Valentina; Longo, Sandro; Di Federico, Vittorio

    2017-04-01

    Modeling of non-Newtonian flow in fractured media is essential in hydraulic fracturing operations, largely used for optimal exploitation of oil, gas and thermal reservoirs. Complex fluids interact with pre-existing rock fractures also during drilling operations, enhanced oil recovery, environmental remediation, and other natural phenomena such as magma and sand intrusions, and mud volcanoes. A first step in the modeling effort is a detailed understanding of flow in a single fracture, as the fracture aperture is typically spatially variable. A large bibliography exists on Newtonian flow in single, variable aperture fractures. Ultimately, stochastic modeling of aperture variability at the single fracture scale leads to determination of the flowrate under a given pressure gradient as a function of the parameters describing the variability of the aperture field and the fluid rheological behaviour. From the flowrate, a flow, or 'hydraulic', aperture can then be derived. The equivalent flow aperture for non-Newtonian fluids of power-law nature in single, variable aperture fractures has been obtained in the past both for deterministic and stochastic variations. Detailed numerical modeling of power-law fluid flow in a variable aperture fracture demonstrated that pronounced channelization effects are associated to a nonlinear fluid rheology. The availability of an equivalent flow aperture as a function of the parameters describing the fluid rheology and the aperture variability is enticing, as it allows taking their interaction into account when modeling flow in fracture networks at a larger scale. A relevant issue in non-Newtonian fracture flow is the rheological nature of the fluid. The constitutive model routinely used for hydro-fracturing modeling is the simple, two-parameter power-law. Yet this model does not characterize real fluids at low and high shear rates, as it implies, for shear-thinning fluids, an apparent viscosity which becomes unbounded for zero shear rate and tends to zero for infinite shear rate. On the contrary, the four-parameter Carreau constitutive equation includes asymptotic values of the apparent viscosity at those limits; in turn, the Carreau rheological equation is well approximated by the more tractable truncated power-law model. Results for flow of such fluids between parallel walls are already available. This study extends the adoption of the truncated power-law model to variable aperture fractures, with the aim of understanding the joint influence of rheology and aperture spatial variability. The aperture variation, modeled within a stochastic or deterministic framework, is taken to be one-dimensional and perpendicular to the flow direction; for stochastic modeling, the influence of different distribution functions is examined. Results are then compared with those obtained for pure power-law fluids for different combinations of model parameters. It is seen that the adoption of the pure power law model leads to significant overestimation of the flowrate with respect to the truncated model, more so for large external pressure gradient and/or aperture variability.

  2. Ethnopharmacological studies of Tribulus terrestris (Linn). in relation to its aphrodisiac properties.

    PubMed

    Mathur, Manish; Sundaramoorthy, S

    2012-01-01

    Synergism and antagonism impact of different plant metabolites present in crude fruit extract of Tribulus terrestris 'the herbal Viagra' have been studied. Variability in plant composition, biomass and metabolites concentration in different modules was significantly contributed by spatial factor. However the edhaphic parameters also changes with both spatial and temporal factors significantly. Fruit is the officinal part and the fruit production significantly related with soil nitrogen (P<0.01), whereas the soil nitrogen and pH also influenced the alkaloid content in fruit (P<0.05). The linear relation between fruit protein and fruit alkaloid (P<0.01) also observed and the relationship in between different soil parameters were established. Bioassay work confirmed its aphrodisiac properties, and site III is suggested for maximum biomass and high concentration of different metabolites.

  3. Measuring Spatial Accessibility of Health Care Providers – Introduction of a Variable Distance Decay Function within the Floating Catchment Area (FCA) Method

    PubMed Central

    Groneberg, David A.

    2016-01-01

    We integrated recent improvements within the floating catchment area (FCA) method family into an integrated ‘iFCA`method. Within this method we focused on the distance decay function and its parameter. So far only distance decay functions with constant parameters have been applied. Therefore, we developed a variable distance decay function to be used within the FCA method. We were able to replace the impedance coefficient β by readily available distribution parameter (i.e. median and standard deviation (SD)) within a logistic based distance decay function. Hence, the function is shaped individually for every single population location by the median and SD of all population-to-provider distances within a global catchment size. Theoretical application of the variable distance decay function showed conceptually sound results. Furthermore, the existence of effective variable catchment sizes defined by the asymptotic approach to zero of the distance decay function was revealed, satisfying the need for variable catchment sizes. The application of the iFCA method within an urban case study in Berlin (Germany) confirmed the theoretical fit of the suggested method. In summary, we introduced for the first time, a variable distance decay function within an integrated FCA method. This function accounts for individual travel behaviors determined by the distribution of providers. Additionally, the function inherits effective variable catchment sizes and therefore obviates the need for determining variable catchment sizes separately. PMID:27391649

  4. Stimulus factors in motion perception and spatial orientation

    NASA Technical Reports Server (NTRS)

    Post, R. B.; Johnson, C. A.

    1984-01-01

    The Malcolm horizon utilizes a large projected light stimulus Peripheral Vision Horizon Device (PVHD) as an attitude indicator in order to achieve a more compelling sense of roll than is obtained with smaller devices. The basic principle is that the larger stimulus is more similar to visibility of a real horizon during roll, and does not require fixation and attention to the degree that smaller displays do. Successful implementation of such a device requires adjustment of the parameters of the visual stimulus so that its effects on motion perception and spatial orientation are optimized. With this purpose in mind, the effects of relevant image variables on the perception of object motion, self motion and spatial orientation are reviewed.

  5. Towards simplification of hydrologic modeling: Identification of dominant processes

    USGS Publications Warehouse

    Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.

    2016-01-01

    The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many

  6. Evaluate Hydrologic Response on Spatiotemporal Characteristics of Rainfall Using High Resolution Radar Rainfall Data and WRF-Hydro Model

    NASA Astrophysics Data System (ADS)

    Gao, S.; Fang, N. Z.

    2017-12-01

    A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher peak discharge.

  7. Application of an automatic approach to calibrate the NEMURO nutrient-phytoplankton-zooplankton food web model in the Oyashio region

    NASA Astrophysics Data System (ADS)

    Ito, Shin-ichi; Yoshie, Naoki; Okunishi, Takeshi; Ono, Tsuneo; Okazaki, Yuji; Kuwata, Akira; Hashioka, Taketo; Rose, Kenneth A.; Megrey, Bernard A.; Kishi, Michio J.; Nakamachi, Miwa; Shimizu, Yugo; Kakehi, Shigeho; Saito, Hiroaki; Takahashi, Kazutaka; Tadokoro, Kazuaki; Kusaka, Akira; Kasai, Hiromi

    2010-10-01

    The Oyashio region in the western North Pacific supports high biological productivity and has been well monitored. We applied the NEMURO (North Pacific Ecosystem Model for Understanding Regional Oceanography) model to simulate the nutrients, phytoplankton, and zooplankton dynamics. Determination of parameters values is very important, yet ad hoc calibration methods are often used. We used the automatic calibration software PEST (model-independent Parameter ESTimation), which has been used previously with NEMURO but in a system without ontogenetic vertical migration of the large zooplankton functional group. Determining the performance of PEST with vertical migration, and obtaining a set of realistic parameter values for the Oyashio, will likely be useful in future applications of NEMURO. Five identical twin simulation experiments were performed with the one-box version of NEMURO. The experiments differed in whether monthly snapshot or averaged state variables were used, in whether state variables were model functional groups or were aggregated (total phytoplankton, small plus large zooplankton), and in whether vertical migration of large zooplankton was included or not. We then applied NEMURO to monthly climatological field data covering 1 year for the Oyashio, and compared model fits and parameter values between PEST-determined estimates and values used in previous applications to the Oyashio region that relied on ad hoc calibration. We substituted the PEST and ad hoc calibrated parameter values into a 3-D version of NEMURO for the western North Pacific, and compared the two sets of spatial maps of chlorophyll- a with satellite-derived data. The identical twin experiments demonstrated that PEST could recover the known model parameter values when vertical migration was included, and that over-fitting can occur as a result of slight differences in the values of the state variables. PEST recovered known parameter values when using monthly snapshots of aggregated state variables, but estimated a different set of parameters with monthly averaged values. Both sets of parameters resulted in good fits of the model to the simulated data. Disaggregating the variables provided to PEST into functional groups did not solve the over-fitting problem, and including vertical migration seemed to amplify the problem. When we used the climatological field data, simulated values with PEST-estimated parameters were closer to these field data than with the previously determined ad hoc set of parameter values. When these same PEST and ad hoc sets of parameter values were substituted into 3-D-NEMURO (without vertical migration), the PEST-estimated parameter values generated spatial maps that were similar to the satellite data for the Kuroshio Extension during January and March and for the subarctic ocean from May to November. With non-linear problems, such as vertical migration, PEST should be used with caution because parameter estimates can be sensitive to how the data are prepared and to the values used for the searching parameters of PEST. We recommend the usage of PEST, or other parameter optimization methods, to generate first-order parameter estimates for simulating specific systems and for insertion into 2-D and 3-D models. The parameter estimates that are generated are useful, and the inconsistencies between simulated values and the available field data provide valuable information on model behavior and the dynamics of the ecosystem.

  8. Numerical simulation of backward erosion piping in heterogeneous fields

    NASA Astrophysics Data System (ADS)

    Liang, Yue; Yeh, Tian-Chyi Jim; Wang, Yu-Li; Liu, Mingwei; Wang, Junjie; Hao, Yonghong

    2017-04-01

    Backward erosion piping (BEP) is one of the major causes of seepage failures in levees. Seepage fields dictate the BEP behaviors and are influenced by the heterogeneity of soil properties. To investigate the effects of the heterogeneity on the seepage failures, we develop a numerical algorithm and conduct simulations to study BEP progressions in geologic media with spatially stochastic parameters. Specifically, the void ratio e, the hydraulic conductivity k, and the ratio of the particle contents r of the media are represented as the stochastic variables. They are characterized by means and variances, the spatial correlation structures, and the cross correlation between variables. Results of the simulations reveal that the heterogeneity accelerates the development of preferential flow paths, which profoundly increase the likelihood of seepage failures. To account for unknown heterogeneity, we define the probability of the seepage instability (PI) to evaluate the failure potential of a given site. Using Monte-Carlo simulation (MCS), we demonstrate that the PI value is significantly influenced by the mean and the variance of ln k and its spatial correlation scales. But the other parameters, such as means and variances of e and r, and their cross correlation, have minor impacts. Based on PI analyses, we introduce a risk rating system to classify the field into different regions according to risk levels. This rating system is useful for seepage failures prevention and assists decision making when BEP occurs.

  9. Monitoring Spatial Variability and Temporal Dynamics of Phragmites Using Unmanned Aerial Vehicles

    PubMed Central

    Tóth, Viktor R.

    2018-01-01

    Littoral zones of freshwater lakes are exposed to environmental impacts from both terrestrial and aquatic sides, while substantial anthropogenic pressure also affects the high spatial, and temporal variability of the ecotone. In this study, the possibility of monitoring seasonal and spatial changes in reed (Phragmites australis) stands using an unmanned aerial vehicle (UAV) based remote sensing technique was examined. Stands in eutrophic and mesotrophic parts of Lake Balaton including not deteriorating (stable) and deteriorating (die-back) patches, were tracked throughout the growing season using a UAV equipped with a Normalized Difference Vegetation Index (NDVI) camera. Photophysiological parameters of P. australis were also measured with amplitude modulated fluorescence. Parameters characterizing the dynamics of seasonal changes in NDVI data were used for phenological comparison of eutrophic and mesotrophic, stable and die-back, terrestrial and aquatic, mowed and not-mowed patches of reed. It was shown that stable Phragmites plants from the eutrophic part of the lake reached specific phenological stages up to 3.5 days earlier than plants from the mesotrophic part of the lake. The phenological changes correlated with trophic (total and nitrate-nitrite nitrogen) and physical (organic C and clay content) properties of the sediment, while only minor relationships with air and water temperature were found. Phenological differences between the stable and die-back stands were even more pronounced, with ~34% higher rates of NDVI increase in stable than die-back patches, while the period of NDVI increase was 16 days longer. Aquatic and terrestrial parts of reed stands showed no phenological differences, although intermediate areas (shallow water parts of stands) were found to be less vigorous. Winter mowing of dried Phragmites sped up sprouting and growth of reed in the spring. This study showed that remote sensing-derived photophysiological and phenological variability within and between reed stands may provide valuable early indicators of environmental stress. The flexibility of the method makes it usable for mapping fine-scale temporal variability and spatial zonation within a stand, revealing ecophysiological hotspots that might require particular attention, and obtaining information vital for conservation and management of plants in the littoral zones. PMID:29915608

  10. Abundance of Chemical Elements in RR Lyrae Variables and their Kinematic Parameters

    NASA Astrophysics Data System (ADS)

    Gozha, M. L.; Marsakov, V. A.; Koval', V. V.

    2018-03-01

    A catalog of the chemical and spatial-kinematic parameters of 415 RR Lyrae variables (Lyrids) in the galactic field is compiled. Spectroscopic determinations of the relative abundances of 13 chemical elements in 101 of the RR Lyrae variables are collected from 25 papers published between 1995 and 2017. The data from different sources are reduced to a single solar abundance scale. The mean weighted chemical abundances are calculated with coefficients inversely proportional to the reported errors. An analysis of the deviations in the published relative abundances in each star from the mean square values calculated from them reveals an absence of systematic biases among the results from the various articles. The rectangular coordinates of 407 of the RR Lyrae variables and the components of the three-dimensional (3D) velocities of 401 of the stars are calculated using data from several sources. The collected data on the abundances of chemical elements produced by various nuclear fusion processes for the RR Lyrae variables of the field, as well as the calculated 3D velocities, can be used for studying the evolution of the Galaxy.

  11. Hindcast of extreme sea states in North Atlantic extratropical storms

    NASA Astrophysics Data System (ADS)

    Ponce de León, Sonia; Guedes Soares, Carlos

    2015-02-01

    This study examines the variability of freak wave parameters around the eye of northern hemisphere extratropical cyclones. The data was obtained from a hindcast performed with the WAve Model (WAM) model forced by the wind fields of the Climate Forecast System Reanalysis (CFSR). The hindcast results were validated against the wave buoys and satellite altimetry data showing a good correlation. The variability of different wave parameters was assessed by applying the empirical orthogonal functions (EOF) technique on the hindcast data. From the EOF analysis, it can be concluded that the first empirical orthogonal function (V1) accounts for greater share of variability of significant wave height (Hs), peak period (Tp), directional spreading (SPR) and Benjamin-Feir index (BFI). The share of variance in V1 varies for cyclone and variable: for the 2nd storm and Hs V1 contains 96 % of variance while for the 3rd storm and BFI V1 accounts only for 26 % of variance. The spatial patterns of V1 show that the variables are distributed around the cyclones centres mainly in a lobular fashion.

  12. Mercury concentrations in lentic fish populations related to ecosystem and watershed characteristics

    Treesearch

    Andrew L. Rypel

    2010-01-01

    Predicting mercury (Hg) concentrations of fishes at large spatial scales is a fundamental environmental challenge with the potential to improve human health. In this study, mercury concentrations were examined for five species across 161 lakes and ecosystem, and watershed parameters were investigated as explanatory variables in statistical models. For all species, Hg...

  13. Impact of spatial variability and sampling design on model performance

    NASA Astrophysics Data System (ADS)

    Schrape, Charlotte; Schneider, Anne-Kathrin; Schröder, Boris; van Schaik, Loes

    2017-04-01

    Many environmental physical and chemical parameters as well as species distributions display a spatial variability at different scales. In case measurements are very costly in labour time or money a choice has to be made between a high sampling resolution at small scales and a low spatial cover of the study area or a lower sampling resolution at the small scales resulting in local data uncertainties with a better spatial cover of the whole area. This dilemma is often faced in the design of field sampling campaigns for large scale studies. When the gathered field data are subsequently used for modelling purposes the choice of sampling design and resulting data quality influence the model performance criteria. We studied this influence with a virtual model study based on a large dataset of field information on spatial variation of earthworms at different scales. Therefore we built a virtual map of anecic earthworm distributions over the Weiherbach catchment (Baden-Württemberg in Germany). First of all the field scale abundance of earthworms was estimated using a catchment scale model based on 65 field measurements. Subsequently the high small scale variability was added using semi-variograms, based on five fields with a total of 430 measurements divided in a spatially nested sampling design over these fields, to estimate the nugget, range and standard deviation of measurements within the fields. With the produced maps, we performed virtual samplings of one up to 50 random points per field. We then used these data to rebuild the catchment scale models of anecic earthworm abundance with the same model parameters as in the work by Palm et al. (2013). The results of the models show clearly that a large part of the non-explained deviance of the models is due to the very high small scale variability in earthworm abundance: the models based on single virtual sampling points on average obtain an explained deviance of 0.20 and a correlation coefficient of 0.64. With increasing sampling points per field, we averaged the measured abundance of the sampling within each field to obtain a more representative value of the field average. Doubling the samplings per field strongly improved the model performance criteria (explained deviance 0.38 and correlation coefficient 0.73). With 50 sampling points per field the performance criteria were 0.91 and 0.97 respectively for explained deviance and correlation coefficient. The relationship between number of samplings and performance criteria can be described with a saturation curve. Beyond five samples per field the model improvement becomes rather small. With this contribution we wish to discuss the impact of data variability at sampling scale on model performance and the implications for sampling design and assessment of model results as well as ecological inferences.

  14. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, G.

    2003-10-01

    We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the ``sorting all permutations'' method of selecting the most frequently occurring variables, we show that the results of a single 10-variable discriminant analysis are consistent with the ranking. We demonstrate that individually, the variables considered here have little ability to differentiate between flaring and flare-quiet populations, but with multivariable combinations, the populations may be distinguished.

  15. Climatic extremes improve predictions of spatial patterns of tree species

    USGS Publications Warehouse

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  16. Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study

    NASA Astrophysics Data System (ADS)

    Korres, W.; Reichenau, T. G.; Schneider, K.

    2013-08-01

    Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricultural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic (soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect relationships between soil moisture and its driving variables. The goal of this study is to characterize and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to determine the dominant factors and underlying processes controlling these patterns. A second goal is to analyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks. The model was validated for two growing seasons for the three main crops in the investigation area: Winter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and 7.8 vol.% and average RMSE values for all three crops of 0.27 kg m-2 for total aboveground biomass and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a change of the infiltration properties towards the end of the growing season, especially in maize fields. The validated model was used to generate daily surface soil moisture maps, serving as a basis for an autocorrelation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger scale patterns that are induced by soil properties are superimposed by the small scale land use pattern and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil properties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling function, with negative values of the scaling exponent, indicating a decrease in spatial variability with increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil moisture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regression analysis, we found that 53% of the variance of the scaling exponent can be explained by a combination of an independent LAI parameter and the antecedent precipitation.

  17. Identification of sensitive parameters in the modeling of SVOC reemission processes from soil to atmosphere.

    PubMed

    Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc

    2014-09-15

    Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    PubMed Central

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  19. Spatial arrangement overrules environmental factors to structure native and non-native assemblages of synanthropic harvestmen.

    PubMed

    Muster, Christoph; Meyer, Marc; Sattler, Thomas

    2014-01-01

    Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community - as well as for the native and non-native assemblages in a single study - are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens). Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m) in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance) exceeded the environmental (10.6%) and shared (4%) components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers) at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species.

  20. An examination of the spatial variability of the United States surface water balance using the Budyko relationship for current and projected climates

    NASA Astrophysics Data System (ADS)

    Ficklin, D. L.; Abatzoglou, J. T.

    2017-12-01

    The spatial variability in the balance between surface runoff (Q) and evapotranspiration (ET) is critical for understanding water availability. The Budyko framework suggests that this balance is solely a function of aridity. Observed deviations from this framework for individual watersheds, however, can vary significantly, resulting in uncertainty in using the Budyko framework in ungauged catchments and under future climate and land use scenarios. Here, we model the spatial variability in the partitioning of precipitation into Q and ET using a set of climatic, physiographic, and vegetation metrics for 211 near-natural watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. Using a generalized additive model, we found that precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow explained 81.2% of the variability in ω. This ω model applied to the Budyko framework explained 97% of the spatial variability in long-term Q for an independent set of near-natural watersheds. The developed ω model was also used to estimate the entire CONUS surface water balance for both contemporary and mid-21st century conditions. The contemporary CONUS surface water balance compared favorably to more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western US. The Budyko framework using the modeled ω lends itself to an alternative approach for assessing the potential response of catchment water balance to climate change to complement other approaches.

  1. Spatial Arrangement Overrules Environmental Factors to Structure Native and Non-Native Assemblages of Synanthropic Harvestmen

    PubMed Central

    Muster, Christoph; Meyer, Marc; Sattler, Thomas

    2014-01-01

    Understanding how space affects the occurrence of native and non-native species is essential for inferring processes that shape communities. However, studies considering spatial and environmental variables for the entire community – as well as for the native and non-native assemblages in a single study – are scarce for animals. Harvestmen communities in central Europe have undergone drastic turnovers during the past decades, with several newly immigrated species, and thus provide a unique system to study such questions. We studied the wall-dwelling harvestmen communities from 52 human settlements in Luxembourg and found the assemblages to be largely dominated by non-native species (64% of specimens). Community structure was analysed using Moran's eigenvector maps as spatial variables, and landcover variables at different radii (500 m, 1000 m, 2000 m) in combination with climatic parameters as environmental variables. A surprisingly high portion of pure spatial variation (15.7% of total variance) exceeded the environmental (10.6%) and shared (4%) components of variation, but we found only minor differences between native and non-native assemblages. This could result from the ecological flexibility of both, native and non-native harvestmen that are not restricted to urban habitats but also inhabit surrounding semi-natural landscapes. Nevertheless, urban landcover variables explained more variation in the non-native community, whereas coverage of semi-natural habitats (forests, rivers) at broader radii better explained the native assemblage. This indicates that some urban characteristics apparently facilitate the establishment of non-native species. We found no evidence for competitive replacement of native by invasive species, but a community with novel combination of native and non-native species. PMID:24595309

  2. General methods for sensitivity analysis of equilibrium dynamics in patch occupancy models

    USGS Publications Warehouse

    Miller, David A.W.

    2012-01-01

    Sensitivity analysis is a useful tool for the study of ecological models that has many potential applications for patch occupancy modeling. Drawing from the rich foundation of existing methods for Markov chain models, I demonstrate new methods for sensitivity analysis of the equilibrium state dynamics of occupancy models. Estimates from three previous studies are used to illustrate the utility of the sensitivity calculations: a joint occupancy model for a prey species, its predators, and habitat used by both; occurrence dynamics from a well-known metapopulation study of three butterfly species; and Golden Eagle occupancy and reproductive dynamics. I show how to deal efficiently with multistate models and how to calculate sensitivities involving derived state variables and lower-level parameters. In addition, I extend methods to incorporate environmental variation by allowing for spatial and temporal variability in transition probabilities. The approach used here is concise and general and can fully account for environmental variability in transition parameters. The methods can be used to improve inferences in occupancy studies by quantifying the effects of underlying parameters, aiding prediction of future system states, and identifying priorities for sampling effort.

  3. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    USGS Publications Warehouse

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  4. A New Network-Based Approach for the Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Alessandro, C.; Zollo, A.; Colombelli, S.; Elia, L.

    2017-12-01

    Here we propose a new method which allows for issuing an early warning based upon the real-time mapping of the Potential Damage Zone (PDZ), e.g. the epicentral area where the peak ground velocity is expected to exceed the damaging or strong shaking levels with no assumption about the earthquake rupture extent and spatial variability of ground motion. The system includes the techniques for a refined estimation of the main source parameters (earthquake location and magnitude) and for an accurate prediction of the expected ground shaking level. The system processes the 3-component, real-time ground acceleration and velocity data streams at each station. For stations providing high quality data, the characteristic P-wave period (τc) and the P-wave displacement, velocity and acceleration amplitudes (Pd, Pv and Pa) are jointly measured on a progressively expanded P-wave time window. The evolutionary estimate of these parameters at stations around the source allow to predict the geometry and extent of PDZ, but also of the lower shaking intensity regions at larger epicentral distances. This is done by correlating the measured P-wave amplitude with the Peak Ground Velocity (PGV) and Instrumental Intensity (IMM) and by interpolating the measured and predicted P-wave amplitude at a dense spatial grid, including the nodes of the accelerometer/velocimeter array deployed in the earthquake source area. Depending of the network density and spatial source coverage, this method naturally accounts for effects related to the earthquake rupture extent (e.g. source directivity) and spatial variability of strong ground motion related to crustal wave propagation and site amplification. We have tested this system by a retrospective analysis of three earthquakes: 2016 Italy 6.5 Mw, 2008 Iwate-Miyagi 6.9 Mw and 2011 Tohoku 9.0 Mw. Source parameters characterization are stable and reliable, also the intensity map shows extended source effects consistent with kinematic fracture models of evets.

  5. Spatio-temporal variability of faunal and floral assemblages in Mediterranean temporary wetlands.

    PubMed

    Rouissi, Maya; Boix, Dani; Muller, Serge D; Gascón, Stéphanie; Ruhí, Albert; Sala, Jordi; Bouattour, Ali; Ben Haj Jilani, Imtinen; Ghrabi-Gammar, Zeineb; Ben Saad-Limam, Samia; Daoud-Bouattour, Amina

    2014-12-01

    Six temporary wetlands in the region of Sejenane (Mogods, NW Tunisia) were studied in order to characterize the aquatic flora and fauna and to quantify their spatio-temporal variability. Samplings of aquatic fauna, phytosociological relevés, and measurements of the physicochemical parameters of water were taken during four different field visits carried out during the four seasons of the year (November 2009-July 2010). Despite the strong anthropic pressures on them, these temporary wetlands are home to rich and diversified biodiversity, including rare and endangered species. Spatial and temporal variations affect fauna and flora differently, as temporal variability influences the fauna rather more than the plants, which are relatively more dependent on spatial factors. These results demonstrate the interest of small water bodies for maintaining biodiversity at the regional level, and thus underscore the conservation issues of Mediterranean temporary wetlands that are declining on an ongoing basis currently. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  7. Quaternion Regularization of the Equations of the Perturbed Spatial Restricted Three-Body Problem: I

    NASA Astrophysics Data System (ADS)

    Chelnokov, Yu. N.

    2017-11-01

    We develop a quaternion method for regularizing the differential equations of the perturbed spatial restricted three-body problem by using the Kustaanheimo-Stiefel variables, which is methodologically closely related to the quaternion method for regularizing the differential equations of perturbed spatial two-body problem, which was proposed by the author of the present paper. A survey of papers related to the regularization of the differential equations of the two- and threebody problems is given. The original Newtonian equations of perturbed spatial restricted three-body problem are considered, and the problem of their regularization is posed; the energy relations and the differential equations describing the variations in the energies of the system in the perturbed spatial restricted three-body problem are given, as well as the first integrals of the differential equations of the unperturbed spatial restricted circular three-body problem (Jacobi integrals); the equations of perturbed spatial restricted three-body problem written in terms of rotating coordinate systems whose angular motion is described by the rotation quaternions (Euler (Rodrigues-Hamilton) parameters) are considered; and the differential equations for angular momenta in the restricted three-body problem are given. Local regular quaternion differential equations of perturbed spatial restricted three-body problem in the Kustaanheimo-Stiefel variables, i.e., equations regular in a neighborhood of the first and second body of finite mass, are obtained. The equations are systems of nonlinear nonstationary eleventhorder differential equations. These equations employ, as additional dependent variables, the energy characteristics of motion of the body under study (a body of a negligibly small mass) and the time whose derivative with respect to a new independent variable is equal to the distance from the body of negligibly small mass to the first or second body of finite mass. The equations obtained in the paper permit developing regular methods for determining solutions, in analytical or numerical form, of problems difficult for classicalmethods, such as the motion of a body of negligibly small mass in a neighborhood of the other two bodies of finite masses.

  8. On the soil moisture estimate at basin scale in Mediterranean basins with the ASAR sensor: the Mulargia basin case study

    NASA Astrophysics Data System (ADS)

    Fois, Laura; Montaldo, Nicola

    2017-04-01

    Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.

  9. Modeling precipitation use efficiency of winter wheat using climatic parameters, soil properties and topographic indices in a semiarid region, Khodabandeh County, Iran

    NASA Astrophysics Data System (ADS)

    Babaei, Fatemeh; Vaezi, AliReza; Taheri, Mehdi; Zarrinabadi, Ehsan

    2017-04-01

    Improved understanding of the impact of crucial factors affecting on rainfed wheat precipitation use efficiency (PUE), is needed to cope with increasing demands for sustainable agriculture in semiarid regions. The present research has assessed the effects of climatic parameters, soil physiochemical characteristics and topographic indices on wheat gain yield (WGY), PUE and effective precipitation use efficiency (PUEe) of rainfed winter wheat in a research over rainfed wheat croplands of Khodabandeh County. Therefore, 289 soil samples were collected from rainfed winter wheat croplands in two replicates, totally 578 soil samples, within the county of Khodanbandeh, in (2013-2014). Also, the WGY was measured in each cropland that year. Environmental variables including some soil physiochemical characteristics, topographic indices derived from digital terrain analysis and climatic parameters including growth season precipitation and air temperature were analyzed to develop a proper model to represent WGY, PUE and PUEe. Similar to the first study, the data was divided into two dataset: model (n=238) and test dataset (n=60) and the decision tree was used to develop the best suitable model to describe WGY, PUE and PUEe. The results indicated that CK using slope as auxiliary variable played as the best model to describe the spatial variation of WGY (n=60, R2=0.92, RMSE= 77.78 kg ha-1). Although, MLR combining principal component analysis (PCA) was able to describe PUE significantly (n=238, R2=0.28, P<0.01), however all the applied methods appeared poor in spatially modeling of PUE (n=60, R2<0.05, RMSE> 1.34 kg ha-1 mm-1). Similarly, PUEe was modeled significantly (n=238, R2=0.25, P<0.01) using MLR combining PCA but the model goodness was really poor over Khodabandeh county (n=60, R2=0.11, RMSE= 1.23 kg ha-1 mm-1). In general, it can be concluded that slope was the most crucial affecting parameter on WGY. In addition to, organic matter is the most important soil properties in PUE determination. Among all models Kr and CK performed better than other spatial interpolation models. In order to the lacking of reliable climatic data especially in small scales, and complexity of effective parameters, accurate spatially modelling of PUE and PUEe appears difficult.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolly, S; University of Missouri, Columbia, MO; Chen, H

    Purpose: Local noise power spectrum (NPS) properties are significantly affected by calculation variables and CT acquisition and reconstruction parameters, but a thoughtful analysis of these effects is absent. In this study, we performed a complete analysis of the effects of calculation and imaging parameters on the NPS. Methods: The uniformity module of a Catphan phantom was scanned with a Philips Brilliance 64-slice CT simulator using various scanning protocols. Images were reconstructed using both FBP and iDose4 reconstruction algorithms. From these images, local NPS were calculated for regions of interest (ROI) of varying locations and sizes, using four image background removalmore » methods. Additionally, using a predetermined ground truth, NPS calculation accuracy for various calculation parameters was compared for computer simulated ROIs. A complete analysis of the effects of calculation, acquisition, and reconstruction parameters on the NPS was conducted. Results: The local NPS varied with ROI size and image background removal method, particularly at low spatial frequencies. The image subtraction method was the most accurate according to the computer simulation study, and was also the most effective at removing low frequency background components in the acquired data. However, first-order polynomial fitting using residual sum of squares and principle component analysis provided comparable accuracy under certain situations. Similar general trends were observed when comparing the NPS for FBP to that of iDose4 while varying other calculation and scanning parameters. However, while iDose4 reduces the noise magnitude compared to FBP, this reduction is spatial-frequency dependent, further affecting NPS variations at low spatial frequencies. Conclusion: The local NPS varies significantly depending on calculation parameters, image acquisition parameters, and reconstruction techniques. Appropriate local NPS calculation should be performed to capture spatial variations of noise; calculation methodology should be selected with consideration of image reconstruction effects and the desired purpose of CT simulation for radiotherapy tasks.« less

  11. Exploring Spatial Variability in the Relationship between Long Term Limiting Illness and Area Level Deprivation at the City Level Using Geographically Weighted Regression

    PubMed Central

    Morrissey, Karyn

    2015-01-01

    Ecological influences on health outcomes are associated with the spatial stratification of health. However, the majority of studies that seek to understand these ecological influences utilise aspatial methods. Geographically weighted regression (GWR) is a spatial statistics tool that expands standard regression by allowing for spatial variance in parameters. This study contributes to the urban health literature, by employing GWR to uncover geographic variation in Limiting Long Term Illness (LLTI) and area level effects at the small area level in a relatively small, urban environment. Using GWR it was found that each of the three contextual covariates, area level deprivation scores, the percentage of the population aged 75 years plus and the percentage of residences of white ethnicity for each LSOA exhibited a non-stationary relationship with LLTI across space. Multicollinearity among the predictor variables was found not to be a problem. Within an international policy context, this research indicates that even at the city level, a “one-size fits all” policy strategy is not the most appropriate approach to address health outcomes. City “wide” health polices need to be spatially adaptive, based on the contextual characteristics of each area. PMID:29546118

  12. Climatic and physiographic controls of spatial variability in surface water balance over the contiguous United States using the Budyko relationship

    NASA Astrophysics Data System (ADS)

    Abatzoglou, John T.; Ficklin, Darren L.

    2017-09-01

    The geographic variability in the partitioning of precipitation into surface runoff (Q) and evapotranspiration (ET) is fundamental to understanding regional water availability. The Budyko equation suggests this partitioning is strictly a function of aridity, yet observed deviations from this relationship for individual watersheds impede using the framework to model surface water balance in ungauged catchments and under future climate and land use scenarios. A set of climatic, physiographic, and vegetation metrics were used to model the spatial variability in the partitioning of precipitation for 211 watersheds across the contiguous United States (CONUS) within Budyko's framework through the free parameter ω. A generalized additive model found that four widely available variables, precipitation seasonality, the ratio of soil water holding capacity to precipitation, topographic slope, and the fraction of precipitation falling as snow, explained 81.2% of the variability in ω. The ω model applied to the Budyko equation explained 97% of the spatial variability in long-term Q for an independent set of watersheds. The ω model was also applied to estimate the long-term water balance across the CONUS for both contemporary and mid-21st century conditions. The modeled partitioning of observed precipitation to Q and ET compared favorably across the CONUS with estimates from more sophisticated land-surface modeling efforts. For mid-21st century conditions, the model simulated an increase in the fraction of precipitation used by ET across the CONUS with declines in Q for much of the eastern CONUS and mountainous watersheds across the western United States.

  13. Accuracy and Spatial Variability in GPS Surveying for Landslide Mapping on Road Inventories at a Semi-Detailed Scale: the Case in Colombia

    NASA Astrophysics Data System (ADS)

    Murillo Feo, C. A.; Martnez Martinez, L. J.; Correa Muñoz, N. A.

    2016-06-01

    The accuracy of locating attributes on topographic surfaces when, using GPS in mountainous areas, is affected by obstacles to wave propagation. As part of this research on the semi-automatic detection of landslides, we evaluate the accuracy and spatial distribution of the horizontal error in GPS positioning in the tertiary road network of six municipalities located in mountainous areas in the department of Cauca, Colombia, using geo-referencing with GPS mapping equipment and static-fast and pseudo-kinematic methods. We obtained quality parameters for the GPS surveys with differential correction, using a post-processing method. The consolidated database underwent exploratory analyses to determine the statistical distribution, a multivariate analysis to establish relationships and partnerships between the variables, and an analysis of the spatial variability and calculus of accuracy, considering the effect of non-Gaussian distribution errors. The evaluation of the internal validity of the data provide metrics with a confidence level of 95% between 1.24 and 2.45 m in the static-fast mode and between 0.86 and 4.2 m in the pseudo-kinematic mode. The external validity had an absolute error of 4.69 m, indicating that this descriptor is more critical than precision. Based on the ASPRS standard, the scale obtained with the evaluated equipment was in the order of 1:20000, a level of detail expected in the landslide-mapping project. Modelling the spatial variability of the horizontal errors from the empirical semi-variogram analysis showed predictions errors close to the external validity of the devices.

  14. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study.

    PubMed

    Lucareli, P R; Lima, M O; Lima, F P S; de Almeida, J G; Brech, G C; D'Andréa Greve, J M

    2011-09-01

    Single-blind randomized, controlled clinical study. To evaluate, using kinematic gait analysis, the results obtained from gait training on a treadmill with body weight support versus those obtained with conventional gait training and physiotherapy. Thirty patients with sequelae from traumatic incomplete spinal cord injuries at least 12 months earlier; patients were able to walk and were classified according to motor function as ASIA (American Spinal Injury Association) impairment scale C or D. Patients were divided randomly into two groups of 15 patients by the drawing of opaque envelopes: group A (weight support) and group B (conventional). After an initial assessment, both groups underwent 30 sessions of gait training. Sessions occurred twice a week, lasted for 30 min each and continued for four months. All of the patients were evaluated by a single blinded examiner using movement analysis to measure angular and linear kinematic gait parameters. Six patients (three from group A and three from group B) were excluded because they attended fewer than 85% of the training sessions. There were no statistically significant differences in intra-group comparisons among the spatial-temporal variables in group B. In group A, the following significant differences in the studied spatial-temporal variables were observed: increases in velocity, distance, cadence, step length, swing phase and gait cycle duration, in addition to a reduction in stance phase. There were also no significant differences in intra-group comparisons among the angular variables in group B. However, group A achieved significant improvements in maximum hip extension and plantar flexion during stance. Gait training with body weight support was more effective than conventional physiotherapy for improving the spatial-temporal and kinematic gait parameters among patients with incomplete spinal cord injuries.

  15. Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke.

    PubMed

    Wright, Rachel L; Bevins, Joseph W; Pratt, David; Sackley, Catherine M; Wing, Alan M

    2016-01-01

    Cerebellar stroke typically results in increased variability during walking. Previous research has suggested that auditory cueing reduces excessive variability in conditions such as Parkinson's disease and post-stroke hemiparesis. The aim of this case report was to investigate whether the use of a metronome cue during walking could reduce excessive variability in gait parameters after a cerebellar stroke. An elderly female with a history of cerebellar stroke and recurrent falling undertook three standard gait trials and three gait trials with an auditory metronome. A Vicon system was used to collect 3-D marker trajectory data. The coefficient of variation was calculated for temporal and spatial gait parameters. SDs of the joint angles were calculated and used to give a measure of joint kinematic variability. Step time, stance time, and double support time variability were reduced with metronome cueing. Variability in the sagittal hip, knee, and ankle angles were reduced to normal values when walking to the metronome. In summary, metronome cueing resulted in a decrease in variability for step, stance, and double support times and joint kinematics. Further research is needed to establish whether a metronome may be useful in gait rehabilitation after cerebellar stroke and whether this leads to a decreased risk of falling.

