Sample records for spatially variable selection

  1. Metacommunity composition of web-spiders in a fragmented neotropical forest: relative importance of environmental and spatial effects.

    PubMed

    Baldissera, Ronei; Rodrigues, Everton N L; Hartz, Sandra M

    2012-01-01

    The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta-diversity patterns, which are probably linked to historical deforestation events.

  2. Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

    PubMed Central

    Craig, Marlies H; Sharp, Brian L; Mabaso, Musawenkosi LH; Kleinschmidt, Immo

    2007-01-01

    Background Several malaria risk maps have been developed in recent years, many from the prevalence of infection data collated by the MARA (Mapping Malaria Risk in Africa) project, and using various environmental data sets as predictors. Variable selection is a major obstacle due to analytical problems caused by over-fitting, confounding and non-independence in the data. Testing and comparing every combination of explanatory variables in a Bayesian spatial framework remains unfeasible for most researchers. The aim of this study was to develop a malaria risk map using a systematic and practicable variable selection process for spatial analysis and mapping of historical malaria risk in Botswana. Results Of 50 potential explanatory variables from eight environmental data themes, 42 were significantly associated with malaria prevalence in univariate logistic regression and were ranked by the Akaike Information Criterion. Those correlated with higher-ranking relatives of the same environmental theme, were temporarily excluded. The remaining 14 candidates were ranked by selection frequency after running automated step-wise selection procedures on 1000 bootstrap samples drawn from the data. A non-spatial multiple-variable model was developed through step-wise inclusion in order of selection frequency. Previously excluded variables were then re-evaluated for inclusion, using further step-wise bootstrap procedures, resulting in the exclusion of another variable. Finally a Bayesian geo-statistical model using Markov Chain Monte Carlo simulation was fitted to the data, resulting in a final model of three predictor variables, namely summer rainfall, mean annual temperature and altitude. Each was independently and significantly associated with malaria prevalence after allowing for spatial correlation. This model was used to predict malaria prevalence at unobserved locations, producing a smooth risk map for the whole country. Conclusion We have produced a highly plausible and parsimonious model of historical malaria risk for Botswana from point-referenced data from a 1961/2 prevalence survey of malaria infection in 1–14 year old children. After starting with a list of 50 potential variables we ended with three highly plausible predictors, by applying a systematic and repeatable staged variable selection procedure that included a spatial analysis, which has application for other environmentally determined infectious diseases. All this was accomplished using general-purpose statistical software. PMID:17892584

  3. Restricted cross-scale habitat selection by American beavers.

    PubMed

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  4. Restricted cross-scale habitat selection by American beavers

    PubMed Central

    Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-01-01

    Abstract Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection. PMID:29492032

  5. Comparison of climate envelope models developed using expert-selected variables versus statistical selection

    USGS Publications Warehouse

    Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.

    2017-01-01

    Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (<40%) between the two methods Despite these differences in variable sets (expert versus statistical), models had high performance metrics (>0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable selection is a useful first step, especially when there is a need to model a large number of species or expert knowledge of the species is limited. Expert input can then be used to refine models that seem unrealistic or for species that experts believe are particularly sensitive to change. It also emphasizes the importance of using multiple models to reduce uncertainty and improve map outputs for conservation planning. Where outputs overlap or show the same direction of change there is greater certainty in the predictions. Areas of disagreement can be used for learning by asking why the models do not agree, and may highlight areas where additional on-the-ground data collection could improve the models.

  6. Identifying public water facilities with low spatial variability of disinfection by-products for epidemiological investigations

    PubMed Central

    Hinckley, A; Bachand, A; Nuckols, J; Reif, J

    2005-01-01

    Background and Aims: Epidemiological studies of disinfection by-products (DBPs) and reproductive outcomes have been hampered by misclassification of exposure. In most epidemiological studies conducted to date, all persons living within the boundaries of a water distribution system have been assigned a common exposure value based on facility-wide averages of trihalomethane (THM) concentrations. Since THMs do not develop uniformly throughout a distribution system, assignment of facility-wide averages may be inappropriate. One approach to mitigate this potential for misclassification is to select communities for epidemiological investigations that are served by distribution systems with consistently low spatial variability of THMs. Methods and Results: A feasibility study was conducted to develop methods for community selection using the Information Collection Rule (ICR) database, assembled by the US Environmental Protection Agency. The ICR database contains quarterly DBP concentrations collected between 1997 and 1998 from the distribution systems of 198 public water facilities with minimum service populations of 100 000 persons. Facilities with low spatial variation of THMs were identified using two methods; 33 facilities were found with low spatial variability based on one or both methods. Because brominated THMs may be important predictors of risk for adverse reproductive outcomes, sites were categorised into three exposure profiles according to proportion of brominated THM species and average TTHM concentration. The correlation between THMs and haloacetic acids (HAAs) in these facilities was evaluated to see whether selection by total trihalomethanes (TTHMs) corresponds to low spatial variability for HAAs. TTHMs were only moderately correlated with HAAs (r = 0.623). Conclusions: Results provide a simple method for a priori selection of sites with low spatial variability from state or national public water facility datasets as a means to reduce exposure misclassification in epidemiological studies of DBPs. PMID:15961627

  7. Preliminary results of spatial modeling of selected forest health variables in Georgia

    Treesearch

    Brock Stewart; Chris J. Cieszewski

    2009-01-01

    Variables relating to forest health monitoring, such as mortality, are difficult to predict and model. We present here the results of fitting various spatial regression models to these variables. We interpolate plot-level values compiled from the Forest Inventory and Analysis National Information Management System (FIA-NIMS) data that are related to forest health....

  8. Do bioclimate variables improve performance of climate envelope models?

    USGS Publications Warehouse

    Watling, James I.; Romañach, Stephanie S.; Bucklin, David N.; Speroterra, Carolina; Brandt, Laura A.; Pearlstine, Leonard G.; Mazzotti, Frank J.

    2012-01-01

    Climate envelope models are widely used to forecast potential effects of climate change on species distributions. A key issue in climate envelope modeling is the selection of predictor variables that most directly influence species. To determine whether model performance and spatial predictions were related to the selection of predictor variables, we compared models using bioclimate variables with models constructed from monthly climate data for twelve terrestrial vertebrate species in the southeastern USA using two different algorithms (random forests or generalized linear models), and two model selection techniques (using uncorrelated predictors or a subset of user-defined biologically relevant predictor variables). There were no differences in performance between models created with bioclimate or monthly variables, but one metric of model performance was significantly greater using the random forest algorithm compared with generalized linear models. Spatial predictions between maps using bioclimate and monthly variables were very consistent using the random forest algorithm with uncorrelated predictors, whereas we observed greater variability in predictions using generalized linear models.

  9. Spatial analysis and land use regression of VOCs and NO(2) from school-based urban air monitoring in Detroit/Dearborn, USA.

    PubMed

    Mukerjee, Shaibal; Smith, Luther A; Johnson, Mary M; Neas, Lucas M; Stallings, Casson A

    2009-08-01

    Passive ambient air sampling for nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants to evaluate impact of traffic and urban emissions on pollutant levels. Schools were chosen to be statistically representative of urban land use variables such as distance to major roadways, traffic intensity around the schools, distance to nearest point sources, population density, and distance to nearest border crossing. Two approaches were used to investigate spatial variability. First, Kruskal-Wallis analyses and pairwise comparisons on data from the schools examined coarse spatial differences based on city section and distance from heavily trafficked roads. Secondly, spatial variation on a finer scale and as a response to multiple factors was evaluated through land use regression (LUR) models via multiple linear regression. For weeklong exposures, VOCs did not exhibit spatial variability by city section or distance from major roads; NO(2) was significantly elevated in a section dominated by traffic and industrial influence versus a residential section. Somewhat in contrast to coarse spatial analyses, LUR results revealed spatial gradients in NO(2) and selected VOCs across the area. The process used to select spatially representative sites for air sampling and the results of coarse and fine spatial variability of air pollutants provide insights that may guide future air quality studies in assessing intra-urban gradients.

  10. Quantifying interindividual variability and asymmetry of face-selective regions: a probabilistic functional atlas.

    PubMed

    Zhen, Zonglei; Yang, Zetian; Huang, Lijie; Kong, Xiang-Zhen; Wang, Xu; Dang, Xiaobin; Huang, Yangyue; Song, Yiying; Liu, Jia

    2015-06-01

    Face-selective regions (FSRs) are among the most widely studied functional regions in the human brain. However, individual variability of the FSRs has not been well quantified. Here we use functional magnetic resonance imaging (fMRI) to localize the FSRs and quantify their spatial and functional variabilities in 202 healthy adults. The occipital face area (OFA), posterior and anterior fusiform face areas (pFFA and aFFA), posterior continuation of the superior temporal sulcus (pcSTS), and posterior and anterior STS (pSTS and aSTS) were delineated for each individual with a semi-automated procedure. A probabilistic atlas was constructed to characterize their interindividual variability, revealing that the FSRs were highly variable in location and extent across subjects. The variability of FSRs was further quantified on both functional (i.e., face selectivity) and spatial (i.e., volume, location of peak activation, and anatomical location) features. Considerable interindividual variability and rightward asymmetry were found in all FSRs on these features. Taken together, our work presents the first effort to characterize comprehensively the variability of FSRs in a large sample of healthy subjects, and invites future work on the origin of the variability and its relation to individual differences in behavioral performance. Moreover, the probabilistic functional atlas will provide an adequate spatial reference for mapping the face network. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Spatial differentiation and impact factors of Yutian Oasis's soil surface salt based on GWR model].

    PubMed

    Yuan, Yu Yun; Wahap, Halik; Guan, Jing Yun; Lu, Long Hui; Zhang, Qin Qin

    2016-10-01

    In this paper, topsoil salinity data gathered from 24 sampling sites in the Yutian Oasis were used, nine different kinds of environmental variables closely related to soil salinity were selec-ted as influencing factors, then, the spatial distribution characteristics of topsoil salinity and spatial heterogeneity of influencing factors were analyzed by combining the spatial autocorrelation with traditional regression analysis and geographically weighted regression model. Results showed that the topsoil salinity in Yutian Oasis was not of random distribution but had strong spatial dependence, and the spatial autocorrelation index for topsoil salinity was 0.479. Groundwater salinity, groundwater depth, elevation and temperature were the main factors influencing topsoil salt accumulation in arid land oases and they were spatially heterogeneous. The nine selected environmental variables except soil pH had significant influences on topsoil salinity with spatial disparity. GWR model was superior to the OLS model on interpretation and estimation of spatial non-stationary data, also had a remarkable advantage in visualization of modeling parameters.

  12. Similar Processes but Different Environmental Filters for Soil Bacterial and Fungal Community Composition Turnover on a Broad Spatial Scale

    PubMed Central

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P. A.; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes

  13. Similar processes but different environmental filters for soil bacterial and fungal community composition turnover on a broad spatial scale.

    PubMed

    Chemidlin Prévost-Bouré, Nicolas; Dequiedt, Samuel; Thioulouse, Jean; Lelièvre, Mélanie; Saby, Nicolas P A; Jolivet, Claudy; Arrouays, Dominique; Plassart, Pierre; Lemanceau, Philippe; Ranjard, Lionel

    2014-01-01

    Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations. Molecular fingerprinting of soil bacterial and fungal communities was performed on 413 soils from four French regions of contrasting environmental heterogeneity (Landes

  14. Missing in space: an evaluation of imputation methods for missing data in spatial analysis of risk factors for type II diabetes.

    PubMed

    Baker, Jannah; White, Nicole; Mengersen, Kerrie

    2014-11-20

    Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation method is critical in order to produce the most accurate inferences. We present a cross-validation approach to select between three imputation methods for health survey data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71 Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using multivariate normal and conditional autoregressive prior distributions. Choice of imputation method depends upon the application and is not necessarily the most complex method. Mean imputation was selected as the most accurate method in this application. Selecting an appropriate imputation method for health survey data, after accounting for spatial correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease with more confidence in the results to inform public policy decision-making.

  15. Effects of Spatial and Feature Attention on Disparity-Rendered Structure-From-Motion Stimuli in the Human Visual Cortex

    PubMed Central

    Ip, Ifan Betina; Bridge, Holly; Parker, Andrew J.

    2014-01-01

    An important advance in the study of visual attention has been the identification of a non-spatial component of attention that enhances the response to similar features or objects across the visual field. Here we test whether this non-spatial component can co-select individual features that are perceptually bound into a coherent object. We combined human psychophysics and functional magnetic resonance imaging (fMRI) to demonstrate the ability to co-select individual features from perceptually coherent objects. Our study used binocular disparity and visual motion to define disparity structure-from-motion (dSFM) stimuli. Although the spatial attention system induced strong modulations of the fMRI response in visual regions, the non-spatial system’s ability to co-select features of the dSFM stimulus was less pronounced and variable across subjects. Our results demonstrate that feature and global feature attention effects are variable across participants, suggesting that the feature attention system may be limited in its ability to automatically select features within the attended object. Careful comparison of the task design suggests that even minor differences in the perceptual task may be critical in revealing the presence of global feature attention. PMID:24936974

  16. Scale dependency of American marten (Martes americana) habitat relations [Chapter 12

    Treesearch

    Andrew J. Shirk; Tzeidle N. Wasserman; Samuel A. Cushman; Martin G. Raphael

    2012-01-01

    Animals select habitat resources at multiple spatial scales; therefore, explicit attention to scale-dependency when modeling habitat relations is critical to understanding how organisms select habitat in complex landscapes. Models that evaluate habitat variables calculated at a single spatial scale (e.g., patch, home range) fail to account for the effects of...

  17. Fine-scale habitat modeling of a top marine predator: do prey data improve predictive capacity?

    PubMed

    Torres, Leigh G; Read, Andrew J; Halpin, Patrick

    2008-10-01

    Predators and prey assort themselves relative to each other, the availability of resources and refuges, and the temporal and spatial scale of their interaction. Predictive models of predator distributions often rely on these relationships by incorporating data on environmental variability and prey availability to determine predator habitat selection patterns. This approach to predictive modeling holds true in marine systems where observations of predators are logistically difficult, emphasizing the need for accurate models. In this paper, we ask whether including prey distribution data in fine-scale predictive models of bottlenose dolphin (Tursiops truncatus) habitat selection in Florida Bay, Florida, U.S.A., improves predictive capacity. Environmental characteristics are often used as predictor variables in habitat models of top marine predators with the assumption that they act as proxies of prey distribution. We examine the validity of this assumption by comparing the response of dolphin distribution and fish catch rates to the same environmental variables. Next, the predictive capacities of four models, with and without prey distribution data, are tested to determine whether dolphin habitat selection can be predicted without recourse to describing the distribution of their prey. The final analysis determines the accuracy of predictive maps of dolphin distribution produced by modeling areas of high fish catch based on significant environmental characteristics. We use spatial analysis and independent data sets to train and test the models. Our results indicate that, due to high habitat heterogeneity and the spatial variability of prey patches, fine-scale models of dolphin habitat selection in coastal habitats will be more successful if environmental variables are used as predictor variables of predator distributions rather than relying on prey data as explanatory variables. However, predictive modeling of prey distribution as the response variable based on environmental variability did produce high predictive performance of dolphin habitat selection, particularly foraging habitat.

  18. Spatial and temporal dynamics of forest canopy gaps following selective logging in the eastern Amazon.

    Treesearch

    GREGORY P. ASNER; MICHAEL KELLER; JOSEN M. SILVA

    2004-01-01

    Selective logging is a dominant form of land use in the Amazon basin and throughout the humid tropics, yet little is known about the spatial variability of forest canopy gap formation and closure following timber harvests. We established chronosequences of large-area (14–158 ha) selective logging sites spanning a 3.5-year period of forest regeneration and two distinct...

  19. Assessing the accuracy and stability of variable selection methods for random forest modeling in ecology.

    PubMed

    Fox, Eric W; Hill, Ryan A; Leibowitz, Scott G; Olsen, Anthony R; Thornbrugh, Darren J; Weber, Marc H

    2017-07-01

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological data sets, there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used or stepwise procedures are employed which iteratively remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating data set consists of the good/poor condition of n = 1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p = 212) of landscape features from the StreamCat data set as potential predictors. We compare two types of RF models: a full variable set model with all 212 predictors and a reduced variable set model selected using a backward elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substantial improvement in cross-validated accuracy as a result of variable reduction. Moreover, the backward elimination procedure tended to select too few variables and exhibited numerous issues such as upwardly biased out-of-bag accuracy estimates and instabilities in the spatial predictions. We use simulations to further support and generalize results from the analysis of real data. A main purpose of this work is to elucidate issues of model selection bias and instability to ecologists interested in using RF to develop predictive models with large environmental data sets.

  20. Estimating the spatial scales of landscape effects on abundance

    Treesearch

    Richard Chandler; Jeffrey Hepinstall-Cymerman

    2016-01-01

    Spatial variation in abundance is influenced by local- and landscape-level environmental variables, but modeling landscape effects is challenging because the spatial scales of the relationships are unknown. Current approaches involve buffering survey locations with polygons of various sizes and using model selection to identify the best scale. The buffering...

  1. High-speed limnology: using advanced sensors to investigate spatial variability in biogeochemistry and hydrology.

    PubMed

    Crawford, John T; Loken, Luke C; Casson, Nora J; Smith, Colin; Stone, Amanda G; Winslow, Luke A

    2015-01-06

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h(-1)) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial-aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  2. High-speed limnology: Using advanced sensors to investigate spatial variability in biogeochemistry and hydrology

    USGS Publications Warehouse

    Crawford, John T.; Loken, Luke C.; Casson, Nora J.; Smith, Collin; Stone, Amanda G.; Winslow, Luke A.

    2015-01-01

    Advanced sensor technology is widely used in aquatic monitoring and research. Most applications focus on temporal variability, whereas spatial variability has been challenging to document. We assess the capability of water chemistry sensors embedded in a high-speed water intake system to document spatial variability. This new sensor platform continuously samples surface water at a range of speeds (0 to >45 km h–1) resulting in high-density, mesoscale spatial data. These novel observations reveal previously unknown variability in physical, chemical, and biological factors in streams, rivers, and lakes. By combining multiple sensors into one platform, we were able to detect terrestrial–aquatic hydrologic connections in a small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

  3. Evaluating shrub-associated spatial patterns of soil properties in a shrub-steppe ecosystem using multiple-variable geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halvorson, J.J.; Smith, J.L.; Bolton, H. Jr.

    1995-09-01

    Geostatistics are often calculated for a single variable at a time, even though many natural phenomena are functions of several variables. The objective of this work was to demonstrate a nonparametric approach for assessing the spatial characteristics of multiple-variable phenomena. Specifically, we analyzed the spatial characteristics of resource islands in the soil under big sagebrush (Artemisia tridentala Nutt.), a dominant shrub in the intermountain western USA. For our example, we defined resource islands as a function of six soil variables representing concentrations of soil resources, populations of microorganisms, and soil microbial physiological variables. By collectively evaluating the indicator transformations ofmore » these individual variables, we created a new data set, termed a multiple-variable indicator transform or MVIT. Alternate MVITs were obtained by varying the selection criteria. Each MVIT was analyzed with variography to characterize spatial continuity, and with indicator kriging to predict the combined probability of their occurrence at unsampled locations in the landscape. Simple graphical analysis and variography demonstrated spatial dependence for all individual soil variables. Maps derived from ordinary kriging of MVITs suggested that the combined probabilities for encountering zones of above-median resources were greatest near big sagebrush. 51 refs., 5 figs., 1 tab.« less

  4. Estimating and mapping ecological processes influencing microbial community assembly

    PubMed Central

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; Konopka, Allan E.

    2015-01-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recently developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth. PMID:25983725

  5. Landscape effects on mallard habitat selection at multiple spatial scales during the non-breeding period

    USGS Publications Warehouse

    Beatty, William S.; Webb, Elisabeth B.; Kesler, Dylan C.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    Previous studies that evaluated effects of landscape-scale habitat heterogeneity on migratory waterbird distributions were spatially limited and temporally restricted to one major life-history phase. However, effects of landscape-scale habitat heterogeneity on long-distance migratory waterbirds can be studied across the annual cycle using new technologies, including global positioning system satellite transmitters. We used Bayesian discrete choice models to examine the influence of local habitats and landscape composition on habitat selection by a generalist dabbling duck, the mallard (Anas platyrhynchos), in the midcontinent of North America during the non-breeding period. Using a previously published empirical movement metric, we separated the non-breeding period into three seasons, including autumn migration, winter, and spring migration. We defined spatial scales based on movement patterns such that movements >0.25 and <30.00 km were classified as local scale and movements >30.00 km were classified as relocation scale. Habitat selection at the local scale was generally influenced by local and landscape-level variables across all seasons. Variables in top models at the local scale included proximities to cropland, emergent wetland, open water, and woody wetland. Similarly, variables associated with area of cropland, emergent wetland, open water, and woody wetland were also included at the local scale. At the relocation scale, mallards selected resource units based on more generalized variables, including proximity to wetlands and total wetland area. Our results emphasize the role of landscape composition in waterbird habitat selection and provide further support for local wetland landscapes to be considered functional units of waterbird conservation and management.

  6. Quantifying Spatial Variability of Selected Soil Trace Elements and Their Scaling Relationships Using Multifractal Techniques

    PubMed Central

    Zhang, Fasheng; Yin, Guanghua; Wang, Zhenying; McLaughlin, Neil; Geng, Xiaoyuan; Liu, Zuoxin

    2013-01-01

    Multifractal techniques were utilized to quantify the spatial variability of selected soil trace elements and their scaling relationships in a 10.24-ha agricultural field in northeast China. 1024 soil samples were collected from the field and available Fe, Mn, Cu and Zn were measured in each sample. Descriptive results showed that Mn deficiencies were widespread throughout the field while Fe and Zn deficiencies tended to occur in patches. By estimating single multifractal spectra, we found that available Fe, Cu and Zn in the study soils exhibited high spatial variability and the existence of anomalies ([α(q)max−α(q)min]≥0.54), whereas available Mn had a relatively uniform distribution ([α(q)max−α(q)min]≈0.10). The joint multifractal spectra revealed that the strong positive relationships (r≥0.86, P<0.001) among available Fe, Cu and Zn were all valid across a wider range of scales and over the full range of data values, whereas available Mn was weakly related to available Fe and Zn (r≥0.18, P<0.01) but not related to available Cu (r = −0.03, P = 0.40). These results show that the variability and singularities of selected soil trace elements as well as their scaling relationships can be characterized by single and joint multifractal parameters. The findings presented in this study could be extended to predict selected soil trace elements at larger regional scales with the aid of geographic information systems. PMID:23874944

  7. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness

    PubMed Central

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia’s marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to ‘small p and large n’ problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models. PMID:26890307

  8. Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness.

    PubMed

    Li, Jin; Tran, Maggie; Siwabessy, Justy

    2016-01-01

    Spatially continuous predictions of seabed hardness are important baseline environmental information for sustainable management of Australia's marine jurisdiction. Seabed hardness is often inferred from multibeam backscatter data with unknown accuracy and can be inferred from underwater video footage at limited locations. In this study, we classified the seabed into four classes based on two new seabed hardness classification schemes (i.e., hard90 and hard70). We developed optimal predictive models to predict seabed hardness using random forest (RF) based on the point data of hardness classes and spatially continuous multibeam data. Five feature selection (FS) methods that are variable importance (VI), averaged variable importance (AVI), knowledge informed AVI (KIAVI), Boruta and regularized RF (RRF) were tested based on predictive accuracy. Effects of highly correlated, important and unimportant predictors on the accuracy of RF predictive models were examined. Finally, spatial predictions generated using the most accurate models were visually examined and analysed. This study confirmed that: 1) hard90 and hard70 are effective seabed hardness classification schemes; 2) seabed hardness of four classes can be predicted with a high degree of accuracy; 3) the typical approach used to pre-select predictive variables by excluding highly correlated variables needs to be re-examined; 4) the identification of the important and unimportant predictors provides useful guidelines for further improving predictive models; 5) FS methods select the most accurate predictive model(s) instead of the most parsimonious ones, and AVI and Boruta are recommended for future studies; and 6) RF is an effective modelling method with high predictive accuracy for multi-level categorical data and can be applied to 'small p and large n' problems in environmental sciences. Additionally, automated computational programs for AVI need to be developed to increase its computational efficiency and caution should be taken when applying filter FS methods in selecting predictive models.

  9. Spatial variability in acoustic backscatter as an indicator of tissue homogenate production in pulsed cavitational ultrasound therapy.

    PubMed

    Parsons, Jessica E; Cain, Charles A; Fowlkes, J Brian

    2007-03-01

    Spatial variability in acoustic backscatter is investigated as a potential feedback metric for assessment of lesion morphology during cavitation-mediated mechanical tissue disruption ("histotripsy"). A 750-kHz annular array was aligned confocally with a 4.5 MHz passive backscatter receiver during ex vivo insonation of porcine myocardium. Various exposure conditions were used to elicit a range of damage morphologies and backscatter characteristics [pulse duration = 14 micros, pulse repetition frequency (PRF) = 0.07-3.1 kHz, average I(SPPA) = 22-44 kW/cm2]. Variability in backscatter spatial localization was quantified by tracking the lag required to achieve peak correlation between sequential RF A-lines received. Mean spatial variability was observed to be significantly higher when damage morphology consisted of mechanically disrupted tissue homogenate versus mechanically intact coagulation necrosis (2.35 +/- 1.59 mm versus 0.067 +/- 0.054 mm, p < 0.025). Statistics from these variability distributions were used as the basis for selecting a threshold variability level to identify the onset of homogenate formation via an abrupt, sustained increase in spatially dynamic backscatter activity. Specific indices indicative of the state of the homogenization process were quantified as a function of acoustic input conditions. The prevalence of backscatter spatial variability was observed to scale with the amount of homogenate produced for various PRFs and acoustic intensities.

  10. Assessing Greater Sage-Grouse Selection of Brood-Rearing Habitat Using Remotely-Sensed Imagery: Can Readily Available High-Resolution Imagery Be Used to Identify Brood-Rearing Habitat Across a Broad Landscape?

    PubMed

    Westover, Matthew; Baxter, Jared; Baxter, Rick; Day, Casey; Jensen, Ryan; Petersen, Steve; Larsen, Randy

    2016-01-01

    Greater sage-grouse populations have decreased steadily since European settlement in western North America. Reduced availability of brood-rearing habitat has been identified as a limiting factor for many populations. We used radio-telemetry to acquire locations of sage-grouse broods from 1998 to 2012 in Strawberry Valley, Utah. Using these locations and remotely-sensed NAIP (National Agricultural Imagery Program) imagery, we 1) determined which characteristics of brood-rearing habitat could be used in widely available, high resolution imagery 2) assessed the spatial extent at which sage-grouse selected brood-rearing habitat, and 3) created a predictive habitat model to identify areas of preferred brood-rearing habitat. We used AIC model selection to evaluate support for a list of variables derived from remotely-sensed imagery. We examined the relationship of these explanatory variables at three spatial extents (45, 200, and 795 meter radii). Our top model included 10 variables (percent shrub, percent grass, percent tree, percent paved road, percent riparian, meters of sage/tree edge, meters of riparian/tree edge, distance to tree, distance to transmission lines, and distance to permanent structures). Variables from each spatial extent were represented in our top model with the majority being associated with the larger (795 meter) spatial extent. When applied to our study area, our top model predicted 75% of naïve brood locations suggesting reasonable success using this method and widely available NAIP imagery. We encourage application of our methodology to other sage-grouse populations and species of conservation concern.

  11. Estimating and mapping ecological processes influencing microbial community assembly

    DOE PAGES

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.; ...

    2015-05-01

    Ecological community assembly is governed by a combination of (i) selection resulting from among-taxa differences in performance; (ii) dispersal resulting from organismal movement; and (iii) ecological drift resulting from stochastic changes in population sizes. The relative importance and nature of these processes can vary across environments. Selection can be homogeneous or variable, and while dispersal is a rate, we conceptualize extreme dispersal rates as two categories; dispersal limitation results from limited exchange of organisms among communities, and homogenizing dispersal results from high levels of organism exchange. To estimate the influence and spatial variation of each process we extend a recentlymore » developed statistical framework, use a simulation model to evaluate the accuracy of the extended framework, and use the framework to examine subsurface microbial communities over two geologic formations. For each subsurface community we estimate the degree to which it is influenced by homogeneous selection, variable selection, dispersal limitation, and homogenizing dispersal. Our analyses revealed that the relative influences of these ecological processes vary substantially across communities even within a geologic formation. We further identify environmental and spatial features associated with each ecological process, which allowed mapping of spatial variation in ecological-process-influences. The resulting maps provide a new lens through which ecological systems can be understood; in the subsurface system investigated here they revealed that the influence of variable selection was associated with the rate at which redox conditions change with subsurface depth.« less

  12. Measuring high-density built environment for public health research: Uncertainty with respect to data, indicator design and spatial scale.

    PubMed

    Sun, Guibo; Webster, Chris; Ni, Michael Y; Zhang, Xiaohu

    2018-05-07

    Uncertainty with respect to built environment (BE) data collection, measure conceptualization and spatial scales is evident in urban health research, but most findings are from relatively lowdensity contexts. We selected Hong Kong, an iconic high-density city, as the study area as limited research has been conducted on uncertainty in such areas. We used geocoded home addresses (n=5732) from a large population-based cohort in Hong Kong to extract BE measures for the participants' place of residence based on an internationally recognized BE framework. Variability of the measures was mapped and Spearman's rank correlation calculated to assess how well the relationships among indicators are preserved across variables and spatial scales. We found extreme variations and uncertainties for the 180 measures collected using comprehensive data and advanced geographic information systems modelling techniques. We highlight the implications of methodological selection and spatial scales of the measures. The results suggest that more robust information regarding urban health research in high-density city would emerge if greater consideration were given to BE data, design methods and spatial scales of the BE measures.

  13. Reduced Lung Cancer Mortality With Lower Atmospheric Pressure.

    PubMed

    Merrill, Ray M; Frutos, Aaron

    2018-01-01

    Research has shown that higher altitude is associated with lower risk of lung cancer and improved survival among patients. The current study assessed the influence of county-level atmospheric pressure (a measure reflecting both altitude and temperature) on age-adjusted lung cancer mortality rates in the contiguous United States, with 2 forms of spatial regression. Ordinary least squares regression and geographically weighted regression models were used to evaluate the impact of climate and other selected variables on lung cancer mortality, based on 2974 counties. Atmospheric pressure was significantly positively associated with lung cancer mortality, after controlling for sunlight, precipitation, PM2.5 (µg/m 3 ), current smoker, and other selected variables. Positive county-level β coefficient estimates ( P < .05) for atmospheric pressure were observed throughout the United States, higher in the eastern half of the country. The spatial regression models showed that atmospheric pressure is positively associated with age-adjusted lung cancer mortality rates, after controlling for other selected variables.

  14. Geographical Gradients in Argentinean Terrestrial Mammal Species Richness and Their Environmental Correlates

    PubMed Central

    Márquez, Ana L.; Real, Raimundo; Kin, Marta S.; Guerrero, José Carlos; Galván, Betina; Barbosa, A. Márcia; Olivero, Jesús; Palomo, L. Javier; Vargas, J. Mario; Justo, Enrique

    2012-01-01

    We analysed the main geographical trends of terrestrial mammal species richness (SR) in Argentina, assessing how broad-scale environmental variation (defined by climatic and topographic variables) and the spatial form of the country (defined by spatial filters based on spatial eigenvector mapping (SEVM)) influence the kinds and the numbers of mammal species along these geographical trends. We also evaluated if there are pure geographical trends not accounted for by the environmental or spatial factors. The environmental variables and spatial filters that simultaneously correlated with the geographical variables and SR were considered potential causes of the geographic trends. We performed partial correlations between SR and the geographical variables, maintaining the selected explanatory variables statistically constant, to determine if SR was fully explained by them or if a significant residual geographic pattern remained. All groups and subgroups presented a latitudinal gradient not attributable to the spatial form of the country. Most of these trends were not explained by climate. We used a variation partitioning procedure to quantify the pure geographic trend (PGT) that remained unaccounted for. The PGT was larger for latitudinal than for longitudinal gradients. This suggests that historical or purely geographical causes may also be relevant drivers of these geographical gradients in mammal diversity. PMID:23028254

  15. The relative roles of environment, history and local dispersal in controlling the distributions of common tree and shrub species in a tropical forest landscape, Panama

    USGS Publications Warehouse

    Svenning, J.-C.; Engelbrecht, B.M.J.; Kinner, D.A.; Kursar, T.A.; Stallard, R.F.; Wright, S.J.

    2006-01-01

    We used regression models and information-theoretic model selection to assess the relative importance of environment, local dispersal and historical contingency as controls of the distributions of 26 common plant species in tropical forest on Barro Colorado Island (BCI), Panama. We censused eighty-eight 0.09-ha plots scattered across the landscape. Environmental control, local dispersal and historical contingency were represented by environmental variables (soil moisture, slope, soil type, distance to shore, old-forest presence), a spatial autoregressive parameter (??), and four spatial trend variables, respectively. We built regression models, representing all combinations of the three hypotheses, for each species. The probability that the best model included the environmental variables, spatial trend variables and ?? averaged 33%, 64% and 50% across the study species, respectively. The environmental variables, spatial trend variables, ??, and a simple intercept model received the strongest support for 4, 15, 5 and 2 species, respectively. Comparing the model results to information on species traits showed that species with strong spatial trends produced few and heavy diaspores, while species with strong soil moisture relationships were particularly drought-sensitive. In conclusion, history and local dispersal appeared to be the dominant controls of the distributions of common plant species on BCI. Copyright ?? 2006 Cambridge University Press.

  16. Environment-dependent variation in selection on life history across small spatial scales.

    PubMed

    Lange, Rolanda; Monro, Keyne; J Marshall, Dustin

    2016-10-01

    Variation in life-history traits is ubiquitous, even though genetic variation is thought to be depleted by selection. One potential mechanism for the maintenance of trait variation is spatially variable selection. We explored spatial variation in selection in the field for a colonial marine invertebrate that shows phenotypic differences across a depth gradient of only 3 m. Our analysis included life-history traits relating to module size, colony growth, and phenology. Directional selection on colony growth varied in strength across depths, while module size was under directional selection at one depth but not the other. Differences in selection may explain some of the observed phenotypic differentiation among depths for one trait but not another: instead, selection should actually erode the differences observed for this trait. Our results suggest selection is not acting alone to maintain trait variation within and across environments in this system. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  17. Variable optical attenuator and dynamic mode group equalizer for few mode fibers.

    PubMed

    Blau, Miri; Weiss, Israel; Gerufi, Jonathan; Sinefeld, David; Bin-Nun, Moran; Lingle, Robert; Grüner-Nielsen, Lars; Marom, Dan M

    2014-12-15

    Variable optical attenuation (VOA) for three-mode fiber is experimentally presented, utilizing an amplitude spatial light modulator (SLM), achieving up to -28dB uniform attenuation for all modes. Using the ability to spatially vary the attenuation distribution with the SLM, we also achieve up to 10dB differential attenuation between the fiber's two supported mode group (LP₀₁ and LP₁₁). The spatially selective attenuation serves as the basis of a dynamic mode-group equalizer (DME), potentially gain-balancing mode dependent optical amplification. We extend the experimental three mode DME functionality with a performance analysis of a fiber supporting 6 spatial modes in four mode groups. The spatial modes' distribution and overlap limit the available dynamic range and performance of the DME in the higher mode count case.

  18. Quantitative analysis of spatial variability of geotechnical parameters

    NASA Astrophysics Data System (ADS)

    Fang, Xing

    2018-04-01

    Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.

  19. Spatial Language and Cognition in Bilingual Minds: Taiwan as a Test Case

    ERIC Educational Resources Information Center

    Lin, Yen-Ting

    2017-01-01

    This dissertation investigates the effect of linguistic and nonlinguistic variables on the use of spatial representations in bilingual speakers of Taiwanese Southern Min (TSM) and Mandarin Chinese (MC) as compared to monolinguals. Linguists and psychologists are particularly interested in the factors that influence the selection among such…

  20. Development and Validation of Spatially Explicit Habitat Models for Cavity-nesting Birds in Fishlake National Forest, Utah

    Treesearch

    Randall A., Jr. Schultz; Thomas C., Jr. Edwards; Gretchen G. Moisen; Tracey S. Frescino

    2005-01-01

    The ability of USDA Forest Service Forest Inventory and Analysis (FIA) generated spatial products to increase the predictive accuracy of spatially explicit, macroscale habitat models was examined for nest-site selection by cavity-nesting birds in Fishlake National Forest, Utah. One FIA-derived variable (percent basal area of aspen trees) was significant in the habitat...

  1. Comparing Selections of Environmental Variables for Ecological Studies: A Focus on Terrain Attributes.

    PubMed

    Lecours, Vincent; Brown, Craig J; Devillers, Rodolphe; Lucieer, Vanessa L; Edinger, Evan N

    2016-01-01

    Selecting appropriate environmental variables is a key step in ecology. Terrain attributes (e.g. slope, rugosity) are routinely used as abiotic surrogates of species distribution and to produce habitat maps that can be used in decision-making for conservation or management. Selecting appropriate terrain attributes for ecological studies may be a challenging process that can lead users to select a subjective, potentially sub-optimal combination of attributes for their applications. The objective of this paper is to assess the impacts of subjectively selecting terrain attributes for ecological applications by comparing the performance of different combinations of terrain attributes in the production of habitat maps and species distribution models. Seven different selections of terrain attributes, alone or in combination with other environmental variables, were used to map benthic habitats of German Bank (off Nova Scotia, Canada). 29 maps of potential habitats based on unsupervised classifications of biophysical characteristics of German Bank were produced, and 29 species distribution models of sea scallops were generated using MaxEnt. The performances of the 58 maps were quantified and compared to evaluate the effectiveness of the various combinations of environmental variables. One of the combinations of terrain attributes-recommended in a related study and that includes a measure of relative position, slope, two measures of orientation, topographic mean and a measure of rugosity-yielded better results than the other selections for both methodologies, confirming that they together best describe terrain properties. Important differences in performance (up to 47% in accuracy measurement) and spatial outputs (up to 58% in spatial distribution of habitats) highlighted the importance of carefully selecting variables for ecological applications. This paper demonstrates that making a subjective choice of variables may reduce map accuracy and produce maps that do not adequately represent habitats and species distributions, thus having important implications when these maps are used for decision-making.

  2. Factorial inferential grid grouping and representativeness analysis for a systematic selection of representative grids

    NASA Astrophysics Data System (ADS)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Yao, Yao

    2017-08-01

    A factorial inferential grid grouping and representativeness analysis (FIGGRA) approach is developed to achieve a systematic selection of representative grids in large-scale climate change impact assessment and adaptation (LSCCIAA) studies and other fields of Earth and space sciences. FIGGRA is applied to representative-grid selection for temperature (Tas) and precipitation (Pr) over the Loess Plateau (LP) to verify methodological effectiveness. FIGGRA is effective at and outperforms existing grid-selection approaches (e.g., self-organizing maps) in multiple aspects such as clustering similar grids, differentiating dissimilar grids, and identifying representative grids for both Tas and Pr over LP. In comparison with Pr, the lower spatial heterogeneity and higher spatial discontinuity of Tas over LP lead to higher within-group similarity, lower between-group dissimilarity, lower grid grouping effectiveness, and higher grid representativeness; the lower interannual variability of the spatial distributions of Tas results in lower impacts of the interannual variability on the effectiveness of FIGGRA. For LP, the spatial climatic heterogeneity is the highest in January for Pr and in October for Tas; it decreases from spring, autumn, summer to winter for Tas and from summer, spring, autumn to winter for Pr. Two parameters, i.e., the statistical significance level (α) and the minimum number of grids in every climate zone (Nmin), and their joint effects are significant for the effectiveness of FIGGRA; normalization of a nonnormal climate-variable distribution is helpful for the effectiveness only for Pr. For FIGGRA-based LSCCIAA studies, a low value of Nmin is recommended for both Pr and Tas, and a high and medium value of α for Pr and Tas, respectively.

  3. Life-history strategies associated with local population variability confer regional stability.

    PubMed

    Pribil, Stanislav; Houlahan, Jeff E

    2003-07-07

    A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.

  4. Optimization techniques for integrating spatial data

    USGS Publications Warehouse

    Herzfeld, U.C.; Merriam, D.F.

    1995-01-01

    Two optimization techniques ta predict a spatial variable from any number of related spatial variables are presented. The applicability of the two different methods for petroleum-resource assessment is tested in a mature oil province of the Midcontinent (USA). The information on petroleum productivity, usually not directly accessible, is related indirectly to geological, geophysical, petrographical, and other observable data. This paper presents two approaches based on construction of a multivariate spatial model from the available data to determine a relationship for prediction. In the first approach, the variables are combined into a spatial model by an algebraic map-comparison/integration technique. Optimal weights for the map comparison function are determined by the Nelder-Mead downhill simplex algorithm in multidimensions. Geologic knowledge is necessary to provide a first guess of weights to start the automatization, because the solution is not unique. In the second approach, active set optimization for linear prediction of the target under positivity constraints is applied. Here, the procedure seems to select one variable from each data type (structure, isopachous, and petrophysical) eliminating data redundancy. Automating the determination of optimum combinations of different variables by applying optimization techniques is a valuable extension of the algebraic map-comparison/integration approach to analyzing spatial data. Because of the capability of handling multivariate data sets and partial retention of geographical information, the approaches can be useful in mineral-resource exploration. ?? 1995 International Association for Mathematical Geology.

  5. Evolution of dispersal in spatially and temporally variable environments: The importance of life cycles.

    PubMed

    Massol, François; Débarre, Florence

    2015-07-01

    Spatiotemporal variability of the environment is bound to affect the evolution of dispersal, and yet model predictions strongly differ on this particular effect. Recent studies on the evolution of local adaptation have shown that the life cycle chosen to model the selective effects of spatiotemporal variability of the environment is a critical factor determining evolutionary outcomes. Here, we investigate the effect of the order of events in the life cycle on the evolution of unconditional dispersal in a spatially heterogeneous, temporally varying landscape. Our results show that the occurrence of intermediate singular strategies and disruptive selection are conditioned by the temporal autocorrelation of the environment and by the life cycle. Life cycles with dispersal of adults versus dispersal of juveniles, local versus global density regulation, give radically different evolutionary outcomes that include selection for total philopatry, evolutionary bistability, selection for intermediate stable states, and evolutionary branching points. Our results highlight the importance of accounting for life-cycle specifics when predicting the effects of the environment on evolutionarily selected trait values, such as dispersal, as well as the need to check the robustness of model conclusions against modifications of the life cycle. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  6. Analysis of biophysical and anthropogenic variables and their relation to the regional spatial variation of aboveground biomass illustrated for North and East Kalimantan, Borneo.

    PubMed

    Van der Laan, Carina; Verweij, Pita A; Quiñones, Marcela J; Faaij, André Pc

    2014-12-01

    Land use and land cover change occurring in tropical forest landscapes contributes substantially to carbon emissions. Better insights into the spatial variation of aboveground biomass is therefore needed. By means of multiple statistical tests, including geographically weighted regression, we analysed the effects of eight variables on the regional spatial variation of aboveground biomass. North and East Kalimantan were selected as the case study region; the third largest carbon emitting Indonesian provinces. Strong positive relationships were found between aboveground biomass and the tested variables; altitude, slope, land allocation zoning, soil type, and distance to the nearest fire, road, river and city. Furthermore, the results suggest that the regional spatial variation of aboveground biomass can be largely attributed to altitude, distance to nearest fire and land allocation zoning. Our study showed that in this landscape, aboveground biomass could not be explained by one single variable; the variables were interrelated, with altitude as the dominant variable. Spatial analyses should therefore integrate a variety of biophysical and anthropogenic variables to provide a better understanding of spatial variation in aboveground biomass. Efforts to minimise carbon emissions should incorporate the identified factors, by 1) the maintenance of lands with high AGB or carbon stocks, namely in the identified zones at the higher altitudes; and 2) regeneration or sustainable utilisation of lands with low AGB or carbon stocks, dependent on the regeneration capacity of the vegetation. Low aboveground biomass densities can be found in the lowlands in burned areas, and in non-forest zones and production forests.

  7. Influence of tree spatial pattern and sample plot type and size on inventory

    Treesearch

    John-Pascall Berrill; Kevin L. O' Hara

    2012-01-01

    Sampling with different plot types and sizes was simulated using tree location maps and data collected in three even-aged coast redwood (Sequoia sempervirens) stands selected to represent uniform, random, and clumped spatial patterns of tree locations. Fixed-radius circular plots, belt transects, and variable-radius plots were installed by...

  8. Logical recoding of S-R rules can reverse the effects of spatial S-R correspondence.

    PubMed

    Wühr, Peter; Biebl, Rupert

    2009-02-01

    Two experiments investigated competing explanations for the reversal of spatial stimulus-response (S-R) correspondence effects (i.e., Simon effects) with an incompatible S-R mapping on the relevant, nonspatial dimension. Competing explanations were based on generalized S-R rules (logical-recoding account) or referred to display-control arrangement correspondence or to S-S congruity. In Experiment 1, compatible responses to finger-name stimuli presented at left/right locations produced normal Simon effects, whereas incompatible responses to finger-name stimuli produced an inverted Simon effect. This finding supports the logical-recoding account. In Experiment 2, spatial S-R correspondence and color S-R correspondence were varied independently, and main effects of these variables were observed. The lack of an interaction between these variables, however, disconfirms a prediction of the display-control arrangement correspondence account. Together, the results provide converging evidence for the logical-recoding account. This account claims that participants derive generalized response selection rules (e.g., the identity or reversal rule) from specific S-R rules and inadvertently apply the generalized rules to the irrelevant (spatial) S-R dimension when selecting their response.

  9. Habitat Selection Response of Small Pelagic Fish in Different Environments. Two Examples from the Oligotrophic Mediterranean Sea

    PubMed Central

    Bonanno, Angelo; Giannoulaki, Marianna; Barra, Marco; Basilone, Gualtiero; Machias, Athanassios; Genovese, Simona; Goncharov, Sergey; Popov, Sergey; Rumolo, Paola; Di Bitetto, Massimiliano; Aronica, Salvatore; Patti, Bernardo; Fontana, Ignazio; Giacalone, Giovanni; Ferreri, Rosalia; Buscaino, Giuseppa; Somarakis, Stylianos; Pyrounaki, Maria-Myrto; Tsoukali, Stavroula; Mazzola, Salvatore

    2014-01-01

    A number of scientific papers in the last few years singled out the influence of environmental conditions on the spatial distribution of fish species, highlighting the need for the fisheries scientific community to investigate, besides biomass estimates, also the habitat selection of commercially important fish species. The Mediterranean Sea, although generally oligotrophic, is characterized by high habitat variability and represents an ideal study area to investigate the adaptive behavior of small pelagics under different environmental conditions. In this study the habitat selection of European anchovy Engraulis encrasicolus and European sardine Sardina pilchardus is analyzed in two areas of the Mediterranean Sea that largely differentiate in terms of environmental regimes: the Strait of Sicily and the North Aegean Sea. A number of environmental parameters were used to investigate factors influencing anchovy and sardine habitat selection. Acoustic surveys data, collected during the summer period 2002–2010, were used for this purpose. The quotient analysis was used to identify the association between high density values and environmental variables; it was applied to the entire dataset in each area in order to identify similarities or differences in the “mean” spatial behavioral pattern for each species. Principal component analysis was applied to selected environmental variables in order to identify those environmental regimes which drive each of the two ecosystems. The analysis revealed the effect of food availability along with bottom depth selection on the spatial distribution of both species. Furthermore PCA results highlighted that observed selectivity for shallower waters is mainly associated to specific environmental processes that locally increase productivity. The common trends in habitat selection of the two species, as observed in the two regions although they present marked differences in hydrodynamics, seem to be driven by the oligotrophic character of the study areas, highlighting the role of areas where the local environmental regimes meet ‘the ocean triad hypothesis’. PMID:24992576

  10. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  11. The Schaake shuffle: A method for reconstructing space-time variability in forecasted precipitation and temperature fields

    USGS Publications Warehouse

    Clark, M.R.; Gangopadhyay, S.; Hay, L.; Rajagopalan, B.; Wilby, R.

    2004-01-01

    A number of statistical methods that are used to provide local-scale ensemble forecasts of precipitation and temperature do not contain realistic spatial covariability between neighboring stations or realistic temporal persistence for subsequent forecast lead times. To demonstrate this point, output from a global-scale numerical weather prediction model is used in a stepwise multiple linear regression approach to downscale precipitation and temperature to individual stations located in and around four study basins in the United States. Output from the forecast model is downscaled for lead times up to 14 days. Residuals in the regression equation are modeled stochastically to provide 100 ensemble forecasts. The precipitation and temperature ensembles from this approach have a poor representation of the spatial variability and temporal persistence. The spatial correlations for downscaled output are considerably lower than observed spatial correlations at short forecast lead times (e.g., less than 5 days) when there is high accuracy in the forecasts. At longer forecast lead times, the downscaled spatial correlations are close to zero. Similarly, the observed temporal persistence is only partly present at short forecast lead times. A method is presented for reordering the ensemble output in order to recover the space-time variability in precipitation and temperature fields. In this approach, the ensemble members for a given forecast day are ranked and matched with the rank of precipitation and temperature data from days randomly selected from similar dates in the historical record. The ensembles are then reordered to correspond to the original order of the selection of historical data. Using this approach, the observed intersite correlations, intervariable correlations, and the observed temporal persistence are almost entirely recovered. This reordering methodology also has applications for recovering the space-time variability in modeled streamflow. ?? 2004 American Meteorological Society.

  12. Variable selection and model choice in geoadditive regression models.

    PubMed

    Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard

    2009-06-01

    Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.

  13. A Bayesian method for assessing multiscalespecies-habitat relationships

    USGS Publications Warehouse

    Stuber, Erica F.; Gruber, Lutz F.; Fontaine, Joseph J.

    2017-01-01

    ContextScientists face several theoretical and methodological challenges in appropriately describing fundamental wildlife-habitat relationships in models. The spatial scales of habitat relationships are often unknown, and are expected to follow a multi-scale hierarchy. Typical frequentist or information theoretic approaches often suffer under collinearity in multi-scale studies, fail to converge when models are complex or represent an intractable computational burden when candidate model sets are large.ObjectivesOur objective was to implement an automated, Bayesian method for inference on the spatial scales of habitat variables that best predict animal abundance.MethodsWe introduce Bayesian latent indicator scale selection (BLISS), a Bayesian method to select spatial scales of predictors using latent scale indicator variables that are estimated with reversible-jump Markov chain Monte Carlo sampling. BLISS does not suffer from collinearity, and substantially reduces computation time of studies. We present a simulation study to validate our method and apply our method to a case-study of land cover predictors for ring-necked pheasant (Phasianus colchicus) abundance in Nebraska, USA.ResultsOur method returns accurate descriptions of the explanatory power of multiple spatial scales, and unbiased and precise parameter estimates under commonly encountered data limitations including spatial scale autocorrelation, effect size, and sample size. BLISS outperforms commonly used model selection methods including stepwise and AIC, and reduces runtime by 90%.ConclusionsGiven the pervasiveness of scale-dependency in ecology, and the implications of mismatches between the scales of analyses and ecological processes, identifying the spatial scales over which species are integrating habitat information is an important step in understanding species-habitat relationships. BLISS is a widely applicable method for identifying important spatial scales, propagating scale uncertainty, and testing hypotheses of scaling relationships.

  14. Temporal-spatial distribution of American bison (Bison bison) in a tallgrass prairie fire mosaic

    USGS Publications Warehouse

    Schuler, K.L.; Leslie, David M.; Shaw, J.H.; Maichak, E.J.

    2006-01-01

    Fire and bison (Bison bison) are thought to be historically responsible for shaping prairie vegetation in North America. Interactions between temporal-spatial distributions of bison and prescribed burning protocols are important in current restoration of tallgrass prairies. We examined dynamics of bison distribution in a patch-burned tallgrass prairie in the south-central United States relative to bison group size and composition, and burn age and temporal distribution. Bison formed larger mixed groups during summer and smaller sexually segregated groups the rest of the year, and bison selected dormant-season burn patches in the 1st posture growing season most often during spring and summer. Large bison herds selecting recently burned areas resulted in seasonally variable and concentrated grazing pressure that may substantially alter site-specific vegetation. These dynamics must be considered when reintroducing bison and fire into tallgrass prairie because variable outcomes of floral richness and structural complexity are likely depending on temporal-spatial distribution of bison. ?? 2006 American Society of Mammalogists.

  15. Poverty and Algebra Performance: A Comparative Spatial Analysis of a Border South State

    ERIC Educational Resources Information Center

    Tate, William F.; Hogrebe, Mark C.

    2015-01-01

    This research uses two measures of poverty, as well as mobility and selected education variables to study how their relationships vary across 543 Missouri high school districts. Using Missouri and U.S. Census American Community Survey (ACS) data, local R[superscript 2]'s from geographically weighted regressions are spatially mapped to demonstrate…

  16. Spatial ability in secondary school students: intra-sex differences based on self-selection for physical education.

    PubMed

    Tlauka, Michael; Williams, Jennifer; Williamson, Paul

    2008-08-01

    Past research has demonstrated consistent sex differences with men typically outperforming women on tests of spatial ability. However, less is known about intra-sex effects. In the present study, two groups of female students (physical education and non-physical education secondary students) and two corresponding groups of male students explored a large-scale virtual shopping centre. In a battery of tasks, spatial knowledge of the shopping centre as well as mental rotation ability were tested. Additional variables considered were circulating testosterone levels, the ratio of 2D:4D digit length, and computer experience. The results revealed both sex and intra-sex differences in spatial ability. Variables related to virtual navigation and computer ability and experience were found to be the most powerful predictors of group membership. Our results suggest that in female and male secondary students, participation in physical education and spatial skill are related.

  17. Automated retrieval of forest structure variables based on multi-scale texture analysis of VHR satellite imagery

    NASA Astrophysics Data System (ADS)

    Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine

    2014-10-01

    The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.

  18. Empirical Assessment of Spatial Prediction Methods for Location Cost Adjustment Factors

    PubMed Central

    Migliaccio, Giovanni C.; Guindani, Michele; D'Incognito, Maria; Zhang, Linlin

    2014-01-01

    In the feasibility stage, the correct prediction of construction costs ensures that budget requirements are met from the start of a project's lifecycle. A very common approach for performing quick-order-of-magnitude estimates is based on using Location Cost Adjustment Factors (LCAFs) that compute historically based costs by project location. Nowadays, numerous LCAF datasets are commercially available in North America, but, obviously, they do not include all locations. Hence, LCAFs for un-sampled locations need to be inferred through spatial interpolation or prediction methods. Currently, practitioners tend to select the value for a location using only one variable, namely the nearest linear-distance between two sites. However, construction costs could be affected by socio-economic variables as suggested by macroeconomic theories. Using a commonly used set of LCAFs, the City Cost Indexes (CCI) by RSMeans, and the socio-economic variables included in the ESRI Community Sourcebook, this article provides several contributions to the body of knowledge. First, the accuracy of various spatial prediction methods in estimating LCAF values for un-sampled locations was evaluated and assessed in respect to spatial interpolation methods. Two Regression-based prediction models were selected, a Global Regression Analysis and a Geographically-weighted regression analysis (GWR). Once these models were compared against interpolation methods, the results showed that GWR is the most appropriate way to model CCI as a function of multiple covariates. The outcome of GWR, for each covariate, was studied for all the 48 states in the contiguous US. As a direct consequence of spatial non-stationarity, it was possible to discuss the influence of each single covariate differently from state to state. In addition, the article includes a first attempt to determine if the observed variability in cost index values could be, at least partially explained by independent socio-economic variables. PMID:25018582

  19. Scale dependence in habitat selection: The case of the endangered brown bear (Ursus arctos) in the Cantabrian Range (NW Spain)

    Treesearch

    Maria C. Mateo Sanchez; Samuel A. Cushman; Santiago Saura

    2013-01-01

    Animals select habitat resources at multiple spatial scales. Thus, explicit attention to scale dependency in species-habitat relationships is critical to understand the habitat suitability patterns as perceived by organisms in complex landscapes. Identification of the scales at which particular environmental variables influence habitat selection may be as important as...

  20. Assessing the accuracy and stability of variable selection ...

    EPA Pesticide Factsheets

    Random forest (RF) modeling has emerged as an important statistical learning method in ecology due to its exceptional predictive performance. However, for large and complex ecological datasets there is limited guidance on variable selection methods for RF modeling. Typically, either a preselected set of predictor variables are used, or stepwise procedures are employed which iteratively add/remove variables according to their importance measures. This paper investigates the application of variable selection methods to RF models for predicting probable biological stream condition. Our motivating dataset consists of the good/poor condition of n=1365 stream survey sites from the 2008/2009 National Rivers and Stream Assessment, and a large set (p=212) of landscape features from the StreamCat dataset. Two types of RF models are compared: a full variable set model with all 212 predictors, and a reduced variable set model selected using a backwards elimination approach. We assess model accuracy using RF's internal out-of-bag estimate, and a cross-validation procedure with validation folds external to the variable selection process. We also assess the stability of the spatial predictions generated by the RF models to changes in the number of predictors, and argue that model selection needs to consider both accuracy and stability. The results suggest that RF modeling is robust to the inclusion of many variables of moderate to low importance. We found no substanti

  1. Social and cultural sustainability: criteria, indicators, verifier variables for measurement and maps for visualization to support planning.

    PubMed

    Axelsson, Robert; Angelstam, Per; Degerman, Erik; Teitelbaum, Sara; Andersson, Kjell; Elbakidze, Marine; Drotz, Marcus K

    2013-03-01

    Policies on economic use of natural resources require considerations to social and cultural values. In order to make those concrete in a planning context, this paper aims to interpret social and cultural criteria, identify indicators, match these with verifier variables and visualize them on maps. Indicators were selected from a review of scholarly work and natural resource policies, and then matched with verifier variables available for Sweden's 290 municipalities. Maps of the spatial distribution of four social and four cultural verifier variables were then produced. Consideration of social and cultural values in the studied natural resource use sectors was limited. The spatial distribution of the verifier variables exhibited a general divide between northwest and south Sweden, and regional rural and urban areas. We conclude that it is possible to identify indicators and match them with verifier variables to support inclusion of social and cultural values in planning.

  2. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Blenkinsop, S.; Fowler, H. J.

    2015-05-01

    A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  3. Spatial-temporal and cancer risk assessment of selected hazardous air pollutants in Seattle.

    PubMed

    Wu, Chang-fu; Liu, L-J Sally; Cullen, Alison; Westberg, Hal; Williamson, John

    2011-01-01

    In the Seattle Air Toxics Monitoring Pilot Program, we measured 15 hazardous air pollutants (HAPs) at 6 sites for more than a year between 2000 and 2002. Spatial-temporal variations were evaluated with random-effects models and principal component analyses. The potential health risks were further estimated based on the monitored data, with the incorporation of the bootstrapping technique for the uncertainty analysis. It is found that the temporal variability was generally higher than the spatial variability for most air toxics. The highest temporal variability was observed for tetrachloroethylene (70% temporal vs. 34% spatial variability). Nevertheless, most air toxics still exhibited significant spatial variations, even after accounting for the temporal effects. These results suggest that it would require operating multiple air toxics monitoring sites over a significant period of time with proper monitoring frequency to better evaluate population exposure to HAPs. The median values of the estimated inhalation cancer risks ranged between 4.3 × 10⁻⁵ and 6.0 × 10⁻⁵, with the 5th and 95th percentile levels exceeding the 1 in a million level. VOCs as a whole contributed over 80% of the risk among the HAPs measured and arsenic contributed most substantially to the overall risk associated with metals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Sample selection and spatial models of housing price indexes, and, A disequilibrium analysis of the U.S. gasoline market using panel data

    NASA Astrophysics Data System (ADS)

    Hu, Haixin

    This dissertation consists of two parts. The first part studies the sample selection and spatial models of housing price index using transaction data on detached single-family houses of two California metropolitan areas from 1990 through 2008. House prices are often spatially correlated due to shared amenities, or when the properties are viewed as close substitutes in a housing submarket. There have been many studies that address spatial correlation in the context of housing markets. However, none has used spatial models to construct housing price indexes at zip code level for the entire time period analyzed in this dissertation to the best of my knowledge. In this paper, I study a first-order autoregressive spatial model with four different weighing matrix schemes. Four sets of housing price indexes are constructed accordingly. Gatzlaff and Haurin (1997, 1998) study the sample selection problem in housing index by using Heckman's two-step method. This method, however, is generally inefficient and can cause multicollinearity problem. Also, it requires data on unsold houses in order to carry out the first-step probit regression. Maximum likelihood (ML) method can be used to estimate a truncated incidental model which allows one to correct for sample selection based on transaction data only. However, convergence problem is very prevalent in practice. In this paper I adopt Lewbel's (2007) sample selection correction method which does not require one to model or estimate the selection model, except for some very general assumptions. I then extend this method to correct for spatial correlation. In the second part, I analyze the U.S. gasoline market with a disequilibrium model that allows lagged-latent variables, endogenous prices, and panel data with fixed effects. Most existing studies (see the survey of Espey, 1998, Energy Economics) of the gasoline market assume equilibrium. In practice, however, prices do not always adjust fast enough to clear the market. Equilibrium assumptions greatly simplify statistical inference, but are very restrictive and can produce conflicting estimates. For example, econometric models of markets that assume equilibrium often produce more elastic demand price elasticity than their disequilibrium counterparts (Holt and Johnson, 1989, Review of Economics and Statistics, Oczkowski, 1998, Economics Letters). The few studies that allow disequilibrium, however, have been limited to macroeconomic time-series data without lagged-latent variables. While time series data allows one to investigate national trends, it cannot be used to identify and analyze regional differences and the role of local markets. Exclusion of the lagged-latent variables is also undesirable because such variables capture adjustment costs and inter-temporal spillovers. Simulation methods offer tractable solutions to dynamic and panel data disequilibrium models (Lee, 1997, Journal of Econometrics), but assume normally distributed errors. This paper compares estimates of price/income elasticity and excess supply/demand across time periods, regions, and model specifications, using both equilibrium and disequilibrium methods. In the equilibrium model, I compare the within group estimator with Anderson and Hsiao's first-difference 2SLS estimator. In the disequilibrium model, I extend Amemiya's 2SLS by using Newey's efficient estimator with optimal instruments.

  5. Logistic regression accuracy across different spatial and temporal scales for a wide-ranging species, the marbled murrelet

    Treesearch

    Carolyn B. Meyer; Sherri L. Miller; C. John Ralph

    2004-01-01

    The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...

  6. Fecundity selection on ornamental plumage colour differs between ages and sexes and varies over small spatial scales.

    PubMed

    Parker, T H; Wilkin, T A; Barr, I R; Sheldon, B C; Rowe, L; Griffith, S C

    2011-07-01

    Avian plumage colours are some of the most conspicuous sexual ornaments, and yet standardized selection gradients for plumage colour have rarely been quantified. We examined patterns of fecundity selection on plumage colour in blue tits (Cyanistes caeruleus L.). When not accounting for environmental heterogeneity, we detected relatively few cases of selection. We found significant disruptive selection on adult male crown colour and yearling female chest colour and marginally nonsignificant positive linear selection on adult female crown colour. We discovered no new significant selection gradients with canonical rotation of the matrix of nonlinear selection. Next, using a long-term data set, we identified territory-level environmental variables that predicted fecundity to determine whether these variables influenced patterns of plumage selection. The first of these variables, the density of oaks within 50 m of the nest, influenced selection gradients only for yearling males. The second variable, an inverse function of nesting density, interacted with a subset of plumage selection gradients for yearling males and adult females, although the strength and direction of selection did not vary predictably with population density across these analyses. Overall, fecundity selection on plumage colour in blue tits appeared rare and inconsistent among sexes and age classes. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  7. Technique for ship/wake detection

    DOEpatents

    Roskovensky, John K [Albuquerque, NM

    2012-05-01

    An automated ship detection technique includes accessing data associated with an image of a portion of Earth. The data includes reflectance values. A first portion of pixels within the image are masked with a cloud and land mask based on spectral flatness of the reflectance values associated with the pixels. A given pixel selected from the first portion of pixels is unmasked when a threshold number of localized pixels surrounding the given pixel are not masked by the cloud and land mask. A spatial variability image is generated based on spatial derivatives of the reflectance values of the pixels which remain unmasked by the cloud and land mask. The spatial variability image is thresholded to identify one or more regions within the image as possible ship detection regions.