  16. Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke

    PubMed Central

    Wright, Rachel L.; Bevins, Joseph W.; Pratt, David; Sackley, Catherine M.; Wing, Alan M.

    2016-01-01

    Cerebellar stroke typically results in increased variability during walking. Previous research has suggested that auditory cueing reduces excessive variability in conditions such as Parkinson’s disease and post-stroke hemiparesis. The aim of this case report was to investigate whether the use of a metronome cue during walking could reduce excessive variability in gait parameters after a cerebellar stroke. An elderly female with a history of cerebellar stroke and recurrent falling undertook three standard gait trials and three gait trials with an auditory metronome. A Vicon system was used to collect 3-D marker trajectory data. The coefficient of variation was calculated for temporal and spatial gait parameters. SDs of the joint angles were calculated and used to give a measure of joint kinematic variability. Step time, stance time, and double support time variability were reduced with metronome cueing. Variability in the sagittal hip, knee, and ankle angles were reduced to normal values when walking to the metronome. In summary, metronome cueing resulted in a decrease in variability for step, stance, and double support times and joint kinematics. Further research is needed to establish whether a metronome may be useful in gait rehabilitation after cerebellar stroke and whether this leads to a decreased risk of falling. PMID:27313563

  17. Scaling water and energy fluxes in climate systems - Three land-atmospheric modeling experiments

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Lakshmi, Venkataraman

    1993-01-01

    Three numerical experiments that investigate the scaling of land-surface processes - either of the inputs or parameters - are reported, and the aggregated processes are compared to the spatially variable case. The first is the aggregation of the hydrologic response in a catchment due to rainfall during a storm event and due to evaporative demands during interstorm periods. The second is the spatial and temporal aggregation of latent heat fluxes, as calculated from SiB. The third is the aggregation of remotely sensed land vegetation and latent and sensible heat fluxes using TM data from the FIFE experiment of 1987 in Kansas. In all three experiments it was found that the surface fluxes and land characteristics can be scaled, and that macroscale models based on effective parameters are sufficient to account for the small-scale heterogeneities investigated.

  18. Comparison of Two Multifractal Analysis Methods: Generalized Structure Function and Multifractal Spectrum

    NASA Astrophysics Data System (ADS)

    Morato, M. Carmen; Castellanos, M. Teresa; Bird, Nigel; Tarquis, Ana M.

    2016-04-01

    Soil variability has often been a constant expected factor to take in account in soil studies. This variability could be considered to be composed of "functional" variations plus random fluctuations or noise. Multifractal formalism, first proposed by Mandelbrot (1982), is suitable for variables with self-similar distribution on a spatial domain. Multifractal analysis can provide insight into spatial variability of crop or soil parameters. In soil science, it has been quite popular to characterize the scaling property of a variable measured along a transect as a mass distribution of a statistical measure on a length domain of the studied transect. To do this, it divides it into a number of self similar segments and estimate the partition function and mass function. Based on this, the multifractal spectra (MFS) is calculated. However, another technique can be applied focus its attention in the variations of a measure analyzing the moments of the absolute differences at different scales, the Generalized Structure Function (GSF), and extracting the Generalized Hurst exponents. The aim of this study is to compare both techniques in a transect data. A common 1024 m transect across arable fields at Silsoe in Bedfordshire, east-central England were analyzed with these two multifractal methods. Properties studied were total porosity (Porosity), gravimetric water content (GWC) and nitrogen oxide flux (NO2 flux). The results showed in both methods that NO2 flux presents a clear multifractal character and a weak one in the GWC and Porosity cases. Several parameters were calculated from both methods and are discussed. On the other hand, using the partition function all the scale ranges were used, meanwhile in the GSF a shorter range of scales showed linear behavior in the bilog plots used to estimate the parameters. GWC exhibits a linear pattern from increments of 4 till 256 meters, Porosity showed this behavior from 4 till 64 meters. In case of NO2 flux only from 32 to 256 meters showed it. However, the relation between the mass exponent function and the GSF, found in the literature, was positively verified in the three variables.

  19. Coupling a distributed hydrological model with detailed forest structural information for large-scale global change impact assessment

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein

    2017-04-01

    Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.

  20. Fire history reconstruction in grassland ecosystems: amount of charcoal reflects local area burned

    NASA Astrophysics Data System (ADS)

    Leys, Bérangère; Brewer, Simon C.; McConaghy, Scott; Mueller, Joshua; McLauchlan, Kendra K.

    2015-11-01

    Fire is one of the most prevalent disturbances in the Earth system, and its past characteristics can be reconstructed using charcoal particles preserved in depositional environments. Although researchers know that fires produce charcoal particles, interpretation of the quantity or composition of charcoal particles in terms of fire source remains poorly understood. In this study, we used a unique four-year dataset of charcoal deposited in traps from a native tallgrass prairie in mid-North America to test which environmental factors were linked to charcoal measurements on three spatial scales. We investigated small and large charcoal particles commonly used as a proxy of fire activity at different spatial scales, and charcoal morphotypes representing different types of fuel. We found that small (125-250 μm) and large (250 μm-1 mm) particles of charcoal are well-correlated (Spearman correlation = 0.88) and likely reflect the same spatial scale of fire activity in a system with both herbaceous and woody fuels. There was no significant relationship between charcoal pieces and fire parameters <500 m from the traps. Moreover, local area burned (<5 km distance radius from traps) explained the total charcoal amount, and regional burning (200 km radius distance from traps) explained the ratio of non arboreal to total charcoal (NA/T ratio). Charcoal variables, including total charcoal count and NA/T ratio, did not correlate with other fire parameters, vegetation cover, landscape, or climate variables. Thus, in long-term studies that involve fire history reconstructions, total charcoal particles, even of a small size (125-250 μm), could be an indicator of local area burned. Further studies may determine relationships among amount of charcoal recorded, fire intensity, vegetation cover, and climatic parameters.

  1. Opposing Seasonal Trends in Seawater pH and Aragonite Saturation State on the Bermuda Coral Reef Platform Reveal Complex Controls on Seawater Chemistry by Biological and Physical Processes

    NASA Astrophysics Data System (ADS)

    Andersson, A. J.; Bates, N. R.; dePutron, S.; Collins, A.; Neely, K.; Best, M.; Noyes, T.

    2011-12-01

    To accurately predict future consequences of ocean acidification on coastal environments and ecosystems, it is critical to understand present conditions and variability. As part of the Bermuda ocean acidification and coral reef investigation (BEACON), significant efforts have been dedicated to characterize the complete surface seawater carbonic-acid system at different temporal and spatial scales on the Bermuda coral reef platform to understand current levels and variability in seawater CO2 parameters, reef metabolism, and future potential changes arising from ocean acidification. A four years monthly time-series of seawater carbonic-acid parameters at eight different locations on the Bermuda coral reef platform reveals strong seasonal patterns in dissolved inorganic carbon (DIC), total alkalinity (TA), pH, pCO2, and [HCO3-], and somewhat weaker trends in [CO32-] and saturation state with respect to CaCO3 minerals. Strong spatial gradients are also observed in DIC and TA during summertime owing to reef metabolism, but no or weak spatial gradients of these parameters are observed in the wintertime. Interestingly, maximum pH-sws (~8.15) is observed during wintertime when minimum aragonite saturation state (<3.0) is observed. In contrast, minimum pH-sws (~7.95) is observed in the summertime when maximum aragonite saturation state (>3.70) is observed. The observed trends and gradients point to complex relationships and interactions between seawater chemistry, biology and physics that need to be considered in the context of ocean acidification and in making future predictions on the effects of this perturbation on coral reefs and coastal ecosystems.

  2. Stochastic Parametrization for the Impact of Neglected Variability Patterns

    NASA Astrophysics Data System (ADS)

    Kaiser, Olga; Hien, Steffen; Achatz, Ulrich; Horenko, Illia

    2017-04-01

    An efficient description of the gravity wave variability and the related spontaneous emission processes requires an empirical stochastic closure for the impact of neglected variability patterns (subgridscales or SGS). In particular, we focus on the analysis of the IGW emission within a tangent linear model which requires a stochastic SGS parameterization for taking the self interaction of the ageostrophic flow components into account. For this purpose, we identify the best SGS model in terms of exactness and simplicity by deploying a wide range of different data-driven model classes, including standard stationary regression models, autoregression and artificial neuronal networks models - as well as the family of nonstationary models like FEM-BV-VARX model class (Finite Element based vector autoregressive time series analysis with bounded variation of the model parameters). The models are used to investigate the main characteristics of the underlying dynamics and to explore the significant spatial and temporal neighbourhood dependencies. The best SGS model in terms of exactness and simplicity is obtained for the nonstationary FEM-BV-VARX setting, determining only direct spatial and temporal neighbourhood as significant - and allowing to drastically reduce the number of informations that are required for the optimal SGS. Additionally, the models are characterized by sets of vector- and matrix-valued parameters that must be inferred from big data sets provided by simulations - making it a task that can not be solved without deploying high-performance computing facilities (HPC).

  3. Perspectives on the Use of Algae as Biological Indicators for Monitoring and Protecting Aquatic Environments, with Special Reference to Malaysian Freshwater Ecosystems

    PubMed Central

    Omar, Wan Maznah Wan

    2010-01-01

    Algal communities possess many attributes as biological indicators of spatial and temporal environmental changes. Algal parameters, especially the community structural and functional variables that have been used in biological monitoring programs, are highlighted in this document. Biological indicators like algae have only recently been included in water quality assessments in some areas of Malaysia. The use of algal parameters in identifying various types of water degradation is essential and complementary to other environmental indicators. PMID:24575199

  4. Partitioning into hazard subregions for regional peaks-over-threshold modeling of heavy precipitation

    NASA Astrophysics Data System (ADS)

    Carreau, J.; Naveau, P.; Neppel, L.

    2017-05-01

    The French Mediterranean is subject to intense precipitation events occurring mostly in autumn. These can potentially cause flash floods, the main natural danger in the area. The distribution of these events follows specific spatial patterns, i.e., some sites are more likely to be affected than others. The peaks-over-threshold approach consists in modeling extremes, such as heavy precipitation, by the generalized Pareto (GP) distribution. The shape parameter of the GP controls the probability of extreme events and can be related to the hazard level of a given site. When interpolating across a region, the shape parameter should reproduce the observed spatial patterns of the probability of heavy precipitation. However, the shape parameter estimators have high uncertainty which might hide the underlying spatial variability. As a compromise, we choose to let the shape parameter vary in a moderate fashion. More precisely, we assume that the region of interest can be partitioned into subregions with constant hazard level. We formalize the model as a conditional mixture of GP distributions. We develop a two-step inference strategy based on probability weighted moments and put forward a cross-validation procedure to select the number of subregions. A synthetic data study reveals that the inference strategy is consistent and not very sensitive to the selected number of subregions. An application on daily precipitation data from the French Mediterranean shows that the conditional mixture of GPs outperforms two interpolation approaches (with constant or smoothly varying shape parameter).

  5. The geostatistical approach for structural and stratigraphic framework analysis of offshore NW Bonaparte Basin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my; Yusoff, Wan Ismail Wan, E-mail: wanismail-wanyusoff@petronas.com.my

    2016-02-01

    Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rockmore » properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin.« less

  6. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico.

    PubMed

    Pajares, Silvia; Escalante, Ana E; Noguez, Ana M; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m(2) plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca(2), K(+)) and anions (HCO[Formula: see text], Cl(-), SO[Formula: see text]) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities.

  7. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    NASA Technical Reports Server (NTRS)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  8. Regionalisation of a distributed method for flood quantiles estimation: Revaluation of local calibration hypothesis to enhance the spatial structure of the optimised parameter

    NASA Astrophysics Data System (ADS)

    Odry, Jean; Arnaud, Patrick

    2016-04-01

    The SHYREG method (Aubert et al., 2014) associates a stochastic rainfall generator and a rainfall-runoff model to produce rainfall and flood quantiles on a 1 km2 mesh covering the whole French territory. The rainfall generator is based on the description of rainy events by descriptive variables following probability distributions and is characterised by a high stability. This stochastic generator is fully regionalised, and the rainfall-runoff transformation is calibrated with a single parameter. Thanks to the stability of the approach, calibration can be performed against only flood quantiles associated with observated frequencies which can be extracted from relatively short time series. The aggregation of SHYREG flood quantiles to the catchment scale is performed using an areal reduction factor technique unique on the whole territory. Past studies demonstrated the accuracy of SHYREG flood quantiles estimation for catchments where flow data are available (Arnaud et al., 2015). Nevertheless, the parameter of the rainfall-runoff model is independently calibrated for each target catchment. As a consequence, this parameter plays a corrective role and compensates approximations and modelling errors which makes difficult to identify its proper spatial pattern. It is an inherent objective of the SHYREG approach to be completely regionalised in order to provide a complete and accurate flood quantiles database throughout France. Consequently, it appears necessary to identify the model configuration in which the calibrated parameter could be regionalised with acceptable performances. The revaluation of some of the method hypothesis is a necessary step before the regionalisation. Especially the inclusion or the modification of the spatial variability of imposed parameters (like production and transfer reservoir size, base flow addition and quantiles aggregation function) should lead to more realistic values of the only calibrated parameter. The objective of the work presented here is to develop a SHYREG evaluation scheme focusing on both local and regional performances. Indeed, it is necessary to maintain the accuracy of at site flood quantiles estimation while identifying a configuration leading to a satisfactory spatial pattern of the calibrated parameter. This ability to be regionalised can be appraised by the association of common regionalisation techniques and split sample validation tests on a set of around 1,500 catchments representing the whole diversity of France physiography. Also, the presence of many nested catchments and a size-based split sample validation make possible to assess the relevance of the calibrated parameter spatial structure inside the largest catchments. The application of this multi-objective evaluation leads to the selection of a version of SHYREG more suitable for regionalisation. References: Arnaud, P., Cantet, P., Aubert, Y., 2015. Relevance of an at-site flood frequency analysis method for extreme events based on stochastic simulation of hourly rainfall. Hydrological Sciences Journal: on press. DOI:10.1080/02626667.2014.965174 Aubert, Y., Arnaud, P., Ribstein, P., Fine, J.A., 2014. The SHYREG flow method-application to 1605 basins in metropolitan France. Hydrological Sciences Journal, 59(5): 993-1005. DOI:10.1080/02626667.2014.902061

  9. Eutrophication in the Yunnan Plateau lakes: the influence of lake morphology, watershed land use, and socioeconomic factors.

    PubMed

    Liu, Wenzhi; Li, Siyue; Bu, Hongmei; Zhang, Quanfa; Liu, Guihua

    2012-03-01

    Lakes play an important role in socioeconomic development and ecological balance in China, but their water quality has deteriorated considerably in recent decades. In this study, we investigated the spatial-temporal variations of eutrophication parameters (secchi depth, total nitrogen, total phosphorus, chemical oxygen demand, chlorophyll-a, trophic level index, and trophic state index) and their relationships with lake morphology, watershed land use, and socioeconomic factors in the Yunnan Plateau lakes. Results indicated that about 77.8% of lakes were eutrophic according to trophic state index. The plateau lakes showed spatial variations in water quality and could be classified into high-nutrient and low-nutrient groups. However, because watersheds were dominated by vegetation, all eutrophication parameters except chlorophyll-a showed no significant differences between the wet and dry seasons. Lake depth, water residence time, volume, and percentage of built-up land were significantly related to several eutrophication parameters. Agricultural land use and social-economic factors had no significant correlation with all eutrophication parameters. Stepwise regression analyses demonstrated that lake depth and water residence time accounted for 73.8% to 87.6% of the spatial variation of single water quality variables, respectively. Redundancy analyses indicated that lake morphology, watershed land use, and socioeconomic factors together explained 74.3% of the spatial variation in overall water quality. The results imply that water quality degradation in the plateau lakes may be mainly due to the domestic and industrial wastewaters. This study will improve our understanding of the determinants of lake water quality and help to design efficient strategies for controlling eutrophication in the plateau region.

  10. Regional risk assessment for contaminated sites part 2: ranking of potentially contaminated sites.

    PubMed

    Pizzol, Lisa; Critto, Andrea; Agostini, Paola; Marcomini, Antonio

    2011-11-01

    Environmental risks are traditionally assessed and presented in non spatial ways although the heterogeneity of the contaminants spatial distributions, the spatial positions and relations between receptors and stressors, as well as the spatial distribution of the variables involved in the risk assessment, strongly influence exposure estimations and hence risks. Taking into account spatial variability is increasingly being recognized as a further and essential step in sound exposure and risk assessment. To address this issue an innovative methodology which integrates spatial analysis and a relative risk approach was developed. The purpose of this methodology is to prioritize sites at regional scale where a preliminary site investigation may be required. The methodology aimed at supporting the inventory of contaminated sites was implemented within the spatial decision support sYstem for Regional rIsk Assessment of DEgraded land, SYRIADE, and was applied to the case-study of the Upper Silesia region (Poland). The developed methodology and tool are both flexible and easy to adapt to different regional contexts, allowing the user to introduce the regional relevant parameters identified on the basis of user expertise and regional data availability. Moreover, the used GIS functionalities, integrated with mathematical approaches, allow to take into consideration, all at once, the multiplicity of sources and impacted receptors within the region of concern, to assess the risks posed by all contaminated sites in the region and, finally, to provide a risk-based ranking of the potentially contaminated sites. Copyright © 2011. Published by Elsevier Ltd.

  11. Coarse woody debris assay in northern Arizona mixed-conifer and ponderosa pine forests

    Treesearch

    Joseph L. Ganey; Scott C. Vojta

    2010-01-01

    Coarse woody debris (CWD) provides important ecosystem services in forests and affects fire behavior, yet information on amounts and types of CWD typically is limited. To provide such information, we sampled logs and stumps in mixed-conifer and ponderosa pine (Pinus ponderosa) forests in north-central Arizona. Spatial variability was prominent for all CWD parameters....

  12. Modeling the BOD of Danube River in Serbia using spatial, temporal, and input variables optimized artificial neural network models.

    PubMed

    Šiljić Tomić, Aleksandra N; Antanasijević, Davor Z; Ristić, Mirjana Đ; Perić-Grujić, Aleksandra A; Pocajt, Viktor V

    2016-05-01

    This paper describes the application of artificial neural network models for the prediction of biological oxygen demand (BOD) levels in the Danube River. Eighteen regularly monitored water quality parameters at 17 stations on the river stretch passing through Serbia were used as input variables. The optimization of the model was performed in three consecutive steps: firstly, the spatial influence of a monitoring station was examined; secondly, the monitoring period necessary to reach satisfactory performance was determined; and lastly, correlation analysis was applied to evaluate the relationship among water quality parameters. Root-mean-square error (RMSE) was used to evaluate model performance in the first two steps, whereas in the last step, multiple statistical indicators of performance were utilized. As a result, two optimized models were developed, a general regression neural network model (labeled GRNN-1) that covers the monitoring stations from the Danube inflow to the city of Novi Sad and a GRNN model (labeled GRNN-2) that covers the stations from the city of Novi Sad to the border with Romania. Both models demonstrated good agreement between the predicted and actually observed BOD values.

  13. Nimbus 7 earth radiation budget wide field of view climate data set improvement. II - Deconvolution of earth radiation budget products and consideration of 1982-1983 El Nino event

    NASA Technical Reports Server (NTRS)

    Ardanuy, Phillip E.; Hucek, Richard R.; Groveman, Brian S.; Kyle, H. Lee

    1987-01-01

    A deconvolution technique is employed that permits recovery of daily averaged earth radiation budget (ERB) parameters at the top of the atmosphere from a set of the Nimbus 7 ERB wide field of view (WFOV) measurements. Improvements in both the spatial resolution of the resultant fields and in the fidelity of the time averages is obtained. The algorithm is evaluated on a set of months during the period 1980-1983. The albedo, outgoing long-wave radiation, and net radiation parameters are analyzed. The amplitude and phase of the quasi-stationary patterns that appear in the spatially deconvolved fields describe the radiation budget components for 'normal' as well as the El Nino/Southern Oscillation (ENSO) episode years. They delineate the seasonal development of large-scale features inherent in the earth's radiation budget as well as the natural variability of interannual differences. These features are underscored by the powerful emergence of the 1982-1983 ENSO event in the fields displayed. The conclusion is that with this type of resolution enhancement, WFOV radiometers provide a useful tool for the observation of the contemporary climate and its variability.

  14. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    2016-11-14

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERCmore » region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  15. Patterns and predictability in the intra-annual organic carbon variability across the boreal and hemiboreal landscape

    USGS Publications Warehouse

    Hytteborn, Julia K.; Temnerud, Johan; Alexander, Richard B.; Boyer, Elizabeth W.; Futter, Martyn N.; Fröberg, Mats; Dahné, Joel; Bishop, Kevin H.

    2015-01-01

    Factors affecting total organic carbon (TOC) concentrations in 215 watercourses across Sweden were investigated using parameter parsimonious regression approaches to explain spatial and temporal variabilities of the TOC water quality responses. We systematically quantified the effects of discharge, seasonality, and long-term trend as factors controlling intra-annual (among year) and inter-annual (within year) variabilities of TOC by evaluating the spatial variability in model coefficients and catchment characteristics (e.g. land cover, retention time, soil type).Catchment area (0.18–47,000 km2) and land cover types (forests, agriculture and alpine terrain) are typical for the boreal and hemiboreal zones across Fennoscandia. Watercourses had at least 6 years of monthly water quality observations between 1990 and 2010. Statistically significant models (p < 0.05) describing variation of TOC in streamflow were identified in 209 of 215 watercourses with a mean Nash-Sutcliffe efficiency index of 0.44. Increasing long-term trends were observed in 149 (70%) of the watercourses, and intra-annual variation in TOC far exceeded inter-annual variation. The average influences of the discharge and seasonality terms on intra-annual variations in daily TOC concentration were 1.4 and 1.3 mg l− 1 (13 and 12% of the mean annual TOC), respectively. The average increase in TOC was 0.17 mg l− 1 year− 1 (1.6% year− 1).Multivariate regression with over 90 different catchment characteristics explained 21% of the spatial variation in the linear trend coefficient, less than 20% of the variation in the discharge coefficient and 73% of the spatial variation in mean TOC. Specific discharge, water residence time, the variance of daily precipitation, and lake area, explained 45% of the spatial variation in the amplitude of the TOC seasonality.Because the main drivers of temporal variability in TOC are seasonality and discharge, first-order estimates of the influences of climatic variability and change on TOC concentration should be predictable if the studied catchments continue to respond similarly.

  16. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp

  17. Local Variability of Parameters for Characterization of the Corneal Subbasal Nerve Plexus.

    PubMed

    Winter, Karsten; Scheibe, Patrick; Köhler, Bernd; Allgeier, Stephan; Guthoff, Rudolf F; Stachs, Oliver

    2016-01-01

    The corneal subbasal nerve plexus (SNP) offers high potential for early diagnosis of diabetic peripheral neuropathy. Changes in subbasal nerve fibers can be assessed in vivo by confocal laser scanning microscopy (CLSM) and quantified using specific parameters. While current study results agree regarding parameter tendency, there are considerable differences in terms of absolute values. The present study set out to identify factors that might account for this high parameter variability. In three healthy subjects, we used a novel method of software-based large-scale reconstruction that provided SNP images of the central cornea, decomposed the image areas into all possible image sections corresponding to the size of a single conventional CLSM image (0.16 mm2), and calculated a set of parameters for each image section. In order to carry out a large number of virtual examinations within the reconstructed image areas, an extensive simulation procedure (10,000 runs per image) was implemented. The three analyzed images ranged in size from 3.75 mm2 to 4.27 mm2. The spatial configuration of the subbasal nerve fiber networks varied greatly across the cornea and thus caused heavily location-dependent results as well as wide value ranges for the parameters assessed. Distributions of SNP parameter values varied greatly between the three images and showed significant differences between all images for every parameter calculated (p < 0.001 in each case). The relatively small size of the conventionally evaluated SNP area is a contributory factor in high SNP parameter variability. Averaging of parameter values based on multiple CLSM frames does not necessarily result in good approximations of the respective reference values of the whole image area. This illustrates the potential for examiner bias when selecting SNP images in the central corneal area.

  18. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  19. Landscape structure affects distribution of potential disease vectors (Diptera: Culicidae).

    PubMed

    Zittra, Carina; Vitecek, Simon; Obwaller, Adelheid G; Rossiter, Heidemarie; Eigner, Barbara; Zechmeister, Thomas; Waringer, Johann; Fuehrer, Hans-Peter

    2017-04-26

    Vector-pathogen dynamics are controlled by fluctuations of potential vector communities, such as the Culicidae. Assessment of mosquito community diversity and, in particular, identification of environmental parameters shaping these communities is therefore of key importance for the design of adequate surveillance approaches. In this study, we assess effects of climatic parameters and habitat structure on mosquito communities in eastern Austria to deliver these highly relevant baseline data. Female mosquitoes were sampled twice a month from April to October 2014 and 2015 at 35 permanent and 23 non-permanent trapping sites using carbon dioxide-baited traps. Differences in spatial and seasonal abundance patterns of Culicidae taxa were identified using likelihood ratio tests; possible effects of environmental parameters on seasonal and spatial mosquito distribution were analysed using multivariate statistical methods. We assessed community responses to environmental parameters based on 14-day-average values that affect ontogenesis. Altogether 29,734 female mosquitoes were collected, and 21 of 42 native as well as two of four non-native mosquito species were reconfirmed in eastern Austria. Statistical analyses revealed significant differences in mosquito abundance between sampling years and provinces. Incidence and abundance patterns were found to be linked to 14-day mean sunshine duration, humidity, water-level maxima and the amount of precipitation. However, land cover classes were found to be the most important factor, effectively assigning both indigenous and non-native mosquito species to various communities, which responded differentially to environmental variables. These findings thus underline the significance of non-climatic variables for future mosquito prediction models and the necessity to consider these in mosquito surveillance programmes.

  20. Spatial and temporal variability of reference evapotranspiration and influenced meteorological factors in the Jialing River Basin, China

    NASA Astrophysics Data System (ADS)

    Herath, Imali Kaushalya; Ye, Xuchun; Wang, Jianli; Bouraima, Abdel-Kabirou

    2018-02-01

    Reference evapotranspiration (ETr) is one of the important parameters in the hydrological cycle. The spatio-temporal variation of ETr and other meteorological parameters that influence ETr were investigated in the Jialing River Basin (JRB), China. The ETr was estimated using the CROPWAT 8.0 computer model based on the Penman-Montieth equation for the period 1964-2014. Mean temperature (MT), relative humidity (RH), sunshine duration (SD), and wind speed (WS) were the main input parameters of CROPWAT while 12 meteorological stations were evaluated. Linear regression and Mann-Kendall methods were applied to study the spatio-temporal trends while the inverse distance weighted (IDW) method was used to identify the spatial distribution of ETr. Stepwise regression and partial correlation methods were used to identify the meteorological variables that most significantly influenced the changes in ETr. The highest annual ETr was found in the northern part of the basin, whereas the lowest rate was recorded in the western part. In the autumn, the highest ETr was recorded in the southeast part of JRB. The annual ETr reflected neither significant increasing nor decreasing trends. Except for the summer, ETr is slightly increasing in other seasons. The MT significantly increased whereas SD and RH were significantly decreased during the 50-year period. Partial correlation and stepwise regression methods found that the impact of meteorological parameters on ETr varies on an annual and seasonal basis while SD, MT, and RH contributed to the changes of annual and seasonal ETr in the JRB.

  1. 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response

    NASA Astrophysics Data System (ADS)

    Cardiff, M.; Barrash, W.

    2011-12-01

    We investigate, through numerical experiments, the viability of three-dimensional transient hydraulic tomography (3DTHT) for identifying the spatial distribution of groundwater flow parameters (primarily, hydraulic conductivity K) in permeable, unconfined aquifers. To invert the large amount of transient data collected from 3DTHT surveys, we utilize an iterative geostatistical inversion strategy in which outer iterations progressively increase the number of data points fitted and inner iterations solve the quasi-linear geostatistical formulas of Kitanidis. In order to base our numerical experiments around realistic scenarios, we utilize pumping rates, geometries, and test lengths similar to those attainable during 3DTHT field campaigns performed at the Boise Hydrogeophysical Research Site (BHRS). We also utilize hydrologic parameters that are similar to those observed at the BHRS and in other unconsolidated, unconfined fluvial aquifers. In addition to estimating K, we test the ability of 3DTHT to estimate both average storage values (specific storage Ss and specific yield Sy) as well as spatial variability in storage coefficients. The effects of model conceptualization errors during unconfined 3DTHT are investigated including: (1) assuming constant storage coefficients during inversion and (2) assuming stationary geostatistical parameter variability. Overall, our findings indicate that estimation of K is slightly degraded if storage parameters must be jointly estimated, but that this effect is quite small compared with the degradation of estimates due to violation of "structural" geostatistical assumptions. Practically, we find for our scenarios that assuming constant storage values during inversion does not appear to have a significant effect on K estimates or uncertainty bounds.

  2. Spatial variability of soil carbon, pH, available phosphorous and potassium in organic farm located in Mediterranean Croatia

    NASA Astrophysics Data System (ADS)

    Bogunović, Igor; Pereira, Paulo; Šeput, Miranda

    2016-04-01

    Soil organic carbon (SOC), pH, available phosphorus (P), and potassium (K) are some of the most important factors to soil fertility. These soil parameters are highly variable in space and time, with implications to crop production. The aim of this work is study the spatial variability of SOC, pH, P and K in an organic farm located in river Rasa valley (Croatia). A regular grid (100 x 100 m) was designed and 182 samples were collected on Silty Clay Loam soil. P, K and SOC showed moderate heterogeneity with coefficient of variation (CV) of 21.6%, 32.8% and 51.9%, respectively. Soil pH record low spatial variability with CV of 1.5%. Soil pH, P and SOC did not follow normal distribution. Only after a Box-Cox transformation, data respected the normality requirements. Directional exponential models were the best fitted and used to describe spatial autocorrelation. Soil pH, P and SOC showed strong spatial dependence with nugget to sill ratio with 13.78%, 0.00% and 20.29%, respectively. Only K recorded moderate spatial dependence. Semivariogram ranges indicate that future sampling interval could be 150 - 200 m in order to reduce sampling costs. Fourteen different interpolation models for mapping soil properties were tested. The method with lowest Root Mean Square Error was the most appropriated to map the variable. The results showed that radial basis function models (Spline with Tension and Completely Regularized Spline) for P and K were the best predictors, while Thin Plate Spline and inverse distance weighting models were the least accurate. The best interpolator for pH and SOC was the local polynomial with the power of 1, while the least accurate were Thin Plate Spline. According to soil nutrient maps investigated area record very rich supply with K while P supply was insufficient on largest part of area. Soil pH maps showed mostly neutral reaction while individual parts of alkaline soil indicate the possibility of penetration of seawater and salt accumulation in the soil profile. Future research should focus on spatial patterns on soil pH, electrical conductivity and sodium adsorption ratio. Keywords: geostatistics, semivariogram, interpolation models, soil chemical properties

  3. Seasonal and spatial variation in broadleaf forest model parameters

    NASA Astrophysics Data System (ADS)

    Groenendijk, M.; van der Molen, M. K.; Dolman, A. J.

    2009-04-01

    Process based, coupled ecosystem carbon, energy and water cycle models are used with the ultimate goal to project the effect of future climate change on the terrestrial carbon cycle. A typical dilemma in such exercises is how much detail the model must be given to describe the observations reasonably realistic while also be general. We use a simple vegetation model (5PM) with five model parameters to study the variability of the parameters. These parameters are derived from the observed carbon and water fluxes from the FLUXNET database. For 15 broadleaf forests the model parameters were derived for different time resolutions. It appears that in general for all forests, the correlation coefficient between observed and simulated carbon and water fluxes improves with a higher parameter time resolution. The quality of the simulations is thus always better when a higher time resolution is used. These results show that annual parameters are not capable of properly describing weather effects on ecosystem fluxes, and that two day time resolution yields the best results. A first indication of the climate constraints can be found by the seasonal variation of the covariance between Jm, which describes the maximum electron transport for photosynthesis, and climate variables. A general seasonality we found is that during winter the covariance with all climate variables is zero. Jm increases rapidly after initial spring warming, resulting in a large covariance with air temperature and global radiation. During summer Jm is less variable, but co-varies negatively with air temperature and vapour pressure deficit and positively with soil water content. A temperature response appears during spring and autumn for broadleaf forests. This shows that an annual model parameter cannot be representative for the entire year. And relations with mean annual temperature are not possible. During summer the photosynthesis parameters are constrained by water availability, soil water content and vapour pressure deficit.

  4. Monitoring meteorological spatial variability in viticulture using a low-cost Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Matese, Alessandro; Crisci, Alfonso; Di Gennaro, Filippo; Primicerio, Jacopo; Tomasi, Diego; Guidoni, Silvia

    2014-05-01

    In a long-term perspective, the current global agricultural scenario will be characterize by critical issues in terms of water resource management and environmental protection. The concept of sustainable agriculture would become crucial at reducing waste, optimizing the use of pesticides and fertilizers to crops real needs. This can be achieved through a minimum-scale monitoring of the crop physiologic status and the environmental parameters that characterize the microclimate. Viticulture is often subject to high variability within the same vineyard, thus becomes important to monitor this heterogeneity to allow a site-specific management and maximize the sustainability and quality of production. Meteorological variability expressed both at vineyard scale (mesoclimate) and at single plant level (microclimate) plays an important role during the grape ripening process. The aim of this work was to compare temperature, humidity and solar radiation measurements at different spatial scales. The measurements were assessed for two seasons (2011, 2012) in two vineyards of the Veneto region (North-East Italy), planted with Pinot gris and Cabernet Sauvignon using a specially designed and developed Wireless Sensor Network (WSN). The WSN consists of various levels: the Master/Gateway level coordinates the WSN and performs data aggregation; the Farm/Server level takes care of storing data on a server, data processing and graphic rendering. Nodes level is based on a network of peripheral nodes consisting of a sensor board equipped with sensors and wireless module. The system was able to monitor the agrometeorological parameters in the vineyard: solar radiation, air temperature and air humidity. Different sources of spatial variation were studied, from meso-scale to micro-scale. A widespread investigation was conducted, building a factorial design able to evidence the role played by any factor influencing the physical environment in the vineyard, such as the surrounding climate effect, canopy management and relative position inside the vineyard. The results highlighted that the impact of agrometeorological parameters variability is predominantly determined by differences between within-field and external-field. These results may provide support for the composition of crop production and disease model simulations where data are usually taken from an agrometeorological station not representative of actual field conditions. Finally, the WSN performances, in terms of monitoring and reliability of the system, have been evaluated considering: its handiness, cost-effective, non-invasive dimensions and low power.

  5. Understanding the relationships among phytoplankton, benthic macroinvertebrates, and water quality variables in peri-urban river systems.

    PubMed

    Pinto, Uthpala; Maheshwari, Basant L; Morris, E Charles

    2014-12-01

    In this article, using the Hawkesbury-Nepean River as a case study, the spatial and temporal trends of water quality variables over three sampling surveys in a peri-urban situation are examined for their effect on benthic macroinvertebrate communities and phytoplankton communities and whether phytoplankton and benthic macroinvertebrate species can be used as indicators for river health assessment. For this, the authors monitored the spatial and temporal difference of 10 water quality parameters: temperature, turbidity, pH, dissolved oxygen, electrical conductivity, oxidation reduction potential, total nitrogen, total phosphorus, manganese, and suspended solids. The variability in water quality parameters clearly indicated a complex pattern, depending on the season (interaction p = 0.001), which highlighted how the river condition is stressed at multiple points as a result of anthropogenic effects. In particular, the downstream locations indicated an accumulation of nutrients, the presence of increased sediments, and phytoplankton related variables such as total counts, bio-volumes, chlorophyll-a, and total phosphorus. The patterns of phytoplankton communities varied in a complex way depending on the season (interaction p = 0.001). Abundances of phytoplankton were also found in low concentrations where the water column is not severely disturbed by flow and tide. However, when the water clarity drops resulting from tidal cycles, inflows from tributaries, and intense boating activities, the phytoplankton abundances also increased considerably. On the other hand, benthic macroinvertebrates compositions were significantly different between locations (p = 0.001) with increased abundances associated with upstream sites. Aphanocapsa holsatica and chironomid larvae appeared as the important indicators for upstream and downstream site differences in water quality. Water temperature influenced the phytoplankton community pattern (ρ(w) = 0.408), whereas pH influenced the benthic macroinvertebrate community pattern (ρ(w) = 0.437). The findings of this study provide valuable insights into the interactions of water quality parameters on biotic assemblages and to the extent that benthic macroinvertebrates and phytoplankton assemblages are suitable as indicators for monitoring and assessing peri-urban river health.

  6. A Geostatistical Approach to the Trickle Irrigation Design in a Heterogeneous Soil 2. A Field Test

    NASA Astrophysics Data System (ADS)

    Russo, David

    1984-05-01

    In a heterogeneous field in which the soil water properties vary under a "deterministic" uniform trickle irrigation system, the midway soil-water pressure head hc and the yield of a crop also differ from place to place. These differences may, in turn, reduce the average (over the field) yield relative to the yield that would be obtained if the soil was uniform throughout the field. A field experiment was conducted to test the hypothesis that this yield reduction may be eliminated by using a spatially variable trickle irrigation system. Twenty-five plots (200 m2 each) were established on a 30-m2 grid. Half of each plot was equipped with a standard trickle irrigation system with constant spacing between emitters of d = 50 cm (control plots), and the other half was equipped with a trickle irrigation system for which the spacing between the emitters was selected by using the pertinent hydraulic properties (the saturated hydraulic conductivity Ks and the soil parameter α) according to the procedure of Bresler (1978) as described in paper 1 (Russo, 1983b). Values of hc measured at different times, as well as the total fruit yield Y of bell pepper (Capsicum frutescens var. "Maor"), were used to estimate the seasonal and the spatial distributions of hc and the spatial distribution of Y and their moments. The variograms of hc and Y were calculated and used to estimate their integral scales. It was found that the use of a spatially variable d relative to the use of a uniform d did not change the seasonal behavior of hc but reduced the spatial variability in hc and Y by 35% and 11%, respectively, and increased the integral scale of hc and Y by 30% and 10%, respectively, but increased the average total fruit yield by only 1.9%. The use of a spatially variable d reduced the dependence of Y on hc. This indicates that when the emitters are properly spaced, it is not the water but other factors that most influence yield. When a constant d was used, the dependence of Y of hc decreased with time. This and the relatively good agreement between the values of hc measured at the initial stages of the growing season and those calculated in paper 1 demonstrate that the concept of hc is important in the early stages of the plant's growth, when the root system is not fully developed. Both the theoretical (paper 1) and the experimental results showed that although Ks and α, as well as hc, varied considerably in the field the spatial variability of the crop yield was relatively small. This explains why the use of a spatially variable d essentially was not an improvement over the fixed d. It is suggested that this study will be considered as a methodological one, which can be adapted to solve practical problems associated with field spatial variability.