  8. Implementations of geographically weighted lasso in spatial data with multicollinearity (Case study: Poverty modeling of Java Island)

    NASA Astrophysics Data System (ADS)

    Setiyorini, Anis; Suprijadi, Jadi; Handoko, Budhi

    2017-03-01

    Geographically Weighted Regression (GWR) is a regression model that takes into account the spatial heterogeneity effect. In the application of the GWR, inference on regression coefficients is often of interest, as is estimation and prediction of the response variable. Empirical research and studies have demonstrated that local correlation between explanatory variables can lead to estimated regression coefficients in GWR that are strongly correlated, a condition named multicollinearity. It later results on a large standard error on estimated regression coefficients, and, hence, problematic for inference on relationships between variables. Geographically Weighted Lasso (GWL) is a method which capable to deal with spatial heterogeneity and local multicollinearity in spatial data sets. GWL is a further development of GWR method, which adds a LASSO (Least Absolute Shrinkage and Selection Operator) constraint in parameter estimation. In this study, GWL will be applied by using fixed exponential kernel weights matrix to establish a poverty modeling of Java Island, Indonesia. The results of applying the GWL to poverty datasets show that this method stabilizes regression coefficients in the presence of multicollinearity and produces lower prediction and estimation error of the response variable than GWR does.

  9. On the temporal and spatial variability of near-surface soil moisture for the identification of representative in situ soil moisture monitoring stations

    USDA-ARS?s Scientific Manuscript database

    The high spatio-temporal variability of soil moisture complicates the validation of remotely sensed soil moisture products using in-situ monitoring stations. Therefore, a standard methodology for selecting the most repre- sentative stations for the purpose of validating satellites and land surface ...

  10. Modeling the impacts of phenological and inter-annual changes in landscape metrics on local biodiversity of agricultural lands of Eastern Ontario using multi-spatial and multi-temporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Alavi-Shoushtari, N.; King, D.

    2017-12-01

    Agricultural landscapes are highly variable ecosystems and are home to many local farmland species. Seasonal, phenological and inter-annual agricultural landscape dynamics have potential to affect the richness and abundance of farmland species. Remote sensing provides data and techniques which enable monitoring landscape changes in multiple temporal and spatial scales. MODIS high temporal resolution remote sensing images enable detection of seasonal and phenological trends, while Landsat higher spatial resolution images, with its long term archive enables inter-annual trend analysis over several decades. The objective of this study to use multi-spatial and multi-temporal remote sensing data to model the response of farmland species to landscape metrics. The study area is the predominantly agricultural region of eastern Ontario. 92 sample landscapes were selected within this region using a protocol designed to maximize variance in composition and configuration heterogeneity while controlling for amount of forest and spatial autocorrelation. Two sample landscape extents (1×1km and 3×3km) were selected to analyze the impacts of spatial scale on biodiversity response. Gamma diversity index data for four taxa groups (birds, butterflies, plants, and beetles) were collected during the summers of 2011 and 2012 within the cropped area of each landscape. To extract the seasonal and phenological metrics a 2000-2012 MODIS NDVI time-series was used, while a 1985-2012 Landsat time-series was used to model the inter-annual trends of change in the sample landscapes. The results of statistical modeling showed significant relationships between farmland biodiversity for several taxa and the phenological and inter-annual variables. The following general results were obtained: 1) Among the taxa groups, plant and beetles diversity was most significantly correlated with the phenological variables; 2) Those phenological variables which are associated with the variability in the start of season date across the sample landscapes and the variability in the corresponding NDVI values at that date showed the strongest correlation with the biodiversity indices; 3) The significance of the models improved when using 3×3km site extent both for MODIS and Landsat based models due most likely to the larger sample size over 3x3km.

  11. Age-related change in renal corticomedullary differentiation: evaluation with noncontrast-enhanced steady-state free precession (SSFP) MRI with spatially selective inversion pulse using variable inversion time.

    PubMed

    Noda, Yasufumi; Kanki, Akihiko; Yamamoto, Akira; Higashi, Hiroki; Tanimoto, Daigo; Sato, Tomohiro; Higaki, Atsushi; Tamada, Tsutomu; Ito, Katsuyoshi

    2014-07-01

    To evaluate age-related change in renal corticomedullary differentiation and renal cortical thickness by means of noncontrast-enhanced steady-state free precession (SSFP) magnetic resonance imaging (MRI) with spatially selective inversion recovery (IR) pulse. The Institutional Review Board of our hospital approved this retrospective study and patient informed consent was waived. This study included 48 patients without renal diseases who underwent noncontrast-enhanced SSFP MRI with spatially selective IR pulse using variable inversion times (TIs) (700-1500 msec). The signal intensity of renal cortex and medulla were measured to calculate renal corticomedullary contrast ratio. Additionally, renal cortical thickness was measured. The renal corticomedullary junction was clearly depicted in all patients. The mean cortical thickness was 3.9 ± 0.83 mm. The mean corticomedullary contrast ratio was 4.7 ± 1.4. There was a negative correlation between optimal TI for the best visualization of renal corticomedullary differentiation and age (r = -0.378; P = 0.001). However, there was no significant correlation between renal corticomedullary contrast ratio and age (r = 0.187; P = 0.20). Similarly, no significant correlation was observed between renal cortical thickness and age (r = 0.054; P = 0.712). In the normal kidney, noncontrast-enhanced SSFP MRI with spatially selective IR pulse can be used to assess renal corticomedullary differentiation and cortical thickness without the influence of aging, although optimal TI values for the best visualization of renal corticomedullary junction were shortened with aging. © 2013 Wiley Periodicals, Inc.

  12. Variability aware compact model characterization for statistical circuit design optimization

    NASA Astrophysics Data System (ADS)

    Qiao, Ying; Qian, Kun; Spanos, Costas J.

    2012-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.

  13. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data. Part II: Using Maximum Covariance Analysis to Effectively Compare Spatiotemporal Variability of Satellite and AERONET Measured Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.

  14. Exploring the spatial variability of soil properties in an Alfisol Catena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosemary, F.; Vitharana, U. W. A.; Indraratne, S. P.

    Detailed digital soil maps showing the spatial heterogeneity of soil properties consistent with the landscape are required for site-specific management of plant nutrients, land use planning and process-based environmental modeling. We characterized the short-scale spatial heterogeneity of soil properties in an Alfisol catena in a tropical landscape of Sri Lanka. The impact of different land-uses (paddy, vegetable and un-cultivated) was examined to assess the impact of anthropogenic activities on the variability of soil properties at the catenary level. Conditioned Latin hypercube sampling was used to collect 58 geo-referenced topsoil samples (0–30 cm) from the study area. Soil samples were analyzedmore » for pH, electrical conductivity (EC), organic carbon (OC), cation exchange capacity (CEC) and texture. The spatial correlation between soil properties was analyzed by computing crossvariograms and subsequent fitting of theoretical model. Spatial distribution maps were developed using ordinary kriging. The range of soil properties, pH: 4.3–7.9; EC: 0.01–0.18 dS m –1 ; OC: 0.1–1.37%; CEC: 0.44– 11.51 cmol (+) kg –1 ; clay: 1.5–25% and sand: 59.1–84.4% and their coefficient of variations indicated a large variability in the study area. Electrical conductivity and pH showed a strong spatial correlation which was reflected by the cross-variogram close to the hull of the perfect correlation. Moreover, cross-variograms calculated for EC and Clay, CEC and OC, CEC and clay and CEC and pH indicated weak positive spatial correlation between these properties. Relative nugget effect (RNE) calculated from variograms showed strongly structured spatial variability for pH, EC and sand content (RNE < 25%) while CEC, organic carbon and clay content showed moderately structured spatial variability (25% < RNE < 75%). Spatial dependencies for examined soil properties ranged from 48 to 984 m. The mixed effects model fitting followed by Tukey's post-hoc test showed significant effect of land use on the spatial variability of EC. Our study revealed a structured variability of topsoil properties in the selected tropical Alfisol catena. Except for EC, observed variability was not modified by the land uses. Investigated soil properties showed distinct spatial structures at different scales and magnitudes of strength. Our results will be useful for digital soil mapping, site specific management of soil properties, developing appropriate land use plans and quantifying anthropogenic impacts on the soil system.« less

  15. URBAN SCALE VARIABILITY OF PM 2.5 COMPONENTS

    EPA Science Inventory

    This study is being conducted in a large city in the mid-west U.S. The preliminary spatial analyses for particulate nitrate, selected trace elements, and organic and elemental carbon (OC/EC) will be presented.

  16. Spatial variability of specific surface area of arable soils in Poland

    NASA Astrophysics Data System (ADS)

    Sokolowski, S.; Sokolowska, Z.; Usowicz, B.

    2012-04-01

    Evaluation of soil spatial variability is an important issue in agrophysics and in environmental research. Knowledge of spatial variability of physico-chemical properties enables a better understanding of several processes that take place in soils. In particular, it is well known that mineralogical, organic, as well as particle-size compositions of soils vary in a wide range. Specific surface area of soils is one of the most significant characteristics of soils. It can be not only related to the type of soil, mainly to the content of clay, but also largely determines several physical and chemical properties of soils and is often used as a controlling factor in numerous biological processes. Knowledge of the specific surface area is necessary in calculating certain basic soil characteristics, such as the dielectric permeability of soil, water retention curve, water transport in the soil, cation exchange capacity and pesticide adsorption. The aim of the present study is two-fold. First, we carry out recognition of soil total specific surface area patterns in the territory of Poland and perform the investigation of features of its spatial variability. Next, semivariograms and fractal analysis are used to characterize and compare the spatial variability of soil specific surface area in two soil horizons (A and B). Specific surface area of about 1000 samples was determined by analyzing water vapor adsorption isotherms via the BET method. The collected data of the values of specific surface area of mineral soil representatives for the territory of Poland were then used to describe its spatial variability by employing geostatistical techniques and fractal theory. Using the data calculated for some selected points within the entire territory and along selected directions, the values of semivariance were determined. The slope of the regression line of the log-log plot of semi-variance versus the distance was used to estimate the fractal dimension, D. Specific surface area in A and B horizons was space-dependent, with the range of spatial dependence of about 2.5°. Variogram surfaces showed anisotropy of the specific surface area in both horizons with a trend toward the W to E directions. The smallest fractal dimensions were obtained for W to E directions and the highest values - for S to N directions. * The work was financially supported in part by the ESA Programme for European Cooperating States (PECS), No.98084 "SWEX-R, Soil Water and Energy Exchange/Research", AO3275.

  17. Remote sensing data with the conditional latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh

    2009-01-01

    This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.

  18. Sparse modeling of spatial environmental variables associated with asthma

    PubMed Central

    Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.

    2014-01-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437

  19. Sparse modeling of spatial environmental variables associated with asthma.

    PubMed

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Calibration of a distributed hydrologic model for six European catchments using remote sensing data

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.

    2017-12-01

    While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.

  1. Bayesian spatial prediction of the site index in the study of the Missouri Ozark Forest Ecosystem Project

    Treesearch

    Xiaoqian Sun; Zhuoqiong He; John Kabrick

    2008-01-01

    This paper presents a Bayesian spatial method for analysing the site index data from the Missouri Ozark Forest Ecosystem Project (MOFEP). Based on ecological background and availability, we select three variables, the aspect class, the soil depth and the land type association as covariates for analysis. To allow great flexibility of the smoothness of the random field,...

  2. Soil nutrient-landscape relationships in a lowland tropical rainforest in Panama

    USGS Publications Warehouse

    Barthold, F.K.; Stallard, R.F.; Elsenbeer, H.

    2008-01-01

    Soils play a crucial role in biogeochemical cycles as spatially distributed sources and sinks of nutrients. Any spatial patterns depend on soil forming processes, our understanding of which is still limited, especially in regards to tropical rainforests. The objective of our study was to investigate the effects of landscape properties, with an emphasis on the geometry of the land surface, on the spatial heterogeneity of soil chemical properties, and to test the suitability of soil-landscape modeling as an appropriate technique to predict the spatial variability of exchangeable K and Mg in a humid tropical forest in Panama. We used a design-based, stratified sampling scheme to collect soil samples at 108 sites on Barro Colorado Island, Panama. Stratifying variables are lithology, vegetation and topography. Topographic variables were generated from high-resolution digital elevation models with a grid size of 5 m. We took samples from five depths down to 1 m, and analyzed for total and exchangeable K and Mg. We used simple explorative data analysis techniques to elucidate the importance of lithology for soil total and exchangeable K and Mg. Classification and Regression Trees (CART) were adopted to investigate importance of topography, lithology and vegetation for the spatial distribution of exchangeable K and Mg and with the intention to develop models that regionalize the point observations using digital terrain data as explanatory variables. Our results suggest that topography and vegetation do not control the spatial distribution of the selected soil chemical properties at a landscape scale and lithology is important to some degree. Exchangeable K is distributed equally across the study area indicating that other than landscape processes, e.g. biogeochemical processes, are responsible for its spatial distribution. Lithology contributes to the spatial variation of exchangeable Mg but controlling variables could not be detected. The spatial variation of soil total K and Mg is mainly influenced by lithology. ?? 2007 Elsevier B.V. All rights reserved.

  3. Global Diffusion Pattern and Hot SPOT Analysis of Vaccine-Preventable Diseases

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Fan, F.; Zanoni, I. Holly; Li, Y.

    2017-10-01

    Spatial characteristics reveal the concentration of vaccine-preventable disease in Africa and the Near East and that disease dispersion is variable depending on disease. The exception is whooping cough, which has a highly variable center of concentration from year to year. Measles exhibited the only statistically significant spatial autocorrelation among all the diseases under investigation. Hottest spots of measles are in Africa and coldest spots are in United States, warm spots are in Near East and cool spots are in Western Europe. Finally, cases of measles could not be explained by the independent variables, including Gini index, health expenditure, or rate of immunization. Since the literature confirms that each of the selected variables is considered determinants of disease dissemination, it is anticipated that the global dataset of disease cases was influenced by reporting bias.

  4. Strategies for minimizing sample size for use in airborne LiDAR-based forest inventory

    USGS Publications Warehouse

    Junttila, Virpi; Finley, Andrew O.; Bradford, John B.; Kauranne, Tuomo

    2013-01-01

    Recently airborne Light Detection And Ranging (LiDAR) has emerged as a highly accurate remote sensing modality to be used in operational scale forest inventories. Inventories conducted with the help of LiDAR are most often model-based, i.e. they use variables derived from LiDAR point clouds as the predictive variables that are to be calibrated using field plots. The measurement of the necessary field plots is a time-consuming and statistically sensitive process. Because of this, current practice often presumes hundreds of plots to be collected. But since these plots are only used to calibrate regression models, it should be possible to minimize the number of plots needed by carefully selecting the plots to be measured. In the current study, we compare several systematic and random methods for calibration plot selection, with the specific aim that they be used in LiDAR based regression models for forest parameters, especially above-ground biomass. The primary criteria compared are based on both spatial representativity as well as on their coverage of the variability of the forest features measured. In the former case, it is important also to take into account spatial auto-correlation between the plots. The results indicate that choosing the plots in a way that ensures ample coverage of both spatial and feature space variability improves the performance of the corresponding models, and that adequate coverage of the variability in the feature space is the most important condition that should be met by the set of plots collected.

  5. Mesoscale spatial variability of selected aquatic invertebrate community metrics from a minimally impaired stream segment

    USGS Publications Warehouse

    Gebler, J.B.

    2004-01-01

    The related topics of spatial variability of aquatic invertebrate community metrics, implications of spatial patterns of metric values to distributions of aquatic invertebrate communities, and ramifications of natural variability to the detection of human perturbations were investigated. Four metrics commonly used for stream assessment were computed for 9 stream reaches within a fairly homogeneous, minimally impaired stream segment of the San Pedro River, Arizona. Metric variability was assessed for differing sampling scenarios using simple permutation procedures. Spatial patterns of metric values suggest that aquatic invertebrate communities are patchily distributed on subsegment and segment scales, which causes metric variability. Wide ranges of metric values resulted in wide ranges of metric coefficients of variation (CVs) and minimum detectable differences (MDDs), and both CVs and MDDs often increased as sample size (number of reaches) increased, suggesting that any particular set of sampling reaches could yield misleading estimates of population parameters and effects that can be detected. Mean metric variabilities were substantial, with the result that only fairly large differences in metrics would be declared significant at ?? = 0.05 and ?? = 0.20. The number of reaches required to obtain MDDs of 10% and 20% varied with significance level and power, and differed for different metrics, but were generally large, ranging into tens and hundreds of reaches. Study results suggest that metric values from one or a small number of stream reach(es) may not be adequate to represent a stream segment, depending on effect sizes of interest, and that larger sample sizes are necessary to obtain reasonable estimates of metrics and sample statistics. For bioassessment to progress, spatial variability may need to be investigated in many systems and should be considered when designing studies and interpreting data.

  6. Species distribution model transferability and model grain size - finer may not always be better.

    PubMed

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  7. Sampling in health geography: reconciling geographical objectives and probabilistic methods. An example of a health survey in Vientiane (Lao PDR)

    PubMed Central

    Vallée, Julie; Souris, Marc; Fournet, Florence; Bochaton, Audrey; Mobillion, Virginie; Peyronnie, Karine; Salem, Gérard

    2007-01-01

    Background Geographical objectives and probabilistic methods are difficult to reconcile in a unique health survey. Probabilistic methods focus on individuals to provide estimates of a variable's prevalence with a certain precision, while geographical approaches emphasise the selection of specific areas to study interactions between spatial characteristics and health outcomes. A sample selected from a small number of specific areas creates statistical challenges: the observations are not independent at the local level, and this results in poor statistical validity at the global level. Therefore, it is difficult to construct a sample that is appropriate for both geographical and probability methods. Methods We used a two-stage selection procedure with a first non-random stage of selection of clusters. Instead of randomly selecting clusters, we deliberately chose a group of clusters, which as a whole would contain all the variation in health measures in the population. As there was no health information available before the survey, we selected a priori determinants that can influence the spatial homogeneity of the health characteristics. This method yields a distribution of variables in the sample that closely resembles that in the overall population, something that cannot be guaranteed with randomly-selected clusters, especially if the number of selected clusters is small. In this way, we were able to survey specific areas while minimising design effects and maximising statistical precision. Application We applied this strategy in a health survey carried out in Vientiane, Lao People's Democratic Republic. We selected well-known health determinants with unequal spatial distribution within the city: nationality and literacy. We deliberately selected a combination of clusters whose distribution of nationality and literacy is similar to the distribution in the general population. Conclusion This paper describes the conceptual reasoning behind the construction of the survey sample and shows that it can be advantageous to choose clusters using reasoned hypotheses, based on both probability and geographical approaches, in contrast to a conventional, random cluster selection strategy. PMID:17543100

  8. Sampling in health geography: reconciling geographical objectives and probabilistic methods. An example of a health survey in Vientiane (Lao PDR).

    PubMed

    Vallée, Julie; Souris, Marc; Fournet, Florence; Bochaton, Audrey; Mobillion, Virginie; Peyronnie, Karine; Salem, Gérard

    2007-06-01

    Geographical objectives and probabilistic methods are difficult to reconcile in a unique health survey. Probabilistic methods focus on individuals to provide estimates of a variable's prevalence with a certain precision, while geographical approaches emphasise the selection of specific areas to study interactions between spatial characteristics and health outcomes. A sample selected from a small number of specific areas creates statistical challenges: the observations are not independent at the local level, and this results in poor statistical validity at the global level. Therefore, it is difficult to construct a sample that is appropriate for both geographical and probability methods. We used a two-stage selection procedure with a first non-random stage of selection of clusters. Instead of randomly selecting clusters, we deliberately chose a group of clusters, which as a whole would contain all the variation in health measures in the population. As there was no health information available before the survey, we selected a priori determinants that can influence the spatial homogeneity of the health characteristics. This method yields a distribution of variables in the sample that closely resembles that in the overall population, something that cannot be guaranteed with randomly-selected clusters, especially if the number of selected clusters is small. In this way, we were able to survey specific areas while minimising design effects and maximising statistical precision. We applied this strategy in a health survey carried out in Vientiane, Lao People's Democratic Republic. We selected well-known health determinants with unequal spatial distribution within the city: nationality and literacy. We deliberately selected a combination of clusters whose distribution of nationality and literacy is similar to the distribution in the general population. This paper describes the conceptual reasoning behind the construction of the survey sample and shows that it can be advantageous to choose clusters using reasoned hypotheses, based on both probability and geographical approaches, in contrast to a conventional, random cluster selection strategy.

  9. A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims

    PubMed Central

    Scheel, Ida; Ferkingstad, Egil; Frigessi, Arnoldo; Haug, Ola; Hinnerichsen, Mikkel; Meze-Hausken, Elisabeth

    2013-01-01

    Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models. PMID:23396890

  10. Accounting for and predicting the influence of spatial autocorrelation in water quality modeling

    NASA Astrophysics Data System (ADS)

    Miralha, L.; Kim, D.

    2017-12-01

    Although many studies have attempted to investigate the spatial trends of water quality, more attention is yet to be paid to the consequences of considering and ignoring the spatial autocorrelation (SAC) that exists in water quality parameters. Several studies have mentioned the importance of accounting for SAC in water quality modeling, as well as the differences in outcomes between models that account for and ignore SAC. However, the capacity to predict the magnitude of such differences is still ambiguous. In this study, we hypothesized that SAC inherently possessed by a response variable (i.e., water quality parameter) influences the outcomes of spatial modeling. We evaluated whether the level of inherent SAC is associated with changes in R-Squared, Akaike Information Criterion (AIC), and residual SAC (rSAC), after accounting for SAC during modeling procedure. The main objective was to analyze if water quality parameters with higher Moran's I values (inherent SAC measure) undergo a greater increase in R² and a greater reduction in both AIC and rSAC. We compared a non-spatial model (OLS) to two spatial regression approaches (spatial lag and error models). Predictor variables were the principal components of topographic (elevation and slope), land cover, and hydrological soil group variables. We acquired these data from federal online sources (e.g. USGS). Ten watersheds were selected, each in a different state of the USA. Results revealed that water quality parameters with higher inherent SAC showed substantial increase in R² and decrease in rSAC after performing spatial regressions. However, AIC values did not show significant changes. Overall, the higher the level of inherent SAC in water quality variables, the greater improvement of model performance. This indicates a linear and direct relationship between the spatial model outcomes (R² and rSAC) and the degree of SAC in each water quality variable. Therefore, our study suggests that the inherent level of SAC in response variables can predict improvements in models even before performing spatial regression approaches. We also recognize the constraints of this research and suggest that further studies focus on better ways of defining spatial neighborhoods, considering the differences among stations set in tributaries near to each other and in upstream areas.

  11. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    NASA Astrophysics Data System (ADS)

    Szymanowski, Mariusz; Kryza, Maciej

    2017-02-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly correlated auxiliary variables does not improve the quality of the spatial model. The effects of introduction of certain variables into the model were not climatologically justified and were seen on maps as unexpected and undesired artefacts. The results confirm, in accordance with previous studies, that in the case of air temperature distribution, the spatial process is non-stationary; thus, the local GWR model performs better than the global MLR if they are specified using the same set of auxiliary variables. If only GWR residuals are autocorrelated, the geographically weighted regression-kriging (GWRK) model seems to be optimal for air temperature spatial interpolation.

  12. Origin and Function of Tuning Diversity in Macaque Visual Cortex

    PubMed Central

    Goris, Robbe L.T.; Simoncelli, Eero P.; Movshon, J. Anthony

    2016-01-01

    SUMMARY Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells’ diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. PMID:26549331

  13. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity

    PubMed Central

    2018-01-01

    Neurons in the hippocampus and adjacent brain areas show a large diversity in their tuning to location and head direction, and the underlying circuit mechanisms are not yet resolved. In particular, it is unclear why certain cell types are selective to one spatial variable, but invariant to another. For example, place cells are typically invariant to head direction. We propose that all observed spatial tuning patterns – in both their selectivity and their invariance – arise from the same mechanism: Excitatory and inhibitory synaptic plasticity driven by the spatial tuning statistics of synaptic inputs. Using simulations and a mathematical analysis, we show that combined excitatory and inhibitory plasticity can lead to localized, grid-like or invariant activity. Combinations of different input statistics along different spatial dimensions reproduce all major spatial tuning patterns observed in rodents. Our proposed model is robust to changes in parameters, develops patterns on behavioral timescales and makes distinctive experimental predictions. PMID:29465399

  14. Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.

    2017-12-01

    Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.

  15. Agricultural disturbance response models for invertebrate and algal metrics from streams at two spatial scales within the U.S.

    USGS Publications Warehouse

    Waite, Ian R.

    2014-01-01

    As part of the USGS study of nutrient enrichment of streams in agricultural regions throughout the United States, about 30 sites within each of eight study areas were selected to capture a gradient of nutrient conditions. The objective was to develop watershed disturbance predictive models for macroinvertebrate and algal metrics at national and three regional landscape scales to obtain a better understanding of important explanatory variables. Explanatory variables in models were generated from landscape data, habitat, and chemistry. Instream nutrient concentration and variables assessing the amount of disturbance to the riparian zone (e.g., percent row crops or percent agriculture) were selected as most important explanatory variable in almost all boosted regression tree models regardless of landscape scale or assemblage. Frequently, TN and TP concentration and riparian agricultural land use variables showed a threshold type response at relatively low values to biotic metrics modeled. Some measure of habitat condition was also commonly selected in the final invertebrate models, though the variable(s) varied across regions. Results suggest national models tended to account for more general landscape/climate differences, while regional models incorporated both broad landscape scale and more specific local-scale variables.

  16. Age-related cognitive task effects on gait characteristics: do different working memory components make a difference?

    PubMed

    Qu, Xingda

    2014-10-27

    Though it is well recognized that gait characteristics are affected by concurrent cognitive tasks, how different working memory components contribute to dual task effects on gait is still unknown. The objective of the present study was to investigate dual-task effects on gait characteristics, specifically the application of cognitive tasks involving different working memory components. In addition, we also examined age-related differences in such dual-task effects. Three cognitive tasks (i.e. 'Random Digit Generation', 'Brooks' Spatial Memory', and 'Counting Backward') involving different working memory components were examined. Twelve young (6 males and 6 females, 20 ~ 25 years old) and 12 older participants (6 males and 6 females, 60 ~ 72 years old) took part in two phases of experiments. In the first phase, each cognitive task was defined at three difficulty levels, and perceived difficulty was compared across tasks. The cognitive tasks perceived to be equally difficult were selected for the second phase. In the second phase, four testing conditions were defined, corresponding to a baseline and the three equally difficult cognitive tasks. Participants walked on a treadmill at their self-selected comfortable speed in each testing condition. Body kinematics were collected during treadmill walking, and gait characteristics were assessed using spatial-temporal gait parameters. Application of the concurrent Brooks' Spatial Memory task led to longer step times compared to the baseline condition. Larger step width variability was observed in both the Brooks' Spatial Memory and Counting Backward dual-task conditions than in the baseline condition. In addition, cognitive task effects on step width variability differed between two age groups. In particular, the Brooks' Spatial Memory task led to significantly larger step width variability only among older adults. These findings revealed that cognitive tasks involving the visuo-spatial sketchpad interfered with gait more severely in older versus young adults. Thus, dual-task training, in which a cognitive task involving the visuo-spatial sketchpad (e.g. the Brooks' Spatial Memory task) is concurrently performed with walking, could be beneficial to mitigate impairments in gait among older adults.

  17. Spatial variation of PM elemental composition between and within 20 European study areas--Results of the ESCAPE project.

    PubMed

    Tsai, Ming-Yi; Hoek, Gerard; Eeftens, Marloes; de Hoogh, Kees; Beelen, Rob; Beregszászi, Timea; Cesaroni, Giulia; Cirach, Marta; Cyrys, Josef; De Nazelle, Audrey; de Vocht, Frank; Ducret-Stich, Regina; Eriksen, Kirsten; Galassi, Claudia; Gražuleviciene, Regina; Gražulevicius, Tomas; Grivas, Georgios; Gryparis, Alexandros; Heinrich, Joachim; Hoffmann, Barbara; Iakovides, Minas; Keuken, Menno; Krämer, Ursula; Künzli, Nino; Lanki, Timo; Madsen, Christian; Meliefste, Kees; Merritt, Anne-Sophie; Mölter, Anna; Mosler, Gioia; Nieuwenhuijsen, Mark J; Pershagen, Göran; Phuleria, Harish; Quass, Ulrich; Ranzi, Andrea; Schaffner, Emmanuel; Sokhi, Ranjeet; Stempfelet, Morgane; Stephanou, Euripides; Sugiri, Dorothea; Taimisto, Pekka; Tewis, Marjan; Udvardy, Orsolya; Wang, Meng; Brunekreef, Bert

    2015-11-01

    An increasing number of epidemiological studies suggest that adverse health effects of air pollution may be related to particulate matter (PM) composition, particularly trace metals. However, we lack comprehensive data on the spatial distribution of these elements. We measured PM2.5 and PM10 in twenty study areas across Europe in three seasonal two-week periods over a year using Harvard impactors and standardized protocols. In each area, we selected street (ST), urban (UB) and regional background (RB) sites (totaling 20) to characterize local spatial variability. Elemental composition was determined by energy-dispersive X-ray fluorescence analysis of all PM2.5 and PM10 filters. We selected a priori eight (Cu, Fe, K, Ni, S, Si, V, Zn) well-detected elements of health interest, which also roughly represented different sources including traffic, industry, ports, and wood burning. PM elemental composition varied greatly across Europe, indicating different regional influences. Average street to urban background ratios ranged from 0.90 (V) to 1.60 (Cu) for PM2.5 and from 0.93 (V) to 2.28 (Cu) for PM10. Our selected PM elements were variably correlated with the main pollutants (PM2.5, PM10, PM2.5 absorbance, NO2 and NOx) across Europe: in general, Cu and Fe in all size fractions were highly correlated (Pearson correlations above 0.75); Si and Zn in the coarse fractions were modestly correlated (between 0.5 and 0.75); and the remaining elements in the various size fractions had lower correlations (around 0.5 or below). This variability in correlation demonstrated the distinctly different spatial distributions of most of the elements. Variability of PM10_Cu and Fe was mostly due to within-study area differences (67% and 64% of overall variance, respectively) versus between-study area and exceeded that of most other traffic-related pollutants, including NO2 and soot, signaling the importance of non-tailpipe (e.g., brake wear) emissions in PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Spatial variability of throughfall in a stand of Scots pine (Pinus sylvestris L.) with deciduous admixture as influenced by canopy cover and stem distance

    NASA Astrophysics Data System (ADS)

    Kowalska, Anna; Boczoń, Andrzej; Hildebrand, Robert; Polkowska, Żaneta

    2016-07-01

    Vegetation cover affects the amount of precipitation, its chemical composition and its spatial distribution, and this may have implications for the distribution of water, nutrients and contaminants in the subsurface soil layer. The aim of this study was a detailed diagnosis of the spatio-temporal variability in the amount of throughfall (TF) and its chemical components in a 72-year-old pine stand with an admixture of oak and birch. The spatio-temporal variability in the amount of TF water and the concentrations and deposition of the TF components were studied. The components that are exchanged in canopy (H+, K, Mg, Mn, DOC, NH4+) were more variable than the components whose TF deposition is the sum of wet and dry (including gas) deposition and which undergo little exchange in the canopy (Na, Cl, NO3-, SO42-). The spatial distribution was temporally stable, especially during the leafed period. This study also investigated the effect of the selected pine stand characteristics on the spatial distribution of throughfall and its chemical components; the characteristics included leaf area index (LAI), the proportion of the canopy covered by deciduous species and pine crowns, and the distance from the nearest tree trunk. The LAI measured during the leafed and leafless periods had the greatest effect on the spatial distribution of TF deposition. No relationship was found between the spatial distribution of the amount of TF water and (i) the LAI; (ii) the canopy cover of broadleaf species or pines; or (iii) the distance from the trunks.

  19. Hybrid modeling of spatial continuity for application to numerical inverse problems

    USGS Publications Warehouse

    Friedel, Michael J.; Iwashita, Fabio

    2013-01-01

    A novel two-step modeling approach is presented to obtain optimal starting values and geostatistical constraints for numerical inverse problems otherwise characterized by spatially-limited field data. First, a type of unsupervised neural network, called the self-organizing map (SOM), is trained to recognize nonlinear relations among environmental variables (covariates) occurring at various scales. The values of these variables are then estimated at random locations across the model domain by iterative minimization of SOM topographic error vectors. Cross-validation is used to ensure unbiasedness and compute prediction uncertainty for select subsets of the data. Second, analytical functions are fit to experimental variograms derived from original plus resampled SOM estimates producing model variograms. Sequential Gaussian simulation is used to evaluate spatial uncertainty associated with the analytical functions and probable range for constraining variables. The hybrid modeling of spatial continuity is demonstrated using spatially-limited hydrologic measurements at different scales in Brazil: (1) physical soil properties (sand, silt, clay, hydraulic conductivity) in the 42 km2 Vargem de Caldas basin; (2) well yield and electrical conductivity of groundwater in the 132 km2 fractured crystalline aquifer; and (3) specific capacity, hydraulic head, and major ions in a 100,000 km2 transboundary fractured-basalt aquifer. These results illustrate the benefits of exploiting nonlinear relations among sparse and disparate data sets for modeling spatial continuity, but the actual application of these spatial data to improve numerical inverse modeling requires testing.

  20. Spatial processes decouple management from objectives in a heterogeneous landscape: predator control as a case study.

    PubMed

    Mahoney, Peter J; Young, Julie K; Hersey, Kent R; Larsen, Randy T; McMillan, Brock R; Stoner, David C

    2018-04-01

    Predator control is often implemented with the intent of disrupting top-down regulation in sensitive prey populations. However, ambiguity surrounding the efficacy of predator management, as well as the strength of top-down effects of predators in general, is often exacerbated by the spatially implicit analytical approaches used in assessing data with explicit spatial structure. Here, we highlight the importance of considering spatial context in the case of a predator control study in south-central Utah. We assessed the spatial match between aerial removal risk in coyotes (Canis latrans) and mule deer (Odocoileus hemionus) resource selection during parturition using a spatially explicit, multi-level Bayesian model. With our model, we were able to evaluate spatial congruence between management action (i.e., coyote removal) and objective (i.e., parturient deer site selection) at two distinct scales: the level of the management unit and the individual coyote removal. In the case of the former, our results indicated substantial spatial heterogeneity in expected congruence between removal risk and parturient deer site selection across large areas, and is a reflection of logistical constraints acting on the management strategy and differences in space use between the two species. At the level of the individual removal, we demonstrated that the potential management benefits of a removed coyote were highly variable across all individuals removed and in many cases, spatially distinct from parturient deer resource selection. Our methods and results provide a means of evaluating where we might anticipate an impact of predator control, while emphasizing the need to weight individual removals based on spatial proximity to management objectives in any assessment of large-scale predator control. Although we highlight the importance of spatial context in assessments of predator control strategy, we believe our methods are readily generalizable in any management or large-scale experimental framework where spatial context is likely an important driver of outcomes. © 2018 by the Ecological Society of America.

  1. Tigers on trails: occupancy modeling for cluster sampling.

    PubMed

    Hines, J E; Nichols, J D; Royle, J A; MacKenzie, D I; Gopalaswamy, A M; Kumar, N Samba; Karanth, K U

    2010-07-01

    Occupancy modeling focuses on inference about the distribution of organisms over space, using temporal or spatial replication to allow inference about the detection process. Inference based on spatial replication strictly requires that replicates be selected randomly and with replacement, but the importance of these design requirements is not well understood. This paper focuses on an increasingly popular sampling design based on spatial replicates that are not selected randomly and that are expected to exhibit Markovian dependence. We develop two new occupancy models for data collected under this sort of design, one based on an underlying Markov model for spatial dependence and the other based on a trap response model with Markovian detections. We then simulated data under the model for Markovian spatial dependence and fit the data to standard occupancy models and to the two new models. Bias of occupancy estimates was substantial for the standard models, smaller for the new trap response model, and negligible for the new spatial process model. We also fit these models to data from a large-scale tiger occupancy survey recently conducted in Karnataka State, southwestern India. In addition to providing evidence of a positive relationship between tiger occupancy and habitat, model selection statistics and estimates strongly supported the use of the model with Markovian spatial dependence. This new model provides another tool for the decomposition of the detection process, which is sometimes needed for proper estimation and which may also permit interesting biological inferences. In addition to designs employing spatial replication, we note the likely existence of temporal Markovian dependence in many designs using temporal replication. The models developed here will be useful either directly, or with minor extensions, for these designs as well. We believe that these new models represent important additions to the suite of modeling tools now available for occupancy estimation in conservation monitoring. More generally, this work represents a contribution to the topic of cluster sampling for situations in which there is a need for specific modeling (e.g., reflecting dependence) for the distribution of the variable(s) of interest among subunits.

  2. Effect of spatial variability of storm on the optimal placement of best management practices (BMPs).

    PubMed

    Chang, C L; Chiueh, P T; Lo, S L

    2007-12-01

    It is significant to design best management practices (BMPs) and determine the proper BMPs placement for the purpose that can not only satisfy the water quantity and water quality standard, but also lower the total cost of BMPs. The spatial rainfall variability can have much effect on its relative runoff and non-point source pollution (NPSP). Meantime, the optimal design and placement of BMPs would be different as well. The objective of this study was to discuss the relationship between the spatial variability of rainfall and the optimal BMPs placements. Three synthetic rainfall storms with varied spatial distributions, including uniform rainfall, downstream rainfall and upstream rainfall, were designed. WinVAST model was applied to predict runoff and NPSP. Additionally, detention pond and swale were selected for being structural BMPs. Scatter search was applied to find the optimal BMPs placement. The results show that mostly the total cost of BMPs is higher in downstream rainfall than in upstream rainfall or uniform rainfall. Moreover, the cost of detention pond is much higher than swale. Thus, even though detention pond has larger efficiency for lowering peak flow and pollutant exports, it is not always the determined set in each subbasin.

  3. The role of density-dependent and -independent processes in spawning habitat selection by salmon in an Arctic riverscape.

    PubMed

    Huntsman, Brock M; Falke, Jeffrey A; Savereide, James W; Bennett, Katrina E

    2017-01-01

    Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species' evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.

  4. The role of density-dependent and –independent processes in spawning habitat selection by salmon in an Arctic riverscape

    DOE PAGES

    Huntsman, Brock M.; Falke, Jeffrey A.; Savereide, James W.; ...

    2017-05-22

    Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species’ evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. Here, we developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperaturemore » as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. In addition, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Moreover, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. These results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.« less

  5. The role of density-dependent and –independent processes in spawning habitat selection by salmon in an Arctic riverscape

    USGS Publications Warehouse

    Huntsman, Brock M.; Falke, Jeffrey A.; Savereide, James W.; Bennett, Katrina E.

    2017-01-01

    Density-dependent (DD) and density-independent (DI) habitat selection is strongly linked to a species’ evolutionary history. Determining the relative importance of each is necessary because declining populations are not always the result of altered DI mechanisms but can often be the result of DD via a reduced carrying capacity. We developed spatially and temporally explicit models throughout the Chena River, Alaska to predict important DI mechanisms that influence Chinook salmon spawning success. We used resource-selection functions to predict suitable spawning habitat based on geomorphic characteristics, a semi-distributed water-and-energy balance hydrologic model to generate stream flow metrics, and modeled stream temperature as a function of climatic variables. Spawner counts were predicted throughout the core and periphery spawning sections of the Chena River from escapement estimates (DD) and DI variables. Additionally, we used isodar analysis to identify whether spawners actively defend spawning habitat or follow an ideal free distribution along the riverscape. Aerial counts were best explained by escapement and reference to the core or periphery, while no models with DI variables were supported in the candidate set. Furthermore, isodar plots indicated habitat selection was best explained by ideal free distributions, although there was strong evidence for active defense of core spawning habitat. Our results are surprising, given salmon commonly defend spawning resources, and are likely due to competition occurring at finer spatial scales than addressed in this study.

  6. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    NASA Astrophysics Data System (ADS)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  7. Spatiotemporal Variability of Hillslope Soil Moisture Across Steep, Highly Dissected Topography

    NASA Astrophysics Data System (ADS)

    Jarecke, K. M.; Wondzell, S. M.; Bladon, K. D.

    2016-12-01

    Hillslope ecohydrological processes, including subsurface water flow and plant water uptake, are strongly influenced by soil moisture. However, the factors controlling spatial and temporal variability of soil moisture in steep, mountainous terrain are poorly understood. We asked: How do topography and soils interact to control the spatial and temporal variability of soil moisture in steep, Douglas-fir dominated hillslopes in the western Cascades? We will present a preliminary analysis of bimonthly soil moisture variability from July-November 2016 at 0-30 and 0-60 cm depth across spatially extensive convergent and divergent topographic positions in Watershed 1 of the H.J. Andrews Experimental Forest in central Oregon. Soil moisture monitoring locations were selected following a 5 m LIDAR analysis of topographic position, aspect, and slope. Topographic position index (TPI) was calculated as the difference in elevation to the mean elevation within a 30 m radius. Convergent (negative TPI values) and divergent (positive TPI values) monitoring locations were established along northwest to northeast-facing aspects and within 25-55 degree slopes. We hypothesized that topographic position (convergent vs. divergent), as well as soil physical properties (e.g., texture, bulk density), control variation in hillslope soil moisture at the sub-watershed scale. In addition, we expected the relative importance of hillslope topography to the spatial variability in soil moisture to differ seasonally. By comparing the spatiotemporal variability of hillslope soil moisture across topographic positions, our research provides a foundation for additional understanding of subsurface flow processes and plant-available soil-water in forests with steep, highly dissected terrain.

  8. A unified approach for the spatial enhancement of sound

    NASA Astrophysics Data System (ADS)

    Choi, Joung-Woo; Jang, Ji-Ho; Kim, Yang-Hann

    2005-09-01

    This paper aims to control the sound field spatially, so that the desired or target acoustic variable is enhanced within a zone where a listener is located. This is somewhat analogous to having manipulators that can draw sounds in any place. This also means that one can somehow see the controlled shape of sound in frequency or in real time. The former assures its practical applicability, for example, listening zone control for music. The latter provides a mean of analyzing sound field. With all these regards, a unified approach is proposed that can enhance selected acoustic variables using multiple sources. Three kinds of acoustic variables that have to do with magnitude and direction of sound field are formulated and enhanced. The first one, which has to do with the spatial control of acoustic potential energy, enables one to make a zone of loud sound over an area. Otherwise, one can control directional characteristic of sound field by controlling directional energy density, or one can enhance the magnitude and direction of sound at the same time by controlling acoustic intensity. Throughout various examples, it is shown that these acoustic variables can be controlled successfully by the proposed approach.

  9. Optimization of Decision-Making for Spatial Sampling in the North China Plain, Based on Remote-Sensing a Priori Knowledge

    NASA Astrophysics Data System (ADS)

    Feng, J.; Bai, L.; Liu, S.; Su, X.; Hu, H.

    2012-07-01

    In this paper, the MODIS remote sensing data, featured with low-cost, high-timely and moderate/low spatial resolutions, in the North China Plain (NCP) as a study region were firstly used to carry out mixed-pixel spectral decomposition to extract an useful regionalized indicator parameter (RIP) (i.e., an available ratio, that is, fraction/percentage, of winter wheat planting area in each pixel as a regionalized indicator variable (RIV) of spatial sampling) from the initial selected indicators. Then, the RIV values were spatially analyzed, and the spatial structure characteristics (i.e., spatial correlation and variation) of the NCP were achieved, which were further processed to obtain the scalefitting, valid a priori knowledge or information of spatial sampling. Subsequently, founded upon an idea of rationally integrating probability-based and model-based sampling techniques and effectively utilizing the obtained a priori knowledge or information, the spatial sampling models and design schemes and their optimization and optimal selection were developed, as is a scientific basis of improving and optimizing the existing spatial sampling schemes of large-scale cropland remote sensing monitoring. Additionally, by the adaptive analysis and decision strategy the optimal local spatial prediction and gridded system of extrapolation results were able to excellently implement an adaptive report pattern of spatial sampling in accordance with report-covering units in order to satisfy the actual needs of sampling surveys.

  10. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    PubMed Central

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  11. Spatial and Temporal Variability of Southern Auroral Emissions in the IR from JIRAM/Juno Data

    NASA Astrophysics Data System (ADS)

    Mura, A.; Altieri, F.; Moriconi, M. L.; Adriani, A.; Grassi, D.; Migliorini, A.; Gerard, J. C. M. C.; Dinelli, B. M.; Fabiano, F.; Filacchione, G.; Sindoni, G.; Tosi, F.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Sordini, R.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Levin, S.; Lunine, J. I.; Turrini, D.; Stefani, S.; Olivieri, A.; Plainaki, C.

    2017-12-01

    JIRAM (Jupiter Infrared Auroral Mapper) is the infrared imaging spectrometer on board the NASA Juno mission. The data collected since August 2016 on both Northern and Southern polar aurora at Jupiter have an unprecedented spatial. Moreover, the JIRAM scanning mirror allows observations of the same area at serveral adjacent time frames.In this work, we focus on the spatial and temporal variability of the Southern aurora. The JIRAM data of the L imager channel (3.3-3.6 µm) have been averaged in bins of 2.5°Lat × 2°Lon and variations of the signal have been investigated for 17:50 < time < 19:45, 27 August 2016. The time frames have been carefully selected in order to avoid possible instrumental residuals in the signal (Mura et al., 2017). We find that near the South Pole, for -87.5°

  12. Effect of trotting speed on kinematic variables measured by use of extremity-mounted inertial measurement units in nonlame horses performing controlled treadmill exercise.

    PubMed

    Cruz, Antonio M; Vidondo, Beatriz; Ramseyer, Alessandra A; Maninchedda, Ugo E

    2018-02-01

    OBJECTIVE To assess effects of speed on kinematic variables measured by use of extremity-mounted inertial measurement units (IMUs) in nonlame horses performing controlled exercise on a treadmill. ANIMALS 10 nonlame horses. PROCEDURES 6 IMUs were attached at predetermined locations on 10 nonlame Franches Montagnes horses. Data were collected in triplicate during trotting at 3.33 and 3.88 m/s on a high-speed treadmill. Thirty-three selected kinematic variables were analyzed. Repeated-measures ANOVA was used to assess the effect of speed. RESULTS Significant differences between the 2 speeds were detected for most temporal (11/14) and spatial (12/19) variables. The observed spatial and temporal changes would translate into a gait for the higher speed characterized by increased stride length, protraction and retraction, flexion and extension, mediolateral movement of the tibia, and symmetry, but with similar temporal variables and a reduction in stride duration. However, even though the tibia coronal range of motion was significantly different between speeds, the high degree of variability raised concerns about whether these changes were clinically relevant. For some variables, the lower trotting speed apparently was associated with more variability than was the higher trotting speed. CONCLUSIONS AND CLINICAL RELEVANCE At a higher trotting speed, horses moved in the same manner (eg, the temporal events investigated occurred at the same relative time within the stride). However, from a spatial perspective, horses moved with greater action of the segments evaluated. The detected changes in kinematic variables indicated that trotting speed should be controlled or kept constant during gait evaluation.

  13. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of Alberta, Canada.

    PubMed

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B

    2013-01-01

    Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions.

  14. Spatial Analysis of Factors Influencing Long-Term Stress in the Grizzly Bear (Ursus arctos) Population of Alberta, Canada

    PubMed Central

    Bourbonnais, Mathieu L.; Nelson, Trisalyn A.; Cattet, Marc R. L.; Darimont, Chris T.; Stenhouse, Gordon B.

    2013-01-01

    Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others, conservation and management efforts can benefit by understanding spatial- and gender-based stress responses to landscape conditions. PMID:24386273

  15. Evaluating uncertainty in predicting spatially variable representative elementary scales in fractured aquifers, with application to Turkey Creek Basin, Colorado

    USGS Publications Warehouse

    Wellman, Tristan P.; Poeter, Eileen P.

    2006-01-01

    Computational limitations and sparse field data often mandate use of continuum representation for modeling hydrologic processes in large‐scale fractured aquifers. Selecting appropriate element size is of primary importance because continuum approximation is not valid for all scales. The traditional approach is to select elements by identifying a single representative elementary scale (RES) for the region of interest. Recent advances indicate RES may be spatially variable, prompting unanswered questions regarding the ability of sparse data to spatially resolve continuum equivalents in fractured aquifers. We address this uncertainty of estimating RES using two techniques. In one technique we employ data‐conditioned realizations generated by sequential Gaussian simulation. For the other we develop a new approach using conditioned random walks and nonparametric bootstrapping (CRWN). We evaluate the effectiveness of each method under three fracture densities, three data sets, and two groups of RES analysis parameters. In sum, 18 separate RES analyses are evaluated, which indicate RES magnitudes may be reasonably bounded using uncertainty analysis, even for limited data sets and complex fracture structure. In addition, we conduct a field study to estimate RES magnitudes and resulting uncertainty for Turkey Creek Basin, a crystalline fractured rock aquifer located 30 km southwest of Denver, Colorado. Analyses indicate RES does not correlate to rock type or local relief in several instances but is generally lower within incised creek valleys and higher along mountain fronts. Results of this study suggest that (1) CRWN is an effective and computationally efficient method to estimate uncertainty, (2) RES predictions are well constrained using uncertainty analysis, and (3) for aquifers such as Turkey Creek Basin, spatial variability of RES is significant and complex.

  16. Origin and Function of Tuning Diversity in Macaque Visual Cortex.

    PubMed

    Goris, Robbe L T; Simoncelli, Eero P; Movshon, J Anthony

    2015-11-18

    Neurons in visual cortex vary in their orientation selectivity. We measured responses of V1 and V2 cells to orientation mixtures and fit them with a model whose stimulus selectivity arises from the combined effects of filtering, suppression, and response nonlinearity. The model explains the diversity of orientation selectivity with neuron-to-neuron variability in all three mechanisms, of which variability in the orientation bandwidth of linear filtering is the most important. The model also accounts for the cells' diversity of spatial frequency selectivity. Tuning diversity is matched to the needs of visual encoding. The orientation content found in natural scenes is diverse, and neurons with different selectivities are adapted to different stimulus configurations. Single orientations are better encoded by highly selective neurons, while orientation mixtures are better encoded by less selective neurons. A diverse population of neurons therefore provides better overall discrimination capabilities for natural images than any homogeneous population. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Importance of spatial autocorrelation in modeling bird distributions at a continental scale

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.

  18. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    USGS Publications Warehouse

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  19. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches.

    PubMed

    Ließ, Mareike; Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils' carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms-including the model tuning and predictor selection-were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models' predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction.

  20. Spatial and temporal variability in the water column nutrients and pesticides of Jobos Bay

    USDA-ARS?s Scientific Manuscript database

    The Conservation Effects Assessment Project (CEAP) is a national, multi-agency effort to quantify the environmental benefits of best management practices used by agricultural producers participating in selected U.S. Department of Agriculture (USDA) conservation programs, including programs such as t...

  1. Short-term spatial and temporal variability in greenhouse gas fluxes in riparian zones.

    PubMed

    Vidon, P; Marchese, S; Welsh, M; McMillan, S

    2015-08-01

    Recent research indicates that riparian zones have the potential to contribute significant amounts of greenhouse gases (GHG: N2O, CO2, CH4) to the atmosphere. Yet, the short-term spatial and temporal variability in GHG emission in these systems is poorly understood. Using two transects of three static chambers at two North Carolina agricultural riparian zones (one restored, one unrestored), we show that estimates of the average GHG flux at the site scale can vary by one order of magnitude depending on whether the mean or the median is used as a measure of central tendency. Because the median tends to mute the effect of outlier points (hot spots and hot moments), we propose that both must be reported or that other more advanced spatial averaging techniques (e.g., kriging, area-weighted average) should be used to estimate GHG fluxes at the site scale. Results also indicate that short-term temporal variability in GHG fluxes (a few days) under seemingly constant temperature and hydrological conditions can be as large as spatial variability at the site scale, suggesting that the scientific community should rethink sampling protocols for GHG at the soil-atmosphere interface to include repeated measures over short periods of time at select chambers to estimate GHG emissions in the field. Although recent advances in technology provide tools to address these challenges, their cost is often too high for widespread implementation. Until technology improves, sampling design strategies will need to be carefully considered to balance cost, time, and spatial and temporal representativeness of measurements.

  2. Monthly Rainfall Erosivity Assessment for Switzerland

    NASA Astrophysics Data System (ADS)

    Schmidt, Simon; Meusburger, Katrin; Alewell, Christine

    2016-04-01

    Water erosion is crucially controlled by rainfall erosivity, which is quantified out of the kinetic energy of raindrop impact and associated surface runoff. Rainfall erosivity is often expressed as the R-factor in soil erosion risk models like the Universal Soil Loss Equation (USLE) and its revised version (RUSLE). Just like precipitation, the rainfall erosivity of Switzerland has a characteristic seasonal dynamic throughout the year. This inter-annual variability is to be assessed by a monthly and seasonal modelling approach. We used a network of 86 precipitation gauging stations with a 10-minute temporal resolution to calculate long-term average monthly R-factors. Stepwise regression and Monte Carlo Cross Validation (MCCV) was used to select spatial covariates to explain the spatial pattern of R-factor for each month across Switzerland. The regionalized monthly R-factor is mapped by its individual regression equation and the ordinary kriging interpolation of its residuals (Regression-Kriging). As covariates, a variety of precipitation indicator data has been included like snow height, a combination of hourly gauging measurements and radar observations (CombiPrecip), mean monthly alpine precipitation (EURO4M-APGD) and monthly precipitation sums (Rhires). Topographic parameters were also significant explanatory variables for single months. The comparison of all 12 monthly rainfall erosivity maps showed seasonality with highest rainfall erosivity in summer (June, July, and August) and lowest rainfall erosivity in winter months. Besides the inter-annual temporal regime, a seasonal spatial variability was detectable. Spatial maps of monthly rainfall erosivity are presented for the first time for Switzerland. The assessment of the spatial and temporal dynamic behaviour of the R-factor is valuable for the identification of more susceptible seasons and regions as well as for the application of selective erosion control measures. A combination with monthly vegetation cover (C-factor) maps would enable the assessment of seasonal dynamics of erosion processes in Switzerland.

  3. DOWN-STREAM SPATIAL DISTRIBUTION OF ANTIBIOTIC RESISTANCE TRAITS ALONG METAL CONTAMINATED STREAM REACHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuckfield, C; J V Mcarthur

    2007-04-16

    Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10more » metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect'' from complex combinations of pollution mediated selection agents.« less

  4. Spatial vs. individual variability with inheritance in a stochastic Lotka-Volterra system

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Tauber, Uwe C.

    2012-02-01

    We investigate a stochastic spatial Lotka-Volterra predator-prey model with randomized interaction rates that are either affixed to the lattice sites and quenched, and / or specific to individuals in either population. In the latter situation, we include rate inheritance with mutations from the particles' progenitors. Thus we arrive at a simple model for competitive evolution with environmental variability and selection pressure. We employ Monte Carlo simulations in zero and two dimensions to study the time evolution of both species' densities and their interaction rate distributions. The predator and prey concentrations in the ensuing steady states depend crucially on the environmental variability, whereas the temporal evolution of the individualized rate distributions leads to largely neutral optimization. Contrary to, e.g., linear gene expression models, this system does not experience fixation at extreme values. An approximate description of the resulting data is achieved by means of an effective master equation approach for the interaction rate distribution.

  5. Geostatistics for spatial genetic structures: study of wild populations of perennial ryegrass.

    PubMed

    Monestiez, P; Goulard, M; Charmet, G

    1994-04-01

    Methods based on geostatistics were applied to quantitative traits of agricultural interest measured on a collection of 547 wild populations of perennial ryegrass in France. The mathematical background of these methods, which resembles spatial autocorrelation analysis, is briefly described. When a single variable is studied, the spatial structure analysis is similar to spatial autocorrelation analysis, and a spatial prediction method, called "kriging", gives a filtered map of the spatial pattern over all the sampled area. When complex interactions of agronomic traits with different evaluation sites define a multivariate structure for the spatial analysis, geostatistical methods allow the spatial variations to be broken down into two main spatial structures with ranges of 120 km and 300 km, respectively. The predicted maps that corresponded to each range were interpreted as a result of the isolation-by-distance model and as a consequence of selection by environmental factors. Practical collecting methodology for breeders may be derived from such spatial structures.

  6. Impact of land-use on groundwater quality: GIS-based study from an alluvial aquifer in the western Ganges basin

    NASA Astrophysics Data System (ADS)

    Khan, Arina; Khan, Haris Hasan; Umar, Rashid

    2017-12-01

    In this study, groundwater quality of an alluvial aquifer in the western Ganges basin is assessed using a GIS-based groundwater quality index (GQI) concept that uses groundwater quality data from field survey and laboratory analysis. Groundwater samples were collected from 42 wells during pre-monsoon and post-monsoon periods of 2012 and analysed for pH, EC, TDS, Anions (Cl, SO4, NO3), and Cations (Ca, Mg, Na). To generate the index, several parameters were selected based on WHO recommendations. The spatially variable grids of each parameter were modified by normalizing with the WHO standards and finally integrated into a GQI grid. The mean GQI values for both the season suggest good groundwater quality. However, spatial variations exist and are represented by GQI map of both seasons. This spatial variability was compared with the existing land-use, prepared using high-resolution satellite imagery available in Google earth. The GQI grids were compared to the land-use map using an innovative GIS-based method. Results indicate that the spatial variability of groundwater quality in the region is not fully controlled by the land-use pattern. This probably reflects the diffuse nature of land-use classes, especially settlements and plantations.

  7. On the use of variable coherence in inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Baleine, Erwan

    Even though most of the properties of optical fields, such as wavelength, polarization, wavefront curvature or angular spectrum, have been commonly manipulated in a variety of remote sensing procedures, controlling the degree of coherence of light did not find wide applications until recently. Since the emergence of optical coherence tomography, a growing number of scattering techniques have relied on temporal coherence gating which provides efficient target selectivity in a way achieved only by bulky short pulse measurements. The spatial counterpart of temporal coherence, however, has barely been exploited in sensing applications. This dissertation examines, in different scattering regimes, a variety of inverse scattering problems based on variable spatial coherence gating. Within the framework of the radiative transfer theory, this dissertation demonstrates that the short range correlation properties of a medium under test can be recovered by varying the size of the coherence volume of an illuminating beam. Nonetheless, the radiative transfer formalism does not account for long range correlations and current methods for retrieving the correlation function of the complex susceptibility require cumbersome cross-spectral density measurements. Instead, a variable coherence tomographic procedure is proposed where spatial coherence gating is used to probe the structural properties of single scattering media over an extended volume and with a very simple detection system. Enhanced backscattering is a coherent phenomenon that survives strong multiple scattering. The variable coherence tomography approach is extended in this context to diffusive media and it is demonstrated that specific photon trajectories can be selected in order to achieve depth-resolved sensing. Probing the scattering properties of shallow and deeper layers is of considerable interest in biological applications such as diagnosis of skin related diseases. The spatial coherence properties of an illuminating field can be manipulated over dimensions much larger than the wavelength thus providing a large effective sensing area. This is a practical advantage over many near-field microscopic techniques, which offer a spatial resolution beyond the classical diffraction limit but, at the expense of scanning a probe over a large area of a sample which is time consuming, and, sometimes, practically impossible. Taking advantage of the large field of view accessible when using the spatial coherence gating, this dissertation introduces the principle of variable coherence scattering microscopy. In this approach, a subwavelength resolution is achieved from simple far-zone intensity measurements by shaping the degree of spatial coherence of an evanescent field. Furthermore, tomographic techniques based on spatial coherence gating are especially attractive because they rely on simple detection schemes which, in principle, do not require any optical elements such as lenses. To demonstrate this capability, a correlated lensless imaging method is proposed and implemented, where both amplitude and phase information of an object are obtained by varying the degree of spatial coherence of the incident beam. Finally, it should be noted that the idea of using the spatial coherence properties of fields in a tomographic procedure is applicable to any type of electromagnetic radiation. Operating on principles of statistical optics, these sensing procedures can become alternatives for various target detection schemes, cutting-edge microscopies or x-ray imaging methods.

  8. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users.

    PubMed

    Scheperle, Rachel A; Abbas, Paul J

    2015-01-01

    The ability to perceive speech is related to the listener's ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel discrimination and the Bamford-Kowal-Bench Speech-in-Noise test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. All electrophysiological measures were significantly correlated with each other and with speech scores for the mixed-model analysis, which takes into account multiple measures per person (i.e., experimental MAPs). The ECAP measures were the best predictor. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech scores; spectral auditory change complex amplitude was the strongest predictor. The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be most useful for within-subject applications when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on a single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered.

  9. Bet-hedging as a complex interaction among developmental instability, environmental heterogeneity, dispersal, and life-history strategy.

    PubMed

    Scheiner, Samuel M

    2014-02-01

    One potential evolutionary response to environmental heterogeneity is the production of randomly variable offspring through developmental instability, a type of bet-hedging. I used an individual-based, genetically explicit model to examine the evolution of developmental instability. The model considered both temporal and spatial heterogeneity alone and in combination, the effect of migration pattern (stepping stone vs. island), and life-history strategy. I confirmed that temporal heterogeneity alone requires a threshold amount of variation to select for a substantial amount of developmental instability. For spatial heterogeneity only, the response to selection on developmental instability depended on the life-history strategy and the form and pattern of dispersal with the greatest response for island migration when selection occurred before dispersal. Both spatial and temporal variation alone select for similar amounts of instability, but in combination resulted in substantially more instability than either alone. Local adaptation traded off against bet-hedging, but not in a simple linear fashion. I found higher-order interactions between life-history patterns, dispersal rates, dispersal patterns, and environmental heterogeneity that are not explainable by simple intuition. We need additional modeling efforts to understand these interactions and empirical tests that explicitly account for all of these factors.

  10. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China].

    PubMed

    Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi

    2017-01-01

    The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.

  11. The spatial impact of neighbouring on the exports activities of COMESA countries by using spatial panel models

    NASA Astrophysics Data System (ADS)

    Hamzalouh, L.; Ismail, M. T.; Rahman, R. A.

    2017-09-01

    In this paper, spatial panel models were used and the method for selecting the best model amongst the spatial fixed effects model and the spatial random effects model to estimate the fitting model by using the robust Hausman test for analysis of the exports pattern of the Common Market for Eastern and Southern African (COMESA) countries. And examine the effects of the interactions of the economic statistic of explanatory variables on the exports of the COMESA. Results indicated that the spatial Durbin model with fixed effects specification should be tested and considered in most cases of this study. After that, the direct and indirect effects among COMESA regions were assessed, and the role of indirect spatial effects in estimating exports was empirically demonstrated. Regarding originality and research value, and to the best of the authors’ knowledge, this is the first attempt to examine exports between COMESA and its member countries through spatial panel models using XSMLE, which is a new command for spatial analysis using STATA.

  12. Scale-Dependent Habitat Selection and Size-Based Dominance in Adult Male American Alligators

    PubMed Central

    Strickland, Bradley A.; Vilella, Francisco J.; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance and space use can provide great insight into their functional role in the ecosystem. PMID:27588947

  13. Scale-dependent habitat selection and size-based dominance in adult male American alligators

    USGS Publications Warehouse

    Strickland, Bradley A.; Vilella, Francisco; Belant, Jerrold L.

    2016-01-01

    Habitat selection is an active behavioral process that may vary across spatial and temporal scales. Animals choose an area of primary utilization (i.e., home range) then make decisions focused on resource needs within patches. Dominance may affect the spatial distribution of conspecifics and concomitant habitat selection. Size-dependent social dominance hierarchies have been documented in captive alligators, but evidence is lacking from wild populations. We studied habitat selection for adult male American alligators (Alligator mississippiensis; n = 17) on the Pearl River in central Mississippi, USA, to test whether habitat selection was scale-dependent and individual resource selectivity was a function of conspecific body size. We used K-select analysis to quantify selection at the home range scale and patches within the home range to determine selection congruency and important habitat variables. In addition, we used linear models to determine if body size was related to selection patterns and strengths. Our results indicated habitat selection of adult male alligators was a scale-dependent process. Alligators demonstrated greater overall selection for habitat variables at the patch level and less at the home range level, suggesting resources may not be limited when selecting a home range for animals in our study area. Further, diurnal habitat selection patterns may depend on thermoregulatory needs. There was no relationship between resource selection or home range size and body size, suggesting size-dependent dominance hierarchies may not have influenced alligator resource selection or space use in our sample. Though apparent habitat suitability and low alligator density did not manifest in an observed dominance hierarchy, we hypothesize that a change in either could increase intraspecific interactions, facilitating a dominance hierarchy. Due to the broad and diverse ecological roles of alligators, understanding the factors that influence their social dominance and space use can provide great insight into their functional role in the ecosystem.

  14. From chemotaxis to the cognitive map: The function of olfaction

    PubMed Central

    Jacobs, Lucia F.