  7. A comparison of regional flood frequency analysis approaches in a simulation framework

    NASA Astrophysics Data System (ADS)

    Ganora, D.; Laio, F.

    2016-07-01

    Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve at ungauged (or scarcely gauged) sites. Different RFA approaches exist, depending on the way the information is transferred to the site of interest, but it is not clear in the literature if a specific method systematically outperforms the others. The aim of this study is to provide a framework wherein carrying out the intercomparison by building up a virtual environment based on synthetically generated data. The considered regional approaches include: (i) a unique regional curve for the whole region; (ii) a multiple-region model where homogeneous subregions are determined through cluster analysis; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially smooth estimation procedure where the parameters of the regional model vary continuously along the space. Virtual environments are generated considering different patterns of heterogeneity, including step change and smooth variations. If the region is heterogeneous, with the parent distribution changing continuously within the region, the spatially smooth regional approach outperforms the others, with overall errors 10-50% lower than the other methods. In the case of a step-change, the spatially smooth and clustering procedures perform similarly if the heterogeneity is moderate, while clustering procedures work better when the step-change is severe. To extend our findings, an extensive sensitivity analysis has been performed to investigate the effect of sample length, number of virtual stations, return period of the predicted quantile, variability of the scale parameter of the parent distribution, number of predictor variables and different parent distribution. Overall, the spatially smooth approach appears as the most robust approach as its performances are more stable across different patterns of heterogeneity, especially when short records are considered.

  8. A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn H.

    2016-09-01

    Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation, is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow Distribution_Log-Normal (SD_LN). The two models are implemented in the parameter parsimonious rainfall-runoff model Distance Distribution Dynamics (DDD), and their capability for predicting runoff, SWE and snow-covered area (SCA) is tested and compared for 71 Norwegian catchments. The calibration period is 1985-2000 and validation period is 2000-2014. Results show that SDG better simulates SCA when compared with MODIS satellite-derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SDG is slightly inferior, with a reduction in Nash-Sutcliffe and Kling-Gupta efficiency criterion of 0.01, but it is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.

  9. Spatial variability and macro‐scale drivers of growth for native and introduced Flathead Catfish populations

    USGS Publications Warehouse

    Massie, Danielle L.; Smith, Geoffrey; Bonvechio, Timothy F.; Bunch, Aaron J.; Lucchesi, David O.; Wagner, Tyler

    2018-01-01

    Quantifying spatial variability in fish growth and identifying large‐scale drivers of growth are fundamental to many conservation and management decisions. Although fish growth studies often focus on a single population, it is becoming increasingly clear that large‐scale studies are likely needed for addressing transboundary management needs. This is particularly true for species with high recreational value and for those with negative ecological consequences when introduced outside of their native range, such as the Flathead Catfish Pylodictis olivaris. This study quantified growth variability of the Flathead Catfish across a large portion of its contemporary range to determine whether growth differences existed between habitat types (i.e., reservoirs and rivers) and between native and introduced populations. Additionally, we investigated whether growth parameters varied as a function of latitude and time since introduction (for introduced populations). Length‐at‐age data from 26 populations across 11 states in the USA were modeled using a Bayesian hierarchical von Bertalanffy growth model. Population‐specific growth trajectories revealed large variation in Flathead Catfish growth and relatively high uncertainty in growth parameters for some populations. Relatively high uncertainty was also evident when comparing populations and when quantifying large‐scale patterns. Growth parameters (Brody growth coefficient [K] and theoretical maximum average length [L∞]) were not different (based on overlapping 90% credible intervals) between habitat types or between native and introduced populations. For populations within the introduced range of Flathead Catfish, latitude was negatively correlated with K. For native populations, we estimated an 85% probability that L∞ estimates were negatively correlated with latitude. Contrary to predictions, time since introduction was not correlated with growth parameters in introduced populations of Flathead Catfish. Results of this study suggest that Flathead Catfish growth patterns are likely shaped more strongly by finer‐scale processes (e.g., exploitation or prey abundances) as opposed to macro‐scale drivers.

  10. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    NASA Astrophysics Data System (ADS)

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF of Schaap et al. (2001) applied to the SoilGrids1km data set of Hengl et al. (2014). The example data set is provided at a global resolution of 0.25° at https://doi.org/10.1594/PANGAEA.870605.

  11. Water quality modeling in the dead end sections of drinking water (Supplement)

    EPA Pesticide Factsheets

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used tocalibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variation

  12. Water Quality Modeling in the Dead End Sections of Drinking ...

    EPA Pesticide Factsheets

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of a distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations

  13. Calibrating a forest landscape model to simulate frequent fire in Mediterranean-type shrublands

    USGS Publications Warehouse

    Syphard, A.D.; Yang, J.; Franklin, J.; He, H.S.; Keeley, J.E.

    2007-01-01

    In Mediterranean-type ecosystems (MTEs), fire disturbance influences the distribution of most plant communities, and altered fire regimes may be more important than climate factors in shaping future MTE vegetation dynamics. Models that simulate the high-frequency fire and post-fire response strategies characteristic of these regions will be important tools for evaluating potential landscape change scenarios. However, few existing models have been designed to simulate these properties over long time frames and broad spatial scales. We refined a landscape disturbance and succession (LANDIS) model to operate on an annual time step and to simulate altered fire regimes in a southern California Mediterranean landscape. After developing a comprehensive set of spatial and non-spatial variables and parameters, we calibrated the model to simulate very high fire frequencies and evaluated the simulations under several parameter scenarios representing hypotheses about system dynamics. The goal was to ensure that observed model behavior would simulate the specified fire regime parameters, and that the predictions were reasonable based on current understanding of community dynamics in the region. After calibration, the two dominant plant functional types responded realistically to different fire regime scenarios. Therefore, this model offers a new alternative for simulating altered fire regimes in MTE landscapes. ?? 2007 Elsevier Ltd. All rights reserved.

  14. Oceanic influence on seasonal malaria outbreaks over Senegal and Sahel. Predictability using S4CAST model

    NASA Astrophysics Data System (ADS)

    Diouf, Ibrahima; Deme, Abdoulaye; Rodriguez-Fonseca, Belen; Suárez-Moreno, Roberto; Cisse, Moustapha; Ndione, Jacques-André; Thierno Gaye, Amadou

    2014-05-01

    Senegal and, in general, West African regions are affected by important outbreaks of diseases with destructive consequences for human population, livestock and country's economy. The vector-borne diseases such as mainly malaria, Rift Valley Fever and dengue are affected by the interanual to decadal variability of climate. Analysis of the spatial and temporal variability of climate parameters and associated oceanic patterns is important in order to assess the climate impact on malaria transmission. In this study, the approach developed to study the malaria-climate link is predefined by the QWeCI project (Quantifying Weather and Climate Impacts on Health in Developing Countries). Preliminary observations and simulations results over Senegal Ferlo region, confirm that the risk of malaria transmission is mainly linked to climate parameters such as rainfall, temperature and relative humidity; and a lag of one to two months between the maximum of malaria and the maximum of climate parameters as rainfall is observed. As climate variables are able to be predicted from oceanic SST variability in remote regions, this study explores seasonal predictability of malaria incidence outbreaks from previous sea surface temperatures conditions in different ocean basins. We have found causal or coincident relationship between El Niño and malaria parameters by coupling LMM UNILIV malaria model and S4CAST statistiscal model with the aim of predicting the malaria parameters with more than 6 months in advance. In particular, El Niño is linked to an important decrease of the number of mosquitoes and the malaria incidence. Results from this research, after assessing the seasonal malaria parameters, are expected to be useful for decision makers to better access to climate forecasts and application on health in the framework of rolling back malaria transmission.

  15. Physically-based parameterization of spatially variable soil and vegetation using satellite multispectral data

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.; Eagleson, Peter S.

    1989-01-01

    A stochastic-geometric landsurface reflectance model is formulated and tested for the parameterization of spatially variable vegetation and soil at subpixel scales using satellite multispectral images without ground truth. Landscapes are conceptualized as 3-D Lambertian reflecting surfaces consisting of plant canopies, represented by solid geometric figures, superposed on a flat soil background. A computer simulation program is developed to investigate image characteristics at various spatial aggregations representative of satellite observational scales, or pixels. The evolution of the shape and structure of the red-infrared space, or scattergram, of typical semivegetated scenes is investigated by sequentially introducing model variables into the simulation. The analytical moments of the total pixel reflectance, including the mean, variance, spatial covariance, and cross-spectral covariance, are derived in terms of the moments of the individual fractional cover and reflectance components. The moments are applied to the solution of the inverse problem: The estimation of subpixel landscape properties on a pixel-by-pixel basis, given only one multispectral image and limited assumptions on the structure of the landscape. The landsurface reflectance model and inversion technique are tested using actual aerial radiometric data collected over regularly spaced pecan trees, and using both aerial and LANDSAT Thematic Mapper data obtained over discontinuous, randomly spaced conifer canopies in a natural forested watershed. Different amounts of solar backscattered diffuse radiation are assumed and the sensitivity of the estimated landsurface parameters to those amounts is examined.

  16. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  18. Multi objective climate change impact assessment using multi downscaled climate scenarios

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid

    2016-04-01

    Global Climate Models (GCMs) are often used to downscale the climatic parameters on a regional and global scale. In the present study, we have analyzed the changes in precipitation and temperature for future scenario period of 2070-2099 with respect to historical period of 1970-2000 from a set of statistically downscaled GCM projections for Columbia River Basin (CRB). Analysis is performed using 2 different statistically downscaled climate projections namely the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, totaling to 40 different scenarios. Analysis is performed on spatial, temporal and frequency based parameters in the future period at a scale of 1/16th of degree for entire CRB region. Results have indicated in varied degree of spatial change pattern for the entire Columbia River Basin, especially western part of the basin. At temporal scales, winter precipitation has higher variability than summer and vice-versa for temperature. Frequency analysis provided insights into possible explanation to changes in precipitation.

  19. Subgrid spatial variability of soil hydraulic functions for hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kreye, Phillip; Meon, Günter

    2016-07-01

    State-of-the-art hydrological applications require a process-based, spatially distributed hydrological model. Runoff characteristics are demanded to be well reproduced by the model. Despite that, the model should be able to describe the processes at a subcatchment scale in a physically credible way. The objective of this study is to present a robust procedure to generate various sets of parameterisations of soil hydraulic functions for the description of soil heterogeneity on a subgrid scale. Relations between Rosetta-generated values of saturated hydraulic conductivity (Ks) and van Genuchten's parameters of soil hydraulic functions were statistically analysed. An universal function that is valid for the complete bandwidth of Ks values could not be found. After concentrating on natural texture classes, strong correlations were identified for all parameters. The obtained regression results were used to parameterise sets of hydraulic functions for each soil class. The methodology presented in this study is applicable on a wide range of spatial scales and does not need input data from field studies. The developments were implemented into a hydrological modelling system.

  20. Multi-band implications of external-IC flares

    NASA Astrophysics Data System (ADS)

    Richter, Stephan; Spanier, Felix

    2015-02-01

    Very fast variability on scales of minutes is regularly observed in Blazars. The assumption that these flares are emerging from the dominant emission zone of the very high energy (VHE) radiation within the jet challenges current acceleration and radiation models. In this work we use a spatially resolved and time dependent synchrotron-self-Compton (SSC) model that includes the full time dependence of Fermi-I acceleration. We use the (apparent) orphan γ -ray flare of Mrk501 during MJD 54952 and test various flare scenarios against the observed data. We find that a rapidly variable external radiation field can reproduce the high energy lightcurve best. However, the effect of the strong inverse Compton (IC) cooling on other bands and the X-ray observations are constraining the parameters to rather extreme ranges. Then again other scenarios would require parameters even more extreme or stronger physical constraints on the rise and decay of the source of the variability which might be in contradiction with constraints derived from the size of the black hole's ergosphere.

  1. Benefits of incorporating spatial organisation of catchments for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Schumann, Andreas; Oppel, Henning

    2017-04-01

    To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark model setups (lumped and semi-distributed by common approaches) to address the benefits for different time and spatial scales. Moreover, the benefits for calibration effort, model performance in validation periods and process extrapolation are shown.

  2. Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory

    USGS Publications Warehouse

    Junttila, Virpi; Finley, Andrew O.; Bradford, John B.; Kauranne, Tuomo

    2013-01-01

    Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive variables that are to be calibrated using field plots. The measurement of the necessary field plots is a time-consuming and statistically sensitive process. Because of this, current practice often presumes hundreds of plots to be collected. But since these plots are only used to calibrate regression models, it should be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the current study, we compare several systematic and random methods for calibration plot selection, with the specific aim that they be used in LiDAR based regression models for forest parameters, especially above-ground biomass. The primary criteria compared are based on both spatial representativity as well as on their coverage of the variability of the forest features measured. In the former case, it is important also to take into account spatial auto-correlation between the plots. The results indicate that choosing the plots in a way that ensures ample coverage of both spatial and feature space variability improves the performance of the corresponding models, and that adequate coverage of the variability in the feature space is the most important condition that should be met by the set of plots collected.

  3. DGSA: A Matlab toolbox for distance-based generalized sensitivity analysis of geoscientific computer experiments

    NASA Astrophysics Data System (ADS)

    Park, Jihoon; Yang, Guang; Satija, Addy; Scheidt, Céline; Caers, Jef

    2016-12-01

    Sensitivity analysis plays an important role in geoscientific computer experiments, whether for forecasting, data assimilation or model calibration. In this paper we focus on an extension of a method of regionalized sensitivity analysis (RSA) to applications typical in the Earth Sciences. Such applications involve the building of large complex spatial models, the application of computationally extensive forward modeling codes and the integration of heterogeneous sources of model uncertainty. The aim of this paper is to be practical: 1) provide a Matlab code, 2) provide novel visualization methods to aid users in getting a better understanding in the sensitivity 3) provide a method based on kernel principal component analysis (KPCA) and self-organizing maps (SOM) to account for spatial uncertainty typical in Earth Science applications and 4) provide an illustration on a real field case where the above mentioned complexities present themselves. We present methods that extend the original RSA method in several ways. First we present the calculation of conditional effects, defined as the sensitivity of a parameter given a level of another parameters. Second, we show how this conditional effect can be used to choose nominal values or ranges to fix insensitive parameters aiming to minimally affect uncertainty in the response. Third, we develop a method based on KPCA and SOM to assign a rank to spatial models in order to calculate the sensitivity on spatial variability in the models. A large oil/gas reservoir case is used as illustration of these ideas.

  4. Still searching for the Holy Grail: on the use of effective soil parameters for Parflow-CLM.

    NASA Astrophysics Data System (ADS)

    Baroni, Gabriele; Schalge, Bernd; Rihani, Jehan; Attinger, Sabine

    2015-04-01

    In the last decades the advances in computer science have led to a growing number of coupled and distributed hydrological models based on Richards' equation. Several studies were conducted for understanding hydrological processes at different spatial and temporal scales and they showed promising uses of these types of models also in practical applications. However, these models are generally applied to scales different from that at which the equation is deduced and validated. For this reason, the models are implemented with effective soil parameters that, in principle, should preserve the water fluxes that would have been estimated assuming the finer resolution scale. In this context, the reduction in spatial discretization becomes a trade-off between complexity and performance of the model. The aim of the present contribution is to assess the performance of Parflow-CLM implemented at different spatial scales. A virtual experiment based on data available for the Neckar catchment (Germany) is used as reference at 100x100m resolution. Different upscaling rules for the soil hydraulic parameters are used for coarsening the model up to 1x1km. The analysis is carried out based on different model output e.g., river discharge, evapotranspiration, soil moisture and groundwater recharge. The effects of soil variability, correlation length and spatial distribution over the water flow direction on the simulation results are discussed. Further researches aim to quantify the related uncertainty in model output and the possibility to fill in the model structure inadequacy with data assimilation techniques.

  5. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder

    USGS Publications Warehouse

    Menke, S.B.; Holway, D.A.; Fisher, R.N.; Jetz, W.

    2009-01-01

    Aim: Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location: California, USA. Methods: We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results: We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result from how environmental constraints and the sampling distributions of environmental variables change with spatial grain. Conclusions: These findings have clear relevance for biological inference. Taken together, our results illustrate potentially general limitations for ENMs, especially when such models are used to predict species occurrences in novel environments. We offer basic methodological and conceptual guidelines for appropriate sampling and scale matching. ?? 2009 The Authors Journal compilation ?? 2009 Blackwell Publishing.

  6. Distribution patterns of the crab Ucides cordatus (Brachyura, Ucididae) at different spatial scales in subtropical mangroves of Paranaguá Bay (southern Brazil)

    NASA Astrophysics Data System (ADS)

    Sandrini-Neto, L.; Lana, P. C.

    2012-06-01

    Heterogeneity in the distribution of organisms occurs at a range of spatial scales, which may vary from few centimeters to hundreds of kilometers. The exclusion of small-scale variability from routine sampling designs may confound comparisons at larger scales and lead to inconsistent interpretation of data. Despite its ecological and social-economic importance, little is known about the spatial structure of the mangrove crab Ucides cordatus in the southwest Atlantic. Previous studies have commonly compared densities at relatively broad scales, relying on alleged distribution patterns (e.g., mangroves of distinct composition and structure). We have assessed variability patterns of U. cordatus in mangroves of Paranaguá Bay at four levels of spatial hierarchy (10 s km, km, 10 s m and m) using a nested ANOVA and variance components measures. The potential role of sediment parameters, pneumatophore density, and organic matter content in regulating observed patterns was assessed by multiple regression models. Densities of total and non-commercial size crabs varied mostly at 10 s m to km scales. Densities of commercial size crabs differed at the scales of 10 s m and 10 s km. Variance components indicated that small-scale variation was the most important, contributing up to 70% of the crab density variability. Multiple regression models could not explain the observed variations. Processes driving differences in crab abundance were not related to the measured variables. Small-scale patchy distribution has direct implications to current management practices of U. cordatus. Future studies should consider processes operating at smaller scales, which are responsible for a complex mosaic of patches within previously described patterns.

  7. Assessing the resolution-dependent utility of tomograms for geostatistics

    USGS Publications Warehouse

    Day-Lewis, F. D.; Lane, J.W.

    2004-01-01

    Geophysical tomograms are used increasingly as auxiliary data for geostatistical modeling of aquifer and reservoir properties. The correlation between tomographic estimates and hydrogeologic properties is commonly based on laboratory measurements, co-located measurements at boreholes, or petrophysical models. The inferred correlation is assumed uniform throughout the interwell region; however, tomographic resolution varies spatially due to acquisition geometry, regularization, data error, and the physics underlying the geophysical measurements. Blurring and inversion artifacts are expected in regions traversed by few or only low-angle raypaths. In the context of radar traveltime tomography, we derive analytical models for (1) the variance of tomographic estimates, (2) the spatially variable correlation with a hydrologic parameter of interest, and (3) the spatial covariance of tomographic estimates. Synthetic examples demonstrate that tomograms of qualitative value may have limited utility for geostatistics; moreover, the imprint of regularization may preclude inference of meaningful spatial statistics from tomograms.

  8. A Fractional Cartesian Composition Model for Semi-Spatial Comparative Visualization Design.

    PubMed

    Kolesar, Ivan; Bruckner, Stefan; Viola, Ivan; Hauser, Helwig

    2017-01-01

    The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the data as much as possible-even when many ensemble members should be jointly studied using comparative visualization. In our model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify our approach in the context of several application examples from different domains in order to demonstrate its generality within the class of comparative visualization problems for spatial data ensembles.

  9. Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia

    NASA Astrophysics Data System (ADS)

    Schlemmer, Alexander; Berg, Sebastian; Lilienkamp, Thomas; Luther, Stefan; Parlitz, Ulrich

    2018-05-01

    Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.

  10. Spatial analysis of health risk assessment with arsenic intake of drinking water in the LanYang plain

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2016-12-01

    Groundwater is one of the most component water resources in Lanyang plain. The groundwater of the Lanyang Plain contains arsenic levels that exceed the current Taiwan Environmental Protection Administration (Taiwan EPA) limit of 10 μg/L. The arsenic of groundwater in some areas of the Lanyang Plain pose great menace for the safe use of groundwater resources. Therefore, poor water quality can adversely impact drinking water uses, leading to human health risks. This study analyzed the potential health risk associated with the ingestion of arsenic-affected groundwater in the arseniasis-endemic Lanyang plain. Geostatistical approach is widely used in spatial variability analysis and distributions of field data with uncertainty. The estimation of spatial distribution of the arsenic contaminant in groundwater is very important in the health risk assessment. This study used indicator kriging (IK) and ordinary kriging (OK) methods to explore the spatial variability of arsenic-polluted parameters. The estimated difference between IK and OK estimates was compared. The extent of arsenic pollution was spatially determined and the Target cancer risk (TR) and dose response were explored when the ingestion of arsenic in groundwater. Thus, a zonal management plan based on safe groundwater use is formulated. The research findings can provide a plan reference of regional water resources supplies for local government administrators and developing groundwater resources in the Lanyang Plain.

  11. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  12. Spatial resolution of transport parameters in a subtropical karst conduit system during dry and wet seasons

    NASA Astrophysics Data System (ADS)

    Ender, Anna; Goeppert, Nadine; Goldscheider, Nico

    2018-04-01

    Karst aquifers are characterized by a high degree of hydrologic variability and spatial heterogeneity of transport parameters. Tracer tests allow the quantification of these parameters, but conventional point-to-point experiments fail to capture spatiotemporal variations of flow and transport. The goal of this study was to elucidate the spatial distribution of transport parameters in a karst conduit system at different flow conditions. Therefore, six tracer tests were conducted in an active and accessible cave system in Vietnam during dry and wet seasons. Injections and monitoring were done at five sites along the flow system: a swallow hole, two sites inside the cave, and two springs draining the system. Breakthrough curves (BTCs) were modeled with CXTFIT software using the one-dimensional advection-dispersion model and the two-region nonequilibrium model. In order to obtain transport parameters in the individual sections of the system, a multi-pulse injection approach was used, which was realized by using the BTCs from one section as input functions for the next section. Major findings include: (1) In the entire system, mean flow velocities increase from 183 to 1,043 m/h with increasing discharge, while (2) the proportion of immobile fluid regions decrease; (3) the lowest dispersivity was found at intermediate discharge; (4) in the individual cave sections, flow velocities decrease along the flow direction, related to decreasing gradients, while (5) dispersivity is highest in the middle section of the cave. The obtained results provide a valuable basis for the development of an adapted water management strategy for a projected water-supply system.

  13. Effects of spatial constraints on channel network topology: Implications for geomorphological inference

    NASA Astrophysics Data System (ADS)

    Cabral, Mariza Castanheira De Moura Da Costa

    In the fifty-two years since Robert Horton's 1945 pioneering quantitative description of channel network planform (or plan view morphology), no conclusive findings have been presented that permit inference of geomorphological processes from any measures of network planform. All measures of network planform studied exhibit limited geographic variability across different environments. Horton (1945), Langbein et al. (1947), Schumm (1956), Hack (1957), Melton (1958), and Gray (1961) established various "laws" of network planform, that is, statistical relationships between different variables which have limited variability. A wide variety of models which have been proposed to simulate the growth of channel networks in time over a landsurface are generally also in agreement with the above planform laws. An explanation is proposed for the generality of the channel network planform laws. Channel networks must be space filling, that is, they must extend over the landscape to drain every hillslope, leaving no large undrained areas, and with no crossing of channels, often achieving a roughly uniform drainage density in a given environment. It is shown that the space-filling constraint can reduce the sensitivity of planform variables to different network growth models, and it is proposed that this constraint may determine the planform laws. The "Q model" of network growth of Van Pelt and Verwer (1985) is used to generate samples of networks. Sensitivity to the model parameter Q is markedly reduced when the networks generated are required to be space filling. For a wide variety of Q values, the space-filling networks are in approximate agreement with the various channel network planform laws. Additional constraints, including of energy efficiency, were not studied but may further reduce the variability of planform laws. Inference of model parameter Q from network topology is successful only in networks not subject to spatial constraints. In space-filling networks, for a wide range of Q values, the maximal-likelihood Q parameter value is generally in the vicinity of 1/2, which yields topological randomness. It is proposed that space filling originates the appearance of randomness in channel network topology, and may cause difficulties to geomorphological inference from network planform.

  14. Performance Evaluation of EnKF-based Hydrogeological Site Characterization using Color Coherent Vectors

    NASA Astrophysics Data System (ADS)

    Moslehi, M.; de Barros, F.

    2017-12-01

    Complexity of hydrogeological systems arises from the multi-scale heterogeneity and insufficient measurements of their underlying parameters such as hydraulic conductivity and porosity. An inadequate characterization of hydrogeological properties can significantly decrease the trustworthiness of numerical models that predict groundwater flow and solute transport. Therefore, a variety of data assimilation methods have been proposed in order to estimate hydrogeological parameters from spatially scarce data by incorporating the governing physical models. In this work, we propose a novel framework for evaluating the performance of these estimation methods. We focus on the Ensemble Kalman Filter (EnKF) approach that is a widely used data assimilation technique. It reconciles multiple sources of measurements to sequentially estimate model parameters such as the hydraulic conductivity. Several methods have been used in the literature to quantify the accuracy of the estimations obtained by EnKF, including Rank Histograms, RMSE and Ensemble Spread. However, these commonly used methods do not regard the spatial information and variability of geological formations. This can cause hydraulic conductivity fields with very different spatial structures to have similar histograms or RMSE. We propose a vision-based approach that can quantify the accuracy of estimations by considering the spatial structure embedded in the estimated fields. Our new approach consists of adapting a new metric, Color Coherent Vectors (CCV), to evaluate the accuracy of estimated fields achieved by EnKF. CCV is a histogram-based technique for comparing images that incorporate spatial information. We represent estimated fields as digital three-channel images and use CCV to compare and quantify the accuracy of estimations. The sensitivity of CCV to spatial information makes it a suitable metric for assessing the performance of spatial data assimilation techniques. Under various factors of data assimilation methods such as number, layout, and type of measurements, we compare the performance of CCV with other metrics such as RMSE. By simulating hydrogeological processes using estimated and true fields, we observe that CCV outperforms other existing evaluation metrics.

  15. Quantifying Spatial Variability of Selected Soil Trace Elements and Their Scaling Relationships Using Multifractal Techniques

    PubMed Central

    Zhang, Fasheng; Yin, Guanghua; Wang, Zhenying; McLaughlin, Neil; Geng, Xiaoyuan; Liu, Zuoxin

    2013-01-01

    Multifractal techniques were utilized to quantify the spatial variability of selected soil trace elements and their scaling relationships in a 10.24-ha agricultural field in northeast China. 1024 soil samples were collected from the field and available Fe, Mn, Cu and Zn were measured in each sample. Descriptive results showed that Mn deficiencies were widespread throughout the field while Fe and Zn deficiencies tended to occur in patches. By estimating single multifractal spectra, we found that available Fe, Cu and Zn in the study soils exhibited high spatial variability and the existence of anomalies ([α(q)max−α(q)min]≥0.54), whereas available Mn had a relatively uniform distribution ([α(q)max−α(q)min]≈0.10). The joint multifractal spectra revealed that the strong positive relationships (r≥0.86, P<0.001) among available Fe, Cu and Zn were all valid across a wider range of scales and over the full range of data values, whereas available Mn was weakly related to available Fe and Zn (r≥0.18, P<0.01) but not related to available Cu (r = −0.03, P = 0.40). These results show that the variability and singularities of selected soil trace elements as well as their scaling relationships can be characterized by single and joint multifractal parameters. The findings presented in this study could be extended to predict selected soil trace elements at larger regional scales with the aid of geographic information systems. PMID:23874944

  16. QKD Via a Quantum Wavelength Router Using Spatial Soliton

    NASA Astrophysics Data System (ADS)

    Kouhnavard, M.; Amiri, I. S.; Afroozeh, A.; Jalil, M. A.; Ali, J.; Yupapin, P. P.

    2011-05-01

    A system for continuous variable quantum key distribution via a wavelength router is proposed. The Kerr type of light in the nonlinear microring resonator (NMRR) induces the chaotic behavior. In this proposed system chaotic signals are generated by an optical soliton or Gaussian pulse within a NMRR system. The parameters, such as input power, MRRs radii and coupling coefficients can change and plays important role in determining the results in which the continuous signals are generated spreading over the spectrum. Large bandwidth signals of optical soliton are generated by the input pulse propagating within the MRRs, which is allowed to form the continuous wavelength or frequency with large tunable channel capacity. The continuous variable QKD is formed by using the localized spatial soliton pulses via a quantum router and networks. The selected optical spatial pulse can be used to perform the secure communication network. Here the entangled photon generated by chaotic signals has been analyzed. The continuous entangled photon is generated by using the polarization control unit incorporating into the MRRs, required to provide the continuous variable QKD. Results obtained have shown that the application of such a system for the simultaneous continuous variable quantum cryptography can be used in the mobile telephone hand set and networks. In this study frequency band of 500 MHz and 2.0 GHz and wavelengths of 775 nm, 2,325 nm and 1.55 μm can be obtained for QKD use with input optical soliton and Gaussian beam respectively.

  17. The correspondence of surface climate parameters with satellite and terrain data

    NASA Technical Reports Server (NTRS)

    Dozier, Jeff; Davis, Frank

    1987-01-01

    One of the goals of the research was to develop a ground sampling stragegy for calibrating remotely sensed measurements of surface climate parameters. The initial sampling strategy involved the stratification of the terrain based on important ancillary surface variables such as slope, exposure, insolation, geology, drainage, fire history, etc. For a spatially heterogeneous population, sampling error is reduced and efficiency increased by stratification of the landscape into more homogeneous sub-areas and by employing periodic random spacing of samples. These concepts were applied in the initial stratification of the study site for the purpose of locating and allocating instrumentation.

  18. Modeling tree crown dynamics with 3D partial differential equations.

    PubMed

    Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry

    2014-01-01

    We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.

  19. Multilevel discretized random field models with 'spin' correlations for the simulation of environmental spatial data

    NASA Astrophysics Data System (ADS)

    Žukovič, Milan; Hristopulos, Dionissios T.

    2009-02-01

    A current problem of practical significance is how to analyze large, spatially distributed, environmental data sets. The problem is more challenging for variables that follow non-Gaussian distributions. We show by means of numerical simulations that the spatial correlations between variables can be captured by interactions between 'spins'. The spins represent multilevel discretizations of environmental variables with respect to a number of pre-defined thresholds. The spatial dependence between the 'spins' is imposed by means of short-range interactions. We present two approaches, inspired by the Ising and Potts models, that generate conditional simulations of spatially distributed variables from samples with missing data. Currently, the sampling and simulation points are assumed to be at the nodes of a regular grid. The conditional simulations of the 'spin system' are forced to respect locally the sample values and the system statistics globally. The second constraint is enforced by minimizing a cost function representing the deviation between normalized correlation energies of the simulated and the sample distributions. In the approach based on the Nc-state Potts model, each point is assigned to one of Nc classes. The interactions involve all the points simultaneously. In the Ising model approach, a sequential simulation scheme is used: the discretization at each simulation level is binomial (i.e., ± 1). Information propagates from lower to higher levels as the simulation proceeds. We compare the two approaches in terms of their ability to reproduce the target statistics (e.g., the histogram and the variogram of the sample distribution), to predict data at unsampled locations, as well as in terms of their computational complexity. The comparison is based on a non-Gaussian data set (derived from a digital elevation model of the Walker Lake area, Nevada, USA). We discuss the impact of relevant simulation parameters, such as the domain size, the number of discretization levels, and the initial conditions.

  20. Spatial Distribution of Soil Fauna In Long Term No Tillage

    NASA Astrophysics Data System (ADS)

    Corbo, J. Z. F.; Vieira, S. R.; Siqueira, G. M.

    2012-04-01

    The soil is a complex system constituted by living beings, organic and mineral particles, whose components define their physical, chemical and biological properties. Soil fauna plays an important role in soil and may reflect and interfere in its functionality. These organisms' populations may be influenced by management practices, fertilization, liming and porosity, among others. Such changes may reduce the composition and distribution of soil fauna community. Thus, this study aimed to determine the spatial variability of soil fauna in consolidated no-tillage system. The experimental area is located at Instituto Agronômico in Campinas (São Paulo, Brazil). The sampling was conducted in a Rhodic Eutrudox, under no tillage system and 302 points distributed in a 3.2 hectare area in a regular grid of 10.00 m x 10.00 m were sampled. The soil fauna was sampled with "Pitfall Traps" method and traps remained in the area for seven days. Data were analyzed using descriptive statistics to determine the main statistical moments (mean variance, coefficient of variation, standard deviation, skewness and kurtosis). Geostatistical tools were used to determine the spatial variability of the attributes using the experimental semivariogram. For the biodiversity analysis, Shannon and Pielou indexes and richness were calculated for each sample. Geostatistics has proven to be a great tool for mapping the spatial variability of groups from the soil epigeal fauna. The family Formicidae proved to be the most abundant and dominant in the study area. The parameters of descriptive statistics showed that all attributes studied showed lognormal frequency distribution for groups from the epigeal soil fauna. The exponential model was the most suited for the obtained data, for both groups of epigeal soil fauna (Acari, Araneae, Coleoptera, Formicidae and Coleoptera larva), and the other biodiversity indexes. The sampling scheme (10.00 m x 10.00 m) was not sufficient to detect the spatial variability for all groups of soil epigeal fauna found in this study.

  1. Drivers of phytoplankton dynamics in old Tampa Bay, FL (USA), a subestuary lagging in ecosystem recovery

    NASA Astrophysics Data System (ADS)

    Corcoran, Alina A.; Wolny, Jennifer; Leone, Erin; Ivey, James; Murasko, Susan

    2017-02-01

    In the past four decades, consistent and coordinated management actions led to the recovery of Tampa Bay, FL (USA) - an estuary that was declared dead in the 1970s. An exception to this success story is Old Tampa Bay, the northernmost subestuary of the system. Compared to the other bay segments, Old Tampa Bay is characterized by poorer water quality and spring and summer blooms of cyanobacteria, picoplankton, diatoms, and the saxitoxin-producing dinoflagellate Pyrodinium bahamense. Together, these blooms contribute to light attenuation and lagging recovery of seagrass beds. Yet, studies of phytoplankton dynamics within Old Tampa Bay have been limited - both in number and in their spatiotemporal resolution. In this study, we used field sampling and continuous monitoring to (1) characterize temporal and spatial variability in phytoplankton biomass and community composition and (2) identify key drivers of the different phytoplankton blooms in Old Tampa Bay. Overall, temporal variability in phytoplankton biomass (using chlorophyll a as a proxy) and community composition surpassed spatial variability of these parameters. We found a base community of small diatoms and flagellates, as well as certain dinoflagellates, that persisted year round in the system. Seasonally, freshwater runoff stimulated phytoplankton growth, specifically that of chlorophytes, cyanobacteria and other dinoflagellates - consistent with predictions based on ecological theory. On shorter time scales, salinity, visibility, and freshwater inflows were important predictors of phytoplankton biomass. With respect to P. bahamense, environmental drivers including salinity, temperature and dissolved nutrient concentrations explained ∼24% of the variability in cell abundance, indicating missing explanatory parameters in our study for this taxon, such as cyst density and location of cyst beds. Spatially, we found differences in community trajectories across north-south and west-east gradients, with the northernmost sampling station being the most unique in the region. This work contributes to the knowledge of phytoplankton biomass and community composition in Tampa Bay by generating spatially and temporally rich phytoplankton community and environmental data for the Old Tampa Bay subestuary. Moreover, it enhances our understanding of bloom drivers and provides recommendations for ecosystem management. Specifically, our findings support continued nutrient reduction measures as a way to mitigate seasonal blooms of diatoms, cyanobacteria and chlorophytes, but not necessarily blooms of P. bahamense. Prediction and mitigation of P. bahamnese blooms should incorporate first order drivers such as cyst location and abundance.

  2. Evapotranspiration measurement and modeling without fitting parameters in high-altitude grasslands

    NASA Astrophysics Data System (ADS)

    Ferraris, Stefano; Previati, Maurizio; Canone, Davide; Dematteis, Niccolò; Boetti, Marco; Balocco, Jacopo; Bechis, Stefano

    2016-04-01

    Mountain grasslands are important, also because one sixth of the world population lives inside watershed dominated by snowmelt. Also, grasslands provide food to both domestic and selvatic animals. The global warming will probably accelerate the hydrological cycle and increase the drought risk. The combination of measurements, modeling and remote sensing can furnish knowledge in such faraway areas (e.g.: Brocca et al., 2013). A better knowledge of water balance can also allow to optimize the irrigation (e.g.: Canone et al., 2015). This work is meant to build a model of water balance in mountain grasslands, ranging between 1500 and 2300 meters asl. The main input is the Digital Terrain Model, which is more reliable in grasslands than both in the woods and in the built environment. It drives the spatial variability of shortwave solar radiation. The other atmospheric forcings are more problematic to estimate, namely air temperature, wind and longwave radiation. Ad hoc routines have been written, in order to interpolate in space the meteorological hourly time variability. The soil hydraulic properties are less variable than in the plains, but the soil depth estimation is still an open issue. The soil vertical variability has been modeled taking into account the main processes: soil evaporation, root uptake, and fractured bedrock percolation. The time variability latent heat flux and soil moisture results have been compared with the data measured in an eddy covariance station. The results are very good, given the fact that the model has no fitting parameters. The space variability results have been compared with the results of a model based on Landsat 7 and 8 data, applied over an area of about 200 square kilometers. The spatial correlation is quite in agreement between the two models. Brocca et al. (2013). "Soil moisture estimation in alpine catchments through modelling and satellite observations". Vadose Zone Journal, 12(3), 10 pp. Canone et al. (2015). "Field measurements based model for surface irrigation efficiency assessment". Agric. Water Manag., 156(1) pp. 30-42

  3. A method for determining average beach slope and beach slope variability for U.S. sandy coastlines

    USGS Publications Warehouse

    Doran, Kara S.; Long, Joseph W.; Overbeck, Jacquelyn R.

    2015-01-01

    The U.S. Geological Survey (USGS) National Assessment of Hurricane-Induced Coastal Erosion Hazards compares measurements of beach morphology with storm-induced total water levels to produce forecasts of coastal change for storms impacting the Gulf of Mexico and Atlantic coastlines of the United States. The wave-induced water level component (wave setup and swash) is estimated by using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon and others (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. For instance, seasonal and storm-induced changes in beach slope can lead to differences on the order of 1 meter (m) in wave-induced water level elevation, making accurate specification of this parameter and its associated uncertainty essential to skillful forecasts of coastal change. A method for calculating spatially and temporally averaged beach slopes is presented here along with a method for determining total uncertainty for each 200-m alongshore section of coastline.

  4. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

    PubMed Central

    2018-01-01

    Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399

  5. Sampling design optimization for spatial functions

    USGS Publications Warehouse

    Olea, R.A.

    1984-01-01

    A new procedure is presented for minimizing the sampling requirements necessary to estimate a mappable spatial function at a specified level of accuracy. The technique is based on universal kriging, an estimation method within the theory of regionalized variables. Neither actual implementation of the sampling nor universal kriging estimations are necessary to make an optimal design. The average standard error and maximum standard error of estimation over the sampling domain are used as global indices of sampling efficiency. The procedure optimally selects those parameters controlling the magnitude of the indices, including the density and spatial pattern of the sample elements and the number of nearest sample elements used in the estimation. As an illustration, the network of observation wells used to monitor the water table in the Equus Beds of Kansas is analyzed and an improved sampling pattern suggested. This example demonstrates the practical utility of the procedure, which can be applied equally well to other spatial sampling problems, as the procedure is not limited by the nature of the spatial function. ?? 1984 Plenum Publishing Corporation.

  6. Geostatistical Analysis of Mesoscale Spatial Variability and Error in SeaWiFS and MODIS/Aqua Global Ocean Color Data

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.

    2018-01-01

    Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.

  7. Relationship between sugarcane rust severity and soil properties in louisiana.

    PubMed

    Johnson, Richard M; Grisham, Michael P; Richard, Edward P

    2007-06-01

    ABSTRACT The extent of spatial and temporal variability of sugarcane rust (Puccinia melanocephala) infestation was related to variation in soil properties in five commercial fields of sugarcane (interspecific hybrids of Saccharum spp., cv. LCP 85-384) in southern Louisiana. Sugarcane fields were grid-soil sampled at several intensities and rust ratings were collected at each point over 6 to 7 weeks. Soil properties exhibited significant variability (coefficients of variation = 9 to 70.1%) and were spatially correlated in 39 of 40 cases with a range of spatial correlation varying from 39 to 201 m. Rust ratings were spatially correlated in 32 of 33 cases, with a range varying from 29 to 241 m. Rust ratings were correlated with several soil properties, most notably soil phosphorus (r = 0.40 to 0.81) and soil sulfur (r = 0.36 to 0.68). Multiple linear regression analysis resulted in coefficients of determination that ranged from 0.22 to 0.73, and discriminant analysis further improved the overall predictive ability of rust models. Finally, contour plots of soil properties and rust levels clearly suggested a link between these two parameters. These combined data suggest that sugarcane growers that apply fertilizer in excess of plant requirements will increase the incidence and severity of rust infestations in their fields.

  8. Individual movement behavior, matrix heterogeneity, and the dynamics of spatially structured populations.

    PubMed

    Revilla, Eloy; Wiegand, Thorsten

    2008-12-09

    The dynamics of spatially structured populations is characterized by within- and between-patch processes. The available theory describes the latter with simple distance-dependent functions that depend on landscape properties such as interpatch distance or patch size. Despite its potential role, we lack a good mechanistic understanding of how the movement of individuals between patches affects the dynamics of these populations. We used the theoretical framework provided by movement ecology to make a direct representation of the processes determining how individuals connect local populations in a spatially structured population of Iberian lynx. Interpatch processes depended on the heterogeneity of the matrix where patches are embedded and the parameters defining individual movement behavior. They were also very sensitive to the dynamic demographic variables limiting the time moving, the within-patch dynamics of available settlement sites (both spatiotemporally heterogeneous) and the response of individuals to the perceived risk while moving. These context-dependent dynamic factors are an inherent part of the movement process, producing connectivities and dispersal kernels whose variability is affected by other demographic processes. Mechanistic representations of interpatch movements, such as the one provided by the movement-ecology framework, permit the dynamic interaction of birth-death processes and individual movement behavior, thus improving our understanding of stochastic spatially structured populations.

  9. Using internal discharge data in a distributed conceptual model to reduce uncertainty in streamflow simulations

    NASA Astrophysics Data System (ADS)

    Guerrero, J.; Halldin, S.; Xu, C.; Lundin, L.

    2011-12-01

    Distributed hydrological models are important tools in water management as they account for the spatial variability of the hydrological data, as well as being able to produce spatially distributed outputs. They can directly incorporate and assess potential changes in the characteristics of our basins. A recognized problem for models in general is equifinality, which is only exacerbated for distributed models who tend to have a large number of parameters. We need to deal with the fundamentally ill-posed nature of the problem that such models force us to face, i.e. a large number of parameters and very few variables that can be used to constrain them, often only the catchment discharge. There is a growing but yet limited literature showing how the internal states of a distributed model can be used to calibrate/validate its predictions. In this paper, a distributed version of WASMOD, a conceptual rainfall runoff model with only three parameters, combined with a routing algorithm based on the high-resolution HydroSHEDS data was used to simulate the discharge in the Paso La Ceiba basin in Honduras. The parameter space was explored using Monte-Carlo simulations and the region of space containing the parameter-sets that were considered behavioral according to two different criteria was delimited using the geometric concept of alpha-shapes. The discharge data from five internal sub-basins was used to aid in the calibration of the model and to answer the following questions: Can this information improve the simulations at the outlet of the catchment, or decrease their uncertainty? Also, after reducing the number of model parameters needing calibration through sensitivity analysis: Is it possible to relate them to basin characteristics? The analysis revealed that in most cases the internal discharge data can be used to reduce the uncertainty in the discharge at the outlet, albeit with little improvement in the overall simulation results.

  10. Vine vigor components and its variability - relationship to wine composition

    NASA Astrophysics Data System (ADS)

    Lafontaine, Magali; Tittmann, Susanne; Stoll, Manfred

    2015-04-01

    It was pointed out that a high spatial variability for canopy size and yield would exist within a vineyard but a high temporal stability over the years was observed. Furthermore, a greater variability in grape phenolics than in sugars and pH was detected within a vineyard. But the link between remote sensing indices and quality parameters of grapes is still unclear. Indeed, though in red grape varieties anthocyanins content was spatially negatively correlated to vigor parameters, it seemed that yield, Normalized Difference Vegetation Index (NDVI) and Plant Cell Density (PCD) indices were poorly correlated. Moreover, the link to quality parameters of wines remains uncertain. It was shown that more vigorous vines would lead to wines with less tannins while anthocyanins in wines would be highest when the vines were balanced but the question is if vine size or architecture, yield or nitrogen assimilation would play major contribution to those differences. The general scope of our project was to provide further knowledge on the relationship between vigor parameters and wine composition and relate these to the information gained by remote sensing. Variability in a 0.15 ha vineyard of Pinot noir planted in 2003 and grafted on SO4 rootstock at Geisenheim (Germany) was followed. Vine vigor was assessed manually for each of the 400 vines (cane number, pruning weight, trunk diameter) together with yield parameters (number of bunches per vine, crop yield). Leaf composition was assessed with a hand-held optical sensor (Multiplex3® [Mx3] (Force-A, Orsay, France) based on chlorophyll fluorescence screening providing information on leaf chlorophyll (SFR_G) and nitrogen (NBI_G) content. A micro-scale winemaking of single vines with a 3 factorial design on yield (L low, M middle, H high), SFRG (L, M, H) and canopy size (pruning weight, trunk diameter) (L, M, H) was performed for 2013 and 2014 to completely reflect variability. Wine tannin concentration represented the highest variability with a 11 fold concentration range (50-550 mg CE L-1) while variability of anthocyanins was lower with a 3 fold concentration range (90-250 mg M3OG L-1). The results showed that differences in leaf chlorophyll (SFR_G) would represent the most important factor influencing wine phenolic composition. Measurements of soil resistivity based on ARP technique (Geocarta, Paris, France), leaf composition with a mounted Multiplex providing information on porosity (NFI), biomass (BIOMASS) and chlorophyll (BISFR) together with NDVI assessed by geo-X8000 (geo-konzept-Gesellschaft für Umweltplanungssysteme mbH, Adelschlag, Germany) were performed. Grapes and berry composition was also assessed with Mx3 providing information on anthocyanins (ANTH, FERARI) and sugar (SFR_R) variability. In a second step, vines similar in size (trunk diameter and cane number) and similar yield (number of bunches per vines) were divided in 3 groups differing in leaf SFR_G. A larger scale winemaking (150kg) showed that with increasing SFR_G, Pinot noir wine typicity decreased together with anthocyanin concentration while tannin concentration increased. A better understanding of vineyard variability for targeted management or harvest would allow better understanding to produce and select fruit to a favored wine style.

  11. Capacity of MIMO free space optical communications using multiple partially coherent beams propagation through non-Kolmogorov strong turbulence.

    PubMed

    Deng, Peng; Kavehrad, Mohsen; Liu, Zhiwen; Zhou, Zhou; Yuan, Xiuhua

    2013-07-01

    We study the average capacity performance for multiple-input multiple-output (MIMO) free-space optical (FSO) communication systems using multiple partially coherent beams propagating through non-Kolmogorov strong turbulence, assuming equal gain combining diversity configuration and the sum of multiple gamma-gamma random variables for multiple independent partially coherent beams. The closed-form expressions of scintillation and average capacity are derived and then used to analyze the dependence on the number of independent diversity branches, power law α, refractive-index structure parameter, propagation distance and spatial coherence length of source beams. Obtained results show that, the average capacity increases more significantly with the increase in the rank of MIMO channel matrix compared with the diversity order. The effect of the diversity order on the average capacity is independent of the power law, turbulence strength parameter and spatial coherence length, whereas these effects on average capacity are gradually mitigated as the diversity order increases. The average capacity increases and saturates with the decreasing spatial coherence length, at rates depending on the diversity order, power law and turbulence strength. There exist optimal values of the spatial coherence length and diversity configuration for maximizing the average capacity of MIMO FSO links over a variety of atmospheric turbulence conditions.

  12. Simulation of semi-arid hydrological processes at different spatial resolutions using the AgroEcoSystem-Watershed (AgES-W) model

    NASA Astrophysics Data System (ADS)

    Green, T. R.; Erksine, R. H.; David, O.; Ascough, J. C., II; Kipka, H.; Lloyd, W. J.; McMaster, G. S.

    2015-12-01

    Water movement and storage within a watershed may be simulated at different spatial resolutions of land areas or hydrological response units (HRUs). Here, effects of HRU size on simulated soil water and surface runoff are tested using the AgroEcoSystem-Watershed (AgES-W) model with three different resolutions of HRUs. We studied a 56-ha agricultural watershed in northern Colorado, USA farmed primarily under a wheat-fallow rotation. The delineation algorithm was based upon topography (surface flow paths), land use (crop management strips and native grass), and mapped soil units (three types), which produced HRUs that follow the land use and soil boundaries. AgES-W model parameters that control surface and subsurface hydrology were calibrated using simulated daily soil moisture at different landscape positions and depths where soil moisture was measured hourly and averaged up to daily values. Parameter sets were both uniform and spatially variable with depth and across the watershed (5 different calibration approaches). Although forward simulations were computationally efficient (less than 1 minute each), each calibration required thousands of model runs. Execution of such large jobs was facilitated by using the Object Modeling System with the Cloud Services Innovation Platform to manage four virtual machines on a commercial web service configured with a total of 64 computational cores and 120 GB of memory. Results show how spatially distributed and averaged soil moisture and runoff at the outlet vary with different HRU delineations. The results will help guide HRU delineation, spatial resolution and parameter estimation methods for improved hydrological simulations in this and other semi-arid agricultural watersheds.

  13. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Hoskinson; R C. Rope; L G. Blackwood

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and amore » predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted for almost 87% of the cost difference. The sum of these differences could result in a $34 per acre cost difference for the fertilization. Because of these differences, better analysis or better sampling methods may need to be done, or more samples collected, to ensure that the soil measurements are truly representative of the field’s spatial variability.« less

  14. Experimental validation of plastic constitutive hardening relationship based upon the direction of the Net Burgers Density Vector

    NASA Astrophysics Data System (ADS)

    Sarac, Abdulhamit; Kysar, Jeffrey W.

    2018-02-01

    We present a new methodology for experimental validation of single crystal plasticity constitutive relationships based upon spatially resolved measurements of the direction of the Net Burgers Density Vector, which we refer to as the β-field. The β-variable contains information about the active slip systems as well as the ratios of the Geometrically Necessary Dislocation (GND) densities on the active slip systems. We demonstrate the methodology by comparing single crystal plasticity finite element simulations of plane strain wedge indentations into face-centered cubic nickel to detailed experimental measurements of the β-field. We employ the classical Peirce-Asaro-Needleman (PAN) hardening model in this study due to the straightforward physical interpretation of its constitutive parameters that include latent hardening ratio, initial hardening modulus and the saturation stress. The saturation stress and the initial hardening modulus have relatively large influence on the β-variable compared to the latent hardening ratio. A change in the initial hardening modulus leads to a shift in the boundaries of plastic slip sectors with the plastically deforming region. As the saturation strength varies, both the magnitude of the β-variable and the boundaries of the plastic slip sectors change. We thus demonstrate that the β-variable is sensitive to changes in the constitutive parameters making the variable suitable for validation purposes. We identify a set of constitutive parameters that are consistent with the β-field obtained from the experiment.

  15. Spatial and Temporal Reconstruction of Scottish Summer Temperatures for the Last 300 Years

    NASA Astrophysics Data System (ADS)

    Rydval, Miloš; Cook, Edward R.; Druckenbrod, Daniel; Larsson, Lars-Åke; Wilson, Rob

    2015-04-01

    It is important to place recent anthropogenic climate change into a longer term context. Despite a good understanding of past climate variation for much of the Scandinavian region, little is known about Scottish climate over recent centuries. In order to fill this current gap in our understanding of northwest European climate dynamics and thus provide the context necessary to assess likely future changes of climate in this climatically important region, the limited spatial and temporal coverage of instrumental data must be extended using proxy data. Tree-rings provide one of the best proxy data sources for such an exercise. Until recently, the development of dendrochronological records in Scotland for climatological purposes has been limited. To help develop insight into the patterns of temperature variability in this region, multiple tree-ring parameters including ring-width (RW), maximum latewood density (MXD) and blue intensity (BI) from a network of 42 living Scots pine (Pinus sylvestris L.) sites distributed throughout the Scottish Highlands were utilized to reconstruct mean summer temperature with a grid resolution of 0.5°. Due to considerable anthropogenic disturbance from past logging events at some locations, RW data were assessed and corrected for disturbance-related growth releases using a Combined Step and Trend Intervention Detection methodology prior to their utilization in reconstruction development. Although the BI parameter offers a cheaper alternative to MXD while providing similar information, some limitations have been noted related to heartwood-sapwood colour differences in some species that may induce low frequency chronology biases. To avoid such BI limitations, in addition to the use of individual parameter site chronologies, corrected RW series were also combined with BI data to develop filtered high-frequency-BI / low-frequency-RW composite band-pass chronologies. Utilizing the TR network, a point-by-point principal component regression nested analysis was used to derive spatially independent reconstructions of (0.5°) gridded summer temperatures. The reconstruction results identified the timing, scale and duration of warmer and colder periods in the recent past, revealing the spatial patterns of temperature variability in this region over the past few centuries. The spatial reconstruction results agree well with a 600-yr composite BI / RW reconstruction from central Scotland using independent Scots pine chronologies extended into the past with samples preserved in Highland lakes.

  16. Spatially detailed retrievals of spring phenology from single-season high-resolution image time series

    NASA Astrophysics Data System (ADS)

    Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc

    2017-07-01

    Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels due to cloud cover around phenological transition dates. The Proba-V and MODIS phenology retrievals scaled poorly relative to their high-resolution equivalents, indicating that medium-resolution phenology retrievals need to be interpreted with care, particularly in landscapes with fine-scale land cover variability.

  17. The Utility of Selection for Military and Civilian Jobs

    DTIC Science & Technology

    1989-07-01

    parsimonious use of information; the relative ease in making threshold (break-even) judgments compared to estimating actual SDy values higher than a... threshold value, even though judges are unlikely to agree on the exact point estimate for the SDy parameter; and greater understanding of how even small...ability, spatial ability, introversion , anxiety) considered to vary or differ across individuals. A construct (sometimes called a latent variable) is not

  18. Hydrological signals in height and gravity in northeastern Italy inferred from principal components analysis

    NASA Astrophysics Data System (ADS)

    Zerbini, S.; Raicich, F.; Richter, B.; Gorini, V.; Errico, M.

    2010-04-01

    This work describes a study of GPS heights, gravity and hydrological time series collected by stations located in northeastern Italy. During the last 12 years, changes in the long-term behaviors of the GPS heights and gravity time series are observed. In particular, starting in 2004-2005, a height increase is observed over the whole area. The temporal and spatial variability of these parameters has been studied as well as those of key hydrological variables, namely precipitation, hydrological balance and water table by using the Empirical Orthogonal Functions (EOF) analysis. The coupled variability between the GPS heights and the hydrological balance and precipitation data has been investigated by means of the Singular Value Decomposition (SVD) approach. Significant common patterns in the spatial and temporal variability of these parameters have been recognized. In particular, hydrology-induced variations are clearly observable starting in 2002-2003 in the southern part of the Po Plain for the longest time series, and from 2004-2005 over the whole area. These findings, obtained by means of purely mathematical approaches, are supported by sound physical interpretation suggesting that the climate-related fluctuations in the regional/local hydrological regime are one of the main contributors to the observed variations. A regional scale signal has been identified in the GPS station heights; it is characterized by the opposite behavior of the southern and northern stations in response to the hydrological forcing. At Medicina, in the southern Po Plain, the EOF analysis has shown a marked common signal between the GPS heights and the Superconducting Gravimeter (SG) data both over the long and the short period.

  19. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data

    NASA Astrophysics Data System (ADS)

    Sahoo, Ramendra; Jain, Vikrant

    2018-02-01

    Drainage network pattern and its associated morphometric ratios are some of the important plan form attributes of a drainage basin. Extraction of these attributes for any basin is usually done by spatial analysis of the elevation data of that basin. These planform attributes are further used as input data for studying numerous process-response interactions inside the physical premise of the basin. One of the important uses of the morphometric ratios is its usage in the derivation of hydrologic response of a basin using GIUH concept. Hence, accuracy of the basin hydrological response to any storm event depends upon the accuracy with which, the morphometric ratios can be estimated. This in turn, is affected by the spatial resolution of the source data, i.e. the digital elevation model (DEM). We have estimated the sensitivity of the morphometric ratios and the GIUH derived hydrograph parameters, to the resolution of source data using a 30 meter and a 90 meter DEM. The analysis has been carried out for 50 drainage basins in a mountainous catchment. A simple and comprehensive algorithm has been developed for estimation of the morphometric indices from a stream network. We have calculated all the morphometric parameters and the hydrograph parameters for each of these basins extracted from two different DEMs, with different spatial resolutions. Paired t-test and Sign test were used for the comparison. Our results didn't show any statistically significant difference among any of the parameters calculated from the two source data. Along with the comparative study, a first-hand empirical analysis about the frequency distribution of the morphometric and hydrologic response parameters has also been communicated. Further, a comparison with other hydrological models suggests that plan form morphometry based GIUH model is more consistent with resolution variability in comparison to topographic based hydrological model.

  20. Modelling the growth of Populus species using Ecosystem Demography (ED) model

    NASA Astrophysics Data System (ADS)

    Wang, D.; Lebauer, D. S.; Feng, X.; Dietze, M. C.

    2010-12-01

    Hybrid poplar plantations are an important source being evaluated for biomass production. Effective management of such plantations requires adequate growth and yield models. The Ecosystem Demography model (ED) makes predictions about the large scales of interest in above- and belowground ecosystem structure and the fluxes of carbon and water from a description of the fine-scale physiological processes. In this study, we used a workflow management tool, the Predictive Ecophysiological Carbon flux Analyzer (PECAn), to integrate literature data, field measurement and the ED model to provide predictions of ecosystem functioning. Parameters for the ED ensemble runs were sampled from the posterior distribution of ecophysiological traits of Populus species compiled from the literature using a Bayesian meta-analysis approach. Sensitivity analysis was performed to identify the parameters which contribute the most to the uncertainties of the ED model output. Model emulation techniques were used to update parameter posterior distributions using field-observed data in northern Wisconsin hybrid poplar plantations. Model results were evaluated with 5-year field-observed data in a hybrid poplar plantation at New Franklin, MO. ED was then used to predict the spatial variability of poplar yield in the coterminous United States (United States minus Alaska and Hawaii). Sensitivity analysis showed that root respiration, dark respiration, growth respiration, stomatal slope and specific leaf area contribute the most to the uncertainty, which suggests that our field measurements and data collection should focus on these parameters. The ED model successfully captured the inter-annual and spatial variability of the yield of poplar. Analyses in progress with the ED model focus on evaluating the ecosystem services of short-rotation woody plantations, such as impacts on soil carbon storage, water use, and nutrient retention.

  1. A review of model applications for structured soils: b) Pesticide transport.

    PubMed

    Köhne, John Maximilian; Köhne, Sigrid; Simůnek, Jirka

    2009-02-16

    The past decade has seen considerable progress in the development of models simulating pesticide transport in structured soils subject to preferential flow (PF). Most PF pesticide transport models are based on the two-region concept and usually assume one (vertical) dimensional flow and transport. Stochastic parameter sets are sometimes used to account for the effects of spatial variability at the field scale. In the past decade, PF pesticide models were also coupled with Geographical Information Systems (GIS) and groundwater flow models for application at the catchment and larger regional scales. A review of PF pesticide model applications reveals that the principal difficulty of their application is still the appropriate parameterization of PF and pesticide processes. Experimental solution strategies involve improving measurement techniques and experimental designs. Model strategies aim at enhancing process descriptions, studying parameter sensitivity, uncertainty, inverse parameter identification, model calibration, and effects of spatial variability, as well as generating model emulators and databases. Model comparison studies demonstrated that, after calibration, PF pesticide models clearly outperform chromatographic models for structured soils. Considering nonlinear and kinetic sorption reactions further enhanced the pesticide transport description. However, inverse techniques combined with typically available experimental data are often limited in their ability to simultaneously identify parameters for describing PF, sorption, degradation and other processes. On the other hand, the predictive capacity of uncalibrated PF pesticide models currently allows at best an approximate (order-of-magnitude) estimation of concentrations. Moreover, models should target the entire soil-plant-atmosphere system, including often neglected above-ground processes such as pesticide volatilization, interception, sorption to plant residues, root uptake, and losses by runoff. The conclusions compile progress, problems, and future research choices for modelling pesticide displacement in structured soils.

  2. SPAGETTA, a Gridded Weather Generator: Calibration, Validation and its Use for Future Climate

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Rotach, Mathias W.; Huth, Radan

    2017-04-01

    Spagetta is a new (started in 2016) stochastic multi-site multi-variate weather generator (WG). It can produce realistic synthetic daily (or monthly, or annual) weather series representing both present and future climate conditions at multiple sites (grids or stations irregularly distributed in space). The generator, whose model is based on the Wilks' (1999) multi-site extension of the parametric (Richardson's type) single site M&Rfi generator, may be run in two modes: In the first mode, it is run as a classical generator, which is calibrated in the first step using weather data from multiple sites, and only then it may produce arbitrarily long synthetic time series mimicking the spatial and temporal structure of the calibration weather data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. In the second mode, the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the surface weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying autoregressive model, which produces the multi-site weather series. In the latter mode of operation, the user is allowed to prescribe the spatially varying trend, which is superimposed to the values produced by the generator; this feature has been implemented for use in developing the methodology for assessing significance of trends in multi-site weather series (for more details see another EGU-2017 contribution: Huth and Dubrovsky, 2017, Evaluating collective significance of climatic trends: A comparison of methods on synthetic data; EGU2017-4993). This contribution will focus on the first (classical) mode. The poster will present (a) model of the generator, (b) results of the validation tests made in terms of the spatial hot/cold/dry/wet spells, and (c) results of the pilot climate change impact experiment, in which (i) the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and then (ii) the effect on the above spatial validation indices derived from the synthetic series produced by the modified WG is analysed. In this experiment, the generator is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulation (taken from the CORDEX database).

  3. Cellular Telephone Dialing Influences Kinematic and Spatiotemporal Gait Parameters in Healthy Adults.

    PubMed

    Seymour, Kelly M; Higginson, Christopher I; DeGoede, Kurt M; Bifano, Morgan K; Orr, Rachel; Higginson, Jill S

    2016-01-01

    Gait speed is typically reduced when individuals simultaneously perform other tasks. However, the impact of dual tasking on kinetic and kinematic gait parameters is unclear because these vary with gait speed. The objective of this study was to identify whether dual tasking impacts gait in healthy adults when speed is constant. Twenty-two healthy adults dialed a cell phone during treadmill walking at a self-selected speed while kinetic, kinematic, and spatial parameters were recorded. Results indicated that dual tasking did not impact phone dialing speed, but increased stride width, peak knee flexion during stance, and peak plantarflexion, and decreased knee and ankle range of motion. Dual tasking appears to influence kinematic gait variables in a manner consistent with promotion of stability.

  4. A new numerical benchmark of a freshwater lens

    NASA Astrophysics Data System (ADS)

    Stoeckl, L.; Walther, M.; Graf, T.

    2016-04-01

    A numerical benchmark for 2-D variable-density flow and solute transport in a freshwater lens is presented. The benchmark is based on results of laboratory experiments conducted by Stoeckl and Houben (2012) using a sand tank on the meter scale. This benchmark describes the formation and degradation of a freshwater lens over time as it can be found under real-world islands. An error analysis gave the appropriate spatial and temporal discretization of 1 mm and 8.64 s, respectively. The calibrated parameter set was obtained using the parameter estimation tool PEST. Comparing density-coupled and density-uncoupled results showed that the freshwater-saltwater interface position is strongly dependent on density differences. A benchmark that adequately represents saltwater intrusion and that includes realistic features of coastal aquifers or freshwater lenses was lacking. This new benchmark was thus developed and is demonstrated to be suitable to test variable-density groundwater models applied to saltwater intrusion investigations.

  5. Should we trust build-up/wash-off water quality models at the scale of urban catchments?

    PubMed

    Bonhomme, Céline; Petrucci, Guido

    2017-01-01

    Models of runoff water quality at the scale of an urban catchment usually rely on build-up/wash-off formulations obtained through small-scale experiments. Often, the physical interpretation of the model parameters, valid at the small-scale, is transposed to large-scale applications. Testing different levels of spatial variability, the parameter distributions of a water quality model are obtained in this paper through a Monte Carlo Markov Chain algorithm and analyzed. The simulated variable is the total suspended solid concentration at the outlet of a periurban catchment in the Paris region (2.3 km 2 ), for which high-frequency turbidity measurements are available. This application suggests that build-up/wash-off models applied at the catchment-scale do not maintain their physical meaning, but should be considered as "black-box" models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Biogeochemical controls on mercury methylation in the Allequash Creek wetland.

    PubMed

    Creswell, Joel E; Shafer, Martin M; Babiarz, Christopher L; Tan, Sue-Zanne; Musinsky, Abbey L; Schott, Trevor H; Roden, Eric E; Armstrong, David E

    2017-06-01

    We measured mercury methylation potentials and a suite of related biogeochemical parameters in sediment cores and porewater from two geochemically distinct sites in the Allequash Creek wetland, northern Wisconsin, USA. We found a high degree of spatial variability in the methylation rate potentials but no significant differences between the two sites. We identified the primary geochemical factors controlling net methylmercury production at this site to be acid-volatile sulfide, dissolved organic carbon, total dissolved iron, and porewater iron(II). Season and demethylation rates also appear to regulate net methylmercury production. Our equilibrium speciation modeling demonstrated that sulfide likely regulated methylation rates by controlling the speciation of inorganic mercury and therefore its bioavailability to methylating bacteria. We found that no individual geochemical parameter could explain a significant amount of the observed variability in mercury methylation rates, but we found significant multivariate relationships, supporting the widely held understanding that net methylmercury production is balance of several simultaneously occurring processes.

  7. Age-related cognitive task effects on gait characteristics: do different working memory components make a difference?

    PubMed

    Qu, Xingda

    2014-10-27

    Though it is well recognized that gait characteristics are affected by concurrent cognitive tasks, how different working memory components contribute to dual task effects on gait is still unknown. The objective of the present study was to investigate dual-task effects on gait characteristics, specifically the application of cognitive tasks involving different working memory components. In addition, we also examined age-related differences in such dual-task effects. Three cognitive tasks (i.e. 'Random Digit Generation', 'Brooks' Spatial Memory', and 'Counting Backward') involving different working memory components were examined. Twelve young (6 males and 6 females, 20 ~ 25 years old) and 12 older participants (6 males and 6 females, 60 ~ 72 years old) took part in two phases of experiments. In the first phase, each cognitive task was defined at three difficulty levels, and perceived difficulty was compared across tasks. The cognitive tasks perceived to be equally difficult were selected for the second phase. In the second phase, four testing conditions were defined, corresponding to a baseline and the three equally difficult cognitive tasks. Participants walked on a treadmill at their self-selected comfortable speed in each testing condition. Body kinematics were collected during treadmill walking, and gait characteristics were assessed using spatial-temporal gait parameters. Application of the concurrent Brooks' Spatial Memory task led to longer step times compared to the baseline condition. Larger step width variability was observed in both the Brooks' Spatial Memory and Counting Backward dual-task conditions than in the baseline condition. In addition, cognitive task effects on step width variability differed between two age groups. In particular, the Brooks' Spatial Memory task led to significantly larger step width variability only among older adults. These findings revealed that cognitive tasks involving the visuo-spatial sketchpad interfered with gait more severely in older versus young adults. Thus, dual-task training, in which a cognitive task involving the visuo-spatial sketchpad (e.g. the Brooks' Spatial Memory task) is concurrently performed with walking, could be beneficial to mitigate impairments in gait among older adults.

  8. Outlier detection for particle image velocimetry data using a locally estimated noise variance

    NASA Astrophysics Data System (ADS)

    Lee, Yong; Yang, Hua; Yin, ZhouPing

    2017-03-01

    This work describes an adaptive spatial variable threshold outlier detection algorithm for raw gridded particle image velocimetry data using a locally estimated noise variance. This method is an iterative procedure, and each iteration is composed of a reference vector field reconstruction step and an outlier detection step. We construct the reference vector field using a weighted adaptive smoothing method (Garcia 2010 Comput. Stat. Data Anal. 54 1167-78), and the weights are determined in the outlier detection step using a modified outlier detector (Ma et al 2014 IEEE Trans. Image Process. 23 1706-21). A hard decision on the final weights of the iteration can produce outlier labels of the field. The technical contribution is that the spatial variable threshold motivation is embedded in the modified outlier detector with a locally estimated noise variance in an iterative framework for the first time. It turns out that a spatial variable threshold is preferable to a single spatial constant threshold in complicated flows such as vortex flows or turbulent flows. Synthetic cellular vortical flows with simulated scattered or clustered outliers are adopted to evaluate the performance of our proposed method in comparison with popular validation approaches. This method also turns out to be beneficial in a real PIV measurement of turbulent flow. The experimental results demonstrated that the proposed method yields the competitive performance in terms of outlier under-detection count and over-detection count. In addition, the outlier detection method is computational efficient and adaptive, requires no user-defined parameters, and corresponding implementations are also provided in supplementary materials.

  9. Spatial and Temporal Ionospheric Monitoring Using Broadband Sferic Measurements

    NASA Astrophysics Data System (ADS)

    McCormick, J. C.; Cohen, M. B.; Gross, N. C.; Said, R. K.

    2018-04-01

    The D region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales up to many hundreds of kilometers. Very low frequency (VLF) and low-frequency (LF) (3-30 kHz and 30-300 kHz) radio waves are guided to global distances by reflections from the ground and the D region. Therefore, information about its current state is encoded in received VLF/LF signals. VLF transmitters have been used in the past for D region studies, with ionospheric disturbances manifesting as perturbations in amplitude and/or phase. The return stroke of lightning is an impulsive VLF radiator, but unlike VLF transmitters, lightning events are distributed broadly in space allowing for much greater spatial coverage of the D region compared to VLF transmitter-based remote sensing in addition to the broadband spectral advantage over the narrowband transmitters. The challenge is that individual lightning-generated waveforms, or "sferics," vary due to the lightning current parameters and uncertainty in the time/location information, in addition to D region ionospheric variability. These factors make it difficult to utilize the VLF/LF emissions from lightning in a straightforward manner. We describe a technique to recover the time domain and amplitude/phase spectra for both Bϕ and Br with high fidelity and consider the utility of our technique with ambient and varied ionospheric conditions. We demonstrate a technique to simulate sferics and infer a parameterized ionosphere with the Wait and Spies parameters (h' and β) offering all of the tools needed for a global measurement.

  10. Identification of land use and other anthropogenic impacts on nitrogen cycling using stable isotopes and distributed hydrologic modeling

    NASA Astrophysics Data System (ADS)

    O'Connell, M. T.; Macko, S. A.

    2017-12-01

    Reactive modeling of sources and processes affecting the concentration of NO3- and NH4+ in natural and anthropogenically influenced surface water can reveal unexpected characteristics of the systems. A distributed hydrologic model, TREX, is presented that provides opportunities to study multiscale effects of nitrogen inputs, outputs, and changes. The model is adapted to run on parallel computing architecture and includes the geochemical reaction module PhreeqcRM, which enables calculation of δ15N and δ18O from biologically mediated transformation reactions in addition to mixing and equilibration. Management practices intended to attenuate nitrate in surface and subsurface waters, in particular the establishment of riparian buffer zones, are variably effective due to spatial heterogeneity of soils and preferential flow through buffers. Accounting for this heterogeneity in a fully distributed biogeochemical model allows for more efficient planning and management practices. Highly sensitive areas within a watershed can be identified based on a number of spatially variable parameters, and by varying those parameters systematically to determine conditions under which those areas are under more or less critical stress. Responses can be predicted at various scales to stimuli ranging from local changes in cropping regimes to global shifts in climate. This work presents simulations of conditions showing low antecedent nitrogen retention versus significant contribution of old nitrate. Nitrogen sources are partitioned using dual isotope ratios and temporally varying concentrations. In these two scenarios, we can evaluate the efficiency of source identification based on spatially explicit information, and model effects of increasing urban land use on N biogeochemical cycling.

  11. Stress- and structure-controlled anisotropy in a region of complex faulting—Yuha Desert, California

    USGS Publications Warehouse

    Cochran, Elizabeth S.; Kroll, Kayla A.

    2015-01-01

    We examine shear velocity anisotropy in the Yuha Desert, California using aftershocks of the 2010 M7.2 El Mayor-Cucapah earthquake. The Yuha Desert is underlain by a complex network of right- and left-lateral conjugate faults, some of which experienced triggered slip during the El Mayor-Cucapah earthquake. An automated method that implements multiple measurement windows and a range of bandpass filters is used to estimate the fast direction (ϕ) and delay time (δt) of the split shear waves. We find an average ϕ oriented approximately north–south suggesting it is primarily controlled by the regional maximum compressive stress direction. However, the spatial variability in ϕ reveals that the fault structures that underlie the Yuha Desert also influence the measured splitting parameters. We infer that the northeast- and northwest-oriented ϕ reflect shear fabric subparallel to the conjugate fault structures. We do not observe a simple correlation between δt and hypocentral distance. Instead, the observed spatial variation in δt suggests that near-source variation in anisotropic strength may be equal to or more important than effects local to the station. No temporal variation in splitting parameters is observed during the 70-day period following the main shock. In this region of complex faulting, we observe a spatially variable pattern of anisotropy that is both stress- and structure-controlled. This study suggests that shear fabric can form even along short, discontinuous fault strands with minimal offset.                   

  12. Estimating spatial and temporal components of variation in count data using negative binomial mixed models

    USGS Publications Warehouse

    Irwin, Brian J.; Wagner, Tyler; Bence, James R.; Kepler, Megan V.; Liu, Weihai; Hayes, Daniel B.

    2013-01-01

    Partitioning total variability into its component temporal and spatial sources is a powerful way to better understand time series and elucidate trends. The data available for such analyses of fish and other populations are usually nonnegative integer counts of the number of organisms, often dominated by many low values with few observations of relatively high abundance. These characteristics are not well approximated by the Gaussian distribution. We present a detailed description of a negative binomial mixed-model framework that can be used to model count data and quantify temporal and spatial variability. We applied these models to data from four fishery-independent surveys of Walleyes Sander vitreus across the Great Lakes basin. Specifically, we fitted models to gill-net catches from Wisconsin waters of Lake Superior; Oneida Lake, New York; Saginaw Bay in Lake Huron, Michigan; and Ohio waters of Lake Erie. These long-term monitoring surveys varied in overall sampling intensity, the total catch of Walleyes, and the proportion of zero catches. Parameter estimation included the negative binomial scaling parameter, and we quantified the random effects as the variations among gill-net sampling sites, the variations among sampled years, and site × year interactions. This framework (i.e., the application of a mixed model appropriate for count data in a variance-partitioning context) represents a flexible approach that has implications for monitoring programs (e.g., trend detection) and for examining the potential of individual variance components to serve as response metrics to large-scale anthropogenic perturbations or ecological changes.

  13. Nonideal transport of reactive solutes in heterogeneous porous media: 4. Analysis of the Cape Cod Natural‐Gradient Field Experiment

    USGS Publications Warehouse

    Brusseau, Mark L.; Srivastava, Rajesh

    1999-01-01

    One of the largest field studies of reactive‐solute transport is the natural‐gradient experiment conducted at Cape Cod from 1985 to 1988. Major findings regarding the transport behavior of the reactive solute (lithium) were that the rate of plume displacement decreased with time (temporal increase in effective retardation), the degree of longitudinal spreading was much greater than that observed for bromide for an equivalent travel distance, and the plume was asymmetric, with maximum concentrations located near the leading edges. The objective of our work was to quantitatively analyze the transport of lithium and to attempt to identify the factor or factors that contributed significantly to its observed nonideal transport. We used a mathematical model that accounted for several transport factors, including spatially variable hydraulic conductivity and spatially variable, nonlinear, rate‐limited sorption, with all parameter values obtained independently. The transport behavior observed during the first 250 days, corresponding to a transport distance of 60 m, was predicted reasonably well by the simulation that incorporated spatially variable hydraulic conductivity; nonlinear, rate‐limited, spatially variable sorption; and uniform water chemistry. However, the larger degree of deceleration observed during the latter stage of the experiment (the filial 20 m) was not. The larger deceleration was successfully simulated by increasing 3‐fold the mean sorption capacity of the latter portion of the transport domain. Such a change in sorption capacity is consistent with the potential impact on lithium sorption of measured changes in water chemistry (e.g.,pH increase, reduction in resident Zn)at occur in the zone through which the lithium plume traversed. The results of the analyses suggest that nonlinear sorption and variable water chemistry may have btors responsible for the nonuniform displacement of the lithium plume, with rate‐limited sorption/desorption having minimal impact. In addition, the asymmetry of the plume appears to have been caused primarily by nonlinear sorption, whereas the enhanced longitudinal spreading appears to have been caused by the combined influences of spatially variable hydraulic conductivity and sorption, nonlinear sorption, and rate‐limited sorption/desorption. A comparison of the results of this analysis to those we obtained from an analysis of the Borden natural‐gradient study reveals several similarities regarding the transport of reactive contaminants at the field scale.