    2012-01-01

    A paradox of vertebrate brain evolution is the unexplained variability in the size of the olfactory bulb (OB), in contrast to other brain regions, which scale predictably with brain size. Such variability appears to be the result of selection for olfactory function, yet there is no obvious concordance that would predict the causal relationship between OB size and behavior. This discordance may derive from assuming the primary function of olfaction is odorant discrimination and acuity. If instead the primary function of olfaction is navigation, i.e., predicting odorant distributions in time and space, variability in absolute OB size could be ascribed and explained by variability in navigational demand. This olfactory spatial hypothesis offers a single functional explanation to account for patterns of olfactory system scaling in vertebrates, the primacy of olfaction in spatial navigation, even in visual specialists, and proposes an evolutionary scenario to account for the convergence in olfactory structure and function across protostomes and deuterostomes. In addition, the unique percepts of olfaction may organize odorant information in a parallel map structure. This could have served as a scaffold for the evolution of the parallel map structure of the mammalian hippocampus, and possibly the arthropod mushroom body, and offers an explanation for similar flexible spatial navigation strategies in arthropods and vertebrates. PMID:22723365

  15. Optimization of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Schiller, N. H.; Born, J. C.

    2016-01-01

    This paper employs three acoustic propagation codes to explore variable-depth liner configurations for the NASA Langley Grazing Flow Impedance Tube (GFIT). The initial study demonstrates that a variable impedance can acceptably be treated as a uniform impedance if the spatial extent over which this variable impedance occurs is less than one-third of a wavelength of the incident sound. A constrained optimization study is used to design a variable-depth liner and to select an optimization metric. It also provides insight regarding how much attenuation can be achieved with variable-depth liners. Another optimization study is used to design a liner with much finer chamber depth resolution for the Mach 0.0 and 0.3 test conditions. Two liners are designed based on spatial rearrangement of chambers from this liner to determine whether the order is critical. Propagation code predictions suggest this is not the case. Both liners are fabricated via additive manufacturing and tested in the GFIT for the Mach 0.0 condition. Predicted and measured attenuations compare favorably across the full frequency range. These results clearly suggest that the chambers can be arranged in any order, thus offering the potential for innovative liner designs to minimize depth and weight.

  16. Sharpening method of satellite thermal image based on the geographical statistical model

    NASA Astrophysics Data System (ADS)

    Qi, Pengcheng; Hu, Shixiong; Zhang, Haijun; Guo, Guangmeng

    2016-04-01

    To improve the effectiveness of thermal sharpening in mountainous regions, paying more attention to the laws of land surface energy balance, a thermal sharpening method based on the geographical statistical model (GSM) is proposed. Explanatory variables were selected from the processes of land surface energy budget and thermal infrared electromagnetic radiation transmission, then high spatial resolution (57 m) raster layers were generated for these variables through spatially simulating or using other raster data as proxies. Based on this, the local adaptation statistical relationship between brightness temperature (BT) and the explanatory variables, i.e., the GSM, was built at 1026-m resolution using the method of multivariate adaptive regression splines. Finally, the GSM was applied to the high-resolution (57-m) explanatory variables; thus, the high-resolution (57-m) BT image was obtained. This method produced a sharpening result with low error and good visual effect. The method can avoid the blind choice of explanatory variables and remove the dependence on synchronous imagery at visible and near-infrared bands. The influences of the explanatory variable combination, sampling method, and the residual error correction on sharpening results were analyzed deliberately, and their influence mechanisms are reported herein.

  17. Myths and realities about the recovery of L׳Aquila after the earthquake

    PubMed Central

    Contreras, Diana; Blaschke, Thomas; Kienberger, Stefan; Zeil, Peter

    2014-01-01

    There is a set of myths which are linked to the recovery of L׳Aquila, such as: the L׳Aquila recovery has come to a halt, it is still in an early recovery phase, and there is economic stagnation. The objective of this paper is threefold: (a) to identify and develop a set of spatial indicators for the case of L׳Aquila, (b) to test the feasibility of a numerical assessment of these spatial indicators as a method to monitor the progress of a recovery process after an earthquake and (c) to answer the question whether the recovery process in L׳Aquila stagnates or not. We hypothesize that after an earthquake the spatial distribution of expert defined variables can constitute an index to assess the recovery process more objectively. In these articles, we aggregated several indicators of building conditions to characterize the physical dimension, and we developed building use indicators to serve as proxies for the socio-economic dimension while aiming for transferability of this approach. The methodology of this research entailed six steps: (1) fieldwork, (2) selection of a sampling area, (3) selection of the variables and indicators for the physical and socio-economic dimensions, (4) analyses of the recovery progress using spatial indicators by comparing the changes in the restricted core area as well as building use over time; (5) selection and integration of the results through expert weighting; and (6) determining hotspots of recovery in L׳Aquila. Eight categories of building conditions and twelve categories of building use were identified. Both indicators: building condition and building use are aggregated into a recovery index. The reconstruction process in the city center of L׳Aquila seems to stagnate, which is reflected by the five following variables: percentage of buildings with on-going reconstruction, partial reconstruction, reconstruction projected residential building use and transport facilities. These five factors were still at low levels within the core area in 2012. Nevertheless, we can conclude that the recovery process in L׳Aquila did not come to a halt but is still ongoing, albeit being slow. PMID:26779431

  18. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    USGS Publications Warehouse

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

  19. Distribution and predictors of wing shape and size variability in three sister species of solitary bees

    PubMed Central

    Prunier, Jérôme G.; Dewulf, Alexandre; Kuhlmann, Michael; Michez, Denis

    2017-01-01

    Morphological traits can be highly variable over time in a particular geographical area. Different selective pressures shape those traits, which is crucial in evolutionary biology. Among these traits, insect wing morphometry has already been widely used to describe phenotypic variability at the inter-specific level. On the contrary, fewer studies have focused on intra-specific wing morphometric variability. Yet, such investigations are relevant to study potential convergences of variation that could highlight micro-evolutionary processes. The recent sampling and sequencing of three solitary bees of the genus Melitta across their entire species range provides an excellent opportunity to jointly analyse genetic and morphometric variability. In the present study, we first aim to analyse the spatial distribution of the wing shape and centroid size (used as a proxy for body size) variability. Secondly, we aim to test different potential predictors of this variability at both the intra- and inter-population levels, which includes genetic variability, but also geographic locations and distances, elevation, annual mean temperature and precipitation. The comparison of spatial distribution of intra-population morphometric diversity does not reveal any convergent pattern between species, thus undermining the assumption of a potential local and selective adaptation at the population level. Regarding intra-specific wing shape differentiation, our results reveal that some tested predictors, such as geographic and genetic distances, are associated with a significant correlation for some species. However, none of these predictors are systematically identified for the three species as an important factor that could explain the intra-specific morphometric variability. As a conclusion, for the three solitary bee species and at the scale of this study, our results clearly tend to discard the assumption of the existence of a common pattern of intra-specific signal/structure within the intra-specific wing shape and body size variability. PMID:28273178

  20. Ecology and geography of human monkeypox case occurrences across Africa.

    PubMed

    Ellis, Christine K; Carroll, Darin S; Lash, Ryan R; Peterson, A Townsend; Damon, Inger K; Malekani, Jean; Formenty, Pierre

    2012-04-01

    As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping.

  1. Improving the Spatial Prediction of Soil Organic Carbon Stocks in a Complex Tropical Mountain Landscape by Methodological Specifications in Machine Learning Approaches

    PubMed Central

    Schmidt, Johannes; Glaser, Bruno

    2016-01-01

    Tropical forests are significant carbon sinks and their soils’ carbon storage potential is immense. However, little is known about the soil organic carbon (SOC) stocks of tropical mountain areas whose complex soil-landscape and difficult accessibility pose a challenge to spatial analysis. The choice of methodology for spatial prediction is of high importance to improve the expected poor model results in case of low predictor-response correlations. Four aspects were considered to improve model performance in predicting SOC stocks of the organic layer of a tropical mountain forest landscape: Different spatial predictor settings, predictor selection strategies, various machine learning algorithms and model tuning. Five machine learning algorithms: random forests, artificial neural networks, multivariate adaptive regression splines, boosted regression trees and support vector machines were trained and tuned to predict SOC stocks from predictors derived from a digital elevation model and satellite image. Topographical predictors were calculated with a GIS search radius of 45 to 615 m. Finally, three predictor selection strategies were applied to the total set of 236 predictors. All machine learning algorithms—including the model tuning and predictor selection—were compared via five repetitions of a tenfold cross-validation. The boosted regression tree algorithm resulted in the overall best model. SOC stocks ranged between 0.2 to 17.7 kg m-2, displaying a huge variability with diffuse insolation and curvatures of different scale guiding the spatial pattern. Predictor selection and model tuning improved the models’ predictive performance in all five machine learning algorithms. The rather low number of selected predictors favours forward compared to backward selection procedures. Choosing predictors due to their indiviual performance was vanquished by the two procedures which accounted for predictor interaction. PMID:27128736

  2. Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method

    DOE PAGES

    Liu, Y.; Liu, Z.; Zhang, S.; ...

    2014-05-29

    Ensemble-based parameter estimation for a climate model is emerging as an important topic in climate research. And for a complex system such as a coupled ocean–atmosphere general circulation model, the sensitivity and response of a model variable to a model parameter could vary spatially and temporally. An adaptive spatial average (ASA) algorithm is proposed to increase the efficiency of parameter estimation. Refined from a previous spatial average method, the ASA uses the ensemble spread as the criterion for selecting “good” values from the spatially varying posterior estimated parameter values; these good values are then averaged to give the final globalmore » uniform posterior parameter. In comparison with existing methods, the ASA parameter estimation has a superior performance: faster convergence and enhanced signal-to-noise ratio.« less

  3. Multiscale landscape genomic models to detect signatures of selection in the alpine plant Biscutella laevigata.

    PubMed

    Leempoel, Kevin; Parisod, Christian; Geiser, Céline; Joost, Stéphane

    2018-02-01

    Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata . The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.

  4. Habitat Heterogeneity Variably Influences Habitat Selection by Wild Herbivores in a Semi-Arid Tropical Savanna Ecosystem

    PubMed Central

    Muposhi, Victor K.; Gandiwa, Edson; Chemura, Abel; Bartels, Paul; Makuza, Stanley M.; Madiri, Tinaapi H.

    2016-01-01

    An understanding of the habitat selection patterns by wild herbivores is critical for adaptive management, particularly towards ecosystem management and wildlife conservation in semi arid savanna ecosystems. We tested the following predictions: (i) surface water availability, habitat quality and human presence have a strong influence on the spatial distribution of wild herbivores in the dry season, (ii) habitat suitability for large herbivores would be higher compared to medium-sized herbivores in the dry season, and (iii) spatial extent of suitable habitats for wild herbivores will be different between years, i.e., 2006 and 2010, in Matetsi Safari Area, Zimbabwe. MaxEnt modeling was done to determine the habitat suitability of large herbivores and medium-sized herbivores. MaxEnt modeling of habitat suitability for large herbivores using the environmental variables was successful for the selected species in 2006 and 2010, except for elephant (Loxodonta africana) for the year 2010. Overall, large herbivores probability of occurrence was mostly influenced by distance from rivers. Distance from roads influenced much of the variability in the probability of occurrence of medium-sized herbivores. The overall predicted area for large and medium-sized herbivores was not different. Large herbivores may not necessarily utilize larger habitat patches over medium-sized herbivores due to the habitat homogenizing effect of water provisioning. Effect of surface water availability, proximity to riverine ecosystems and roads on habitat suitability of large and medium-sized herbivores in the dry season was highly variable thus could change from one year to another. We recommend adaptive management initiatives aimed at ensuring dynamic water supply in protected areas through temporal closure and or opening of water points to promote heterogeneity of wildlife habitats. PMID:27680673

  5. EMI-Sensor Data to Identify Areas of Manure Accumulation on a Feedlot Surface

    USDA-ARS?s Scientific Manuscript database

    A study was initiated to test the validity of using electromagnetic induction (EMI) survey data, a prediction-based sampling strategy and ordinary linear regression modeling to predict spatially variable feedlot surface manure accumulation. A 30 m × 60 m feedlot pen with a central mound was selecte...

  6. USE OF GIS AND ANCILLARY VARIABLES TO PREDICT VOLATILE ORGANIC COMPOUND AND NITROGEN DIOXIDE LEVELS AT UNMONITORED LOCATIONS

    EPA Science Inventory

    This paper presents a GIS-based regression spatial method, known as land-use regression (LUR) modeling, to estimate ambient air pollution exposures used in the EPA El Paso Children's Health Study. Passive measurements of select volatile organic compounds (VOC) and nitrogen dioxi...

  7. An alternative way to evaluate chemistry-transport model variability

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Mailler, Sylvain; Bessagnet, Bertrand; Siour, Guillaume; Colette, Augustin; Couvidat, Florian; Meleux, Frédérik

    2017-03-01

    A simple and complementary model evaluation technique for regional chemistry transport is discussed. The methodology is based on the concept that we can learn about model performance by comparing the simulation results with observational data available for time periods other than the period originally targeted. First, the statistical indicators selected in this study (spatial and temporal correlations) are computed for a given time period, using colocated observation and simulation data in time and space. Second, the same indicators are used to calculate scores for several other years while conserving the spatial locations and Julian days of the year. The difference between the results provides useful insights on the model capability to reproduce the observed day-to-day and spatial variability. In order to synthesize the large amount of results, a new indicator is proposed, designed to compare several error statistics between all the years of validation and to quantify whether the period and area being studied were well captured by the model for the correct reasons.

  8. The test-retest reliability and minimal detectable change of spatial and temporal gait variability during usual over-ground walking for younger and older adults.

    PubMed

    Almarwani, Maha; Perera, Subashan; VanSwearingen, Jessie M; Sparto, Patrick J; Brach, Jennifer S

    2016-02-01

    Gait variability is a marker of gait performance and future mobility status in older adults. Reliability of gait variability has been examined mainly in community dwelling older adults who are likely to fluctuate over time. The purpose of this study was to compare test-retest reliability and determine minimal detectable change (MDC) of spatial and temporal gait variability in younger and older adults. Forty younger (mean age=26.6 ± 6.0 years) and 46 older adults (mean age=78.1 ± 6.2 years) were included in the study. Gait characteristics were measured twice, approximately 1 week apart, using a computerized walkway (GaitMat II). Participants completed 4 passes on the GaitMat II at their self-selected walking speed. Test-retest reliability was calculated using Intra-class correlation coefficients (ICCs(2,1)), 95% limits of agreement (95% LoA) in conjunction with Bland-Altman plots, relative limits of agreement (LoA%) and standard error of measurement (SEM). The MDC at 90% and 95% level were also calculated. ICCs of gait variability ranged 0.26-0.65 in younger and 0.28-0.74 in older adults. The LoA% and SEM were consistently higher (i.e. less reliable) for all gait variables in older compared to younger adults except SEM for step width. The MDC was consistently larger for all gait variables in older compared to younger adults except step width. ICCs were of limited utility due to restricted ranges in younger adults. Based on absolute reliability measures and MDC, younger had greater test-retest reliability and smaller MDC of spatial and temporal gait variability compared to older adults. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The Choice of Spatial Interpolation Method Affects Research Conclusions

    NASA Astrophysics Data System (ADS)

    Eludoyin, A. O.; Ijisesan, O. S.; Eludoyin, O. M.

    2017-12-01

    Studies from developing countries using spatial interpolations in geographical information systems (GIS) are few and recent. Many of the studies have adopted interpolation procedures including kriging, moving average or Inverse Weighted Average (IDW) and nearest point without the necessary recourse to their uncertainties. This study compared the results of modelled representations of popular interpolation procedures from two commonly used GIS software (ILWIS and ArcGIS) at the Obafemi Awolowo University, Ile-Ife, Nigeria. Data used were concentrations of selected biochemical variables (BOD5, COD, SO4, NO3, pH, suspended and dissolved solids) in Ere stream at Ayepe-Olode, in the southwest Nigeria. Water samples were collected using a depth-integrated grab sampling approach at three locations (upstream, downstream and along a palm oil effluent discharge point in the stream); four stations were sited along each location (Figure 1). Data were first subjected to examination of their spatial distributions and associated variogram variables (nugget, sill and range), using the PAleontological STatistics (PAST3), before the mean values were interpolated in selected GIS software for the variables using each of kriging (simple), moving average and nearest point approaches. Further, the determined variogram variables were substituted with the default values in the selected software, and their results were compared. The study showed that the different point interpolation methods did not produce similar results. For example, whereas the values of conductivity was interpolated to vary as 120.1 - 219.5 µScm-1 with kriging interpolation, it varied as 105.6 - 220.0 µScm-1 and 135.0 - 173.9µScm-1 with nearest point and moving average interpolations, respectively (Figure 2). It also showed that whereas the computed variogram model produced the best fit lines (with least associated error value, Sserror) with Gaussian model, the Spherical model was assumed default for all the distributions in the software, such that the value of nugget was assumed as 0.00, when it was rarely so (Figure 3). The study concluded that interpolation procedures may affect decisions and conclusions on modelling inferences.

  10. Spatial analysis of macro-level bicycle crashes using the class of conditional autoregressive models.

    PubMed

    Saha, Dibakar; Alluri, Priyanka; Gan, Albert; Wu, Wanyang

    2018-02-21

    The objective of this study was to investigate the relationship between bicycle crash frequency and their contributing factors at the census block group level in Florida, USA. Crashes aggregated over the census block groups tend to be clustered (i.e., spatially dependent) rather than randomly distributed. To account for the effect of spatial dependence across the census block groups, the class of conditional autoregressive (CAR) models were employed within the hierarchical Bayesian framework. Based on four years (2011-2014) of crash data, total and fatal-and-severe injury bicycle crash frequencies were modeled as a function of a large number of variables representing demographic and socio-economic characteristics, roadway infrastructure and traffic characteristics, and bicycle activity characteristics. This study explored and compared the performance of two CAR models, namely the Besag's model and the Leroux's model, in crash prediction. The Besag's models, which differ from the Leroux's models by the structure of how spatial autocorrelation are specified in the models, were found to fit the data better. A 95% Bayesian credible interval was selected to identify the variables that had credible impact on bicycle crashes. A total of 21 variables were found to be credible in the total crash model, while 18 variables were found to be credible in the fatal-and-severe injury crash model. Population, daily vehicle miles traveled, age cohorts, household automobile ownership, density of urban roads by functional class, bicycle trip miles, and bicycle trip intensity had positive effects in both the total and fatal-and-severe crash models. Educational attainment variables, truck percentage, and density of rural roads by functional class were found to be negatively associated with both total and fatal-and-severe bicycle crash frequencies. Published by Elsevier Ltd.

  11. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China

    PubMed Central

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-01-01

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area (TIA), Directly Connected Impervious Area (DCIA), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Qt and Qp; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Qp. These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management. PMID:28264521

  12. Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China.

    PubMed

    Yao, Lei; Chen, Liding; Wei, Wei

    2017-02-28

    In the context of global urbanization, urban flood risk in many cities has become a serious environmental issue, threatening the health of residents and the environment. A number of hydrological studies have linked urban flooding issues closely to the spectrum of spatial patterns of urbanization, but relatively little attention has been given to small-scale catchments within the realm of urban systems. This study aims to explore the hydrological effects of small-scaled urbanized catchments assigned with various landscape patterns. Twelve typical residential catchments in Beijing were selected as the study areas. Total Impervious Area ( TIA ), Directly Connected Impervious Area ( DCIA ), and a drainage index were used as the catchment spatial metrics. Three scenarios were designed as different spatial arrangement of catchment imperviousness. Runoff variables including total and peak runoff depth ( Q t and Q p ) were simulated by using Strom Water Management Model (SWMM). The relationship between catchment spatial patterns and runoff variables were determined, and the results demonstrated that, spatial patterns have inherent influences on flood risks in small urbanized catchments. Specifically: (1) imperviousness acts as an effective indicator in affecting both Q t and Q p ; (2) reducing the number of rainwater inlets appropriately will benefit the catchment peak flow mitigation; (3) different spatial concentrations of impervious surfaces have inherent influences on Q p . These findings provide insights into the role of urban spatial patterns in driving rainfall-runoff processes in small urbanized catchments, which is essential for urban planning and flood management.

  13. Selection of Optimal Auxiliary Soil Nutrient Variables for Cokriging Interpolation

    PubMed Central

    Song, Genxin; Zhang, Jing; Wang, Ke

    2014-01-01

    In order to explore the selection of the best auxiliary variables (BAVs) when using the Cokriging method for soil attribute interpolation, this paper investigated the selection of BAVs from terrain parameters, soil trace elements, and soil nutrient attributes when applying Cokriging interpolation to soil nutrients (organic matter, total N, available P, and available K). In total, 670 soil samples were collected in Fuyang, and the nutrient and trace element attributes of the soil samples were determined. Based on the spatial autocorrelation of soil attributes, the Digital Elevation Model (DEM) data for Fuyang was combined to explore the coordinate relationship among terrain parameters, trace elements, and soil nutrient attributes. Variables with a high correlation to soil nutrient attributes were selected as BAVs for Cokriging interpolation of soil nutrients, and variables with poor correlation were selected as poor auxiliary variables (PAVs). The results of Cokriging interpolations using BAVs and PAVs were then compared. The results indicated that Cokriging interpolation with BAVs yielded more accurate results than Cokriging interpolation with PAVs (the mean absolute error of BAV interpolation results for organic matter, total N, available P, and available K were 0.020, 0.002, 7.616, and 12.4702, respectively, and the mean absolute error of PAV interpolation results were 0.052, 0.037, 15.619, and 0.037, respectively). The results indicated that Cokriging interpolation with BAVs can significantly improve the accuracy of Cokriging interpolation for soil nutrient attributes. This study provides meaningful guidance and reference for the selection of auxiliary parameters for the application of Cokriging interpolation to soil nutrient attributes. PMID:24927129

  14. SPAGETTA: a Multi-Purpose Gridded Stochastic Weather Generator

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Huth, R.; Rotach, M. W.; Dabhi, H.

    2017-12-01

    SPAGETTA is a new multisite/gridded multivariate parametric stochastic weather generator (WG). Site-specific precipitation occurrence and amount are modelled by Markov chain and Gamma distribution, the non-precipitation variables are modelled by an autoregressive (AR) model conditioned on precipitation occurrence, and the spatial coherence of all variables is modelled following the Wilks' (2009) approach. SPAGETTA may be run in two modes. Mode 1: it is run as a classical WG, which is calibrated using weather series from multiple sites, and only then it may produce arbitrarily long synthetic series mimicking the spatial and temporal structure of the calibration data. To generate the weather series representing the future climate, the WG parameters are modified according to the climate change scenario, typically derived from GCM or RCM simulations. Mode 2: the user provides only basic information (not necessarily to be realistic) on the temporal and spatial auto-correlation structure of the weather variables and their mean annual cycle; the generator itself derives the parameters of the underlying AR model, which produces the multi-site weather series. Optionally, the user may add the spatially varying trend, which is superimposed to the synthetic series. The contribution consists of following parts: (a) Model of the WG. (b) Validation of WG in terms of the spatial temperature and precipitation characteristics, including characteristics of spatial hot/cold/dry/wet spells. (c) Results of the climate change impact experiment, in which the WG parameters representing the spatial and temporal variability are modified using the climate change scenarios and the effect on the above spatial validation indices is analysed. In this experiment, the WG is calibrated using the E-OBS gridded daily weather data for several European regions, and the climate change scenarios are derived from the selected RCM simulations (CORDEX database). (d) The second mode of operation will be demonstrated by results obtained while developing the methodology for assessing collective significance of trends in multi-site weather series. The performance of the proposed test statistics is assessed based on large number of realisations of synthetic series produced by WG assuming a given statistical structure and trend of the weather series.

  15. Modelling Ecuador's rainfall distribution according to geographical characteristics.

    NASA Astrophysics Data System (ADS)

    Tobar, Vladimiro; Wyseure, Guido

    2017-04-01

    It is known that rainfall is affected by terrain characteristics and some studies had focussed on its distribution over complex terrain. Ecuador's temporal and spatial rainfall distribution is affected by its location on the ITCZ, the marine currents in the Pacific, the Amazon rainforest, and the Andes mountain range. Although all these factors are important, we think that the latter one may hold a key for modelling spatial and temporal distribution of rainfall. The study considered 30 years of monthly data from 319 rainfall stations having at least 10 years of data available. The relatively low density of stations and their location in accessible sites near to main roads or rivers, leave large and important areas ungauged, making it not appropriate to rely on traditional interpolation techniques to estimate regional rainfall for water balance. The aim of this research was to come up with a useful model for seasonal rainfall distribution in Ecuador based on geographical characteristics to allow its spatial generalization. The target for modelling was the seasonal rainfall, characterized by nine percentiles for each one of the 12 months of the year that results in 108 response variables, later on reduced to four principal components comprising 94% of the total variability. Predictor variables for the model were: geographic coordinates, elevation, main wind effects from the Amazon and Coast, Valley and Hill indexes, and average and maximum elevation above the selected rainfall station to the east and to the west, for each one of 18 directions (50-135°, by 5°) adding up to 79 predictors. A multiple linear regression model by the Elastic-net algorithm with cross-validation was applied for each one of the PC as response to select the most important ones from the 79 predictor variables. The Elastic-net algorithm deals well with collinearity problems, while allowing variable selection in a blended approach between the Ridge and Lasso regression. The model fitting produced explained variances of 59%, 81%, 49% and 17% for PC1, PC2, PC3 and PC4, respectively, backing up the hypothesis of good correlation between geographical characteristics and seasonal rainfall patterns (comprised in the four principal components). With the obtained coefficients from the regression, the 108 rainfall percentiles for each station were back estimated giving very good results when compared with the original ones, with an overall 60% explained variance.

  16. Multivariate analysis of water quality and environmental variables in the Great Barrier Reef catchments

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Liu, S.; Western, A. W.; Webb, J. A.; Lintern, A.; Leahy, P.; Wilson, P.; Watson, M.; Waters, D.; Bende-Michl, U.

    2016-12-01

    The Great Barrier Reef (GBR) lagoon has been experiencing significant water quality deterioration due in part to agricultural intensification and urban settlement in adjacent catchments. The degradation of water quality in rivers is caused by land-derived pollutants (i.e. sediment, nutrient and pesticide). A better understanding of dynamics of water quality is essential for land management to improve the GBR ecosystem. However, water quality is also greatly influenced by natural hydrological processes. To assess influencing factors and predict the water quality accurately, selection of the most important predictors of water quality is necessary. In this work, multivariate statistical techniques - cluster analysis (CA), principal component analysis (PCA) and factor analysis (FA) - are used to reduce the complexity derived from the multidimensional water quality monitoring data. Seventeen stations are selected across the GBR catchments, and the event-based measurements of 12 variables monitored during 9 years (2006 - 2014) were analysed by means of CA and PCA/FA. The key findings are: (1) 17 stations can be grouped into two clusters according to the hierarchical CA, and the spatial dissimilarity between these sites is characterised by the different climatic and land use in the GBR catchments. (2) PCA results indicate that the first 3 PCs explain 85% of the total variance, and FA on the entire data set shows that the varifactor (VF) loadings can be used to interpret the sources of spatial variation in water quality on the GBR catchments level. The impact of soil erosion and non-point source of pollutants from agriculture contribution to VF1 and the variability in hydrological conditions and biogeochemical processes can explain the loadings in VF2. (3) FA is also performed on two groups of sites identified in CA individually, to evaluate the underlying sources that are responsible for spatial variability in water quality in the two groups. For the Cluster 1 sites, spatial variations in water quality are likely from the agricultural inputs (fertilises) and for the Cluster 2 sites, the differences in hydrological transport is responsible for large spatial variations in water quality. These findings can be applied to water quality assessment along with establish effective water and land management in the future.

  17. [Inequities in health: socio-demographic and spatial analysis of breast cancer in women from Córdoba, Argentina].

    PubMed

    Tumas, Natalia; Pou, Sonia Alejandra; Díaz, María Del Pilar

    To identify sociodemographic determinants associated with the spatial distribution of the breast cancer incidence in the province of Córdoba, Argentina, in order to reveal underlying social inequities. An ecological study was developed in Córdoba (26 counties as geographical units of analysis). The spatial autocorrelation of the crude and standardised incidence rates of breast cancer, and the sociodemographic indicators of urbanization, fertility and population ageing were estimated using Moran's index. These variables were entered into a Geographic Information System for mapping. Poisson multilevel regression models were adjusted, establishing the breast cancer incidence rates as the response variable, and by selecting sociodemographic indicators as covariables and the percentage of households with unmet basic needs as adjustment variables. In Córdoba, Argentina, a non-random pattern in the spatial distribution of breast cancer incidence rates and in certain sociodemographic indicators was found. The mean increase in annual urban population was inversely associated with breast cancer, whereas the proportion of households with unmet basic needs was directly associated with this cancer. Our results define social inequity scenarios that partially explain the geographical differentials in the breast cancer burden in Córdoba, Argentina. Women residing in socioeconomically disadvantaged households and in less urbanized areas merit special attention in future studies and in breast cancer public health activities. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Discriminability measures for predicting readability of text on textured backgrounds

    NASA Technical Reports Server (NTRS)

    Scharff, L. F.; Hill, A. L.; Ahumada, A. J. Jr; Watson, A. B. (Principal Investigator)

    2000-01-01

    Several discriminability measures were examined for their ability to predict reading search times for three levels of text contrast and a range of backgrounds (plain, a periodic texture, and four spatial-frequency-filtered textures created from the periodic texture). Search times indicate that these background variations only affect readability when the text contrast is low, and that spatial frequency content of the background affects readability. These results were not well predicted by the single variables of text contrast (Spearman rank correlation = -0.64) and background RMS contrast (0.08), but a global masking index and a spatial-frequency-selective masking index led to better predictions (-0.84 and -0.81, respectively). c2000 Optical Society of America.

  19. Spatial variability of soil moisture retrieved by SMOS satellite

    NASA Astrophysics Data System (ADS)

    Lukowski, Mateusz; Marczewski, Wojciech; Usowicz, Boguslaw; Rojek, Edyta; Slominski, Jan; Lipiec, Jerzy

    2015-04-01

    Standard statistical methods assume that the analysed variables are independent. Since the majority of the processes observed in the nature are continuous in space and time, this assumption introduces a significant limitation for understanding the examined phenomena. In classical approach, valuable information about the locations of examined observations is completely lost. However, there is a branch of statistics, called geostatistics, which is the study of random variables, but taking into account the space where they occur. A common example of so-called "regionalized variable" is soil moisture. Using in situ methods it is difficult to estimate soil moisture distribution because it is often significantly diversified. Thanks to the geostatistical methods, by employing semivariance analysis, it is possible to get the information about the nature of spatial dependences and their lengths. Since the Soil Moisture and Ocean Salinity mission launch in 2009, the estimation of soil moisture spatial distribution for regional up to continental scale started to be much easier. In this study, the SMOS L2 data for Central and Eastern Europe were examined. The statistical and geostatistical features of moisture distributions of this area were studied for selected natural soil phenomena for 2010-2014 including: freezing, thawing, rainfalls (wetting), drying and drought. Those soil water "states" were recognized employing ground data from the agro-meteorological network of ground-based stations SWEX and SMUDP2 data from SMOS. After pixel regularization, without any upscaling, the geostatistical methods were applied directly on Discrete Global Grid (15-km resolution) in ISEA 4H9 projection, on which SMOS observations are reported. Analysis of spatial distribution of SMOS soil moisture, carried out for each data set, in most cases did not show significant trends. It was therefore assumed that each of the examined distributions of soil moisture in the adopted scale satisfies ergodicity and quasi-stationarity assumptions, required for geostatistical analysis. The semivariograms examinations revealed that spatial dependences occurring in the surface soil moisture distributions for the selected area were more or less 200 km. The exception was the driest of the studied days, when the spatial correlations of soil moisture were not disturbed for a long time by any rainfall. Spatial correlation length on that day was about 400 km. Because of zonal character of frost, the spatial dependences in the examined surface soil moisture distributions during freezing/thawing found to be disturbed. Probably, the amount of water remains the same, but it is not detected by SMOS, hence analysing dielectric constant instead of soil moisture would be more appropriate. Some spatial relations of soil moisture and freezing distribution with existing maps of soil granulometric fractions and soil specific surface area for Poland have also been found. The work was partially funded under the ELBARA_PD (Penetration Depth) project No. 4000107897/13/NL/KML. ELBARA_PD project is funded by the Government of Poland through an ESA (European Space Agency) Contract under the PECS (Plan for European Cooperating States).

  20. Shorebird roost-site selection at two temporal scales: Is human disturbance a factor?

    USGS Publications Warehouse

    Peters, K.A.; Otis, D.L.

    2007-01-01

    1. Roost-site selection in shorebirds is governed by ambient factors, including environmental conditions and human disturbance. Determination of the extent to which these factors affect roost use and the associated implications for shorebird habitat protection is important for conservation strategies and informed management of human recreational use of these habitats. Shorebird conservation as a whole is a high priority world-wide because a large proportion of shorebird species is in decline. However, little is understood about the consistency of roost use by different species, what conditions affect species-specific roost-site selection, and at what spatial and temporal scales conditions influence selection. 2. We studied high-tide roost-site selection by eight species of non-breeding shorebirds on a critically important stopover and wintering refuge. We calculated spatial and temporal variability in roost use for each species based on counts and consistency of incidence. We then examined roost-site selection in relation to structural, environmental and human disturbance factors, and how this varied across spatial and temporal scales. 3. Most roosts were used less than 50% of the time, although larger roosts were used more consistently. This varied among species, with red knot Calidris canutus tending to concentrate at a few roosts and American oystercatcher Haematopus palliatus, dowitcher Limnodromus griseus and Limnodromus scolopaceus and ruddy turnstone Arenaria interpres more diffusely distributed among roosts. 4. At an annual scale, the principal factors affecting shorebird presence at roosts were roost length (size), local region, substrate and aspect. The extent and direction of these effects varied among species. Among years, red knots avoided roosts that had high average boat activity within 1000 m, but disturbance did not appear to be a factor for other species. 5. Daily roost use was influenced primarily by wind speed and the ability of roosts to provide shelter from the wind. Only dowitchers appeared to track daily disturbance, avoiding prospective roosts when boat activity within 100 m was high. 6. Synthesis and applications. Our findings emphasize the need to consider species-specific differences in temporal- and spatial-scale effects of roost-site selection factors, including human disturbance, when employing conservation measures for shorebirds. We suggest that conservation management should aim to provide a wide range of potential roosts (both natural and artificial) that could be used under different wind conditions and that are within reasonable travelling distance of preferred feeding areas. Roost use is often highly variable, and monitoring efforts must take this into account before making inferences about changes in use or selection of roost sites. ?? 2006 The Authors.

  1. Spatial parameters of walking gait and footedness.

    PubMed

    Zverev, Y P

    2006-01-01

    The present study was undertaken to assess whether footedness has effects on selected spatial and angular parameters of able-bodied gait by evaluating footprints of young adults. A total of 112 males and 93 females were selected from among students and staff members of the University of Malawi using a simple random sampling method. Footedness of subjects was assessed by the Waterloo Footedness Questionnaire Revised. Gait at natural speed was recorded using the footprint method. The following spatial parameters of gait were derived from the inked footprint sequences of subjects: step and stride lengths, gait angle and base of gait. The anthropometric measurements taken were weight, height, leg and foot length, foot breadth, shoulder width, and hip and waist circumferences. The prevalence of right-, left- and mix-footedness in the whole sample of young Malawian adults was 81%, 8.3% and 10.7%, respectively. One-way analysis of variance did not reveal a statistically significant difference between footedness categories in the mean values of anthropometric measurements (p > 0.05 for all variables). Gender differences in step and stride length values were not statistically significant. Correction of these variables for stature did not change the trend. Males had significantly broader steps than females. Normalized values of base of gait had similar gender difference. The group means of step length and normalized step length of the right and left feet were similar, for males and females. There was a significant side difference in the gait angle in both gender groups of volunteers with higher mean values on the left side compared to the right one (t = 2.64, p < 0.05 for males, and t = 2.78, p < 0.05 for females). One-way analysis of variance did not demonstrate significant difference between footedness categories in the mean values of step length, gait angle, bilateral differences in step length and gait angle, stride length, gait base and normalized gait variables of male and female volunteers (p > 0.05 for all variables). The present study demonstrated that footedness does not affect spatial and angular parameters of walking gait.

  2. Evaluation of a Two-Stage Neural Model of Glaucomatous Defect: An Approach to Reduce Test-Retest Variability

    PubMed Central

    PAN, FEI; SWANSON, WILLIAM H.; DUL, MITCHELL W.

    2006-01-01

    Purpose. The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. Methods. The two-stage neural model of Swanson et al.1 was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43° in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco’s areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10° to 21° selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. Results. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Conclusions. Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect. PMID:16840874

  3. Evaluation of a two-stage neural model of glaucomatous defect: an approach to reduce test-retest variability.

    PubMed

    Pan, Fei; Swanson, William H; Dul, Mitchell W

    2006-07-01

    The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. The two-stage neural model of Swanson et al. was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43 degrees in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco's areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10 degrees to 21 degrees selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect.

  4. Relationships Among Peripheral and Central Electrophysiological Measures of Spatial and Spectral Selectivity and Speech Perception in Cochlear Implant Users

    PubMed Central

    Scheperle, Rachel A.; Abbas, Paul J.

    2014-01-01

    Objectives The ability to perceive speech is related to the listener’s ability to differentiate among frequencies (i.e., spectral resolution). Cochlear implant (CI) users exhibit variable speech-perception and spectral-resolution abilities, which can be attributed in part to the extent of electrode interactions at the periphery (i.e., spatial selectivity). However, electrophysiological measures of peripheral spatial selectivity have not been found to correlate with speech perception. The purpose of this study was to evaluate auditory processing at the periphery and cortex using both simple and spectrally complex stimuli to better understand the stages of neural processing underlying speech perception. The hypotheses were that (1) by more completely characterizing peripheral excitation patterns than in previous studies, significant correlations with measures of spectral selectivity and speech perception would be observed, (2) adding information about processing at a level central to the auditory nerve would account for additional variability in speech perception, and (3) responses elicited with spectrally complex stimuli would be more strongly correlated with speech perception than responses elicited with spectrally simple stimuli. Design Eleven adult CI users participated. Three experimental processor programs (MAPs) were created to vary the likelihood of electrode interactions within each participant. For each MAP, a subset of 7 of 22 intracochlear electrodes was activated: adjacent (MAP 1), every-other (MAP 2), or every third (MAP 3). Peripheral spatial selectivity was assessed using the electrically evoked compound action potential (ECAP) to obtain channel-interaction functions for all activated electrodes (13 functions total). Central processing was assessed by eliciting the auditory change complex (ACC) with both spatial (electrode pairs) and spectral (rippled noise) stimulus changes. Speech-perception measures included vowel-discrimination and the Bamford-Kowal-Bench Sentence-in-Noise (BKB-SIN) test. Spatial and spectral selectivity and speech perception were expected to be poorest with MAP 1 (closest electrode spacing) and best with MAP 3 (widest electrode spacing). Relationships among the electrophysiological and speech-perception measures were evaluated using mixed-model and simple linear regression analyses. Results All electrophysiological measures were significantly correlated with each other and with speech perception for the mixed-model analysis, which takes into account multiple measures per person (i.e. experimental MAPs). The ECAP measures were the best predictor of speech perception. In the simple linear regression analysis on MAP 3 data, only the cortical measures were significantly correlated with speech; spectral ACC amplitude was the strongest predictor. Conclusions The results suggest that both peripheral and central electrophysiological measures of spatial and spectral selectivity provide valuable information about speech perception. Clinically, it is often desirable to optimize performance for individual CI users. These results suggest that ECAP measures may be the most useful for within-subject applications, when multiple measures are performed to make decisions about processor options. They also suggest that if the goal is to compare performance across individuals based on single measure, then processing central to the auditory nerve (specifically, cortical measures of discriminability) should be considered. PMID:25658746

  5. Temporal and spatial variation in pharmaceutical concentrations in an urban river system

    USGS Publications Warehouse

    Burns, Emily E.; Carter, Laura J.; Kolpin, Dana W.; Thomas-Oates, Jane; Boxall, Alistair B.A.

    2018-01-01

    Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse.

  6. Accuracy of gap analysis habitat models in predicting physical features for wildlife-habitat associations in the southwest U.S.

    USGS Publications Warehouse

    Boykin, K.G.; Thompson, B.C.; Propeck-Gray, S.

    2010-01-01

    Despite widespread and long-standing efforts to model wildlife-habitat associations using remotely sensed and other spatially explicit data, there are relatively few evaluations of the performance of variables included in predictive models relative to actual features on the landscape. As part of the National Gap Analysis Program, we specifically examined physical site features at randomly selected sample locations in the Southwestern U.S. to assess degree of concordance with predicted features used in modeling vertebrate habitat distribution. Our analysis considered hypotheses about relative accuracy with respect to 30 vertebrate species selected to represent the spectrum of habitat generalist to specialist and categorization of site by relative degree of conservation emphasis accorded to the site. Overall comparison of 19 variables observed at 382 sample sites indicated ???60% concordance for 12 variables. Directly measured or observed variables (slope, soil composition, rock outcrop) generally displayed high concordance, while variables that required judgments regarding descriptive categories (aspect, ecological system, landform) were less concordant. There were no differences detected in concordance among taxa groups, degree of specialization or generalization of selected taxa, or land conservation categorization of sample sites with respect to all sites. We found no support for the hypothesis that accuracy of habitat models is inversely related to degree of taxa specialization when model features for a habitat specialist could be more difficult to represent spatially. Likewise, we did not find support for the hypothesis that physical features will be predicted with higher accuracy on lands with greater dedication to biodiversity conservation than on other lands because of relative differences regarding available information. Accuracy generally was similar (>60%) to that observed for land cover mapping at the ecological system level. These patterns demonstrate resilience of gap analysis deductive model processes to the type of remotely sensed or interpreted data used in habitat feature predictions. ?? 2010 Elsevier B.V.

  7. The Estrada Real project and endemic diseases: the case of schistosomiasis, geoprocessing and tourism.

    PubMed

    Carvalho, Omar S; Scholte, Ronaldo G C; Guimarães, Ricardo J P S; Freitas, Corina C; Drummond, Sandra C; Amaral, Ronaldo S; Dutra, Luciano V; Oliveira, Guilherme; Massara, Cristiano L; Enk, Martin J

    2010-07-01

    Geographical Information System (GIS) is a tool that has recently been applied to better understand spatial disease distributions. Using meteorological, social, sanitation, mollusc distribution data and remote sensing variables, this study aimed to further develop the GIS technology by creating a model for the spatial distribution of schistosomiasis and to apply this model to an area with rural tourism in the Brazilian state of Minas Gerais (MG). The Estrada Real, covering about 1,400 km, is the largest and most important Brazilian tourism project, involving 163 cities in MG with different schistosomiasis prevalence rates. The model with three variables showed a R(2) = 0.34, with a standard deviation of risk estimated adequate for public health needs. The main variables selected for modelling were summer vegetation, summer minimal temperature and winter minimal temperature. The results confirmed the importance of Remote Sensing data and the valuable contribution of GIS in identifying priority areas for intervention in tourism regions which are endemic to schistosomiasis.

  8. Detecting the spatial and temporal variability of chlorophylla concentration and total suspended solids in Apalachicola Bay, Florida using MODIS imagery

    USGS Publications Warehouse

    Wang, Hongqing; Hladik, C.M.; Huang, W.; Milla, K.; Edmiston, L.; Harwell, M.A.; Schalles, J.F.

    2010-01-01

    Apalachicola Bay, Florida, accounts for 90% of Florida's and 10% of the nation's eastern oyster (Crassostrea virginica) harvesting. Chlorophyll-a concentration and total suspended solids (TSS) are two important water quality variables, among other environmental factors such as salinity, for eastern oyster production in Apalachicola Bay. In this research, we developed regression models of the relationships between the reflectance of the Moderate-Resolution Imaging Spectroradiometer (MODIS) Terra 250 m data and the two water quality variables based on the Bay-wide field data collected during 14-17 October 2002, a relatively dry period, and 3-5 April 2006, a relatively wet period, respectively. Then we selected the best regression models (highest coefficient of determination, R2) to derive Bay-wide maps of chlorophylla concentration and TSS for the two periods. The MODIS-derived maps revealed large spatial and temporal variations in chlorophylla concentration and TSS across the entire Apalachicola Bay. ?? 2010 Taylor & Francis.

  9. Experimental studies of adaptation in Clarkia xantiana. III. Phenotypic selection across a subspecies border.

    PubMed

    Anderson, Jill T; Eckhart, Vincent M; Geber, Monica A

    2015-09-01

    Sister taxa with distinct phenotypes often occupy contrasting environments in parapatric ranges, yet we generally do not know whether trait divergence reflects spatially varying selection. We conducted a reciprocal transplant experiment to test whether selection favors "native phenotypes" in two subspecies of Clarkia xantiana (Onagraceae), an annual plant in California. For four quantitative traits that differ between subspecies, we estimated phenotypic selection in subspecies' exclusive ranges and their contact zone in two consecutive years. We predicted that in the arid, pollinator-scarce eastern region, selection favors phenotypes of the native subspecies parviflora: small leaves, slow leaf growth, early flowering, and diminutive flowers. In the wetter, pollinator-rich, western range of subspecies xantiana, we expected selection for opposite phenotypes. We investigated pollinator contributions to selection by comparing naturally pollinated and pollen-supplemented individuals. For reproductive traits and for subspecies xantiana, selection generally matched expectations. The contact zone sometimes showed distinctive selection, and in ssp. parviflora selection sometimes favored nonnative phenotypes. Pollinators influenced selection on flowering time but not on flower size. Little temporal variation in selection occurred, possibly because of plastic trait responses across years. Though there were exceptions and some causes of selection remain obscure, phenotypic differentiation between subspecies appears to reflect spatially variable selection. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  10. Sex and boldness explain individual differences in spatial learning in a lizard.

    PubMed

    Carazo, Pau; Noble, Daniel W A; Chandrasoma, Dani; Whiting, Martin J

    2014-05-07

    Understanding individual differences in cognitive performance is a major challenge to animal behaviour and cognition studies. We used the Eastern water skink (Eulamprus quoyii) to examine associations between exploration, boldness and individual variability in spatial learning, a dimension of lizard cognition with important bearing on fitness. We show that males perform better than females in a biologically relevant spatial learning task. This is the first evidence for sex differences in learning in a reptile, and we argue that it is probably owing to sex-specific selective pressures that may be widespread in lizards. Across the sexes, we found a clear association between boldness after a simulated predatory attack and the probability of learning the spatial task. In contrast to previous studies, we found a nonlinear association between boldness and learning: both 'bold' and 'shy' behavioural types were more successful learners than intermediate males. Our results do not fit with recent predictions suggesting that individual differences in learning may be linked with behavioural types via high-low-risk/reward trade-offs. We suggest the possibility that differences in spatial cognitive performance may arise in lizards as a consequence of the distinct environmental variability and complexity experienced by individuals as a result of their sex and social tactics.

  11. Toward a Unified Representation of Atmospheric Convection in Variable-Resolution Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walko, Robert

    2016-11-07

    The purpose of this project was to improve the representation of convection in atmospheric weather and climate models that employ computational grids with spatially-variable resolution. Specifically, our work targeted models whose grids are fine enough over selected regions that convection is resolved explicitly, while over other regions the grid is coarser and convection is represented as a subgrid-scale process. The working criterion for a successful scheme for representing convection over this range of grid resolution was that identical convective environments must produce very similar convective responses (i.e., the same precipitation amount, rate, and timing, and the same modification of themore » atmospheric profile) regardless of grid scale. The need for such a convective scheme has increased in recent years as more global weather and climate models have adopted variable resolution meshes that are often extended into the range of resolving convection in selected locations.« less

  12. Landscape patterns and soil organic carbon stocks in agricultural bocage landscapes

    NASA Astrophysics Data System (ADS)

    Viaud, Valérie; Lacoste, Marine; Michot, Didier; Walter, Christian

    2014-05-01

    Soil organic carbon (SOC) has a crucial impact on global carbon storage at world scale. SOC spatial variability is controlled by the landscape patterns resulting from the continuous interactions between the physical environment and the society. Natural and anthropogenic processes occurring and interplaying at the landscape scale, such as soil redistribution in the lateral and vertical dimensions by tillage and water erosion processes or spatial differentiation of land-use and land-management practices, strongly affect SOC dynamics. Inventories of SOC stocks, reflecting their spatial distribution, are thus key elements to develop relevant management strategies to improving carbon sequestration and mitigating climate change and soil degradation. This study aims to quantify SOC stocks and their spatial distribution in a 1,000-ha agricultural bocage landscape with dairy production as dominant farming system (Zone Atelier Armorique, LTER Europe, NW France). The site is characterized by high heterogeneity on short distance due to a high diversity of soils with varying waterlogging, soil parent material, topography, land-use and hedgerow density. SOC content and stocks were measured up to 105-cm depth in 200 sampling locations selected using conditioned Latin hypercube sampling. Additive sampling was designed to specifically explore SOC distribution near to hedges: 112 points were sampled at fixed distance on 14 transects perpendicular from hedges. We illustrate the heterogeneity of spatial and vertical distribution of SOC stocks at landscape scale, and quantify SOC stocks in the various landscape components. Using multivariate statistics, we discuss the variability and co-variability of existing spatial organization of cropping systems, environmental factors, and SOM stocks, over landscape. Ultimately, our results may contribute to improving regional or national digital soil mapping approaches, by considering the distribution of SOC stocks within each modeling unit and by accounting for the impact of sensitive ecosystems.

  13. Genetic patterns of habitat fragmentation and past climate-change effects in the Mediterranean high-mountain plant Armeria caespitosa (Plumbaginaceae).

    PubMed

    García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto

    2013-08-01

    Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.

  14. The Evolution of Phenotypic Switching in Subdivided Populations

    PubMed Central

    Carja, Oana; Liberman, Uri; Feldman, Marcus W.

    2014-01-01

    Stochastic switching is an example of phenotypic bet hedging, where offspring can express a phenotype different from that of their parents. Phenotypic switching is well documented in viruses, yeast, and bacteria and has been extensively studied when the selection pressures vary through time. However, there has been little work on the evolution of phenotypic switching under both spatially and temporally fluctuating selection pressures. Here we use a population genetic model to explore the interaction of temporal and spatial variation in determining the evolutionary dynamics of phenotypic switching. We find that the stable switching rate is mainly determined by the rate of environmental change and the migration rate. This stable rate is also a decreasing function of the recombination rate, although this is a weaker effect than those of either the period of environmental change or the migration rate. This study highlights the interplay of spatial and temporal environmental variability, offering new insights into how migration can influence the evolution of phenotypic switching rates, mutation rates, or other sources of phenotypic variation. PMID:24496012

  15. Characterizing spatial structure of sediment E. coli populations to inform sampling design.

    PubMed

    Piorkowski, Gregory S; Jamieson, Rob C; Hansen, Lisbeth Truelstrup; Bezanson, Greg S; Yost, Chris K

    2014-01-01

    Escherichia coli can persist in streambed sediments and influence water quality monitoring programs through their resuspension into overlying waters. This study examined the spatial patterns in E. coli concentration and population structure within streambed morphological features during baseflow and following stormflow to inform sampling strategies for representative characterization of E. coli populations within a stream reach. E. coli concentrations in bed sediments were significantly different (p = 0.002) among monitoring sites during baseflow, and significant interactive effects (p = 0.002) occurred among monitoring sites and morphological features following stormflow. Least absolute shrinkage and selection operator (LASSO) regression revealed that water velocity and effective particle size (D 10) explained E. coli concentration during baseflow, whereas sediment organic carbon, water velocity and median particle diameter (D 50) were important explanatory variables following stormflow. Principle Coordinate Analysis illustrated the site-scale differences in sediment E. coli populations between disconnected stream segments. Also, E. coli populations were similar among depositional features within a reach, but differed in relation to high velocity features (e.g., riffles). Canonical correspondence analysis resolved that E. coli population structure was primarily explained by spatial (26.9–31.7 %) over environmental variables (9.2–13.1 %). Spatial autocorrelation existed among monitoring sites and morphological features for both sampling events, and gradients in mean particle diameter and water velocity influenced E. coli population structure for the baseflow and stormflow sampling events, respectively. Representative characterization of streambed E. coli requires sampling of depositional and high velocity environments to accommodate strain selectivity among these features owing to sediment and water velocity heterogeneity.

  16. Mapping the spatial pattern of temperate forest above ground biomass by integrating airborne lidar with Radarsat-2 imagery via geostatistical models

    NASA Astrophysics Data System (ADS)

    Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng

    2014-11-01

    Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.

  17. Multivariate Analysis and Modeling of Sediment Pollution Using Neural Network Models and Geostatistics

    NASA Astrophysics Data System (ADS)

    Golay, Jean; Kanevski, Mikhaïl

    2013-04-01

    The present research deals with the exploration and modeling of a complex dataset of 200 measurement points of sediment pollution by heavy metals in Lake Geneva. The fundamental idea was to use multivariate Artificial Neural Networks (ANN) along with geostatistical models and tools in order to improve the accuracy and the interpretability of data modeling. The results obtained with ANN were compared to those of traditional geostatistical algorithms like ordinary (co)kriging and (co)kriging with an external drift. Exploratory data analysis highlighted a great variety of relationships (i.e. linear, non-linear, independence) between the 11 variables of the dataset (i.e. Cadmium, Mercury, Zinc, Copper, Titanium, Chromium, Vanadium and Nickel as well as the spatial coordinates of the measurement points and their depth). Then, exploratory spatial data analysis (i.e. anisotropic variography, local spatial correlations and moving window statistics) was carried out. It was shown that the different phenomena to be modeled were characterized by high spatial anisotropies, complex spatial correlation structures and heteroscedasticity. A feature selection procedure based on General Regression Neural Networks (GRNN) was also applied to create subsets of variables enabling to improve the predictions during the modeling phase. The basic modeling was conducted using a Multilayer Perceptron (MLP) which is a workhorse of ANN. MLP models are robust and highly flexible tools which can incorporate in a nonlinear manner different kind of high-dimensional information. In the present research, the input layer was made of either two (spatial coordinates) or three neurons (when depth as auxiliary information could possibly capture an underlying trend) and the output layer was composed of one (univariate MLP) to eight neurons corresponding to the heavy metals of the dataset (multivariate MLP). MLP models with three input neurons can be referred to as Artificial Neural Networks with EXternal drift (ANNEX). Moreover, the exact number of output neurons and the selection of the corresponding variables were based on the subsets created during the exploratory phase. Concerning hidden layers, no restriction were made and multiple architectures were tested. For each MLP model, the quality of the modeling procedure was assessed by variograms: if the variogram of the residuals demonstrates pure nugget effect and if the level of the nugget exactly corresponds to the nugget value of the theoretical variogram of the corresponding variable, all the structured information has been correctly extracted without overfitting. Finally, it is worth mentioning that simple MLP models are not always able to remove all the spatial correlation structure from the data. In that case, Neural Network Residual Kriging (NNRK) can be carried out and risk assessment can be conducted with Neural Network Residual Simulations (NNRS). Finally, the results of the ANNEX models were compared to those of ordinary (co)kriging and (co)kriging with an external drift. It was shown that the ANNEX models performed better than traditional geostatistical algorithms when the relationship between the variable of interest and the auxiliary predictor was not linear. References Kanevski, M. and Maignan, M. (2004). Analysis and Modelling of Spatial Environmental Data. Lausanne: EPFL Press.

  18. Development from childhood to adulthood increases morphological and functional inter-individual variability in the right superior temporal cortex.

    PubMed

    Bonte, Milene; Frost, Martin A; Rutten, Sanne; Ley, Anke; Formisano, Elia; Goebel, Rainer

    2013-12-01

    We study the developmental trajectory of morphology and function of the superior temporal cortex (STC) in children (8-9 years), adolescents (14-15 years) and young adults. We analyze cortical surface landmarks and functional MRI (fMRI) responses to voices, other natural categories and tones and examine how hemispheric asymmetry and inter-subject variability change across age. Our results show stable morphological asymmetries across age groups, including a larger left planum temporale and a deeper right superior temporal sulcus. fMRI analyses show that a rightward lateralization for voice-selective responses is present in all groups but decreases with age. Furthermore, STC responses to voices change from being less selective and more spatially diffuse in children to highly selective and focal in adults. Interestingly, the analysis of morphological landmarks reveals that inter-subject variability increases during development in the right--but not in the left--STC. Similarly, inter-subject variability of cortically-realigned functional responses to voices, other categories and tones increases with age in the right STC. Our findings reveal asymmetric developmental changes in brain regions crucial for auditory and voice perception. The age-related increase of inter-subject variability in right STC suggests that anatomy and function of this region are shaped by unique individual developmental experiences. © 2013.

  19. A Comparison of the Intellectual Abilities of Good and Poor Problem Solvers: An Exploratory Study.

    ERIC Educational Resources Information Center

    Meyer, Ruth Ann

    This study examined a selected sample of fourth-grade students who had been previously identified as good or poor problem solvers. The pupils were compared on variables considered as "reference tests" for Verbal, Induction, Numerical, Word Fluency, Memory, Spatial Visualization, and Perceptual Speed abilities. The data were compiled to…

  20. Multi scale habitat relationships of Martes americana in northern Idaho, U.S.A.

    Treesearch

    Tzeidle N. Wasserman; Samuel A. Cushman; David O. Wallin; Jim Hayden

    2012-01-01

    We used bivariate scaling and logistic regression to investigate multiple-scale habitat selection by American marten (Martes americana). Bivariate scaling reveals dramatic differences in the apparent nature and strength of relationships between marten occupancy and a number of habitat variables across a range of spatial scales. These differences include reversals in...

  1. Continuous Variable Cluster State Generation over the Optical Spatial Mode Comb

    DOE PAGES

    Pooser, Raphael C.; Jing, Jietai

    2014-10-20

    One way quantum computing uses single qubit projective measurements performed on a cluster state (a highly entangled state of multiple qubits) in order to enact quantum gates. The model is promising due to its potential scalability; the cluster state may be produced at the beginning of the computation and operated on over time. Continuous variables (CV) offer another potential benefit in the form of deterministic entanglement generation. This determinism can lead to robust cluster states and scalable quantum computation. Recent demonstrations of CV cluster states have made great strides on the path to scalability utilizing either time or frequency multiplexingmore » in optical parametric oscillators (OPO) both above and below threshold. The techniques relied on a combination of entangling operators and beam splitter transformations. Here we show that an analogous transformation exists for amplifiers with Gaussian inputs states operating on multiple spatial modes. By judicious selection of local oscillators (LOs), the spatial mode distribution is analogous to the optical frequency comb consisting of axial modes in an OPO cavity. We outline an experimental system that generates cluster states across the spatial frequency comb which can also scale the amount of quantum noise reduction to potentially larger than in other systems.« less

  2. REGULATION OF GEOGRAPHIC VARIABILITY IN HAPLOID:DIPLOD RATIOS OF BIPHASIC SEAWEED LIFE CYCLES(1).

    PubMed

    da Silva Vieira, Vasco Manuel Nobre de Carvalho; Santos, Rui Orlando Pimenta

    2012-08-01

    The relative abundance of haploid and diploid individuals (H:D) in isomorphic marine algal biphasic cycles varies spatially, but only if vital rates of haploid and diploid phases vary differently with environmental conditions (i.e. conditional differentiation between phases). Vital rates of isomorphic phases in particular environments may be determined by subtle morphological or physiological differences. Herein, we test numerically how geographic variability in H:D is regulated by conditional differentiation between isomorphic life phases and the type of life strategy of populations (i.e. life cycles dominated by reproduction, survival or growth). Simulation conditions were selected using available data on H:D spatial variability in seaweeds. Conditional differentiation between ploidy phases had a small effect on the H:D variability for species with life strategies that invest either in fertility or in growth. Conversely, species with life strategies that invest mainly in survival, exhibited high variability in H:D through a conditional differentiation in stasis (the probability of staying in the same size class), breakage (the probability of changing to a smaller size class) or growth (the probability of changing to a bigger size class). These results were consistent with observed geographic variability in H:D of natural marine algae populations. © 2012 Phycological Society of America.

  3. Sex modifies the relationship between age and gait: a population-based study of older adults.

    PubMed

    Callisaya, Michele L; Blizzard, Leigh; Schmidt, Michael D; McGinley, Jennifer L; Srikanth, Velandai K

    2008-02-01

    Adequate mobility is essential to maintain an independent and active lifestyle. The aim of this cross-sectional study is to examine the associations of age with temporal and spatial gait variables in a population-based sample of older people, and whether these associations are modified by sex. Men and women aged 60-86 years were randomly selected from the Southern Tasmanian electoral roll (n = 223). Gait speed, step length, cadence, step width, and double-support phase were recorded with a GAITRite walkway. Regression analysis was used to model the relationship between age, sex, and gait variables. For men, after adjusting for height and weight, age was linearly associated with all gait variables (p <.05) except cadence (p =.11). For women, all variables demonstrated a curvilinear association, with age-related change in these variables commencing during the 7th decade. Significant interactions were found between age and sex for speed (p =.04), cadence (p =.01), and double-support phase (p =.03). Associations were observed between age and a broad range of temporal and spatial gait variables in this study. These associations differed by sex, suggesting that the aging process may affect gait in men and women differently. These results provide a basis for further research into sex differences and mechanisms underlying gait changes with advancing age.

  4. Interferometry in the era of time-domain astronomy

    NASA Astrophysics Data System (ADS)

    Schaefer, Gail H.; Cassan, Arnaud; Gallenne, Alexandre; Roettenbacher, Rachael M.; Schneider, Jean

    2018-04-01

    The physical nature of time variable objects is often inferred from photometric light-curves and spectroscopic variations. Long-baseline optical interferometry has the power to resolve the spatial structure of time variable sources directly in order to measure their physical properties and test the physics of the underlying models. Recent interferometric studies of variable objects include measuring the angular expansion and spatial structure during the early stages of novae outbursts, studying the transits and tidal distortions of the components in eclipsing and interacting binaries, measuring the radial pulsations in Cepheid variables, monitoring changes in the circumstellar discs around rapidly rotating massive stars, and imaging starspots. Future applications include measuring the image size and centroid displacements in gravitational microlensing events, and imaging the transits of exoplanets. Ongoing and upcoming photometric surveys will dramatically increase the number of time-variable objects detected each year, providing many potential targets to observe interferometrically. For short-lived transient events, it is critical for interferometric arrays to have the flexibility to respond rapidly to targets of opportunity and optimize the selection of baselines and beam combiners to provide the necessary resolution and sensitivity to resolve the source as its brightness and size change. We discuss the science opportunities made possible by resolving variable sources using long baseline optical interferometry.

  5. MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS (2): The Correlation Decay Distance (CDD) and the spatial variability of maximum and minimum monthly temperature in Spain during (1981-2010).

    NASA Astrophysics Data System (ADS)

    Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos

    2014-05-01

    One of the key point in the develop of the MOTEDAS dataset (see Poster 1 MOTEDAS) in the framework of the HIDROCAES Project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is the reference series for which no generalized metadata exist. In this poster we present an analysis of spatial variability of monthly minimum and maximum temperatures in the conterminous land of Spain (Iberian Peninsula, IP), by using the Correlation Decay Distance function (CDD), with the aim of evaluating, at sub-regional level, the optimal threshold distance between neighbouring stations for producing the set of reference series used in the quality control (see MOTEDAS Poster 1) and the reconstruction (see MOREDAS Poster 3). The CDD analysis for Tmax and Tmin was performed calculating a correlation matrix at monthly scale between 1981-2010 among monthly mean values of maximum (Tmax) and minimum (Tmin) temperature series (with at least 90% of data), free of anomalous data and homogenized (see MOTEDAS Poster 1), obtained from AEMEt archives (National Spanish Meteorological Agency). Monthly anomalies (difference between data and mean 1981-2010) were used to prevent the dominant effect of annual cycle in the CDD annual estimation. For each station, and time scale, the common variance r2 (using the square of Pearson's correlation coefficient) was calculated between all neighbouring temperature series and the relation between r2 and distance was modelled according to the following equation (1): Log (r2ij) = b*°dij (1) being Log(rij2) the common variance between target (i) and neighbouring series (j), dij the distance between them and b the slope of the ordinary least-squares linear regression model applied taking into account only the surrounding stations within a starting radius of 50 km and with a minimum of 5 stations required. Finally, monthly, seasonal and annual CDD values were interpolated using the Ordinary Kriging with a spherical variogram over conterminous land of Spain, and converted on a regular 10 km2 grid (resolution similar to the mean distance between stations) to map the results. In the conterminous land of Spain the distance at which couples of stations have a common variance in temperature (both maximum Tmax, and minimum Tmin) above the selected threshold (50%, r Pearson ~0.70) on average does not exceed 400 km, with relevant spatial and temporal differences. The spatial distribution of the CDD shows a clear coastland-to-inland gradient at annual, seasonal and monthly scale, with highest spatial variability along the coastland areas and lower variability inland. The highest spatial variability coincide particularly with coastland areas surrounded by mountain chains and suggests that the orography is one of the most driving factor causing higher interstation variability. Moreover, there are some differences between the behaviour of Tmax and Tmin, being Tmin spatially more homogeneous than Tmax, but its lower CDD values indicate that night-time temperature is more variable than diurnal one. The results suggest that in general local factors affects the spatial variability of monthly Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for Tmin respect to Tmax. The results suggest that in general local factors affects the spatial variability of Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for minimum temperature respect to maximum temperature. A conservative distance for reference series could be evaluated in 200 km, that we propose for continental land of Spain and use in the development of MOTEDAS.