  14. Under-sampling trajectory design for compressed sensing based DCE-MRI.

    PubMed

    Liu, Duan-duan; Liang, Dong; Zhang, Na; Liu, Xin; Zhang, Yuan-ting

    2013-01-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) needs high temporal and spatial resolution to accurately estimate quantitative parameters and characterize tumor vasculature. Compressed Sensing (CS) has the potential to accomplish this mutual importance. However, the randomness in CS under-sampling trajectory designed using the traditional variable density (VD) scheme may translate to uncertainty in kinetic parameter estimation when high reduction factors are used. Therefore, accurate parameter estimation using VD scheme usually needs multiple adjustments on parameters of Probability Density Function (PDF), and multiple reconstructions even with fixed PDF, which is inapplicable for DCE-MRI. In this paper, an under-sampling trajectory design which is robust to the change on PDF parameters and randomness with fixed PDF is studied. The strategy is to adaptively segment k-space into low-and high frequency domain, and only apply VD scheme in high-frequency domain. Simulation results demonstrate high accuracy and robustness comparing to VD design.

  15. Small scale denitrification variability in riparian zones: Results from a high-resolution dataset

    NASA Astrophysics Data System (ADS)

    Gassen, Niklas; Knöller, Kay; Musolff, Andreas; Popp, Felix; Lüders, Tillmann; Stumpp, Christine

    2017-04-01

    Riparian zones are important compartments at the interface between groundwater and surface water where biogeochemical processes like denitrification are often enhanced. Nitrate loads of either groundwater entering a stream through the riparian zone or streamwater infiltrating into the riparian zone can be substantially reduced. These processes are spatially and temporally highly variable, making it difficult to capture solute variabilities, estimate realistic turnover rates and thus to quantify integral mass removal. A crucial step towards a more detailed characterization is to monitor solutes on a scale which adequately resemble the highly heterogeneous distribution and on a scale where processes occur. We measured biogeochemical parameters in a spatial high resolution within a riparian corridor of a German lowland river system over the course of one year. Samples were taken from three newly developed high-resolution multi-level wells with a maximum vertical resolution of 5 cm and analyzed for major ions, DOC and N-O isotopes. Sediment derived during installation of the wells was analyzed for specific denitrifying enzymes. Results showed a distinct depth zonation of hydrochemistry within the shallow alluvial aquifer, with a 1 m thick zone just below the water table with lower nitrate concentrations and EC values similar to the nearby river. Conservative parameters were consistent inbetween the three wells, but nitrate was highly variable. In addition, spots with low nitrate concentrations showed isotopic and microbial evidence for higher denitrification activities. The depth zonation was observed throughout the year, with stronger temporal variations of nitrate concentrations just below the water table compared to deeper layers. Nitrate isotopes showed a clear seasonal trend of denitrification activities (high in summer, low in winter). Our dataset gives new insight into river-groundwater exchange processes and shows the highly heterogeneous distribution of denitrification in riparian zones, both in time and space. With these new insights, we are able to improve our understanding of spatial scaling of denitrification processes. This leads to a better prediction and improved management strategies for buffer mechanisms in riparian zones.

  16. Uncertainty on shallow landslide hazard assessment: from field data to hazard mapping

    NASA Astrophysics Data System (ADS)

    Trefolini, Emanuele; Tolo, Silvia; Patelli, Eduardo; Broggi, Matteo; Disperati, Leonardo; Le Tuan, Hai

    2015-04-01

    Shallow landsliding that involve Hillslope Deposits (HD), the surficial soil that cover the bedrock, is an important process of erosion, transport and deposition of sediment along hillslopes. Despite Shallow landslides generally mobilize relatively small volume of material, they represent the most hazardous factor in mountain regions due to their high velocity and the common absence of warning signs. Moreover, increasing urbanization and likely climate change make shallow landslides a source of widespread risk, therefore the interest of scientific community about this process grown in the last three decades. One of the main aims of research projects involved on this topic, is to perform robust shallow landslides hazard assessment for wide areas (regional assessment), in order to support sustainable spatial planning. Currently, three main methodologies may be implemented to assess regional shallow landslides hazard: expert evaluation, probabilistic (or data mining) methods and physical models based methods. The aim of this work is evaluate the uncertainty of shallow landslides hazard assessment based on physical models taking into account spatial variables such as: geotechnical and hydrogeologic parameters as well as hillslope morphometry. To achieve this goal a wide dataset of geotechnical properties (shear strength, permeability, depth and unit weight) of HD was gathered by integrating field survey, in situ and laboratory tests. This spatial database was collected from a study area of about 350 km2 including different bedrock lithotypes and geomorphological features. The uncertainty associated to each step of the hazard assessment process (e.g. field data collection, regionalization of site specific information and numerical modelling of hillslope stability) was carefully characterized. The most appropriate probability density function (PDF) was chosen for each numerical variable and we assessed the uncertainty propagation on HD strength parameters obtained by empirical relations with geotechnical index properties. Site specific information was regionalized at map scale by (hard and fuzzy) clustering analysis taking into account spatial variables such as: geology, geomorphology and hillslope morphometric variables (longitudinal and transverse curvature, flow accumulation and slope), the latter derived by a DEM with 10 m cell size. In order to map shallow landslide hazard, Monte Carlo simulation was performed for some common physically based models available in literature (eg. SINMAP, SHALSTAB, TRIGRS). Furthermore, a new approach based on the use of Bayesian Network was proposed and validated. Different models, such as Intervals, Convex Models and Fuzzy Sets, were adopted for the modelling of input parameters. Finally, an accuracy assessment was carried out on the resulting maps and the propagation of uncertainty of input parameters into the final shallow landslide hazard estimation was estimated. The outcomes of the analysis are compared and discussed in term of discrepancy among map pixel values and related estimated error. The novelty of the proposed method is on estimation of the confidence of the shallow landslides hazard mapping at regional level. This allows i) to discriminate regions where hazard assessment is robust from areas where more data are necessary to increase the confidence level and ii) to assess the reliability of the procedure used for hazard assessment.

  17. N-mixture models for estimating population size from spatially replicated counts

    USGS Publications Warehouse

    Royle, J. Andrew

    2004-01-01

    Spatial replication is a common theme in count surveys of animals. Such surveys often generate sparse count data from which it is difficult to estimate population size while formally accounting for detection probability. In this article, i describe a class of models (n-mixture models) which allow for estimation of population size from such data. The key idea is to view site-specific population sizes, n, as independent random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are estimated from the marginal likelihood of the data, having integrated over the prior distribution for n. Carroll and lombard (1985, journal of american statistical association 80, 423-426) proposed a class of estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication provides additional information regarding the parameters of the prior distribution on n that is exploited by the n-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation study demonstrates superior operating characteristics (bias, confidence interval coverage) of the n-mixture estimator compared to the caroll and lombard estimator. Both estimators are applied to point count data on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates of abundance as a consequence.

  18. Describing the brain in autism in five dimensions--magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach.

    PubMed

    Ecker, Christine; Marquand, Andre; Mourão-Miranda, Janaina; Johnston, Patrick; Daly, Eileen M; Brammer, Michael J; Maltezos, Stefanos; Murphy, Clodagh M; Robertson, Dene; Williams, Steven C; Murphy, Declan G M

    2010-08-11

    Autism spectrum disorder (ASD) is a neurodevelopmental condition with multiple causes, comorbid conditions, and a wide range in the type and severity of symptoms expressed by different individuals. This makes the neuroanatomy of autism inherently difficult to describe. Here, we demonstrate how a multiparameter classification approach can be used to characterize the complex and subtle structural pattern of gray matter anatomy implicated in adults with ASD, and to reveal spatially distributed patterns of discriminating regions for a variety of parameters describing brain anatomy. A set of five morphological parameters including volumetric and geometric features at each spatial location on the cortical surface was used to discriminate between people with ASD and controls using a support vector machine (SVM) analytic approach, and to find a spatially distributed pattern of regions with maximal classification weights. On the basis of these patterns, SVM was able to identify individuals with ASD at a sensitivity and specificity of up to 90% and 80%, respectively. However, the ability of individual cortical features to discriminate between groups was highly variable, and the discriminating patterns of regions varied across parameters. The classification was specific to ASD rather than neurodevelopmental conditions in general (e.g., attention deficit hyperactivity disorder). Our results confirm the hypothesis that the neuroanatomy of autism is truly multidimensional, and affects multiple and most likely independent cortical features. The spatial patterns detected using SVM may help further exploration of the specific genetic and neuropathological underpinnings of ASD, and provide new insights into the most likely multifactorial etiology of the condition.

  19. Spherically symmetric Einstein-aether perfect fluid models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coley, Alan A.; Latta, Joey; Leon, Genly

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysicalmore » objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.« less

  20. Determining the soil hydraulic conductivity by means of a field scale internal drainage

    NASA Astrophysics Data System (ADS)

    Severino, Gerardo; Santini, Alessandro; Sommella, Angelo

    2003-03-01

    Spatial variations of water content in large extents soils (vadose zone) are highly affected by the natural heterogeneity of the porous medium. This implies that the magnitude of the hydraulic properties, especially the conductivity, varies in an irregular manner with scale. Determining mean values of hydraulic properties will not suffice to accurately quantify water flow in the vadose zone. At field scale proper field measurements have to be carried out, similar to standard laboratory methods that also characterize the spatial variability of the hydraulic properties. Toward this aim an internal drainage test has been conducted at Ponticelli site near Naples (Italy) where water content and pressure head were monitored at 50 locations of a 2×50 m 2 plot. The present paper illustrates a method to quantify the mean value and the spatial variability of the hydraulic parameters needed to calibrate the soil conductivity curve at field scale (hereafter defined as field scale hydraulic conductivity). A stochastic model that regards the hydraulic parameters as random space functions (RSFs) is derived by adopting the stream tube approach of Dagan and Bresler (1979). Owing to the randomness of the hydraulic parameters, even the water content θ will be a RSF whose mean value (hereafter termed field scale water content) is obtained as an ensemble average over all the realizations of a local analytical solution of Richards' equation. It is shown that the most frequent data collection should be carried out in the initial stage of the internal drainage experiment, when the most significant changes in water content occur. The model parameters are obtained by a standard least square optimization procedure using water content data at a certain depth (z=30 cm) for several times ( t=5, 24, 48, 96, 144, 216, 312, 408, 576, 744, 912 h). The reliability of the proposed method is then evaluated by comparing the predicted water content with observations at different depths ( z=45, 60, 75, and 90 cm). The calibration procedure is further verified by comparing the cumulative distribution of measured water content at different times with corresponding distribution obtained from the calibrated model.

  1. Characterizing spatial variability of air pollution from vehicle traffic around the Houston Ship Channel area

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Craft, Elena; Zhang, Kai

    2017-07-01

    Mobile emissions are a major source of urban air pollution and have been associated with a variety of adverse health outcomes. The Houston Ship Channel area is the home of a large number of diesel-powered vehicles emitting fine particulate matter (PM2.5; ≤2.5 μm in aerodynamic diameter) and nitrogen oxides (NOx). However, the spatial variability of traffic-related air pollutants in the Houston Ship Channel area has rarely been investigated. The objective of this study is to characterize spatial variability of PM2.5 and NOx concentrations attributable to on-road traffic in the Houston Ship Channel area in the year of 2011. We extracted the road network from the Texas Department of Transportation Road Inventory, and calculated emission rates using the Motor Vehicle Emission Simulator version 2014a (MOVES2014a). These parameters and preprocessed meteorological parameters were entered into a Research LINE-source Dispersion Model (RLINE) to conduct a simulation. Receptors were placed at 50 m resolution within 300 m to major roads and at 150 m resolution in the rest of the area. Our findings include that traffic-related PM2.5 were mainly emitted from trucks, while traffic-related NOx were emitted from both trucks and cars. The traffic contributed 0.90 μg/m3 PM2.5 and 29.23 μg/m3 NOx to the annual average mass concentrations of on-road air pollution, and the concentrations of the two pollutants decreased by nearly 40% within 500 m distance to major roads. The pollution level of traffic-related PM2.5 and NOx was higher in winter than those in the other three seasons. The Houston Ship Channel has earlier morning peak hours and relative late afternoon hours, which indicates the influence of goods movement from port activity. The varied near-road gradients illustrate that proximities to major roads are not an accurate surrogate of traffic-related air pollution.

  2. VARIABLE RATE APPLICATION OF SOIL HERBICIDES IN ARABLE CROPS: FROM THEORY TO PRACTICE.

    PubMed

    Heijting, S; Kempenaar, C

    2014-01-01

    Soil herbicides are applied around crop emergence and kill germinating weeds in the surface layer of the soil. These herbicides play an important role in the chemical management of weeds in major arable crops. From an environmental point of view there is a clear need for smarter application of these chemicals. This paper presents research done in The Netherlands on Variable Rate Application (VRA) of soil herbicides by taking into account spatial variation of the soil. Herbicides adsorbed to soil parameters such as clay or organic matter are not available for herbicidal activity. Decision Support Rules (DSR) describe the relation between the soil parameter and herbicide dosage needed for effectively controlling weeds. Research methods such as greenhouse trials, models and on farm research to develop DSR are discussed and results are presented. Another important ingredient for VRA of soil herbicides is an accurate soil map of the field. Sampling and subsequent interpolation is costly. Soil scans measuring a proxy that is subsequently translated into soil properties such as clay fraction and soil organic matter content offer a quicker way to achieve such maps but validation is needed. DSR is applied to the soil map to get the variable dosage map. The farmer combines this map with the routing, spray volume and spray boom width in the Farm Management Information System (FMIS), resulting in a task file. This task file can subsequently be read by the board computer resulting in a VRA spray map. Reduction in soil herbicide depends on the DSR, the spatial variation and pattern of the soil, the spatial configuration of the routing and the technical advances of the spray equipment. Recently, within the framework the Programma Precisie Landbouw, first steps were made to test and implement this in practice. Currently, theory and practice of VRA of soil herbicides is developed within the research program IJKakker in close cooperation with pioneering farmers in The Netherlands.

  3. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds - the two-CN system approach

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.

    2012-03-01

    The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.

  4. Two phase formation of massive elliptical galaxies: study through cross-correlation including spatial effect

    NASA Astrophysics Data System (ADS)

    Modak, Soumita; Chattopadhyay, Tanuka; Chattopadhyay, Asis Kumar

    2017-11-01

    Area of study is the formation mechanism of the present-day population of elliptical galaxies, in the context of hierarchical cosmological models accompanied by accretion and minor mergers. The present work investigates the formation and evolution of several components of the nearby massive early-type galaxies (ETGs) through cross-correlation function (CCF), using the spatial parameters right ascension (RA) and declination (DEC), and the intrinsic parameters mass (M_{*}) and size. According to the astrophysical terminology, here these variables, namely mass, size, RA and DEC are termed as parameters, whereas the unknown constants involved in the kernel function are called hyperparameters. Throughout this paper, the parameter size is used to represent the effective radius (Re). Following Huang et al. (2013a), each nearby ETG is divided into three parts on the basis of its Re value. We study the CCF between each of these three components of nearby massive ETGs and the ETGs in the high redshift range, 0.5< z≤ 2.7. It is found that the innermost components of nearby ETGs are highly correlated with ETGs in the redshift range, 2< z≤ 2.7, known as `red nuggets'. The intermediate and the outermost parts have moderate correlations with ETGs in the redshift range, 0.5< z≤ 0.75. The quantitative measures are highly consistent with the two phase formation scenario of nearby massive ETGs, as suggested by various authors, and resolve the conflict raised in a previous work (De et al. 2014) suggesting other possibilities for the formation of the outermost part. A probable cause of this improvement is the inclusion of the spatial effects in addition to the other parameters in the study.

  5. a Geographic Weighted Regression for Rural Highways Crashes Modelling Using the Gaussian and Tricube Kernels: a Case Study of USA Rural Highways

    NASA Astrophysics Data System (ADS)

    Aghayari, M.; Pahlavani, P.; Bigdeli, B.

    2017-09-01

    Based on world health organization (WHO) report, driving incidents are counted as one of the eight initial reasons for death in the world. The purpose of this paper is to develop a method for regression on effective parameters of highway crashes. In the traditional methods, it was assumed that the data are completely independent and environment is homogenous while the crashes are spatial events which are occurring in geographic space and crashes have spatial data. Spatial data have spatial features such as spatial autocorrelation and spatial non-stationarity in a way working with them is going to be a bit difficult. The proposed method has implemented on a set of records of fatal crashes that have been occurred in highways connecting eight east states of US. This data have been recorded between the years 2007 and 2009. In this study, we have used GWR method with two Gaussian and Tricube kernels. The Number of casualties has been considered as dependent variable and number of persons in crash, road alignment, number of lanes, pavement type, surface condition, road fence, light condition, vehicle type, weather, drunk driver, speed limitation, harmful event, road profile, and junction type have been considered as explanatory variables according to previous studies in using GWR method. We have compered the results of implementation with OLS method. Results showed that R2 for OLS method is 0.0654 and for the proposed method is 0.9196 that implies the proposed GWR is better method for regression in rural highway crashes.

  6. Environment and Spatial Influences on Aquatic Insect Communities in Cerrado Streams: the Relative Importance of Conductivity, Altitude, and Conservation Areas.

    PubMed

    Godoy, B S; Queiroz, L L; Lodi, S; Oliveira, L G

    2017-04-01

    The aquatic insect community is an important element for stream functionality and diversity, but the effects of altitude and conservation areas on the aquatic insect community have been poorly explored in neotropical ecozone. The lack of studies about the relative importance of space and environment on community structure is another obstacle within aquatic insect ecology, which precludes the inclusion of these studies in more current frameworks, like the metacommunity dynamics. We evaluated the relationship between the aquatic insect community structure at 19 streams in the Brazilian Cerrado and spatial and environmental variables, namely geographical distance among sites, stream altitude, chemical variables, and environmental protection areas. We partitioned the variance explained by spatial and environmental components using a partial redundancy analysis. The environment exhibited a strong spatial structure for abundance and number of genera, increasing these community parameters with elevated water conductivity. Only community composition had a large unexplained portion of variance, with a small portion constrained by environmental (altitude and conductivity) and spatial factors. A relevant point in the result was the streams with high conductivity were located outside of the conservation areas. These results suggest that the relationship between number of genera and abundance with environmental conditions is always associated with spatial configuration of streams. Our study shows that altitude is an important determinant of community structure, as it exerts indirect influences, and electrical conductivity directly determines community composition, and that some national parks may be inefficient in maintaining the diversity of aquatic insects in the Cerrado region.

  7. A multi-level analysis of the relationship between environmental factors and questing Ixodes ricinus dynamics in Belgium

    PubMed Central

    2012-01-01

    Background Ticks are the most important pathogen vectors in Europe. They are known to be influenced by environmental factors, but these links are usually studied at specific temporal or spatial scales. Focusing on Ixodes ricinus in Belgium, we attempt to bridge the gap between current “single-sided” studies that focus on temporal or spatial variation only. Here, spatial and temporal patterns of ticks are modelled together. Methods A multi-level analysis of the Ixodes ricinus patterns in Belgium was performed. Joint effects of weather, habitat quality and hunting on field sampled tick abundance were examined at two levels, namely, sampling level, which is associated with temporal dynamics, and site level, which is related to spatial dynamics. Independent variables were collected from standard weather station records, game management data and remote sensing-based land cover data. Results At sampling level, only a marginally significant effect of daily relative humidity and temperature on the abundance of questing nymphs was identified. Average wind speed of seven days prior to the sampling day was found important to both questing nymphs and adults. At site level, a group of landscape-level forest fragmentation indices were highlighted for both questing nymph and adult abundance, including the nearest-neighbour distance, the shape and the aggregation level of forest patches. No cross-level effects or spatial autocorrelation were found. Conclusions Nymphal and adult ticks responded differently to environmental variables at different spatial and temporal scales. Our results can advise spatio-temporal extents of environment data collection for continuing empirical investigations and potential parameters for biological tick models. PMID:22830528

  8. Spatial and temporal variability of thermohaline properties in the Bay of Koper (northern Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Soczka Mandac, Rok; Žagar, Dušan; Faganeli, Jadran

    2013-04-01

    In this study influence of fresh water discharge on the spatial and temporal variability of thermohaline (TH) conditions is explored for the Bay of Koper (Bay). The Bay is subject to different driving agents: wind stress (bora, sirocco), tidal and seiches effect, buoyancy fluxes, general circulation of the Adriatic Sea and discharge of the Rizana and Badaševica rivers. These rivers have torrential characteristics that are hard to forecast in relation to meteorological events (precipitation). Therefore, during episodic events the spatial and temporal variability of TH properties in the Bay is difficult to determine [1]. Measurements of temperature, salinity and turbidity were conducted monthly on 35 sampling points in the period: June 2011 - December 2012. The data were processed and spatial interpolated with an objective analysis method. Furthermore, empirical orthogonal function analysis (EOF) [2] was applied to investigate spatial and temporal TH variations. Strong horizontal and vertical stratification was observed in the beginning of June 2011 due to high fresh water discharge of the Rizana (31 m3/s) and Badaševica (2 m3/s) rivers. The horizontal gradient (ΔT = 6°C) was noticed near the mouth of the Rizana river. Similar pattern was identified for salinity field on the boundary of the front where the gradient was ΔS = 20 PSU. Vertical temperature gradient was ΔT = 4°C while salinity gradient was ΔS = 18 PSU in the subsurface layer at depth of 3 m. Spatial analysis of the first principal component (86% of the total variance) shows uniform temperature distribution in the surface layer (1m) during the studied period. Furthermore, temporal variability of temperature shows seasonal variation with a minimum in February and maximum in August. This confirms that episodic events have a negligible effect on spatial and temporal variation of temperature in the subsurface layer. Further analysis will include application of EOF on the salinity, density and total suspended matter. Additionally, we will investigate the cross correlations between the above mentioned parameters with singular value decomposition method. Reference: 1. Faganeli, J., Planinc, R., Pezdic, J., Smodis, B., Stegnar, P., and Ogorelec, B. 1991. Marine geology of Gulf of Trieste (northern Adriatic): Geochemical aspects. Marine Geology, 99: 93-108. 2. Glover, M., Jenkins, J., and Doney, S. C. 2011. Modeling methods for marine science. Cambridge University Press, 571 p.

  9. Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner.

    PubMed

    Melnyk, Roman; DiBianca, Frank A

    2007-03-01

    The detector presampling modulation transfer function (MTF) of a 576-channel variable resolution x-ray (VRX) computed tomography (CT) scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner's field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner's pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 to 43.38 cycles/mm as the FOV of the VRX CT scanner decreases from 32 to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1-8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner.

  10. Modeling and measurement of the detector presampling MTF of a variable resolution x-ray CT scanner

    PubMed Central

    Melnyk, Roman; DiBianca, Frank A.

    2007-01-01

    The detector presampling MTF of a 576-channel variable resolution x-ray (VRX) CT scanner was evaluated in this study. The scanner employs a VRX detector, which provides increased spatial resolution by matching the scanner’s field of view (FOV) to the size of an object being imaged. Because spatial resolution is the parameter the scanner promises to improve, the evaluation of this resolution is important. The scanner’s pre-reconstruction spatial resolution, represented by the detector presampling MTF, was evaluated using both modeling (Monte Carlo simulation) and measurement (the moving slit method). The theoretical results show the increase in the cutoff frequency of the detector presampling MTF from 1.39 cy/mm to 43.38 cy/mm as the FOV of the VRX CT scanner decreases from 32 cm to 1 cm. The experimental results are in reasonable agreement with the theoretical data. Some discrepancies between the measured and the modeled detector presampling MTFs can be explained by the limitations of the model. At small FOVs (1–8 cm), the MTF measurements were limited by the size of the focal spot. The obtained results are important for further development of the VRX CT scanner. PMID:17369872

  11. Spatial and Temporal Variation in the Effects of Climatic Variables on Dugong Calf Production.

    PubMed

    Fuentes, Mariana M P B; Delean, Steven; Grayson, Jillian; Lavender, Sally; Logan, Murray; Marsh, Helene

    2016-01-01

    Knowledge of the relationships between environmental forcing and demographic parameters is important for predicting responses from climatic changes and to manage populations effectively. We explore the relationships between the proportion of sea cows (Dugong dugon) classified as calves and four climatic drivers (rainfall anomaly, Southern Oscillation El Niño Index [SOI], NINO 3.4 sea surface temperature index, and number of tropical cyclones) at a range of spatially distinct locations in Queensland, Australia, a region with relatively high dugong density. Dugong and calf data were obtained from standardized aerial surveys conducted along the study region. A range of lagged versions of each of the focal climatic drivers (1 to 4 years) were included in a global model containing the proportion of calves in each population crossed with each of the lagged versions of the climatic drivers to explore relationships. The relative influence of each predictor was estimated via Gibbs variable selection. The relationships between the proportion of dependent calves and the climatic drivers varied spatially and temporally, with climatic drivers influencing calf counts at sub-regional scales. Thus we recommend that the assessment of and management response to indirect climatic threats on dugongs should also occur at sub-regional scales.

  12. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    PubMed Central

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  13. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    PubMed

    Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S

    2016-01-01

    India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  14. Estimating parameters and uncertainty for three-dimensional flow and transport in a highly heterogeneous sand box experiment

    NASA Astrophysics Data System (ADS)

    Yoon, H.; McKenna, S. A.; Hart, D. B.

    2010-12-01

    Heterogeneity plays an important role in groundwater flow and contaminant transport in natural systems. Since it is impossible to directly measure spatial variability of hydraulic conductivity, predictions of solute transport based on mathematical models are always uncertain. While in most cases groundwater flow and tracer transport problems are investigated in two-dimensional (2D) systems, it is important to study more realistic and well-controlled 3D systems to fully evaluate inverse parameter estimation techniques and evaluate uncertainty in the resulting estimates. We used tracer concentration breakthrough curves (BTCs) obtained from a magnetic resonance imaging (MRI) technique in a small flow cell (14 x 8 x 8 cm) that was packed with a known pattern of five different sands (i.e., zones) having cm-scale variability. In contrast to typical inversion systems with head, conductivity and concentration measurements at limited points, the MRI data included BTCs measured at a voxel scale (~0.2 cm in each dimension) over 13 x 8 x 8 cm with a well controlled boundary condition, but did not have direct measurements of head and conductivity. Hydraulic conductivity and porosity were conceptualized as spatial random fields and estimated using pilot points along layers of the 3D medium. The steady state water flow and solute transport were solved using MODFLOW and MODPATH. The inversion problem was solved with a nonlinear parameter estimation package - PEST. Two approaches to parameterization of the spatial fields are evaluated: 1) The detailed zone information was used as prior information to constrain the spatial impact of the pilot points and reduce the number of parameters; and 2) highly parameterized inversion at cm scale (e.g., 1664 parameters) using singular value decomposition (SVD) methodology to significantly reduce the run-time demands. Both results will be compared to measured BTCs. With MRI, it is easy to change the averaging scale of the observed concentration from point to cross-section. This comparison allows us to evaluate which method best matches experimental results at different scales. To evaluate the uncertainty in parameter estimation, the null space Monte Carlo method will be used to reduce computational burden of the development of calibration-constrained Monte Carlo based parameter fields. This study will illustrate how accurately a well-calibrated model can predict contaminant transport. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security (CFSES), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Spatial Access to Primary Care Providers in Appalachia

    PubMed Central

    Donohoe, Joseph; Marshall, Vince; Tan, Xi; Camacho, Fabian T.; Anderson, Roger T.; Balkrishnan, Rajesh

    2016-01-01

    Purpose: The goal of this research was to examine spatial access to primary care physicians in Appalachia using both traditional access measures and the 2-step floating catchment area (2SFCA) method. Spatial access to care was compared between urban and rural regions of Appalachia. Methods: The study region included Appalachia counties of Pennsylvania, Ohio, Kentucky, and North Carolina. Primary care physicians during 2008 and total census block group populations were geocoded into GIS software. Ratios of county physicians to population, driving time to nearest primary care physician, and various 2SFCA approaches were compared. Results: Urban areas of the study region had shorter travel times to their closest primary care physician. Provider to population ratios produced results that varied widely from one county to another because of strict geographic boundaries. The 2SFCA method produced varied results depending on the distance decay weight and variable catchment size techniques chose. 2SFCA scores showed greater access to care in urban areas of Pennsylvania, Ohio, and North Carolina. Conclusion: The different parameters of the 2SFCA method—distance decay weights and variable catchment sizes—have a large impact on the resulting spatial access to primary care scores. The findings of this study suggest that using a relative 2SFCA approach, the spatial access ratio method, when detailed patient travel data are unavailable. The 2SFCA method shows promise for measuring access to care in Appalachia, but more research on patient travel preferences is needed to inform implementation. PMID:26906524

  16. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    NASA Astrophysics Data System (ADS)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the southernmost parts of EM Sea, affected by frequent Saharan dust export. The mean regional annual AODs range from 0.17±0.05 to 0.23±0.06. The corresponding regional annual DREs at surface range from -14±3 to -18±4 W/m2 (surface radiative cooling), while in the atmosphere they vary between 7±2 and 10±2 W/m2 (atmospheric heating), yielding a planetary cooling above the EM Sea between -6±1 and -8±2 W/m2. However, these AOD and DRE values vary depending on the criteria of data spatial and temporal availability applied in the AOD and DRE calculation, because of the limited availability of retrieved AVHRR AOD over specific areas and in specific days. The DREs reach larger magnitudes at pixel-level; for example the surface DREs slightly exceed -30 W/m2, whereas they take larger values (magnitudes larger than -50 W/m2 in summer) when computed on a monthly basis, and even larger values on daily basis. The model results underline the high spatial and temporal variability of aerosol DREs, and the care that must be taken when averaging over space and time. It also points to the need for availability of aerosol data with concurrent high spatial and temporal coverage and resolution, which should be sought in ongoing and future satellite missions.

  17. A Bayesian method for assessing multiscalespecies-habitat relationships

    USGS Publications Warehouse

    Stuber, Erica F.; Gruber, Lutz F.; Fontaine, Joseph J.

    2017-01-01

    ContextScientists face several theoretical and methodological challenges in appropriately describing fundamental wildlife-habitat relationships in models. The spatial scales of habitat relationships are often unknown, and are expected to follow a multi-scale hierarchy. Typical frequentist or information theoretic approaches often suffer under collinearity in multi-scale studies, fail to converge when models are complex or represent an intractable computational burden when candidate model sets are large.ObjectivesOur objective was to implement an automated, Bayesian method for inference on the spatial scales of habitat variables that best predict animal abundance.MethodsWe introduce Bayesian latent indicator scale selection (BLISS), a Bayesian method to select spatial scales of predictors using latent scale indicator variables that are estimated with reversible-jump Markov chain Monte Carlo sampling. BLISS does not suffer from collinearity, and substantially reduces computation time of studies. We present a simulation study to validate our method and apply our method to a case-study of land cover predictors for ring-necked pheasant (Phasianus colchicus) abundance in Nebraska, USA.ResultsOur method returns accurate descriptions of the explanatory power of multiple spatial scales, and unbiased and precise parameter estimates under commonly encountered data limitations including spatial scale autocorrelation, effect size, and sample size. BLISS outperforms commonly used model selection methods including stepwise and AIC, and reduces runtime by 90%.ConclusionsGiven the pervasiveness of scale-dependency in ecology, and the implications of mismatches between the scales of analyses and ecological processes, identifying the spatial scales over which species are integrating habitat information is an important step in understanding species-habitat relationships. BLISS is a widely applicable method for identifying important spatial scales, propagating scale uncertainty, and testing hypotheses of scaling relationships.

  18. Accounting for the measurement error of spectroscopically inferred soil carbon data for improved precision of spatial predictions.

    PubMed

    Somarathna, P D S N; Minasny, Budiman; Malone, Brendan P; Stockmann, Uta; McBratney, Alex B

    2018-08-01

    Spatial modelling of environmental data commonly only considers spatial variability as the single source of uncertainty. In reality however, the measurement errors should also be accounted for. In recent years, infrared spectroscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter out the measurement error variability by incorporating the measurement error variance in the spatial covariance structure of the model. The study was carried out in the Lower Hunter Valley, New South Wales, Australia where a combination of laboratory measured, and vis-NIR and MIR inferred topsoil and subsoil soil carbon data are available. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data in the presence of measurement error. The results revealed that the measurement error can be effectively filtered-out through the proposed technique. When the measurement error was filtered from the data, the prediction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon. Further, the MCMC technique was successfully used to define the posterior distribution of measurement error. This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering the measurement error of any kind of continuous spatial environmental data. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Creation of Synthetic Surface Temperature and Precipitation Ensembles Through A Computationally Efficient, Mixed Method Approach

    NASA Astrophysics Data System (ADS)

    Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.

    2017-12-01

    Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.

  20. Benchmarking variable-density flow in saturated and unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Guevara Morel, Carlos Roberto; Cremer, Clemens; Graf, Thomas

    2015-04-01

    In natural environments, fluid density and viscosity can be affected by spatial and temporal variations of solute concentration and/or temperature. These variations can occur, for example, due to salt water intrusion in coastal aquifers, leachate infiltration from waste disposal sites and upconing of saline water from deep aquifers. As a consequence, potentially unstable situations may exist in which a dense fluid overlies a less dense fluid. This situation can produce instabilities that manifest as dense plume fingers that move vertically downwards counterbalanced by vertical upwards flow of the less dense fluid. Resulting free convection increases solute transport rates over large distances and times relative to constant-density flow. Therefore, the understanding of free convection is relevant for the protection of freshwater aquifer systems. The results from a laboratory experiment of saturated and unsaturated variable-density flow and solute transport (Simmons et al., Transp. Porous Medium, 2002) are used as the physical basis to define a mathematical benchmark. The HydroGeoSphere code coupled with PEST are used to estimate the optimal parameter set capable of reproducing the physical model. A grid convergency analysis (in space and time) is also undertaken in order to obtain the adequate spatial and temporal discretizations. The new mathematical benchmark is useful for model comparison and testing of variable-density variably saturated flow in porous media.

  1. Hyperparameter Classification of Arctic Sea Ice and Snow Based on Aerial Laser Data, Passive Microwave Data and Field Data

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Maslanik, J.; Williams, S.; Sturm, M.; Cavalieri, D.

    2006-12-01

    In the past year, the Arctic sea-ice cover has been shrinking at an alarming rate. Remote-sensing technologies provide opportunities for observations of the sea ice at unprecedented repetition rates and spatial resolutions. The advance of new observational technologies is not only fascinating, it also brings with it the challenge and necessity to derive adequate new geoinformatical and geomathematical methods as a basis for analysis and geophysical interpretation of new data types. Our research includes validation and analysis of NASA EOS data, development of observational instrumentation and advanced geoinformatics. In this talk we emphasize the close linkage between technological development and geoinformatics along case studies of sea-ice near Point Barrow, Alaska, based on the following data types: AMSR-E and PSR passive microwave data, RADARSAT and ERS SAR data, manually-collected snow-depth data and laser-elevation data from unmanned aerial vehicles. The hyperparameter concept is introduced to facilitate characterization and classification of the same sea-ice properties and spatial structures from these data sets, which differ with respect to spatial resolution, measured parameters and observed geophysical variables. Mathematically, this requires parameter identification in undersampled, oversampled or overprinted situations.

  2. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods.

    PubMed

    Vizcaíno, Iván P; Carrera, Enrique V; Muñoz-Romero, Sergio; Cumbal, Luis H; Rojo-Álvarez, José Luis

    2017-10-16

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer's kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer's kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem.

  3. Water Quality Sensing and Spatio-Temporal Monitoring Structure with Autocorrelation Kernel Methods

    PubMed Central

    Vizcaíno, Iván P.; Muñoz-Romero, Sergio; Cumbal, Luis H.

    2017-01-01

    Pollution on water resources is usually analyzed with monitoring campaigns, which consist of programmed sampling, measurement, and recording of the most representative water quality parameters. These campaign measurements yields a non-uniform spatio-temporal sampled data structure to characterize complex dynamics phenomena. In this work, we propose an enhanced statistical interpolation method to provide water quality managers with statistically interpolated representations of spatial-temporal dynamics. Specifically, our proposal makes efficient use of the a priori available information of the quality parameter measurements through Support Vector Regression (SVR) based on Mercer’s kernels. The methods are benchmarked against previously proposed methods in three segments of the Machángara River and one segment of the San Pedro River in Ecuador, and their different dynamics are shown by statistically interpolated spatial-temporal maps. The best interpolation performance in terms of mean absolute error was the SVR with Mercer’s kernel given by either the Mahalanobis spatial-temporal covariance matrix or by the bivariate estimated autocorrelation function. In particular, the autocorrelation kernel provides with significant improvement of the estimation quality, consistently for all the six water quality variables, which points out the relevance of including a priori knowledge of the problem. PMID:29035333

  4. An analysis of the first two years of GASP data

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.

    1977-01-01

    Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes.

  5. Regression approach to non-invasive determination of bilirubin in neonatal blood

    NASA Astrophysics Data System (ADS)

    Lysenko, S. A.; Kugeiko, M. M.

    2012-07-01

    A statistical ensemble of structural and biophysical parameters of neonatal skin was modeled based on experimental data. Diffuse scattering coefficients of the skin in the visible and infrared regions were calculated by applying a Monte-Carlo method to each realization of the ensemble. The potential accuracy of recovering the bilirubin concentration in dermis (which correlates closely with that in blood) was estimated from spatially resolved spectrometric measurements of diffuse scattering. The possibility to determine noninvasively the bilirubin concentration was shown by measurements of diffuse scattering at λ = 460, 500, and 660 nm at three source-detector separations under conditions of total variability of the skin biophysical parameters.

  6. Variations in the fine-structure constant constraining gravity theories

    NASA Astrophysics Data System (ADS)

    Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.

    2016-08-01

    In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.

  7. Light bullets in coupled nonlinear Schrödinger equations with variable coefficients and a trapping potential.

    PubMed

    Xu, Si-Liu; Zhao, Guo-Peng; Belić, Milivoj R; He, Jun-Rong; Xue, Li

    2017-04-17

    We analyze three-dimensional (3D) vector solitary waves in a system of coupled nonlinear Schrödinger equations with spatially modulated diffraction and nonlinearity, under action of a composite self-consistent trapping potential. Exact vector solitary waves, or light bullets (LBs), are found using the self-similarity method. The stability of vortex 3D LB pairs is examined by direct numerical simulations; the results show that only low-order vortex soliton pairs with the mode parameter values n ≤ 1, l ≤ 1 and m = 0 can be supported by the spatially modulated interaction in the composite trap. Higher-order LBs are found unstable over prolonged distances.