  6. Spectral and spatial variability of undisturbed and disturbed grass under different view and illumination directions

    NASA Astrophysics Data System (ADS)

    Borel-Donohue, Christoph C.; Shivers, Sarah Wells; Conover, Damon

    2017-05-01

    It is well known that disturbed grass covered surfaces show variability with view and illumination conditions. A good example is a grass field in a soccer stadium that shows stripes indicating in which direction the grass was mowed. These spatial variations are due to a complex interplay of spectral characteristics of grass blades, density, their length and orientations. Viewing a grass surface from nadir or near horizontal directions results in observing different components. Views from a vertical direction show more variations due to reflections from the randomly oriented grass blades and their shadows. Views from near horizontal show a mixture of reflected and transmitted light from grass blades. An experiment was performed on a mowed grass surface which had paths of simulated heavy foot traffic laid down in different directions. High spatial resolution hyperspectral data cubes were taken by an imaging spectrometer covering the visible through near infrared over a period of time covering several hours. Ground truth grass reflectance spectra with a hand held spectrometer were obtained of undisturbed and disturbed areas. Close range images were taken of selected areas with a hand held camera which were then used to reconstruct the 3D geometry of the grass using structure-from-motion algorithms. Computer graphics rendering using raytracing of reconstructed and procedurally created grass surfaces were used to compute BRDF models. In this paper, we discuss differences between observed and simulated spectral and spatial variability. Based on the measurements and/or simulations, we derive simple spectral index methods to detect spatial disturbances and apply scattering models.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.

    Across a set of ecological communities connected to each other through organismal dispersal (a ‘meta-community’), turnover in composition is governed by (ecological) Drift, Selection, and Dispersal Limitation. Quantitative estimates of these processes remain elusive, but would represent a common currency needed to unify community ecology. Using a novel analytical framework we quantitatively estimate the relative influences of Drift, Selection, and Dispersal Limitation on subsurface, sediment-associated microbial meta-communities. The communities we study are distributed across two geologic formations encompassing ~12,500m3 of uranium-contaminated sediments within the Hanford Site in eastern Washington State. We find that Drift consistently governs ~25% of spatial turnovermore » in community composition; Selection dominates (governing ~60% of turnover) across spatially-structured habitats associated with fine-grained, low permeability sediments; and Dispersal Limitation is most influential (governing ~40% of turnover) across spatially-unstructured habitats associated with coarse-grained, highly-permeable sediments. Quantitative influences of Selection and Dispersal Limitation may therefore be predictable from knowledge of environmental structure. To develop a system-level conceptual model we extend our analytical framework to compare process estimates across formations, characterize measured and unmeasured environmental variables that impose Selection, and identify abiotic features that limit dispersal. Insights gained here suggest that community ecology can benefit from a shift in perspective; the quantitative approach developed here goes beyond the ‘niche vs. neutral’ dichotomy by moving towards a style of natural history in which estimates of Selection, Dispersal Limitation and Drift can be described, mapped and compared across ecological systems.« less

  8. Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China.

    PubMed

    Ding, Ning; Yang, Weifang; Zhou, Yunlei; González-Bergonzoni, Ivan; Zhang, Jie; Chen, Kai; Vidal, Nicolas; Jeppesen, Erik; Liu, Zhengwen; Wang, Beixin

    2017-01-01

    Functional traits and diversity indices have provided new insights into community responses to stressors. Most traits of aquatic organisms have frequently been tested for predictability and geographical stability in response to environmental variables, but such tests of functional diversity indices are rare. We sampled macroinvertebrates at 18 reference sites (RS) and 35 disturbed sites (DS) from headwater streams in the upper Mekong River Basin, Xishuangbanna (XSBN), China. We selected 29 qualitative categories of eight traits and then calculated five functional diversity indices, namely functional richness (FRic), functional evenness (FEve), functional dispersion (FDis), functional divergence (FDiv) and Rao's Quadratic Entropy (RaoQ), and two trait diversity indices, namely trait richness (TR) and trait diversity (TD). We used combination of RLQ and fourth-corner to examine the response of traits and functional diversity to the disturbance and environmental variables. We used variance partitioning to explore the relative role of environmental variables and spatial factors in constraining trait composition and functional diversity. We found that the relative frequency of ten trait categories, and the values of TD, TR, FRic and FDis in RS were significantly different (p<0.05) from DS. In addition, the seven traits (except for "habit") demonstrated a predictable response of trait patterns along the integrative environmental gradients. Environmental variables significantly contributed to most of the traits, functional diversity and trait diversity. However, spatial variables were mainly significant in shaping ecological traits, FRic and FEve. Our results confirm the dominant role of environmental variables in the determination of community trait composition and functional diversity, and substantiate the contribution of spatial vectors in explaining the variance of functional traits and diversity. We conclude that the traits "Refuge", "External protection", "Respiration" and "Body shape", and diversity indices FDis, TD, and TR are promising indicators of stream conditions at XSBN. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Extreme precipitation variability, forage quality and large herbivore diet selection in arid environments

    USGS Publications Warehouse

    Cain, James W.; Gedir, Jay V.; Marshal, Jason P.; Krausman, Paul R.; Allen, Jamison D.; Duff, Glenn C.; Jansen, Brian; Morgart, John R.

    2017-01-01

    Nutritional ecology forms the interface between environmental variability and large herbivore behaviour, life history characteristics, and population dynamics. Forage conditions in arid and semi-arid regions are driven by unpredictable spatial and temporal patterns in rainfall. Diet selection by herbivores should be directed towards overcoming the most pressing nutritional limitation (i.e. energy, protein [nitrogen, N], moisture) within the constraints imposed by temporal and spatial variability in forage conditions. We investigated the influence of precipitation-induced shifts in forage nutritional quality and subsequent large herbivore responses across widely varying precipitation conditions in an arid environment. Specifically, we assessed seasonal changes in diet breadth and forage selection of adult female desert bighorn sheep Ovis canadensis mexicana in relation to potential nutritional limitations in forage N, moisture and energy content (as proxied by dry matter digestibility, DMD). Succulents were consistently high in moisture but low in N and grasses were low in N and moisture until the wet period. Nitrogen and moisture content of shrubs and forbs varied among seasons and climatic periods, whereas trees had consistently high N and moderate moisture levels. Shrubs, trees and succulents composed most of the seasonal sheep diets but had little variation in DMD. Across all seasons during drought and during summer with average precipitation, forages selected by sheep were higher in N and moisture than that of available forage. Differences in DMD between sheep diets and available forage were minor. Diet breadth was lowest during drought and increased with precipitation, reflecting a reliance on few key forage species during drought. Overall, forage selection was more strongly associated with N and moisture content than energy content. Our study demonstrates that unlike north-temperate ungulates which are generally reported to be energy-limited, N and moisture may be more nutritionally limiting for desert ungulates than digestible energy.

  10. A Geostatistical Approach to the Trickle Irrigation Design in a Heterogeneous Soil 2. A Field Test

    NASA Astrophysics Data System (ADS)

    Russo, David

    1984-05-01

    In a heterogeneous field in which the soil water properties vary under a "deterministic" uniform trickle irrigation system, the midway soil-water pressure head hc and the yield of a crop also differ from place to place. These differences may, in turn, reduce the average (over the field) yield relative to the yield that would be obtained if the soil was uniform throughout the field. A field experiment was conducted to test the hypothesis that this yield reduction may be eliminated by using a spatially variable trickle irrigation system. Twenty-five plots (200 m2 each) were established on a 30-m2 grid. Half of each plot was equipped with a standard trickle irrigation system with constant spacing between emitters of d = 50 cm (control plots), and the other half was equipped with a trickle irrigation system for which the spacing between the emitters was selected by using the pertinent hydraulic properties (the saturated hydraulic conductivity Ks and the soil parameter α) according to the procedure of Bresler (1978) as described in paper 1 (Russo, 1983b). Values of hc measured at different times, as well as the total fruit yield Y of bell pepper (Capsicum frutescens var. "Maor"), were used to estimate the seasonal and the spatial distributions of hc and the spatial distribution of Y and their moments. The variograms of hc and Y were calculated and used to estimate their integral scales. It was found that the use of a spatially variable d relative to the use of a uniform d did not change the seasonal behavior of hc but reduced the spatial variability in hc and Y by 35% and 11%, respectively, and increased the integral scale of hc and Y by 30% and 10%, respectively, but increased the average total fruit yield by only 1.9%. The use of a spatially variable d reduced the dependence of Y on hc. This indicates that when the emitters are properly spaced, it is not the water but other factors that most influence yield. When a constant d was used, the dependence of Y of hc decreased with time. This and the relatively good agreement between the values of hc measured at the initial stages of the growing season and those calculated in paper 1 demonstrate that the concept of hc is important in the early stages of the plant's growth, when the root system is not fully developed. Both the theoretical (paper 1) and the experimental results showed that although Ks and α, as well as hc, varied considerably in the field the spatial variability of the crop yield was relatively small. This explains why the use of a spatially variable d essentially was not an improvement over the fixed d. It is suggested that this study will be considered as a methodological one, which can be adapted to solve practical problems associated with field spatial variability.

  11. An Adaptive Mesh Algorithm: Mesh Structure and Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scannapieco, Anthony J.

    2016-06-21

    The purpose of Adaptive Mesh Refinement is to minimize spatial errors over the computational space not to minimize the number of computational elements. The additional result of the technique is that it may reduce the number of computational elements needed to retain a given level of spatial accuracy. Adaptive mesh refinement is a computational technique used to dynamically select, over a region of space, a set of computational elements designed to minimize spatial error in the computational model of a physical process. The fundamental idea is to increase the mesh resolution in regions where the physical variables are represented bymore » a broad spectrum of modes in k-space, hence increasing the effective global spectral coverage of those physical variables. In addition, the selection of the spatially distributed elements is done dynamically by cyclically adjusting the mesh to follow the spectral evolution of the system. Over the years three types of AMR schemes have evolved; block, patch and locally refined AMR. In block and patch AMR logical blocks of various grid sizes are overlaid to span the physical space of interest, whereas in locally refined AMR no logical blocks are employed but locally nested mesh levels are used to span the physical space. The distinction between block and patch AMR is that in block AMR the original blocks refine and coarsen entirely in time, whereas in patch AMR the patches change location and zone size with time. The type of AMR described herein is a locally refi ned AMR. In the algorithm described, at any point in physical space only one zone exists at whatever level of mesh that is appropriate for that physical location. The dynamic creation of a locally refi ned computational mesh is made practical by a judicious selection of mesh rules. With these rules the mesh is evolved via a mesh potential designed to concentrate the nest mesh in regions where the physics is modally dense, and coarsen zones in regions where the physics is modally sparse.« less

  12. Generalized Dissimilarity Modeling of Late-Quaternary Variations in Pollen-Based Compositional Dissimilarity

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Blois, J.; Ferrier, S.; Manion, G.; Fitzpatrick, M.; Veloz, S.; He, F.; Liu, Z.; Otto-Bliesner, B. L.

    2011-12-01

    In Quaternary paleoecology and paleoclimatology, compositionally dissimilar fossil assemblages usually indicate dissimilar environments; this relationship underpins assemblage-level techniques for paleoenvironmental reconstruction such as mutual climatic ranges or the modern analog technique. However, there has been relatively little investigation into the form of the relationship between compositional dissimilarity and climatic dissimilarity. Here we apply generalized dissimilarity modeling (GDM; Ferrier et al. 2007) as a tool for modeling the expected non-linear relationships between compositional and climatic dissimilarity. We use the CCSM3.0 transient paleoclimatic simulations from the SynTrace working group (Liu et al. 2009) and a new generation of fossil pollen maps from eastern North America (Blois et al. 2011) to 1) assess the spatial relationships between compositional dissimilarity and climatic dissimilarity and 2) whether these spatial relationships change over time. We used a taxonomic list of 106 genus-level pollen types, six climatic variables (winter precipitation and mean temperature, summer precipitation and temperature, seasonality of precipitation, and seasonality of temperature) that were chosen to minimize collinearity, and a cross-referenced pollen and climate dataset mapped for time slices spaced 1000 years apart. When GDM was trained for one time slice, the correlation between predicted and observed spatial patterns of community dissimilarity for other times ranged between 0.3 and 0.73. The selection of climatic predictor variables changed over time, as did the form of the relationship between compositional turnover and climatic predictors. Summer temperature was the only variable selected for all time periods. These results thus suggest that the relationship between compositional dissimilarity in pollen assemblages (and, by implication, beta diversity in plant communities) and climatic dissimilarity can change over time, for reasons to be further studied.

  13. Greater sage-grouse (Centrocercus urophasianus) nesting and brood-rearing microhabitat in Nevada and California—Spatial variation in selection and survival patterns

    USGS Publications Warehouse

    Coates, Peter S.; Brussee, Brianne E.; Ricca, Mark A.; Dudko, Jonathan E.; Prochazka, Brian G.; Espinosa, Shawn P.; Casazza, Michael L.; Delehanty, David J.

    2017-08-10

    Greater sage-grouse (Centrocercus urophasianus; hereinafter, "sage-grouse") are highly dependent on sagebrush (Artemisia spp.) dominated vegetation communities for food and cover from predators. Although this species requires the presence of sagebrush shrubs in the overstory, it also inhabits a broad geographic distribution with significant gradients in precipitation and temperature that drive variation in sagebrush ecosystem structure and concomitant shrub understory conditions. Variability in understory conditions across the species’ range may be responsible for the sometimes contradictory findings in the scientific literature describing sage-grouse habitat use and selection during important life history stages, such as nesting. To help understand the importance of this variability and to help guide management actions, we evaluated the nesting and brood-rearing microhabitat factors that influence selection and survival patterns in the Great Basin using a large dataset of microhabitat characteristics from study areas spanning northern Nevada and a portion of northeastern California from 2009 to 2016. The spatial and temporal coverage of the dataset provided a powerful opportunity to evaluate microhabitat factors important to sage-grouse reproduction, while also considering habitat variation associated with different climatic conditions and areas affected by wildfire. The summary statistics for numerous microhabitat factors, and the strength of their association with sage-grouse habitat selection and survival, are provided in this report to support decisions by land managers, policy-makers, and others with the best-available science in a timely manner.

  14. Spatially variable natural selection and the divergence between parapatric subspecies of lodgepole pine (Pinus contorta, Pinaceae).

    PubMed

    Eckert, Andrew J; Shahi, Hurshbir; Datwyler, Shannon L; Neale, David B

    2012-08-01

    Plant populations arrayed across sharp environmental gradients are ideal systems for identifying the genetic basis of ecologically relevant phenotypes. A series of five uplifted marine terraces along the northern coast of California represents one such system where morphologically distinct populations of lodgepole pine (Pinus contorta) are distributed across sharp soil gradients ranging from fertile soils near the coast to podzolic soils ca. 5 km inland. A total of 92 trees was sampled across four coastal marine terraces (N = 10-46 trees/terrace) located in Mendocino County, California and sequenced for a set of 24 candidate genes for growth and responses to various soil chemistry variables. Statistical analyses relying on patterns of nucleotide diversity were employed to identify genes whose diversity patterns were inconsistent with three null models. Most genes displayed patterns of nucleotide diversity that were consistent with null models (N = 19) or with the presence of paralogs (N = 3). Two genes, however, were exceptional: an aluminum responsive ABC-transporter with F(ST) = 0.664 and an inorganic phosphate transporter characterized by divergent haplotypes segregating at intermediate frequencies in most populations. Spatially variable natural selection along gradients of aluminum and phosphate ion concentrations likely accounted for both outliers. These results shed light on some of the genetic components comprising the extended phenotype of this ecosystem, as well as highlight ecotones as fruitful study systems for the detection of adaptive genetic variants.

  15. Spatial Variability of Snowpack Properties On Small Slopes

    NASA Astrophysics Data System (ADS)

    Pielmeier, C.; Kronholm, K.; Schneebeli, M.; Schweizer, J.

    The spatial variability of alpine snowpacks is created by a variety of parameters like deposition, wind erosion, sublimation, melting, temperature, radiation and metamor- phism of the snow. Spatial variability is thought to strongly control the avalanche initi- ation and failure propagation processes. Local snowpack measurements are currently the basis for avalanche warning services and there exist contradicting hypotheses about the spatial continuity of avalanche active snow layers and interfaces. Very little about the spatial variability of the snowpack is known so far, therefore we have devel- oped a systematic and objective method to measure the spatial variability of snowpack properties, layering and its relation to stability. For a complete coverage, the analysis of the spatial variability has to entail all scales from mm to km. In this study the small to medium scale spatial variability is investigated, i.e. the range from centimeters to tenths of meters. During the winter 2000/2001 we took systematic measurements in lines and grids on a flat snow test field with grid distances from 5 cm to 0.5 m. Fur- thermore, we measured systematic grids with grid distances between 0.5 m and 2 m in undisturbed flat fields and on small slopes above the tree line at the Choerbschhorn, in the region of Davos, Switzerland. On 13 days we measured the spatial pattern of the snowpack stratigraphy with more than 110 snow micro penetrometer measure- ments at slopes and flat fields. Within this measuring grid we placed 1 rutschblock and 12 stuffblock tests to measure the stability of the snowpack. With the large num- ber of measurements we are able to use geostatistical methods to analyse the spatial variability of the snowpack. Typical correlation lengths are calculated from semivari- ograms. Discerning the systematic trends from random spatial variability is analysed using statistical models. Scale dependencies are shown and recurring scaling patterns are outlined. The importance of the small and medium scale spatial variability for the larger (kilometer) scale spatial variability as well as for the avalanche formation are discussed. Finally, an outlook on spatial models for the snowpack variability is given.

  16. Determination of Spatially Resolved Tablet Density and Hardness Using Near-Infrared Chemical Imaging (NIR-CI).

    PubMed

    Talwar, Sameer; Roopwani, Rahul; Anderson, Carl A; Buckner, Ira S; Drennen, James K

    2017-08-01

    Near-infrared chemical imaging (NIR-CI) combines spectroscopy with digital imaging, enabling spatially resolved analysis and characterization of pharmaceutical samples. Hardness and relative density are critical quality attributes (CQA) that affect tablet performance. Intra-sample density or hardness variability can reveal deficiencies in formulation design or the tableting process. This study was designed to develop NIR-CI methods to predict spatially resolved tablet density and hardness. The method was implemented using a two-step procedure. First, NIR-CI was used to develop a relative density/solid fraction (SF) prediction method for pure microcrystalline cellulose (MCC) compacts only. A partial least squares (PLS) model for predicting SF was generated by regressing the spectra of certain representative pixels selected from each image against the compact SF. Pixel selection was accomplished with a threshold based on the Euclidean distance from the median tablet spectrum. Second, micro-indentation was performed on the calibration compacts to obtain hardness values. A univariate model was developed by relating the empirical hardness values to the NIR-CI predicted SF at the micro-indented pixel locations: this model generated spatially resolved hardness predictions for the entire tablet surface.

  17. Analysis of variability of tropical Pacific sea surface temperatures

    NASA Astrophysics Data System (ADS)

    Davies, Georgina; Cressie, Noel

    2016-11-01

    Sea surface temperature (SST) in the Pacific Ocean is a key component of many global climate models and the El Niño-Southern Oscillation (ENSO) phenomenon. We shall analyse SST for the period November 1981-December 2014. To study the temporal variability of the ENSO phenomenon, we have selected a subregion of the tropical Pacific Ocean, namely the Niño 3.4 region, as it is thought to be the area where SST anomalies indicate most clearly ENSO's influence on the global atmosphere. SST anomalies, obtained by subtracting the appropriate monthly averages from the data, are the focus of the majority of previous analyses of the Pacific and other oceans' SSTs. Preliminary data analysis showed that not only Niño 3.4 spatial means but also Niño 3.4 spatial variances varied with month of the year. In this article, we conduct an analysis of the raw SST data and introduce diagnostic plots (here, plots of variability vs. central tendency). These plots show strong negative dependence between the spatial standard deviation and the spatial mean. Outliers are present, so we consider robust regression to obtain intercept and slope estimates for the 12 individual months and for all-months-combined. Based on this mean-standard deviation relationship, we define a variance-stabilizing transformation. On the transformed scale, we describe the Niño 3.4 SST time series with a statistical model that is linear, heteroskedastic, and dynamical.

  18. Spatially distributed modeling of soil organic carbon across China with improved accuracy

    NASA Astrophysics Data System (ADS)

    Li, Qi-quan; Zhang, Hao; Jiang, Xin-ye; Luo, Youlin; Wang, Chang-quan; Yue, Tian-xiang; Li, Bing; Gao, Xue-song

    2017-06-01

    There is a need for more detailed spatial information on soil organic carbon (SOC) for the accurate estimation of SOC stock and earth system models. As it is effective to use environmental factors as auxiliary variables to improve the prediction accuracy of spatially distributed modeling, a combined method (HASM_EF) was developed to predict the spatial pattern of SOC across China using high accuracy surface modeling (HASM), artificial neural network (ANN), and principal component analysis (PCA) to introduce land uses, soil types, climatic factors, topographic attributes, and vegetation cover as predictors. The performance of HASM_EF was compared with ordinary kriging (OK), OK, and HASM combined, respectively, with land uses and soil types (OK_LS and HASM_LS), and regression kriging combined with land uses and soil types (RK_LS). Results showed that HASM_EF obtained the lowest prediction errors and the ratio of performance to deviation (RPD) presented the relative improvements of 89.91%, 63.77%, 55.86%, and 42.14%, respectively, compared to the other four methods. Furthermore, HASM_EF generated more details and more realistic spatial information on SOC. The improved performance of HASM_EF can be attributed to the introduction of more environmental factors, to explicit consideration of the multicollinearity of selected factors and the spatial nonstationarity and nonlinearity of relationships between SOC and selected factors, and to the performance of HASM and ANN. This method may play a useful tool in providing more precise spatial information on soil parameters for global modeling across large areas.

  19. Temporal and spatial variation in pharmaceutical concentrations in an urban river system.

    PubMed

    Burns, Emily E; Carter, Laura J; Kolpin, Dana W; Thomas-Oates, Jane; Boxall, Alistair B A

    2018-06-15

    Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Progress and Understanding Spatial and Temporal Variability of PM2.5 and its Components in the Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) measured personal exposures, ambient, residential indoor and residential outdoor concentrations of select PM2.5 aerosol components (SO4, NO3, Fe, Si, Ca, K, Mn, Pb, Zn, EC and OC) over a thr...

  1. Spatial and temporal ecology of oak toads (Bufo quercicus) on a Florida landscape

    Treesearch

    Cathryn H. Greenberg; George W. Tanner

    2005-01-01

    We used data from 10 years of continuous, concurrent monitoring of oak toads at eight isolated, ephemeral ponds in Florida longleaf pine-wiregrass uplands to address: (1): did weather variables affect movement patterns of oak toads? (2) did pond hydrology and the condition of surrounding uplands affect pond selection by adults or juvenile recruitment? (3) were...

  2. Drinking Water Quality Criterion - Based site Selection of Aquifer Storage and Recovery Scheme in Chou-Shui River Alluvial Fan

    NASA Astrophysics Data System (ADS)

    Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.

    2015-12-01

    Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.

  3. Assessment of the Suitability of High Resolution Numerical Weather Model Outputs for Hydrological Modelling in Mountainous Cold Regions

    NASA Astrophysics Data System (ADS)

    Rasouli, K.; Pomeroy, J. W.; Hayashi, M.; Fang, X.; Gutmann, E. D.; Li, Y.

    2017-12-01

    The hydrology of mountainous cold regions has a large spatial variability that is driven both by climate variability and near-surface process variability associated with complex terrain and patterns of vegetation, soils, and hydrogeology. There is a need to downscale large-scale atmospheric circulations towards the fine scales that cold regions hydrological processes operate at to assess their spatial variability in complex terrain and quantify uncertainties by comparison to field observations. In this research, three high resolution numerical weather prediction models, namely, the Intermediate Complexity Atmosphere Research (ICAR), Weather Research and Forecasting (WRF), and Global Environmental Multiscale (GEM) models are used to represent spatial and temporal patterns of atmospheric conditions appropriate for hydrological modelling. An area covering high mountains and foothills of the Canadian Rockies was selected to assess and compare high resolution ICAR (1 km × 1 km), WRF (4 km × 4 km), and GEM (2.5 km × 2.5 km) model outputs with station-based meteorological measurements. ICAR with very low computational cost was run with different initial and boundary conditions and with finer spatial resolution, which allowed an assessment of modelling uncertainty and scaling that was difficult with WRF. Results show that ICAR, when compared with WRF and GEM, performs very well in precipitation and air temperature modelling in the Canadian Rockies, while all three models show a fair performance in simulating wind and humidity fields. Representation of local-scale atmospheric dynamics leading to realistic fields of temperature and precipitation by ICAR, WRF, and GEM makes these models suitable for high resolution cold regions hydrological predictions in complex terrain, which is a key factor in estimating water security in western Canada.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wei; Balkovic, Juraj; van der Velde, M.

    Crop models are increasingly used to assess impacts of climate change/variability and management practices on productivity and environmental performance of alternative cropping systems. Calibration is an important procedure to improve reliability of model simulations, especially for large area applications. However, global-scale crop model calibration has rarely been exercised due to limited data availability and expensive computing cost. Here we present a simple approach to calibrate Environmental Policy Integrated Climate (EPIC) model for a global implementation of rice. We identify four parameters (potential heat unit – PHU, planting density – PD, harvest index – HI, and biomass energy ratio – BER)more » and calibrate them regionally to capture the spatial pattern of reported rice yield in 2000. Model performance is assessed by comparing simulated outputs with independent FAO national data. The comparison demonstrates that the global calibration scheme performs satisfactorily in reproducing the spatial pattern of rice yield, particularly in main rice production areas. Spatial agreement increases substantially when more parameters are selected and calibrated, but with varying efficiencies. Among the parameters, PHU and HI exhibit the highest efficiencies in increasing the spatial agreement. Simulations with different calibration strategies generate a pronounced discrepancy of 5–35% in mean yields across latitude bands, and a small to moderate difference in estimated yield variability and yield changing trend for the period of 1981–2000. Present calibration has little effects in improving simulated yield variability and trends at both regional and global levels, suggesting further works are needed to reproduce temporal variability of reported yields. This study highlights the importance of crop models’ calibration, and presents the possibility of a transparent and consistent up scaling approach for global crop simulations given current availability of global databases of weather, soil, crop calendar, fertilizer and irrigation management information, and reported yield.« less

  5. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes

    PubMed Central

    Ghosh, Subimal; Vittal, H.; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K. S.; Dhanesh, Y.; Sudheer, K. P.; Gunthe, S. S.

    2016-01-01

    India’s agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins. PMID:27463092

  6. Indian Summer Monsoon Rainfall: Implications of Contrasting Trends in the Spatial Variability of Means and Extremes.

    PubMed

    Ghosh, Subimal; Vittal, H; Sharma, Tarul; Karmakar, Subhankar; Kasiviswanathan, K S; Dhanesh, Y; Sudheer, K P; Gunthe, S S

    2016-01-01

    India's agricultural output, economy, and societal well-being are strappingly dependent on the stability of summer monsoon rainfall, its variability and extremes. Spatial aggregate of intensity and frequency of extreme rainfall events over Central India are significantly increasing, while at local scale they are spatially non-uniform with increasing spatial variability. The reasons behind such increase in spatial variability of extremes are poorly understood and the trends in mean monsoon rainfall have been greatly overlooked. Here, by using multi-decadal gridded daily rainfall data over entire India, we show that the trend in spatial variability of mean monsoon rainfall is decreasing as exactly opposite to that of extremes. The spatial variability of extremes is attributed to the spatial variability of the convective rainfall component. Contrarily, the decrease in spatial variability of the mean rainfall over India poses a pertinent research question on the applicability of large scale inter-basin water transfer by river inter-linking to address the spatial variability of available water in India. We found a significant decrease in the monsoon rainfall over major water surplus river basins in India. Hydrological simulations using a Variable Infiltration Capacity (VIC) model also revealed that the water yield in surplus river basins is decreasing but it is increasing in deficit basins. These findings contradict the traditional notion of dry areas becoming drier and wet areas becoming wetter in response to climate change in India. This result also calls for a re-evaluation of planning for river inter-linking to supply water from surplus to deficit river basins.

  7. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    PubMed

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  8. Variability in Prefrontal Hemodynamic Response during Exposure to Repeated Self-Selected Music Excerpts, a Near-Infrared Spectroscopy Study

    PubMed Central

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes. PMID:25837268

  9. Performance of some biotic indices in the real variable world: a case study at different spatial scales in North-Western Mediterranean Sea.

    PubMed

    Tataranni, Mariella; Lardicci, Claudio

    2010-01-01

    The aim of this study was to analyse the variability of four different benthic biotic indices (AMBI, BENTIX, H', M-AMBI) in two marine coastal areas of the North-Western Mediterranean Sea. In each coastal area, 36 replicates were randomly selected according to a hierarchical sampling design, which allowed estimating the variance components of the indices associated with four different spatial scales (ranging from metres to kilometres). All the analyses were performed at two different sampling periods in order to evaluate if the observed trends were consistent over the time. The variance components of the four indices revealed complex trends and different patterns in the two sampling periods. These results highlighted that independently from the employed index, a rigorous and appropriate sampling design taking into account different scales should always be used in order to avoid erroneous classifications and to develop effective monitoring programs.

  10. Prediction of Ba, Mn and Zn for tropical soils using iron oxides and magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Marques Júnior, José; Arantes Camargo, Livia; Reynaldo Ferracciú Alleoni, Luís; Tadeu Pereira, Gener; De Bortoli Teixeira, Daniel; Santos Rabelo de Souza Bahia, Angelica

    2017-04-01

    Agricultural activity is an important source of potentially toxic elements (PTEs) in soil worldwide but particularly in heavily farmed areas. Spatial distribution characterization of PTE contents in farming areas is crucial to assess further environmental impacts caused by soil contamination. Designing prediction models become quite useful to characterize the spatial variability of continuous variables, as it allows prediction of soil attributes that might be difficult to attain in a large number of samples through conventional methods. This study aimed to evaluate, in three geomorphic surfaces of Oxisols, the capacity for predicting PTEs (Ba, Mn, Zn) and their spatial variability using iron oxides and magnetic susceptibility (MS). Soil samples were collected from three geomorphic surfaces and analyzed for chemical, physical, mineralogical properties, as well as magnetic susceptibility (MS). PTE prediction models were calibrated by multiple linear regression (MLR). MLR calibration accuracy was evaluated using the coefficient of determination (R2). PTE spatial distribution maps were built using the values calculated by the calibrated models that reached the best accuracy by means of geostatistics. The high correlations between the attributes clay, MS, hematite (Hm), iron oxides extracted by sodium dithionite-citrate-bicarbonate (Fed), and iron oxides extracted using acid ammonium oxalate (Feo) with the elements Ba, Mn, and Zn enabled them to be selected as predictors for PTEs. Stepwise multiple linear regression showed that MS and Fed were the best PTE predictors individually, as they promoted no significant increase in R2 when two or more attributes were considered together. The MS-calibrated models for Ba, Mn, and Zn prediction exhibited R2 values of 0.88, 0.66, and 0.55, respectively. These are promising results since MS is a fast, cheap, and non-destructive tool, allowing the prediction of a large number of samples, which in turn enables detailed mapping of large areas. MS predicted values enabled the characterization and the understanding of spatial variability of the studied PTEs.

  11. Factors affecting plant species composition of hedgerows: relative importance and hierarchy

    NASA Astrophysics Data System (ADS)

    Deckers, Bart; Hermy, Martin; Muys, Bart

    2004-07-01

    Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.

  12. Increased variability of watershed areas in patients with high-grade carotid stenosis.

    PubMed

    Kaczmarz, Stephan; Griese, Vanessa; Preibisch, Christine; Kallmayer, Michael; Helle, Michael; Wustrow, Isabel; Petersen, Esben Thade; Eckstein, Hans-Henning; Zimmer, Claus; Sorg, Christian; Göttler, Jens

    2018-03-01

    Watershed areas (WSAs) of the brain are most susceptible to acute hypoperfusion due to their peripheral location between vascular territories. Additionally, chronic WSA-related vascular processes underlie cognitive decline especially in patients with cerebral hemodynamic compromise. Despite of high relevance for both clinical diagnostics and research, individual in vivo WSA definition is fairly limited to date. Thus, this study proposes a standardized segmentation approach to delineate individual WSAs by use of time-to-peak (TTP) maps and investigates spatial variability of individual WSAs. We defined individual watershed masks based on relative TTP increases in 30 healthy elderly persons and 28 patients with unilateral, high-grade carotid stenosis, being at risk for watershed-related hemodynamic impairment. Determined WSA location was confirmed by an arterial transit time atlas and individual super-selective arterial spin labeling. We compared spatial variability of WSA probability maps between groups and assessed TTP differences between hemispheres in individual and group-average watershed locations. Patients showed significantly higher spatial variability of WSAs than healthy controls. Perfusion on the side of the stenosis was delayed within individual watershed masks as compared to a watershed template derived from controls, being independent from the grade of the stenosis and collateralization status of the circle of Willis. Results demonstrate feasibility of individual WSA delineation by TTP maps in healthy elderly and carotid stenosis patients. Data indicate necessity of individual segmentation approaches especially in patients with hemodynamic compromise to detect critical regions of impaired hemodynamics.

  13. QKD Via a Quantum Wavelength Router Using Spatial Soliton

    NASA Astrophysics Data System (ADS)

    Kouhnavard, M.; Amiri, I. S.; Afroozeh, A.; Jalil, M. A.; Ali, J.; Yupapin, P. P.

    2011-05-01

    A system for continuous variable quantum key distribution via a wavelength router is proposed. The Kerr type of light in the nonlinear microring resonator (NMRR) induces the chaotic behavior. In this proposed system chaotic signals are generated by an optical soliton or Gaussian pulse within a NMRR system. The parameters, such as input power, MRRs radii and coupling coefficients can change and plays important role in determining the results in which the continuous signals are generated spreading over the spectrum. Large bandwidth signals of optical soliton are generated by the input pulse propagating within the MRRs, which is allowed to form the continuous wavelength or frequency with large tunable channel capacity. The continuous variable QKD is formed by using the localized spatial soliton pulses via a quantum router and networks. The selected optical spatial pulse can be used to perform the secure communication network. Here the entangled photon generated by chaotic signals has been analyzed. The continuous entangled photon is generated by using the polarization control unit incorporating into the MRRs, required to provide the continuous variable QKD. Results obtained have shown that the application of such a system for the simultaneous continuous variable quantum cryptography can be used in the mobile telephone hand set and networks. In this study frequency band of 500 MHz and 2.0 GHz and wavelengths of 775 nm, 2,325 nm and 1.55 μm can be obtained for QKD use with input optical soliton and Gaussian beam respectively.

  14. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.

    PubMed

    Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F

    2017-07-01

    Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.

  15. Effects of spatial disturbance on common loon nest site selection and territory success

    USGS Publications Warehouse

    McCarthy, K.P.; DeStefano, S.

    2011-01-01

    The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R 2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007-2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement. ?? 2011 The Wildlife Society.

  16. Modelling the geographical distribution of soil-transmitted helminth infections in Bolivia.

    PubMed

    Chammartin, Frédérique; Scholte, Ronaldo G C; Malone, John B; Bavia, Mara E; Nieto, Prixia; Utzinger, Jürg; Vounatsou, Penelope

    2013-05-25

    The prevalence of infection with the three common soil-transmitted helminths (i.e. Ascaris lumbricoides, Trichuris trichiura, and hookworm) in Bolivia is among the highest in Latin America. However, the spatial distribution and burden of soil-transmitted helminthiasis are poorly documented. We analysed historical survey data using Bayesian geostatistical models to identify determinants of the distribution of soil-transmitted helminth infections, predict the geographical distribution of infection risk, and assess treatment needs and costs in the frame of preventive chemotherapy. Rigorous geostatistical variable selection identified the most important predictors of A. lumbricoides, T. trichiura, and hookworm transmission. Results show that precipitation during the wettest quarter above 400 mm favours the distribution of A. lumbricoides. Altitude has a negative effect on T. trichiura. Hookworm is sensitive to temperature during the coldest month. We estimate that 38.0%, 19.3%, and 11.4% of the Bolivian population is infected with A. lumbricoides, T. trichiura, and hookworm, respectively. Assuming independence of the three infections, 48.4% of the population is infected with any soil-transmitted helminth. Empirical-based estimates, according to treatment recommendations by the World Health Organization, suggest a total of 2.9 million annualised treatments for the control of soil-transmitted helminthiasis in Bolivia. We provide estimates of soil-transmitted helminth infections in Bolivia based on high-resolution spatial prediction and an innovative variable selection approach. However, the scarcity of the data suggests that a national survey is required for more accurate mapping that will govern spatial targeting of soil-transmitted helminthiasis control.

  17. Characterizing habitat suitability for a central-place forager in a dynamic marine environment.

    PubMed

    Briscoe, Dana K; Fossette, Sabrina; Scales, Kylie L; Hazen, Elliott L; Bograd, Steven J; Maxwell, Sara M; McHuron, Elizabeth A; Robinson, Patrick W; Kuhn, Carey; Costa, Daniel P; Crowder, Larry B; Lewison, Rebecca L

    2018-03-01

    Characterizing habitat suitability for a marine predator requires an understanding of the environmental heterogeneity and variability over the range in which a population moves during a particular life cycle. Female California sea lions ( Zalophus californianus ) are central-place foragers and are particularly constrained while provisioning their young. During this time, habitat selection is a function of prey availability and proximity to the rookery, which has important implications for reproductive and population success. We explore how lactating females may select habitat and respond to environmental variability over broad spatial and temporal scales within the California Current System. We combine near-real-time remotely sensed satellite oceanography, animal tracking data ( n  = 72) from November to February over multiple years (2003-2009) and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea lion occurrence based on environmental covariates. Results indicate that sea lion presence is associated with cool ( <14°C ), productive waters, shallow depths, increased eddy activity, and positive sea-level anomalies. Predictive habitat maps generated from these biophysical associations suggest winter foraging areas are spatially consistent in the nearshore and offshore environments, except during the 2004-2005 winter, which coincided with an El Niño event. Here, we show how a species distribution model can provide broadscale information on the distribution of female California sea lions during an important life history stage and its implications for population dynamics and spatial management.

  18. The complex roles of space and environment in structuring functional, taxonomic and phylogenetic beta diversity of frogs in the Atlantic Forest

    PubMed Central

    Luiz, Amom Mendes; Sawaya, Ricardo J.

    2018-01-01

    Ecological communities are complex entities that can be maintained and structured by niche-based processes such as environmental conditions, and spatial processes such as dispersal. Thus, diversity patterns may be shaped simultaneously at different spatial scales by very distinct processes. Herein we assess whether and how functional, taxonomic, and phylogenetic beta diversities of frog tadpoles are explained by environmental and/or spatial predictors. We implemented a distance–based redundancy analysis to explore variation in components of beta diversity explained by pure environmental and pure spatial predictors, as well as their interactions, at both fine and broad spatial scales. Our results indicated important but complex roles of spatial and environmental predictors in structuring phylogenetic, taxonomic and functional beta diversities. The pure fine-scales spatial fraction was more important in structuring all beta diversity components, especially to functional and taxonomical spatial turnover. Environmental variables such as canopy cover and vegetation structure were important predictors of all components, but especially to functional and taxonomic beta diversity. We emphasize that distinct factors related to environment and space are affecting distinct components of beta diversity in different ways. Although weaker, phylogenetic beta diversity, which is structured more on biogeographical scales, and thus can be represented by spatially structured processes, was more related to broad spatial processes than other components. However, selected fine-scale spatial predictors denoted negative autocorrelation, which may be revealing the existence of differences in unmeasured habitat variables among samples. Although overall important, local environmental-based processes explained better functional and taxonomic beta diversity, as these diversity components carry an important ecological value. We highlight the importance of assessing different components of diversity patterns at different scales by spatially explicit models in order to improve our understanding of community structure and help to unravel the complex nature of biodiversity. PMID:29672575

  19. Geographic patterns of networks derived from extreme precipitation over the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Stolbova, Veronika; Bookhagen, Bodo; Marwan, Norbert; Kurths, Juergen

    2014-05-01

    Complex networks (CN) and event synchronization (ES) methods have been applied to study a number of climate phenomena such as Indian Summer Monsoon (ISM), South-American Monsoon, and African Monsoon. These methods proved to be powerful tools to infer interdependencies in climate dynamics between geographical sites, spatial structures, and key regions of the considered climate phenomenon. Here, we use these methods to study the spatial temporal variability of the extreme rainfall over the Indian subcontinent, in order to filter the data by coarse-graining the network, and to identify geographic patterns that are signature features (spatial signatures) of the ISM. We find four main geographic patterns of networks derived from extreme precipitation over the Indian subcontinent using up-to-date satellite-derived, and high temporal and spatial resolution rain-gauge interpolated daily rainfall datasets. In order to prove that our results are also relevant for other climatic variables like pressure and temperature, we use re-analysis data provided by the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR). We find that two of the patterns revealed from the CN extreme rainfall analysis coincide with those obtained for the pressure and temperature fields, and all four above mentioned patterns can be explained by topography, winds, and monsoon circulation. CN and ES enable to select the most informative regions for the ISM, providing realistic description of the ISM dynamics with fewer data, and also help to infer geographic pattern that are spatial signatures of the ISM. These patterns deserve a special attention for the meteorologists and can be used as markers of the ISM variability.

  20. Environmental and Spatial Influences on Biogeography and Community Structure of Benthic Diatoms

    NASA Astrophysics Data System (ADS)

    Plante, C.; Hill-Spanik, K.; Lowry, J.

    2016-02-01

    Several theoretical and practical reasons suggest that benthic microalgae could be useful bioindicators. For instance, an ideal indicator species or community would be associated with a given habitat due to local physical conditions or biotic interactions (i.e., `environmental filtering'), not due to dispersal limitation. Due to their small size, immense abundances, and reliance on passive dispersal, the popular notion about micro-organisms is that `Everything is everywhere, but, the environment selects' (Baas-Becking 1934). Although much recent research concerning planktonic bacteria and dispersal limitation has been conducted, very little in this regard is known about microeukaryotes, especially benthic microbes. The purpose of our study was to identify and compare spatial and environmental influences on benthic diatom community structure and biogeography. In summer 2015, sediment was sampled at various spatial scales from four barrier island beaches in South Carolina, USA, and high-throughput (Ion Torrent) DNA sequencing was used to characterize diatom assemblages. ANOSIM and principal coordinates analysis revealed that communities were statistically distinct on the four islands. Community dissimilarity was compared to both spatial distance and environmental differences to determine potential influences of these variables on community structure. We found that geographic distance had the strongest correlation with community similarity, with and without one anomalous location, while differences in temperature (air, water, and sediment), nutrients, organic matter, and turbidity also had significant but weaker relationships with community structure. Surprisingly, air temperature, which changes on very short time scales, appeared to be the environmental factor most strongly related to diatom species composition, potentially implicating some unmeasured variable (e.g., cloud cover). However, we also found that temperature and geographic distance were strongly correlated. Future research will expand the spatial scope of this preliminary study and employ techniques (partial Mantel tests) to control for co-variation among variables.

  1. Digital mapping of soil properties in Canadian managed forests at 250 m of resolution using the k-nearest neighbor method

    NASA Astrophysics Data System (ADS)

    Mansuy, N. R.; Paré, D.; Thiffault, E.

    2015-12-01

    Large-scale mapping of soil properties is increasingly important for environmental resource management. Whileforested areas play critical environmental roles at local and global scales, forest soil maps are typically at lowresolution.The objective of this study was to generate continuous national maps of selected soil variables (C, N andsoil texture) for the Canadian managed forest landbase at 250 m resolution. We produced these maps using thekNN method with a training dataset of 538 ground-plots fromthe National Forest Inventory (NFI) across Canada,and 18 environmental predictor variables. The best predictor variables were selected (7 topographic and 5 climaticvariables) using the Least Absolute Shrinkage and Selection Operator method. On average, for all soil variables,topographic predictors explained 37% of the total variance versus 64% for the climatic predictors. Therelative root mean square error (RMSE%) calculated with the leave-one-out cross-validation method gave valuesranging between 22% and 99%, depending on the soil variables tested. RMSE values b 40% can be considered agood imputation in light of the low density of points used in this study. The study demonstrates strong capabilitiesfor mapping forest soil properties at 250m resolution, compared with the current Soil Landscape of CanadaSystem, which is largely oriented towards the agricultural landbase. The methodology used here can potentiallycontribute to the national and international need for spatially explicit soil information in resource managementscience.

  2. The Impact of Soil Sampling Errors on Variable Rate Fertilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Hoskinson; R C. Rope; L G. Blackwood

    2004-07-01

    Variable rate fertilization of an agricultural field is done taking into account spatial variability in the soil’s characteristics. Most often, spatial variability in the soil’s fertility is the primary characteristic used to determine the differences in fertilizers applied from one point to the next. For several years the Idaho National Engineering and Environmental Laboratory (INEEL) has been developing a Decision Support System for Agriculture (DSS4Ag) to determine the economically optimum recipe of various fertilizers to apply at each site in a field, based on existing soil fertility at the site, predicted yield of the crop that would result (and amore » predicted harvest-time market price), and the current costs and compositions of the fertilizers to be applied. Typically, soil is sampled at selected points within a field, the soil samples are analyzed in a lab, and the lab-measured soil fertility of the point samples is used for spatial interpolation, in some statistical manner, to determine the soil fertility at all other points in the field. Then a decision tool determines the fertilizers to apply at each point. Our research was conducted to measure the impact on the variable rate fertilization recipe caused by variability in the measurement of the soil’s fertility at the sampling points. The variability could be laboratory analytical errors or errors from variation in the sample collection method. The results show that for many of the fertility parameters, laboratory measurement error variance exceeds the estimated variability of the fertility measure across grid locations. These errors resulted in DSS4Ag fertilizer recipe recommended application rates that differed by up to 138 pounds of urea per acre, with half the field differing by more than 57 pounds of urea per acre. For potash the difference in application rate was up to 895 pounds per acre and over half the field differed by more than 242 pounds of potash per acre. Urea and potash differences accounted for almost 87% of the cost difference. The sum of these differences could result in a $34 per acre cost difference for the fertilization. Because of these differences, better analysis or better sampling methods may need to be done, or more samples collected, to ensure that the soil measurements are truly representative of the field’s spatial variability.« less

  3. Relating brain signal variability to knowledge representation.

    PubMed

    Heisz, Jennifer J; Shedden, Judith M; McIntosh, Anthony R

    2012-11-15

    We assessed the hypothesis that brain signal variability is a reflection of functional network reconfiguration during memory processing. In the present experiments, we use multiscale entropy to capture the variability of human electroencephalogram (EEG) while manipulating the knowledge representation associated with faces stored in memory. Across two experiments, we observed increased variability as a function of greater knowledge representation. In Experiment 1, individuals with greater familiarity for a group of famous faces displayed more brain signal variability. In Experiment 2, brain signal variability increased with learning after multiple experimental exposures to previously unfamiliar faces. The results demonstrate that variability increases with face familiarity; cognitive processes during the perception of familiar stimuli may engage a broader network of regions, which manifests as higher complexity/variability in spatial and temporal domains. In addition, effects of repetition suppression on brain signal variability were observed, and the pattern of results is consistent with a selectivity model of neural adaptation. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  4. A Fractional Cartesian Composition Model for Semi-Spatial Comparative Visualization Design.

    PubMed

    Kolesar, Ivan; Bruckner, Stefan; Viola, Ivan; Hauser, Helwig

    2017-01-01

    The study of spatial data ensembles leads to substantial visualization challenges in a variety of applications. In this paper, we present a model for comparative visualization that supports the design of according ensemble visualization solutions by partial automation. We focus on applications, where the user is interested in preserving selected spatial data characteristics of the data as much as possible-even when many ensemble members should be jointly studied using comparative visualization. In our model, we separate the design challenge into a minimal set of user-specified parameters and an optimization component for the automatic configuration of the remaining design variables. We provide an illustrated formal description of our model and exemplify our approach in the context of several application examples from different domains in order to demonstrate its generality within the class of comparative visualization problems for spatial data ensembles.

  5. Statistical and Spatial Analysis of Bathymetric Data for the St. Clair River, 1971-2007

    USGS Publications Warehouse

    Bennion, David

    2009-01-01

    To address questions concerning ongoing geomorphic processes in the St. Clair River, selected bathymetric datasets spanning 36 years were analyzed. Comparisons of recent high-resolution datasets covering the upper river indicate a highly variable, active environment. Although statistical and spatial comparisons of the datasets show that some changes to the channel size and shape have taken place during the study period, uncertainty associated with various survey methods and interpolation processes limit the statistically certain results. The methods used to spatially compare the datasets are sensitive to small variations in position and depth that are within the range of uncertainty associated with the datasets. Characteristics of the data, such as the density of measured points and the range of values surveyed, can also influence the results of spatial comparison. With due consideration of these limitations, apparently active and ongoing areas of elevation change in the river are mapped and discussed.

  6. Intervention strategies for spatial orientation disorders in dementia: a selective review.

    PubMed

    Caffò, Alessandro O; Hoogeveen, Frans; Groenendaal, Mari; Perilli, Anna Viviana; Picucci, Luciana; Lancioni, Giulio E; Bosco, Andrea

    2014-06-01

    This article provides a brief overview of the intervention strategies aimed at reducing spatial orientation disorders in elderly people with dementia. Eight experimental studies using spatial cues, assistive technology programs, reality orientation training, errorless learning technique, and backward chaining programs are described. They can be classified into two main approaches: restorative and compensatory, depending on whether they rely or not on residual learning ability, respectively. A review of the efficacy of these intervention strategies is proposed. Results suggest that both compensatory and restorative approaches may be valuable in enhancing correct way-finding behavior, with various degrees of effectiveness. Some issues concerning (a) variability in participants' characteristics and experimental designs and (b) practicality of intervention strategies do not permit to draw a definite conclusion. Future research should be aimed at a direct comparison between these two strategies, and should incorporate an extensive neuropsychological assessment of spatial domain.

  7. Attention operates uniformly throughout the classical receptive field and the surround.

    PubMed

    Verhoef, Bram-Ernst; Maunsell, John Hr

    2016-08-22

    Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround.

  8. Multivariate spatial analysis of a heavy rain event in a densely populated delta city

    NASA Astrophysics Data System (ADS)

    Gaitan, Santiago; ten Veldhuis, Marie-claire; Bruni, Guenda; van de Giesen, Nick

    2014-05-01

    Delta cities account for half of the world's population and host key infrastructure and services for the global economic growth. Due to the characteristic geography of delta areas, these cities face high vulnerability to extreme weather and pluvial flooding risks, that are expected to increase as climate change drives heavier rain events. Besides, delta cities are subjected to fast urban densification processes that progressively make them more vulnerable to pluvial flooding. Delta cities need to be adapted to better cope with this threat. The mechanism leading to damage after heavy rains is not completely understood. For instance, current research has shown that rain intensities and volumes can only partially explain the occurrence and localization of rain-related insurance claims (Spekkers et al., 2013). The goal of this paper is to provide further insights into spatial characteristics of the urban environment that can significantly be linked to pluvial-related flooding impacts. To that end, a study-case has been selected: on October 12 to 14 2013, a heavy rain event triggered pluvial floods in Rotterdam, a densely populated city which is undergoing multiple climate adaptation efforts and is located in the Meuse river Delta. While the average yearly precipitation in this city is around 800 mm, local rain gauge measurements ranged from aprox. 60 to 130 mm just during these three days. More than 600 citizens' telephonic complaints reported impacts related to rainfall. The registry of those complaints, which comprises around 300 calls made to the municipality and another 300 to the fire brigade, was made available for research. Other accessible information about this city includes a series of rainfall measurements with up to 1 min time-step at 7 different locations around the city, ground-based radar rainfall data (1 Km^2 spatial resolution and 5 min time-step), a digital elevation model (50 cm of horizontal resolution), a model of overland-flow paths, cadastral maps describing individual location and types of buildings, and maps on categorical socioeconomic statistics (1 Ha of spatial resolution). On the basis of the quality and availability of the mentioned information, spatial and temporal units of analysis will be discussed and defined. Aggregation of single occurrences for binary variables will be performed, while simple interpolations or averages will be used in case of continuous or categorical data. To determine spatial clustering within each variable, Nearest Neighbor Distance and Spatial Autocorrelation tests will be carried out. When appropriate, the Getis-Ord Gi* test will be used to identify single variable clusters. Finally, with the purpose of inferring possible associations between the available spatially distributed variables, a Mantel test will be applied to variables with a probed non-random spatial pattern. The results of this paper will allow to determine if the environmental characteristics described by the available data can provide additional explanation of the variability of rain-related damage in a delta city which is willing to become climate-proof.

  9. Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1991-01-01

    A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  10. Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope

    NASA Technical Reports Server (NTRS)

    Hoover, Richard (Inventor)

    1990-01-01

    A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.

  11. Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex boreal forest

    USGS Publications Warehouse

    Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.

    2012-01-01

    Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.

  12. Towards a Unified Framework in Hydroclimate Extremes Prediction in Changing Climate

    NASA Astrophysics Data System (ADS)

    Moradkhani, H.; Yan, H.; Zarekarizi, M.; Bracken, C.

    2016-12-01

    Spatio-temporal analysis and prediction of hydroclimate extremes are of paramount importance in disaster mitigation and emergency management. The IPCC special report on managing the risks of extreme events and disasters emphasizes that the global warming would change the frequency, severity, and spatial pattern of extremes. In addition to climate change, land use and land cover changes also influence the extreme characteristics at regional scale. Therefore, natural variability and anthropogenic changes to the hydroclimate system result in nonstationarity in hydroclimate variables. In this presentation recent advancements in developing and using Bayesian approaches to account for non-stationarity in hydroclimate extremes are discussed. Also, implications of these approaches in flood frequency analysis, treatment of spatial dependence, the impact of large-scale climate variability, the selection of cause-effect covariates, with quantification of model errors in extreme prediction is explained. Within this framework, the applicability and usefulness of the ensemble data assimilation for extreme flood predictions is also introduced. Finally, a practical and easy to use approach for better communication with decision-makers and emergency managers is presented.

  13. Spatial mapping and prediction of Plasmodium falciparum infection risk among school-aged children in Côte d'Ivoire.

    PubMed

    Houngbedji, Clarisse A; Chammartin, Frédérique; Yapi, Richard B; Hürlimann, Eveline; N'Dri, Prisca B; Silué, Kigbafori D; Soro, Gotianwa; Koudou, Benjamin G; Assi, Serge-Brice; N'Goran, Eliézer K; Fantodji, Agathe; Utzinger, Jürg; Vounatsou, Penelope; Raso, Giovanna

    2016-09-07

    In Côte d'Ivoire, malaria remains a major public health issue, and thus a priority to be tackled. The aim of this study was to identify spatially explicit indicators of Plasmodium falciparum infection among school-aged children and to undertake a model-based spatial prediction of P. falciparum infection risk using environmental predictors. A cross-sectional survey was conducted, including parasitological examinations and interviews with more than 5,000 children from 93 schools across Côte d'Ivoire. A finger-prick blood sample was obtained from each child to determine Plasmodium species-specific infection and parasitaemia using Giemsa-stained thick and thin blood films. Household socioeconomic status was assessed through asset ownership and household characteristics. Children were interviewed for preventive measures against malaria. Environmental data were gathered from satellite images and digitized maps. A Bayesian geostatistical stochastic search variable selection procedure was employed to identify factors related to P. falciparum infection risk. Bayesian geostatistical logistic regression models were used to map the spatial distribution of P. falciparum infection and to predict the infection prevalence at non-sampled locations via Bayesian kriging. Complete data sets were available from 5,322 children aged 5-16 years across Côte d'Ivoire. P. falciparum was the predominant species (94.5 %). The Bayesian geostatistical variable selection procedure identified land cover and socioeconomic status as important predictors for infection risk with P. falciparum. Model-based prediction identified high P. falciparum infection risk in the north, central-east, south-east, west and south-west of Côte d'Ivoire. Low-risk areas were found in the south-eastern area close to Abidjan and the south-central and west-central part of the country. The P. falciparum infection risk and related uncertainty estimates for school-aged children in Côte d'Ivoire represent the most up-to-date malaria risk maps. These tools can be used for spatial targeting of malaria control interventions.

  14. Interaction Between Spatial and Feature Attention in Posterior Parietal Cortex

    PubMed Central

    Ibos, Guilhem; Freedman, David J.

    2016-01-01

    Summary Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task which required monkeys to detect specific conjunctions of color, motion-direction, and stimulus position. Here we show that FBA and SBA potentiate each other’s effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. PMID:27499082

  15. Interaction between Spatial and Feature Attention in Posterior Parietal Cortex.

    PubMed

    Ibos, Guilhem; Freedman, David J

    2016-08-17

    Lateral intraparietal (LIP) neurons encode a vast array of sensory and cognitive variables. Recently, we proposed that the flexibility of feature representations in LIP reflect the bottom-up integration of sensory signals, modulated by feature-based attention (FBA), from upstream feature-selective cortical neurons. Moreover, LIP activity is also strongly modulated by the position of space-based attention (SBA). However, the mechanisms by which SBA and FBA interact to facilitate the representation of task-relevant spatial and non-spatial features in LIP remain unclear. We recorded from LIP neurons during performance of a task that required monkeys to detect specific conjunctions of color, motion direction, and stimulus position. Here we show that FBA and SBA potentiate each other's effect in a manner consistent with attention gating the flow of visual information along the cortical visual pathway. Our results suggest that linear bottom-up integrative mechanisms allow LIP neurons to emphasize task-relevant spatial and non-spatial features. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Sampling design optimization for spatial functions

    USGS Publications Warehouse

    Olea, R.A.

    1984-01-01

    A new procedure is presented for minimizing the sampling requirements necessary to estimate a mappable spatial function at a specified level of accuracy. The technique is based on universal kriging, an estimation method within the theory of regionalized variables. Neither actual implementation of the sampling nor universal kriging estimations are necessary to make an optimal design. The average standard error and maximum standard error of estimation over the sampling domain are used as global indices of sampling efficiency. The procedure optimally selects those parameters controlling the magnitude of the indices, including the density and spatial pattern of the sample elements and the number of nearest sample elements used in the estimation. As an illustration, the network of observation wells used to monitor the water table in the Equus Beds of Kansas is analyzed and an improved sampling pattern suggested. This example demonstrates the practical utility of the procedure, which can be applied equally well to other spatial sampling problems, as the procedure is not limited by the nature of the spatial function. ?? 1984 Plenum Publishing Corporation.

  17. Multiseasonal variables in digital image enhancements for geological applications

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Vitorello, I.; Almeidafilho, R.

    1984-01-01

    Examples of enhanced multiseasonal orbital imagery illustrate the influence of multiseasonal changes in their spatial and spectral attributes, and consequently in their application to structural geology and lithological discrimination. Shadow effects associated with appropriate solar elevation and azimuth effects enhance the spatial attributes but not the spectral. In this case, variations in illumination conditions should be minimized by selecting images with high solar elevation and by the use of techniques that minimize illumination conditions. Multiseasonal imagery should be used in the identification of spectral contrast changes of rock-soil-vegetation associations which can provide evidences of related lithological units and structural features. The extraction of maximum geological information requires, at least, a fall/winter and a spring/summer scene from which spatial, spectral and multiseasonal attributes can be adequately explored.

  18. Reconciling resource utilization and resource selection functions

    USGS Publications Warehouse

    Hooten, Mevin B.; Hanks, Ephraim M.; Johnson, Devin S.; Alldredge, Mat W.

    2013-01-01

    Summary: 1. Analyses based on utilization distributions (UDs) have been ubiquitous in animal space use studies, largely because they are computationally straightforward and relatively easy to employ. Conventional applications of resource utilization functions (RUFs) suggest that estimates of UDs can be used as response variables in a regression involving spatial covariates of interest. 2. It has been claimed that contemporary implementations of RUFs can yield inference about resource selection, although to our knowledge, an explicit connection has not been described. 3. We explore the relationships between RUFs and resource selection functions from a hueristic and simulation perspective. We investigate several sources of potential bias in the estimation of resource selection coefficients using RUFs (e.g. the spatial covariance modelling that is often used in RUF analyses). 4. Our findings illustrate that RUFs can, in fact, serve as approximations to RSFs and are capable of providing inference about resource selection, but only with some modification and under specific circumstances. 5. Using real telemetry data as an example, we provide guidance on which methods for estimating resource selection may be more appropriate and in which situations. In general, if telemetry data are assumed to arise as a point process, then RSF methods may be preferable to RUFs; however, modified RUFs may provide less biased parameter estimates when the data are subject to location error.

  19. The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates.

    PubMed

    Kittle, Andrew M; Fryxell, John M; Desy, Glenn E; Hamr, Joe

    2008-08-01

    Resource selection is a fundamental ecological process impacting population dynamics and ecosystem structure. Understanding which factors drive selection is vital for effective species- and landscape-level management. We used resource selection probability functions (RSPFs) to study the influence of two forms of wolf (Canis lupus) predation risk, snow conditions and habitat variables on white-tailed deer (Odocoileus virginianus), elk (Cervus elaphus) and moose (Alces alces) resource selection in central Ontario's mixed forest French River-Burwash ecosystem. Direct predation risk was defined as the frequency of a predator's occurrence across the landscape and indirect predation risk as landscape features associated with a higher risk of predation. Models were developed for two winters, each at two spatial scales, using a combination of GIS-derived and ground-measured data. Ungulate presence was determined from snow track transects in 64 16- and 128 1-km(2) resource units, and direct predation risk from GPS radio collar locations of four adjacent wolf packs. Ungulates did not select resources based on the avoidance of areas of direct predation risk at any scale, and instead exhibited selection patterns that tradeoff predation risk minimization with forage and/or mobility requirements. Elk did not avoid indirect predation risk, while both deer and moose exhibited inconsistent responses to this risk. Direct predation risk was more important to models than indirect predation risk but overall, abiotic topographical factors were most influential. These results indicate that wolf predation risk does not limit ungulate habitat use at the scales investigated and that responses to spatial sources of predation risk are complex, incorporating a variety of anti-predator behaviours. Moose resource selection was influenced less by snow conditions than cover type, particularly selection for dense forest, whereas deer showed the opposite pattern. Temporal and spatial scale influenced resource selection by all ungulate species, underlining the importance of incorporating scale into resource selection studies.

  20. Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping.

    PubMed

    Lawson, A B; Carroll, R; Faes, C; Kirby, R S; Aregay, M; Watjou, K

    2017-12-01

    It is often the case that researchers wish to simultaneously explore the behavior of and estimate overall risk for multiple, related diseases with varying rarity while accounting for potential spatial and/or temporal correlation. In this paper, we propose a flexible class of multivariate spatio-temporal mixture models to fill this role. Further, these models offer flexibility with the potential for model selection as well as the ability to accommodate lifestyle, socio-economic, and physical environmental variables with spatial, temporal, or both structures. Here, we explore the capability of this approach via a large scale simulation study and examine a motivating data example involving three cancers in South Carolina. The results which are focused on four model variants suggest that all models possess the ability to recover simulation ground truth and display improved model fit over two baseline Knorr-Held spatio-temporal interaction model variants in a real data application.

  1. Improving permafrost distribution modelling using feature selection algorithms

    NASA Astrophysics Data System (ADS)

    Deluigi, Nicola; Lambiel, Christophe; Kanevski, Mikhail

    2016-04-01

    The availability of an increasing number of spatial data on the occurrence of mountain permafrost allows the employment of machine learning (ML) classification algorithms for modelling the distribution of the phenomenon. One of the major problems when dealing with high-dimensional dataset is the number of input features (variables) involved. Application of ML classification algorithms to this large number of variables leads to the risk of overfitting, with the consequence of a poor generalization/prediction. For this reason, applying feature selection (FS) techniques helps simplifying the amount of factors required and improves the knowledge on adopted features and their relation with the studied phenomenon. Moreover, taking away irrelevant or redundant variables from the dataset effectively improves the quality of the ML prediction. This research deals with a comparative analysis of permafrost distribution models supported by FS variable importance assessment. The input dataset (dimension = 20-25, 10 m spatial resolution) was constructed using landcover maps, climate data and DEM derived variables (altitude, aspect, slope, terrain curvature, solar radiation, etc.). It was completed with permafrost evidences (geophysical and thermal data and rock glacier inventories) that serve as training permafrost data. Used FS algorithms informed about variables that appeared less statistically important for permafrost presence/absence. Three different algorithms were compared: Information Gain (IG), Correlation-based Feature Selection (CFS) and Random Forest (RF). IG is a filter technique that evaluates the worth of a predictor by measuring the information gain with respect to the permafrost presence/absence. Conversely, CFS is a wrapper technique that evaluates the worth of a subset of predictors by considering the individual predictive ability of each variable along with the degree of redundancy between them. Finally, RF is a ML algorithm that performs FS as part of its overall operation. It operates by constructing a large collection of decorrelated classification trees, and then predicts the permafrost occurrence through a majority vote. With the so-called out-of-bag (OOB) error estimate, the classification of permafrost data can be validated as well as the contribution of each predictor can be assessed. The performances of compared permafrost distribution models (computed on independent testing sets) increased with the application of FS algorithms on the original dataset and irrelevant or redundant variables were removed. As a consequence, the process provided faster and more cost-effective predictors and a better understanding of the underlying structures residing in permafrost data. Our work demonstrates the usefulness of a feature selection step prior to applying a machine learning algorithm. In fact, permafrost predictors could be ranked not only based on their heuristic and subjective importance (expert knowledge), but also based on their statistical relevance in relation of the permafrost distribution.