  8. The calibration analysis of soil infiltration formula in farmland scale

    NASA Astrophysics Data System (ADS)

    Qian, Tao; Han, Na Na; Chang, Shuan Ling

    2018-06-01

    Soil infiltration characteristic is an important basis of farmland scale parameter estimation. Based on 12 groups of double-loop infiltration tests conducted in the test field of tianjin agricultural university west campus. Based on the calibration theory and the combination of statistics, the calibration analysis of phillips formula was carried out and the spatial variation characteristics of the calibration factor were analyzed. Results show that in study area based on the soil stability infiltration rate A calculate calibration factor αA calibration effect is best, that is suitable for the area formula of calibration infiltration and αA variation coefficient is 0.3234, with A certain degree of spatial variability.

  9. Embodied Space: a Sensorial Approach to Spatial Experience

    NASA Astrophysics Data System (ADS)

    Durão, Maria João

    2009-03-01

    A reflection is presented on the significance of the role of the body in the interpretation and future creation of spatial living structures. The paper draws on the body as cartography of sensorial meaning that includes vision, touch, smell, hearing, orientation and movement to discuss possible relationships with psychological and sociological parameters of 'sensorial space'. The complex dynamics of body-space is further explored from the standpoint of perceptual variables such as color, light, materialities, texture and their connections with design, technology, culture and symbology. Finally, the paper discusses the integration of knowledge and experimentation in the design of future habitats where body-sensitive frameworks encompass flexibility, communication, interaction and cognitive-driven solutions.

  10. A global sensitivity analysis of crop virtual water content

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for other crops. The sensitivity to the reference evapotranspiration is highly variable with the considered crop and ranges from positive values (for soybean), to negative values (for rice and maize) and near-zero values for wheat. This variability reflects the different yield response factors of crops, which expresses their tolerance to water stress.

  11. Multivariate Non-Symmetric Stochastic Models for Spatial Dependence Models

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Bárdossy, A.

    2017-12-01

    A copula based multivariate framework allows more flexibility to describe different kind of dependences than what is possible using models relying on the confining assumption of symmetric Gaussian models: different quantiles can be modelled with a different degree of dependence; it will be demonstrated how this can be expected given process understanding. maximum likelihood based multivariate quantitative parameter estimation yields stable and reliable results; not only improved results in cross-validation based measures of uncertainty are obtained but also a more realistic spatial structure of uncertainty compared to second order models of dependence; as much information as is available is included in the parameter estimation: incorporation of censored measurements (e.g., below detection limit, or ones that are above the sensitive range of the measurement device) yield to more realistic spatial models; the proportion of true zeros can be jointly estimated with and distinguished from censored measurements which allow estimates about the age of a contaminant in the system; secondary information (categorical and on the rational scale) has been used to improve the estimation of the primary variable; These copula based multivariate statistical techniques are demonstrated based on hydraulic conductivity observations at the Borden (Canada) site, the MADE site (USA), and a large regional groundwater quality data-set in south-west Germany. Fields of spatially distributed K were simulated with identical marginal simulation, identical second order spatial moments, yet substantially differing solute transport characteristics when numerical tracer tests were performed. A statistical methodology is shown that allows the delineation of a boundary layer separating homogenous parts of a spatial data-set. The effects of this boundary layer (macro structure) and the spatial dependence of K (micro structure) on solute transport behaviour is shown.

  12. On the distribution of scaling hydraulic parameters in a spatially anisotropic banana field

    NASA Astrophysics Data System (ADS)

    Regalado, Carlos M.

    2005-06-01

    When modeling soil hydraulic properties at field scale it is desirable to approximate the variability in a given area by means of some scaling transformations which relate spatially variable local hydraulic properties to global reference characteristics. Seventy soil cores were sampled within a drip irrigated banana plantation greenhouse on a 14×5 array of 2.5 m×5 m rectangles at 15 cm depth, to represent the field scale variability of flow related properties. Saturated hydraulic conductivity and water retention characteristics were measured in these 70 soil cores. van Genuchten water retention curves (WRC) with optimized m ( m≠1-1/ n) were fitted to the WR data and a general Mualem-van Genuchten model was used to predict hydraulic conductivity functions for each soil core. A scaling law, of the form ν=ανi*, was fitted to soil hydraulic data, such that the original hydraulic parameters νi were scaled down to a reference curve with parameters νi*. An analytical expression, in terms of Beta functions, for the average suction value, hc, necessary to apply the above scaling method, was obtained. A robust optimization procedure with fast convergence to the global minimum is used to find the optimum hc, such that dispersion is minimized in the scaled data set. Via the Box-Cox transformation P(τ)=(αiτ-1)/τ, Box-Cox normality plots showed that scaling factors for the suction ( αh) and hydraulic conductivity ( αk) were approximately log-normally distributed (i.e. τ=0), as it would be expected for such dynamic properties involving flow. By contrast static soil related properties as αθ were found closely Gaussian, although a power τ=3/4 was best for approaching normality. Application of four different normality tests (Anderson-Darling, Shapiro-Wilk, Kolmogorov-Smirnov and χ2 goodness-of-fit tests) rendered some contradictory results among them, thus suggesting that this widely extended practice is not recommended for providing a suitable probability density function for the scaling parameters, αi. Some indications for the origin of these disagreements, in terms of population size and test constraints, are pointed out. Visual inspection of normal probability plots can also lead to erroneous results. The scaling parameters αθ and αK show a sinusoidal spatial variation coincident with the underlying alignment of banana plants on the field. Such anisotropic distribution is explained in terms of porosity variations due to processes promoting soil degradation as surface desiccation and soil compaction, induced by tillage and localized irrigation of banana plants, and it is quantified by means of cross-correlograms.

  13. Monthly hydroclimatology of the continental United States

    NASA Astrophysics Data System (ADS)

    Petersen, Thomas; Devineni, Naresh; Sankarasubramanian, A.

    2018-04-01

    Physical/semi-empirical models that do not require any calibration are of paramount need for estimating hydrological fluxes for ungauged sites. We develop semi-empirical models for estimating the mean and variance of the monthly streamflow based on Taylor Series approximation of a lumped physically based water balance model. The proposed models require mean and variance of monthly precipitation and potential evapotranspiration, co-variability of precipitation and potential evapotranspiration and regionally calibrated catchment retention sensitivity, atmospheric moisture uptake sensitivity, groundwater-partitioning factor, and the maximum soil moisture holding capacity parameters. Estimates of mean and variance of monthly streamflow using the semi-empirical equations are compared with the observed estimates for 1373 catchments in the continental United States. Analyses show that the proposed models explain the spatial variability in monthly moments for basins in lower elevations. A regionalization of parameters for each water resources region show good agreement between observed moments and model estimated moments during January, February, March and April for mean and all months except May and June for variance. Thus, the proposed relationships could be employed for understanding and estimating the monthly hydroclimatology of ungauged basins using regional parameters.

  14. A Bayesian inversion for slip distribution of 1 Apr 2007 Mw8.1 Solomon Islands Earthquake

    NASA Astrophysics Data System (ADS)

    Chen, T.; Luo, H.

    2013-12-01

    On 1 Apr 2007 the megathrust Mw8.1 Solomon Islands earthquake occurred in the southeast pacific along the New Britain subduction zone. 102 vertical displacement measurements over the southeastern end of the rupture zone from two field surveys after this event provide a unique constraint for slip distribution inversion. In conventional inversion method (such as bounded variable least squares) the smoothing parameter that determines the relative weight placed on fitting the data versus smoothing the slip distribution is often subjectively selected at the bend of the trade-off curve. Here a fully probabilistic inversion method[Fukuda,2008] is applied to estimate distributed slip and smoothing parameter objectively. The joint posterior probability density function of distributed slip and the smoothing parameter is formulated under a Bayesian framework and sampled with Markov chain Monte Carlo method. We estimate the spatial distribution of dip slip associated with the 1 Apr 2007 Solomon Islands earthquake with this method. Early results show a shallower dip angle than previous study and highly variable dip slip both along-strike and down-dip.

  15. A new ball launching system with controlled flight parameters for catching experiments.

    PubMed

    d'Avella, A; Cesqui, B; Portone, A; Lacquaniti, F

    2011-03-30

    Systematic investigations of sensorimotor control of interceptive actions in naturalistic conditions, such as catching or hitting a ball moving in three-dimensional space, requires precise control of the projectile flight parameters and of the associated visual stimuli. Such control is challenging when air drag cannot be neglected because the mapping of launch parameters into flight parameters cannot be computed analytically. We designed, calibrated, and experimentally validated an actuated launching apparatus that can control the average spatial position and flight duration of a ball at a given distance from a fixed launch location. The apparatus was constructed by mounting a ball launching machine with adjustable delivery speed on an actuated structure capable of changing the spatial orientation of the launch axis while projecting balls through a hole in a screen hiding the apparatus. The calibration procedure relied on tracking the balls with a motion capture system and on approximating the mapping of launch parameters into flight parameters by means of polynomials functions. Polynomials were also used to estimate the variability of the flight parameters. The coefficients of these polynomials were obtained using the launch and flight parameters of 660 launches with 65 different initial conditions. The relative accuracy and precision of the apparatus were larger than 98% for flight times and larger than 96% for ball heights at a distance of 6m from the screen. Such novel apparatus, by reliably and automatically controlling desired ball flight characteristics without neglecting air drag, allows for a systematic investigation of naturalistic interceptive tasks. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Simultaneous escaping of explicit and hidden free energy barriers: application of the orthogonal space random walk strategy in generalized ensemble based conformational sampling.

    PubMed

    Zheng, Lianqing; Chen, Mengen; Yang, Wei

    2009-06-21

    To overcome the pseudoergodicity problem, conformational sampling can be accelerated via generalized ensemble methods, e.g., through the realization of random walks along prechosen collective variables, such as spatial order parameters, energy scaling parameters, or even system temperatures or pressures, etc. As usually observed, in generalized ensemble simulations, hidden barriers are likely to exist in the space perpendicular to the collective variable direction and these residual free energy barriers could greatly abolish the sampling efficiency. This sampling issue is particularly severe when the collective variable is defined in a low-dimension subset of the target system; then the "Hamiltonian lagging" problem, which reveals the fact that necessary structural relaxation falls behind the move of the collective variable, may be likely to occur. To overcome this problem in equilibrium conformational sampling, we adopted the orthogonal space random walk (OSRW) strategy, which was originally developed in the context of free energy simulation [L. Zheng, M. Chen, and W. Yang, Proc. Natl. Acad. Sci. U.S.A. 105, 20227 (2008)]. Thereby, generalized ensemble simulations can simultaneously escape both the explicit barriers along the collective variable direction and the hidden barriers that are strongly coupled with the collective variable move. As demonstrated in our model studies, the present OSRW based generalized ensemble treatments show improved sampling capability over the corresponding classical generalized ensemble treatments.

  17. Kinematic parameters of internal waves of the second mode in the South China Sea

    NASA Astrophysics Data System (ADS)

    Kurkina, Oxana; Talipova, Tatyana; Soomere, Tarmo; Giniyatullin, Ayrat; Kurkin, Andrey

    2017-10-01

    Spatial distributions of the main properties of the mode function and kinematic and non-linear parameters of internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The calculations are based on the Generalized Digital Environmental Model (GDEM) climatology of hydrological variables, from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at the dispersive, quadratic and cubic terms of the weakly non-linear Gardner model. Spatial distributions of these parameters, except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of Gardner's equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms of Gardner's equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the second mode the quadratic term is mostly negative. The results can serve as a basis for expressing estimates of the expected parameters of internal waves for the South China Sea.

  18. Soil conservation service curve number: How to take into account spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Rianna, M.; Orlando, D.; Montesarchio, V.; Russo, F.; Napolitano, F.

    2012-09-01

    The most commonly used method to evaluate rainfall excess, is the Soil Conservation Service (SCS) runoff curve number model. This method is based on the determination of the CN valuethat is linked with a hydrological soil group, cover type, treatment, hydrologic condition and antecedent runoff condition. To calculate the antecedent runoff condition the standard procedure needs to calculate the rainfall over the entire basin during the five days previous to the beginning of the event in order to simulate and then to use that volume of rainfall to calculate the antecedent moisture condition (AMC). This is necessary in order to obtain the correct curve number value. The value of the modified parameter is then kept constant throughout the whole event. The aim of this work is to evaluate the possibility of improving the curve number method. The various assumptions are focused on modifying those related to rainfall and the determination of an AMC condition and their role in the determination of the value of the curve number parameter. In order to consider the spatial variability we assumed that the rainfall which influences the AMC and the CN value does not account for the rainfall over the entire basin, but for the rainfall within a single cell where the basin domain is discretized. Furthermore, in order to consider the temporal variability of rainfall we assumed that the value of the CN of the single cell is not maintained constant during the whole event, but instead varies throughout it according to the time interval used to define the AMC conditions.

  19. Learning and memory for sequences of pictures, words, and spatial locations: an exploration of serial position effects.

    PubMed

    Bonk, William J; Healy, Alice F

    2010-01-01

    A serial reproduction of order with distractors task was developed to make it possible to observe successive snapshots of the learning process at each serial position. The new task was used to explore the effect of several variables on serial memory performance: stimulus content (words, blanks, and pictures), presentation condition (spatial information vs. none), semantically categorized item clustering (grouped vs. ungrouped), and number of distractors relative to targets (none, equal, double). These encoding and retrieval variables, along with learning attempt number, affected both overall performance levels and the shape of the serial position function, although a large and extensive primacy advantage and a small 1-item recency advantage were found in each case. These results were explained well by a version of the scale-independent memory, perception, and learning model that accounted for improved performance by increasing the value of only a single parameter that reflects reduced interference from distant items.

  20. Technical support for creating an artificial intelligence system for feature extraction and experimental design

    NASA Technical Reports Server (NTRS)

    Glick, B. J.

    1985-01-01

    Techniques for classifying objects into groups or clases go under many different names including, most commonly, cluster analysis. Mathematically, the general problem is to find a best mapping of objects into an index set consisting of class identifiers. When an a priori grouping of objects exists, the process of deriving the classification rules from samples of classified objects is known as discrimination. When such rules are applied to objects of unknown class, the process is denoted classification. The specific problem addressed involves the group classification of a set of objects that are each associated with a series of measurements (ratio, interval, ordinal, or nominal levels of measurement). Each measurement produces one variable in a multidimensional variable space. Cluster analysis techniques are reviewed and methods for incuding geographic location, distance measures, and spatial pattern (distribution) as parameters in clustering are examined. For the case of patterning, measures of spatial autocorrelation are discussed in terms of the kind of data (nominal, ordinal, or interval scaled) to which they may be applied.

  1. Spatial Variability of Cyanobacteria and Heterotrophic Bacteria in Lake Taihu (China).

    PubMed

    Qian, Haifeng; Lu, Tao; Song, Hao; Lavoie, Michel; Xu, Jiahui; Fan, Xiaoji; Pan, Xiangliang

    2017-09-01

    Cyanobacterial blooms frequently occur in Lake Taihu (China), but the intertwined relationships between biotic and abiotic factors modulating the frequency and duration of the blooms remain enigmatic. To better understand the relationships between the key abiotic and biotic factors and cyanobacterial blooms, we measured the abundance and diversity of prokaryotic organisms by high-throughput sequencing, the abundance of key genes involved in microcystin production and nitrogen fixation or loss as well as several physicochemical parameters at several stations in Lake Taihu during a cyanobacterial bloom of Microcystis sp.. Measurements of the copy number of denitrification-related genes and 16S rRNA analyses show that denitrification potential and denitrifying bacteria abundance increased in concert with non-diazotrophic cyanobacteria (Microcystis sp.), suggesting limited competition between cyanobacteria and heterotrophic denitrifiers for nutrients, although potential bacteria-mediated N loss may hamper Microcystis growth. The present study provides insight into the importance of different abiotic and biotic factors in controlling cyanobacteria and heterotrophic bacteria spatial variability in Lake Taihu.

  2. Similarity and scale in catchment storm response

    NASA Technical Reports Server (NTRS)

    Wood, Eric F.; Sivapalan, Murugesu; Beven, Keith

    1993-01-01

    Until recently, very little progress had been made in understanding the relationship between small-scale variability of topography, soil, and rainfalls and the storm response seen at the catchment scale. The work reviewed here represents the first attempt at a systematic theoretical framework for such understanding in the context of surface runoff generation by different processes. The parameterization of hydrological processes over a range of scales is examined, and the concept of the 'representative elementary area' (REA) is introduced. The REA is a fundamental scale for catchment modeling at which continuum assumptions can be applied for the spatially variable controls and parameters, and spatial patterns no longer have to be considered explicitly. The investigation of scale leads into the concept of hydrologic similarity in which the effects of the environmental controls on runoff generation and flood frequency response be investigated independently of catchment scale. The paper reviews the authors' initial results and hopefully will motivate others to also investigate the issues of hydrologic scale and similarity.

  3. Use of multiple functional traits of protozoa for bioassessment of marine pollution.

    PubMed

    Zhong, Xiaoxiao; Xu, Guangjian; Xu, Henglong

    2017-06-30

    Ecological parameters based on multiply functional traits have many advantages for monitoring programs by reducing "signal to noise" ratios of observed species data. To identify potential indicators for bioassessment of marine pollution in function space, the functional patterns of protozoan communities and relationships with environmental changes were studied in coastal waters of the Yellow Sea during a 1-year period. The results showed that: (1) the spatial variability in functional trait distributions of the protozoa was significantly associated with changes in environmental variables, especially chemical oxygen demand (COD) and nutrients on spatial scale; (2) the functional traits, especially food resources and feeding type, were significantly correlated with COD and nutrients; and (3) the functional diversity indices were generally related to nutrients or COD. Based on the results, we suggest that the functional traits and diversity indices of protozoan communities may be used as more effective indicators for bioassessment of marine pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Municipality Level Simulations of Dengue Fever Incidence in Puerto Rico Using Ground Based and Remotely Sensed Climate Data

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Morin, Cory

    2015-01-01

    Dengue fever (DF) is caused by a virus transmitted between humans and Aedes genus mosquitoes through blood feeding. In recent decades incidence of the disease has drastically increased in the tropical Americas, culminating with the Pan American outbreak in 2010 which resulted in 1.7 million reported cases. In Puerto Rico dengue is endemic, however, there is significant inter-annual, intraannual, and spatial variability in case loads. Variability in climate and the environment, herd immunity and virus genetics, and demographic characteristics may all contribute to differing patterns of transmission both spatially and temporally. Knowledge of climate influences on dengue incidence could facilitate development of early warning systems allowing public health workers to implement appropriate transmission intervention strategies. In this study, we simulate dengue incidence in several municipalities in Puerto Rico using population and meteorological data derived from ground based stations and remote sensing instruments. This data was used to drive a process based model of vector population development and virus transmission. Model parameter values for container composition, vector characteristics, and incubation period were chosen by employing a Monte Carlo approach. Multiple simulations were performed for each municipality and the results were compared with reported dengue cases. The best performing simulations were retained and their parameter values and meteorological input were compared between years and municipalities. Parameter values varied by municipality and year illustrating the complexity and sensitivity of the disease system. Local characteristics including the natural and built environment impact transmission dynamics and produce varying responses to meteorological conditions.

  5. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  6. Small scale variability of soil parameters in different land uses on the southern slopes of Mount Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Bogner, Christina; Kühnel, Anna; Hepp, Johannes; Huwe, Bernd

    2016-04-01

    The Kilimanjaro region in Tanzania constitutes a particularity compared to other areas in the country. Because enough water is available the population grows rapidly and large areas are converted from natural ecosystems to agricultural areas. Therefore, the southern slopes of Mt. Kilimanjaro encompass a complex mosaic of different land uses like coffee plantations, maize, agroforestry or natural savannah. Coffee is an important cash crop in the region and is owned mostly by large companies. In contrast, the agroforestry is a traditional way of agriculture and has been sustained by the Chagga tribe for centuries. These so called homegardens are organised as multi-level systems and contain a mixture of different crops. Correlations in soil and vegetation data may serve as indicators for crop and management impacts associated to different types of land use. We hypothesize that Chagga homegardens, for example, show a more pronounced spatial autocorrelation compared to coffee plantations due to manifold above and belowground crop structures, whereas the degree of anisotropy is assumed to be higher in the coffee sites due to linear elements in management. Furthermore, we hypothesize that the overall diversity of soil parameters in homegardens on a larger scale is higher, as individual owners manage their field differently, whereas coffee plantation management often follows general rules. From these general hypotheses we derive two specific research questions: a) Are there characteristic differences in the spatial organisation of soil physical parameters of different land uses? b) Is there a recognizable relationship between vegetation structure and soil physical parameters of topsoils? We measured soil physical parameters in the topsoil (bulk density, stone content, texture, soil moisture and penetration resistance). Additionally, we took spectra of soil samples with a portable VIS-NIR spectrometer to determine C and N and measured leaf area index and troughfall as an indicator of vegetation patterns. First results support our general hypotheses. In the coffee plantation anisotropic variation of soil parameters clearly showed the anthropogenic influence like compaction due to agricultural machinery. However, soil bulk density and penetration resistance in the homegarden were also quite variable at the sites. The larger variability of throughfall in the homegarden is reflected in the patterns of soil moisture. Regarding the larger scale, where we compared different homegardens and coffee plantations along the southern slope of the mountain, soil parameters of the coffee plots were less diverse than those of the homegardens.

  7. Monte Carlo sensitivity analysis of land surface parameters using the Variable Infiltration Capacity model

    NASA Astrophysics Data System (ADS)

    Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten

    2007-06-01

    Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.

  8. Optimization of Decision-Making for Spatial Sampling in the North China Plain, Based on Remote-Sensing a Priori Knowledge

    NASA Astrophysics Data System (ADS)

    Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.

    2012-07-01

    In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.

  9. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna

    In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less

  10. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source

    DOE PAGES

    Brown, Shaughnessy Brennan; Hashim, Akel; Gleason, Arianna; ...

    2017-10-23

    In this paper, we measure the shock drive capabilities of a 30 J, nanosecond, 527 nm laser system at the matter in extreme conditions hutch of the Linac Coherent Light Source. Using a velocity interferometer system for any reflector, we ascertain the maximum instantaneous ablation pressure and characterize its dependence on a drive laser spot size, spatial profile, and temporal profile. We also examine the effects of these parameters on shock spatial and temporal uniformity. Our analysis shows the drive laser capable of generating instantaneous ablation pressures exceeding 160 GPa while maintaining a 1D shock profile. We find that slopemore » pulses provide higher instantaneous ablation pressures than plateau pulses. Our results show instantaneous ablation pressures comparable to those measured at the Omega Laser Facility in Rochester, NY under similar optical drive parameters. In conclusion, we analyze how optical laser ablation pressures are compare with known scaling relations, accounting for variable laser wavelengths.« less

  11. Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex boreal forest

    USGS Publications Warehouse

    Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.

    2012-01-01

    Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.

  12. Interpolation of Regional Groundwater Quality Parameters With Categorical and Real-Valued Secondary Information in the State of Baden-Württemberg, Germany

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Allmendinger, M.; Gnann, S.; Heisserer, T.; Bárdossy, A.

    2017-12-01

    The basic problem of geostatistics is to estimate the primary variable (e.g. groundwater quality, nitrate) at an un-sampled location based on point measurements at locations in the vicinity. Typically, models are being used that describe the spatial dependence based on the geometry of the observation network. This presentation demonstrates methods that take the following properties additionally into account: the statistical distribution of the measurements, a different degree of dependence in different quantiles, censored measurements, the composition of categorical additional information in the neighbourhood (exhaustive secondary information), and the spatial dependence of a dependent secondary variable, possibly measured with a different observation network (non-exhaustive secondary data). Two modelling approaches are demonstrated individually and combined: The non-stationarity in the marginal distribution is accounted for by locally mixed distribution functions that depend on the composition of the categorical variable in the neighbourhood of each interpolation location. This methodology is currently being implemented for operational use at the environmental state agency of Baden-Württemberg. An alternative to co-Kriging in copula space with an arbitrary number of secondary parameters is presented: The method performs better than traditional techniques if the primary variable is undersampled and does not produce erroneous negative estimates. Even more, the quality of the uncertainty estimates is much improved. The worth of the secondary information is thoroughly evaluated. The improved geostatistical hydrogeological models are being analyzed using measurements of a large observation network ( 2500 measurement locations) in the state of Baden-Württemberg ( 36.000 km2). Typical groundwater quality parameters such as nitrate, chloride, barium, antrazine, and desethylatrazine are being assessed, cross-validated, and compared with traditional geostatistical methods. The secondary information of land use is available on a 30m x 30m raster. We show that the presented methods are not only better estimators (e.g. in the sense of an average quadratic error), but exhibit a much more realistic structure of the uncertainty and hence are improvements compared to existing methods.

  13. Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation

    PubMed Central

    Song, Genxin; Zhang, Jing; Wang, Ke

    2014-01-01

    In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129

  14. Use of geographic information management systems (GIMS) for nitrogen management

    NASA Astrophysics Data System (ADS)

    Diker, Kenan

    1998-11-01

    Geographic Information Management Systems (GIMS) was investigated in this study to develop an efficient nitrogen management scheme for corn. The study was conducted on two experimental corn sites. The first site consisted of six non-replicated plots where the canopy reflectance of corn at six nitrogen fertilizer levels was investigated. The reflectance measurements were conducted for nadir and 75sp° view angles. Data from these plots were used to develop relationships between reflectance data and soil and plant parameters. The second site had four corn plots fertilized by different methods such as spoon-fed, pre-plant and side-dress, which created nitrogen variability within the field. Soil and plant nitrogen as well as leaf area, biomass, percent cover measurements, and canopy reflectance data were collected at various growth stages from both sites during the 1995 and 1996 growing seasons. Relationships were developed between the Nitrogen Reflectance Index (NRI) developed by Bausch et al. (1994) and soil and plant variables. Spatial dependence of data was determined by geostatistical methods; variability was mapped in ArcView. Results of this study indicated that the NRI is a better estimator of plant nitrogen status than chlorophyll meter measurements. The NRI can successfully be used to estimate the spatial distribution of soil nitrogen estimates through the plant nitrogen status as well as plant parameters and the yield potential. GIS mapping of measured and estimated soil nitrogen agreed except in locations where hot spots were measured. The NRI value of 0.95 seemed to be the critical value for plant nitrogen status especially for the 75sp° view. The nadir view tended to underestimate plant and soil parameters, whereas, the 75sp° view slightly overestimated these parameters. If available, the 75sp° view data should be used before the tasseling stage for reflectance measurements to reduce the soil background effect. However, it is sensitive to windy conditions. After tasseling, the nadir view should be used because the 75sp° view is obstructed by tassels. Total soil nitrogen at the V6 growth stage was underestimated by the NRI for both view angles. Results also indicated that a nitrogen prescription could be estimated at various growth stages.

  15. Hiereachical Bayesian Model for Combining Geochemical and Geophysical Data for Environmental Applications Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong

    2013-05-01

    Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium)more » were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less

  16. A Large-Scale, High-Resolution Hydrological Model Parameter Data Set for Climate Change Impact Assessment for the Conterminous US

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim

    2014-01-01

    To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VICmore » simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.« less

  17. Soil moisture optimal sampling strategy for Sentinel 1 validation super-sites in Poland

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Lipiec, Jerzy; Usowicz, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan

    2014-05-01

    Soil moisture (SM) exhibits a high temporal and spatial variability that is dependent not only on the rainfall distribution, but also on the topography of the area, physical properties of soil and vegetation characteristics. Large variability does not allow on certain estimation of SM in the surface layer based on ground point measurements, especially in large spatial scales. Remote sensing measurements allow estimating the spatial distribution of SM in the surface layer on the Earth, better than point measurements, however they require validation. This study attempts to characterize the SM distribution by determining its spatial variability in relation to the number and location of ground point measurements. The strategy takes into account the gravimetric and TDR measurements with different sampling steps, abundance and distribution of measuring points on scales of arable field, wetland and commune (areas: 0.01, 1 and 140 km2 respectively), taking into account the different status of SM. Mean values of SM were lowly sensitive on changes in the number and arrangement of sampling, however parameters describing the dispersion responded in a more significant manner. Spatial analysis showed autocorrelations of the SM, which lengths depended on the number and the distribution of points within the adopted grids. Directional analysis revealed a differentiated anisotropy of SM for different grids and numbers of measuring points. It can therefore be concluded that both the number of samples, as well as their layout on the experimental area, were reflected in the parameters characterizing the SM distribution. This suggests the need of using at least two variants of sampling, differing in the number and positioning of the measurement points, wherein the number of them must be at least 20. This is due to the value of the standard error and range of spatial variability, which show little change with the increase in the number of samples above this figure. Gravimetric method gives a more varied distribution of SM than those derived from TDR measurements. It should be noted that reducing the number of samples in the measuring grid leads to flattening the distribution of SM from both methods and increasing the estimation error at the same time. Grid of sensors for permanent measurement points should include points that have similar distributions of SM in the vicinity. Results of the analysis including number, the maximum correlation ranges and the acceptable estimation error should be taken into account when choosing of the measurement points. Adoption or possible adjustment of the distribution of the measurement points should be verified by performing additional measuring campaigns during the dry and wet periods. Presented approach seems to be appropriate for creation of regional-scale test (super) sites, to validate products of satellites equipped with SAR (Synthetic Aperture Radar), operating in C-band, with spatial resolution suited to single field scale, as for example: ERS-1, ERS-2, Radarsat and Sentinel-1, which is going to be launched in next few months. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.

  18. Automatic Calibration of a Distributed Rainfall-Runoff Model, Using the Degree-Day Formulation for Snow Melting, Within DMIP2 Project

    NASA Astrophysics Data System (ADS)

    Frances, F.; Orozco, I.

    2010-12-01

    This work presents the assessment of the TETIS distributed hydrological model in mountain basins of the American and Carson rivers in Sierra Nevada (USA) at hourly time discretization, as part of the DMIP2 Project. In TETIS each cell of the spatial grid conceptualizes the water cycle using six tanks connected among them. The relationship between tanks depends on the case, although at the end in most situations, simple linear reservoirs and flow thresholds schemes are used with exceptional results (Vélez et al., 1999; Francés et al., 2002). In particular, within the snow tank, snow melting is based in this work on the simple degree-day method with spatial constant parameters. The TETIS model includes an automatic calibration module, based on the SCE-UA algorithm (Duan et al., 1992; Duan et al., 1994) and the model effective parameters are organized following a split structure, as presented by Francés and Benito (1995) and Francés et al. (2007). In this way, the calibration involves in TETIS up to 9 correction factors (CFs), which correct globally the different parameter maps instead of each parameter cell value, thus reducing drastically the number of variables to be calibrated. This strategy allows for a fast and agile modification in different hydrological processes preserving the spatial structure of each parameter map. With the snowmelt submodel, automatic model calibration was carried out in three steps, separating the calibration of rainfall-runoff and snowmelt parameters. In the first step, the automatic calibration of the CFs during the period 05/20/1990 to 07/31/1990 in the American River (without snow influence), gave a Nash-Sutcliffe Efficiency (NSE) index of 0.92. The calibration of the three degree-day parameters was done using all the SNOTEL stations in the American and Carson rivers. Finally, using previous calibrations as initial values, the complete calibration done in the Carson River for the period 10/01/1992 to 07/31/1993 gave a NSE index of 0.86. The temporal and spatial validation using five periods must be considered in both rivers excellent for discharges (NSEs higher than 0.76) and good for snow distribution (daily spatial coverage errors ranging from -10 to 27%). In conclusion, this work demonstrates: 1.- The viability of automatic calibration of distributed models, with the corresponding personal time saving and maximum exploitation of the available information. 2.- The good performance of the degree-day snowmelt formulation even at hourly time discretization, in spite of its simplicity.

  19. Reconstruction from EOF analysis of SMOS salinity data in Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Parard, Gaelle; Alvera-Azcárate, Aida; Barth, Alexander; Olmedo, Estrella; Turiel, Antonio; Becker, Jean-Marie

    2017-04-01

    Sea Surface Salinity (SSS) data from the Soil Moisture and Ocean Salinity (SMOS) mission is reconstructed in the North Atlantic and the Mediterranean Sea using DINEOF (Data Interpolating Empirical Orthogonal Functions). We used the satellite data Level 2 from SMOS Barcelona Expert Centre between 2011 and 2015. DINEOF is a technique that reconstructs missing data and removes noise by retaining only an optimal set of EOFs. DINEOF analysis is used to detect and remove outliers from the SMOS SSS daily field. The gain obtained with DINEOF method and L2 SMOS data give a higher spatial and temporal resolution between 2011 and 2015, allow to study the SSS variability from daily to seasonal resolution. In order to improve the SMOS salinity data reconstruction we combine with other parameters measured from satellite such chlorophyll, sea surface temperature, precipitation and CDOM variability. After a validation of the SMOS satellite data reconstruction with in situ data (CTD, Argo float salinity measurement) in the North Atlantic and Mediterranean Sea, the main SSS processes and their variability are studied. The gain obtained with the higher spatial and temporal resolution with SMOS salinity data give assess to study the characteristics of oceanic structures in North Atlantic and Mediterranean Sea.

  20. Impact of Hydrologic and Micro-topographic Variabilities on Spatial Distribution of Mean Soil-Nitrogen Age

    NASA Astrophysics Data System (ADS)

    Woo, D.; Kumar, P.

    2015-12-01

    Excess reactive nitrogen in soils of intensively managed agricultural fields causes adverse environmental impact, and continues to remain a global concern. Many novel strategies have been developed to provide better management practices and, yet, the problem remains unresolved. The objective of this study is to develop a 3-dimensional model to characterize the spatially distributed ``age" of soil-nitrogen (nitrate and ammonia-ammonium) across a watershed. We use the general theory of age, which provides an assessment of the elapsed time since nitrogen is introduced into the soil system. Micro-topographic variability incorporates heterogeneity of nutrient transformations and transport associated with topographic depressions that form temporary ponds and produce prolonged periods of anoxic conditions, and roadside agricultural ditches that support rapid surface movement. This modeling effort utilizes 1-m Light Detection and Ranging (LiDAR) data. We find a significant correlation between hydrologic variability and mean nitrate age that enables assessment of preferential flow paths of nitrate leaching. The estimation of the mean nitrogen age can thus serve as a tool to disentangle complex nitrogen dynamics by providing the analysis of the time scales of soil-nitrogen transformation and transport processes without introducing additional parameters.

  1. A hierarchical spatial model of avian abundance with application to Cerulean Warblers

    USGS Publications Warehouse

    Thogmartin, Wayne E.; Sauer, John R.; Knutson, Melinda G.

    2004-01-01

    Surveys collecting count data are the primary means by which abundance is indexed for birds. These counts are confounded, however, by nuisance effects including observer effects and spatial correlation between counts. Current methods poorly accommodate both observer and spatial effects because modeling these spatially autocorrelated counts within a hierarchical framework is not practical using standard statistical approaches. We propose a Bayesian approach to this problem and provide as an example of its implementation a spatial model of predicted abundance for the Cerulean Warbler (Dendroica cerulea) in the Prairie-Hardwood Transition of the upper midwestern United States. We used an overdispersed Poisson regression with fixed and random effects, fitted by Markov chain Monte Carlo methods. We used 21 years of North American Breeding Bird Survey counts as the response in a loglinear function of explanatory variables describing habitat, spatial relatedness, year effects, and observer effects. The model included a conditional autoregressive term representing potential correlation between adjacent route counts. Categories of explanatory habitat variables in the model included land cover composition and configuration, climate, terrain heterogeneity, and human influence. The inherent hierarchy in the model was from counts occurring, in part, as a function of observers within survey routes within years. We found that the percentage of forested wetlands, an index of wetness potential, and an interaction between mean annual precipitation and deciduous forest patch size best described Cerulean Warbler abundance. Based on a map of relative abundance derived from the posterior parameter estimates, we estimated that only 15% of the species' population occurred on federal land, necessitating active engagement of public landowners and state agencies in the conservation of the breeding habitat for this species. Models of this type can be applied to any data in which the response is counts, such as animal counts, activity (e.g.,nest) counts, or species richness. The most noteworthy practical application of this spatial modeling approach is the ability to map relative species abundance. The functional relationships that we elucidated for the Cerulean Warbler provide a basis for the development of management programs and may serve to focus management and monitoring on areas and habitat variables important to Cerulean Warblers.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Venkat; Cole, Wesley

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solarmore » modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.« less

  3. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  4. Photosynthesis-irradiance parameters of marine phytoplankton: synthesis of a global data set

    NASA Astrophysics Data System (ADS)

    Bouman, Heather A.; Platt, Trevor; Doblin, Martina; Figueiras, Francisco G.; Gudmundsson, Kristinn; Gudfinnsson, Hafsteinn G.; Huang, Bangqin; Hickman, Anna; Hiscock, Michael; Jackson, Thomas; Lutz, Vivian A.; Mélin, Frédéric; Rey, Francisco; Pepin, Pierre; Segura, Valeria; Tilstone, Gavin H.; van Dongen-Vogels, Virginie; Sathyendranath, Shubha

    2018-02-01

    The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis-irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll) that are fundamental inputs for models (satellite-based and otherwise) of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in spatial coverage. The database will be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017).

  5. Independent Review of Simulation of Net Infiltration for Present-Day and Potential Future Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Review Panel: Soroosh Sorooshian, Ph.D., Panel Chairperson, University of California, Irvine; Jan M. H. Hendrickx, Ph.D., New Mexico Institute of Mining and Technology; Binayak P. Mohanty, Ph.D., Texas A&M University

    The DOE Office of Civilian Radioactive Waste Management (OCRWM) tasked Oak Ridge Institute for Science and Education (ORISE) with providing an independent expert review of the documented model and prediction results for net infiltration of water into the unsaturated zone at Yucca Mountain. The specific purpose of the model, as documented in the report MDL-NBS-HS-000023, Rev. 01, is “to provide a spatial representation, including epistemic and aleatory uncertainty, of the predicted mean annual net infiltration at the Yucca Mountain site ...” (p. 1-1) The expert review panel assembled by ORISE concluded that the model report does not provide a technicallymore » credible spatial representation of net infiltration at Yucca Mountain. Specifically, the ORISE Review Panel found that: • A critical lack of site-specific meteorological, surface, and subsurface information prevents verification of (i) the net infiltration estimates, (ii) the uncertainty estimates of parameters caused by their spatial variability, and (iii) the assumptions used by the modelers (ranges and distributions) for the characterization of parameters. The paucity of site-specific data used by the modeling team for model implementation and validation is a major deficiency in this effort. • The model does not incorporate at least one potentially important hydrologic process. Subsurface lateral flow is not accounted for by the model, and the assumption that the effect of subsurface lateral flow is negligible is not adequately justified. This issue is especially critical for the wetter climate periods. This omission may be one reason the model results appear to underestimate net infiltration beneath wash environments and therefore imprecisely represent the spatial variability of net infiltration. • While the model uses assumptions consistently, such as uniform soil depths and a constant vegetation rooting depth, such assumptions may not be appropriate for this net infiltration simulation because they oversimplify a complex landscape and associated hydrologic processes, especially since the model assumptions have not been adequately corroborated by field and laboratory observations at Yucca Mountain.« less

  6. Patterns and Determinants of Habitat Occupancy by the Asian Elephant in the Western Ghats of Karnataka, India

    PubMed Central

    Jathanna, Devcharan; Karanth, K. Ullas; Kumar, N. Samba; Karanth, Krithi K.; Goswami, Varun R.

    2015-01-01

    Understanding species distribution patterns has direct ramifications for the conservation of endangered species, such as the Asian elephant Elephas maximus. However, reliable assessment of elephant distribution is handicapped by factors such as the large spatial scales of field studies, survey expertise required, the paucity of analytical approaches that explicitly account for confounding observation processes such as imperfect and variable detectability, unequal sampling probability and spatial dependence among animal detections. We addressed these problems by carrying out ‘detection—non-detection’ surveys of elephant signs across a c. 38,000-km2 landscape in the Western Ghats of Karnataka, India. We analyzed the resulting sign encounter data using a recently developed modeling approach that explicitly addresses variable detectability across space and spatially dependent non-closure of occupancy, across sampling replicates. We estimated overall occupancy, a parameter useful to monitoring elephant populations, and examined key ecological and anthropogenic drivers of elephant presence. Our results showed elephants occupied 13,483 km2 (SE = 847 km2) corresponding to 64% of the available 21,167 km2 of elephant habitat in the study landscape, a useful baseline to monitor future changes. Replicate-level detection probability ranged between 0.56 and 0.88, and ignoring it would have underestimated elephant distribution by 2116 km2 or 16%. We found that anthropogenic factors predominated over natural habitat attributes in determining elephant occupancy, underscoring the conservation need to regulate them. Human disturbances affected elephant habitat occupancy as well as site-level detectability. Rainfall is not an important limiting factor in this relatively humid bioclimate. Finally, we discuss cost-effective monitoring of Asian elephant populations and the specific spatial scales at which different population parameters can be estimated. We emphasize the need to model the observation and sampling processes that often obscure the ecological process of interest, in this case relationship between elephants to their habitat. PMID:26207378

  7. Spatial interpolation of GPS PWV and meteorological variables over the west coast of Peninsular Malaysia during 2013 Klang Valley Flash Flood

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Rahman, Rosnani

    2016-02-01

    Global Positioning System (GPS) receivers are widely installed throughout the Peninsular Malaysia, but the implementation for monitoring weather hazard system such as flash flood is still not optimal. To increase the benefit for meteorological applications, the GPS system should be installed in collocation with meteorological sensors so the precipitable water vapor (PWV) can be measured. The distribution of PWV is a key element to the Earth's climate for quantitative precipitation improvement as well as flash flood forecasts. The accuracy of this parameter depends on a large extent on the number of GPS receiver installations and meteorological sensors in the targeted area. Due to cost constraints, a spatial interpolation method is proposed to address these issues. In this paper, we investigated spatial distribution of GPS PWV and meteorological variables (surface temperature, relative humidity, and rainfall) by using thin plate spline (tps) and ordinary kriging (Krig) interpolation techniques over the Klang Valley in Peninsular Malaysia (longitude: 99.5°-102.5°E and latitude: 2.0°-6.5°N). Three flash flood cases in September, October, and December 2013 were studied. The analysis was performed using mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2) to determine the accuracy and reliability of the interpolation techniques. Results at different phases (pre, onset, and post) that were evaluated showed that tps interpolation technique is more accurate, reliable, and highly correlated in estimating GPS PWV and relative humidity, whereas Krig is more reliable for predicting temperature and rainfall during pre-flash flood events. During the onset of flash flood events, both methods showed good interpolation in estimating all meteorological parameters with high accuracy and reliability. The finding suggests that the proposed method of spatial interpolation techniques are capable of handling limited data sources with high accuracy, which in turn can be used to predict future floods.

  8. Comparison of Spatial Correlation Parameters between Full and Model Scale Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Kenny, Jeremy; Giacomoni, Clothilde

    2016-01-01

    The current vibro-acoustic analysis tools require specific spatial correlation parameters as input to define the liftoff acoustic environment experienced by the launch vehicle. Until recently these parameters have not been very well defined. A comprehensive set of spatial correlation data were obtained during a scale model acoustic test conducted in 2014. From these spatial correlation data, several parameters were calculated: the decay coefficient, the diffuse to propagating ratio, and the angle of incidence. Spatial correlation data were also collected on the EFT-1 flight of the Delta IV vehicle which launched on December 5th, 2014. A comparison of the spatial correlation parameters from full scale and model scale data will be presented.

  9. Influence of tillage in soil penetration resistance variability in an olive orchard

    NASA Astrophysics Data System (ADS)

    López de Herrera, Juan; Herrero Tejedor, Tomas; Saa-Requejo, Antonio; Tarquis, Ana M.

    2015-04-01

    Soil attributes usually present a high degree of spatial variation due to a combination of physical, chemical, biological or climatic processes operating at different scales. The quantification and interpretation of such variability is a key issue for site-specific soil management (Brouder et al., 2001). The usual geostatistical approach studies soil variability by means of the semi-variograms. However, recently a multiscaling approach has been applied on the determination of the scaling data properties (Kravechenko et al., 1999; Caniego et al., 2005; Tarquis et al., 2008). This work focus in the multifractal analysis as a way to characterize the variability of field data in a case study of soil penetrometer resistance (SPR) in two olive orchards, one applying tillage for 20 years and the other one non. The field measurements and soil data were obtained at the village of Puebla de Almenara (Cuenca, Spain) (39o 47'42.37'N, 2o 49'29.23'W) with 869 m of elevation approximately. The characteristic of the soil at the surface is classified as clay loam texture according to Guidelines for soil description of FAO. The soil consists of clays and red silts with some clusters of limestone's and sands. Two transect data were collected from 128 points between the squared of the olive tree, tillage and no tillage area, for SPR readings with a sampling interval of 50 cm. In each sampling, readings were obtained from 0 cm till 20 cm of depth, with an interval of 5 cm. The multifractal spectrum for each area and depth was estimated showing a characteristic pattern and differentiating both treatments. References Brouder, S., Hofmann, B., Reetz, H.F., 2001. Evaluating spatial variability of soil parameters for input management. Better Crops 85, 8-11. Kravchenko, A.N., Boast, C.W., Bullock, D.G., 1999. Multifractal analysis of soil spatial variability. Agron. J. 91, 1033-1041. Caniego, F.J., R. Espejo, M.A. Martín, F. San José, 2005. Multifractal scaling of soil spatial variability. Ecological Modelling, 182, 291-303. Tarquis, A.M., N. Bird, M.C. Cartagena, A. Whitmore and Y. Pachepsky, 2008. Multiscale entropy-based analyses of soil transect data. Vadose Zone Journal, 7(2), 563-569.

  10. Investigating local controls on soil moisture temporal stability using an inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry

    2013-04-01

    A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).

  11. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  12. Structure and covariance of cloud and rain water in marine stratocumulus

    NASA Astrophysics Data System (ADS)

    Witte, Mikael; Morrison, Hugh; Gettelman, Andrew

    2017-04-01

    Many state of the art cloud microphysics parameterizations in large-scale models use assumed probability density functions (pdfs) to represent subgrid scale variability of relevant resolved scale variables such as vertical velocity and cloud liquid water content (LWC). Integration over the assumed pdfs of small scale variability results in physically consistent prediction of nonlinear microphysical process rates and obviates the need to apply arbitrary tuning parameters to the calculated rates. In such parameterizations, the covariance of cloud and rain LWC is an important quantity for parameterizing the accretion process by which rain drops grow via collection of cloud droplets. This covariance has been diagnosed by other workers from a variety of observational and model datasets (Boutle et al., 2013; Larson and Griffin, 2013; Lebsock et al., 2013), but there is poor agreement in findings across the studies. Two key assumptions that may explain some of the discrepancies among past studies are 1) LWC (both cloud and rain) distributions are statistically stationary and 2) spatial structure may be neglected. Given the highly intermittent nature of precipitation and the fact that cloud LWC has been found to be poorly represented by stationary pdfs (e.g. Marshak et al., 1997), neither of the aforementioned assumptions are valid. Therefore covariance must be evaluated as a function of spatial scale without the assumption of stationary statistics (i.e. variability cannot be expressed as a fractional standard deviation, which necessitates well-defined first and second moments of the LWC distribution). The present study presents multifractal analyses of both rain and cloud LWC using aircraft data from the VOCALS-REx field campaign to illustrate the importance of spatial structure in microphysical parameterizations and extends the results of Boutle et al. (2013) to provide a parameterization of rain-cloud water covariance as a function of spatial scale without the assumption of statistical stationarity.

  13. GIS and Geodatabase Disaster Risk for Spatial Planning

    NASA Astrophysics Data System (ADS)

    Hendriawan Nur, Wawan; Kumoro, Yugo; Susilowati, Yuliana

    2018-02-01

    The spatial planning in Indonesia needs to consider the information on the potential disaster. That is because disaster is a serious and detrimental problem that often occurs and causes casualties in some areas in Indonesia as well as inhibits the development. Various models and research were developed to calculate disaster risk assessment. GIS is a system for assembling, storing, analyzing, and displaying geographically referenced disaster. The information can be collaborated with geodatabases to model and to estimate disaster risk in an automated way. It also offers the possibility to customize most of the parameters used in the models. This paper describes a framework which can improve GIS and Geodatabase for the vulnerability, capacity or disaster risk assessment to support the spatial planning activities so they can be more adaptable. By using this framework, GIS application can be used in any location by adjusting variables or calculation methods without changing or rebuilding system from scratch.

  14. Alternative stable qP wave equations in TTI media with their applications for reverse time migration

    NASA Astrophysics Data System (ADS)

    Zhou, Yang; Wang, Huazhong; Liu, Wenqing

    2015-10-01

    Numerical instabilities may arise if the spatial variation of symmetry axis is handled improperly when implementing P-wave modeling and reverse time migration in heterogeneous tilted transversely isotropic (TTI) media, especially in the cases where fast changes exist in TTI symmetry axis’ directions. Based on the pseudo-acoustic approximation to anisotropic elastic wave equations in Cartesian coordinates, alternative second order qP (quasi-P) wave equations in TTI media are derived in this paper. Compared with conventional stable qP wave equations, the proposed equations written in stress components contain only spatial derivatives of wavefield variables (stress components) and are free from spatial derivatives involving media parameters. These lead to an easy and efficient implementation for stable P-wave modeling and imaging. Numerical experiments demonstrate the stability and computational efficiency of the presented equations in complex TTI media.

  15. Optical design and simulation of a new coherence beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.

    2017-08-01

    We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.

  16. Factorial inferential grid grouping and representativeness analysis for a systematic selection of representative grids

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Yao, Yao

    2017-08-01

    A factorial inferential grid grouping and representativeness analysis (FIGGRA) approach is developed to achieve a systematic selection of representative grids in large-scale climate change impact assessment and adaptation (LSCCIAA) studies and other fields of Earth and space sciences. FIGGRA is applied to representative-grid selection for temperature (Tas) and precipitation (Pr) over the Loess Plateau (LP) to verify methodological effectiveness. FIGGRA is effective at and outperforms existing grid-selection approaches (e.g., self-organizing maps) in multiple aspects such as clustering similar grids, differentiating dissimilar grids, and identifying representative grids for both Tas and Pr over LP. In comparison with Pr, the lower spatial heterogeneity and higher spatial discontinuity of Tas over LP lead to higher within-group similarity, lower between-group dissimilarity, lower grid grouping effectiveness, and higher grid representativeness; the lower interannual variability of the spatial distributions of Tas results in lower impacts of the interannual variability on the effectiveness of FIGGRA. For LP, the spatial climatic heterogeneity is the highest in January for Pr and in October for Tas; it decreases from spring, autumn, summer to winter for Tas and from summer, spring, autumn to winter for Pr. Two parameters, i.e., the statistical significance level (α) and the minimum number of grids in every climate zone (Nmin), and their joint effects are significant for the effectiveness of FIGGRA; normalization of a nonnormal climate-variable distribution is helpful for the effectiveness only for Pr. For FIGGRA-based LSCCIAA studies, a low value of Nmin is recommended for both Pr and Tas, and a high and medium value of α for Pr and Tas, respectively.

  17. Evaluating uncertainty in predicting spatially variable representative elementary scales in fractured aquifers, with application to Turkey Creek Basin, Colorado

    USGS Publications Warehouse

    Wellman, Tristan P.; Poeter, Eileen P.

    2006-01-01

    Computational limitations and sparse field data often mandate use of continuum representation for modeling hydrologic processes in large‐scale fractured aquifers. Selecting appropriate element size is of primary importance because continuum approximation is not valid for all scales. The traditional approach is to select elements by identifying a single representative elementary scale (RES) for the region of interest. Recent advances indicate RES may be spatially variable, prompting unanswered questions regarding the ability of sparse data to spatially resolve continuum equivalents in fractured aquifers. We address this uncertainty of estimating RES using two techniques. In one technique we employ data‐conditioned realizations generated by sequential Gaussian simulation. For the other we develop a new approach using conditioned random walks and nonparametric bootstrapping (CRWN). We evaluate the effectiveness of each method under three fracture densities, three data sets, and two groups of RES analysis parameters. In sum, 18 separate RES analyses are evaluated, which indicate RES magnitudes may be reasonably bounded using uncertainty analysis, even for limited data sets and complex fracture structure. In addition, we conduct a field study to estimate RES magnitudes and resulting uncertainty for Turkey Creek Basin, a crystalline fractured rock aquifer located 30 km southwest of Denver, Colorado. Analyses indicate RES does not correlate to rock type or local relief in several instances but is generally lower within incised creek valleys and higher along mountain fronts. Results of this study suggest that (1) CRWN is an effective and computationally efficient method to estimate uncertainty, (2) RES predictions are well constrained using uncertainty analysis, and (3) for aquifers such as Turkey Creek Basin, spatial variability of RES is significant and complex.

  18. Using repeat electrical resistivity surveys to assess heterogeneity in soil moisture dynamics under contrasting vegetation types

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2018-04-01

    As the relationship between vegetation and soil moisture is complex and reciprocal, there is a need to understand how spatial patterns in soil moisture influence the distribution of vegetation, and how the structure of vegetation canopies and root networks regulates the partitioning of precipitation. Spatial patterns of soil moisture are often difficult to visualise as usually, soil moisture is measured at point scales, and often difficult to extrapolate. Here, we address the difficulties in collecting large amounts of spatial soil moisture data through a study combining plot- and transect-scale electrical resistivity tomography (ERT) surveys to estimate soil moisture in a 3.2 km2 upland catchment in the Scottish Highlands. The aim was to assess the spatio-temporal variability in soil moisture under Scots pine forest (Pinus sylvestris) and heather moorland shrubs (Calluna vulgaris); the two dominant vegetation types in the Scottish Highlands. The study focussed on one year of fortnightly ERT surveys. The surveyed resistivity data was inverted and Archie's law was used to calculate volumetric soil moisture by estimating parameters and comparing against field measured data. Results showed that spatial soil moisture patterns were more heterogeneous in the forest site, as were patterns of wetting and drying, which can be linked to vegetation distribution and canopy structure. The heather site showed a less heterogeneous response to wetting and drying, reflecting the more uniform vegetation cover of the shrubs. Comparing soil moisture temporal variability during growing and non-growing seasons revealed further contrasts: under the heather there was little change in soil moisture during the growing season. Greatest changes in the forest were in areas where the trees were concentrated reflecting water uptake and canopy partitioning. Such differences have implications for climate and land use changes; increased forest cover can lead to greater spatial variability, greater growing season temporal variability, and reduced levels of soil moisture, whilst projected decreasing summer precipitation may alter the feedbacks between soil moisture and vegetation water use and increase growing season soil moisture deficits.

  19. Eastern Mediterranean Sea Spatial and Temporal Variability of Thermohaline Structure and Circulation Identified from Observational (T, S) Profiles

    DTIC Science & Technology

    2015-12-01

    effect of Etesian winds between the late May and early October. Although they are generally dry, cool and moderate; they may turn into a windstorm...very significant to provide the realization of ocean modeling and prediction. The Optimal Spectral Decomposition (OSD) method is an effective ...represents the potential density, by differentiating this equation with respect to z and multiplying with the coriolis parameter f, conservation of

  20. An investigation of the observability of ocean-surface parameters using GEOS-3 backscatter data

    NASA Technical Reports Server (NTRS)

    Miller, L. S.; Priester, R. W.

    1978-01-01

    The degree to which ocean surface roughness can be synoptically observed through use of the information extracted from the GEOS-3 backscattered waveform data was evaluated. Algorithms are given for use in estimating the radar sensed waveheight distribution or ocean-surface impulse response. Other factors discussed include comparisons between theoretical and experimental radar cross section values, sea state bias effects, spatial variability of significant waveheight data, and sensor-related considerations.

  1. [Mapping environmental vulnerability from ETM + data in the Yellow River Mouth Area].

    PubMed

    Wang, Rui-Yan; Yu, Zhen-Wen; Xia, Yan-Ling; Wang, Xiang-Feng; Zhao, Geng-Xing; Jiang, Shu-Qian

    2013-10-01

    The environmental vulnerability retrieval is important to support continuing data. The spatial distribution of regional environmental vulnerability was got through remote sensing retrieval. In view of soil and vegetation, the environmental vulnerability evaluation index system was built, and the environmental vulnerability of sampling points was calculated by the AHP-fuzzy method, then the correlation between the sampling points environmental vulnerability and ETM + spectral reflectance ratio including some kinds of conversion data was analyzed to determine the sensitive spectral parameters. Based on that, models of correlation analysis, traditional regression, BP neural network and support vector regression were taken to explain the quantitative relationship between the spectral reflectance and the environmental vulnerability. With this model, the environmental vulnerability distribution was retrieved in the Yellow River Mouth Area. The results showed that the correlation between the environmental vulnerability and the spring NDVI, the September NDVI and the spring brightness was better than others, so they were selected as the sensitive spectral parameters. The model precision result showed that in addition to the support vector model, the other model reached the significant level. While all the multi-variable regression was better than all one-variable regression, and the model accuracy of BP neural network was the best. This study will serve as a reliable theoretical reference for the large spatial scale environmental vulnerability estimation based on remote sensing data.

  2. Multiscale assemblage of an ectomycorrhizal fungal community: the influence of host functional traits and soil properties in a 10-ha miombo forest.

    PubMed

    Bauman, David; Raspé, Olivier; Meerts, Pierre; Degreef, Jérôme; Ilunga Muledi, Jonathan; Drouet, Thomas

    2016-10-01

    Ectomycorrhizal fungi (EMF) are highly diversified and dominant in a number of forest ecosystems. Nevertheless, their scales of spatial distribution and the underlying ecological processes remain poorly understood. Although most EMF are considered to be generalists regarding host identity, a preference toward functional strategies of host trees has never been tested. Here, the EMF community was characterised by DNA sequencing in a 10-ha tropical dry season forest-referred to as miombo-an understudied ecosystem from a mycorrhizal perspective. We used 36 soil parameters and 21 host functional traits (FTs) as candidate explanatory variables in spatial constrained ordinations for explaining the EMF community assemblage. Results highlighted that the community variability was explained by host FTs related to the 'leaf economics spectrum' (adjusted R(2) = 11%; SLA, leaf area, foliar Mg content), and by soil parameters (adjusted R(2) = 17%), notably total forms of micronutrients or correlated available elements (Al, N, K, P). Both FTs and soil generated patterns in the community at scales ranging from 75 to 375 m. Our results indicate that soil is more important than previously thought for EMF in miombo woodlands, and show that FTs of host species can be better predictors of symbiont distribution than taxonomical identity. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Effects of developmental variability on the dynamics and self-organization of cell populations

    NASA Astrophysics Data System (ADS)

    Prabhakara, Kaumudi H.; Gholami, Azam; Zykov, Vladimir S.; Bodenschatz, Eberhard

    2017-11-01

    We report experimental and theoretical results for spatiotemporal pattern formation in cell populations, where the parameters vary in space and time due to mechanisms intrinsic to the system, namely Dictyostelium discoideum (D.d.) in the starvation phase. We find that different patterns are formed when the populations are initialized at different developmental stages, or when populations at different initial developmental stages are mixed. The experimentally observed patterns can be understood with a modified Kessler-Levine model that takes into account the initial spatial heterogeneity of the cell populations and a developmental path introduced by us, i.e. the time dependence of the various biochemical parameters. The dynamics of the parameters agree with known biochemical studies. Most importantly, the modified model reproduces not only our results, but also the observations of an independent experiment published earlier. This shows that pattern formation can be used to understand and quantify the temporal evolution of the system parameters.

  4. A method of online quantitative interpretation of diffuse reflection profiles of biological tissues

    NASA Astrophysics Data System (ADS)

    Lisenko, S. A.; Kugeiko, M. M.

    2013-02-01

    We have developed a method of combined interpretation of spectral and spatial characteristics of diffuse reflection of biological tissues, which makes it possible to determine biophysical parameters of the tissue with a high accuracy in real time under conditions of their general variability. Using the Monte Carlo method, we have modeled a statistical ensemble of profiles of diffuse reflection coefficients of skin, which corresponds to a wave variation of its biophysical parameters. On its basis, we have estimated the retrieval accuracy of biophysical parameters using the developed method and investigated the stability of the method to errors of optical measurements. We have showed that it is possible to determine online the concentrations of melanin, hemoglobin, bilirubin, oxygen saturation of blood, and structural parameters of skin from measurements of its diffuse reflection in the spectral range 450-800 nm at three distances between the radiation source and detector.

  5. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    NASA Astrophysics Data System (ADS)

    Kumar, Suresh; Xu, Lixin

    2014-10-01

    In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann-Robertson-Walker space-time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier-Polarski-Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.

  6. Spatial distribution of enzyme driven reactions at micro-scales

    NASA Astrophysics Data System (ADS)

    Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian

    2017-04-01

    Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).

  7. The Bayesian group lasso for confounded spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.

    2017-01-01

    Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.

  8. Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model

    NASA Astrophysics Data System (ADS)

    Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.

    2011-12-01

    The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.

  9. Uncertainty Quantification and Parameter Tuning: A Case Study of Convective Parameterization Scheme in the WRF Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Yang, B.; Lin, G.; Leung, R.; Zhang, Y.

    2012-04-01

    The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. The latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic important-sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e., the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.

  10. Some issues in uncertainty quantification and parameter tuning: a case study of convective parameterization scheme in the WRF regional climate model

    NASA Astrophysics Data System (ADS)

    Yang, B.; Qian, Y.; Lin, G.; Leung, R.; Zhang, Y.

    2012-03-01

    The current tuning process of parameters in global climate models is often performed subjectively or treated as an optimization procedure to minimize model biases based on observations. While the latter approach may provide more plausible values for a set of tunable parameters to approximate the observed climate, the system could be forced to an unrealistic physical state or improper balance of budgets through compensating errors over different regions of the globe. In this study, the Weather Research and Forecasting (WRF) model was used to provide a more flexible framework to investigate a number of issues related uncertainty quantification (UQ) and parameter tuning. The WRF model was constrained by reanalysis of data over the Southern Great Plains (SGP), where abundant observational data from various sources was available for calibration of the input parameters and validation of the model results. Focusing on five key input parameters in the new Kain-Fritsch (KF) convective parameterization scheme used in WRF as an example, the purpose of this study was to explore the utility of high-resolution observations for improving simulations of regional patterns and evaluate the transferability of UQ and parameter tuning across physical processes, spatial scales, and climatic regimes, which have important implications to UQ and parameter tuning in global and regional models. A stochastic importance sampling algorithm, Multiple Very Fast Simulated Annealing (MVFSA) was employed to efficiently sample the input parameters in the KF scheme based on a skill score so that the algorithm progressively moved toward regions of the parameter space that minimize model errors. The results based on the WRF simulations with 25-km grid spacing over the SGP showed that the precipitation bias in the model could be significantly reduced when five optimal parameters identified by the MVFSA algorithm were used. The model performance was found to be sensitive to downdraft- and entrainment-related parameters and consumption time of Convective Available Potential Energy (CAPE). Simulated convective precipitation decreased as the ratio of downdraft to updraft flux increased. Larger CAPE consumption time resulted in less convective but more stratiform precipitation. The simulation using optimal parameters obtained by constraining only precipitation generated positive impact on the other output variables, such as temperature and wind. By using the optimal parameters obtained at 25-km simulation, both the magnitude and spatial pattern of simulated precipitation were improved at 12-km spatial resolution. The optimal parameters identified from the SGP region also improved the simulation of precipitation when the model domain was moved to another region with a different climate regime (i.e. the North America monsoon region). These results suggest that benefits of optimal parameters determined through vigorous mathematical procedures such as the MVFSA process are transferable across processes, spatial scales, and climatic regimes to some extent. This motivates future studies to further assess the strategies for UQ and parameter optimization at both global and regional scales.

  11. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys

    PubMed Central

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield. PMID:27203697

  12. Digital Mapping of Soil Salinity and Crop Yield across a Coastal Agricultural Landscape Using Repeated Electromagnetic Induction (EMI) Surveys.

    PubMed

    Yao, Rongjiang; Yang, Jingsong; Wu, Danhua; Xie, Wenping; Gao, Peng; Jin, Wenhui

    2016-01-01

    Reliable and real-time information on soil and crop properties is important for the development of management practices in accordance with the requirements of a specific soil and crop within individual field units. This is particularly the case in salt-affected agricultural landscape where managing the spatial variability of soil salinity is essential to minimize salinization and maximize crop output. The primary objectives were to use linear mixed-effects model for soil salinity and crop yield calibration with horizontal and vertical electromagnetic induction (EMI) measurements as ancillary data, to characterize the spatial distribution of soil salinity and crop yield and to verify the accuracy of spatial estimation. Horizontal and vertical EMI (type EM38) measurements at 252 locations were made during each survey, and root zone soil samples and crop samples at 64 sampling sites were collected. This work was periodically conducted on eight dates from June 2012 to May 2013 in a coastal salt-affected mud farmland. Multiple linear regression (MLR) and restricted maximum likelihood (REML) were applied to calibrate root zone soil salinity (ECe) and crop annual output (CAO) using ancillary data, and spatial distribution of soil ECe and CAO was generated using digital soil mapping (DSM) and the precision of spatial estimation was examined using the collected meteorological and groundwater data. Results indicated that a reduced model with EMh as a predictor was satisfactory for root zone ECe calibration, whereas a full model with both EMh and EMv as predictors met the requirement of CAO calibration. The obtained distribution maps of ECe showed consistency with those of EMI measurements at the corresponding time, and the spatial distribution of CAO generated from ancillary data showed agreement with that derived from raw crop data. Statistics of jackknifing procedure confirmed that the spatial estimation of ECe and CAO exhibited reliability and high accuracy. A general increasing trend of ECe was observed and moderately saline and very saline soils were predominant during the survey period. The temporal dynamics of root zone ECe coincided with those of daily rainfall, water table and groundwater data. Long-range EMI surveys and data collection are needed to capture the spatial and temporal variability of soil and crop parameters. Such results allowed us to conclude that, cost-effective and efficient EMI surveys, as one part of multi-source data for DSM, could be successfully used to characterize the spatial variability of soil salinity, to monitor the spatial and temporal dynamics of soil salinity, and to spatially estimate potential crop yield.

  13. Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations

    NASA Astrophysics Data System (ADS)

    Feyen, Luc; Caers, Jef

    2006-06-01

    In this work, we address the problem of characterizing the heterogeneity and uncertainty of hydraulic properties for complex geological settings. Hereby, we distinguish between two scales of heterogeneity, namely the hydrofacies structure and the intrafacies variability of the hydraulic properties. We employ multiple-point geostatistics to characterize the hydrofacies architecture. The multiple-point statistics are borrowed from a training image that is designed to reflect the prior geological conceptualization. The intrafacies variability of the hydraulic properties is represented using conventional two-point correlation methods, more precisely, spatial covariance models under a multi-Gaussian spatial law. We address the different levels and sources of uncertainty in characterizing the subsurface heterogeneity, and explore their effect on groundwater flow and transport predictions. Typically, uncertainty is assessed by way of many images, termed realizations, of a fixed statistical model. However, in many cases, sampling from a fixed stochastic model does not adequately represent the space of uncertainty. It neglects the uncertainty related to the selection of the stochastic model and the estimation of its input parameters. We acknowledge the uncertainty inherent in the definition of the prior conceptual model of aquifer architecture and in the estimation of global statistics, anisotropy, and correlation scales. Spatial bootstrap is used to assess the uncertainty of the unknown statistical parameters. As an illustrative example, we employ a synthetic field that represents a fluvial setting consisting of an interconnected network of channel sands embedded within finer-grained floodplain material. For this highly non-stationary setting we quantify the groundwater flow and transport model prediction uncertainty for various levels of hydrogeological uncertainty. Results indicate the importance of accurately describing the facies geometry, especially for transport predictions.

  14. Do we really use rainfall observations consistent with reality in hydrological modelling?

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Follain, Stéphane; Raclot, Damien; Crabit, Armand; Pastor, Amandine; Moussa, Roger; Le Bissonnais, Yves

    2017-04-01

    Spatial and temporal patterns in rainfall control how water reaches soil surface and interacts with soil properties (i.e., soil wetting, infiltration, saturation). Once a hydrological event is defined by a rainfall with its spatiotemporal variability and by some environmental parameters such as soil properties (including land use, topographic and anthropic features), the evidence shows that each parameter variation produces different, specific outputs (e.g., runoff, flooding etc.). In this study, we focus on the effect of rainfall patterns because, due to the difficulty to dispose of detailed data, their influence in modelling is frequently underestimated or neglected. A rainfall event affects a catchment non uniformly, it is spatially localized and its pattern moves in space and time. The way and the time how the water reaches the soil and saturates it respect to the geometry of the catchment deeply influences soil saturation, runoff, and then sediment delivery. This research, approaching a hypothetical, simple case, aims to stimulate the debate on the reliability of the rainfall quality used in hydrological / soil erosion modelling. We test on a small catchment of the south of France (Roujan, Languedoc Roussillon) the influence of rainfall variability with the use of a HD hybrid hydrological - soil erosion model, combining a cinematic wave with the St. Venant equation and a simplified "bucket" conceptual model for ground water, able to quantify the effect of different spatiotemporal patterns of a very-high-definition synthetic rainfall. Results indicate that rainfall spatiotemporal patterns are crucial simulating an erosive event: differences between spatially uniform rainfalls, as frequently adopted in simulations, and some hypothetical rainfall patterns here applied, reveal that the outcome of a simulated event can be highly underestimated.

  15. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds. The two-CN system approach

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.

    2011-10-01

    The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. They suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the novel hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behavior of the CN-rainfall function produced by the proposed two-CN system concept is approached theoretically, it is analyzed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous original method based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.

  16. Specification of parameters for development of a spatial database for drought monitoring and famine early warning in the African Sahel

    NASA Technical Reports Server (NTRS)

    Rochon, Gilbert L.

    1989-01-01

    Parameters were described for spatial database to facilitate drought monitoring and famine early warning in the African Sahel. The proposed system, referred to as the African Drought and Famine Information System (ADFIS) is ultimately recommended for implementation with the NASA/FEMA Spatial Analysis and Modeling System (SAMS), a GIS/Dymanic Modeling software package, currently under development. SAMS is derived from FEMA'S Integration Emergency Management Information System (IEMIS) and the Pacific Northwest Laborotory's/Engineering Topographic Laboratory's Airland Battlefield Environment (ALBE) GIS. SAMS is primarily intended for disaster planning and resource management applications with the developing countries. Sources of data for the system would include the Developing Economics Branch of the U.S. Dept. of Agriculture, the World Bank, Tulane University School of Public Health and Tropical Medicine's Famine Early Warning Systems (FEWS) Project, the USAID's Foreign Disaster Assistance Section, the World Resources Institute, the World Meterological Institute, the USGS, the UNFAO, UNICEF, and the United Nations Disaster Relief Organization (UNDRO). Satellite imagery would include decadal AVHRR imagery and Normalized Difference Vegetation Index (NDVI) values from 1981 to the present for the African continent and selected Landsat scenes for the Sudan pilot study. The system is initially conceived for the MicroVAX 2/GPX, running VMS. To facilitate comparative analysis, a global time-series database (1950 to 1987) is included for a basic set of 125 socio-economic variables per country per year. A more detailed database for the Sahelian countries includes soil type, water resources, agricultural production, agricultural import and export, food aid, and consumption. A pilot dataset for the Sudan with over 2,500 variables from the World Bank's ANDREX system, also includes epidemiological data on incidence of kwashiorkor, marasmus, other nutritional deficiencies, and synergistically-related infectious diseases.

  17. A pseudo-penalized quasi-likelihood approach to the spatial misalignment problem with non-normal data.

    PubMed

    Lopiano, Kenneth K; Young, Linda J; Gotway, Carol A

    2014-09-01

    Spatially referenced datasets arising from multiple sources are routinely combined to assess relationships among various outcomes and covariates. The geographical units associated with the data, such as the geographical coordinates or areal-level administrative units, are often spatially misaligned, that is, observed at different locations or aggregated over different geographical units. As a result, the covariate is often predicted at the locations where the response is observed. The method used to align disparate datasets must be accounted for when subsequently modeling the aligned data. Here we consider the case where kriging is used to align datasets in point-to-point and point-to-areal misalignment problems when the response variable is non-normally distributed. If the relationship is modeled using generalized linear models, the additional uncertainty induced from using the kriging mean as a covariate introduces a Berkson error structure. In this article, we develop a pseudo-penalized quasi-likelihood algorithm to account for the additional uncertainty when estimating regression parameters and associated measures of uncertainty. The method is applied to a point-to-point example assessing the relationship between low-birth weights and PM2.5 levels after the onset of the largest wildfire in Florida history, the Bugaboo scrub fire. A point-to-areal misalignment problem is presented where the relationship between asthma events in Florida's counties and PM2.5 levels after the onset of the fire is assessed. Finally, the method is evaluated using a simulation study. Our results indicate the method performs well in terms of coverage for 95% confidence intervals and naive methods that ignore the additional uncertainty tend to underestimate the variability associated with parameter estimates. The underestimation is most profound in Poisson regression models. © 2014, The International Biometric Society.

  18. Interactions Between Ice Thickness, Bottom Ice Algae, and Transmitted Spectral Irradiance in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.

    2015-12-01

    The amount of light that penetrates the Arctic sea ice cover impacts sea-ice mass balance as well as ecological processes in the upper ocean. The seasonally evolving macro and micro spatial variability of transmitted spectral irradiance observed in the Chukchi Sea from May 18 to June 17, 2014 can be primarily attributed to variations in snow depth, ice thickness, and bottom ice algae concentrations. This study characterizes the interactions among these dominant variables using observed optical properties at each sampling site. We employ a normalized difference index to compute estimates of Chlorophyll a concentrations and analyze the increased attenuation of incident irradiance due to absorption by biomass. On a kilometer spatial scale, the presence of bottom ice algae reduced the maximum transmitted irradiance by about 1.5 orders of magnitude when comparing floes of similar snow and ice thicknesses. On a meter spatial scale, the combined effects of disparities in the depth and distribution of the overlying snow cover along with algae concentrations caused maximum transmittances to vary between 0.0577 and 0.282 at a single site. Temporal variability was also observed as the average integrated transmitted photosynthetically active radiation increased by one order of magnitude to 3.4% for the last eight measurement days compared to the first nine. Results provide insight on how interrelated physical and ecological parameters of sea ice in varying time and space may impact new trends in Arctic sea ice extent and the progression of melt.

  19. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    PubMed

    Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  20. Controls of Soil Spatial Variability in a Dry Tropical Forest

    PubMed Central

    Pulla, Sandeep; Riotte, Jean; Suresh, H. S.; Dattaraja, H. S.; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2) soil spatial variability in a seasonally dry tropical forest (SDTF) in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10cm), rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  1. Linking vegetation structure, function and physiology through spectroscopic remote sensing

    NASA Astrophysics Data System (ADS)

    Serbin, S.; Singh, A.; Couture, J. J.; Shiklomanov, A. N.; Rogers, A.; Desai, A. R.; Kruger, E. L.; Townsend, P. A.

    2015-12-01

    Terrestrial ecosystem process models require detailed information on ecosystem states and canopy properties to properly simulate the fluxes of carbon (C), water and energy from the land to the atmosphere and assess the vulnerability of ecosystems to perturbations. Current models fail to adequately capture the magnitude, spatial variation, and seasonality of terrestrial C uptake and storage, leading to significant uncertainties in the size and fate of the terrestrial C sink. By and large, these parameter and process uncertainties arise from inadequate spatial and temporal representation of plant traits, vegetation structure, and functioning. With increases in computational power and changes to model architecture and approaches, it is now possible for models to leverage detailed, data rich and spatially explicit descriptions of ecosystems to inform parameter distributions and trait tradeoffs. In this regard, spectroscopy and imaging spectroscopy data have been shown to be invaluable observational datasets to capture broad-scale spatial and, eventually, temporal dynamics in important vegetation properties. We illustrate the linkage of plant traits and spectral observations to supply key data constraints for model parameterization. These constraints can come either in the form of the raw spectroscopic data (reflectance, absorbtance) or physiological traits derived from spectroscopy. In this presentation we highlight our ongoing work to build ecological scaling relationships between critical vegetation characteristics and optical properties across diverse and complex canopies, including temperate broadleaf and conifer forests, Mediterranean vegetation, Arctic systems, and agriculture. We focus on work at the leaf, stand, and landscape scales, illustrating the importance of capturing the underlying variability in a range of parameters (including vertical variation within canopies) to enable more efficient scaling of traits related to functional diversity of ecosystems.

  2. China's Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model.

    PubMed

    Cao, Qilong; Liang, Ying; Niu, Xueting

    2017-09-18

    Background : Air pollution has become an important factor restricting China's economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods : Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM 2.5 . Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results : It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM 2.5 pollutions in the control of other variables. Conclusions : Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.

  3. Spatial Correlation Of Streamflows: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Betterle, A.; Schirmer, M.; Botter, G.