  2. Characterization of soil spatial variability for site-specific management using soil electrical conductivity and other remotely sensed data

    NASA Astrophysics Data System (ADS)

    Bang, Jisu

    Field-scale characterization of soil spatial variability using remote sensing technology has potential for achieving the successful implementation of site-specific management (SSM). The objectives of this study were to: (i) examine the spatial relationships between apparent soil electrical conductivity (EC a) and soil chemical and physical properties to determine if EC a could be useful to characterize soil properties related to crop productivity in the Coastal Plain and Piedmont of North Carolina; (ii) evaluate the effects of in-situ soil moisture variation on ECa mapping as a basis for characterization of soil spatial variability and as a data layer in cluster analysis as a means of delineating sampling zones; (iii) evaluate clustering approaches using different variable sets for management zone delineation to characterize spatial variability in soil nutrient levels and crop yields. Studies were conducted in two fields in the Piedmont and three fields in the Coastal Plain of North Carolina. Spatial measurements of ECa via electromagnetic induction (EMI) were compared with soil chemical parameters (extractable P, K, and micronutrients; pH, cation exchange capacity [CEC], humic matter or soil organic matter; and physical parameters (percentage sand, silt, and clay; and plant-available water [PAW] content; bulk density; cone index; saturated hydraulic conductivity [Ksat] in one of the coastal plain fields) using correlation analysis across fields. We also collected ECa measurements in one coastal plain field on four days with significantly different naturally occurring soil moisture conditions measured in five increments to 0.75 m using profiling time-domain reflectometry probes to evaluate the temporal variability of ECa associated with changes in in-situ soil moisture content. Nonhierarchical k-means cluster analysis using sensor-based field attributes including vertical ECa, near-infrared (NIR) radiance of bare-soil from an aerial color infrared (CIR) image, elevation, slope, and their combinations was performed to delineate management zones. The strengths and signs of the correlations between ECa and measured soil properties varied among fields. Few strong direct correlations were found between ECa and the soil chemical and physical properties studied (r2 < 0.50), but correlations improved considerably when zone mean ECa and zone means of selected soil properties among ECa zones were compared. The results suggested that field-scale ECa survey is not able to directly predict soil nutrient levels at any specific location, but could delimit distinct zones of soil condition among which soil nutrient levels differ, providing an effective basis for soil sampling on a zone basis. (Abstract shortened by UMI.)

  3. A novel approach to assessing environmental disturbance based on habitat selection by zebra fish as a model organism.

    PubMed

    Araújo, Cristiano V M; Griffith, Daniel M; Vera-Vera, Victoria; Jentzsch, Paul Vargas; Cervera, Laura; Nieto-Ariza, Beatriz; Salvatierra, David; Erazo, Santiago; Jaramillo, Rusbel; Ramos, Luis A; Moreira-Santos, Matilde; Ribeiro, Rui

    2018-04-01

    Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors that dictate organisms' spatial distribution in connected ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Dissecting the multi-scale spatial relationship of earthworm assemblages with soil environmental variability.

    PubMed

    Jiménez, Juan J; Decaëns, Thibaud; Lavelle, Patrick; Rossi, Jean-Pierre

    2014-12-05

    Studying the drivers and determinants of species, population and community spatial patterns is central to ecology. The observed structure of community assemblages is the result of deterministic abiotic (environmental constraints) and biotic factors (positive and negative species interactions), as well as stochastic colonization events (historical contingency). We analyzed the role of multi-scale spatial component of soil environmental variability in structuring earthworm assemblages in a gallery forest from the Colombian "Llanos". We aimed to disentangle the spatial scales at which species assemblages are structured and determine whether these scales matched those expressed by soil environmental variables. We also tested the hypothesis of the "single tree effect" by exploring the spatial relationships between root-related variables and soil nutrient and physical variables in structuring earthworm assemblages. Multivariate ordination techniques and spatially explicit tools were used, namely cross-correlograms, Principal Coordinates of Neighbor Matrices (PCNM) and variation partitioning analyses. The relationship between the spatial organization of earthworm assemblages and soil environmental parameters revealed explicitly multi-scale responses. The soil environmental variables that explained nested population structures across the multi-spatial scale gradient differed for earthworms and assemblages at the very-fine- (<10 m) to medium-scale (10-20 m). The root traits were correlated with areas of high soil nutrient contents at a depth of 0-5 cm. Information on the scales of PCNM variables was obtained using variogram modeling. Based on the size of the plot, the PCNM variables were arbitrarily allocated to medium (>30 m), fine (10-20 m) and very fine scales (<10 m). Variation partitioning analysis revealed that the soil environmental variability explained from less than 1% to as much as 48% of the observed earthworm spatial variation. A large proportion of the spatial variation did not depend on the soil environmental variability for certain species. This finding could indicate the influence of contagious biotic interactions, stochastic factors, or unmeasured relevant soil environmental variables.

  5. Key Spatial Factors Influencing the Perceived Privacy in Nursing Units: An Exploration Study With Eight Nursing Units in Hong Kong.

    PubMed

    Lu, Yi; Cai, Hui; Bosch, Sheila J

    2017-07-01

    This study examined how the spatial characteristics of patient beds, which are influenced by patient room design and nursing unit configuration, affect patients' perceptions about privacy. In the hospital setting, most patients expect a certain degree of privacy but also understand that their caregivers need appropriate access to them in order to provide high-quality care. Even veteran healthcare designers may struggle to create just the right balance between privacy and accessibility. A paper-based survey was conducted with 159 participants in Hong Kong-72 (45.3%) participants had been hospitalized and 87 (54.7%) participants had not-to document their selection of high-privacy beds, given simplified plans of eight nursing units. Two types of information, comprised of six variables, were examined for each bed. These include (1) room-level variables, specifically the number of beds per room and area per bed and (2) relational variables, including walking distance, directional change, integration, and control. The results demonstrate that when asked to identify high-privacy beds, participants selected beds in patient rooms with fewer beds per room, a larger area per bed, and a longer walking distance to the care team workstation. Interestingly, the participants having been hospitalized also chose beds with a visual connection to the care team workstation as being high in privacy. The participants with hospitalization experience may be willing to accept a bed with reduced visual privacy, perhaps out of a concern for safety.

  6. Attributing uncertainty in streamflow simulations due to variable inputs via the Quantile Flow Deviation metric

    NASA Astrophysics Data System (ADS)

    Shoaib, Syed Abu; Marshall, Lucy; Sharma, Ashish

    2018-06-01

    Every model to characterise a real world process is affected by uncertainty. Selecting a suitable model is a vital aspect of engineering planning and design. Observation or input errors make the prediction of modelled responses more uncertain. By way of a recently developed attribution metric, this study is aimed at developing a method for analysing variability in model inputs together with model structure variability to quantify their relative contributions in typical hydrological modelling applications. The Quantile Flow Deviation (QFD) metric is used to assess these alternate sources of uncertainty. The Australian Water Availability Project (AWAP) precipitation data for four different Australian catchments is used to analyse the impact of spatial rainfall variability on simulated streamflow variability via the QFD. The QFD metric attributes the variability in flow ensembles to uncertainty associated with the selection of a model structure and input time series. For the case study catchments, the relative contribution of input uncertainty due to rainfall is higher than that due to potential evapotranspiration, and overall input uncertainty is significant compared to model structure and parameter uncertainty. Overall, this study investigates the propagation of input uncertainty in a daily streamflow modelling scenario and demonstrates how input errors manifest across different streamflow magnitudes.

  7. Capability of Hyperspectral data in Spatial Variability Distribution of Chlorophyll and Water Stress in Rice Agriculture System

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2016-12-01

    Abstract : The mapping and analysis of spatial variability within the field is a challenging task. However, field variability of a single vegetation cover does not give satisfactory results mainly due to low spectral resolution and non-availability of remote sensing data. From the NASA Earth Observing-1 (EO-1) satellite data, spatial distribution of biophysical parameters like chlorophyll and relative water content in a rice agriculture system is carried out in the present study. Hyperion L1R product composed of 242 spectral bands with 30m spatial resolution was acquired for Assam, India. This high dimensional data is allowed for pre-processing to get an atmospherically corrected imagery. Moreover, ground based hyperspectral measurements are collected from experimental rice fields from the study site using hand held ASD spectroradiometer (350-1050 nm). Published indices specifically designed for chlorophyll (OASVI, mSR, and MTCI indices) and water content (WI and WBI indices) are selected based on stastical performance of the in-situ hyperspectral data. Index models are established for the respective biophysical parameters and observed that the aforementioned indices followed different linear and nonlinear relationships which are completely different from the published indices. By employing the presently developed relationships, spatial variation of total chlorophyll and water stress are mapped for a rice agriculture system from Hyperion imagery. The findings showed that, the variation of chlorophyll and water content ranged from 1.77-10.61mg/g and 40-90% respectively for the studied rice agriculture system. The spatial distribution of these parameters resulted from presently developed index models are well captured from Hyperion imagery and they have good agreement with observed field based chlorophyll (1.14-7.26 mg/g) and water content (60-95%) of paddy crop. This study can be useful in providing essential information to assess the paddy field heterogeneity in an agriculture system. Keywords: Paddy crop, vegetation index, hyperspectral data, chlorophyll, water content

  8. Wild Fire Risk Map in the Eastern Steppe of Mongolia Using Spatial Multi-Criteria Analysis

    NASA Astrophysics Data System (ADS)

    Nasanbat, Elbegjargal; Lkhamjav, Ochirkhuyag

    2016-06-01

    Grassland fire is a cause of major disturbance to ecosystems and economies throughout the world. This paper investigated to identify risk zone of wildfire distributions on the Eastern Steppe of Mongolia. The study selected variables for wildfire risk assessment using a combination of data collection, including Social Economic, Climate, Geographic Information Systems, Remotely sensed imagery, and statistical yearbook information. Moreover, an evaluation of the result is used field validation data and assessment. The data evaluation resulted divided by main three group factors Environmental, Social Economic factor, Climate factor and Fire information factor into eleven input variables, which were classified into five categories by risk levels important criteria and ranks. All of the explanatory variables were integrated into spatial a model and used to estimate the wildfire risk index. Within the index, five categories were created, based on spatial statistics, to adequately assess respective fire risk: very high risk, high risk, moderate risk, low and very low. Approximately more than half, 68 percent of the study area was predicted accuracy to good within the very high, high risk and moderate risk zones. The percentages of actual fires in each fire risk zone were as follows: very high risk, 42 percent; high risk, 26 percent; moderate risk, 13 percent; low risk, 8 percent; and very low risk, 11 percent. The main overall accuracy to correct prediction from the model was 62 percent. The model and results could be support in spatial decision making support system processes and in preventative wildfire management strategies. Also it could be help to improve ecological and biodiversity conservation management.

  9. An Assessment of the Spatial and Temporal Variability of Biological Responses to Municipal Wastewater Effluent in Rainbow Darter (Etheostoma caeruleum) Collected along an Urban Gradient

    PubMed Central

    Bragg, Leslie M.; Tetreault, Gerald R.; Bahamonde, Paulina A.; Tanna, Rajiv N.; Bennett, Charles J.; McMaster, Mark E.; Servos, Mark R.

    2016-01-01

    Municipal wastewater effluent (MWWE) and its constituents, such as chemicals of emerging concern, pose a potential threat to the sustainability of fish populations by disrupting key endocrine functions in aquatic organisms. While studies have demonstrated changes in biological markers of exposure of aquatic organisms to groups of chemicals of emerging concern, the variability of these markers over time has not been sufficiently described in wild fish species. The aim of this study was to assess the spatial and temporal variability of biological markers in response to MWWE exposure and to test the consistency of these responses between seasons and among years. Rainbow darter (Etheostoma caeruleum) were collected in spring and fall seasons over a 5-year period in the Grand River, Ontario, Canada. In addition to surface water chemistry (nutrients and selected pharmaceuticals), measures were taken across levels of biological organization in rainbow darter. The measurements of hormone production, gonad development, and intersex severity were temporally consistent and suggested impaired reproduction in male fish collected downstream of MWWE outfalls. In contrast, ovarian development and hormone production in females appeared to be influenced more by urbanization than MWWE. Measures of gene expression and somatic indices were highly variable between sites and years, respectively, and were inconclusive in terms of the impacts of MWWE overall. Robust biomonitoring programs must consider these factors in both the design and interpretation of results, especially when spatial and temporal sampling of biological endpoints is limited. Assessing the effects of contaminants and other stressors on fish in watersheds would be greatly enhanced by an approach that considers natural variability in the endpoints being measured. PMID:27776151

  10. Asymmetric patch size distribution leads to disruptive selection on dispersal.

    PubMed

    Massol, François; Duputié, Anne; David, Patrice; Jarne, Philippe

    2011-02-01

    Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability is observed in natural populations and communities, even in relatively stable environments. We show that this diversification can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological communities should strive to keep the distribution of patch size sufficiently asymmetric and variable. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  11. A review of selection-based tests of abiotic surrogates for species representation.

    PubMed

    Beier, Paul; Sutcliffe, Patricia; Hjort, Jan; Faith, Daniel P; Pressey, Robert L; Albuquerque, Fabio

    2015-06-01

    Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change. © 2015 Society for Conservation Biology.

  12. China's Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model.

    PubMed

    Cao, Qilong; Liang, Ying; Niu, Xueting

    2017-09-18

    Background : Air pollution has become an important factor restricting China's economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods : Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM 2.5 . Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results : It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM 2.5 pollutions in the control of other variables. Conclusions : Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables.

  13. Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus)

    PubMed Central

    Loiseau, Claire; Zoorob, Rima; Robert, Alexandre; Chastel, Olivier; Julliard, Romain; Sorci, Gabriele

    2011-01-01

    Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level. PMID:20943698

  14. Blending Pan-European and local hydrological models for water resource assessment in Mediterranean areas: lessons learnt from a mountainous catchment

    NASA Astrophysics Data System (ADS)

    José Polo, María; José Pérez-Palazón, María; Saénz de Rodrigáñez, Marta; Pimentel, Rafael; Arheimer, Berit

    2017-04-01

    Global hydrological models provide scientists and technicians with distributed data over medium to large areas from which assessment of water resource planning and use can be easily performed. However, scale conflicts between global models' spatial resolution and the local significant spatial scales in heterogeneous areas usually pose a constraint for the direct use and application of these models' results. The SWICCA (Service for Water Indicators in Climate Change Adaptation) Platform developed under the Copernicus Climate Change Service (C3S) offers a wide range of both climate and hydrological indicators obtained on a global scale with different time and spatial resolutions. Among the different study cases supporting the SWICCA demonstration of local impact assessment, the Sierra Nevada study case (South Spain) is a representative example of mountainous coastal catchments in the Mediterranean region. This work shows the lessons learnt during the study case development to derive local impact indicator tailored to suit the local end-users of water resource in this snow-dominated area. Different approaches were followed to select the most accurate method to downscale the global data and variables to the local level in a highly abrupt topography, in a sequential step approach. 1) SWICCA global climate variable downscaling followed by river flow simulation from a local hydrological model in selected control points in the catchment, together with 2) SWICCA global river flow values downscaling to the control points followed by corrections with local transfer functions were both tested against the available local river flow series of observations during the reference period. This test was performed for the different models and the available spatial resolutions included in the SWICCA platform. From the results, the second option, that is, the use of SWICCA river flow variables, performed the best approximations, once the local transfer functions were applied to the global values and an additional correction was performed based on the relative anomalies obtained instead of the absolute values. This approach was used to derive the future projections of selected local indicators for each end-user in the area under different climate change scenarios. Despite the spatial scale conflicts, the SWICCA river flow indicators (simulated by the E-HYPEv3.1.2 model) succeeded in approximating the observations during the reference period 1970-2000 when provided on a catchment scale, once local transfer functions and further anomaly correction were performed. Satisfactory results were obtained on a monthly scale for river flow in the main stream of the watershed, and on a daily scale for the headwater streams. The accessibility to the hydrological model WiMMed, which includes a snow module, locally validated in the study area has been crucial to downscale the SWICCA results and prove their usefulness.

  15. Assessment of the uncertainty and predictive power of large-scale predictors for nonlinear precipitation downscaling in the European Arctic (Invited)

    NASA Astrophysics Data System (ADS)

    Sauter, T.

    2013-12-01

    Despite the extensive research on downscaling methods there is still little consensus about the choice of useful atmospheric predictor variables. Besides the general decision of a proper statistical downscaling model, the selection of an informative predictor set is crucial for the accuracy and stability of the resulting downscaled time series. These requirements must be fullfilled by both the atmospheric variables and the predictor domains in terms of geographical location and spatial extend, to which in general not much attention is paid. However, only a limited number of studies is interested in the predictive capability of the predictor domain size or shape, and the question to what extent variability of neighboring grid points influence local-scale events. In this study we emphasized the spatial relationships between observed daily precipitation and selected number of atmospheric variables for the European Arctic. Several nonlinear regression models are used to link the large-scale predictors obtained from reanalysed Weather Research and Forecast model runs to the local-scale observed precipitation. Inferences on the sources of uncertainty are then drawn from variance based sensitivity measures, which also permit to capture interaction effects between individual predictors. The information is further used to develop more parsimonious downscaling models with only small decreases in accuracy. Individual predictors (without interactions) account for almost 2/3 of the total output variance, while the remaining fraction is solely due to interactions. Neglecting predictor interactions in the screening process will lead to some loss of information. Hence, linear screening methods are insufficient as they neither account for interactions nor for non-additivity as given by many nonlinear prediction algorithms.

  16. Pattern-based, multi-scale segmentation and regionalization of EOSD land cover

    NASA Astrophysics Data System (ADS)

    Niesterowicz, Jacek; Stepinski, Tomasz F.

    2017-10-01

    The Earth Observation for Sustainable Development of Forests (EOSD) map is a 25 m resolution thematic map of Canadian forests. Because of its large spatial extent and relatively high resolution the EOSD is difficult to analyze using standard GIS methods. In this paper we propose multi-scale segmentation and regionalization of EOSD as new methods for analyzing EOSD on large spatial scales. Segments, which we refer to as forest land units (FLUs), are delineated as tracts of forest characterized by cohesive patterns of EOSD categories; we delineated from 727 to 91,885 FLUs within the spatial extent of EOSD depending on the selected scale of a pattern. Pattern of EOSD's categories within each FLU is described by 1037 landscape metrics. A shapefile containing boundaries of all FLUs together with an attribute table listing landscape metrics make up an SQL-searchable spatial database providing detailed information on composition and pattern of land cover types in Canadian forest. Shapefile format and extensive attribute table pertaining to the entire legend of EOSD are designed to facilitate broad range of investigations in which assessment of composition and pattern of forest over large areas is needed. We calculated four such databases using different spatial scales of pattern. We illustrate the use of FLU database for producing forest regionalization maps of two Canadian provinces, Quebec and Ontario. Such maps capture the broad scale variability of forest at the spatial scale of the entire province. We also demonstrate how FLU database can be used to map variability of landscape metrics, and thus the character of landscape, over the entire Canada.

  17. A full Bayes before-after study accounting for temporal and spatial effects: Evaluating the safety impact of new signal installations.

    PubMed

    Sacchi, Emanuele; Sayed, Tarek; El-Basyouny, Karim

    2016-09-01

    Recently, important advances in road safety statistics have been brought about by methods able to address issues other than the choice of the best error structure for modeling crash data. In particular, accounting for spatial and temporal interdependence, i.e., the notion that the collision occurrence of a site or unit times depend on those of others, has become an important issue that needs further research. Overall, autoregressive models can be used for this purpose as they can specify that the output variable depends on its own previous values and on a stochastic term. Spatial effects have been investigated and applied mostly in the context of developing safety performance functions (SPFs) to relate crash occurrence to highway characteristics. Hence, there is a need for studies that attempt to estimate the effectiveness of safety countermeasures by including the spatial interdependence of road sites within the context of an observational before-after (BA) study. Moreover, the combination of temporal dynamics and spatial effects on crash frequency has not been explored in depth for SPF development. Therefore, the main goal of this research was to carry out a BA study accounting for spatial effects and temporal dynamics in evaluating the effectiveness of a road safety treatment. The countermeasure analyzed was the installation of traffic signals at unsignalized urban/suburban intersections in British Columbia (Canada). The full Bayes approach was selected as the statistical framework to develop the models. The results demonstrated that zone variation was a major component of total crash variability and that spatial effects were alleviated by clustering intersections together. Finally, the methodology used also allowed estimation of the treatment's effectiveness in the form of crash modification factors and functions with time trends. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The Relative Importance of Spatial and Local Environmental Factors in Determining Beetle Assemblages in the Inner Mongolia Grassland.

    PubMed

    Yu, Xiao-Dong; Lü, Liang; Wang, Feng-Yan; Luo, Tian-Hong; Zou, Si-Si; Wang, Cheng-Bin; Song, Ting-Ting; Zhou, Hong-Zhang

    2016-01-01

    The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae) along a geographic (longitudinal/precipitation) gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.

  19. Single mode variable-sensitivity fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Murphy, K. A.; Fogg, B. R.; Gunther, M. F.; Claus, R. O.

    1992-01-01

    We review spatially-weighted optical fiber sensors that filter specific vibration modes from one dimensional beams placed in clamped-free and clamped-clamped configurations. The sensitivity of the sensor is varied along the length of the fiber by tapering circular-core, dual-mode optical fibers. Selective vibration mode suppression on the order of 10 dB was obtained. We describe experimental results and propose future extensions to single mode sensor applications.

  20. The Utility of Selection for Military and Civilian Jobs

    DTIC Science & Technology

    1989-07-01

    parsimonious use of information; the relative ease in making threshold (break-even) judgments compared to estimating actual SDy values higher than a... threshold value, even though judges are unlikely to agree on the exact point estimate for the SDy parameter; and greater understanding of how even small...ability, spatial ability, introversion , anxiety) considered to vary or differ across individuals. A construct (sometimes called a latent variable) is not

  1. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  2. A comparison of recharge rates in aquifers of the United States based on groundwater-age data

    USGS Publications Warehouse

    McMahon, P.B.; Plummer, Niel; Böhlke, J.K.; Shapiro, S.D.; Hinkle, S.R.

    2011-01-01

    An overview is presented of existing groundwater-age data and their implications for assessing rates and timescales of recharge in selected unconfined aquifer systems of the United States. Apparent age distributions in aquifers determined from chlorofluorocarbon, sulfur hexafluoride, tritium/helium-3, and radiocarbon measurements from 565 wells in 45 networks were used to calculate groundwater recharge rates. Timescales of recharge were defined by 1,873 distributed tritium measurements and 102 radiocarbon measurements from 27 well networks. Recharge rates ranged from < 10 to 1,200 mm/yr in selected aquifers on the basis of measured vertical age distributions and assuming exponential age gradients. On a regional basis, recharge rates based on tracers of young groundwater exhibited a significant inverse correlation with mean annual air temperature and a significant positive correlation with mean annual precipitation. Comparison of recharge derived from groundwater ages with recharge derived from stream base-flow evaluation showed similar overall patterns but substantial local differences. Results from this compilation demonstrate that age-based recharge estimates can provide useful insights into spatial and temporal variability in recharge at a national scale and factors controlling that variability. Local age-based recharge estimates provide empirical data and process information that are needed for testing and improving more spatially complete model-based methods.

  3. Spatial and temporal variability of rainfall and their effects on hydrological response in urban areas - a review

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick

    2017-07-01

    In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.

  4. Pitfalls in statistical landslide susceptibility modelling

    NASA Astrophysics Data System (ADS)

    Schröder, Boris; Vorpahl, Peter; Märker, Michael; Elsenbeer, Helmut

    2010-05-01

    The use of statistical methods is a well-established approach to predict landslide occurrence probabilities and to assess landslide susceptibility. This is achieved by applying statistical methods relating historical landslide inventories to topographic indices as predictor variables. In our contribution, we compare several new and powerful methods developed in machine learning and well-established in landscape ecology and macroecology for predicting the distribution of shallow landslides in tropical mountain rainforests in southern Ecuador (among others: boosted regression trees, multivariate adaptive regression splines, maximum entropy). Although these methods are powerful, we think it is necessary to follow a basic set of guidelines to avoid some pitfalls regarding data sampling, predictor selection, and model quality assessment, especially if a comparison of different models is contemplated. We therefore suggest to apply a novel toolbox to evaluate approaches to the statistical modelling of landslide susceptibility. Additionally, we propose some methods to open the "black box" as an inherent part of machine learning methods in order to achieve further explanatory insights into preparatory factors that control landslides. Sampling of training data should be guided by hypotheses regarding processes that lead to slope failure taking into account their respective spatial scales. This approach leads to the selection of a set of candidate predictor variables considered on adequate spatial scales. This set should be checked for multicollinearity in order to facilitate model response curve interpretation. Model quality assesses how well a model is able to reproduce independent observations of its response variable. This includes criteria to evaluate different aspects of model performance, i.e. model discrimination, model calibration, and model refinement. In order to assess a possible violation of the assumption of independency in the training samples or a possible lack of explanatory information in the chosen set of predictor variables, the model residuals need to be checked for spatial auto¬correlation. Therefore, we calculate spline correlograms. In addition to this, we investigate partial dependency plots and bivariate interactions plots considering possible interactions between predictors to improve model interpretation. Aiming at presenting this toolbox for model quality assessment, we investigate the influence of strategies in the construction of training datasets for statistical models on model quality.

  5. Spatial and Temporal Variation in the Effects of Climatic Variables on Dugong Calf Production.

    PubMed

    Fuentes, Mariana M P B; Delean, Steven; Grayson, Jillian; Lavender, Sally; Logan, Murray; Marsh, Helene

    2016-01-01

    Knowledge of the relationships between environmental forcing and demographic parameters is important for predicting responses from climatic changes and to manage populations effectively. We explore the relationships between the proportion of sea cows (Dugong dugon) classified as calves and four climatic drivers (rainfall anomaly, Southern Oscillation El Niño Index [SOI], NINO 3.4 sea surface temperature index, and number of tropical cyclones) at a range of spatially distinct locations in Queensland, Australia, a region with relatively high dugong density. Dugong and calf data were obtained from standardized aerial surveys conducted along the study region. A range of lagged versions of each of the focal climatic drivers (1 to 4 years) were included in a global model containing the proportion of calves in each population crossed with each of the lagged versions of the climatic drivers to explore relationships. The relative influence of each predictor was estimated via Gibbs variable selection. The relationships between the proportion of dependent calves and the climatic drivers varied spatially and temporally, with climatic drivers influencing calf counts at sub-regional scales. Thus we recommend that the assessment of and management response to indirect climatic threats on dugongs should also occur at sub-regional scales.

  6. Cue Reliability Represented in the Shape of Tuning Curves in the Owl's Sound Localization System

    PubMed Central

    Fischer, Brian J.; Peña, Jose L.

    2016-01-01

    Optimal use of sensory information requires that the brain estimates the reliability of sensory cues, but the neural correlate of cue reliability relevant for behavior is not well defined. Here, we addressed this issue by examining how the reliability of spatial cue influences neuronal responses and behavior in the owl's auditory system. We show that the firing rate and spatial selectivity changed with cue reliability due to the mechanisms generating the tuning to the sound localization cue. We found that the correlated variability among neurons strongly depended on the shape of the tuning curves. Finally, we demonstrated that the change in the neurons' selectivity was necessary and sufficient for a network of stochastic neurons to predict behavior when sensory cues were corrupted with noise. This study demonstrates that the shape of tuning curves can stand alone as a coding dimension of environmental statistics. SIGNIFICANCE STATEMENT In natural environments, sensory cues are often corrupted by noise and are therefore unreliable. To make the best decisions, the brain must estimate the degree to which a cue can be trusted. The behaviorally relevant neural correlates of cue reliability are debated. In this study, we used the barn owl's sound localization system to address this question. We demonstrated that the mechanisms that account for spatial selectivity also explained how neural responses changed with degraded signals. This allowed for the neurons' selectivity to capture cue reliability, influencing the population readout commanding the owl's sound-orienting behavior. PMID:26888922

  7. Effects of spatial disturbance on common loon nest site selection and territory success

    USGS Publications Warehouse

    McCarthy, Kyle P.; DeStefano, Stephen

    2011-01-01

    The common loon (Gavia immer) breeds during the summer on northern lakes and water bodies that are also often desirable areas for aquatic recreation and human habitation. In northern New England, we assessed how the spatial nature of disturbance affects common loon nest site selection and territory success. We found through classification and regression analysis that distance to and density of disturbance factors can be used to classify observed nest site locations versus random points, suggesting that these factors affect loon nest site selection (model 1: Correct classification = 75%, null = 50%, K = 0.507, P < 0.001; model 2: Correct classification = 78%, null = 50%, K = 0.551, P < 0.001). However, in an exploratory analysis, we were unable to show a relation between spatial disturbance variables and breeding success (P = 0.595, R2 = 0.436), possibly because breeding success was so low during the breeding seasons of 2007–2008. We suggest that by selecting nest site locations that avoid disturbance factors, loons thereby limit the effect that disturbance will have on their breeding success. Still, disturbance may force loons to use sub-optimal nesting habitat, limiting the available number of territories, and overall productivity. We advise that management efforts focus on limiting disturbance factors to allow breeding pairs access to the best nesting territories, relieving disturbance pressures that may force sub-optimal nest placement.

  8. Measurement of visual contrast sensitivity

    NASA Astrophysics Data System (ADS)

    Vongierke, H. E.; Marko, A. R.

    1985-04-01

    This invention involves measurement of the visual contrast sensitivity (modulation transfer) function of a human subject by means of linear or circular spatial frequency pattern on a cathode ray tube whose contrast is automatically decreasing or increasing depending on the subject pressing or releasing a hand-switch button. The threshold of detection of the pattern modulation is found by the subject by adjusting the contrast to values which vary about the subject's threshold thereby determining the threshold and also providing by the magnitude of the contrast fluctuations between reversals some estimate of the variability of the subject's absolute threshold. The invention also involves the slow automatic sweeping of the spatial frequency of the pattern over the spatial frequencies after preset time intervals or after threshold has been defined at each frequency by a selected number of subject-determined threshold crossings; i.e., contrast reversals.

  9. Post-parturition habitat selection by elk calves and adult female elk in New Mexico

    USGS Publications Warehouse

    Pitman, James W.; Cain, James W.; Liley, Stewart; Gould, William R.; Quintana, Nichole T.; Ballard, Warren

    2014-01-01

    Neonatal survival and juvenile recruitment are crucial to maintaining viable elk (Cervus elaphus) populations. Neonate survival is known to be influenced by many factors, including bed-site selection. Although neonates select the actual bed-site location, they must do so within the larger calf-rearing area selected by the mother. As calves age, habitat selection should change to meet the changing needs of the growing calf. Our main objectives were to characterize habitat selection at 2 spatial scales and in areas with different predator assemblages in New Mexico. We evaluated bed-site selection by calves and calf-rearing area selection by adult females. We captured 108 elk calves by hand and fitted them with ear tag transmitters in two areas in New Mexico: the Valle Vidal and Blue Range Wolf Recovery Area. In both study areas, we found that concealing cover structure and distance to that cover influenced bed-site selection of young calves (i.e., <2 weeks of age). Older calves (i.e., 3–10 weeks of age) still selected areas in relation to distance to cover, but also preferred areas with higher visibility. At the larger spatial scale of calf-rearing habitat selection by the adult female, concealing cover (e.g., rocks, shrubs, and logs) and other variables important to the hiding calves were still in the most supported models, but selection was also influenced by forage availability and indices of forage quality. Studies that seek to obtain insight into microhabitat selection of ungulate neonates should consider selection by the neonate and selection by the adult female, changes in selection as neonates age, and potential selection differences in areas of differing predation risk. By considering these influences together and at multiple scales, studies can achieve a broader understanding of neonatal ungulate habitat requirements. 

  10. Can Geostatistical Models Represent Nature's Variability? An Analysis Using Flume Experiments

    NASA Astrophysics Data System (ADS)

    Scheidt, C.; Fernandes, A. M.; Paola, C.; Caers, J.

    2015-12-01

    The lack of understanding in the Earth's geological and physical processes governing sediment deposition render subsurface modeling subject to large uncertainty. Geostatistics is often used to model uncertainty because of its capability to stochastically generate spatially varying realizations of the subsurface. These methods can generate a range of realizations of a given pattern - but how representative are these of the full natural variability? And how can we identify the minimum set of images that represent this natural variability? Here we use this minimum set to define the geostatistical prior model: a set of training images that represent the range of patterns generated by autogenic variability in the sedimentary environment under study. The proper definition of the prior model is essential in capturing the variability of the depositional patterns. This work starts with a set of overhead images from an experimental basin that showed ongoing autogenic variability. We use the images to analyze the essential characteristics of this suite of patterns. In particular, our goal is to define a prior model (a minimal set of selected training images) such that geostatistical algorithms, when applied to this set, can reproduce the full measured variability. A necessary prerequisite is to define a measure of variability. In this study, we measure variability using a dissimilarity distance between the images. The distance indicates whether two snapshots contain similar depositional patterns. To reproduce the variability in the images, we apply an MPS algorithm to the set of selected snapshots of the sedimentary basin that serve as training images. The training images are chosen from among the initial set by using the distance measure to ensure that only dissimilar images are chosen. Preliminary investigations show that MPS can reproduce fairly accurately the natural variability of the experimental depositional system. Furthermore, the selected training images provide process information. They fall into three basic patterns: a channelized end member, a sheet flow end member, and one intermediate case. These represent the continuum between autogenic bypass or erosion, and net deposition.

  11. Towards a More Biologically-meaningful Climate Characterization: Variability in Space and Time at Multiple Scales

    NASA Astrophysics Data System (ADS)

    Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.

    2013-12-01

    Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.

  12. Using dynamic population simulations to extend resource selection analyses and prioritize habitats for conservation

    USGS Publications Warehouse

    Heinrichs, Julie; Aldridge, Cameron L.; O'Donnell, Michael; Schumaker, Nathan

    2017-01-01

    Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population dynamics and movement propensities via spatial simulation modeling frameworks may provide an informative means of predicting long-term habitat use, particularly for fluctuating populations with complex seasonal habitat needs. Importantly, our results indicate the possible need to consider habitat selection models as a starting point rather than the common end point for refining and prioritizing habitats for protection for cyclic and highly variable populations.

  13. Spatio-Temporal Variability of Groundwater Storage in India

    NASA Technical Reports Server (NTRS)

    Bhanja, Soumendra; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2016-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Ground water storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent).In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  14. Spatio-temporal variability of groundwater storage in India.

    PubMed

    Bhanja, Soumendra N; Rodell, Matthew; Li, Bailing; Mukherjee, Abhijit

    2017-01-01

    Groundwater level measurements from 3907 monitoring wells, distributed within 22 major river basins of India, are assessed to characterize their spatial and temporal variability. Groundwater storage (GWS) anomalies (relative to the long-term mean) exhibit strong seasonality, with annual maxima observed during the monsoon season and minima during pre-monsoon season. Spatial variability of GWS anomalies increases with the extent of measurements, following the power law relationship, i.e., log-(spatial variability) is linearly dependent on log-(spatial extent). In addition, the impact of well spacing on spatial variability and the power law relationship is investigated. We found that the mean GWS anomaly sampled at a 0.25 degree grid scale closes to unweighted average over all wells. The absolute error corresponding to each basin grows with increasing scale, i.e., from 0.25 degree to 1 degree. It was observed that small changes in extent could create very large changes in spatial variability at large grid scales. Spatial variability of GWS anomaly has been found to vary with climatic conditions. To our knowledge, this is the first study of the effects of well spacing on groundwater spatial variability. The results may be useful for interpreting large scale groundwater variations from unevenly spaced or sparse groundwater well observations or for siting and prioritizing wells in a network for groundwater management. The output of this study could be used to maintain a cost effective groundwater monitoring network in the study region and the approach can also be used in other parts of the globe.

  15. Spatial Variance in Resting fMRI Networks of Schizophrenia Patients: An Independent Vector Analysis

    PubMed Central

    Gopal, Shruti; Miller, Robyn L.; Michael, Andrew; Adali, Tulay; Cetin, Mustafa; Rachakonda, Srinivas; Bustillo, Juan R.; Cahill, Nathan; Baum, Stefi A.; Calhoun, Vince D.

    2016-01-01

    Spatial variability in resting functional MRI (fMRI) brain networks has not been well studied in schizophrenia, a disease known for both neurodevelopmental and widespread anatomic changes. Motivated by abundant evidence of neuroanatomical variability from previous studies of schizophrenia, we draw upon a relatively new approach called independent vector analysis (IVA) to assess this variability in resting fMRI networks. IVA is a blind-source separation algorithm, which segregates fMRI data into temporally coherent but spatially independent networks and has been shown to be especially good at capturing spatial variability among subjects in the extracted networks. We introduce several new ways to quantify differences in variability of IVA-derived networks between schizophrenia patients (SZs = 82) and healthy controls (HCs = 89). Voxelwise amplitude analyses showed significant group differences in the spatial maps of auditory cortex, the basal ganglia, the sensorimotor network, and visual cortex. Tests for differences (HC-SZ) in the spatial variability maps suggest, that at rest, SZs exhibit more activity within externally focused sensory and integrative network and less activity in the default mode network thought to be related to internal reflection. Additionally, tests for difference of variance between groups further emphasize that SZs exhibit greater network variability. These results, consistent with our prediction of increased spatial variability within SZs, enhance our understanding of the disease and suggest that it is not just the amplitude of connectivity that is different in schizophrenia, but also the consistency in spatial connectivity patterns across subjects. PMID:26106217

  16. China’s Air Quality and Respiratory Disease Mortality Based on the Spatial Panel Model

    PubMed Central

    Cao, Qilong; Liang, Ying; Niu, Xueting

    2017-01-01

    Background: Air pollution has become an important factor restricting China’s economic development and has subsequently brought a series of social problems, including the impact of air pollution on the health of residents, which is a topical issue in China. Methods: Taking into account this spatial imbalance, the paper is based on the spatial panel data model PM2.5. Respiratory disease mortality in 31 Chinese provinces from 2004 to 2008 is taken as the main variable to study the spatial effect and impact of air quality and respiratory disease mortality on a large scale. Results: It was found that there is a spatial correlation between the mortality of respiratory diseases in Chinese provinces. The spatial correlation can be explained by the spatial effect of PM2.5 pollutions in the control of other variables. Conclusions: Compared with the traditional non-spatial model, the spatial model is better for describing the spatial relationship between variables, ensuring the conclusions are scientific and can measure the spatial effect between variables. PMID:28927016

  17. Shifts of environmental and phytoplankton variables in a regulated river: A spatial-driven analysis.

    PubMed

    Sabater-Liesa, Laia; Ginebreda, Antoni; Barceló, Damià

    2018-06-18

    The longitudinal structure of the environmental and phytoplankton variables was investigated in the Ebro River (NE Spain), which is heavily affected by water abstraction and regulation. A first exploration indicated that the phytoplankton community did not resist the impact of reservoirs and barely recovered downstream of them. The spatial analysis showed that the responses of the phytoplankton and environmental variables were not uniform. The two set of variables revealed spatial variability discontinuities and river fragmentation upstream and downstream from the reservoirs. Reservoirs caused the replacement of spatially heterogeneous habitats by homogeneous spatially distributed water bodies, these new environmental conditions downstream benefiting the opportunist and cosmopolitan algal taxa. The application of a spatial auto-regression model to algal biomass (chlorophyll-a) permitted to capture the relevance and contribution of extra-local influences in the river ecosystem. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. SPATIAL AND TEMPORAL VARIABILITY AND DRIVERS OF NET ECOSYSTEM METABOLISM IN WESTERN GULF OF MEXICO ESTUARIES

    EPA Science Inventory

    Net ecosystem metabolism (NEM) is becoming a commonly used ecological indicator of estuarine ecosystem metabolic rates. Estuarine ecosystem processes are spatially and temporally variable, but the corresponding variability in NEM has not been properly assessed. Spatial and temp...

  19. Relating Solar Resource Variability to Cloud Type

    NASA Astrophysics Data System (ADS)

    Hinkelman, L. M.; Sengupta, M.

    2012-12-01

    Power production from renewable energy (RE) resources is rapidly increasing. Generation of renewable energy is quite variable since the solar and wind resources that form the inputs are, themselves, inherently variable. There is thus a need to understand the impact of renewable generation on the transmission grid. Such studies require estimates of high temporal and spatial resolution power output under various scenarios, which can be created from corresponding solar resource data. Satellite-based solar resource estimates are the best source of long-term solar irradiance data for the typically large areas covered by transmission studies. As satellite-based resource datasets are generally available at lower temporal and spatial resolution than required, there is, in turn, a need to downscale these resource data. Downscaling in both space and time requires information about solar irradiance variability, which is primarily a function of cloud types and properties. In this study, we analyze the relationship between solar resource variability and satellite-based cloud properties. One-minute resolution surface irradiance data were obtained from a number of stations operated by the National Oceanic and Atmospheric Administration (NOAA) under the Surface Radiation (SURFRAD) and Integrated Surface Irradiance Study (ISIS) networks as well as from NREL's Solar Radiation Research Laboratory (SRRL) in Golden, Colorado. Individual sites were selected so that a range of meteorological conditions would be represented. Cloud information at a nominal 4 km resolution and half hour intervals was derived from NOAA's Geostationary Operation Environmental Satellite (GOES) series of satellites. Cloud class information from the GOES data set was then used to select and composite irradiance data from the measurement sites. The irradiance variability for each cloud classification was characterized using general statistics of the fluxes themselves and their variability in time, as represented by ramps computed for time scales from 10 s to 0.5 hr. The statistical relationships derived using this method will be presented, comparing and contrasting the statistics computed for the different cloud types. The implications for downscaling irradiances from satellites or forecast models will also be discussed.

  20. Contrasting patterns of fine-scale herb layer species composition in temperate forests

    NASA Astrophysics Data System (ADS)

    Chudomelová, Markéta; Zelený, David; Li, Ching-Feng

    2017-04-01

    Although being well described at the landscape level, patterns in species composition of forest herb layer are rarely studied at smaller scales. Here, we examined fine-scale environmental determinants and spatial structures of herb layer communities in thermophilous oak- and hornbeam dominated forests of the south-eastern part of the Czech Republic. Species composition of herb layer vegetation and environmental variables were recorded within a fixed grid of 2 × 2 m subplots regularly distributed within 1-ha quadrate plots in three forest stands. For each site, environmental models best explaining species composition were constructed using constrained ordination analysis. Spatial eigenvector mapping was used to model and account for spatial structures in community variation. Mean Ellenberg indicator values calculated for each subplot were used for ecological interpretation of spatially structured residual variation. The amount of variation explained by environmental and spatial models as well as the selection of variables with the best explanatory power differed among sites. As an important environmental factor, relative elevation was common to all three sites, while pH and canopy openness were shared by two sites. Both environmental and community variation was mostly coarse-scaled, as was the spatially structured portion of residual variation. When corrected for bias due to spatial autocorrelation, those environmental factors with already weak explanatory power lost their significance. Only a weak evidence of possibly omitted environmental predictor was found for autocorrelated residuals of site models using mean Ellenberg indicator values. Community structure was determined by different factors at different sites. The relative importance of environmental filtering vs. spatial processes was also site specific, implying that results of fine-scale studies tend to be shaped by local conditions. Contrary to expectations based on other studies, overall dominance of spatial processes at fine scale has not been detected. Ecologists should keep this in mind when making generalizations about community dynamics.

  1. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  2. Least-rattling feedback from strong time-scale separation

    NASA Astrophysics Data System (ADS)

    Chvykov, Pavel; England, Jeremy

    2018-03-01

    In most interacting many-body systems associated with some "emergent phenomena," we can identify subgroups of degrees of freedom that relax on dramatically different time scales. Time-scale separation of this kind is particularly helpful in nonequilibrium systems where only the fast variables are subjected to external driving; in such a case, it may be shown through elimination of fast variables that the slow coordinates effectively experience a thermal bath of spatially varying temperature. In this paper, we investigate how such a temperature landscape arises according to how the slow variables affect the character of the driven quasisteady state reached by the fast variables. Brownian motion in the presence of spatial temperature gradients is known to lead to the accumulation of probability density in low-temperature regions. Here, we focus on the implications of attraction to low effective temperature for the long-term evolution of slow variables. After quantitatively deriving the temperature landscape for a general class of overdamped systems using a path-integral technique, we then illustrate in a simple dynamical system how the attraction to low effective temperature has a fine-tuning effect on the slow variable, selecting configurations that bring about exceptionally low force fluctuation in the fast-variable steady state. We furthermore demonstrate that a particularly strong effect of this kind can take place when the slow variable is tuned to bring about orderly, integrable motion in the fast dynamics that avoids thermalizing energy absorbed from the drive. We thus point to a potentially general feedback mechanism in multi-time-scale active systems, that leads to the exploration of slow variable space, as if in search of fine tuning for a "least-rattling" response in the fast coordinates.

  3. Optimal attributes for the object based detection of giant reed in riparian habitats: A comparative study between Airborne High Spatial Resolution and WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Rosário; Aguiar, Francisca C.; Silva, João M. N.; Ferreira, Maria Teresa; Pereira, José M. C.

    2014-10-01

    Giant reed is an aggressive invasive plant of riparian ecosystems in many sub-tropical and warm-temperate regions, including Mediterranean Europe. In this study we tested a set of geometric, spectral and textural attributes in an object based image analysis (OBIA) approach to map giant reed invasions in riparian habitats. Bagging Classification and Regression Tree were used to select the optimal attributes and to build the classification rules sets. Mapping accuracy was performed using landscape metrics and the Kappa coefficient to compare the topographical and geometric similarity between the giant reed patches obtained with the OBIA map and with a validation map derived from on-screen digitizing. The methodology was applied in two high spatial resolution images: an airborne multispectral imagery and the newly WorldView-2 imagery. A temporal coverage of the airborne multispectral images was radiometrically calibrated with the IR-Mad transformation and used to assess the influence of the phenological variability of the invader. We found that optimal attributes for giant reed OBIA detection are a combination of spectral, geometric and textural information, with different scoring selection depending on the spectral and spatial characteristics of the imagery. WorldView-2 showed higher mapping accuracy (Kappa coefficient of 77%) and spectral attributes, including the newly yellow band, were preferentially selected, although a tendency to overestimate the total invaded area, due to the low spatial resolution (2 m of pixel size vs. 50 cm) was observed. When airborne images were used, geometric attributes were primarily selected and a higher spatial detail of the invasive patches was obtained, due to the higher spatial resolution. However, in highly heterogeneous landscapes, the low spectral resolution of the airborne images (4 bands instead of the 8 of WorldView-2) reduces the capability to detect giant reed patches. Giant reed displays peculiar spectral and geometric traits, at leaf, canopy and stand level, which makes the OBIA approach a very suitable technique for management purposes.

  4. Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)

    NASA Astrophysics Data System (ADS)

    Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto

    2017-04-01

    The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.

  5. Adaptations to Climate in Candidate Genes for Common Metabolic Disorders

    PubMed Central

    Hancock, Angela M; Witonsky, David B; Gordon, Adam S; Eshel, Gidon; Pritchard, Jonathan K; Coop, Graham; Di Rienzo, Anna

    2008-01-01

    Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders. PMID:18282109

  6. Spatial Variability of Sources and Mixing State of Atmospheric Particles in a Metropolitan Area.

    PubMed

    Ye, Qing; Gu, Peishi; Li, Hugh Z; Robinson, Ellis S; Lipsky, Eric; Kaltsonoudis, Christos; Lee, Alex K Y; Apte, Joshua S; Robinson, Allen L; Sullivan, Ryan C; Presto, Albert A; Donahue, Neil M

    2018-05-30

    Characterizing intracity variations of atmospheric particulate matter has mostly relied on fixed-site monitoring and quantifying variability in terms of different bulk aerosol species. In this study, we performed ground-based mobile measurements using a single-particle mass spectrometer to study spatial patterns of source-specific particles and the evolution of particle mixing state in 21 areas in the metropolitan area of Pittsburgh, PA. We selected sampling areas based on traffic density and restaurant density with each area ranging from 0.2 to 2 km 2 . Organics dominate particle composition in all of the areas we sampled while the sources of organics differ. The contribution of particles from traffic and restaurant cooking varies greatly on the neighborhood scale. We also investigate how primary and aged components in particles mix across the urban scale. Lastly we quantify and map the particle mixing state for all areas we sampled and discuss the overall pattern of mixing state evolution and its implications. We find that in the upwind and downwind of the urban areas, particles are more internally mixed while in the city center, particle mixing state shows large spatial heterogeneity that is mostly driven by emissions. This study is to our knowledge, the first study to perform fine spatial scale mapping of particle mixing state using ground-based mobile measurement and single-particle mass spectrometry.

  7. Feasibility of automated dropsize distributions from holographic data using digital image processing techniques. [particle diameter measurement technique

    NASA Technical Reports Server (NTRS)

    Feinstein, S. P.; Girard, M. A.

    1979-01-01

    An automated technique for measuring particle diameters and their spatial coordinates from holographic reconstructions is being developed. Preliminary tests on actual cold-flow holograms of impinging jets indicate that a suitable discriminant algorithm consists of a Fourier-Gaussian noise filter and a contour thresholding technique. This process identifies circular as well as noncircular objects. The desired objects (in this case, circular or possibly ellipsoidal) are then selected automatically from the above set and stored with their parametric representations. From this data, dropsize distributions as a function of spatial coordinates can be generated and combustion effects due to hardware and/or physical variables studied.

  8. Simulating maize yield and biomass with spatial variability of soil field capacity

    USDA-ARS?s Scientific Manuscript database

    Spatial variability in field soil water and other properties is a challenge for system modelers who use only representative values for model inputs, rather than their distributions. In this study, we compared simulation results from a calibrated model with spatial variability of soil field capacity ...

  9. Modelling space of spread Dengue Hemorrhagic Fever (DHF) in Central Java use spatial durbin model

    NASA Astrophysics Data System (ADS)

    Ispriyanti, Dwi; Prahutama, Alan; Taryono, Arkadina PN

    2018-05-01

    Dengue Hemorrhagic Fever is one of the major public health problems in Indonesia. From year to year, DHF causes Extraordinary Event in most parts of Indonesia, especially Central Java. Central Java consists of 35 districts or cities where each region is close to each other. Spatial regression is an analysis that suspects the influence of independent variables on the dependent variables with the influences of the region inside. In spatial regression modeling, there are spatial autoregressive model (SAR), spatial error model (SEM) and spatial autoregressive moving average (SARMA). Spatial Durbin model is the development of SAR where the dependent and independent variable have spatial influence. In this research dependent variable used is number of DHF sufferers. The independent variables observed are population density, number of hospitals, residents and health centers, and mean years of schooling. From the multiple regression model test, the variables that significantly affect the spread of DHF disease are the population and mean years of schooling. By using queen contiguity and rook contiguity, the best model produced is the SDM model with queen contiguity because it has the smallest AIC value of 494,12. Factors that generally affect the spread of DHF in Central Java Province are the number of population and the average length of school.

  10. Spatial patterns and environmental controls of particulate organic carbon in surface waters in the conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qichun; Zhang, Xuesong; Xu, Xingya

    2016-06-01

    Carbon stocks and fluxes in inland waters have been identified as important, but poorly constrained components of the global carbon cycle. In this study, we compile and analyze particulate organic carbon (POC) concentration data from 1145 U.S. Geological Survey (USGS) hydrologic stations to investigate the spatial variability and environmental controls of POC concentration. We observe substantial spatial variability in POC concentration (1.43 ± 2.56 mg C/ L, Mean ± Standard Deviation), with the Upper Mississippi River basin and the Piedmont region in the eastern U.S. having the highest POC concentration. Further, we employ generalized linear regression models to analyze themore » impacts of sediment transport and algae growth as well as twenty-one other environmental factors on the POC variability. Suspended sediment and chlorophyll-a explain 26% and 17% of the variability in POC concentration, respectively. At the national level, the twenty-one selected environmental factors combined can explain ca. 40% of the spatial variance in POC concentration. Overall, urban area and soil clay content show significant negative correlation with POC concentration, while soil water content and soil bulk density correlate positively with POC. In addition, total phosphorus concentration and dam density covariate positively with POC concentration. Furthermore, regional scale analyses reveal substantial variation in environmental controls determining POC concentration across the 18 major water resource regions in the U.S. The POC concentration and associated environmental controls also vary non-monotonically with river order. These findings indicate complex interactions among multiple factors in regulating POC production over different spatial scales and across various sections of the river networks. This complexity together with the large unexplained uncertainty highlight the need for consideration of non-linear processes that control them and developing appropriate methodologies to track the transformation and transport of carbon in these terrestrial-aquatic systems. Such scientific advancements will also benefit greatly the Earth system models that are currently deficient in representing properly this component of global carbon cycle.« less

  11. Using genetic algorithms to achieve an automatic and global optimization of analogue methods for statistical downscaling of precipitation

    NASA Astrophysics Data System (ADS)

    Horton, Pascal; Weingartner, Rolf; Obled, Charles; Jaboyedoff, Michel

    2017-04-01

    Analogue methods (AMs) rely on the hypothesis that similar situations, in terms of atmospheric circulation, are likely to result in similar local or regional weather conditions. These methods consist of sampling a certain number of past situations, based on different synoptic-scale meteorological variables (predictors), in order to construct a probabilistic prediction for a local weather variable of interest (predictand). They are often used for daily precipitation prediction, either in the context of real-time forecasting, reconstruction of past weather conditions, or future climate impact studies. The relationship between predictors and predictands is defined by several parameters (predictor variable, spatial and temporal windows used for the comparison, analogy criteria, and number of analogues), which are often calibrated by means of a semi-automatic sequential procedure that has strong limitations. AMs may include several subsampling levels (e.g. first sorting a set of analogs in terms of circulation, then restricting to those with similar moisture status). The parameter space of the AMs can be very complex, with substantial co-dependencies between the parameters. Thus, global optimization techniques are likely to be necessary for calibrating most AM variants, as they can optimize all parameters of all analogy levels simultaneously. Genetic algorithms (GAs) were found to be successful in finding optimal values of AM parameters. They allow taking into account parameters inter-dependencies, and selecting objectively some parameters that were manually selected beforehand (such as the pressure levels and the temporal windows of the predictor variables), and thus obviate the need of assessing a high number of combinations. The performance scores of the optimized methods increased compared to reference methods, and this even to a greater extent for days with high precipitation totals. The resulting parameters were found to be relevant and spatially coherent. Moreover, they were obtained automatically and objectively, which reduces efforts invested in exploration attempts when adapting the method to a new region or for a new predictand. In addition, the approach allowed for new degrees of freedom, such as a weighting between the pressure levels, and non overlapping spatial windows. Genetic algorithms were then used further in order to automatically select predictor variables and analogy criteria. This resulted in interesting outputs, providing new predictor-criterion combinations. However, some limitations of the approach were encountered, and the need of the expert input is likely to remain necessary. Nevertheless, letting GAs exploring a dataset for the best predictor for a predictand of interest is certainly a useful tool, particularly when applied for a new predictand or a new region under different climatic characteristics.

  12. The importance of scale-dependent ravine characteristics on breeding-site selection by the Burrowing Parrot, Cyanoliseus patagonus

    PubMed Central

    Rios, Rodrigo S.; Vargas-Rodriguez, Renzo; Novoa-Jerez, Jose-Enrique; Squeo, Francisco A.

    2017-01-01

    In birds, the environmental variables and intrinsic characteristics of the nest have important fitness consequences through its influence on the selection of nesting sites. However, the extent to which these variables interact with variables that operate at the landscape scale, and whether there is a hierarchy among the different scales that influences nest-site selection, is unknown. This interaction could be crucial in burrowing birds, which depend heavily on the availability of suitable nesting locations. One representative of this group is the burrowing parrot, Cyanoliseus patagonus that breeds on specific ravines and forms large breeding colonies. At a particular site, breeding aggregations require the concentration of adequate environmental elements for cavity nesting, which are provided by within ravine characteristics. Therefore, intrinsic ravine characteristics should be more important in determining nest site selection compared to landscape level characteristics. Here, we assess this hypothesis by comparing the importance of ravine characteristics operating at different scales on nest-site selection and their interrelation with reproductive success. We quantified 12 characteristics of 105 ravines in their reproductive habitat. For each ravine we quantified morphological variables, distance to resources and disturbance as well as nest number and egg production in order to compare selected and non-selected ravines and determine the interrelationship among variables in explaining ravine differences. In addition, the number of nests and egg production for each reproductive ravine was related to ravine characteristics to assess their relation to reproductive success. We found significant differences between non-reproductive and reproductive ravines in both intrinsic and extrinsic characteristics. The multidimensional environmental gradient of variation between ravines, however, shows that differences are mainly related to intrinsic morphological characteristics followed by extrinsic variables associated to human disturbance. Likewise, within reproductive ravines, intrinsic characteristics are more strongly related to the number of nests. The probability of producing eggs, however, was related only to distance to roads and human settlements. Patterns suggest that C. patagonus mainly selects nesting sites based on intrinsic morphological characteristics of ravines. Scale differences in the importance of ravine characteristics could be a consequence of the particular orography of the breeding habitat. The arrangement of resources is associated to the location of the gullies rather than to individual ravines, determining the spatial availability and disposition of resources and disturbances. Thus, nest selection is influenced by intrinsic characteristics that maximize the fitness of individuals. Scaling in nest-selection is discussed under an optimality approach that partitions patch selection based on foraging theory. PMID:28462019

  13. Partitioning the factors of spatial variation in regeneration density of shade-tolerant tree species.

    PubMed

    Gravel, Dominique; Beaudet, Marilou; Messier, Christian

    2008-10-01

    Understanding coexistence of highly shade-tolerant tree species is a longstanding challenge for forest ecologists. A conceptual model for the coexistence of sugar maple (Acer saccharum) and American beech (Fagus grandibfolia) has been proposed, based on a low-light survival/high-light growth trade-off, which interacts with soil fertility and small-scale spatiotemporal variation in the environment. In this study, we first tested whether the spatial distribution of seedlings and saplings can be predicted by the spatiotemporal variability of light availability and soil fertility, and second, the manner in which the process of environmental filtering changes with regeneration size. We evaluate the support for this hypothesis relative to the one for a neutral model, i.e., for seed rain density predicted from the distribution of adult trees. To do so, we performed intensive sampling over 86 quadrats (5 x 5 m) in a 0.24-ha plot in a mature maple-beech community in Quebec, Canada. Maple and beech abundance, soil characteristics, light availability, and growth history (used as a proxy for spatiotemporal variation in light availability) were finely measured to model variation in sapling composition across different size classes. Results indicate that the variables selected to model species distribution do effectively change with size, but not as predicted by the conceptual model. Our results show that variability in the environment is not sufficient to differentiate these species' distributions in space. Although species differ in their spatial distribution in the small size classes, they tend to correlate at the larger size class in which recruitment occurs. Overall, the results are not supportive of a model of coexistence based on small-scale variations in the environment. We propose that, at the scale of a local stand, the lack of fit of the model could result from the high similarity of species in the range of environmental conditions encountered, and we suggest that coexistence would be stable only at larger spatial scales at which variability in the environment is greater.

  14. Balancing precision and risk: should multiple detection methods be analyzed separately in N-mixture models?

    USGS Publications Warehouse

    Graves, Tabitha A.; Royle, J. Andrew; Kendall, Katherine C.; Beier, Paul; Stetz, Jeffrey B.; Macleod, Amy C.

    2012-01-01

    Using multiple detection methods can increase the number, kind, and distribution of individuals sampled, which may increase accuracy and precision and reduce cost of population abundance estimates. However, when variables influencing abundance are of interest, if individuals detected via different methods are influenced by the landscape differently, separate analysis of multiple detection methods may be more appropriate. We evaluated the effects of combining two detection methods on the identification of variables important to local abundance using detections of grizzly bears with hair traps (systematic) and bear rubs (opportunistic). We used hierarchical abundance models (N-mixture models) with separate model components for each detection method. If both methods sample the same population, the use of either data set alone should (1) lead to the selection of the same variables as important and (2) provide similar estimates of relative local abundance. We hypothesized that the inclusion of 2 detection methods versus either method alone should (3) yield more support for variables identified in single method analyses (i.e. fewer variables and models with greater weight), and (4) improve precision of covariate estimates for variables selected in both separate and combined analyses because sample size is larger. As expected, joint analysis of both methods increased precision as well as certainty in variable and model selection. However, the single-method analyses identified different variables and the resulting predicted abundances had different spatial distributions. We recommend comparing single-method and jointly modeled results to identify the presence of individual heterogeneity between detection methods in N-mixture models, along with consideration of detection probabilities, correlations among variables, and tolerance to risk of failing to identify variables important to a subset of the population. The benefits of increased precision should be weighed against those risks. The analysis framework presented here will be useful for other species exhibiting heterogeneity by detection method.

  15. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana.

    PubMed

    Manzano-Piedras, Esperanza; Marcer, Arnald; Alonso-Blanco, Carlos; Picó, F Xavier

    2014-01-01

    The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.

  16. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    PubMed Central

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-01-01

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall. PMID:27680878

  17. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input.

    PubMed

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P; Jansson, Janet K; Hopkins, David W; Aspray, Thomas J; Seely, Mary; Trindade, Marla I; Cowan, Don A

    2016-09-29

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO 2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.

  18. Spatial and temporal variability of the overall error of National Atmospheric Deposition Program measurements determined by the USGS collocated-sampler program, water years 1989-2001

    USGS Publications Warehouse

    Wetherbee, G.A.; Latysh, N.E.; Gordon, J.D.

    2005-01-01

    Data from the U.S. Geological Survey (USGS) collocated-sampler program for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) are used to estimate the overall error of NADP/NTN measurements. Absolute errors are estimated by comparison of paired measurements from collocated instruments. Spatial and temporal differences in absolute error were identified and are consistent with longitudinal distributions of NADP/NTN measurements and spatial differences in precipitation characteristics. The magnitude of error for calcium, magnesium, ammonium, nitrate, and sulfate concentrations, specific conductance, and sample volume is of minor environmental significance to data users. Data collected after a 1994 sample-handling protocol change are prone to less absolute error than data collected prior to 1994. Absolute errors are smaller during non-winter months than during winter months for selected constituents at sites where frozen precipitation is common. Minimum resolvable differences are estimated for different regions of the USA to aid spatial and temporal watershed analyses.

  19. Attention operates uniformly throughout the classical receptive field and the surround

    PubMed Central

    Verhoef, Bram-Ernst; Maunsell, John HR

    2016-01-01

    Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround. DOI: http://dx.doi.org/10.7554/eLife.17256.001 PMID:27547989

  20. Seasonal variation in coastal marine habitat use by the European shag: Insights from fine scale habitat selection modeling and diet

    NASA Astrophysics Data System (ADS)

    Michelot, Candice; Pinaud, David; Fortin, Matthieu; Maes, Philippe; Callard, Benjamin; Leicher, Marine; Barbraud, Christophe

    2017-07-01

    Studies of habitat selection by higher trophic level species are necessary for using top predator species as indicators of ecosystem functioning. However, contrary to terrestrial ecosystems, few habitat selection studies have been conducted at a fine scale for coastal marine top predator species, and fewer have coupled diet data with habitat selection modeling to highlight a link between prey selection and habitat use. The aim of this study was to characterize spatially and oceanographically, at a fine scale, the habitats used by the European Shag Phalacrocorax aristotelis in the Special Protection Area (SPA) of Houat-Hœdic in the Mor Braz Bay during its foraging activity. Habitat selection models were built using in situ observation data of foraging shags (transect sampling) and spatially explicit environmental data to characterize marine benthic habitats. Observations were first adjusted for detectability biases and shag abundance was subsequently spatialized. The influence of habitat variables on shag abundance was tested using Generalized Linear Models (GLMs). Diet data were finally confronted to habitat selection models. Results showed that European shags breeding in the Mor Braz Bay changed foraging habitats according to the season and to the different environmental and energetic constraints. The proportion of the main preys also varied seasonally. Rocky and coarse sand habitats were clearly preferred compared to fine or muddy sand habitats. Shags appeared to be more selective in their foraging habitats during the breeding period and the rearing of chicks, using essentially rocky areas close to the colony and consuming preferentially fish from the Labridae family and three other fish families in lower proportions. During the post-breeding period shags used a broader range of habitats and mainly consumed Gadidae. Thus, European shags seem to adjust their feeding strategy to minimize energetic costs, to avoid intra-specific competition and to maximize access to suitable habitats and preys.

  1. Spatial heterogeneity in human activities favors the persistence of wolves in agroecosystems.

    PubMed

    Ahmadi, Mohsen; López-Bao, José Vicente; Kaboli, Mohammad

    2014-01-01

    As human populations expand, there is increasing demand and pressure for land. Under this scenario, behavioural flexibility and adaptation become important processes leading to the persistence of large carnivores in human-dominated landscapes such as agroecosystems. A growing interest has recently emerged on the outcome of the coexistence between wolves and humans in these systems. It has been suggested that spatial heterogeneity in human activities would be a major environmental factor modulating vulnerability and persistence of this contentious species in agroecosystems. Here, we combined information from 35 den sites detected between 2011 and 2012 in agroecosystems of western Iran (Hamedan province), a set of environmental variables measured at landscape and fine spatial scales, and generalized linear models to identify patterns of den site selection by wolves in a highly-modified agroecosystem. On a landscape level, wolves selected a mixture of rangelands with scattered dry-farms on hillsides (showing a low human use) to locate their dens, avoiding areas with high densities of settlements and primary roads. On a fine spatial scale, wolves primarily excavated dens into the sides of elevated steep-slope hills with availability of water bodies in the vicinity of den sites, and wolves were relegated to dig in places with coarse-soil particles. Our results suggest that vulnerability of wolves in human-dominated landscapes could be compensated by the existence of spatial heterogeneity in human activities. Such heterogeneity would favor wolf persistence in agroecosystems favoring a land sharing model of coexistence between wolves and people.

  2. Spatial Heterogeneity in Human Activities Favors the Persistence of Wolves in Agroecosystems

    PubMed Central

    Ahmadi, Mohsen; López-Bao, José Vicente; Kaboli, Mohammad

    2014-01-01

    As human populations expand, there is increasing demand and pressure for land. Under this scenario, behavioural flexibility and adaptation become important processes leading to the persistence of large carnivores in human-dominated landscapes such as agroecosystems. A growing interest has recently emerged on the outcome of the coexistence between wolves and humans in these systems. It has been suggested that spatial heterogeneity in human activities would be a major environmental factor modulating vulnerability and persistence of this contentious species in agroecosystems. Here, we combined information from 35 den sites detected between 2011 and 2012 in agroecosystems of western Iran (Hamedan province), a set of environmental variables measured at landscape and fine spatial scales, and generalized linear models to identify patterns of den site selection by wolves in a highly-modified agroecosystem. On a landscape level, wolves selected a mixture of rangelands with scattered dry-farms on hillsides (showing a low human use) to locate their dens, avoiding areas with high densities of settlements and primary roads. On a fine spatial scale, wolves primarily excavated dens into the sides of elevated steep-slope hills with availability of water bodies in the vicinity of den sites, and wolves were relegated to dig in places with coarse-soil particles. Our results suggest that vulnerability of wolves in human-dominated landscapes could be compensated by the existence of spatial heterogeneity in human activities. Such heterogeneity would favor wolf persistence in agroecosystems favoring a land sharing model of coexistence between wolves and people. PMID:25251567

  3. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean.

    PubMed

    McClanahan, Timothy R; Maina, Joseph M; Graham, Nicholas A J; Jones, Kendall R

    2016-01-01

    Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability.

  4. Modeling Reef Fish Biomass, Recovery Potential, and Management Priorities in the Western Indian Ocean

    PubMed Central

    McClanahan, Timothy R.; Maina, Joseph M.; Graham, Nicholas A. J.; Jones, Kendall R.

    2016-01-01

    Fish biomass is a primary driver of coral reef ecosystem services and has high sensitivity to human disturbances, particularly fishing. Estimates of fish biomass, their spatial distribution, and recovery potential are important for evaluating reef status and crucial for setting management targets. Here we modeled fish biomass estimates across all reefs of the western Indian Ocean using key variables that predicted the empirical data collected from 337 sites. These variables were used to create biomass and recovery time maps to prioritize spatially explicit conservation actions. The resultant fish biomass map showed high variability ranging from ~15 to 2900 kg/ha, primarily driven by human populations, distance to markets, and fisheries management restrictions. Lastly, we assembled data based on the age of fisheries closures and showed that biomass takes ~ 25 years to recover to typical equilibrium values of ~1200 kg/ha. The recovery times to biomass levels for sustainable fishing yields, maximum diversity, and ecosystem stability or conservation targets once fishing is suspended was modeled to estimate temporal costs of restrictions. The mean time to recovery for the whole region to the conservation target was 8.1(± 3SD) years, while recovery to sustainable fishing thresholds was between 0.5 and 4 years, but with high spatial variation. Recovery prioritization scenario models included one where local governance prioritized recovery of degraded reefs and two that prioritized minimizing recovery time, where countries either operated independently or collaborated. The regional collaboration scenario selected remote areas for conservation with uneven national responsibilities and spatial coverage, which could undermine collaboration. There is the potential to achieve sustainable fisheries within a decade by promoting these pathways according to their social-ecological suitability. PMID:27149673

  5. Multiscale analysis of the spatial variability of heavy metals and organic matter in soils and groundwater across Spain

    NASA Astrophysics Data System (ADS)

    Luque-Espinar, J. A.; Pardo-Igúzquiza, E.; Grima-Olmedo, J.; Grima-Olmedo, C.

    2018-06-01

    During the last years there has been an increasing interest in assessing health risks caused by exposure to contaminants found in soil, air, and water, like heavy metals or emerging contaminants. This work presents a study on the spatial patterns and interaction effects among relevant heavy metals (Sb, As and Pb) that may occur together in different minerals. Total organic carbon (TOC) have been analyzed too because it is an essential component in the regulatory mechanisms that control the amount of metal in soils. Even more, exposure to these elements is associated with a number of diseases and environmental problems. These metals can have both natural and anthropogenic origins. A key component of any exposure study is a reliable model of the spatial distribution the elements studied. A geostatistical analysis have been performed in order to show that selected metals are auto-correlated and cross-correlated and type and magnitude of such cross-correlation varies depending on the spatial scale under consideration. After identifying general trends, we analyzed the residues left after subtracting the trend from the raw variables. Three scales of variability were identified (compounds or factors) with scales of 5, 35 and 135 km. The first factor (F1) basically identifies anomalies of natural origin but, in some places, of anthropogenics origin as well. The other two are related to geology (F2 and F3) although F3 represents more clearly geochemical background related to large lithological groups. Likewise, mapping of two major structures indicates that significant faults have influence on the distribution of the studied elements. Finally, influence of soil and lithology on groundwater by means of contingency analysis was assessed.

  6. U.S. Navy Statutory Monitoring of Tributyltin in Selected U.S. Harbors

    DTIC Science & Technology

    1990-06-01

    U.S. Navy and has very little commercial and private use. Tributyltin loading from Navy ships painted with TBT antifoulants was closely correlated (r 2...evaluated major tributyltin ( TBT ) sources ar well as tidal, vertical, and spatial variability (Valkirs et al., 1986; Seligman et al., 1986; Seligman et al... tributyltin antifouling paints to deter- mine both their efficacy and environmental concentration resulting from use of these TBT antifouling coatings

  7. Identification of phreatophytic groundwater dependent ecosystems using geospatial technologies

    NASA Astrophysics Data System (ADS)

    Perez Hoyos, Isabel Cristina

    The protection of groundwater dependent ecosystems (GDEs) is increasingly being recognized as an essential aspect for the sustainable management and allocation of water resources. Ecosystem services are crucial for human well-being and for a variety of flora and fauna. However, the conservation of GDEs is only possible if knowledge about their location and extent is available. Several studies have focused on the identification of GDEs at specific locations using ground-based measurements. However, recent progress in technologies such as remote sensing and their integration with geographic information systems (GIS) has provided alternative ways to map GDEs at much larger spatial extents. This study is concerned with the discovery of patterns in geospatial data sets using data mining techniques for mapping phreatophytic GDEs in the United States at 1 km spatial resolution. A methodology to identify the probability of an ecosystem to be groundwater dependent is developed. Probabilities are obtained by modeling the relationship between the known locations of GDEs and main factors influencing groundwater dependency, namely water table depth (WTD) and aridity index (AI). A methodology is proposed to predict WTD at 1 km spatial resolution using relevant geospatial data sets calibrated with WTD observations. An ensemble learning algorithm called random forest (RF) is used in order to model the distribution of groundwater in three study areas: Nevada, California, and Washington, as well as in the entire United States. RF regression performance is compared with a single regression tree (RT). The comparison is based on contrasting training error, true prediction error, and variable importance estimates of both methods. Additionally, remote sensing variables are omitted from the process of fitting the RF model to the data to evaluate the deterioration in the model performance when these variables are not used as an input. Research results suggest that although the prediction accuracy of a single RT is reduced in comparison with RFs, single trees can still be used to understand the interactions that might be taking place between predictor variables and the response variable. Regarding RF, there is a great potential in using the power of an ensemble of trees for prediction of WTD. The superior capability of RF to accurately map water table position in Nevada, California, and Washington demonstrate that this technique can be applied at scales larger than regional levels. It is also shown that the removal of remote sensing variables from the RF training process degrades the performance of the model. Using the predicted WTD, the probability of an ecosystem to be groundwater dependent (GDE probability) is estimated at 1 km spatial resolution. The modeling technique is evaluated in the state of Nevada, USA to develop a systematic approach for the identification of GDEs and it is then applied in the United States. The modeling approach selected for the development of the GDE probability map results from a comparison of the performance of classification trees (CT) and classification forests (CF). Predictive performance evaluation for the selection of the most accurate model is achieved using a threshold independent technique, and the prediction accuracy of both models is assessed in greater detail using threshold-dependent measures. The resulting GDE probability map can potentially be used for the definition of conservation areas since it can be translated into a binary classification map with two classes: GDE and NON-GDE. These maps are created by selecting a probability threshold. It is demonstrated that the choice of this threshold has dramatic effects on deterministic model performance measures.

  8. Energy density and variability in abundance of pigeon guillemot prey: Support for the quality-variability trade-off hypothesis

    USGS Publications Warehouse

    Litzow, Michael A.; Piatt, John F.; Abookire, Alisa A.; Robards, Martin D.

    2004-01-01

    1. The quality-variability trade-off hypothesis predicts that (i) energy density (kJ g-1) and spatial-temporal variability in abundance are positively correlated in nearshore marine fishes; and (ii) prey selection by a nearshore piscivore, the pigeon guillemot (Cepphus columba Pallas), is negatively affected by variability in abundance. 2. We tested these predictions with data from a 4-year study that measured fish abundance with beach seines and pigeon guillemot prey utilization with visual identification of chick meals. 3. The first prediction was supported. Pearson's correlation showed that fishes with higher energy density were more variable on seasonal (r = 0.71) and annual (r = 0.66) time scales. Higher energy density fishes were also more abundant overall (r = 0.85) and more patchy at a scale of 10s of km (r = 0.77). 4. Prey utilization by pigeon guillemots was strongly non-random. Relative preference, defined as the difference between log-ratio transformed proportions of individual prey taxa in chick diets and beach seine catches, was significantly different from zero for seven of the eight main prey categories. 5. The second prediction was also supported. We used principal component analysis (PCA) to summarize variability in correlated prey characteristics (energy density, availability and variability in abundance). Two PCA scores explained 32% of observed variability in pigeon guillemot prey utilization. Seasonal variability in abundance was negatively weighted by these PCA scores, providing evidence of risk-averse selection. Prey availability, energy density and km-scale variability in abundance were positively weighted. 6. Trophic interactions are known to create variability in resource distribution in other systems. We propose that links between resource quality and the strength of trophic interactions may produce resource quality-variability trade-offs.

  9. Seasonality and microhabitat selection in a forest-dwelling salamander

    NASA Astrophysics Data System (ADS)

    Basile, Marco; Romano, Antonio; Costa, Andrea; Posillico, Mario; Scinti Roger, Daniele; Crisci, Aldo; Raimondi, Ranieri; Altea, Tiziana; Garfì, Vittorio; Santopuoli, Giovanni; Marchetti, Marco; Salvidio, Sebastiano; De Cinti, Bruno; Matteucci, Giorgio

    2017-10-01

    Many small terrestrial vertebrates exhibit limited spatial movement and are considerably exposed to changes in local environmental variables. Among such vertebrates, amphibians at present experience a dramatic decline due to their limited resilience to environmental change. Since the local survival and abundance of amphibians is intrinsically related to the availability of shelters, conservation plans need to take microhabitat requirements into account. In order to gain insight into the terrestrial ecology of the spectacled salamander Salamandrina perspicillata and to identify appropriate forest management strategies, we investigated the salamander's seasonal variability in habitat use of trees as shelters in relation to tree features (size, buttresses, basal holes) and environmental variables in a beech forest in Italy. We used the occupancy approach to assess tree suitability on a non-conventional spatial scale. Our approach provides fine-grained parameters of microhabitat suitability and elucidates many aspects of the salamander's terrestrial ecology . Occupancy changed with the annual life cycle and was higher in autumn than in spring, when females were found closer to the stream in the study area. Salamanders showed a seasonal pattern regarding the trees they occupied and a clear preference for trees with a larger diameter and more burrows. With respect to forest management, we suggest maintaining a suitable number of trees with a trunk diameter exceeding 30 cm. A practice of selective logging along the banks of streams could help maintain an adequate quantity of the appropriate microhabitat. Furthermore, in areas with a presence of salamanders, a good forest management plan requires leaving an adequate buffer zone around streams, which should be wider in autumn than in spring.

  10. Assessment of Lower Missouri River physical aquatic habitat and its use by adult sturgeon (Genus Scaphirhynchus), 2005-07

    USGS Publications Warehouse

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.; DeLonay, Aaron J.

    2009-01-01

    This report presents an exploratory analysis of habitat availability and use by adult Scaphirhynchus sturgeon on the Lower Missouri River from Gavins Point Dam, South Dakota, to the junction with the Mississippi River. The analysis is based on two main data sources collected from 2005 to 2007: (1) a compilation of 153 reach-scale habitat maps (mean reach length, 2.4 kilometers) derived from boat-collected hydroacoustic data and (2) a sturgeon location dataset from which 378 sturgeon telemetry locations are associated with the maps (within 7 days of the mapping and within 10 percent of the discharge). The report focuses on: (1) longitudinal patterns of geomorphic and hydraulic characteristics revealed by the collection of reach maps; (2) assessment of environmental characteristics at sturgeon locations in the context of the mapped reaches; and (3) consideration of spatial distribution of habitat conditions that sturgeon appear to select. Longitudinal patterns of geomorphology, hydraulics, and associated habitats relate strongly to the engineered state of the river. Reaches within each of the following river sections tended to share similar geomorphic, hydrologic, and hydraulic characteristics: the Minimally Engineered section (Gavins Point Dam to Sioux City, Iowa), the Upstream Channelized section (Sioux City, Iowa, to the junction with the Kansas River), and the Downstream Channelized section (Kansas River to the junction with the Mississippi River). Adult sturgeon occupy nearly the full range of available values for each continuous variable assessed: depth, depth slope, depth-averaged velocity, velocity gradient, and Froude number (a dimensionless number relating velocity to depth). However, in the context of habitat available in a reach, sturgeon tend to select some areas over others. Reproductive female shovelnose sturgeon (Scaphirhynchus platorynchus), in particular, were often found in parts of the reach with one or more of the following characteristics: high velocity gradient, high depth slope, low Froude number, and low (though not necessarily the lowest) depth-averaged velocity. Depths used by sturgeon varied considerably. We explored spatial patterns representing the variable ranges that reproductive female shovelnose sturgeon most strongly and consistently selected by mapping areas within reaches meeting the following criteria: greater than the 80th percentile of depth slope, greater than the 80th percentile of velocity gradient, and less than the 20th percentile of Froude number. Our data exploration indicates that areas meeting these criteria have some predictive value regarding sturgeon habitat selection. Of all sturgeon locations that fall on maps from the same year (sample size = 2,013), about 63 percent fall within about 35 percent of the area where at least one variable meets the above criteria and 18 percent of locations fall within 4 percent of the area where all three variables meet the above criteria. The spatial patterns of these mapped areas show distinct differences among the sections of the Lower Missouri River. For example, the areas of predicted selection exhibit a relatively complex mosaic with multiple interconnected pathways in reaches of the Minimally Engineered section. In contrast, areas of predicted selection are concentrated along the channel margins in reaches of the Upstream Channelized section. Because the patterns described in this report represent habitat use in the context of the available habitat in a highly altered river system, selection may not necessarily indicate preferred habitats or habitats sufficient for reproduction and survival of sturgeon species.

  11. Directional semivariogram analysis to identify and rank controls on the spatial variability of fracture networks

    NASA Astrophysics Data System (ADS)

    Hanke, John R.; Fischer, Mark P.; Pollyea, Ryan M.

    2018-03-01

    In this study, the directional semivariogram is deployed to investigate the spatial variability of map-scale fracture network attributes in the Paradox Basin, Utah. The relative variability ratio (R) is introduced as the ratio of integrated anisotropic semivariogram models, and R is shown to be an effective metric for quantifying the magnitude of spatial variability for any two azimuthal directions. R is applied to a GIS-based data set comprising roughly 1200 fractures, in an area which is bounded by a map-scale anticline and a km-scale normal fault. This analysis reveals that proximity to the fault strongly influences the magnitude of spatial variability for both fracture intensity and intersection density within 1-2 km. Additionally, there is significant anisotropy in the spatial variability, which is correlated with trends of the anticline and fault. The direction of minimum spatial correlation is normal to the fault at proximal distances, and gradually rotates and becomes subparallel to the fold axis over the same 1-2 km distance away from the fault. We interpret these changes to reflect varying scales of influence of the fault and the fold on fracture network development: the fault locally influences the magnitude and variability of fracture network attributes, whereas the fold sets the background level and structure of directional variability.

  12. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    Treesearch

    Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell

    2015-01-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...

  13. Landscape genomics reveal signatures of local adaptation in barley (Hordeum vulgare L.)

    PubMed Central

    Abebe, Tiegist D.; Naz, Ali A.; Léon, Jens

    2015-01-01

    Land plants are sessile organisms that cannot escape the adverse climatic conditions of a given environment. Hence, adaptation is one of the solutions to surviving in a challenging environment. This study was aimed at detecting adaptive loci in barley landraces that are affected by selection. To that end, a diverse population of barley landraces was analyzed using the genotyping by sequencing approach. Climatic data for altitude, rainfall and temperature were collected from 61 weather sites near the origin of selected landraces across Ethiopia. Population structure analysis revealed three groups whereas spatial analysis accounted significant similarities at shorter geographic distances (< 40 Km) among barley landraces. Partitioning the variance between climate variables and geographic distances indicated that climate variables accounted for most of the explainable genetic variation. Markers by climatic variables association analysis resulted in altogether 18 and 62 putative adaptive loci using Bayenv and latent factor mixed model (LFMM), respectively. Subsequent analysis of the associated SNPs revealed putative candidate genes for plant adaptation. This study highlights the presence of putative adaptive loci among barley landraces representing original gene pool of the farming communities. PMID:26483825

  14. Geostatistical interpolation model selection based on ArcGIS and spatio-temporal variability analysis of groundwater level in piedmont plains, northwest China.

    PubMed

    Xiao, Yong; Gu, Xiaomin; Yin, Shiyang; Shao, Jingli; Cui, Yali; Zhang, Qiulan; Niu, Yong

    2016-01-01

    Based on the geo-statistical theory and ArcGIS geo-statistical module, datas of 30 groundwater level observation wells were used to estimate the decline of groundwater level in Beijing piedmont. Seven different interpolation methods (inverse distance weighted interpolation, global polynomial interpolation, local polynomial interpolation, tension spline interpolation, ordinary Kriging interpolation, simple Kriging interpolation and universal Kriging interpolation) were used for interpolating groundwater level between 2001 and 2013. Cross-validation, absolute error and coefficient of determination (R(2)) was applied to evaluate the accuracy of different methods. The result shows that simple Kriging method gave the best fit. The analysis of spatial and temporal variability suggest that the nugget effects from 2001 to 2013 were increasing, which means the spatial correlation weakened gradually under the influence of human activities. The spatial variability in the middle areas of the alluvial-proluvial fan is relatively higher than area in top and bottom. Since the changes of the land use, groundwater level also has a temporal variation, the average decline rate of groundwater level between 2007 and 2013 increases compared with 2001-2006. Urban development and population growth cause over-exploitation of residential and industrial areas. The decline rate of the groundwater level in residential, industrial and river areas is relatively high, while the decreasing of farmland area and development of water-saving irrigation reduce the quantity of water using by agriculture and decline rate of groundwater level in agricultural area is not significant.

  15. Joint Multifractal Analysis of penetration resistance variability in an olive orchard.

    NASA Astrophysics Data System (ADS)

    Lopez-Herrera, Juan; Herrero-Tejedor, Tomas; Saa-Requejo, Antonio; Villeta, Maria; Tarquis, Ana M.

    2016-04-01

    Spatial variability of soil properties is relevant for identifying those zones with physical degradation. We used descriptive statistics and multifractal analysis for characterizing the spatial patterns of soil penetrometer resistance (PR) distributions and compare them at different soil depths and soil water content to investigate the tillage effect in soil compactation. The study was conducted on an Inceptisol dedicated to olive orchard for the last 70 years. Two parallel transects of 64 m were selected as different soil management plots, conventional tillage (CT) and no tillage (NT). Penetrometer resistance readings were carried out at 50 cm intervals within the first 20 cm of soil depth (López de Herrera et al., 2015a). Two way ANOVA highlighted that tillage system, soil depth and their interaction are statistically significant to explain the variance of PR data. The comparison of CT and NT results at different depths showed that there are significant differences deeper than 10 cm but not in the first two soil layers. The scaling properties of each PR profile was characterized by τ(q) function, calculated in the range of moment orders (q) between -5 and +5 taken at 0.5 lag increments. Several parameters were calculated from this to establish different comparisons (López de Herrera et al., 2015b). While the multifractal analysis characterizes the distribution of a single variable along its spatial support, the joint multifractal analysis can be used to characterize the joint distribution of two or more variables along a common spatial support (Kravchenko et al., 2000; Zeleke and Si, 2004). This type of analysis was performed to study the scaling properties of the joint distribution of PR at different depths. The results showed that this type of analysis added valuable information to describe the spatial arrangement of depth-dependent penetrometer data sets in all the soil layers. References Kravchenko AN, Bullock DG, Boast CW (2000) Joint multifractal analysis of crop yield and terrain slope. Agro. j. 92: 1279-1290. López de Herrera, J., Tomas Herrero Tejedor, Antonio Saa-Requejo and Ana M. Tarquis (2015a) Influence of tillage in soil penetration resistance variability in an olive orchard. Geophysical Research Abstracts, 17, EGU2015-15425. López de Herrera, J., Tomás Herrero Tejedor, Antonio Saa-Requejo, A.M. Tarquis. Influence of tillage in soil penetration resistance variability in an olive orchard. Soil Research, accepted, 2015b. doi: SR15046 Zeleke TB, Si BC (2004) Scaling properties of topographic indices and crop yield: Multifractal and joint multifractal approaches. Agro. j. 96: 1082-1090.

  16. Spatial relationships among cereal yields and selected soil physical and chemical properties.

    PubMed

    Lipiec, Jerzy; Usowicz, Bogusław

    2018-08-15

    Sandy soils occupy large area in Poland (about 50%) and in the world. This study aimed at determining spatial relationships of cereal yields and the selected soil physical and chemical properties in three study years (2001-2003) on low productive sandy Podzol soil (Podlasie, Poland). The yields and soil properties in plough and subsoil layers were determined at 72-150 points. The test crops were: wheat, wheat and barley mixture and oats. To explore the spatial relationship between cereal yields and each soil property spatial statistics was used. The best fitting models were adjusted to empirical semivariance and cross-semivariance, which were used to draw maps using kriging. Majority of the soil properties and crop yields exhibited low and medium variability (coefficient of variation 5-70%). The effective ranges of the spatial dependence (the distance at which data are autocorrelated) for yields and all soil properties were 24.3-58.5m and 10.5-373m, respectively. Nugget to sill ratios showed that crop yields and soil properties were strongly spatially dependent except bulk density. Majority of the pairs in cross-semivariograms exhibited strong spatial interdependence. The ranges of the spatial dependence varied in plough layer between 54.6m for yield×pH up to 2433m for yield×silt content. Corresponding ranges in subsoil were 24.8m for crop yield×clay content in 2003 and 1404m for yield×bulk density. Kriging maps allowed separating sub-field area with the lowest yield and soil cation exchange capacity, organic carbon content and pH. This area had lighter color on the aerial photograph due to high content of the sand and low content of soil organic carbon. The results will help farmers at identifying sub-field areas for applying localized management practices to improve these soil properties and further spatial studies in larger scale. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping.

    PubMed

    Gao, Xiaoqing; Gentile, Francesco; Rossion, Bruno

    2018-06-01

    Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80-90%) of test-retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.

  18. Spatial variations in δ13C and δ15N values of primary consumers in a coastal lagoon

    NASA Astrophysics Data System (ADS)

    Como, S.; Magni, P.; Van Der Velde, G.; Blok, F. S.; Van De Steeg, M. F. M.

    2012-12-01

    The analysis of the contribution of a food source to a consumer's diet or the trophic position of a consumer is highly sensitive to the variability of the isotopic values used as input data. However, little is known in coastal lagoons about the spatial variations in the isotopic values of primary consumers considered 'end members' in the isotope mixing models for quantifying the diet of secondary consumers or as a baseline for estimating the trophic position of consumers higher up in the food web. We studied the spatial variations in the δ13C and δ15N values of primary consumers and sedimentary organic matter (SOM) within a selected area of the Cabras lagoon (Sardinia, Italy). Our aim was to assess how much of the spatial variation in isotopic values of primary consumers was due to the spatial variability between sites and how much was due to differences in short distances from the shore. Samples were collected at four stations (50-100 m apart) selected randomly at two sites (1.5-2 km apart) chosen randomly at two distances from the shore (i.e. in proximity of the shore -Nearshore - and about 200 m away from the shore -Offshore). The sampling was repeated in March, May and August 2006 using new sites at the two chosen distances from the shore on each date. The isotopic values of size-fractionated seston and macrophytes were also analyzed as a complementary characterization of the study area. While δ15N did not show any spatial variations, the δ13C values of deposit feeders, Alitta (=Neanthes) succinea, Lekanesphaera hookeri, Hydrobia acuta and Gammarus aequicauda, were more depleted Offshore than Nearshore. For these species, there were significant effects of distance or distance × dates in the mean δ13C values, irrespective of the intrinsic variation between sites. SOM showed similar spatial variations in δ13C values, with Nearshore-Offshore differences up to 6‰. This indicates that the spatial isotopic changes are transferred from the food sources to the deposit feeders studied. In contrast, δ13C and δ15N values of suspension feeders, Ficopomatus enigmaticus and Amphibalanus amphitrite, did not show major variations, either between sites, or between Nearshore and Offshore. These different patterns between deposit feeders and suspension feeders are probably due to a weaker trophic link of the latter with SOM. We suggest that the Nearshore-Offshore gradient might be an important source of isotopic variation that needs to be considered in future web studies in coastal lagoons.

  19. Stepwise and stagewise approaches for spatial cluster detection

    PubMed Central

    Xu, Jiale

    2016-01-01

    Spatial cluster detection is an important tool in many areas such as sociology, botany and public health. Previous work has mostly taken either hypothesis testing framework or Bayesian framework. In this paper, we propose a few approaches under a frequentist variable selection framework for spatial cluster detection. The forward stepwise methods search for multiple clusters by iteratively adding currently most likely cluster while adjusting for the effects of previously identified clusters. The stagewise methods also consist of a series of steps, but with tiny step size in each iteration. We study the features and performances of our proposed methods using simulations on idealized grids or real geographic area. From the simulations, we compare the performance of the proposed methods in terms of estimation accuracy and power of detections. These methods are applied to the the well-known New York leukemia data as well as Indiana poverty data. PMID:27246273

  20. Stepwise and stagewise approaches for spatial cluster detection.

    PubMed

    Xu, Jiale; Gangnon, Ronald E

    2016-05-01

    Spatial cluster detection is an important tool in many areas such as sociology, botany and public health. Previous work has mostly taken either a hypothesis testing framework or a Bayesian framework. In this paper, we propose a few approaches under a frequentist variable selection framework for spatial cluster detection. The forward stepwise methods search for multiple clusters by iteratively adding currently most likely cluster while adjusting for the effects of previously identified clusters. The stagewise methods also consist of a series of steps, but with a tiny step size in each iteration. We study the features and performances of our proposed methods using simulations on idealized grids or real geographic areas. From the simulations, we compare the performance of the proposed methods in terms of estimation accuracy and power. These methods are applied to the the well-known New York leukemia data as well as Indiana poverty data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Application of LC and LCoS in Multispectral Polarized Scene Projector (MPSP)

    NASA Astrophysics Data System (ADS)

    Yu, Haiping; Guo, Lei; Wang, Shenggang; Lippert, Jack; Li, Le

    2017-02-01

    A Multispectral Polarized Scene Projector (MPSP) had been developed in the short-wave infrared (SWIR) regime for the test & evaluation (T&E) of spectro-polarimetric imaging sensors. This MPSP generates multispectral and hyperspectral video images (up to 200 Hz) with 512×512 spatial resolution with active spatial, spectral, and polarization modulation with controlled bandwidth. It projects input SWIR radiant intensity scenes from stored memory with user selectable wavelength and bandwidth, as well as polarization states (six different states) controllable on a pixel level. The spectral contents are implemented by a tunable filter with variable bandpass built based on liquid crystal (LC) material, together with one passive visible and one passive SWIR cholesteric liquid crystal (CLC) notch filters, and one switchable CLC notch filter. The core of the MPSP hardware is the liquid-crystal-on-silicon (LCoS) spatial light modulators (SLMs) for intensity control and polarization modulation.

  2. Spatial data analysis and the use of maps in scientific health articles.

    PubMed

    Nucci, Luciana Bertoldi; Souccar, Patrick Theodore; Castilho, Silvia Diez

    2016-07-01

    Despite the growing number of studies with a characteristic element of spatial analysis, the application of the techniques is not always clear and its continuity in epidemiological studies requires careful evaluation. To verify the spread and use of those processes in national and international scientific papers. An assessment was made of periodicals according to the impact index. Among 8,281 journals surveyed, four national and four international were selected, of which 1,274 articles were analyzed regarding the presence or absence of spatial analysis techniques. Just over 10% of articles published in 2011 in high impact journals, both national and international, showed some element of geographical location. Although these percentages vary greatly from one journal to another, denoting different publication profiles, we consider this percentage as an indication that location variables have become an important factor in studies of health.

  3. Improving the use of environmental diversity as a surrogate for species representation.

    PubMed

    Albuquerque, Fabio; Beier, Paul

    2018-01-01

    The continuous p-median approach to environmental diversity (ED) is a reliable way to identify sites that efficiently represent species. A recently developed maximum dispersion (maxdisp) approach to ED is computationally simpler, does not require the user to reduce environmental space to two dimensions, and performed better than continuous p-median for datasets of South African animals. We tested whether maxdisp performs as well as continuous p-median for 12 datasets that included plants and other continents, and whether particular types of environmental variables produced consistently better models of ED. We selected 12 species inventories and atlases to span a broad range of taxa (plants, birds, mammals, reptiles, and amphibians), spatial extents, and resolutions. For each dataset, we used continuous p-median ED and maxdisp ED in combination with five sets of environmental variables (five combinations of temperature, precipitation, insolation, NDVI, and topographic variables) to select environmentally diverse sites. We used the species accumulation index (SAI) to evaluate the efficiency of ED in representing species for each approach and set of environmental variables. Maxdisp ED represented species better than continuous p-median ED in five of 12 biodiversity datasets, and about the same for the other seven biodiversity datasets. Efficiency of ED also varied with type of variables used to define environmental space, but no particular combination of variables consistently performed best. We conclude that maxdisp ED performs at least as well as continuous p-median ED, and has the advantage of faster and simpler computation. Surprisingly, using all 38 environmental variables was not consistently better than using subsets of variables, nor did any subset emerge as consistently best or worst; further work is needed to identify the best variables to define environmental space. Results can help ecologists and conservationists select sites for species representation and assist in conservation planning.

  4. Organic carbon stock modelling for the quantification of the carbon sinks in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Durante, Pilar; Algeet, Nur; Oyonarte, Cecilio

    2017-04-01

    Given the recent environmental policies derived from the serious threats caused by global change, practical measures to decrease net CO2 emissions have to be put in place. Regarding this, carbon sequestration is a major measure to reduce atmospheric CO2 concentrations within a short and medium term, where terrestrial ecosystems play a basic role as carbon sinks. Development of tools for quantification, assessment and management of organic carbon in ecosystems at different scales and management scenarios, it is essential to achieve these commitments. The aim of this study is to establish a methodological framework for the modeling of this tool, applied to a sustainable land use planning and management at spatial and temporal scale. The methodology for carbon stock estimation in ecosystems is based on merger techniques between carbon stored in soils and aerial biomass. For this purpose, both spatial variability map of soil organic carbon (SOC) and algorithms for calculation of forest species biomass will be created. For the modelling of the SOC spatial distribution at different map scales, it is necessary to fit in and screen the available information of soil database legacy. Subsequently, SOC modelling will be based on the SCORPAN model, a quantitative model use to assess the correlation among soil-forming factors measured at the same site location. These factors will be selected from both static (terrain morphometric variables) and dynamic variables (climatic variables and vegetation indexes -NDVI-), providing to the model the spatio-temporal characteristic. After the predictive model, spatial inference techniques will be used to achieve the final map and to extrapolate the data to unavailable information areas (automated random forest regression kriging). The estimated uncertainty will be calculated to assess the model performance at different scale approaches. Organic carbon modelling of aerial biomass will be estimate using LiDAR (Light Detection And Ranging) algorithms. The available LiDAR databases will be used. LiDAR statistics (which describe the LiDAR cloud point data to calculate forest stand parameters) will be correlated with different canopy cover variables. The regression models applied to the total area will produce a continuous geo-information map to each canopy variable. The CO2 estimation will be calculated by dry-mass conversion factors for each forest species (C kg-CO2 kg equivalent). The result is the organic carbon modelling at spatio-temporal scale with different levels of uncertainty associated to the predictive models and diverse detailed scales. However, one of the main expected problems is due to the heterogeneous spatial distribution of the soil information, which influences on the prediction of the models at different spatial scales and, consequently, at SOC map scale. Besides this, the variability and mixture of the forest species of the aerial biomass decrease the accuracy assessment of the organic carbon.

  5. Assessing spatial variability of soil properties and ions associated to salinity using the multifractal approach

    NASA Astrophysics Data System (ADS)

    Machado Siqueira, Glécio; Soares da Silva, Jucicleia; Farías França e Silva, Ênio; Lado, Marcos; Paz-González, Antonio; Vidal-Vázquez, Eva

    2017-04-01

    The lowlands coastal region of the state of Pernambuco, Northeast of Brazil, was formerly covered by humid Atlantic forest (Mata Atlântica) and then has been increasingly devoted to Sugar cane production. Because the water table is near to the soil surface salinity can occur in this area. The objective of this study was to assess the scale dependence of parameters associated to soil salinity and ions responsible for salination using multifractal analysis. The field work was conducted at an experimental field located in the Goiania municipality, Pernambuco, Brazil. This site is located 10 km east from the Atlantic coast. The field has been devoted to monoculture of sugarcane (Saccharum of?cinarum sp.) since 25 years. The climate of the region is tropical, with average annual temperature of 24°C and 1800 mm of precipitation per year. Soil was sampled every 3 m at 128 locations across a 384 m transect at a depth of 0-20 cm. The soil samples were analysed for pH, electrical conductivity (EC), Na+, K+, Ca2+, Mg2+, Cl- and SO4-2; also sodium adsorption ratio (SAR) was calculated. The spatial distributions of all the studied variables associated to soil salinity exhibited multifractal behaviour. Although all the variables studied exhibited a very strong power law scaling, different degrees of multifractality, assessed by differences in the amplitude and several selected parameters of the generalized dimension and singularity spectrum curves, have been appreciated. The multifractal approach gives a good description of the patterns of spatial variability of properties and ions describing soil salinity, and allows discriminating differences between them.

  6. Minimizing the Standard Deviation of Spatially Averaged Surface Cross-Sectional Data from the Dual-Frequency Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kim, Hyokyung

    2016-01-01

    For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.

  7. The impact of model prediction error in designing geodetic networks for crustal deformation applications

    NASA Astrophysics Data System (ADS)

    Murray, J. R.

    2017-12-01

    Earth surface displacements measured at Global Navigation Satellite System (GNSS) sites record crustal deformation due, for example, to slip on faults underground. A primary objective in designing geodetic networks to study crustal deformation is to maximize the ability to recover parameters of interest like fault slip. Given Green's functions (GFs) relating observed displacement to motion on buried dislocations representing a fault, one can use various methods to estimate spatially variable slip. However, assumptions embodied in the GFs, e.g., use of a simplified elastic structure, introduce spatially correlated model prediction errors (MPE) not reflected in measurement uncertainties (Duputel et al., 2014). In theory, selection algorithms should incorporate inter-site correlations to identify measurement locations that give unique information. I assess the impact of MPE on site selection by expanding existing methods (Klein et al., 2017; Reeves and Zhe, 1999) to incorporate this effect. Reeves and Zhe's algorithm sequentially adds or removes a predetermined number of data according to a criterion that minimizes the sum of squared errors (SSE) on parameter estimates. Adapting this method to GNSS network design, Klein et al. select new sites that maximize model resolution, using trade-off curves to determine when additional resolution gain is small. Their analysis uses uncorrelated data errors and GFs for a uniform elastic half space. I compare results using GFs for spatially variable strike slip on a discretized dislocation in a uniform elastic half space, a layered elastic half space, and a layered half space with inclusion of MPE. I define an objective criterion to terminate the algorithm once the next site removal would increase SSE more than the expected incremental SSE increase if all sites had equal impact. Using a grid of candidate sites with 8 km spacing, I find the relative value of the selected sites (defined by the percent increase in SSE that further removal of each site would cause) is more uniform when MPE is included. However, the number and distribution of selected sites depends primarily on site location relative to the fault. For this test case, inclusion of MPE has minimal practical impact; I will investigate whether these findings hold for more densely spaced candidate grids and dipping faults.

  8. SoilGrids1km — Global Soil Information Based on Automated Mapping

    PubMed Central

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179

  9. Hibernal habitat selection by Wood Frogs (Lithobates sylvaticus) in a northern New England montane landscape

    USGS Publications Warehouse

    Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.

    2016-01-01

    Poikilothermic species, such as amphibians, endure harsh winter conditions via freeze-tolerance or freeze-avoidance strategies. Freeze-tolerance requires a suite of complex, physiological mechanisms (e.g., cryoprotectant synthesis); however, behavioral strategies (e.g., hibernal habitat selection) may be used to regulate hibernaculum temperatures and promote overwintering survival. We investigated the hibernal ecology of the freeze-tolerant Wood Frog (Lithobates sylvaticus) in north-central Maine. Our objectives were to characterize the species hibernaculum microclimate (temperature, relative humidity), evaluate hibernal habitat selection, and describe the spatial arrangement of breeding, post-breeding, and hibernal habitats. We monitored 15 frogs during two winters (2011/12: N = 10; 2012/13: N = 5), measured hibernal habitat features at micro (2 m) and macro (10 m) spatial scales, and recorded microclimate hourly in three strata (hibernaculum, leaf litter, ambient air). We compared these data to that of 57 random locations with logistic regression models, Akaike Information Criterion, and Kolmogorov–Smirnov tests. Hibernaculum microclimate was significantly different and less variable than leaf litter, ambient air, and random location microclimate. Model averaging indicated that canopy cover (−), leaf litter depth (+), and number of logs and stumps (+; microhabitat only) were important predictors of Wood Frog hibernal habitat. These habitat features likely act to insulate hibernating frogs from extreme and variable air temperatures. For example, decreased canopy cover facilitates increased snowpack depth and earlier snowpack accumulation and melt. Altered winter temperature and precipitation patterns attributable to climate change may reduce snowpack insulation, facilitate greater temperature variation in the underlying hibernacula, and potentially compromise Wood Frog winter survival.

  10. Multiple approaches to detect outliers in a genome scan for selection in ocellated lizards (Lacerta lepida) along an environmental gradient.

    PubMed

    Nunes, Vera L; Beaumont, Mark A; Butlin, Roger K; Paulo, Octávio S

    2011-01-01

    Identification of loci with adaptive importance is a key step to understand the speciation process in natural populations, because those loci are responsible for phenotypic variation that affects fitness in different environments. We conducted an AFLP genome scan in populations of ocellated lizards (Lacerta lepida) to search for candidate loci influenced by selection along an environmental gradient in the Iberian Peninsula. This gradient is strongly influenced by climatic variables, and two subspecies can be recognized at the opposite extremes: L. lepida iberica in the northwest and L. lepida nevadensis in the southeast. Both subspecies show substantial morphological differences that may be involved in their local adaptation to the climatic extremes. To investigate how the use of a particular outlier detection method can influence the results, a frequentist method, DFDIST, and a Bayesian method, BayeScan, were used to search for outliers influenced by selection. Additionally, the spatial analysis method was used to test for associations of AFLP marker band frequencies with 54 climatic variables by logistic regression. Results obtained with each method highlight differences in their sensitivity. DFDIST and BayeScan detected a similar proportion of outliers (3-4%), but only a few loci were simultaneously detected by both methods. Several loci detected as outliers were also associated with temperature, insolation or precipitation according to spatial analysis method. These results are in accordance with reported data in the literature about morphological and life-history variation of L. lepida subspecies along the environmental gradient. © 2010 Blackwell Publishing Ltd.

  11. Empirical spatial econometric modelling of small scale neighbourhood

    NASA Astrophysics Data System (ADS)

    Gerkman, Linda

    2012-07-01

    The aim of the paper is to model small scale neighbourhood in a house price model by implementing the newest methodology in spatial econometrics. A common problem when modelling house prices is that in practice it is seldom possible to obtain all the desired variables. Especially variables capturing the small scale neighbourhood conditions are hard to find. If there are important explanatory variables missing from the model, the omitted variables are spatially autocorrelated and they are correlated with the explanatory variables included in the model, it can be shown that a spatial Durbin model is motivated. In the empirical application on new house price data from Helsinki in Finland, we find the motivation for a spatial Durbin model, we estimate the model and interpret the estimates for the summary measures of impacts. By the analysis we show that the model structure makes it possible to model and find small scale neighbourhood effects, when we know that they exist, but we are lacking proper variables to measure them.

  12. Analyze the Impact of Habitat Patches on Wildlife Road-Kill

    NASA Astrophysics Data System (ADS)

    Seok, S.; Lee, J.

    2015-10-01

    The ecosystem fragmentation due to transportation infrastructure causes a road-kill phenomenon. When making policies for mitigating road-kill it is important to select target-species in order to enhance its efficiency. However, many wildlife crossing structures have been questioned regarding their effectiveness due to lack of considerations such as target-species selection, site selection, management, etc. The purpose of this study is to analyse the impact of habitat patches on wildlife road-kill and to suggest that spatial location of habitat patches should be considered as one of the important factors when making policies for mitigating road-kill. Habitat patches were presumed from habitat variables and a suitability index on target-species that was chosen by literature review. The road-kill hotspot was calculated using Getis-Ord Gi*. After that, we performed a correlation analysis between Gi Z-score and the distance from habitat patches to the roads. As a result, there is a low negative correlation between two variables and it increases the Gi Z-score if the habitat patches and the roads become closer.

  13. The spatial patterns of directional phenotypic selection.

    PubMed

    Siepielski, Adam M; Gotanda, Kiyoko M; Morrissey, Michael B; Diamond, Sarah E; DiBattista, Joseph D; Carlson, Stephanie M

    2013-11-01

    Local adaptation, adaptive population divergence and speciation are often expected to result from populations evolving in response to spatial variation in selection. Yet, we lack a comprehensive understanding of the major features that characterise the spatial patterns of selection, namely the extent of variation among populations in the strength and direction of selection. Here, we analyse a data set of spatially replicated studies of directional phenotypic selection from natural populations. The data set includes 60 studies, consisting of 3937 estimates of selection across an average of five populations. We performed meta-analyses to explore features characterising spatial variation in directional selection. We found that selection tends to vary mainly in strength and less in direction among populations. Although differences in the direction of selection occur among populations they do so where selection is often weakest, which may limit the potential for ongoing adaptive population divergence. Overall, we also found that spatial variation in selection appears comparable to temporal (annual) variation in selection within populations; however, several deficiencies in available data currently complicate this comparison. We discuss future research needs to further advance our understanding of spatial variation in selection. © 2013 John Wiley & Sons Ltd/CNRS.

  14. Cue Reliability Represented in the Shape of Tuning Curves in the Owl's Sound Localization System.

    PubMed

    Cazettes, Fanny; Fischer, Brian J; Peña, Jose L

    2016-02-17

    Optimal use of sensory information requires that the brain estimates the reliability of sensory cues, but the neural correlate of cue reliability relevant for behavior is not well defined. Here, we addressed this issue by examining how the reliability of spatial cue influences neuronal responses and behavior in the owl's auditory system. We show that the firing rate and spatial selectivity changed with cue reliability due to the mechanisms generating the tuning to the sound localization cue. We found that the correlated variability among neurons strongly depended on the shape of the tuning curves. Finally, we demonstrated that the change in the neurons' selectivity was necessary and sufficient for a network of stochastic neurons to predict behavior when sensory cues were corrupted with noise. This study demonstrates that the shape of tuning curves can stand alone as a coding dimension of environmental statistics. In natural environments, sensory cues are often corrupted by noise and are therefore unreliable. To make the best decisions, the brain must estimate the degree to which a cue can be trusted. The behaviorally relevant neural correlates of cue reliability are debated. In this study, we used the barn owl's sound localization system to address this question. We demonstrated that the mechanisms that account for spatial selectivity also explained how neural responses changed with degraded signals. This allowed for the neurons' selectivity to capture cue reliability, influencing the population readout commanding the owl's sound-orienting behavior. Copyright © 2016 the authors 0270-6474/16/362101-10$15.00/0.

  15. A Multi-Scale Distribution Model for Non-Equilibrium Populations Suggests Resource Limitation in an Endangered Rodent

    PubMed Central

    Bean, William T.; Stafford, Robert; Butterfield, H. Scott; Brashares, Justin S.

    2014-01-01

    Species distributions are known to be limited by biotic and abiotic factors at multiple temporal and spatial scales. Species distribution models, however, frequently assume a population at equilibrium in both time and space. Studies of habitat selection have repeatedly shown the difficulty of estimating resource selection if the scale or extent of analysis is incorrect. Here, we present a multi-step approach to estimate the realized and potential distribution of the endangered giant kangaroo rat. First, we estimate the potential distribution by modeling suitability at a range-wide scale using static bioclimatic variables. We then examine annual changes in extent at a population-level. We define “available” habitat based on the total suitable potential distribution at the range-wide scale. Then, within the available habitat, model changes in population extent driven by multiple measures of resource availability. By modeling distributions for a population with robust estimates of population extent through time, and ecologically relevant predictor variables, we improved the predictive ability of SDMs, as well as revealed an unanticipated relationship between population extent and precipitation at multiple scales. At a range-wide scale, the best model indicated the giant kangaroo rat was limited to areas that received little to no precipitation in the summer months. In contrast, the best model for shorter time scales showed a positive relation with resource abundance, driven by precipitation, in the current and previous year. These results suggest that the distribution of the giant kangaroo rat was limited to the wettest parts of the drier areas within the study region. This multi-step approach reinforces the differing relationship species may have with environmental variables at different scales, provides a novel method for defining “available” habitat in habitat selection studies, and suggests a way to create distribution models at spatial and temporal scales relevant to theoretical and applied ecologists. PMID:25237807

  16. Predicting Species Distributions Using Record Centre Data: Multi-Scale Modelling of Habitat Suitability for Bat Roosts.

    PubMed

    Bellamy, Chloe; Altringham, John

    2015-01-01

    Conservation increasingly operates at the landscape scale. For this to be effective, we need landscape scale information on species distributions and the environmental factors that underpin them. Species records are becoming increasingly available via data centres and online portals, but they are often patchy and biased. We demonstrate how such data can yield useful habitat suitability models, using bat roost records as an example. We analysed the effects of environmental variables at eight spatial scales (500 m - 6 km) on roost selection by eight bat species (Pipistrellus pipistrellus, P. pygmaeus, Nyctalus noctula, Myotis mystacinus, M. brandtii, M. nattereri, M. daubentonii, and Plecotus auritus) using the presence-only modelling software MaxEnt. Modelling was carried out on a selection of 418 data centre roost records from the Lake District National Park, UK. Target group pseudoabsences were selected to reduce the impact of sampling bias. Multi-scale models, combining variables measured at their best performing spatial scales, were used to predict roosting habitat suitability, yielding models with useful predictive abilities. Small areas of deciduous woodland consistently increased roosting habitat suitability, but other habitat associations varied between species and scales. Pipistrellus were positively related to built environments at small scales, and depended on large-scale woodland availability. The other, more specialist, species were highly sensitive to human-altered landscapes, avoiding even small rural towns. The strength of many relationships at large scales suggests that bats are sensitive to habitat modifications far from the roost itself. The fine resolution, large extent maps will aid targeted decision-making by conservationists and planners. We have made available an ArcGIS toolbox that automates the production of multi-scale variables, to facilitate the application of our methods to other taxa and locations. Habitat suitability modelling has the potential to become a standard tool for supporting landscape-scale decision-making as relevant data and open source, user-friendly, and peer-reviewed software become widely available.

  17. Learning a common dictionary for subject-transfer decoding with resting calibration.

    PubMed

    Morioka, Hiroshi; Kanemura, Atsunori; Hirayama, Jun-ichiro; Shikauchi, Manabu; Ogawa, Takeshi; Ikeda, Shigeyuki; Kawanabe, Motoaki; Ishii, Shin

    2015-05-01

    Brain signals measured over a series of experiments have inherent variability because of different physical and mental conditions among multiple subjects and sessions. Such variability complicates the analysis of data from multiple subjects and sessions in a consistent way, and degrades the performance of subject-transfer decoding in a brain-machine interface (BMI). To accommodate the variability in brain signals, we propose 1) a method for extracting spatial bases (or a dictionary) shared by multiple subjects, by employing a signal-processing technique of dictionary learning modified to compensate for variations between subjects and sessions, and 2) an approach to subject-transfer decoding that uses the resting-state activity of a previously unseen target subject as calibration data for compensating for variations, eliminating the need for a standard calibration based on task sessions. Applying our methodology to a dataset of electroencephalography (EEG) recordings during a selective visual-spatial attention task from multiple subjects and sessions, where the variability compensation was essential for reducing the redundancy of the dictionary, we found that the extracted common brain activities were reasonable in the light of neuroscience knowledge. The applicability to subject-transfer decoding was confirmed by improved performance over existing decoding methods. These results suggest that analyzing multisubject brain activities on common bases by the proposed method enables information sharing across subjects with low-burden resting calibration, and is effective for practical use of BMI in variable environments. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The underlying processes of a soil mite metacommunity on a small scale.

    PubMed

    Dong, Chengxu; Gao, Meixiang; Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale.

  19. The underlying processes of a soil mite metacommunity on a small scale

    PubMed Central

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the observed structure of the soil mite metacommunity at the studied small scale. PMID:28481906

  20. Spatial Models for Prediction and Early Warning of Aedes aegypti Proliferation from Data on Climate Change and Variability in Cuba.

    PubMed

    Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R

    2015-04-01

    Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.

  1. A Study on the Effects of Spatial Scale on Snow Process in Hyper-Resolution Hydrological Modelling over Mountainous Areas

    NASA Astrophysics Data System (ADS)

    Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.

    2017-12-01

    Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.

  2. Individual differences in spatial relation processing: effects of strategy, ability, and gender

    PubMed Central

    van der Ham, Ineke J. M.; Borst, Gregoire

    2011-01-01

    Numerous studies have focused on the distinction between categorical and coordinate spatial relations. Categorical relations are propositional and abstract, and often related to a left hemisphere advantage. Coordinate relations specify the metric information of the relative locations of objects, and can be linked to right hemisphere processing. Yet, not all studies have reported such a clear double dissociation; in particular the categorical left hemisphere advantage is not always reported. In the current study we investigated whether verbal and spatial strategies, verbal and spatial cognitive abilities, and gender could account for the discrepancies observed in hemispheric lateralization of spatial relations. Seventy-five participants performed two visual half field, match-to-sample tasks (Van der Ham et al., 2007; 2009) to study the lateralization of categorical and coordinate relation processing. For each participant we determined the strategy they used in each of the two tasks. Consistent with previous findings, we found an overall categorical left hemisphere advantage and coordinate right hemisphere advantage. The lateralization pattern was affected selectively by the degree to which participants used a spatial strategy and by none of the other variables (i.e., verbal strategy, cognitive abilities, and gender). Critically, the categorical left hemisphere advantage was observed only for participants that relied strongly on a spatial strategy. This result is another piece of evidence that categorical spatial relation processing relies on spatial and not verbal processes. PMID:21353361

  3. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations.

    PubMed

    Gomez-Uchida, Daniel; Seeb, James E; Smith, Matt J; Habicht, Christopher; Quinn, Thomas P; Seeb, Lisa W

    2011-02-18

    Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic.

  4. Single nucleotide polymorphisms unravel hierarchical divergence and signatures of selection among Alaskan sockeye salmon (Oncorhynchus nerka) populations

    PubMed Central

    2011-01-01

    Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic. PMID:21332997

  5. A stochastic-geometric model of soil variation in Pleistocene patterned ground

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc

    2013-04-01

    In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned ground with pronounced lateral textural variations arising from the presence of infilled ice-wedges of Pleistocene origin. We show how knowledge of the pedogenetic processes in this environment, along with some simple descriptive statistics, can be used to select and fit a CLT model for the apparent electrical conductivity (ECa) of the soil. We use the model to simulate realizations of the CLT process, and compare these with realizations of a fitted Gaussian random field. We show how statistics that summarize the spatial coherence of regions with small values of ECa, which are expected to have coarse texture and so larger saturated hydraulic conductivity, are better reproduced by the CLT model than by the Gaussian random field. This suggests that the CLT model could be used to generate an unlimited supply of training images to allow multiple point geostatistical simulation or prediction of this or similar variables.

  6. The value of using seasonality and meteorological variables to model intra-urban PM2.5 variation

    NASA Astrophysics Data System (ADS)

    Olvera Alvarez, Hector A.; Myers, Orrin B.; Weigel, Margaret; Armijos, Rodrigo X.

    2018-06-01

    A yearlong air monitoring campaign was conducted to assess the impact of local temperature, relative humidity, and wind speed on the temporal and spatial variability of PM2.5 in El Paso, Texas. Monitoring was conducted at four sites purposely selected to capture the local traffic variability. Effects of meteorological events on seasonal PM2.5 variability were identified. For instance, in winter low-wind and low-temperature conditions were associated with high PM2.5 events that contributed to elevated seasonal PM2.5 levels. Similarly, in spring, high PM2.5 events were associated with high-wind and low-relative humidity conditions. Correlation coefficients between meteorological variables and PM2.5 fluctuated drastically across seasons. Specifically, it was observed that for most sites correlations between PM2.5 and meteorological variables either changed from positive to negative or dissolved depending on the season. Overall, the results suggest that mixed effects analysis with season and site as fixed factors and meteorological variables as covariates could increase the explanatory value of LUR models for PM2.5.

  7. Can we quantify the variability of soil moisture across scales using Electromagnetic Induction ?

    NASA Astrophysics Data System (ADS)

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan

    2017-04-01

    Soil moisture is a key variable in many natural processes. Therefore, technological and methodological advancements are of primary importance to provide accurate measurements of spatial and temporal variability of soil moisture. In that context, ElectroMagnetic Induction (EMI) instruments are often cited as a hydrogeophysical method with a large potential, through the measurement of the soil apparent electrical conductivity (ECa). To our knowledge, no studies have evaluated the potential of EMI to characterize variability of soil moisture on both agricultural and forested land covers in a (sub-) tropical environment. These differences in land use could be critical as differences in temperature, transpiration and root water uptake can have significant effect, notably on the electrical conductivity of the pore water. In this study, we used an EMI instrument to carry out a first assessment of the impact of deforestation and agriculture on soil moisture in a subtropical region in the south of Brazil. We selected slopes of different topographies (gentle vs. steep) and contrasting land uses (natural forest vs. agriculture) within two nearby catchments. At selected locations on the slopes, we measured simultaneously ECa using EMI and a depth-weighted average of the soil moisture using TDR probes installed within soil pits. We found that the temporal variability of the soil moisture could not be measured accurately with EMI, probably because of important temporal variations of the pore water electrical conductivity and the relatively small temporal variations in soil moisture content. However, we found that its spatial variability could be effectively quantified using a non-linear relationship, for both intra- and inter-slopes variations. Within slopes, the ECa could explained between 67 and 90% of the variability of the soil moisture, while a single non-linear model for all the slopes could explain 55% of the soil moisture variability. We eventually showed that combining a specific relationship for the most degraded slope (steep slope under agriculture) and a single relationship for all the other slopes, both non-linear relations, yielded the best results with an overall explained variance of 90%. We applied the latter model to measurements of the ECa along transects at the different slopes, which allowed us to highlight the strong control of topography on the soil moisture content. We also observed a significant impact of the land use with higher moisture content on the agricultural slopes, probably due to a reduced evapotranspiration.

  8. Spatial Variability of Dissolved Organic Carbon in Headwater Wetlands in Central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Reichert-Eberhardt, A. J.; Wardrop, D.; Boyer, E. W.

    2011-12-01

    Dissolved organic carbon (DOC) is known to be of an important factor in many microbially mediated biochemical processes, such as denitrification, that occur in wetlands. The spatial variability of DOC within a wetland could impact the microbes that fuel these processes, which in turn can affect the ecosystem services provided by wetlands. However, the amount of spatial variability of DOC in wetlands is generally unknown. Furthermore, it is unknown how disturbance to wetlands can affect spatial variability of DOC. Previous research in central Pennsylvania headwater wetland soils has shown that wetlands with increased human disturbance had decreased heterogeneity in soil biochemistry. To address groundwater chemical variability 20 monitoring wells were installed in a random pattern in a 400 meter squared plot in a low-disturbance headwater wetland and a high-disturbance headwater wetland in central Pennsylvania. Water samples from these wells will be analyzed for DOC, dissolved inorganic carbon, nitrate, ammonia, and sulfate concentrations, as well as pH, conductivity, and temperature on a seasonal basis. It is hypothesized that there will be greater spatial variability of groundwater chemistry in the low disturbance wetland than the high disturbance wetland. This poster will present the initial data concerning DOC spatial variability in both the low and high impact headwater wetlands.

  9. Delineating Facies Spatial Distribution by Integrating Ensemble Data Assimilation and Indicator Geostatistics with Level Set Transformation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Song, Xuehang; Ye, Ming

    A new approach is developed to delineate the spatial distribution of discrete facies (geological units that have unique distributions of hydraulic, physical, and/or chemical properties) conditioned not only on direct data (measurements directly related to facies properties, e.g., grain size distribution obtained from borehole samples) but also on indirect data (observations indirectly related to facies distribution, e.g., hydraulic head and tracer concentration). Our method integrates for the first time ensemble data assimilation with traditional transition probability-based geostatistics. The concept of level set is introduced to build shape parameterization that allows transformation between discrete facies indicators and continuous random variables. Themore » spatial structure of different facies is simulated by indicator models using conditioning points selected adaptively during the iterative process of data assimilation. To evaluate the new method, a two-dimensional semi-synthetic example is designed to estimate the spatial distribution and permeability of two distinct facies from transient head data induced by pumping tests. The example demonstrates that our new method adequately captures the spatial pattern of facies distribution by imposing spatial continuity through conditioning points. The new method also reproduces the overall response in hydraulic head field with better accuracy compared to data assimilation with no constraints on spatial continuity on facies.« less

  10. Methodology to study the three-dimensional spatial distribution of prostate cancer and their dependence on clinical parameters

    PubMed Central

    Rojas, Kristians Diaz; Montero, Maria L.; Yao, Jorge; Messing, Edward; Fazili, Anees; Joseph, Jean; Ou, Yangming; Rubens, Deborah J.; Parker, Kevin J.; Davatzikos, Christos; Castaneda, Benjamin

    2015-01-01

    Abstract. A methodology to study the relationship between clinical variables [e.g., prostate specific antigen (PSA) or Gleason score] and cancer spatial distribution is described. Three-dimensional (3-D) models of 216 glands are reconstructed from digital images of whole mount histopathological slices. The models are deformed into one prostate model selected as an atlas using a combination of rigid, affine, and B-spline deformable registration techniques. Spatial cancer distribution is assessed by counting the number of tumor occurrences among all glands in a given position of the 3-D registered atlas. Finally, a difference between proportions is used to compare different spatial distributions. As a proof of concept, we compare spatial distributions from patients with PSA greater and less than 5  ng/ml and from patients older and younger than 60 years. Results suggest that prostate cancer has a significant difference in the right zone of the prostate between populations with PSA greater and less than 5  ng/ml. Age does not have any impact in the spatial distribution of the disease. The proposed methodology can help to comprehend prostate cancer by understanding its spatial distribution and how it changes according to clinical parameters. Finally, this methodology can be easily adapted to other organs and pathologies. PMID:26236756

  11. Selective spectroscopic imaging of hyperpolarized pyruvate and its metabolites using a single-echo variable phase advance method in balanced SSFP

    PubMed Central

    Varma, Gopal; Wang, Xiaoen; Vinogradov, Elena; Bhatt, Rupal S.; Sukhatme, Vikas; Seth, Pankaj; Lenkinski, Robert E.; Alsop, David C.; Grant, Aaron K.

    2015-01-01

    Purpose In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. Theory and Methods The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in-vitro, as well as in-vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. Results In-vivo images of pyruvate, alanine, pyruvate hydrate and lactate were reconstructed from 4 images acquired in 2 seconds with an in-plane resolution of 1.25 × 1.25mm2 and 5mm slice thickness. Conclusions The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multi-echo or fluctuating equilibrium bSSFP. PMID:26507361

  12. Quantifying the Relative Contribution of Factors to Household Vehicle Miles of Travel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garikapati, Venu; Singh, Abhilash C.; Astroza, Sebastian

    Household vehicle miles of travel (VMT) has been exhibiting a steady growth in post-recession years in the United States and has reached record levels in 2017. With transportation accounting for 27 percent of greenhouse gas emissions, planning professionals are increasingly seeking ways to curb vehicular travel to advance sustainable, vibrant, and healthy communities. Although there is considerable understanding of the various factors that influence household vehicular travel, there is little knowledge of their relative contribution to explaining variance in household VMT. This paper presents a holistic analysis to identify the relative contribution of socio-economic and demographic characteristics, built environment attributes,more » residential self-selection effects, and social and spatial dependency effects in explaining household VMT production. The modeling framework employs a simultaneous equations model of residential location (density) choice and household VMT generation. The analysis is performed using household travel survey data from the New York metropolitan region. Model results showed insignificant spatial dependency effects, with socio-demographic variables explaining 33 percent, density (as a key measure of built environment attributes) explaining 12 percent, and self-selection effects explaining 11 percent of the total variance in the logarithm of household VMT. The remaining 44 percent remains unexplained and attributable to omitted variables and unobserved idiosyncratic factors, calling for further research in this domain to better understand the relative contribution of various drivers of household VMT.« less

  13. Estimation of Monthly Near Surface Air Temperature Using Geographically Weighted Regression in China

    NASA Astrophysics Data System (ADS)

    Wang, M. M.; He, G. J.; Zhang, Z. M.; Zhang, Z. J.; Liu, X. G.

    2018-04-01

    Near surface air temperature (NSAT) is a primary descriptor of terrestrial environment conditions. The availability of NSAT with high spatial resolution is deemed necessary for several applications such as hydrology, meteorology and ecology. In this study, a regression-based NSAT mapping method is proposed. This method is combined remote sensing variables with geographical variables, and uses geographically weighted regression to estimate NSAT. The altitude was selected as geographical variable; and the remote sensing variables include land surface temperature (LST) and Normalized Difference vegetation index (NDVI). The performance of the proposed method was assessed by predict monthly minimum, mean, and maximum NSAT from point station measurements in China, a domain with a large area, complex topography, and highly variable station density, and the NSAT maps were validated against the meteorology observations. Validation results with meteorological data show the proposed method achieved an accuracy of 1.58 °C. It is concluded that the proposed method for mapping NSAT is very operational and has good precision.

  14. Influence of spatial variability of hydraulic characteristics of soils on surface parameters obtained from remote sensing data in infrared and microwaves

    NASA Technical Reports Server (NTRS)

    Brunet, Y.; Vauclin, M.

    1985-01-01

    The correct interpretation of thermal and hydraulic soil parameters infrared from remotely sensed data (thermal infrared, microwaves) implies a good understanding of the causes of their temporal and spatial variability. Given this necessity, the sensitivity of the surface variables (temperature, moisture) to the spatial variability of hydraulic soil properties is tested with a numerical model of heat and mass transfer between bare soil and atmosphere. The spatial variability of hydraulic soil properties is taken into account in terms of the scaling factor. For a given soil, the knowledge of its frequency distribution allows a stochastic use of the model. The results are treated statistically, and the part of the variability of soil surface parameters due to that of soil hydraulic properties is evaluated quantitatively.