    2016-12-01

    The interwoven space and time variability of climate and landscape properties results in complex and non-linear hydrological response of streamflow dynamics. Understanding how meteorologic and morphological characteristics of catchments affect similarity/dissimilarity of streamflow timeseries at their outlets represents a scientific challenge with application in water resources management, ecological studies and regionalization approaches aimed to predict streamflows in ungauged areas. In this study, we establish an analytical approach to estimate the spatial correlation of daily streamflows in two arbitrary locations within a given hydrologic district or river basin at seasonal and annual time scales. The method is based on a stochastic description of the coupled streamflow dynamics at the outlet of two catchments. The framework aims to express the correlation of daily streamflows at two locations along a river network as a function of a limited number of physical parameters characterizing the main underlying hydrological drivers, that include climate conditions, precipitation regime and catchment drainage rates. The proposed method portrays how heterogeneity of climate and landscape features affect the spatial variability of flow regimes along river systems. In particular, we show that frequency and intensity of synchronous effective rainfall events in the relevant contributing catchments are the main driver of the spatial correlation of daily discharge, whereas only pronounced differences in the drainage rate of the two basins bear a significant effect on the streamflow correlation. The topological arrangement of the two outlets also influences the underlying streamflow correlation, as we show that nested catchments tend to maximize the spatial correlation of flow regimes. The application of the method to a set of catchments in the South-Eastern US suggests the potential of the proposed tool for the characterization of spatial connections of flow regimes in the absence of discharge measurements.

  4. The worth of data to reduce predictive uncertainty of an integrated catchment model by multi-constraint calibration

    NASA Astrophysics Data System (ADS)

    Koch, J.; Jensen, K. H.; Stisen, S.

    2017-12-01

    Hydrological models that integrate numerical process descriptions across compartments of the water cycle are typically required to undergo thorough model calibration in order to estimate suitable effective model parameters. In this study, we apply a spatially distributed hydrological model code which couples the saturated zone with the unsaturated zone and the energy portioning at the land surface. We conduct a comprehensive multi-constraint model calibration against nine independent observational datasets which reflect both the temporal and the spatial behavior of hydrological response of a 1000km2 large catchment in Denmark. The datasets are obtained from satellite remote sensing and in-situ measurements and cover five keystone hydrological variables: discharge, evapotranspiration, groundwater head, soil moisture and land surface temperature. Results indicate that a balanced optimization can be achieved where errors on objective functions for all nine observational datasets can be reduced simultaneously. The applied calibration framework was tailored with focus on improving the spatial pattern performance; however results suggest that the optimization is still more prone to improve the temporal dimension of model performance. This study features a post-calibration linear uncertainty analysis. This allows quantifying parameter identifiability which is the worth of a specific observational dataset to infer values to model parameters through calibration. Furthermore the ability of an observation to reduce predictive uncertainty is assessed as well. Such findings determine concrete implications on the design of model calibration frameworks and, in more general terms, the acquisition of data in hydrological observatories.

  5. Assessing groundwater quality for irrigation using indicator kriging method

    NASA Astrophysics Data System (ADS)

    Delbari, Masoomeh; Amiri, Meysam; Motlagh, Masoud Bahraini

    2016-11-01

    One of the key parameters influencing sprinkler irrigation performance is water quality. In this study, the spatial variability of groundwater quality parameters (EC, SAR, Na+, Cl-, HCO3 - and pH) was investigated by geostatistical methods and the most suitable areas for implementation of sprinkler irrigation systems in terms of water quality are determined. The study was performed in Fasa county of Fars province using 91 water samples. Results indicated that all parameters are moderately to strongly spatially correlated over the study area. The spatial distribution of pH and HCO3 - was mapped using ordinary kriging. The probability of concentrations of EC, SAR, Na+ and Cl- exceeding a threshold limit in groundwater was obtained using indicator kriging (IK). The experimental indicator semivariograms were often fitted well by a spherical model for SAR, EC, Na+ and Cl-. For HCO3 - and pH, an exponential model was fitted to the experimental semivariograms. Probability maps showed that the risk of EC, SAR, Na+ and Cl- exceeding the given critical threshold is higher in lower half of the study area. The most proper agricultural lands for sprinkler irrigation implementation were identified by evaluating all probability maps. The suitable areas for sprinkler irrigation design were determined to be 25,240 hectares, which is about 34 percent of total agricultural lands and are located in northern and eastern parts. Overall the results of this study showed that IK is an appropriate approach for risk assessment of groundwater pollution, which is useful for a proper groundwater resources management.

  6. Climate-based archetypes for the environmental fate assessment of chemicals.

    PubMed

    Ciuffo, Biagio; Sala, Serenella

    2013-11-15

    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits that influence their spatial variability. This hypothesis was tested by comparing the variability of the output of MAPPE for four different climatic zones on four different continents for four different chemicals (which represent different combinations of physical and chemical properties). Results showed the high suitability of climate-based archetypes in assessing the impacts of chemicals released in air. However, further research work is still necessary to test these findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Monthly Rainfall Erosivity Assessment for Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation cover (C-factor) maps would enable the assessment of seasonal dynamics of erosion processes in Switzerland.

  8. Somatosensory spatial attention modulates amplitudes, latencies, and latency jitter of laser-evoked brain potentials.

    PubMed

    Franz, Marcel; Nickel, Moritz M; Ritter, Alexander; Miltner, Wolfgang H R; Weiss, Thomas

    2015-04-01

    Several studies provided evidence that the amplitudes of laser-evoked potentials (LEPs) are modulated by attention. However, previous reports were based on across-trial averaging of LEP responses at the expense of losing information about intertrial variability related to attentional modulation. The aim of this study was to investigate the effects of somatosensory spatial attention on single-trial parameters (i.e., amplitudes, latencies, and latency jitter) of LEP components (N2 and P2). Twelve subjects participated in a sustained spatial attention paradigm while noxious laser stimuli (left hand) and noxious electrical stimuli (right hand) were sequentially delivered to the dorsum of the respective hand with nonnoxious air puffs randomly interspersed within the sequence of noxious stimuli. Participants were instructed to mentally count all stimuli (i.e., noxious and nonnoxious) applied to the attended location. Laser stimuli, presented to the attended hand (ALS), elicited larger single-trial amplitudes of the N2 component compared with unattended laser stimuli (ULS). In contrast, single-trial amplitudes of the P2 component were not significantly affected by spatial attention. Single-trial latencies of the N2 and P2 were significantly smaller for ALS vs. ULS. Additionally, the across-trial latency jitter of the N2 component was reduced for ALS. Conversely, the latency jitter of the P2 component was smaller for ULS compared with ALS. With the use of single-trial analysis, the study provided new insights into brain dynamics of LEPs related to spatial attention. Our results indicate that single-trial parameters of LEP components are differentially modulated by spatial attention. Copyright © 2015 the American Physiological Society.

  9. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico

    PubMed Central

    Pajares, Silvia; Noguez, Ana M.; García-Oliva, Felipe; Martínez-Piedragil, Celeste; Cram, Silke S.; Eguiarte, Luis Enrique; Souza, Valeria

    2016-01-01

    Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2 plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+) and anions (HCO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{3}^{-}$\\end{document}3−, Cl−, SO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{2-}$\\end{document}42−) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities. PMID:27652001

  10. Modeling of natural organic matter transport processes in groundwater.

    PubMed Central

    Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M

    1995-01-01

    A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798

  11. Format and basic geometry of a perspective display of air traffic for the cockpit

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael Wallace; Ellis, Stephen R.

    1991-01-01

    The design and implementation of a perspective display of air traffic for the cockpit is discussed. Parameters of the perspective are variable and interactive so that the appearance of the projected image can be widely varied. This approach makes allowances for exploration of perspective parameters and their interactions. The display was initially used to study the cases of horizontal maneuver biases found in experiments involving a plan view air traffic display format. Experiments to determine the effect of perspective geometry on spatial judgements have evolved from the display program. Several scaling techniques and other adjustments to the perspective are used to tailor the geometry for effective presentation of 3-D traffic situations.

  12. Detecting changes resulting from human pressure in a naturally quick-changing and heterogeneous environment: Spatial and temporal scales of variability in coastal lagoons

    NASA Astrophysics Data System (ADS)

    Pérez-Ruzafa, A.; Marcos, C.; Pérez-Ruzafa, I. M.; Barcala, E.; Hegazi, M. I.; Quispe, J.

    2007-10-01

    To detect changes in ecosystems due to human impact, experimental designs must include replicates at the appropriate scale to avoid pseudoreplication. Although coastal lagoons, with their highly variable environmental factors and biological assemblages, are relatively well-studied systems, very little is known about their natural scales of variation. In this study, we investigate the spatio-temporal scales of variability in the Mar Menor coastal lagoon (SE Spain) using structured hierarchical sampling designs, mixed and permutational multi-variate analyses of variance, and ordination multi-variate analyses applied to hydrographical parameters, nutrients, chlorophyll a and ichthyoplankton in the water column, and to macrophyte and fish benthic assemblages. Lagoon processes in the Mar Menor show heterogeneous patterns at different temporal and spatial scales. The water column characteristics (including nutrient concentration) showed small-scale spatio-temporal variability, from 10 0 to 10 1 km and from fortnightly to seasonally. Biological features (chlorophyll a concentration and ichthyoplankton assemblage descriptors) showed monthly changes and spatial patterns at the scale of 10 0 (chlorophyll a) - 10 1 km (ichthyoplankton). Benthic assemblages (macrophytes and fishes) showed significant differences between types of substrates in the same locality and between localities, according to horizontal gradients related with confinement in the lagoon, at the scale of 10 0-10 1 km. The vertical zonation of macrophyte assemblages (at scales of 10 1-10 2 cm) overlaps changes in substrata and horizontal gradients. Seasonal patterns in vegetation biomass were not significant, but the significant interaction between Locality and Season indicated that the seasons of maximum and minimum biomass depend on local environmental conditions. Benthic fish assemblages showed no significant patterns at the monthly scale but did show seasonal patterns.

  13. Generalized Radiative Transfer as an Efficient Computational Tool for Spatial and/or Spectral Integration over Unresolved Variability in Multi-Angle Observations

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Xu, F.; Diner, D. J.

    2017-12-01

    Two perennial problems in applied theoretical and computational radiative transfer (RT) are: (1) the impact of unresolved spatial variability on large-scale fluxes (in climate models) or radiances (in remote sensing); and (2) efficient-yet-accurate estimation of broadband spectral integrals in radiant energy budget estimation as well as in remote sensing, in particular, of trace gases.Generalized RT (GRT) is a modification of classic RT in an optical medium with uniform extinction where Beer's exponential law for direct transmission is replaced by a monotonically decreasing function with a slower power-law decay. In a convenient parameterized version of GRT, mean extinction replaces the uniform value and just one new property is introduced. As a non-dimensional metric for the unresolved variability, we use the square of the mean extinction coefficient divided by its variance. This parameter is also the exponent of the power-law tail of the modified transmission law.This specific form of sub-exponential transmission has explored for almost two decades in application to spatial variability in the presence of long-range correlations, much like in turbulent media such as clouds, with a focus on multiple scattering. It has also been proposed by Conley and Collins (JQSRT, 112, 1525-, 2011) to improve on the standard (weak-line) implementation of the correlated-k technique for efficient spectral integration.We have merged these two applications within a rigorous formulation of the combined problem, and solve the new integral RT equations in the single-scattering limit. The result is illustrated by addressing practical problems in multi-angle remote sensing of aerosols using the O2 A-band, an emerging methodology for passive profiling of coarse aerosols and clouds.

  14. Predicting active-layer soil thickness using topographic variables at a small watershed scale

    PubMed Central

    Li, Aidi; Tan, Xing; Wu, Wei; Liu, Hongbin; Zhu, Jie

    2017-01-01

    Knowledge about the spatial distribution of active-layer (AL) soil thickness is indispensable for ecological modeling, precision agriculture, and land resource management. However, it is difficult to obtain the details on AL soil thickness by using conventional soil survey method. In this research, the objective is to investigate the possibility and accuracy of mapping the spatial distribution of AL soil thickness through random forest (RF) model by using terrain variables at a small watershed scale. A total of 1113 soil samples collected from the slope fields were randomly divided into calibration (770 soil samples) and validation (343 soil samples) sets. Seven terrain variables including elevation, aspect, relative slope position, valley depth, flow path length, slope height, and topographic wetness index were derived from a digital elevation map (30 m). The RF model was compared with multiple linear regression (MLR), geographically weighted regression (GWR) and support vector machines (SVM) approaches based on the validation set. Model performance was evaluated by precision criteria of mean error (ME), mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Comparative results showed that RF outperformed MLR, GWR and SVM models. The RF gave better values of ME (0.39 cm), MAE (7.09 cm), and RMSE (10.85 cm) and higher R2 (62%). The sensitivity analysis demonstrated that the DEM had less uncertainty than the AL soil thickness. The outcome of the RF model indicated that elevation, flow path length and valley depth were the most important factors affecting the AL soil thickness variability across the watershed. These results demonstrated the RF model is a promising method for predicting spatial distribution of AL soil thickness using terrain parameters. PMID:28877196

  15. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    USGS Publications Warehouse

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  16. Understanding Cirrus Ice Crystal Number Variability for Different Heterogeneous Ice Nucleation Spectra

    NASA Technical Reports Server (NTRS)

    Sullivan, Sylvia C.; Betancourt, Ricardo Morales; Barahona, Donifan; Nenes, Athanasios

    2016-01-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  17. Joint Multifractal Analysis of penetration resistance variability in an olive orchard.

    NASA Astrophysics Data System (ADS)

    Lopez-Herrera, Juan; Herrero-Tejedor, Tomas; Saa-Requejo, Antonio; Villeta, Maria; Tarquis, Ana M.

    2016-04-01

    Spatial variability of soil properties is relevant for identifying those zones with physical degradation. We used descriptive statistics and multifractal analysis for characterizing the spatial patterns of soil penetrometer resistance (PR) distributions and compare them at different soil depths and soil water content to investigate the tillage effect in soil compactation. The study was conducted on an Inceptisol dedicated to olive orchard for the last 70 years. Two parallel transects of 64 m were selected as different soil management plots, conventional tillage (CT) and no tillage (NT). Penetrometer resistance readings were carried out at 50 cm intervals within the first 20 cm of soil depth (López de Herrera et al., 2015a). Two way ANOVA highlighted that tillage system, soil depth and their interaction are statistically significant to explain the variance of PR data. The comparison of CT and NT results at different depths showed that there are significant differences deeper than 10 cm but not in the first two soil layers. The scaling properties of each PR profile was characterized by τ(q) function, calculated in the range of moment orders (q) between -5 and +5 taken at 0.5 lag increments. Several parameters were calculated from this to establish different comparisons (López de Herrera et al., 2015b). While the multifractal analysis characterizes the distribution of a single variable along its spatial support, the joint multifractal analysis can be used to characterize the joint distribution of two or more variables along a common spatial support (Kravchenko et al., 2000; Zeleke and Si, 2004). This type of analysis was performed to study the scaling properties of the joint distribution of PR at different depths. The results showed that this type of analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets in all the soil layers. References Kravchenko AN, Bullock DG, Boast CW (2000) Joint multifractal analysis of crop yield and terrain slope. Agro. j. 92: 1279-1290. López de Herrera, J., Tomas Herrero Tejedor, Antonio Saa-Requejo and Ana M. Tarquis (2015a) Influence of tillage in soil penetration resistance variability in an olive orchard. Geophysical Research Abstracts, 17, EGU2015-15425. López de Herrera, J., Tomás Herrero Tejedor, Antonio Saa-Requejo, A.M. Tarquis. Influence of tillage in soil penetration resistance variability in an olive orchard. Soil Research, accepted, 2015b. doi: SR15046 Zeleke TB, Si BC (2004) Scaling properties of topographic indices and crop yield: Multifractal and joint multifractal approaches. Agro. j. 96: 1082-1090.

  18. Water quality modeling in the dead end sections of drinking water distribution networks.

    PubMed

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-02-01

    Dead-end sections of drinking water distribution networks are known to be problematic zones in terms of water quality degradation. Extended residence time due to water stagnation leads to rapid reduction of disinfectant residuals allowing the regrowth of microbial pathogens. Water quality models developed so far apply spatial aggregation and temporal averaging techniques for hydraulic parameters by assigning hourly averaged water demands to the main nodes of the network. Although this practice has generally resulted in minimal loss of accuracy for the predicted disinfectant concentrations in main water transmission lines, this is not the case for the peripheries of the distribution network. This study proposes a new approach for simulating disinfectant residuals in dead end pipes while accounting for both spatial and temporal variability in hydraulic and transport parameters. A stochastic demand generator was developed to represent residential water pulses based on a non-homogenous Poisson process. Dispersive solute transport was considered using highly dynamic dispersion rates. A genetic algorithm was used to calibrate the axial hydraulic profile of the dead-end pipe based on the different demand shares of the withdrawal nodes. A parametric sensitivity analysis was done to assess the model performance under variation of different simulation parameters. A group of Monte-Carlo ensembles was carried out to investigate the influence of spatial and temporal variations in flow demands on the simulation accuracy. A set of three correction factors were analytically derived to adjust residence time, dispersion rate and wall demand to overcome simulation error caused by spatial aggregation approximation. The current model results show better agreement with field-measured concentrations of conservative fluoride tracer and free chlorine disinfectant than the simulations of recent advection dispersion reaction models published in the literature. Accuracy of the simulated concentration profiles showed significant dependence on the spatial distribution of the flow demands compared to temporal variation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nitrogen controls spatial and temporal variability of substrate-induced respiration within seven years of bare fallow

    NASA Astrophysics Data System (ADS)

    Meyer, Nele; Bornemann, Ludger; Welp, Gerhard; Amelung, Wulf

    2015-04-01

    Bare fallow management goes along with lacking supply of new C sources; yet, little is known on the spatio-temporal controls of microbial adaptation processes. Here we hypothesized that microbial activity parameters decline upon bare fallow but that their spatial patterns are increasingly controlled by nutrient status as fallow management proceeds. To test these hypotheses, we investigated spatial and temporal patterns of substrate-induced respiration (SIR) and basal respiration curves in an arable field after 1, 3, and 7 years of bare fallow but with large within-field heterogeneity of physicochemical soil parameters. The analyses comprised the contents of SOC, mineral nitrogen (Nmin), particulate organic matter (POM), texture of the fine earth, and the proportion of rock fragments as well as basal respiration and several SIR fitting parameters (microbial biomass, microbial growth rates, peak respiration rates, cumulative CO2 release) each with and without additions of mineral N and P. We also repeated substrate (i.e. glucose) additions following the first SIR measurement. The results revealed that most respiration parameters like basal respiration, microbial biomass, and growth rates showed no or inconsistent responses to spatial and temporal patterns of basic soil properties like SOC, Nmin or texture. However, bare fallow changed the shape of the SIR curves; it developed two distinct microbial growth peaks at advanced stages of fallow, i.e. a delayed CO2 release. Likewise, the maximum respiration rate during the first growth phase declined during 7 years of fallow by 47% but its spatial distribution was always correlated with Nmin contents (r = 0.43 - 0.79). The nutrient additions suggested that these changes in SIR curves were caused by N deficiency; the first peak increased after N additions while the second growth phase diminished. Intriguingly, a repeated glucose addition had a similar effect on the SIR curves as the glucose+N addition. Thus, N deficiency apparently subsided during SIR. The results suggested that soil microbes acquire nitrogen from refractory SOM pools (i.e. microbial nitrogen mining). Hence, there was no significant decrease in cumulative CO2 evolution with proceeding time of fallow. As soil microorganisms maintained their functionality there was no overall loss in potential microbial activity, irrespective of the spatial patterns of other soil properties.

  20. Design of a WSN for the Sampling of Environmental Variability in Complex Terrain

    PubMed Central

    Martín-Tardío, Miguel A.; Felicísimo, Ángel M.

    2014-01-01

    In-situ environmental parameter measurements using sensor systems connected to a wireless network have become widespread, but the problem of monitoring large and mountainous areas by means of a wireless sensor network (WSN) is not well resolved. The main reasons for this are: (1) the environmental variability distribution is unknown in the field; (2) without this knowledge, a huge number of sensors would be necessary to ensure the complete coverage of the environmental variability and (3) WSN design requirements, for example, effective connectivity (intervisibility), limiting distances and controlled redundancy, are usually solved by trial and error. Using temperature as the target environmental variable, we propose: (1) a method to determine the homogeneous environmental classes to be sampled using the digital elevation model (DEM) and geometric simulations and (2) a procedure to determine an effective WSN design in complex terrain in terms of the number of sensors, redundancy, cost and spatial distribution. The proposed methodology, based on geographic information systems and binary integer programming can be easily adapted to a wide range of applications that need exhaustive and continuous environmental monitoring with high spatial resolution. The results show that the WSN design is perfectly suited to the topography and the technical specifications of the sensors, and provides a complete coverage of the environmental variability in terms of Sun exposure. However these results still need be validated in the field and the proposed procedure must be refined. PMID:25412218

  1. Modeling circulation patterns induced by spatial cross-shore wind variability in a small-size coastal embayment

    NASA Astrophysics Data System (ADS)

    Cerralbo, Pablo; Espino, Manuel; Grifoll, Manel

    2016-08-01

    This contribution shows the importance of the cross-shore spatial wind variability in the water circulation in a small-sized micro-tidal bay. The hydrodynamic wind response at Alfacs Bay (Ebro River delta, NW Mediterranean Sea) is investigated with a numerical model (ROMS) supported by in situ observations. The wind variability observed in meteorological measurements is characterized with meteorological model (WRF) outputs. From the hydrodynamic simulations of the bay, the water circulation response is affected by the cross-shore wind variability, leading to water current structures not observed in the homogeneous-wind case. If the wind heterogeneity response is considered, the water exchange in the longitudinal direction increases significantly, reducing the water exchange time by around 20%. Wind resolutions half the size of the bay (in our case around 9 km) inhibit cross-shore wind variability, which significantly affects the resultant circulation pattern. The characteristic response is also investigated using idealized test cases. These results show how the wind curl contributes to the hydrodynamic response in shallow areas and promotes the exchange between the bay and the open sea. Negative wind curl is related to the formation of an anti-cyclonic gyre at the bay's mouth. Our results highlight the importance of considering appropriate wind resolution even in small-scale domains (such as bays or harbors) to characterize the hydrodynamics, with relevant implications in the water exchange time and the consequent water quality and ecological parameters.

  2. Global modeling of land water and energy balances. Part II: Land-characteristic contributions to spatial variability

    USGS Publications Warehouse

    Milly, P.C.D.; Shmakin, A.B.

    2002-01-01

    Land water and energy balances vary around the globe because of variations in amount and temporal distribution of water and energy supplies and because of variations in land characteristics. The former control (water and energy supplies) explains much more variance in water and energy balances than the latter (land characteristics). A largely untested hypothesis underlying most global models of land water and energy balance is the assumption that parameter values based on estimated geographic distributions of soil and vegetation characteristics improve the performance of the models relative to the use of globally constant land parameters. This hypothesis is tested here through an evaluation of the improvement in performance of one land model associated with the introduction of geographic information on land characteristics. The capability of the model to reproduce annual runoff ratios of large river basins, with and without information on the global distribution of albedo, rooting depth, and stomatal resistance, is assessed. To allow a fair comparison, the model is calibrated in both cases by adjusting globally constant scale factors for snow-free albedo, non-water-stressed bulk stomatal resistance, and critical root density (which is used to determine effective root-zone depth). The test is made in stand-alone mode, that is, using prescribed radiative and atmospheric forcing. Model performance is evaluated by comparing modeled runoff ratios with observed runoff ratios for a set of basins where precipitation biases have been shown to be minimal. The withholding of information on global variations in these parameters leads to a significant degradation of the capability of the model to simulate the annual runoff ratio. An additional set of optimization experiments, in which the parameters are examined individually, reveals that the stomatal resistance is, by far, the parameter among these three whose spatial variations add the most predictive power to the model in stand-alone mode. Further single-parameter experiments with surface roughness length, available water capacity, thermal conductivity, and thermal diffusivity show very little sensitivity to estimated global variations in these parameters. Finally, it is found that even the constant-parameter model performance exceeds that of the Budyko and generalized Turc-Pike water-balance equations, suggesting that the model benefits also from information on the geographic variability of the temporal structure of forcing.

  3. Nonlinear Spatial Inversion Without Monte Carlo Sampling

    NASA Astrophysics Data System (ADS)

    Curtis, A.; Nawaz, A.

    2017-12-01

    High-dimensional, nonlinear inverse or inference problems usually have non-unique solutions. The distribution of solutions are described by probability distributions, and these are usually found using Monte Carlo (MC) sampling methods. These take pseudo-random samples of models in parameter space, calculate the probability of each sample given available data and other information, and thus map out high or low probability values of model parameters. However, such methods would converge to the solution only as the number of samples tends to infinity; in practice, MC is found to be slow to converge, convergence is not guaranteed to be achieved in finite time, and detection of convergence requires the use of subjective criteria. We propose a method for Bayesian inversion of categorical variables such as geological facies or rock types in spatial problems, which requires no sampling at all. The method uses a 2-D Hidden Markov Model over a grid of cells, where observations represent localized data constraining the model in each cell. The data in our example application are seismic properties such as P- and S-wave impedances or rock density; our model parameters are the hidden states and represent the geological rock types in each cell. The observations at each location are assumed to depend on the facies at that location only - an assumption referred to as `localized likelihoods'. However, the facies at a location cannot be determined solely by the observation at that location as it also depends on prior information concerning its correlation with the spatial distribution of facies elsewhere. Such prior information is included in the inversion in the form of a training image which represents a conceptual depiction of the distribution of local geologies that might be expected, but other forms of prior information can be used in the method as desired. The method provides direct (pseudo-analytic) estimates of posterior marginal probability distributions over each variable, so these do not need to be estimated from samples as is required in MC methods. On a 2-D test example the method is shown to outperform previous methods significantly, and at a fraction of the computational cost. In many foreseeable applications there are therefore no serious impediments to extending the method to 3-D spatial models.

  4. Navigation Patterns and Scent Marking: Underappreciated Contributors to Hippocampal and Entorhinal Spatial Representations?

    PubMed

    Lebedev, Mikhail A; Pimashkin, Alexey; Ossadtchi, Alexei

    2018-01-01

    According to the currently prevailing theory, hippocampal formation constructs and maintains cognitive spatial maps. Most of the experimental evidence for this theory comes from the studies on navigation in laboratory rats and mice, typically male animals. While these animals exhibit a rich repertoire of behaviors associated with navigation, including locomotion, head movements, whisking, sniffing, raring and scent marking, the contribution of these behavioral patterns to the hippocampal spatially-selective activity has not been sufficiently studied. Instead, many publications have considered animal position in space as the major variable that affects the firing of hippocampal place cells and entorhinal grid cells. Here we argue that future work should focus on a more detailed examination of different behaviors exhibited during navigation to better understand the mechanism of spatial tuning in hippocampal neurons. As an inquiry in this direction, we have analyzed data from two datasets, shared online, containing recordings from rats navigating in square and round arenas. Our analyses revealed patchy navigation patterns, evident from the spatial maps of animal position, velocity and acceleration. Moreover, grid cells available in the datasets exhibited similar periodicity as the navigation parameters. These findings indicate that activity of grid cells could affect navigation parameters and/or vice versa. Additionally, we speculate that scent marks left by navigating animals could contribute to neuronal responses while rats and mice sniff their environment; the act of sniffing could modulate neuronal discharges even in virtual visual environments. Accordingly, we propose that future experiments should contain additional controls for navigation patterns, whisking, sniffing and maps composed of scent marks.

  5. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    NASA Astrophysics Data System (ADS)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the German Meteorological Service during May and June. The synoptic situation of the analyzed days are fair weather conditions with temperature at about 30, sometimes with previous rain events. The spatial series of CT2 and CQ2 showed considerable variability along the flight path that was caused by surface heterogeneity. Measurement flights were performed in the morning and during noon, allowing for a temporal evaluation of the structure parameters during the day. CT2 indicates a high variability between forest, agricultural landscape and lakes at a flight level of 100 m above ground. CQ2 showed lower variations between the different types of soils. The decrease of CT2 with height as predicted by free-convection scaling was confirmed for the analyzed flights.

  6. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  7. Three ingredients for Improved global aftershock forecasts: Tectonic region, time-dependent catalog incompleteness, and inter-sequence variability

    USGS Publications Warehouse

    Page, Morgan T.; Van Der Elst, Nicholas; Hardebeck, Jeanne L.; Felzer, Karen; Michael, Andrew J.

    2016-01-01

    Following a large earthquake, seismic hazard can be orders of magnitude higher than the long‐term average as a result of aftershock triggering. Because of this heightened hazard, emergency managers and the public demand rapid, authoritative, and reliable aftershock forecasts. In the past, U.S. Geological Survey (USGS) aftershock forecasts following large global earthquakes have been released on an ad hoc basis with inconsistent methods, and in some cases aftershock parameters adapted from California. To remedy this, the USGS is currently developing an automated aftershock product based on the Reasenberg and Jones (1989) method that will generate more accurate forecasts. To better capture spatial variations in aftershock productivity and decay, we estimate regional aftershock parameters for sequences within the García et al. (2012) tectonic regions. We find that regional variations for mean aftershock productivity reach almost a factor of 10. We also develop a method to account for the time‐dependent magnitude of completeness following large events in the catalog. In addition to estimating average sequence parameters within regions, we develop an inverse method to estimate the intersequence parameter variability. This allows for a more complete quantification of the forecast uncertainties and Bayesian updating of the forecast as sequence‐specific information becomes available.

  8. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-07-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  9. Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.

    PubMed

    Werner, J; Buse, M; Foegen, A

    1989-01-01

    In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.

  10. Stochastic Generation of Spatiotemporal Rainfall Events for Flood Risk Assessment

    NASA Astrophysics Data System (ADS)

    Diederen, D.; Liu, Y.; Gouldby, B.; Diermanse, F.

    2017-12-01

    Current flood risk analyses that only consider peaks of hydrometeorological forcing variables have limitations regarding their representation of reality. Simplistic assumptions regarding antecedent conditions are required, often different sources of flooding are considered in isolation, and the complex temporal and spatial evolution of the events is not considered. Mid-latitude storms, governed by large scale climatic conditions, often exhibit a high degree of temporal dependency, for example. For sustainable flood risk management, that accounts appropriately for climate change, it is desirable for flood risk analyses to reflect reality more appropriately. Analysis of risk mitigation measures and comparison of their relative performance is therefore likely to be more robust and lead to improved solutions. We provide a new framework for the provision of boundary conditions to flood risk analyses that more appropriately reflects reality. The boundary conditions capture the temporal dependencies of complex storms whilst preserving the extreme values and associated spatial dependencies. We demonstrate the application of this framework to generate a synthetic rainfall events time series boundary condition set from reanalysis rainfall data (CFSR) on the continental scale. We define spatiotemporal clusters of rainfall as events, extract hydrological parameters for each event, generate synthetic parameter sets with a multivariate distribution with a focus on the joint tail probability [Heffernan and Tawn, 2004], and finally create synthetic events from the generated synthetic parameters. We highlight the stochastic integration of (a) spatiotemporal features, e.g. event occurrence intensity over space-time, or time to previous event, which we use for the spatial placement and sequencing of the synthetic events, and (b) value-specific parameters, e.g. peak intensity and event extent. We contrast this to more traditional approaches to highlight the significant improvements in terms of representing the reality of extreme flood events.

  11. Global dynamics for switching systems and their extensions by linear differential equations

    NASA Astrophysics Data System (ADS)

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-01

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  12. Global dynamics for switching systems and their extensions by linear differential equations.

    PubMed

    Huttinga, Zane; Cummins, Bree; Gedeon, Tomáš; Mischaikow, Konstantin

    2018-03-15

    Switching systems use piecewise constant nonlinearities to model gene regulatory networks. This choice provides advantages in the analysis of behavior and allows the global description of dynamics in terms of Morse graphs associated to nodes of a parameter graph. The parameter graph captures spatial characteristics of a decomposition of parameter space into domains with identical Morse graphs. However, there are many cellular processes that do not exhibit threshold-like behavior and thus are not well described by a switching system. We consider a class of extensions of switching systems formed by a mixture of switching interactions and chains of variables governed by linear differential equations. We show that the parameter graphs associated to the switching system and any of its extensions are identical. For each parameter graph node, there is an order-preserving map from the Morse graph of the switching system to the Morse graph of any of its extensions. We provide counterexamples that show why possible stronger relationships between the Morse graphs are not valid.

  13. A Geostatistical Scaling Approach for the Generation of Non Gaussian Random Variables and Increments

    NASA Astrophysics Data System (ADS)

    Guadagnini, Alberto; Neuman, Shlomo P.; Riva, Monica; Panzeri, Marco

    2016-04-01

    We address manifestations of non-Gaussian statistical scaling displayed by many variables, Y, and their (spatial or temporal) increments. Evidence of such behavior includes symmetry of increment distributions at all separation distances (or lags) with sharp peaks and heavy tails which tend to decay asymptotically as lag increases. Variables reported to exhibit such distributions include quantities of direct relevance to hydrogeological sciences, e.g. porosity, log permeability, electrical resistivity, soil and sediment texture, sediment transport rate, rainfall, measured and simulated turbulent fluid velocity, and other. No model known to us captures all of the documented statistical scaling behaviors in a unique and consistent manner. We recently proposed a generalized sub-Gaussian model (GSG) which reconciles within a unique theoretical framework the probability distributions of a target variable and its increments. We presented an algorithm to generate unconditional random realizations of statistically isotropic or anisotropic GSG functions and illustrated it in two dimensions. In this context, we demonstrated the feasibility of estimating all key parameters of a GSG model underlying a single realization of Y by analyzing jointly spatial moments of Y data and corresponding increments. Here, we extend our GSG model to account for noisy measurements of Y at a discrete set of points in space (or time), present an algorithm to generate conditional realizations of corresponding isotropic or anisotropic random field, and explore them on one- and two-dimensional synthetic test cases.

  14. Joint simulation of stationary grade and non-stationary rock type for quantifying geological uncertainty in a copper deposit

    NASA Astrophysics Data System (ADS)

    Maleki, Mohammad; Emery, Xavier

    2017-12-01

    In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an intrinsic random field of order k with Gaussian generalized increments. The proposals concern both the inference of the model parameters and the construction of realizations conditioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock type.

  15. Spatial and Temporal Variation in the Effects of Climatic Variables on Dugong Calf Production

    PubMed Central

    Fuentes, Mariana M. P. B.; Delean, Steven; Grayson, Jillian; Lavender, Sally; Logan, Murray; Marsh, Helene

    2016-01-01

    Knowledge of the relationships between environmental forcing and demographic parameters is important for predicting responses from climatic changes and to manage populations effectively. We explore the relationships between the proportion of sea cows (Dugong dugon) classified as calves and four climatic drivers (rainfall anomaly, Southern Oscillation El Niño Index [SOI], NINO 3.4 sea surface temperature index, and number of tropical cyclones) at a range of spatially distinct locations in Queensland, Australia, a region with relatively high dugong density. Dugong and calf data were obtained from standardized aerial surveys conducted along the study region. A range of lagged versions of each of the focal climatic drivers (1 to 4 years) were included in a global model containing the proportion of calves in each population crossed with each of the lagged versions of the climatic drivers to explore relationships. The relative influence of each predictor was estimated via Gibbs variable selection. The relationships between the proportion of dependent calves and the climatic drivers varied spatially and temporally, with climatic drivers influencing calf counts at sub-regional scales. Thus we recommend that the assessment of and management response to indirect climatic threats on dugongs should also occur at sub-regional scales. PMID:27355367

  16. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions with Climate Data Record Applications

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2011-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201 I. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record-provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica-parameters such as surface temperature.

  17. An Evaluation of Antarctica as a Calibration Target for Passive Microwave Satellite Missions

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2012-01-01

    Passive microwave remote sensing at L-band (1.4 GHz) is sensitive to soil moisture and sea surface salinity, both important climate variables. Science studies involving these variables can now take advantage of new satellite L-band observations. The first mission with regular global passive microwave observations at L-band is the European Space Agency's Soil Moisture and Ocean Salinity (SMOS), launched November, 2009. A second mission, NASA's Aquarius, was launched June, 201l. A third mission, NASA's Soil Moisture Active Passive (SMAP) is scheduled to launch in 2014. Together, these three missions may provide a decade-long data record -- provided that they are intercalibrated. The intercalibration is best performed at the radiance (brightness temperature) level, and Antarctica is proving to be a key calibration target. However, Antarctica has thus far not been fully characterized as a potential target. This paper will present evaluations of Antarctica as a microwave calibration target for the above satellite missions. Preliminary analyses have identified likely target areas, such as the vicinity of Dome-C and larger areas within East Antarctica. Physical sources of temporal and spatial variability of polar firn are key to assessing calibration uncertainty. These sources include spatial variability of accumulation rate, compaction, surface characteristics (dunes, micro-topography), wind patterns, and vertical profiles of density and temperature. Using primarily SMOS data, variability is being empirically characterized and attempts are being made to attribute observed variability to physical sources. One expected outcome of these studies is the potential discovery of techniques for remotely sensing--over all of Antarctica--parameters such as surface temperature.

  18. Ecology and geography of human monkeypox case occurrences across Africa.

    PubMed

    Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre

    2012-04-01

    As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.

  19. Exact extreme-value statistics at mixed-order transitions.

    PubMed

    Bar, Amir; Majumdar, Satya N; Schehr, Grégory; Mukamel, David

    2016-05-01

    We study extreme-value statistics for spatially extended models exhibiting mixed-order phase transitions (MOT). These are phase transitions that exhibit features common to both first-order (discontinuity of the order parameter) and second-order (diverging correlation length) transitions. We consider here the truncated inverse distance squared Ising model, which is a prototypical model exhibiting MOT, and study analytically the extreme-value statistics of the domain lengths The lengths of the domains are identically distributed random variables except for the global constraint that their sum equals the total system size L. In addition, the number of such domains is also a fluctuating variable, and not fixed. In the paramagnetic phase, we show that the distribution of the largest domain length l_{max} converges, in the large L limit, to a Gumbel distribution. However, at the critical point (for a certain range of parameters) and in the ferromagnetic phase, we show that the fluctuations of l_{max} are governed by novel distributions, which we compute exactly. Our main analytical results are verified by numerical simulations.

  20. Investigation of priorities in water quality management based on correlations and variations.

    PubMed

    Boyacıoğlu, Hülya; Gündogdu, Vildan; Boyacıoğlu, Hayal

    2013-04-15

    The development of water quality assessment strategies investigating spatial and temporal changes caused by natural and anthropogenic phenomena is an important tool in management practices. This paper used cluster analysis, water quality index method, sensitivity analysis and canonical correlation analysis to investigate priorities in pollution control activities. Data sets representing 22 surface water quality parameters were subject to analysis. Results revealed that organic pollution was serious threat for overall water quality in the region. Besides, oil and grease, lead and mercury were the critical variables violating the standard. In contrast to inorganic variables, organic and physical-inorganic chemical parameters were influenced by variations in physical conditions (discharge, temperature). This study showed that information produced based on the variations and correlations in water quality data sets can be helpful to investigate priorities in water management activities. Moreover statistical techniques and index methods are useful tools in data - information transformation process. Copyright © 2013 Elsevier Ltd. All rights reserved.

Top