  15. Soil internal drainage: temporal stability and spatial variability in succession bean-black oat

    NASA Astrophysics Data System (ADS)

    Salvador, M. M. S.; Libardi, P. L.; Moreira, N. B.; Sousa, H. H. F.; Neiverth, C. A.

    2012-04-01

    There are a variety of studies considering the soil water content, but those who consider the flow of water, which are translated by deep drainage and capillary rise are scarce, especially those who assess their spatio-temporal variability, due to its laborious obtaining. Large areas have been considered homogeneous, but show considerable spatial variability inherent in the soil, causing the appearance of zones of distinct physical properties. In deep, sandy soils where the groundwater level is far below the root zone of interference, internal drainage is one of the factors limiting the supply of water to the soil surface, and possibly one of the biggest factors that determines what kinds satisfactory development of plants present in a given landscape. The forms of relief may also be indicators of changes in soil properties, because this variability is caused by small changes that affect the slope of the pedogenetic processes and the transport and storage of water in the soil profile, i.e., the different trajectories of water flow in different forms of the landscape, is the cause of variability. The objectives of this research were: i) evaluate the spatial and temporal stability of internal soil water drainage in a place near and another distant from the root system in a bean-black-oat succession and ii) verify their spatial variability in relation to relief. With the hydraulic conductivity obtained by the instantaneous profile method and the total potential gradient obtained from the difference in readings of tensiometers installed at depths of 0.35 and 0.45 and 0.75 and 0.85 m in 60 sampling points totaling 1680 and 1200 observations during the cultivation of beans and oats, respectively, was obtained so the internal drainage / capillary rise through the Darcy-Buckingham equation. To evaluate the temporal stability the method used was the relative difference and Spearman correlation test and the spatial variability was analyzed as geostatistical methodology. During the period when the water flow in soil is higher, there is strong temporal stability in the depth of 0.40 m, which is the opposite for the periods of drying. The lowest relative difference and standard deviation for the internal drainage obtained during the cultivation of beans and depth of 0.40 m confirm the hypothesis that the research carried out during periods of soil water recharge have less variability than those in the drying period. Temporal stability was due to the topographic position of selected points, since the points chosen for the depth of 0.40 m in both growing seasons, are located on the lower portion of the relief, and the nominees for the depth of 0,80 m, the highest portion. There were differences in the spatial pattern of water flow in the soil along the crop succession, i.e. the seasonal demand for water by plants and evaporation from the soil at the time of drying, changed their distribution model with internal drainage phases and stages capillary rise.

  16. Nitrate variability in groundwater of North Carolina using monitoring and private well data models.

    PubMed

    Messier, Kyle P; Kane, Evan; Bolich, Rick; Serre, Marc L

    2014-09-16

    Nitrate (NO3-) is a widespread contaminant of groundwater and surface water across the United States that has deleterious effects to human and ecological health. This study develops a model for predicting point-level groundwater NO3- at a state scale for monitoring wells and private wells of North Carolina. A land use regression (LUR) model selection procedure is developed for determining nonlinear model explanatory variables when they are known to be correlated. Bayesian Maximum Entropy (BME) is used to integrate the LUR model to create a LUR-BME model of spatial/temporal varying groundwater NO3- concentrations. LUR-BME results in a leave-one-out cross-validation r2 of 0.74 and 0.33 for monitoring and private wells, effectively predicting within spatial covariance ranges. Results show significant differences in the spatial distribution of groundwater NO3- contamination in monitoring versus private wells; high NO3- concentrations in the southeastern plains of North Carolina; and wastewater treatment residuals and swine confined animal feeding operations as local sources of NO3- in monitoring wells. Results are of interest to agencies that regulate drinking water sources or monitor health outcomes from ingestion of drinking water. Lastly, LUR-BME model estimates can be integrated into surface water models for more accurate management of nonpoint sources of nitrogen.

  17. Spatial and Temporal Variation in the Effects of Climatic Variables on Dugong Calf Production

    PubMed Central

    Fuentes, Mariana M. P. B.; Delean, Steven; Grayson, Jillian; Lavender, Sally; Logan, Murray; Marsh, Helene

    2016-01-01

    Knowledge of the relationships between environmental forcing and demographic parameters is important for predicting responses from climatic changes and to manage populations effectively. We explore the relationships between the proportion of sea cows (Dugong dugon) classified as calves and four climatic drivers (rainfall anomaly, Southern Oscillation El Niño Index [SOI], NINO 3.4 sea surface temperature index, and number of tropical cyclones) at a range of spatially distinct locations in Queensland, Australia, a region with relatively high dugong density. Dugong and calf data were obtained from standardized aerial surveys conducted along the study region. A range of lagged versions of each of the focal climatic drivers (1 to 4 years) were included in a global model containing the proportion of calves in each population crossed with each of the lagged versions of the climatic drivers to explore relationships. The relative influence of each predictor was estimated via Gibbs variable selection. The relationships between the proportion of dependent calves and the climatic drivers varied spatially and temporally, with climatic drivers influencing calf counts at sub-regional scales. Thus we recommend that the assessment of and management response to indirect climatic threats on dugongs should also occur at sub-regional scales. PMID:27355367

  18. Spatial and temporal variability of guinea grass (Megathyrsus maximus) fuel loads and moisture on Oahu, Hawaii

    Treesearch

    Lisa M. Ellsworth; Creighton M. Litton; Andrew D. Taylor; J. Boone Kauffman

    2013-01-01

    Frequent wildfires in tropical landscapes dominated by non-native invasive grasses threaten surrounding ecosystems and developed areas. To better manage fire, accurate estimates of the spatial and temporal variability in fuels are urgently needed. We quantified the spatial variability in live and dead fine fuel loads and moistures at four guinea grass (...

  19. Floodplain complexity and surface metrics: influences of scale and geomorphology

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.

  20. Spatial variability versus parameter uncertainty in freshwater fate and exposure factors of chemicals.

    PubMed

    Nijhof, Carl O P; Huijbregts, Mark A J; Golsteijn, Laura; van Zelm, Rosalie

    2016-04-01

    We compared the influence of spatial variability in environmental characteristics and the uncertainty in measured substance properties of seven chemicals on freshwater fate factors (FFs), representing the residence time in the freshwater environment, and on exposure factors (XFs), representing the dissolved fraction of a chemical. The influence of spatial variability was quantified using the SimpleBox model in which Europe was divided in 100 × 100 km regions, nested in a regional (300 × 300 km) and supra-regional (500 × 500 km) scale. Uncertainty in substance properties was quantified by means of probabilistic modelling. Spatial variability and parameter uncertainty were expressed by the ratio k of the 95%ile and 5%ile of the FF and XF. Our analysis shows that spatial variability ranges in FFs of persistent chemicals that partition predominantly into one environmental compartment was up to 2 orders of magnitude larger compared to uncertainty. For the other (less persistent) chemicals, uncertainty in the FF was up to 1 order of magnitude larger than spatial variability. Variability and uncertainty in freshwater XFs of the seven chemicals was negligible (k < 1.5). We found that, depending on the chemical and emission scenario, accounting for region-specific environmental characteristics in multimedia fate modelling, as well as accounting for parameter uncertainty, can have a significant influence on freshwater fate factor predictions. Therefore, we conclude that it is important that fate factors should not only account for parameter uncertainty, but for spatial variability as well, as this further increases the reliability of ecotoxicological impacts in LCA. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae.

    PubMed

    Wu, Naicheng; Qu, Yueming; Guse, Björn; Makarevičiūtė, Kristė; To, Szewing; Riis, Tenna; Fohrer, Nicola

    2018-03-01

    There has been increasing interest in algae-based bioassessment, particularly, trait-based approaches are increasingly suggested. However, the main drivers, especially the contribution of hydrological variables, of species composition, trait composition, and beta diversity of algae communities are less studied. To link species and trait composition to multiple factors (i.e., hydrological variables, local environmental variables, and spatial factors) that potentially control species occurrence/abundance and to determine their relative roles in shaping species composition, trait composition, and beta diversities of pelagic algae communities, samples were collected from a German lowland catchment, where a well-proven ecohydrological modeling enabled to predict long-term discharges at each sampling site. Both trait and species composition showed significant correlations with hydrological, environmental, and spatial variables, and variation partitioning revealed that the hydrological and local environmental variables outperformed spatial variables. A higher variation of trait composition (57.0%) than species composition (37.5%) could be explained by abiotic factors. Mantel tests showed that both species and trait-based beta diversities were mostly related to hydrological and environmental heterogeneity with hydrological contributing more than environmental variables, while purely spatial impact was less important. Our findings revealed the relative importance of hydrological variables in shaping pelagic algae community and their spatial patterns of beta diversities, emphasizing the need to include hydrological variables in long-term biomonitoring campaigns and biodiversity conservation or restoration. A key implication for biodiversity conservation was that maintaining the instream flow regime and keeping various habitats among rivers are of vital importance. However, further investigations at multispatial and temporal scales are greatly needed.

  2. Hyperspectral imaging for predicting the allicin and soluble solid content of garlic with variable selection algorithms and chemometric models.

    PubMed

    Rahman, Anisur; Faqeerzada, Mohammad A; Cho, Byoung-Kwan

    2018-03-14

    Allicin and soluble solid content (SSC) in garlic is the responsible for its pungent flavor and odor. However, current conventional methods such as the use of high-pressure liquid chromatography and a refractometer have critical drawbacks in that they are time-consuming, labor-intensive and destructive procedures. The present study aimed to predict allicin and SSC in garlic using hyperspectral imaging in combination with variable selection algorithms and calibration models. Hyperspectral images of 100 garlic cloves were acquired that covered two spectral ranges, from which the mean spectra of each clove were extracted. The calibration models included partial least squares (PLS) and least squares-support vector machine (LS-SVM) regression, as well as different spectral pre-processing techniques, from which the highest performing spectral preprocessing technique and spectral range were selected. Then, variable selection methods, such as regression coefficients, variable importance in projection (VIP) and the successive projections algorithm (SPA), were evaluated for the selection of effective wavelengths (EWs). Furthermore, PLS and LS-SVM regression methods were applied to quantitatively predict the quality attributes of garlic using the selected EWs. Of the established models, the SPA-LS-SVM model obtained an Rpred2 of 0.90 and standard error of prediction (SEP) of 1.01% for SSC prediction, whereas the VIP-LS-SVM model produced the best result with an Rpred2 of 0.83 and SEP of 0.19 mg g -1 for allicin prediction in the range 1000-1700 nm. Furthermore, chemical images of garlic were developed using the best predictive model to facilitate visualization of the spatial distributions of allicin and SSC. The present study clearly demonstrates that hyperspectral imaging combined with an appropriate chemometrics method can potentially be employed as a fast, non-invasive method to predict the allicin and SSC in garlic. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. A new high resolution permafrost map of Iceland from Earth Observation data

    NASA Astrophysics Data System (ADS)

    Barnie, Talfan; Conway, Susan; Balme, Matt; Graham, Alastair

    2017-04-01

    High resolution maps of permafrost are required for ongoing monitoring of environmental change and the resulting hazards to ecosystems, people and infrastructure. However, permafrost maps are difficult to construct - direct observations require maintaining networks of sensors and boreholes in harsh environments and are thus limited in extent in space and time, and indirect observations require models or assumptions relating the measurements (e.g. weather station air temperature, basal snow temperature) to ground temperature. Operationally produced Land Surface Temperature maps from Earth Observation data can be used to make spatially contiguous estimates of mean annual skin temperature, which has been used a proxy for the presence of permafrost. However these maps are subject to biases due to (i) selective sampling during the day due to limited satellite overpass times, (ii) selective sampling over the year due to seasonally varying cloud cover, (iii) selective sampling of LST only during clearsky conditions, (iv) errors in cloud masking (v) errors in temperature emissivity separation (vi) smoothing over spatial variability. In this study we attempt to compensate for some of these problems using a bayesian modelling approach and high resolution topography-based downscaling.

  4. The Use of Scale-Dependent Precision to Increase Forecast Accuracy in Earth System Modelling

    NASA Astrophysics Data System (ADS)

    Thornes, Tobias; Duben, Peter; Palmer, Tim

    2016-04-01

    At the current pace of development, it may be decades before the 'exa-scale' computers needed to resolve individual convective clouds in weather and climate models become available to forecasters, and such machines will incur very high power demands. But the resolution could be improved today by switching to more efficient, 'inexact' hardware with which variables can be represented in 'reduced precision'. Currently, all numbers in our models are represented as double-precision floating points - each requiring 64 bits of memory - to minimise rounding errors, regardless of spatial scale. Yet observational and modelling constraints mean that values of atmospheric variables are inevitably known less precisely on smaller scales, suggesting that this may be a waste of computer resources. More accurate forecasts might therefore be obtained by taking a scale-selective approach whereby the precision of variables is gradually decreased at smaller spatial scales to optimise the overall efficiency of the model. To study the effect of reducing precision to different levels on multiple spatial scales, we here introduce a new model atmosphere developed by extending the Lorenz '96 idealised system to encompass three tiers of variables - which represent large-, medium- and small-scale features - for the first time. In this chaotic but computationally tractable system, the 'true' state can be defined by explicitly resolving all three tiers. The abilities of low resolution (single-tier) double-precision models and similar-cost high resolution (two-tier) models in mixed-precision to produce accurate forecasts of this 'truth' are compared. The high resolution models outperform the low resolution ones even when small-scale variables are resolved in half-precision (16 bits). This suggests that using scale-dependent levels of precision in more complicated real-world Earth System models could allow forecasts to be made at higher resolution and with improved accuracy. If adopted, this new paradigm would represent a revolution in numerical modelling that could be of great benefit to the world.

  5. Does the effect of gender modify the relationship between deprivation and mortality?

    PubMed

    Salcedo, Natalia; Saez, Marc; Bragulat, Basili; Saurina, Carme

    2012-07-30

    In this study we propose improvements to the method of elaborating deprivation indexes. First, in the selection of the variables, we incorporated a wider range of both objective and subjective measures. Second, in the statistical methodology, we used a distance indicator instead of the standard aggregating method principal component analysis. Third, we propose another methodological improvement, which consists in the use of a more robust statistical method to assess the relationship between deprivation and health responses in ecological regressions. We conducted an ecological small-area analysis based on the residents of the Metropolitan region of Barcelona in the period 1994-2007. Standardized mortality rates, stratified by sex, were studied for four mortality causes: tumor of the bronquial, lung and trachea, diabetes mellitus type II, breast cancer, and prostate cancer. Socioeconomic conditions were summarized using a deprivation index. Sixteen socio-demographic variables available in the Spanish Census of Population and Housing were included. The deprivation index was constructed by aggregating the above-mentioned variables using the distance indicator, DP2. For the estimation of the ecological regression we used hierarchical Bayesian models with some improvements. At greater deprivation, there is an increased risk of dying from diabetes for both sexes and of dying from lung cancer for men. On the other hand, at greater deprivation, there is a decreased risk of dying from breast cancer and lung cancer for women. We did not find a clear relationship in the case of prostate cancer (presenting an increased risk but only in the second quintile of deprivation). We believe our results were obtained using a more robust methodology. First off, we have built a better index that allows us to directly collect the variability of contextual variables without having to use arbitrary weights. Secondly, we have solved two major problems that are present in spatial ecological regressions, i.e. those that use spatial data and, consequently, perform a spatial adjustment in order to obtain consistent estimators.

  6. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].

    PubMed

    Yang, Shun-hua; Zhang, Hai-tao; Guo, Long; Ren, Yan

    2015-06-01

    Relative elevation and stream power index were selected as auxiliary variables based on correlation analysis for mapping soil organic matter. Geographically weighted regression Kriging (GWRK) and regression Kriging (RK) were used for spatial interpolation of soil organic matter and compared with ordinary Kriging (OK), which acts as a control. The results indicated that soil or- ganic matter was significantly positively correlated with relative elevation whilst it had a significantly negative correlation with stream power index. Semivariance analysis showed that both soil organic matter content and its residuals (including ordinary least square regression residual and GWR resi- dual) had strong spatial autocorrelation. Interpolation accuracies by different methods were esti- mated based on a data set of 98 validation samples. Results showed that the mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) of RK were respectively 39.2%, 17.7% and 20.6% lower than the corresponding values of OK, with a relative-improvement (RI) of 20.63. GWRK showed a similar tendency, having its ME, MAE and RMSE to be respectively 60.6%, 23.7% and 27.6% lower than those of OK, with a RI of 59.79. Therefore, both RK and GWRK significantly improved the accuracy of OK interpolation of soil organic matter due to their in- corporation of auxiliary variables. In addition, GWRK performed obviously better than RK did in this study, and its improved performance should be attributed to the consideration of sample spatial locations.

  7. Using monitoring data to map amphibian breeding hotspots and describe wetland vulnerability in Yellowstone and Grand Teton National Parks

    USGS Publications Warehouse

    Ray, Andrew M.; Legg, Kristin; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra

    2015-01-01

    Amphibians have been selected as a “vital sign” by several National Park Service (NPS) Inventory and Monitoring (I&M) networks. An eight-year amphibian monitoring data set provided opportunities to examine spatial and temporal patterns in amphibian breeding richness and wetland desiccation across Yellowstone and Grand Teton National Parks. Amphibian breeding richness was variable across both parks and only four of 31 permanent monitoring catchments contained all four widely distributed species. Annual breeding richness was also variable through time and fluctuated by as much as 75% in some years and catchments. Wetland desiccation was also documented across the region, but alone did not explain variations in amphibian richness. High annual variability across the region emphasizes the need for multiple years of monitoring to accurately describe amphibian richness and wetland desiccation dynamics.

  8. Can APEX Represent In-Field Spatial Variability and Simulate Its Effects On Crop Yields?

    USDA-ARS?s Scientific Manuscript database

    Precision agriculture, from variable rate nitrogen application to precision irrigation, promises improved management of resources by considering the spatial variability of topography and soil properties. Hydrologic models need to simulate the effects of this variability if they are to inform about t...

  9. A comparative analysis of two highly spatially resolved European atmospheric emission inventories

    NASA Astrophysics Data System (ADS)

    Ferreira, J.; Guevara, M.; Baldasano, J. M.; Tchepel, O.; Schaap, M.; Miranda, A. I.; Borrego, C.

    2013-08-01

    A reliable emissions inventory is highly important for air quality modelling applications, especially at regional or local scales, which require high resolutions. Consequently, higher resolution emission inventories have been developed that are suitable for regional air quality modelling. This research performs an inter-comparative analysis of different spatial disaggregation methodologies of atmospheric emission inventories. This study is based on two different European emission inventories with different spatial resolutions: 1) the EMEP (European Monitoring and Evaluation Programme) inventory and 2) an emission inventory developed by the TNO (Netherlands Organisation for Applied Scientific Research). These two emission inventories were converted into three distinct gridded emission datasets as follows: (i) the EMEP emission inventory was disaggregated by area (EMEParea) and (ii) following a more complex methodology (HERMES-DIS - High-Elective Resolution Modelling Emissions System - DISaggregation module) to understand and evaluate the influence of different disaggregation methods; and (iii) the TNO gridded emissions, which are based on different emission data sources and different disaggregation methods. A predefined common grid with a spatial resolution of 12 × 12 km2 was used to compare the three datasets spatially. The inter-comparative analysis was performed by source sector (SNAP - Selected Nomenclature for Air Pollution) with emission totals for selected pollutants. It included the computation of difference maps (to focus on the spatial variability of emission differences) and a linear regression analysis to calculate the coefficients of determination and to quantitatively measure differences. From the spatial analysis, greater differences were found for residential/commercial combustion (SNAP02), solvent use (SNAP06) and road transport (SNAP07). These findings were related to the different spatial disaggregation that was conducted by the TNO and HERMES-DIS for the first two sectors and to the distinct data sources that were used by the TNO and HERMES-DIS for road transport. Regarding the regression analysis, the greatest correlation occurred between the EMEParea and HERMES-DIS because the latter is derived from the first, which does not occur for the TNO emissions. The greatest correlations were encountered for agriculture NH3 emissions, due to the common use of the CORINE Land Cover database for disaggregation. The point source emissions (energy industries, industrial processes, industrial combustion and extraction/distribution of fossil fuels) resulted in the lowest coefficients of determination. The spatial variability of SOx differed among the emissions that were obtained from the different disaggregation methods. In conclusion, HERMES-DIS and TNO are two distinct emission inventories, both very well discretized and detailed, suitable for air quality modelling. However, the different databases and distinct disaggregation methodologies that were used certainly result in different spatial emission patterns. This fact should be considered when applying regional atmospheric chemical transport models. Future work will focus on the evaluation of air quality models performance and sensitivity to these spatial discrepancies in emission inventories. Air quality modelling will benefit from the availability of appropriate resolution, consistent and reliable emission inventories.

  10. Spatially Resolved Measurements of CO2 and CH4 Concentration and Gas-Exchange Velocity Highly Influence Carbon-Emission Estimates of Reservoirs

    PubMed Central

    2017-01-01

    The magnitude of diffusive carbon dioxide (CO2) and methane (CH4) emission from man-made reservoirs is uncertain because the spatial variability generally is not well-represented. Here, we examine the spatial variability and its drivers for partial pressure, gas-exchange velocity (k), and diffusive flux of CO2 and CH4 in three tropical reservoirs using spatially resolved measurements of both gas concentrations and k. We observed high spatial variability in CO2 and CH4 concentrations and flux within all three reservoirs, with river inflow areas generally displaying elevated CH4 concentrations. Conversely, areas close to the dam are generally characterized by low concentrations and are therefore not likely to be representative for the whole system. A large share (44–83%) of the within-reservoir variability of gas concentration was explained by dissolved oxygen, pH, chlorophyll, water depth, and within-reservoir location. High spatial variability in k was observed, and kCH4 was persistently higher (on average, 2.5 times more) than kCO2. Not accounting for the within-reservoir variability in concentrations and k may lead to up to 80% underestimation of whole-system diffusive emission of CO2 and CH4. Our findings provide valuable information on how to develop field-sampling strategies to reliably capture the spatial heterogeneity of diffusive carbon fluxes from reservoirs. PMID:29257874

  11. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA).

    PubMed

    Reichenau, Tim G; Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI.

  12. Spatial Heterogeneity of Leaf Area Index (LAI) and Its Temporal Course on Arable Land: Combining Field Measurements, Remote Sensing and Simulation in a Comprehensive Data Analysis Approach (CDAA)

    PubMed Central

    Korres, Wolfgang; Montzka, Carsten; Fiener, Peter; Wilken, Florian; Stadler, Anja; Waldhoff, Guido; Schneider, Karl

    2016-01-01

    The ratio of leaf area to ground area (leaf area index, LAI) is an important state variable in ecosystem studies since it influences fluxes of matter and energy between the land surface and the atmosphere. As a basis for generating temporally continuous and spatially distributed datasets of LAI, the current study contributes an analysis of its spatial variability and spatial structure. Soil-vegetation-atmosphere fluxes of water, carbon and energy are nonlinearly related to LAI. Therefore, its spatial heterogeneity, i.e., the combination of spatial variability and structure, has an effect on simulations of these fluxes. To assess LAI spatial heterogeneity, we apply a Comprehensive Data Analysis Approach that combines data from remote sensing (5 m resolution) and simulation (150 m resolution) with field measurements and a detailed land use map. Test area is the arable land in the fertile loess plain of the Rur catchment on the Germany-Belgium-Netherlands border. LAI from remote sensing and simulation compares well with field measurements. Based on the simulation results, we describe characteristic crop-specific temporal patterns of LAI spatial variability. By means of these patterns, we explain the complex multimodal frequency distributions of LAI in the remote sensing data. In the test area, variability between agricultural fields is higher than within fields. Therefore, spatial resolutions less than the 5 m of the remote sensing scenes are sufficient to infer LAI spatial variability. Frequency distributions from the simulation agree better with the multimodal distributions from remote sensing than normal distributions do. The spatial structure of LAI in the test area is dominated by a short distance referring to field sizes. Longer distances that refer to soil and weather can only be derived from remote sensing data. Therefore, simulations alone are not sufficient to characterize LAI spatial structure. It can be concluded that a comprehensive picture of LAI spatial heterogeneity and its temporal course can contribute to the development of an approach to create spatially distributed and temporally continuous datasets of LAI. PMID:27391858

  13. Contamination and spatial variation of heavy metals in the soil-rice system in Nanxun County, Southeastern China.

    PubMed

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-28

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones.

  14. Contamination and Spatial Variation of Heavy Metals in the Soil-Rice System in Nanxun County, Southeastern China

    PubMed Central

    Zhao, Keli; Fu, Weijun; Ye, Zhengqian; Zhang, Chaosheng

    2015-01-01

    There is an increasing concern about heavy metal contamination in farmland in China and worldwide. In order to reveal the spatial features of heavy metals in the soil-rice system, soil and rice samples were collected from Nanxun, Southeastern China. Compared with the guideline values, elevated concentrations of heavy metals in soils were observed, while heavy metals in rice still remained at a safe level. Heavy metals in soils and rice had moderate to strong spatial dependence (nugget/sill ratios: 13.2% to 49.9%). The spatial distribution of copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn) in soils illustrated that their high concentrations were located in the southeast part. The high concentrations of cadmium (Cd) in soils were observed in the northeast part. The accumulation of all the studied metals is related to the long-term application of agrochemicals and industrial activities. Heavy metals in rice showed different spatial distribution patterns. Cross-correlograms were produced to quantitatively determine the spatial correlation between soil properties and heavy metals composition in rice. The pH and soil organic matter had significant spatial correlations with the concentration of heavy metals in rice. Most of the selected variables had clear spatial correlation ranges for heavy metals in rice, which could be further applied to divide agricultural management zones. PMID:25635917

  15. The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin

    USGS Publications Warehouse

    Dripps, W.R.; Bradbury, K.R.

    2010-01-01

    Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.

  16. Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride

    NASA Technical Reports Server (NTRS)

    Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.

    1989-01-01

    Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.

  17. Spatio-temporal Bayesian model selection for disease mapping

    PubMed Central

    Carroll, R; Lawson, AB; Faes, C; Kirby, RS; Aregay, M; Watjou, K

    2016-01-01

    Spatio-temporal analysis of small area health data often involves choosing a fixed set of predictors prior to the final model fit. In this paper, we propose a spatio-temporal approach of Bayesian model selection to implement model selection for certain areas of the study region as well as certain years in the study time line. Here, we examine the usefulness of this approach by way of a large-scale simulation study accompanied by a case study. Our results suggest that a special case of the model selection methods, a mixture model allowing a weight parameter to indicate if the appropriate linear predictor is spatial, spatio-temporal, or a mixture of the two, offers the best option to fitting these spatio-temporal models. In addition, the case study illustrates the effectiveness of this mixture model within the model selection setting by easily accommodating lifestyle, socio-economic, and physical environmental variables to select a predominantly spatio-temporal linear predictor. PMID:28070156

  18. Accounting for autocorrelation in multi-drug resistant tuberculosis predictors using a set of parsimonious orthogonal eigenvectors aggregated in geographic space.

    PubMed

    Jacob, Benjamin J; Krapp, Fiorella; Ponce, Mario; Gottuzzo, Eduardo; Griffith, Daniel A; Novak, Robert J

    2010-05-01

    Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.

  19. Spatial versus Day-To-Day Within-Lake Variability in Tropical Floodplain Lake CH4 Emissions – Developing Optimized Approaches to Representative Flux Measurements

    PubMed Central

    Peixoto, Roberta B.; Machado-Silva, Fausto; Marotta, Humberto; Enrich-Prast, Alex; Bastviken, David

    2015-01-01

    Inland waters (lakes, rivers and reservoirs) are now understood to contribute large amounts of methane (CH4) to the atmosphere. However, fluxes are poorly constrained and there is a need for improved knowledge on spatiotemporal variability and on ways of optimizing sampling efforts to yield representative emission estimates for different types of aquatic ecosystems. Low-latitude floodplain lakes and wetlands are among the most high-emitting environments, and here we provide a detailed investigation of spatial and day-to-day variability in a shallow floodplain lake in the Pantanal in Brazil over a five-day period. CH4 flux was dominated by frequent and ubiquitous ebullition. A strong but predictable spatial variability (decreasing flux with increasing distance to the shore or to littoral vegetation) was found, and this pattern can be addressed by sampling along transects from the shore to the center. Although no distinct day-to-day variability were found, a significant increase in flux was identified from measurement day 1 to measurement day 5, which was likely attributable to a simultaneous increase in temperature. Our study demonstrates that representative emission assessments requires consideration of spatial variability, but also that spatial variability patterns are predictable for lakes of this type and may therefore be addressed through limited sampling efforts if designed properly (e.g., fewer chambers may be used if organized along transects). Such optimized assessments of spatial variability are beneficial by allowing more of the available sampling resources to focus on assessing temporal variability, thereby improving overall flux assessments. PMID:25860229

  20. Spatial variability in intertidal macroalgal assemblages on the North Portuguese coast: consistence between species and functional group approaches

    NASA Astrophysics Data System (ADS)

    Veiga, P.; Rubal, M.; Vieira, R.; Arenas, F.; Sousa-Pinto, I.

    2013-03-01

    Natural assemblages are variable in space and time; therefore, quantification of their variability is imperative to identify relevant scales for investigating natural or anthropogenic processes shaping these assemblages. We studied the variability of intertidal macroalgal assemblages on the North Portuguese coast, considering three spatial scales (from metres to 10 s of kilometres) following a hierarchical design. We tested the hypotheses that (1) spatial pattern will be invariant at all the studied scales and (2) spatial variability of macroalgal assemblages obtained by using species will be consistent with that obtained using functional groups. This was done considering as univariate variables: total biomass and number of taxa as well as biomass of the most important species and functional groups and as multivariate variables the structure of macroalgal assemblages, both considering species and functional groups. Most of the univariate results confirmed the first hypothesis except for the total number of taxa and foliose macroalgae that showed significant variability at the scale of site and area, respectively. In contrast, when multivariate patterns were examined, the first hypothesis was rejected except at the scale of 10 s of kilometres. Both uni- and multivariate results indicated that variation was larger at the smallest scale, and thus, small-scale processes seem to have more effect on spatial variability patterns. Macroalgal assemblages, both considering species and functional groups as surrogate, showed consistent spatial patterns, and therefore, the second hypothesis was confirmed. Consequently, functional groups may be considered a reliable biological surrogate to study changes on macroalgal assemblages at least along the investigated Portuguese coastline.

  1. Geospatial Predictive Modelling for Climate Mapping of Selected Severe Weather Phenomena Over Poland: A Methodological Approach

    NASA Astrophysics Data System (ADS)

    Walawender, Ewelina; Walawender, Jakub P.; Ustrnul, Zbigniew

    2017-02-01

    The main purpose of the study is to introduce methods for mapping the spatial distribution of the occurrence of selected atmospheric phenomena (thunderstorms, fog, glaze and rime) over Poland from 1966 to 2010 (45 years). Limited in situ observations as well the discontinuous and location-dependent nature of these phenomena make traditional interpolation inappropriate. Spatially continuous maps were created with the use of geospatial predictive modelling techniques. For each given phenomenon, an algorithm identifying its favourable meteorological and environmental conditions was created on the basis of observations recorded at 61 weather stations in Poland. Annual frequency maps presenting the probability of a day with a thunderstorm, fog, glaze or rime were created with the use of a modelled, gridded dataset by implementing predefined algorithms. Relevant explanatory variables were derived from NCEP/NCAR reanalysis and downscaled with the use of a Regional Climate Model. The resulting maps of favourable meteorological conditions were found to be valuable and representative on the country scale but at different correlation ( r) strength against in situ data (from r = 0.84 for thunderstorms to r = 0.15 for fog). A weak correlation between gridded estimates of fog occurrence and observations data indicated the very local nature of this phenomenon. For this reason, additional environmental predictors of fog occurrence were also examined. Topographic parameters derived from the SRTM elevation model and reclassified CORINE Land Cover data were used as the external, explanatory variables for the multiple linear regression kriging used to obtain the final map. The regression model explained 89 % of annual frequency of fog variability in the study area. Regression residuals were interpolated via simple kriging.

  2. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    NASA Astrophysics Data System (ADS)

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé

    2017-09-01

    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  3. GEOLAND2 global LAI, FAPAR Essential Climate Variables for terrestrial carbon modeling: principles and validation

    NASA Astrophysics Data System (ADS)

    Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Smets, B.; Pacholczyk, P.; Makhmara, H.

    2010-12-01

    LAI and fAPAR are recognized as Essential Climate Variables providing key information for the understanding and modeling of canopy functioning. Global remote sensing observations at medium resolution are routinely acquired since the 80’s mainly with AVHRR, SEAWIFS, VEGETATION, MODIS and MERIS sensors. Several operational products have been derived and provide global maps of LAI and fAPAR at daily to monthly time steps. Inter-comparison between MODIS, CYCLOPES, GLOBCARBON and JRC-FAPAR products showed generally consistent seasonality, while large differences in magnitude and smoothness may be observed. One of the objectives of the GEOLAND2 European project is to develop such core products to be used in a range of application services including the carbon monitoring. Rather than generating an additional product from scratch, the version 1 of GEOLAND2 products was capitalizing on the existing products by combining them to retain their pros and limit their cons. For these reasons, MODIS and CYCLOPES products were selected since they both include LAI and fAPAR while having relatively close temporal sampling intervals (8 to 10 days). GLOBCARBON products were not used here because of the too long monthly time step inducing large uncertainties in the seasonality description. JRC-FAPAR was not selected as well to preserve better consistency between LAI and fAPAR products. MODIS and CYCLOPES products were then linearly combined to take advantage of the good performances of CYCLOPES products for low to medium values of LAI and fAPAR while benefiting from the better MODIS performances for the highest LAI values. A training database representative of the global variability of vegetation type and conditions was thus built. A back-propagation neural network was then calibrated to estimate the new LAI and fAPAR products from VEGETATION preprocessed observations. Similarly, the vegetation cover fraction (fCover) was also derived by scaling the original CYCLOPES fCover products. Validation results achieved following the principles proposed by CEOS-LPV show that the new product called GEOV1 behaves as expected with good performances over the whole range of LAI and fAPAR in a temporally smooth and spatially consistent manner. These products will be processed and delivered by VITO in near real time at 1 km spatial resolution and 10 days frequency using a pre-operational production quality tracking system. The entire VEGETATION archive, from 1999 will be processed to provide a consistent time series over both VEGETATION sensors at the same spatial and temporal sampling. A climatology of products computed over the VEGETATION period will be also delivered at the same spatial and temporal sampling, showing average values, between year variability and possible trends over the decade. Finally, the VEGETATION derived time series starting back to 1999 will be completed with consistent products at 4 km spatial resolution derived from the NOAA/AVHRR series to cover the 1981-2010 period.

  4. Predictor variable resolution governs modeled soil types

    USDA-ARS?s Scientific Manuscript database

    Soil mapping identifies different soil types by compressing a unique suite of spatial patterns and processes across multiple spatial scales. It can be quite difficult to quantify spatial patterns of soil properties with remotely sensed predictor variables. More specifically, matching the right scale...

  5. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more importantmore » than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall.« less

  6. Regional flood-frequency relations for streams with many years of no flow

    USGS Publications Warehouse

    Hjalmarson, Hjalmar W.; Thomas, Blakemore E.; ,

    1990-01-01

    In the southwestern United States, flood-frequency relations for streams that drain small arid basins are difficult to estimate, largely because of the extreme temporal and spatial variability of floods and the many years of no flow. A method is proposed that is based on the station-year method. The new method produces regional flood-frequency relations using all available annual peak-discharge data. The prediction errors for the relations are directly assessed using randomly selected subsamples of the annual peak discharges.

  7. Characterisation of a reference site for quantifying uncertainties related to soil sampling.

    PubMed

    Barbizzi, Sabrina; de Zorzi, Paolo; Belli, Maria; Pati, Alessandra; Sansone, Umberto; Stellato, Luisa; Barbina, Maria; Deluisa, Andrea; Menegon, Sandro; Coletti, Valter

    2004-01-01

    The paper reports a methodology adopted to face problems related to quality assurance in soil sampling. The SOILSAMP project, funded by the Environmental Protection Agency of Italy (APAT), is aimed at (i) establishing protocols for soil sampling in different environments; (ii) assessing uncertainties associated with different soil sampling methods in order to select the "fit-for-purpose" method; (iii) qualifying, in term of trace elements spatial variability, a reference site for national and international inter-comparison exercises. Preliminary results and considerations are illustrated.

  8. Adaptations to Climate-Mediated Selective Pressures in Humans

    PubMed Central

    Hancock, Angela M.; Witonsky, David B.; Alkorta-Aranburu, Gorka; Beall, Cynthia M.; Gebremedhin, Amha; Sukernik, Rem; Utermann, Gerd; Pritchard, Jonathan K.; Coop, Graham; Di Rienzo, Anna

    2011-01-01

    Humans inhabit a remarkably diverse range of environments, and adaptation through natural selection has likely played a central role in the capacity to survive and thrive in extreme climates. Unlike numerous studies that used only population genetic data to search for evidence of selection, here we scan the human genome for selection signals by identifying the SNPs with the strongest correlations between allele frequencies and climate across 61 worldwide populations. We find a striking enrichment of genic and nonsynonymous SNPs relative to non-genic SNPs among those that are strongly correlated with these climate variables. Among the most extreme signals, several overlap with those from GWAS, including SNPs associated with pigmentation and autoimmune diseases. Further, we find an enrichment of strong signals in gene sets related to UV radiation, infection and immunity, and cancer. Our results imply that adaptations to climate shaped the spatial distribution of variation in humans. PMID:21533023

  9. Spatial-Orientation Priming Impedes Rather than Facilitates the Spontaneous Control of Hand-Retraction Speeds in Patients with Parkinson’s Disease

    PubMed Central

    Yanovich, Polina; Isenhower, Robert W.; Sage, Jacob; Torres, Elizabeth B.

    2013-01-01

    Background Often in Parkinson’s disease (PD) motor-related problems overshadow latent non-motor deficits as it is difficult to dissociate one from the other with commonly used observational inventories. Here we ask if the variability patterns of hand speed and acceleration would be revealing of deficits in spatial-orientation related decisions as patients performed a familiar reach-to-grasp task. To this end we use spatial-orientation priming which normally facilitates motor-program selection and asked whether in PD spatial-orientation priming helps or hinders performance. Methods To dissociate spatial-orientation- and motor-related deficits participants performed two versions of the task. The biomechanical version (DEFAULT) required the same postural- and hand-paths as the orientation-priming version (primed-UP). Any differences in the patients here could not be due to motor issues as the tasks were biomechanically identical. The other priming version (primed-DOWN) however required additional spatial and postural processing. We assessed in all three cases both the forward segment deliberately aimed towards the spatial-target and the retracting segment, spontaneously bringing the hand to rest without an instructed goal. Results and Conclusions We found that forward and retracting segments belonged in two different statistical classes according to the fluctuations of speed and acceleration maxima. Further inspection revealed conservation of the forward (voluntary) control of speed but in PD a discontinuity of this control emerged during the uninstructed retractions which was absent in NC. Two PD groups self-emerged: one group in which priming always affected the retractions and the other in which only the more challenging primed-DOWN condition was affected. These PD-groups self-formed according to the speed variability patterns, which systematically changed along a gradient that depended on the priming, thus dissociating motor from spatial-orientation issues. Priming did not facilitate the motor task in PD but it did reveal a breakdown in the spatial-orientation decision that was independent of the motor-postural path. PMID:23843963

  10. A geostatistical approach to the change-of-support problem and variable-support data fusion in spatial analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Wang, Yang; Zeng, Hui

    2016-01-01

    A key issue to address in synthesizing spatial data with variable-support in spatial analysis and modeling is the change-of-support problem. We present an approach for solving the change-of-support and variable-support data fusion problems. This approach is based on geostatistical inverse modeling that explicitly accounts for differences in spatial support. The inverse model is applied here to produce both the best predictions of a target support and prediction uncertainties, based on one or more measurements, while honoring measurements. Spatial data covering large geographic areas often exhibit spatial nonstationarity and can lead to computational challenge due to the large data size. We developed a local-window geostatistical inverse modeling approach to accommodate these issues of spatial nonstationarity and alleviate computational burden. We conducted experiments using synthetic and real-world raster data. Synthetic data were generated and aggregated to multiple supports and downscaled back to the original support to analyze the accuracy of spatial predictions and the correctness of prediction uncertainties. Similar experiments were conducted for real-world raster data. Real-world data with variable-support were statistically fused to produce single-support predictions and associated uncertainties. The modeling results demonstrate that geostatistical inverse modeling can produce accurate predictions and associated prediction uncertainties. It is shown that the local-window geostatistical inverse modeling approach suggested offers a practical way to solve the well-known change-of-support problem and variable-support data fusion problem in spatial analysis and modeling.

  11. Spatial variability of surface fuels in treated and untreated ponderosa pine forests of the southern Rocky Mountains

    Treesearch

    Emma Vakili; Chad M. Hoffman; Robert E. Keane; Wade T. Tinkham; Yvette Dickinson

    2016-01-01

    There is growing consensus that spatial variability in fuel loading at scales down to 0.5 m may govern fire behaviour and effects. However, there remains a lack of understanding of how fuels vary through space in wildland settings. This study quantifies surface fuel loading and its spatial variability in ponderosa pine sites before and after fuels treatment in the...

  12. Temporal and spatial variability of wind resources in the United States as derived from the Climate Forecast System Reanalysis

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman

    2015-01-01

    This study examines the spatial and temporal variability of wind speed at 80m above ground (the average hub height of most modern wind turbines) in the contiguous United States using Climate Forecast System Reanalysis (CFSR) data from 1979 to 2011. The mean 80-m wind exhibits strong seasonality and large spatial variability, with higher (lower) wind speeds in the...

  13. Spatially offset Raman spectroscopy for explosives detection through difficult (opaque) containers

    NASA Astrophysics Data System (ADS)

    Maskall, Guy T.; Bonthron, Stuart; Crawford, David

    2013-10-01

    With the continuing threat to aviation security from homemade explosive devices, the restrictions on taking a volume of liquid greater than 100 ml onto an aircraft remain in place. From January 2014, these restrictions will gradually be reduced via a phased implementation of technological screening of Liquids, Aerosols and Gels (LAGs). Raman spectroscopy offers a highly sensitive, and specific, technique for the detection and identification of chemicals. Spatially Offset Raman Spectroscopy (SORS), in particular, offers significant advantages over conventional Raman spectroscopy for detecting and recognizing contents within optically challenging (Raman active) containers. Containers vary enormously in their composition; glass type, plastic type, thickness, reflectance, and pigmentation are all variable and cause an infinite range of absorbances, fluorescence backgrounds, Rayleigh backscattered laser light, and container Raman bands. In this paper we show that the data processing chain for Cobalt Light Systems' INSIGHT100 bottlescanner is robust to such variability. We discuss issues of model selection for the detection stage and demonstrate an overall detection rate across a wide range of threats and containers of 97% with an associated false alarm rate of 0.1% or lower.

  14. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA

    PubMed Central

    Jiang, Yueyang; Kim, John B.; Still, Christopher J.; Kerns, Becky K.; Kline, Jeffrey D.; Cunningham, Patrick G.

    2018-01-01

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies. PMID:29461513

  15. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA.

    PubMed

    Jiang, Yueyang; Kim, John B; Still, Christopher J; Kerns, Becky K; Kline, Jeffrey D; Cunningham, Patrick G

    2018-02-20

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies.

  16. Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory

    PubMed Central

    Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.

    2013-01-01

    Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773

  17. Multi-scale interactions between local hydrography, seabed topography, and community assembly on cold-water coral reefs

    NASA Astrophysics Data System (ADS)

    Henry, L.-A.; Moreno Navas, J.; Roberts, J. M.

    2013-04-01

    We investigated how interactions between hydrography, topography and species ecology influence the assembly of species and functional traits across multiple spatial scales of a cold-water coral reef seascape. In a novel approach for these ecosystems, we used a spatially resolved complex three-dimensional flow model of hydrography to help explain assembly patterns. Forward-selection of distance-based Moran's eigenvector mapping (dbMEM) variables identified two submodels of spatial scales at which communities change: broad-scale (across reef) and fine-scale (within reef). Variance partitioning identified bathymetric and hydrographic gradients important in creating broad-scale assembly of species and traits. In contrast, fine-scale assembly was related more to processes that created spatially autocorrelated patches of fauna, such as philopatric recruitment in sessile fauna, and social interactions and food supply in scavenging detritivores and mobile predators. Our study shows how habitat modification of reef connectivity and hydrography by bottom fishing and renewable energy installations could alter the structure and function of an entire cold-water coral reef seascape.

  18. Modeling the spatial and temporal variability in climate and primary productivity across the Luquillo Mountains, Puerto Rico.

    Treesearch

    Hongqing Wanga; Charles A.S. Halla; Frederick N. Scatenab; Ned Fetcherc; Wei Wua

    2003-01-01

    There are few studies that have examined the spatial variability of forest productivity over an entire tropical forested landscape. In this study, we used a spatially-explicit forest productivity model, TOPOPROD, which is based on the FORESTBGC model, to simulate spatial patterns of gross primary productivity (GPP), net primary productivity (NPP), and respiration over...

  19. Spatial patterns of distribution and abundance of Harrisia portoricensis, an endangered Caribbean cactus

    Treesearch

    J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE

    2013-01-01

    Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...

  20. Effects of Fishing and Regional Species Pool on the Functional Diversity of Fish Communities

    PubMed Central

    Martins, Gustavo M.; Arenas, Francisco; Neto, Ana I.; Jenkins, Stuart R.

    2012-01-01

    The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities’ functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities’ functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning. PMID:22952950

  1. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    PubMed Central

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-01-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring. PMID:26324320

  2. Effects of fishing and regional species pool on the functional diversity of fish communities.

    PubMed

    Martins, Gustavo M; Arenas, Francisco; Neto, Ana I; Jenkins, Stuart R

    2012-01-01

    The potential population and community level impacts of fishing have received considerable attention, but little is known about how fishing influences communities' functional diversity at regional scales. We examined how estimates of functional diversity differed among 25 regions of variable richness and investigated the functional consequences of removing species targeted by commercial fisheries. Our study shows that fishing leads to substantial losses in functional diversity. The magnitude of such loss was, however, reduced in the more speciose regions. Moreover, the removal of commercially targeted species caused a much larger reduction in functional diversity than expected by random species deletions, which was a consequence of the selective nature of fishing for particular species traits. Results suggest that functional redundancy is spatially variable, that richer biotas provide some degree of insurance against the impact of fishing on communities' functional diversity and that fishing predominantly selects for particular species traits. Understanding how fishing impacts community functional diversity is key to predict its effects for biodiversity as well as ecosystem functioning.

  3. A multi-scale comparison of trait linkages to environmental and spatial variables in fish communities across a large freshwater lake.

    PubMed

    Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J

    2011-07-01

    Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.

  4. Spatial Variability of the Topsoil Organic Carbon in the Moso Bamboo Forests of Southern China in Association with Soil Properties

    PubMed Central

    Zhang, Houxi; Zhuang, Shunyao; Qian, Haiyan; Wang, Feng; Ji, Haibao

    2015-01-01

    Understanding the spatial variability of soil organic carbon (SOC) must be enhanced to improve sampling design and to develop soil management strategies in terrestrial ecosystems. Moso bamboo (Phyllostachys pubescens Mazel ex Houz.) forests have a high SOC storage potential; however, they also vary significantly spatially. This study investigated the spatial variability of SOC (0-20 cm) in association with other soil properties and with spatial variables in the Moso bamboo forests of Jian’ou City, which is a typical bamboo hometown in China. 209 soil samples were collected from Moso bamboo stands and then analyzed for SOC, bulk density (BD), pH, cation exchange capacity (CEC), and gravel content (GC) based on spatial distribution. The spatial variability of SOC was then examined using geostatistics. A Kriging map was produced through ordinary interpolation and required sample numbers were calculated by classical and Kriging methods. An aggregated boosted tree (ABT) analysis was also conducted. A semivariogram analysis indicated that ln(SOC) was best fitted with an exponential model and that it exhibited moderate spatial dependence, with a nugget/sill ratio of 0.462. SOC was significantly and linearly correlated with BD (r = −0.373**), pH (r = −0.429**), GC (r = −0.163*), CEC (r = 0.263**), and elevation (r = 0.192**). Moreover, the Kriging method requires fewer samples than the classical method given an expected standard error level as per a variance analysis. ABT analysis indicated that the physicochemical variables of soil affected SOC variation more significantly than spatial variables did, thus suggesting that the SOC in Moso bamboo forests can be strongly influenced by management practices. Thus, this study provides valuable information in relation to sampling strategy and insight into the potential of adjustments in agronomic measure, such as in fertilization for Moso bamboo production. PMID:25789615

  5. Multiscale Spatial Assessment of Determinant Factors of Land Use Change: Study at Urban Area of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Susilo, Bowo

    2017-12-01

    Studies of land use change have been undertaken by different researchers using various methods. Among those methods, modelling is widely utilized. Modelling land use change required several components remarked as model variables. Those represent any conditions or factors which considered relevant or have some degree of correlation to the changes of land use. Variables which have significant correlation to land use change are referred as determinant factors or driving forces. Those factors as well as changes of land use are distributed across space and therefore referred as spatial determinant factors. The main objective of the research was to examine land use change and its determinant factors. Area and location of land use change were analysed based on three different years of land use maps, which are 1993, 2000 and 2007. Spatial and temporal analysis were performed which emphasize to the influence of scale to both of analysis’s. Urban area of Yogyakarta was selected as study area. Study area covered three different districts (kabupaten), involving 20 sub districts and totally consists of 74 villages. Result of this study shows that during 14 years periods (1993 to 2007), there were about 1,460 hectares of land use change had been taken place. Dominant type of land use change is agricultural to residential. The uses of different spatial and temporal scale in analysis were able to reveal different factors related to land use change. In general, factors influencing the quantities of land use change in the study area were population growth and the availability of land. The use of data with different spatial resolution can reveal the presence of various factors associated with the location of the change. Locations of land use change were influenced or determined by accessibility factors.

  6. A spatial model to assess the effects of hydropower operations on Columbia River fall Chinook Salmon spawning habitat

    USGS Publications Warehouse

    Hatten, James R.; Tiffan, Kenneth F.; Anglin, Donald R.; Haeseker, Steven L.; Skalicky, Joseph J.; Schaller, Howard

    2009-01-01

    Priest Rapids Dam on the Columbia River produces large daily and hourly streamflow fluctuations throughout the Hanford Reach during the period when fall Chinook salmon Oncorhynchus tshawytscha are selecting spawning habitat, constructing redds, and actively engaged in spawning. Concern over the detrimental effects of these fluctuations prompted us to quantify the effects of variable flows on the amount and persistence of fall Chinook salmon spawning habitat in the Hanford Reach. Specifically, our goal was to develop a management tool capable of quantifying the effects of current and alternative hydrographs on predicted spawning habitat in a spatially explicit manner. Toward this goal, we modeled the water velocities and depths that fall Chinook salmon experienced during the 2004 spawning season, plus what they would probably have experienced under several alternative (i.e., synthetic) hydrographs, using both one- and two-dimensional hydrodynamic models. To estimate spawning habitat under existing or alternative hydrographs, we used cell-based modeling and logistic regression to construct and compare numerous spatial habitat models. We found that fall Chinook salmon were more likely to spawn at locations where velocities were persistently greater than 1 m/s and in areas where fluctuating water velocities were reduced. Simulations of alternative dam operations indicate that the quantity of spawning habitat is expected to increase as streamflow fluctuations are reduced during the spawning season. The spatial habitat models that we developed provide management agencies with a quantitative tool for predicting, in a spatially explicit manner, the effects of different flow regimes on fall Chinook salmon spawning habitat in the Hanford Reach. In addition to characterizing temporally varying habitat conditions, our research describes an analytical approach that could be applied in other highly variable aquatic systems.

  7. Inferring Processes from Spatial Patterns: The Role of Directional and Non–Directional Forces in Shaping Fish Larvae Distribution in a Freshwater Lake System

    PubMed Central

    Bertolo, Andrea; Blanchet, F. Guillaume; Magnan, Pierre; Brodeur, Philippe; Mingelbier, Marc; Legendre, Pierre

    2012-01-01

    Larval dispersal is a crucial factor for fish recruitment. For fishes with relatively small-bodied larvae, drift has the potential to play a more important role than active habitat selection in determining larval dispersal; therefore, we expect small-bodied fish larvae to be poorly associated with habitat characteristics. To test this hypothesis, we used as model yellow perch (Perca flavescens), whose larvae are among the smallest among freshwater temperate fishes. Thus, we analysed the habitat association of yellow perch larvae at multiple spatial scales in a large shallow fluvial lake by explicitly modelling directional (e.g. due to water currents) and non-directional (e.g. due to aggregation) spatial patterns. This allowed us to indirectly assess the relative roles of drift (directional process) and potential habitat choice on larval dispersal. Our results give weak support to the drift hypothesis, whereas yellow perch show a strong habitat association at unexpectedly small sizes, when compared to other systems. We found consistent non-directional patterns in larvae distributions at both broad and medium spatial scales but only few significant directional components. The environmental variables alone (e.g. vegetation) generally explained a significant and biologically relevant fraction of the variation in fish larvae distribution data. These results suggest that (i) drift plays a minor role in this shallow system, (ii) larvae display spatial patterns that only partially covary with environmental variables, and (iii) larvae are associated to specific habitats. By suggesting that habitat association potentially includes an active choice component for yellow perch larvae, our results shed new light on the ecology of freshwater fish larvae and should help in building more realistic recruitment models. PMID:23185585

  8. Relevance of anisotropy and spatial variability of gas diffusivity for soil-gas transport

    NASA Astrophysics Data System (ADS)

    Schack-Kirchner, Helmer; Kühne, Anke; Lang, Friederike

    2017-04-01

    Models of soil gas transport generally do not consider neither direction dependence of gas diffusivity, nor its small-scale variability. However, in a recent study, we could provide evidence for anisotropy favouring vertical gas diffusion in natural soils. We hypothesize that gas transport models based on gas diffusion data measured with soil rings are strongly influenced by both, anisotropy and spatial variability and the use of averaged diffusivities could be misleading. To test this we used a 2-dimensional model of soil gas transport to under compacted wheel tracks to model the soil-air oxygen distribution in the soil. The model was parametrized with data obtained from soil-ring measurements with its central tendency and variability. The model includes vertical parameter variability as well as variation perpendicular to the elongated wheel track. Different parametrization types have been tested: [i)]Averaged values for wheel track and undisturbed. em [ii)]Random distribution of soil cells with normally distributed variability within the strata. em [iii)]Random distributed soil cells with uniformly distributed variability within the strata. All three types of small-scale variability has been tested for [j)] isotropic gas diffusivity and em [jj)]reduced horizontal gas diffusivity (constant factor), yielding in total six models. As expected the different parametrizations had an important influence to the aeration state under wheel tracks with the strongest oxygen depletion in case of uniformly distributed variability and anisotropy towards higher vertical diffusivity. The simple simulation approach clearly showed the relevance of anisotropy and spatial variability in case of identical central tendency measures of gas diffusivity. However, until now it did not consider spatial dependency of variability, that could even aggravate effects. To consider anisotropy and spatial variability in gas transport models we recommend a) to measure soil-gas transport parameters spatially explicit including different directions and b) to use random-field stochastic models to assess the possible effects for gas-exchange models.

  9. Ground and surface temperature variability for remote sensing of soil moisture in a heterogeneous landscape

    USGS Publications Warehouse

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Finn, M.

    2009-01-01

    At the Little River Watershed (LRW) heterogeneous landscape near Tifton Georgia US an in situ network of stations operated by the US Department of Agriculture-Agriculture Research Service-Southeast Watershed Research Lab (USDA-ARS-SEWRL) was established in 2003 for the long term study of climatic and soil biophysical processes. To develop an accurate interpolation of the in situ readings that can be used to produce distributed representations of soil moisture (SM) and energy balances at the landscape scale for remote sensing studies, we studied (1) the temporal and spatial variations of ground temperature (GT) and infra red temperature (IRT) within 30 by 30 m plots around selected network stations; (2) the relationship between the readings from the eight 30 by 30 m plots and the point reading of the network stations for the variables SM, GT and IRT; and (3) the spatial and temporal variation of GT and IRT within agriculture landuses: grass, orchard, peanuts, cotton and bare soil in the surrounding landscape. The results showed high correlations between the station readings and the adjacent 30 by 30 m plot average value for SM; high seasonal independent variation in the GT and IRT behavior among the eight 30 by 30 m plots; and site specific, in-field homogeneity in each 30 by 30 m plot. We found statistical differences in the GT and IRT between the different landuses as well as high correlations between GT and IRT regardless of the landuse. Greater standard deviations for IRT than for GT (in the range of 2-4) were found within the 30 by 30 m, suggesting that when a single point reading for this variable is selected for the validation of either remote sensing data or water-energy models, errors may occur. The results confirmed that in this landscape homogeneous 30 by 30 m plots can be used as landscape spatial units for soil moisture and ground temperature studies. Under this landscape conditions small plots can account for local expressions of environmental processes, decreasing the errors and uncertainties in remote sensing estimates caused by landscape heterogeneity.

  10. Spatiotemporal Phylogenetic Analysis and Molecular Characterisation of Infectious Bursal Disease Viruses Based on the VP2 Hyper-Variable Region

    PubMed Central

    Dolz, Roser; Valle, Rosa; Perera, Carmen L.; Bertran, Kateri; Frías, Maria T.; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J.

    2013-01-01

    Background Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Methodology/Principal Findings Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. Conclusions/Significance To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide. PMID:23805195

  11. Landslide susceptibility mapping in three selected target zones in Afghanistan

    NASA Astrophysics Data System (ADS)

    Schwanghart, Wolfgang; Seegers, Joe; Zeilinger, Gerold

    2015-04-01

    In May 2014, a large and mobile landslide destroyed the village Ab Barek, a village in Badakshan Province, Afghanistan. The landslide caused several hundred fatalities and once again demonstrated the vulnerability of Afghanistan's population to extreme natural events following more than 30 years of civil war and violent conflict. Increasing the capacity of Afghanistan's population by strengthening the disaster preparedness and management of responsible government authorities and institutions is thus a major component of international cooperation and development strategies. Afghanistan is characterized by high relief and widely varying rock types that largely determine the spatial distribution as well as emplacement modes of mass movements. The major aim of our study is to characterize this variability by conducting a landslide susceptibility analysis in three selected target zones: Greater Kabul Area, Badakhshan Province and Takhar Province. We expand on an existing landslide database by mapping landforms diagnostic for landslides (e.g. head scarps, normal faults and tension cracks), and historical landslide scars and landslide deposits by visual interpretation of high-resolution satellite imagery. We conduct magnitude frequency analysis within subregional physiogeographic classes based on geological maps, climatological and topographic data to identify regional parameters influencing landslide magnitude and frequency. In addition, we prepare a landslide susceptibility map for each area using the Weight-of-Evidence model. Preliminary results show that the three selected target zones vastly differ in modes of landsliding. Low magnitude but frequent rockfall events are a major hazard in the Greater Kabul Area threatening buildings and infrastructure encroaching steep terrain in the city's outskirts. Mass movements in loess covered areas of Badakshan are characterized by medium to large magnitudes. This spatial variability of characteristic landslide magnitudes and modes of emplacement necessitates different strategies to assess, mitigate, and prepare for landslides in the three different target zones.

  12. Spatiotemporal Phylogenetic Analysis and Molecular Characterisation of Infectious Bursal Disease Viruses Based on the VP2 Hyper-Variable Region.

    PubMed

    Alfonso-Morales, Abdulahi; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J

    2013-01-01

    Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.

  13. Measurement error in epidemiologic studies of air pollution based on land-use regression models.

    PubMed

    Basagaña, Xavier; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Foraster, Maria; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino

    2013-10-15

    Land-use regression (LUR) models are increasingly used to estimate air pollution exposure in epidemiologic studies. These models use air pollution measurements taken at a small set of locations and modeling based on geographical covariates for which data are available at all study participant locations. The process of LUR model development commonly includes a variable selection procedure. When LUR model predictions are used as explanatory variables in a model for a health outcome, measurement error can lead to bias of the regression coefficients and to inflation of their variance. In previous studies dealing with spatial predictions of air pollution, bias was shown to be small while most of the effect of measurement error was on the variance. In this study, we show that in realistic cases where LUR models are applied to health data, bias in health-effect estimates can be substantial. This bias depends on the number of air pollution measurement sites, the number of available predictors for model selection, and the amount of explainable variability in the true exposure. These results should be taken into account when interpreting health effects from studies that used LUR models.

  14. Geoelectrical characterisation of basement aquifers: the case of Iberekodo, southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Aizebeokhai, Ahzegbobor P.; Oyeyemi, Kehinde D.

    2018-03-01

    Basement aquifers, which occur within the weathered and fractured zones of crystalline bedrocks, are important groundwater resources in tropical and subtropical regions. The development of basement aquifers is complex owing to their high spatial variability. Geophysical techniques are used to obtain information about the hydrologic characteristics of the weathered and fractured zones of the crystalline basement rocks, which relates to the occurrence of groundwater in the zones. The spatial distributions of these hydrologic characteristics are then used to map the spatial variability of the basement aquifers. Thus, knowledge of the spatial variability of basement aquifers is useful in siting wells and boreholes for optimal and perennial yield. Geoelectrical resistivity is one of the most widely used geophysical methods for assessing the spatial variability of the weathered and fractured zones in groundwater exploration efforts in basement complex terrains. The presented study focuses on combining vertical electrical sounding with two-dimensional (2D) geoelectrical resistivity imaging to characterise the weathered and fractured zones in a crystalline basement complex terrain in southwestern Nigeria. The basement aquifer was delineated, and the nature, extent and spatial variability of the delineated basement aquifer were assessed based on the spatial variability of the weathered and fractured zones. The study shows that a multiple-gradient array for 2D resistivity imaging is sensitive to vertical and near-surface stratigraphic features, which have hydrological implications. The integration of resistivity sounding with 2D geoelectrical resistivity imaging is efficient and enhances near-surface characterisation in basement complex terrain.

  15. Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis (Myrtaceae) using microsatellites

    PubMed Central

    Song, Zhijiao; Zhang, Miaomiao; Li, Fagen; Weng, Qijie; Zhou, Chanpin; Li, Mei; Li, Jie; Huang, Huanhua; Mo, Xiaoyong; Gan, Siming

    2016-01-01

    Identification of loci or genes under natural selection is important for both understanding the genetic basis of local adaptation and practical applications, and genome scans provide a powerful means for such identification purposes. In this study, genome-wide simple sequence repeats markers (SSRs) were used to scan for molecular footprints of divergent selection in Eucalyptus grandis, a hardwood species occurring widely in costal areas from 32° S to 16° S in Australia. High population diversity levels and weak population structure were detected with putatively neutral genomic SSRs. Using three FST outlier detection methods, a total of 58 outlying SSRs were collectively identified as loci under divergent selection against three non-correlated climatic variables, namely, mean annual temperature, isothermality and annual precipitation. Using a spatial analysis method, nine significant associations were revealed between FST outlier allele frequencies and climatic variables, involving seven alleles from five SSR loci. Of the five significant SSRs, two (EUCeSSR1044 and Embra394) contained alleles of putative genes with known functional importance for response to climatic factors. Our study presents critical information on the population diversity and structure of the important woody species E. grandis and provides insight into the adaptive responses of perennial trees to climatic variations. PMID:27748400

  16. Maximum-likelihood estimation of channel-dependent trial-to-trial variability of auditory evoked brain responses in MEG

    PubMed Central

    2014-01-01

    Background We propose a mathematical model for multichannel assessment of the trial-to-trial variability of auditory evoked brain responses in magnetoencephalography (MEG). Methods Following the work of de Munck et al., our approach is based on the maximum likelihood estimation and involves an approximation of the spatio-temporal covariance of the contaminating background noise by means of the Kronecker product of its spatial and temporal covariance matrices. Extending the work of de Munck et al., where the trial-to-trial variability of the responses was considered identical to all channels, we evaluate it for each individual channel. Results Simulations with two equivalent current dipoles (ECDs) with different trial-to-trial variability, one seeded in each of the auditory cortices, were used to study the applicability of the proposed methodology on the sensor level and revealed spatial selectivity of the trial-to-trial estimates. In addition, we simulated a scenario with neighboring ECDs, to show limitations of the method. We also present an illustrative example of the application of this methodology to real MEG data taken from an auditory experimental paradigm, where we found hemispheric lateralization of the habituation effect to multiple stimulus presentation. Conclusions The proposed algorithm is capable of reconstructing lateralization effects of the trial-to-trial variability of evoked responses, i.e. when an ECD of only one hemisphere habituates, whereas the activity of the other hemisphere is not subject to habituation. Hence, it may be a useful tool in paradigms that assume lateralization effects, like, e.g., those involving language processing. PMID:24939398

  17. Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention.

    PubMed

    Chechlacz, Magdalena; Gillebert, Celine R; Vangkilde, Signe A; Petersen, Anders; Humphreys, Glyn W

    2015-07-29

    Visuospatial attention allows us to select and act upon a subset of behaviorally relevant visual stimuli while ignoring distraction. Bundesen's theory of visual attention (TVA) (Bundesen, 1990) offers a quantitative analysis of the different facets of attention within a unitary model and provides a powerful analytic framework for understanding individual differences in attentional functions. Visuospatial attention is contingent upon large networks, distributed across both hemispheres, consisting of several cortical areas interconnected by long-association frontoparietal pathways, including three branches of the superior longitudinal fasciculus (SLF I-III) and the inferior fronto-occipital fasciculus (IFOF). Here we examine whether structural variability within human frontoparietal networks mediates differences in attention abilities as assessed by the TVA. Structural measures were based on spherical deconvolution and tractography-derived indices of tract volume and hindrance-modulated orientational anisotropy (HMOA). Individual differences in visual short-term memory (VSTM) were linked to variability in the microstructure (HMOA) of SLF II, SLF III, and IFOF within the right hemisphere. Moreover, VSTM and speed of information processing were linked to hemispheric lateralization within the IFOF. Differences in spatial bias were mediated by both variability in microstructure and volume of the right SLF II. Our data indicate that the microstructural and macrostrucutral organization of white matter pathways differentially contributes to both the anatomical lateralization of frontoparietal attentional networks and to individual differences in attentional functions. We conclude that individual differences in VSTM capacity, processing speed, and spatial bias, as assessed by TVA, link to variability in structural organization within frontoparietal pathways. Copyright © 2015 Chechlacz et al.

  18. Using an autologistic regression model to identify spatial risk factors and spatial risk patterns of hand, foot and mouth disease (HFMD) in Mainland China

    PubMed Central

    2014-01-01

    Background There have been large-scale outbreaks of hand, foot and mouth disease (HFMD) in Mainland China over the last decade. These events varied greatly across the country. It is necessary to identify the spatial risk factors and spatial distribution patterns of HFMD for public health control and prevention. Climate risk factors associated with HFMD occurrence have been recognized. However, few studies discussed the socio-economic determinants of HFMD risk at a space scale. Methods HFMD records in Mainland China in May 2008 were collected. Both climate and socio-economic factors were selected as potential risk exposures of HFMD. Odds ratio (OR) was used to identify the spatial risk factors. A spatial autologistic regression model was employed to get OR values of each exposures and model the spatial distribution patterns of HFMD risk. Results Results showed that both climate and socio-economic variables were spatial risk factors for HFMD transmission in Mainland China. The statistically significant risk factors are monthly average precipitation (OR = 1.4354), monthly average temperature (OR = 1.379), monthly average wind speed (OR = 1.186), the number of industrial enterprises above designated size (OR = 17.699), the population density (OR = 1.953), and the proportion of student population (OR = 1.286). The spatial autologistic regression model has a good goodness of fit (ROC = 0.817) and prediction accuracy (Correct ratio = 78.45%) of HFMD occurrence. The autologistic regression model also reduces the contribution of the residual term in the ordinary logistic regression model significantly, from 17.25 to 1.25 for the odds ratio. Based on the prediction results of the spatial model, we obtained a map of the probability of HFMD occurrence that shows the spatial distribution pattern and local epidemic risk over Mainland China. Conclusions The autologistic regression model was used to identify spatial risk factors and model spatial risk patterns of HFMD. HFMD occurrences were found to be spatially heterogeneous over the Mainland China, which is related to both the climate and socio-economic variables. The combination of socio-economic and climate exposures can explain the HFMD occurrences more comprehensively and objectively than those with only climate exposures. The modeled probability of HFMD occurrence at the county level reveals not only the spatial trends, but also the local details of epidemic risk, even in the regions where there were no HFMD case records. PMID:24731248

  19. The spatial pattern of suicide in the US in relation to deprivation, fragmentation and rurality.

    PubMed

    Congdon, Peter

    2011-01-01

    Analysis of geographical patterns of suicide and psychiatric morbidity has demonstrated the impact of latent ecological variables (such as deprivation, rurality). Such latent variables may be derived by conventional multivariate techniques from sets of observed indices (for example, by principal components), by composite variable methods or by methods which explicitly consider the spatial framework of areas and, in particular, the spatial clustering of latent risks and outcomes. This article considers a latent random variable approach to explaining geographical contrasts in suicide in the US; and it develops a spatial structural equation model incorporating deprivation, social fragmentation and rurality. The approach allows for such latent spatial constructs to be correlated both within and between areas. Potential effects of area ethnic mix are also included. The model is applied to male and female suicide deaths over 2002–06 in 3142 US counties.

  20. Land use regression models for the oxidative potential of fine particles (PM2.5) in five European areas.

    PubMed

    Gulliver, John; Morley, David; Dunster, Chrissi; McCrea, Adrienne; van Nunen, Erik; Tsai, Ming-Yi; Probst-Hensch, Nicoltae; Eeftens, Marloes; Imboden, Medea; Ducret-Stich, Regina; Naccarati, Alessio; Galassi, Claudia; Ranzi, Andrea; Nieuwenhuijsen, Mark; Curto, Ariadna; Donaire-Gonzalez, David; Cirach, Marta; Vermeulen, Roel; Vineis, Paolo; Hoek, Gerard; Kelly, Frank J

    2018-01-01

    Oxidative potential (OP) of particulate matter (PM) is proposed as a biologically-relevant exposure metric for studies of air pollution and health. We aimed to evaluate the spatial variability of the OP of measured PM 2.5 using ascorbate (AA) and (reduced) glutathione (GSH), and develop land use regression (LUR) models to explain this spatial variability. We estimated annual average values (m -3 ) of OP AA and OP GSH for five areas (Basel, CH; Catalonia, ES; London-Oxford, UK (no OP GSH ); the Netherlands; and Turin, IT) using PM 2.5 filters. OP AA and OP GSH LUR models were developed using all monitoring sites, separately for each area and combined-areas. The same variables were then used in repeated sub-sampling of monitoring sites to test sensitivity of variable selection; new variables were offered where variables were excluded (p > .1). On average, measurements of OP AA and OP GSH were moderately correlated (maximum Pearson's maximum Pearson's R = = .7) with PM 2.5 and other metrics (PM 2.5 absorbance, NO 2 , Cu, Fe). HOV (hold-out validation) R 2 for OP AA models was .21, .58, .45, .53, and .13 for Basel, Catalonia, London-Oxford, the Netherlands and Turin respectively. For OP GSH , the only model achieving at least moderate performance was for the Netherlands (R 2 = .31). Combined models for OP AA and OP GSH were largely explained by study area with weak local predictors of intra-area contrasts; we therefore do not endorse them for use in epidemiologic studies. Given the moderate correlation of OP AA with other pollutants, the three reasonably performing LUR models for OP AA could be used independently of other pollutant metrics in epidemiological studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Relevance of multiple spatial scales in habitat models: A case study with amphibians and grasshoppers

    NASA Astrophysics Data System (ADS)

    Altmoos, Michael; Henle, Klaus

    2010-11-01

    Habitat models for animal species are important tools in conservation planning. We assessed the need to consider several scales in a case study for three amphibian and two grasshopper species in the post-mining landscapes near Leipzig (Germany). The two species groups were selected because habitat analyses for grasshoppers are usually conducted on one scale only whereas amphibians are thought to depend on more than one spatial scale. First, we analysed how the preference to single habitat variables changed across nested scales. Most environmental variables were only significant for a habitat model on one or two scales, with the smallest scale being particularly important. On larger scales, other variables became significant, which cannot be recognized on lower scales. Similar preferences across scales occurred in only 13 out of 79 cases and in 3 out of 79 cases the preference and avoidance for the same variable were even reversed among scales. Second, we developed habitat models by using a logistic regression on every scale and for all combinations of scales and analysed how the quality of habitat models changed with the scales considered. To achieve a sufficient accuracy of the habitat models with a minimum number of variables, at least two scales were required for all species except for Bufo viridis, for which a single scale, the microscale, was sufficient. Only for the European tree frog ( Hyla arborea), at least three scales were required. The results indicate that the quality of habitat models increases with the number of surveyed variables and with the number of scales, but costs increase too. Searching for simplifications in multi-scaled habitat models, we suggest that 2 or 3 scales should be a suitable trade-off, when attempting to define a suitable microscale.

  2. Including the spatial variability of metal speciation in the effect factor in life cycle impact assessment: Limits of the equilibrium partitioning method.

    PubMed

    Tromson, Clara; Bulle, Cécile; Deschênes, Louise

    2017-03-01

    In life cycle assessment (LCA), the potential terrestrial ecotoxicity effect of metals, calculated as the effect factor (EF), is usually extrapolated from aquatic ecotoxicological data using the equilibrium partitioning method (EqP) as it is more readily available than terrestrial data. However, when following the AMI recommendations (i.e. with at least enough species that represents three different phyla), there are not enough terrestrial data for which soil properties or metal speciation during ecotoxicological testing are specified to account for the influence of soil property variations on metal speciation when using this approach. Alternatively, the TBLM (Terrestrial Biotic Ligand Model) has been used to determine an EF that accounts for speciation, but is not available for metals; hence it cannot be consistently applied to metals in an LCA context. This paper proposes an approach to include metal speciation by regionalizing the EqP method for Cu, Ni and Zn with a geochemical speciation model (the Windermere Humic Aqueous Model 7.0), for 5213 soils selected from the Harmonized World Soil Database. Results obtained by this approach (EF EqP regionalized ) are compared to the EFs calculated with the conventional EqP method, to the EFs based on available terrestrial data and to the EFs calculated with the TBLM (EF TBLM regionalized ) when available. The spatial variability contribution of the EF to the overall spatial variability of the characterization factor (CF) has been analyzed. It was found that the EFs EqP regionalized show a significant spatial variability. The EFs calculated with the two non-regionalized methods (EqP and terrestrial data) fall within the range of the EFs EqP regionalized . The EFs TBLM regionalized cover a larger range of values than the EFs EqP regionalized but the two methods are not correlated. This paper highlights the importance of including speciation into the terrestrial EF and shows that using the regionalized EqP approach is not an acceptable proxy for terrestrial ecotoxicological data even if it can be applied to all metals. Copyright © 2016. Published by Elsevier B.V.

  3. Development of land-use regression models for exposure assessment to ultrafine particles in Rome, Italy

    NASA Astrophysics Data System (ADS)

    Cattani, Giorgio; Gaeta, Alessandra; di Menno di Bucchianico, Alessandro; de Santis, Antonella; Gaddi, Raffaela; Cusano, Mariacarmela; Ancona, Carla; Badaloni, Chiara; Forastiere, Francesco; Gariazzo, Claudio; Sozzi, Roberto; Inglessis, Marco; Silibello, Camillo; Salvatori, Elisabetta; Manes, Fausto; Cesaroni, Giulia; The Viias Study Group

    2017-05-01

    The health effects of long-term exposure to ultrafine particles (UFPs) are poorly understood. Data on spatial contrasts in ambient ultrafine particles (UFPs) concentrations are needed with fine resolution. This study aimed to assess the spatial variability of total particle number concentrations (PNC, a proxy for UFPs) in the city of Rome, Italy, using land use regression (LUR) models, and the correspondent exposure of population here living. PNC were measured using condensation particle counters at the building facade of 28 homes throughout the city. Three 7-day monitoring periods were carried out during cold, warm and intermediate seasons. Geographic Information System predictor variables, with buffers of varying size, were evaluated to model spatial variations of PNC. A stepwise forward selection procedure was used to develop a "base" linear regression model according to the European Study of Cohorts for Air Pollution Effects project methodology. Other variables were then included in more enhanced models and their capability of improving model performance was evaluated. Four LUR models were developed. Local variation in UFPs in the study area can be largely explained by the ratio of traffic intensity and distance to the nearest major road. The best model (adjusted R2 = 0.71; root mean square error = ±1,572 particles/cm³, leave one out cross validated R2 = 0.68) was achieved by regressing building and street configuration variables against residual from the "base" model, which added 3% more to the total variance explained. Urban green and population density in a 5,000 m buffer around each home were also relevant predictors. The spatial contrast in ambient PNC across the large conurbation of Rome, was successfully assessed. The average exposure of subjects living in the study area was 16,006 particles/cm³ (SD 2165 particles/cm³, range: 11,075-28,632 particles/cm³). A total of 203,886 subjects (16%) lives in Rome within 50 m from a high traffic road and they experience the highest exposure levels (18,229 particles/cm³). The results will be used to estimate the long-term health effects of ultrafine particle exposure of participants in Rome.

  4. How spatial and temporal rainfall variability affect runoff across basin scales: insights from field observations in the (semi-)urbanised Charlotte watershed

    NASA Astrophysics Data System (ADS)

    Ten Veldhuis, M. C.; Smith, J. A.; Zhou, Z.

    2017-12-01

    Impacts of rainfall variability on runoff response are highly scale-dependent. Sensitivity analyses based on hydrological model simulations have shown that impacts are likely to depend on combinations of storm type, basin versus storm scale, temporal versus spatial rainfall variability. So far, few of these conclusions have been confirmed on observational grounds, since high quality datasets of spatially variable rainfall and runoff over prolonged periods are rare. Here we investigate relationships between rainfall variability and runoff response based on 30 years of radar-rainfall datasets and flow measurements for 16 hydrological basins ranging from 7 to 111 km2. Basins vary not only in scale, but also in their degree of urbanisation. We investigated temporal and spatial variability characteristics of rainfall fields across a range of spatial and temporal scales to identify main drivers for variability in runoff response. We identified 3 ranges of basin size with different temporal versus spatial rainfall variability characteristics. Total rainfall volume proved to be the dominant agent determining runoff response at all basin scales, independent of their degree of urbanisation. Peak rainfall intensity and storm core volume are of secondary importance. This applies to all runoff parameters, including runoff volume, runoff peak, volume-to-peak and lag time. Position and movement of the storm with respect to the basin have a negligible influence on runoff response, with the exception of lag times in some of the larger basins. This highlights the importance of accuracy in rainfall estimation: getting the position right but the volume wrong will inevitably lead to large errors in runoff prediction. Our study helps to identify conditions where rainfall variability matters for correct estimation of the rainfall volume as well as the associated runoff response.

  5. Practical way to avoid spurious geometrical contributions in Brillouin light scattering experiments at variable scattering angles.

    PubMed

    Battistoni, Andrea; Bencivenga, Filippo; Fioretto, Daniele; Masciovecchio, Claudio

    2014-10-15

    In this Letter, we present a simple method to avoid the well-known spurious contributions in the Brillouin light scattering (BLS) spectrum arising from the finite aperture of collection optics. The method relies on the use of special spatial filters able to select the scattered light with arbitrary precision around a given value of the momentum transfer (Q). We demonstrate the effectiveness of such filters by analyzing the BLS spectra of a reference sample as a function of scattering angle. This practical and inexpensive method could be an extremely useful tool to fully exploit the potentiality of Brillouin acoustic spectroscopy, as it will easily allow for effective Q-variable experiments with unparalleled luminosity and resolution.

  6. Variability of the raindrop size distribution at small spatial scales

    NASA Astrophysics Data System (ADS)

    Berne, A.; Jaffrain, J.

    2010-12-01

    Because of the interactions between atmospheric turbulence and cloud microphysics, the raindrop size distribution (DSD) is strongly variable in space and time. The spatial variability of the DSD at small spatial scales (below a few km) is not well documented and not well understood, mainly because of a lack of adequate measurements at the appropriate resolutions. A network of 16 disdrometers (Parsivels) has been designed and set up over EPFL campus in Lausanne, Switzerland. This network covers a typical operational weather radar pixel of 1x1 km2. The question of the significance of the variability of the DSD at such small scales is relevant for radar remote sensing of rainfall because the DSD is often assumed to be uniform within a radar sample volume and because the Z-R relationships used to convert the measured radar reflectivity Z into rain rate R are usually derived from point measurements. Thanks to the number of disdrometers, it was possible to quantify the spatial variability of the DSD at the radar pixel scale and to show that it can be significant. In this contribution, we show that the variability of the total drop concentration, of the median volume diameter and of the rain rate are significant, taking into account the sampling uncertainty associated with disdrometer measurements. The influence of this variability on the Z-R relationship can be non-negligible. Finally, the spatial structure of the DSD is quantified using a geostatistical tool, the variogram, and indicates high spatial correlation within a radar pixel.

  7. Multiscale spatial and temporal estimation of the b-value

    NASA Astrophysics Data System (ADS)

    García-Hernández, R.; D'Auria, L.; Barrancos, J.; Padilla, G.

    2017-12-01

    The estimation of the spatial and temporal variations of the Gutenberg-Richter b-value is of great importance in different seismological applications. One of the problems affecting its estimation is the heterogeneous distribution of the seismicity which makes its estimate strongly dependent upon the selected spatial and/or temporal scale. This is especially important in volcanoes where dense clusters of earthquakes often overlap the background seismicity. Proposed solutions for estimating temporal variations of the b-value include considering equally spaced time intervals or variable intervals having an equal number of earthquakes. Similar approaches have been proposed to image the spatial variations of this parameter as well.We propose a novel multiscale approach, based on the method of Ogata and Katsura (1993), allowing a consistent estimation of the b-value regardless of the considered spatial and/or temporal scales. Our method, named MUST-B (MUltiscale Spatial and Temporal characterization of the B-value), basically consists in computing estimates of the b-value at multiple temporal and spatial scales, extracting for a give spatio-temporal point a statistical estimator of the value, as well as and indication of the characteristic spatio-temporal scale. This approach includes also a consistent estimation of the completeness magnitude (Mc) and of the uncertainties over both b and Mc.We applied this method to example datasets for volcanic (Tenerife, El Hierro) and tectonic areas (Central Italy) as well as an example application at global scale.

  8. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention.

    PubMed

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L

    2013-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions support the hypothesis that cholinergic augmentation results in enhanced neural efficiency. This article is part of a Special Issue entitled 'Cognitive Enhancers'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention

    PubMed Central

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L.

    2012-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. Previous findings by our group strongly suggested that the changes in neural activity observed during increased cholinergic function may reflect an increase in neural efficiency that leads to improved task performance. The current study was designed to assess the effects of cholinergic enhancement on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover functional magnetic resonance imaging (fMRI) study. Following an infusion of physostigmine (1mg/hr) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions was reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Cholinergic enhancement also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus processing regions provide further support to the hypothesis that cholinergic augmentation results in enhanced neural efficiency. PMID:22906685

  10. Submesoscale Sea Surface Temperature Variability from UAV and Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Castro, S. L.; Emery, W. J.; Tandy, W., Jr.; Good, W. S.

    2017-12-01

    Technological advances in spatial resolution of observations have revealed the importance of short-lived ocean processes with scales of O(1km). These submesoscale processes play an important role for the transfer of energy from the meso- to small scales and for generating significant spatial and temporal intermittency in the upper ocean, critical for the mixing of the oceanic boundary layer. Submesoscales have been observed in sea surface temperatures (SST) from satellites. Satellite SST measurements are spatial averages over the footprint of the satellite. When the variance of the SST distribution within the footprint is small, the average value is representative of the SST over the whole pixel. If the variance is large, the spatial heterogeneity is a source of uncertainty in satellite derived SSTs. Here we show evidence that the submesoscale variability in SSTs at spatial scales of 1km is responsible for the spatial variability within satellite footprints. Previous studies of the spatial variability in SST, using ship-based radiometric data suggested that variability at scales smaller than 1 km is significant and affects the uncertainty of satellite-derived skin SSTs. We examine data collected by a calibrated thermal infrared radiometer, the Ball Experimental Sea Surface Temperature (BESST), flown on a UAV over the Arctic Ocean and compare them with coincident measurements from the MODIS spaceborne radiometer to assess the spatial variability of SST within 1 km pixels. By taking the standard deviation of all the BESST measurements within individual MODIS pixels we show that significant spatial variability exists within the footprints. The distribution of the surface variability measured by BESST shows a peak value of O(0.1K) with 95% of the pixels showing σ < 0.45K. More importantly, high-variability pixels are located at density fronts in the marginal ice zone, which are a primary source of submesoscale intermittency near the surface in the Arctic Ocean. Wavenumber spectra of the BESST SSTs indicate a spectral slope of -2, consistent with the presence of submesoscale processes. Furthermore, not only is the BESST wavenumber spectra able to match the MODIS SST spectra well, but also extends the spectral slope of -2 by 2 decades relative to MODIS, from wavelengths of 8km to 0.08km.

  11. Estimating Soil Moisture Using Polsar Data: a Machine Learning Approach

    NASA Astrophysics Data System (ADS)

    Khedri, E.; Hasanlou, M.; Tabatabaeenejad, A.

    2017-09-01

    Soil moisture is an important parameter that affects several environmental processes. This parameter has many important functions in numerous sciences including agriculture, hydrology, aerology, flood prediction, and drought occurrence. However, field procedures for moisture calculations are not feasible in a vast agricultural region territory. This is due to the difficulty in calculating soil moisture in vast territories and high-cost nature as well as spatial and local variability of soil moisture. Polarimetric synthetic aperture radar (PolSAR) imaging is a powerful tool for estimating soil moisture. These images provide a wide field of view and high spatial resolution. For estimating soil moisture, in this study, a model of support vector regression (SVR) is proposed based on obtained data from AIRSAR in 2003 in C, L, and P channels. In this endeavor, sequential forward selection (SFS) and sequential backward selection (SBS) are evaluated to select suitable features of polarized image dataset for high efficient modeling. We compare the obtained data with in-situ data. Output results show that the SBS-SVR method results in higher modeling accuracy compared to SFS-SVR model. Statistical parameters obtained from this method show an R2 of 97% and an RMSE of lower than 0.00041 (m3/m3) for P, L, and C channels, which has provided better accuracy compared to other feature selection algorithms.

  12. Solving the Puzzle of Metastasis: The Evolution of Cell Migration in Neoplasms

    PubMed Central

    Chen, Jun; Sprouffske, Kathleen; Huang, Qihong; Maley, Carlo C.

    2011-01-01

    Background Metastasis represents one of the most clinically important transitions in neoplastic progression. The evolution of metastasis is a puzzle because a metastatic clone is at a disadvantage in competition for space and resources with non-metastatic clones in the primary tumor. Metastatic clones waste some of their reproductive potential on emigrating cells with little chance of establishing metastases. We suggest that resource heterogeneity within primary tumors selects for cell migration, and that cell emigration is a by-product of that selection. Methods and Findings We developed an agent-based model to simulate the evolution of neoplastic cell migration. We simulated the essential dynamics of neoangiogenesis and blood vessel occlusion that lead to resource heterogeneity in neoplasms. We observed the probability and speed of cell migration that evolves with changes in parameters that control the degree of spatial and temporal resource heterogeneity. Across a broad range of realistic parameter values, increasing degrees of spatial and temporal heterogeneity select for the evolution of increased cell migration and emigration. Conclusions We showed that variability in resources within a neoplasm (e.g. oxygen and nutrients provided by angiogenesis) is sufficient to select for cells with high motility. These cells are also more likely to emigrate from the tumor, which is the first step in metastasis and the key to the puzzle of metastasis. Thus, we have identified a novel potential solution to the puzzle of metastasis. PMID:21556134

  13. A new approach in space-time analysis of multivariate hydrological data: Application to Brazil's Nordeste region rainfall

    NASA Astrophysics Data System (ADS)

    Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric

    2002-12-01

    The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.

  14. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay

    USGS Publications Warehouse

    Cloern, James E.; Jassby, Alan D.; Schraga, Tara; Kress, Erica S.; Martin, Charles A.

    2017-01-01

    The salinity gradient of estuaries plays a unique and fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes. We use variability along the salinity gradient of San Francisco Bay to illustrate some lessons about the diversity of spatial structures in estuaries and their variability over time. Spatial patterns of dissolved constituents (e.g., silicate) can be linear or nonlinear, depending on the relative importance of river-ocean mixing and internal sinks (diatom uptake). Particles have different spatial patterns because they accumulate in estuarine turbidity maxima formed by the combination of sinking and estuarine circulation. Some constituents have weak or no mean spatial structure along the salinity gradient, reflecting spatially distributed sources along the estuary (nitrate) or atmospheric exchanges that buffer spatial variability of ecosystem metabolism (dissolved oxygen). The density difference between freshwater and seawater establishes stratification in estuaries stronger than the thermal stratification of lakes and oceans. Stratification is strongest around the center of the salinity gradient and when river discharge is high. Spatial distributions of motile organisms are shaped by species-specific adaptations to different salinity ranges (shrimp) and by behavioral responses to environmental variability (northern anchovy). Estuarine spatial patterns change over time scales of events (intrusions of upwelled ocean water), seasons (river inflow), years (annual weather anomalies), and between eras separated by ecosystem disturbances (a species introduction). Each of these lessons is a piece in the puzzle of how estuarine ecosystems are structured and how they differ from the river and ocean ecosystems they bridge.

  15. Standardized principal components for vegetation variability monitoring across space and time

    NASA Astrophysics Data System (ADS)

    Mathew, T. R.; Vohora, V. K.

    2016-08-01

    Vegetation at any given location changes through time and in space. In what quantity it changes, where and when can help us in identifying sources of ecosystem stress, which is very useful for understanding changes in biodiversity and its effect on climate change. Such changes known for a region are important in prioritizing management. The present study considers the dynamics of savanna vegetation in Kruger National Park (KNP) through the use of temporal satellite remote sensing images. Spatial variability of vegetation is a key characteristic of savanna landscapes and its importance to biodiversity has been demonstrated by field-based studies. The data used for the study were sourced from the U.S. Agency for International Development where AVHRR derived Normalized Difference Vegetation Index (NDVI) images available at spatial resolutions of 8 km and at dekadal scales. The study area was extracted from these images for the time-period 1984-2002. Maximum value composites were derived for individual months resulting in an image dataset of 216 NDVI images. Vegetation dynamics across spatio-temporal domains were analyzed using standardized principal components analysis (SPCA) on the NDVI time-series. Each individual image variability in the time-series is considered. The outcome of this study demonstrated promising results - the variability of vegetation change in the area across space and time, and also indicated changes in landscape on 6 individual principal components (PCs) showing differences not only in magnitude, but also in pattern, of different selected eco-zones with constantly changing and evolving ecosystem.

  16. Spatial heterogeneity of within-stream methane concentrations

    NASA Astrophysics Data System (ADS)

    Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.

    2017-05-01

    Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4 and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.

  17. Transport Infrastructure Shapes Foraging Habitat in a Raptor Community

    PubMed Central

    Planillo, Aimara; Kramer-Schadt, Stephanie; Malo, Juan E.

    2015-01-01

    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors’ foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors’ response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways. PMID:25786218

  18. Transport infrastructure shapes foraging habitat in a raptor community.

    PubMed

    Planillo, Aimara; Kramer-Schadt, Stephanie; Malo, Juan E

    2015-01-01

    Transport infrastructure elements are widespread and increasing in size and length in many countries, with the subsequent alteration of landscapes and wildlife communities. Nonetheless, their effects on habitat selection by raptors are still poorly understood. In this paper, we analyzed raptors' foraging habitat selection in response to conventional roads and high capacity motorways at the landscape scale, and compared their effects with those of other variables, such as habitat structure, food availability, and presence of potential interspecific competitors. We also analyzed whether the raptors' response towards infrastructure depends on the spatial scale of observation, comparing the attraction or avoidance behavior of the species at the landscape scale with the response of individuals observed in the proximity of the infrastructure. Based on ecological hypotheses for foraging habitat selection, we built generalized linear mixed models, selected the best models according to Akaike Information Criterion and assessed variable importance by Akaike weights. At the community level, the traffic volume was the most relevant variable in the landscape for foraging habitat selection. Abundance, richness, and diversity values reached their maximum at medium traffic volumes and decreased at highest traffic volumes. Individual species showed different degrees of tolerance toward traffic, from higher abundance in areas with high traffic values to avoidance of it. Medium-sized opportunistic raptors increased their abundance near the traffic infrastructures, large scavenger raptors avoided areas with higher traffic values, and other species showed no direct response to traffic but to the presence of prey. Finally, our cross-scale analysis revealed that the effect of transport infrastructures on the behavior of some species might be detectable only at a broad scale. Also, food availability may attract raptor species to risky areas such as motorways.

  19. Modeling habitat for Marbled Murrelets on the Siuslaw National Forest, Oregon, using lidar data

    USGS Publications Warehouse

    Hagar, Joan C.; Aragon, Ramiro; Haggerty, Patricia; Hollenbeck, Jeff P.

    2018-03-28

    Habitat models using lidar-derived variables that quantify fine-scale variation in vegetation structure can improve the accuracy of occupancy estimates for canopy-dwelling species over models that use variables derived from other remote sensing techniques. However, the ability of models developed at such a fine spatial scale to maintain accuracy at regional or larger spatial scales has not been tested. We tested the transferability of a lidar-based habitat model for the threatened Marbled Murrelet (Brachyramphus marmoratus) between two management districts within a larger regional conservation zone in coastal western Oregon. We compared the performance of the transferred model against models developed with data from the application location. The transferred model had good discrimination (AUC = 0.73) at the application location, and model performance was further improved by fitting the original model with coefficients from the application location dataset (AUC = 0.79). However, the model selection procedure indicated that neither of these transferred models were considered competitive with a model trained on local data. The new model trained on data from the application location resulted in the selection of a slightly different set of lidar metrics from the original model, but both transferred and locally trained models consistently indicated positive relationships between the probability of occupancy and lidar measures of canopy structural complexity. We conclude that while the locally trained model had superior performance for local application, the transferred model could reasonably be applied to the entire conservation zone.

  20. Toward the modeling of land use change: A spatial analysis using remote sensing and historical data

    NASA Technical Reports Server (NTRS)

    Honea, R. B.

    1976-01-01

    It was hypothesized that the chronological observation of land use change could be shown to follow a predictable pattern and these patterns could be correlated with other statistical data to develop transition probabilities suitable for modeling purposes. A literature review and preliminary research, however, indicated a totally stochastic approach was not practical for simulating land use change and thus a more deterministic approach was adopted. The approach used assumes the determinants of the land use conversion process are found in the market place, where land transactions among buyers and sellers occur. Only one side of the market transaction process is studied, however, namely, the purchaser's desires in securing an ideal or suitable site. The problem was to identify the ideal qualities, quantities or attributes desired in an industrial site (or housing development), and to formulate a general algorithmic statement capable of identifying potential development sites. Research procedures involved developing a list of variables previously noted in the literature to be related to site selection and streamlining the list to a set suitable for statistical testing. A sample of 157 industries which have located (or relocated) in the 16-county Knoxville metropolitan region since 1950 was selected for industrial location analysis. Using NASA color infrared photography and Tennessee Valley Authority historical aerial photography, data were collected on the spatial characteristics of each industrial location event. These data were then subjected to factor analysis to determine the interrelations of variables.

  1. Spatial Interpolation of Rain-field Dynamic Time-Space Evolution in Hong Kong

    NASA Astrophysics Data System (ADS)

    Liu, P.; Tung, Y. K.

    2017-12-01

    Accurate and reliable measurement and prediction of spatial and temporal distribution of rain-field over a wide range of scales are important topics in hydrologic investigations. In this study, geostatistical treatment of precipitation field is adopted. To estimate the rainfall intensity over a study domain with the sample values and the spatial structure from the radar data, the cumulative distribution functions (CDFs) at all unsampled locations were estimated. Indicator Kriging (IK) was used to estimate the exceedance probabilities for different pre-selected cutoff levels and a procedure was implemented for interpolating CDF values between the thresholds that were derived from the IK. Different interpolation schemes of the CDF were proposed and their influences on the performance were also investigated. The performance measures and visual comparison between the observed rain-field and the IK-based estimation suggested that the proposed method can provide fine results of estimation of indicator variables and is capable of producing realistic image.

  2. Detection of the relationship between peak temperature and extreme precipitation

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  3. Examining Impulse-Variability in Kicking.

    PubMed

    Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F

    2016-07-01

    This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.

  4. The use of crop rotation for mapping soil organic content in farmland

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Song, Min; Zhu, A.-Xing; Qin, Chengzhi

    2017-04-01

    Most of the current digital soil mapping uses natural environmental covariates. However, human activities have significantly impacted the development of soil properties since half a century, and therefore become an important factor affecting soil spatial variability. Many researches have done field experiments to show how soil properties are impacted and changed by human activities, however, spatial variation data of human activities as environmental covariates have been rarely used in digital soil mapping. In this paper, we took crop rotation as an example of agricultural activities, and explored its effectiveness in characterizing and mapping the spatial variability of soil. The cultivated area of Xuanzhou city and Langxi County in Anhui Province was chosen as the study area. Three main crop rotations,including double-rice, wheat-rice,and oilseed rape-cotton were observed through field investigation in 2010. The spatial distribution of the three crop rotations in the study area was obtained by multi-phase remote sensing image interpretation using a supervised classification method. One-way analysis of variance (ANOVA) for topsoil organic content in the three crop rotation groups was performed. Factor importance of seven natural environmental covariates, crop rotation, Land use and NDVI were generated by variable importance criterion of Random Forest. Different combinations of environmental covariates were selected according to the importance rankings of environmental covariates for predicting SOC using Random Forest and Soil Landscape Inference Model (SOLIM). A cross validation was generated to evaluated the mapping accuracies. The results showed that there were siginificant differences of topsoil organic content among the three crop rotation groups. The crop rotation is more important than parent material, land use or NDVI according to the importance ranking calculated by Random Forest. In addition, crop rotation improved the mapping accuracy, especially for the flat clutivated area. This study demonstrates the usefulness of human activities in digital soil mapping and thus indicates the necessity for human activity factors in digital soil mapping studies.

  5. Modeling Soil Organic Carbon Variation Along Climatic and Topographic Trajectories in the Central Andes

    NASA Astrophysics Data System (ADS)

    Gavilan, C.; Grunwald, S.; Quiroz, R.; Zhu, L.

    2015-12-01

    The Andes represent the largest and highest mountain range in the tropics. Geological and climatic differentiation favored landscape and soil diversity, resulting in ecosystems adapted to very different climatic patterns. Although several studies support the fact that the Andes are a vast sink of soil organic carbon (SOC) only few have quantified this variable in situ. Estimating the spatial distribution of SOC stocks in data-poor and/or poorly accessible areas, like the Andean region, is challenging due to the lack of recent soil data at high spatial resolution and the wide range of coexistent ecosystems. Thus, the sampling strategy is vital in order to ensure the whole range of environmental covariates (EC) controlling SOC dynamics is represented. This approach allows grasping the variability of the area, which leads to more efficient statistical estimates and improves the modeling process. The objectives of this study were to i) characterize and model the spatial distribution of SOC stocks in the Central Andean region using soil-landscape modeling techniques, and to ii) validate and evaluate the model for predicting SOC content in the area. For that purpose, three representative study areas were identified and a suite of variables including elevation, mean annual temperature, annual precipitation and Normalized Difference Vegetation Index (NDVI), among others, was selected as EC. A stratified random sampling (namely conditioned Latin Hypercube) was implemented and a total of 400 sampling locations were identified. At all sites, four composite topsoil samples (0-30 cm) were collected within a 2 m radius. SOC content was measured using dry combustion and SOC stocks were estimated using bulk density measurements. Regression Kriging was used to map the spatial variation of SOC stocks. The accuracy, fit and bias of SOC models was assessed using a rigorous validation assessment. This study produced the first comprehensive, geospatial SOC stock assessment in this undersampled region that serves as a baseline reference to assess potential impacts of climate and land use change.

  6. Investigation of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential

    NASA Astrophysics Data System (ADS)

    Yu, Chien-fan; Whaley, K. Birgitta; Hogg, C. S.; Sibener, S. J.

    1985-10-01

    A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of ˜32 meV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.

  7. Investigation of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(3) physisorption potential

    NASA Astrophysics Data System (ADS)

    Yu, C. F.; Whaley, K. B.; Hogg, C. S.; Sibener, S. J.

    1985-08-01

    A comprehensive study of the spatially isotropic component of the laterally averaged molecular hydrogen/Ag(111) physisorption potential is presented. Diffractive selective adsorption scattering resonances for rotationally state-selected H2 and D2 on Ag(111) have been mapped out as a function of incident polar angle for several crystal azimuths and beam energies. These resonances have been used to determine the bound eigenvalues, and subsequently the shape, of the potential well. Best fit Lennard-Jones, Morse, variable exponent, and exponential-3 potentials having well depths of approximately 32 MeV are derived from the data. These measurements are supported by rotationally inelastic scattering measurements for HD and exact close-coupled quantum scattering calculations. Debye-Waller attenuation measurements are also presented for H2, D2, and HD. The ability to detect these diffractively coupled resonances on a closest-packed metallic surface, i.e., a surface of extremely low corrugation, suggests that such measurements can be carried out on a much wider class of surfaces than previously envisioned.

  8. Magnetization dynamics of weak stripe domains in Fe-N thin films: a multi-technique complementary approach.

    PubMed

    Camara, Ibrahima; Tacchi, Silvia; Garnier, Louis-Charles; Eddrief, Mahmoud; Fortuna, Franck; Carlotti, Giovanni; Marangolo, Massimiliano

    2017-09-26

    The resonant eigenmodes of a nitrogen-implanted iron α'-FeN characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized mag-netic excitations generally found in nanostructures. © 2017 IOP Publishing Ltd.

  9. Magnetization dynamics of weak stripe domains in Fe-N thin films: a multi-technique complementary approach

    NASA Astrophysics Data System (ADS)

    Camara, I. S.; Tacchi, S.; Garnier, L.-C.; Eddrief, M.; Fortuna, F.; Carlotti, G.; Marangolo, M.

    2017-11-01

    The resonant eigenmodes of an α‧-FeN thin film characterized by weak stripe domains are investigated by Brillouin light scattering and broadband ferromagnetic resonance experiments, assisted by micromagnetic simulations. The spectrum of the dynamic eigenmodes in the presence of the weak stripes is very rich and two different families of modes can be selectively detected using different techniques or different experimental configurations. Attention is paid to the evolution of the mode frequencies and spatial profiles under the application of an external magnetic field, of variable intensity, in the direction parallel or transverse to the stripes. The different evolution of the modes with the external magnetic field is accompanied by a distinctive spatial localization in specific regions, such as the closure domains at the surface of the stripes and the bulk domains localized in the inner part of the stripes. The complementarity of BLS and FMR techniques, based on different selection rules, is found to be a fruitful tool for the study of the wealth of localized magnetic excitations generally found in nanostructures.

  10. Improved MODIS aerosol retrieval in urban areas using a land classification approach and empirical orthogonal functions

    NASA Astrophysics Data System (ADS)

    Levitan, Nathaniel; Gross, Barry

    2016-10-01

    New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.

  11. Dynamic optimization of open-loop input signals for ramp-up current profiles in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Ren, Zhigang; Xu, Chao; Lin, Qun; Loxton, Ryan; Teo, Kok Lay

    2016-03-01

    Establishing a good current spatial profile in tokamak fusion reactors is crucial to effective steady-state operation. The evolution of the current spatial profile is related to the evolution of the poloidal magnetic flux, which can be modeled in the normalized cylindrical coordinates using a parabolic partial differential equation (PDE) called the magnetic diffusion equation. In this paper, we consider the dynamic optimization problem of attaining the best possible current spatial profile during the ramp-up phase of the tokamak. We first use the Galerkin method to obtain a finite-dimensional ordinary differential equation (ODE) model based on the original magnetic diffusion PDE. Then, we combine the control parameterization method with a novel time-scaling transformation to obtain an approximate optimal parameter selection problem, which can be solved using gradient-based optimization techniques such as sequential quadratic programming (SQP). This control parameterization approach involves approximating the tokamak input signals by piecewise-linear functions whose slopes and break-points are decision variables to be optimized. We show that the gradient of the objective function with respect to the decision variables can be computed by solving an auxiliary dynamic system governing the state sensitivity matrix. Finally, we conclude the paper with simulation results for an example problem based on experimental data from the DIII-D tokamak in San Diego, California.

  12. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe.

    PubMed

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.

  13. Spatial Distribution of a Large Herbivore Community at Waterholes: An Assessment of Its Stability over Years in Hwange National Park, Zimbabwe

    PubMed Central

    Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé

    2016-01-01

    The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044

  14. Spatial variability of Chinook salmon spawning distribution and habitat preferences

    USGS Publications Warehouse

    Cram, Jeremy M.; Torgersen, Christian E.; Klett, Ryan S.; Pess, George R.; May, Darran; Pearsons, Todd N.; Dittman, Andrew H.

    2017-01-01

    We investigated physical habitat conditions associated with the spawning sites of Chinook Salmon Oncorhynchus tshawytscha and the interannual consistency of spawning distribution across multiple spatial scales using a combination of spatially continuous and discrete sampling methods. We conducted a census of aquatic habitat in 76 km of the upper main-stem Yakima River in Washington and evaluated spawning site distribution using redd survey data from 2004 to 2008. Interannual reoccupation of spawning areas was high, ranging from an average Pearson’s correlation of 0.62 to 0.98 in channel subunits and 10-km reaches, respectively. Annual variance in the interannual correlation of spawning distribution was highest in channel units and subunits, but it was low at reach scales. In 13 of 15 models developed for individual years (2004–2008) and reach lengths (800 m, 3 km, 6 km), stream power and depth were the primary predictors of redd abundance. Multiple channels and overhead cover were patchy but were important secondary and tertiary predictors of reach-scale spawning site selection. Within channel units and subunits, pool tails and thermal variability, which may be associated with hyporheic exchange, were important predictors of spawning. We identified spawning habitat preferences within reaches and channel units that are relevant for salmonid habitat restoration planning. We also identified a threshold (i.e., 2-km reaches) beyond which interannual spawning distribution was markedly consistent, which may be informative for prioritizing habitat restoration or conservation. Management actions may be improved through enhanced understanding of spawning habitat preferences and the consistency with which Chinook Salmon reoccupy spawning areas at different spatial scales.

  15. Spatial patterns of development drive water use

    USGS Publications Warehouse

    Sanchez, G.M.; Smith, J.W.; Terando, Adam J.; Sun, G.; Meentemeyer, R.K.

    2018-01-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non‐spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio‐economic and environmental variables and two water use variables: a) domestic water use, and b) total development‐related water use (a combination of public supply, domestic self‐supply and industrial self‐supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio‐economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water‐efficient land use planning.

  16. Spatial Patterns of Development Drive Water Use

    NASA Astrophysics Data System (ADS)

    Sanchez, G. M.; Smith, J. W.; Terando, A.; Sun, G.; Meentemeyer, R. K.

    2018-03-01

    Water availability is becoming more uncertain as human populations grow, cities expand into rural regions and the climate changes. In this study, we examine the functional relationship between water use and the spatial patterns of developed land across the rapidly growing region of the southeastern United States. We quantified the spatial pattern of developed land within census tract boundaries, including multiple metrics of density and configuration. Through non-spatial and spatial regression approaches we examined relationships and spatial dependencies between the spatial pattern metrics, socio-economic and environmental variables and two water use variables: a) domestic water use, and b) total development-related water use (a combination of public supply, domestic self-supply and industrial self-supply). Metrics describing the spatial patterns of development had the highest measure of relative importance (accounting for 53% of model's explanatory power), explaining significantly more variance in water use compared to socio-economic or environmental variables commonly used to estimate water use. Integrating metrics characterizing the spatial pattern of development into water use models is likely to increase their utility and could facilitate water-efficient land use planning.

  17. Measuring spatial variability in soil characteristics

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  18. Spatiotemporal estimation of historical PM2.5 concentrations using PM10, meteorological variables, and spatial effect

    NASA Astrophysics Data System (ADS)

    Li, Lianfa; Wu, Anna H.; Cheng, Iona; Chen, Jiu-Chiuan; Wu, Jun

    2017-10-01

    Monitoring of fine particulate matter with diameter <2.5 μm (PM2.5) started from 1999 in the US and even later in many other countries. The lack of historical PM2.5 data limits epidemiological studies of long-term exposure of PM2.5 and health outcomes such as cancer. In this study, we aimed to design a flexible approach to reliably estimate historical PM2.5 concentrations by incorporating spatial effect and the measurements of existing co-pollutants such as particulate matter with diameter <10 μm (PM10) and meteorological variables. Monitoring data of PM10, PM2.5, and meteorological variables covering the entire state of California were obtained from 1999 through 2013. We developed a spatiotemporal model that quantified non-linear associations between PM2.5 concentrations and the following predictor variables: spatiotemporal factors (PM10 and meteorological variables), spatial factors (land-use patterns, traffic, elevation, distance to shorelines, and spatial autocorrelation), and season. Our model accounted for regional-(county) scale spatial autocorrelation, using spatial weight matrix, and local-scale spatiotemporal variability, using local covariates in additive non-linear model. The spatiotemporal model was evaluated, using leaving-one-site-month-out cross validation. Our final daily model had an R2 of 0.81, with PM10, meteorological variables, and spatial autocorrelation, explaining 55%, 10%, and 10% of the variance in PM2.5 concentrations, respectively. The model had a cross-validation R2 of 0.83 for monthly PM2.5 concentrations (N = 8170) and 0.79 for daily PM2.5 concentrations (N = 51,421) with few extreme values in prediction. Further, the incorporation of spatial effects reduced bias in predictions. Our approach achieved a cross validation R2 of 0.61 for the daily model when PM10 was replaced by total suspended particulate. Our model can robustly estimate historical PM2.5 concentrations in California when PM2.5 measurements were not available.

  19. Modeling spatial patterns of soil respiration in maize fields from vegetation and soil property factors with the use of remote sensing and geographical information system.

    PubMed

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m(-2) s(-1). The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China.

  20. Modeling Spatial Patterns of Soil Respiration in Maize Fields from Vegetation and Soil Property Factors with the Use of Remote Sensing and Geographical Information System

    PubMed Central

    Huang, Ni; Wang, Li; Guo, Yiqiang; Hao, Pengyu; Niu, Zheng

    2014-01-01

    To examine the method for estimating the spatial patterns of soil respiration (Rs) in agricultural ecosystems using remote sensing and geographical information system (GIS), Rs rates were measured at 53 sites during the peak growing season of maize in three counties in North China. Through Pearson's correlation analysis, leaf area index (LAI), canopy chlorophyll content, aboveground biomass, soil organic carbon (SOC) content, and soil total nitrogen content were selected as the factors that affected spatial variability in Rs during the peak growing season of maize. The use of a structural equation modeling approach revealed that only LAI and SOC content directly affected Rs. Meanwhile, other factors indirectly affected Rs through LAI and SOC content. When three greenness vegetation indices were extracted from an optical image of an environmental and disaster mitigation satellite in China, enhanced vegetation index (EVI) showed the best correlation with LAI and was thus used as a proxy for LAI to estimate Rs at the regional scale. The spatial distribution of SOC content was obtained by extrapolating the SOC content at the plot scale based on the kriging interpolation method in GIS. When data were pooled for 38 plots, a first-order exponential analysis indicated that approximately 73% of the spatial variability in Rs during the peak growing season of maize can be explained by EVI and SOC content. Further test analysis based on independent data from 15 plots showed that the simple exponential model had acceptable accuracy in estimating the spatial patterns of Rs in maize fields on the basis of remotely sensed EVI and GIS-interpolated SOC content, with R2 of 0.69 and root-mean-square error of 0.51 µmol CO2 m−2 s−1. The conclusions from this study provide valuable information for estimates of Rs during the peak growing season of maize in three counties in North China. PMID:25157827

  1. Spatial-temporal variability of soil water content in a cropland-shelterbelt-desert site in an arid inland river basin of Northwest China

    NASA Astrophysics Data System (ADS)

    Shen, Qin; Gao, Guangyao; Hu, Wei; Fu, Bojie

    2016-09-01

    Knowledge of the spatial-temporal variability of soil water content (SWC) is critical for understanding a range of hydrological processes. In this study, the spatial variance and temporal stability of SWC were investigated in a cropland-shelterbelt-desert site at the oasis-desert ecotone in the middle of the Heihe River Basin, China. The SWC was measured on 65 occasions to a depth of 2.8 m at 45 locations during two growing seasons from 2012 to 2013. The standard deviation of the SWC versus the mean SWC exhibited a convex upward relationship in the shelterbelt with the greatest spatial variation at the SWC of around 22.0%, whereas a linearly increasing relationship was observed for the cropland, desert, and land use pattern. The standard deviation of the relative difference was positively linearly correlated with the SWC (p < 0.05) for the land use pattern, whereas such a relationship was not found in the three land use types. The spatial pattern of the SWC was more time stable for the land use pattern, followed by desert, shelterbelt, and cropland. The spatial pattern of SWC changed dramatically among different soil layers. The locations representing the mean SWC varied with the depth, and no location could represent the whole soil profile due to different soil texture, root distribution and irrigation management. The representative locations of each soil layer could be used to estimate the mean SWC well. The statistics of temporal stability of the SWC could be presented equally well with a low frequency of observation (30-day interval) as with a high frequency (5-day interval). Sampling frequency had little effect on the selection of the representative locations of the field mean SWC. This study provides useful information for designing the optimal strategy for sampling SWC at the oasis-desert ecotone in the arid inland river basin.

  2. Estimates of reservoir methane emissions based on a spatially ...

    EPA Pesticide Factsheets

    Global estimates of methane (CH4) emissions from reservoirs are poorly constrained, partly due to the challenges of accounting for intra-reservoir spatial variability. Reservoir-scale emission rates are often estimated by extrapolating from measurement made at a few locations; however, error and bias associated with this approach can be large and difficult to quantify. Here we use a generalized random tessellation survey (GRTS) design to generate estimates of central tendency and variance at multiple spatial scales in a reservoir. GRTS survey designs are probabilistic and spatially balanced which eliminates bias associated with expert judgment in site selection. GRTS surveys also allow for variance estimates that account for spatial pattern in emission rates. Total CH4 emission rates (i.e. sum of ebullition and diffusive emissions) were 4.8 (±2.1), 33.0 (±10.7), and 8.3 (±2.2) mg CH4 m-2 h-1 in open-waters, tributary associated areas, and the entire reservoir for the period in August 2014 during which 115 sites were sampled across an 7.98 km2 reservoir in Southwestern, Ohio, USA. Tributary areas occupy 12% of the reservoir surface, but were the source of 41% of total CH4 emissions, highlighting the importance of riverine-lacustrine transition zones. Ebullition accounted for >90% of CH4 emission at all spatial scales. Confidence interval estimates that incorporated spatial pattern in CH4 emissions were up to 29% narrower than when spatial independence

  3. Direct generation of spatial quadripartite continuous variable entanglement in an optical parametric oscillator.

    PubMed

    Liu, Kui; Guo, Jun; Cai, Chunxiao; Zhang, Junxiang; Gao, Jiangrui

    2016-11-15

    Multipartite entanglement is used for quantum information applications, such as building multipartite quantum communications. Generally, generation of multipartite entanglement is based on a complex beam-splitter network. Here, based on the spatial freedom of light, we experimentally demonstrated spatial quadripartite continuous variable entanglement among first-order Hermite-Gaussian modes using a single type II optical parametric oscillator operating below threshold with an HG0245° pump beam. The entanglement can be scalable for larger numbers of spatial modes by changing the spatial profile of the pump beam. In addition, spatial multipartite entanglement will be useful for future spatial multichannel quantum information applications.

  4. Temporal and spatial variability in North Carolina piedmont stream temperature

    Treesearch

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer

    2009-01-01

    Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...

  5. Evaluating spatial and temporal variability in growth and mortality for recreational fisheries with limited catch data

    USGS Publications Warehouse

    Li, Yan; Wagner, Tyler; Jiao, Yan; Lorantas, Robert M.; Murphy, Cheryl

    2018-01-01

    Understanding the spatial and temporal variability in life-history traits among populations is essential for the management of recreational fisheries. However, valuable freshwater recreational fish species often suffer from a lack of catch information. In this study, we demonstrated the use of an approach to estimate the spatial and temporal variability in growth and mortality in the absence of catch data and apply the method to riverine smallmouth bass (Micropterus dolomieu) populations in Pennsylvania, USA. Our approach included a growth analysis and a length-based analysis that estimates mortality. Using a hierarchical Bayesian approach, we examined spatial variability in growth and mortality by assuming parameters vary spatially but remain constant over time and temporal variability by assuming parameters vary spatially and temporally. The estimated growth and mortality of smallmouth bass showed substantial variability over time and across rivers. We explored the relationships of the estimated growth and mortality with spring water temperature and spring flow. Growth rate was likely to be positively correlated with these two factors, while young mortality was likely to be positively correlated with spring flow. The spatially and temporally varying growth and mortality suggest that smallmouth bass populations across rivers may respond differently to management plans and disturbance such as environmental contamination and land-use change. The analytical approach can be extended to other freshwater recreational species that also lack of catch data. The approach could also be useful in developing population assessments with erroneous catch data or be used as a model sensitivity scenario to verify traditional models even when catch data are available.

  6. Investigation of the marked and long-standing spatial inhomogeneity of the Hungarian suicide rate: a spatial regression approach.

    PubMed

    Balint, Lajos; Dome, Peter; Daroczi, Gergely; Gonda, Xenia; Rihmer, Zoltan

    2014-02-01

    In the last century Hungary had astonishingly high suicide rates characterized by marked regional within-country inequalities, a spatial pattern which has been quite stable over time. To explain the above phenomenon at the level of micro-regions (n=175) in the period between 2005 and 2011. Our dependent variable was the age and gender standardized mortality ratio (SMR) for suicide while explanatory variables were factors which are supposed to influence suicide risk, such as measures of religious and political integration, travel time accessibility of psychiatric services, alcohol consumption, unemployment and disability pensionery. When applying the ordinary least squared regression model, the residuals were found to be spatially autocorrelated, which indicates the violation of the assumption on the independence of error terms and - accordingly - the necessity of application of a spatial autoregressive (SAR) model to handle this problem. According to our calculations the SARlag model was a better way (versus the SARerr model) of addressing the problem of spatial autocorrelation, furthermore its substantive meaning is more convenient. SMR was significantly associated with the "political integration" variable in a negative and with "lack of religious integration" and "disability pensionery" variables in a positive manner. Associations were not significant for the remaining explanatory variables. Several important psychiatric variables were not available at the level of micro-regions. We conducted our analysis on aggregate data. Our results may draw attention to the relevance and abiding validity of the classic Durkheimian suicide risk factors - such as lack of social integration - apropos of the spatial pattern of Hungarian suicides. © 2013 Published by Elsevier B.V.

  7. [Characteristics of temporal-spatial differentiation in landscape pattern vulnerability in Nansihu Lake wetland, China.

    PubMed

    Liang, Jia Xin; Li, Xin Ju

    2018-02-01

    With remote sensing images from 1985, 2000 Lantsat 5 TM and 2015 Lantsat 8 OLI as data sources, we tried to select the suitable research scale and examine the temporal-spatial diffe-rentiation with such scale in the Nansihu Lake wetland by using landscape pattern vulnerability index constructed by sensitivity index and adaptability index, and combined with space statistics such as semivariogram and spatial autocorrelation. The results showed that 1 km × 1 km equidistant grid was the suitable research scale, which could eliminate the influence of spatial heterogeneity induced by random factors. From 1985 to 2015, the landscape pattern vulnerability in the Nansihu Lake wetland deteriorated gradually. The high-risk area of landscape pattern vulnerability dramatically expanded with time. The spatial heterogeneity of landscape pattern vulnerability increased, and the influence of non-structural factors on landscape pattern vulnerability strengthened. Spatial variability affected by spatial autocorrelation slightly weakened. Landscape pattern vulnerability had strong general spatial positive correlation, with the significant form of spatial agglomeration. The positive spatial autocorrelation continued to increase and the phenomenon of spatial concentration was more and more obvious over time. The local autocorrelation mainly based on high-high accumulation zone and low-low accumulation zone had stronger spatial autocorrelation among neighboring space units. The high-high accumulation areas showed the strongest level of significance, and the significant level of low-low accumulation zone increased with time. Natural factors, such as temperature and precipitation, affected water-level and landscape distribution, and thus changed the landscape patterns vulnerability of Nansihu Lake wetland. The dominant driver for the deterioration of landscape patterns vulnerability was human activities, including social economy activity and policy system.

  8. Remote sensing using MIMO systems

    DOEpatents

    Bikhazi, Nicolas; Young, William F; Nguyen, Hung D

    2015-04-28

    A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.

  9. Determinants of the Spatial Distributions of Elemental Carbon and Particulate Matter in Eight Southern Californian Communities

    PubMed Central

    Urman, Robert; Gauderman, James; Fruin, Scott; Lurmann, Fred; Liu, Feifei; Hosseini, Reza; Franklin, Meredith; Avol, Edward; Penfold, Bryan; Gilliland, Frank; Brunekreef, Bert; McConnell, Rob

    2014-01-01

    Emerging evidence indicates that near-roadway pollution (NRP) in ambient air has adverse health effects. However, specific components of the NRP mixture responsible for these effects have not been established. A major limitation for health studies is the lack of exposure models that estimate NRP components observed in epidemiological studies over fine spatial scale of tens to hundreds of meters. In this study, exposure models were developed for fine-scale variation in biologically relevant elemental carbon (EC). Measurements of particulate matter (PM) and EC less than 2.5 μm in aerodynamic diameter (EC2.5) and of PM and EC of nanoscale size less than 0.2 μm were made at up to 29 locations in each of eight Southern California Children's Health Study communities. Regression-based prediction models were developed using a guided forward selection process to identify traffic variables and other pollutant sources, community physical characteristics and land use as predictors of PM and EC variation in each community. A combined eight-community model including only CALINE4 near-roadway dispersion-estimated vehicular emissions accounting for distance, distance-weighted traffic volume, and meteorology, explained 51% of the EC0.2 variability. Community-specific models identified additional predictors in some communities; however, in most communities the correlation between predicted concentrations from the eight-community model and observed concentrations stratified by community were similar to those for the community-specific models. EC2.5 could be predicted as well as EC0.2. EC2.5 estimated from CALINE4 and population density explained 53% of the within-community variation. Exposure prediction was further improved after accounting for between-community heterogeneity of CALINE4 effects associated with average distance to Pacific Ocean shoreline (to 61% for EC0.2) and for regional NOx pollution (to 57% for EC2.5). PM fine spatial scale variation was poorly predicted in both size fractions. In conclusion, models of exposure that include traffic measures such as CALINE4 can provide useful estimates for EC0.2 and EC2.5 on a spatial scale appropriate for health studies of NRP in selected Southern California communities. PMID:25313293

  10. The effect of short-range spatial variability on soil sampling uncertainty.

    PubMed

    Van der Perk, Marcel; de Zorzi, Paolo; Barbizzi, Sabrina; Belli, Maria; Fajgelj, Ales; Sansone, Umberto; Jeran, Zvonka; Jaćimović, Radojko

    2008-11-01

    This paper aims to quantify the soil sampling uncertainty arising from the short-range spatial variability of elemental concentrations in the topsoils of agricultural, semi-natural, and contaminated environments. For the agricultural site, the relative standard sampling uncertainty ranges between 1% and 5.5%. For the semi-natural area, the sampling uncertainties are 2-4 times larger than in the agricultural area. The contaminated site exhibited significant short-range spatial variability in elemental composition, which resulted in sampling uncertainties of 20-30%.

  11. MHC-disassortative mate choice and inbreeding avoidance in a solitary primate.

    PubMed

    Huchard, Elise; Baniel, Alice; Schliehe-Diecks, Susanne; Kappeler, Peter M

    2013-08-01

    Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by-product of inbreeding avoidance based on MHC-independent cues. Here, we used 454-sequencing and a 10-year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC-dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB-disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC-dependent mate choice. © 2013 John Wiley & Sons Ltd.

  12. Effect of land use on the spatial variability of organic matter and nutrient status in an Oxisol

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, Jorge; Alves, Marlene Cristina; Vidal Vázquez, Eva

    2013-04-01

    Heterogeneity is now considered as an inherent soil property. Spatial variability of soil attributes in natural landscapes results mainly from soil formation factors. In cultivated soils much heterogeneity can additionally occur as a result of land use, agricultural systems and management practices. Organic matter content (OMC) and nutrients associated to soil exchange complex are key attribute in the maintenance of a high quality soil. Neglecting spatial heterogeneity in soil OMC and nutrient status at the field scale might result in reduced yield and in environmental damage. We analyzed the impact of land use on the pattern of spatial variability of OMC and soil macronutrients at the stand scale. The study was conducted in São Paulo state, Brazil. Land uses were pasture, mango orchard and corn field. Soil samples were taken at 0-10 cm and 10-20 cm depth in 84 points, within 100 m x 100 m plots. Texture, pH, OMC, cation exchange capacity (CEC), exchangeable cations (Ca, Mg, K, H, Al) and resin extractable phosphorus were analyzed.. Statistical variability was found to be higher in parameters defining the soil nutrient status (resin extractable P, K, Ca and Mg) than in general soil properties (OMC, CEC, base saturation and pH). Geostatistical analysis showed contrasting patterns of spatial dependence for the different soil uses, sampling depths and studied properties. Most of the studied data sets collected at two different depths exhibited spatial dependence at the sampled scale and their semivariograms were modeled by a nugget effect plus a structure. The pattern of soil spatial variability was found to be different between the three study soil uses and at the two sampling depths, as far as model type, nugget effect or ranges of spatial dependence were concerned. Both statistical and geostatistical results pointed out the importance of OMC as a driver responsible for the spatial variability of soil nutrient status.

  13. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream.

  14. Systems, methods, and software for determining spatially variable distributions of the dielectric properties of a heterogeneous material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, Stephen P.

    Systems, methods, and software for measuring the spatially variable relative dielectric permittivity of materials along a linear or otherwise configured sensor element, and more specifically the spatial variability of soil moisture in one dimension as inferred from the dielectric profile of the soil matrix surrounding a linear sensor element. Various methods provided herein combine advances in the processing of time domain reflectometry data with innovations in physical sensing apparatuses. These advancements enable high temporal (and thus spatial) resolution of electrical reflectance continuously along an insulated waveguide that is permanently emplaced in contact with adjacent soils. The spatially resolved reflectance ismore » directly related to impedance changes along the waveguide that are dominated by electrical permittivity contrast due to variations in soil moisture. Various methods described herein are thus able to monitor soil moisture in profile with high spatial resolution.« less

  15. Field Comparisons of Three Biomarker Detection Methods in Icelandic Mars Analogue Environments

    NASA Astrophysics Data System (ADS)

    Gentry, D.; Amador, E. S.; Cable, M. L.; Chaudry, N.; Cullen, T.; Jacobsen, M.; Murusekan, G.; Schwieterman, E.; Stevens, A.; Stockton, A.; Yin, C.; Cullen, D.; Geppert, W.

    2014-12-01

    The ability to estimate the spatial and temporal distributions of biomarkers has been identified as a key need for planning life detection strategies. In a typical planetary exploration scenario, sampling site selection will be informed only by remote sensing data; however, if a difference of a few tens of meters, or centimeters, makes a significant difference in the results, science objectives may not be met. We conducted an analogue planetary expedition to test the correlation of three common biomarker detection methods -- cell counts through fluorescence microscopy, ATP quantification, and quantitative PCR with universal primer sets (bacteria, archaea, and fungi) -- and their spatial scale representativeness. Sampling sites in recent Icelandic lava fields (Fimmvörđuháls and Eldfell) spanned four nested spatial scales: 1 m, 10 m, 100 m, and > 1 km. Each site was homogeneous at typical 'remote sampling' resolution (overall temperature, apparent moisture content, and regolith grain size). No correlation between cell counts and either ATP or qPCR data was significant at any distance scale; ATP quantification and the archaeal and fungal qPCR data showed a marginal negative correlation at the 1 m level. Visible cell count data was statistically site-dependent for sites 10 m and 100 m apart, but not for sites > 1 km apart, whereas ATP results and qPCR data showed site dependence at all four scales. Distance had no significant effect on variability in cell counts and qPCR data, but was positively correlated with ATP variability. These results highlight the difficulty of choosing a 'good' biomarker: not only may different methods yield conflicting results, but they may also be differentially representative of the overall area. We intend to expand on this work with a follow-up campaign using comprehensive assays of physicochemical site properties to better distinguish between effects of environmental variability and intrinsic biomarker variability.

  16. Partitioning the impacts of spatial and climatological rainfall variability in urban drainage modeling

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2017-03-01

    The performance of urban drainage systems is typically examined using hydrological and hydrodynamic models where rainfall input is uniformly distributed, i.e., derived from a single or very few rain gauges. When models are fed with a single uniformly distributed rainfall realization, the response of the urban drainage system to the rainfall variability remains unexplored. The goal of this study was to understand how climate variability and spatial rainfall variability, jointly or individually considered, affect the response of a calibrated hydrodynamic urban drainage model. A stochastic spatially distributed rainfall generator (STREAP - Space-Time Realizations of Areal Precipitation) was used to simulate many realizations of rainfall for a 30-year period, accounting for both climate variability and spatial rainfall variability. The generated rainfall ensemble was used as input into a calibrated hydrodynamic model (EPA SWMM - the US EPA's Storm Water Management Model) to simulate surface runoff and channel flow in a small urban catchment in the city of Lucerne, Switzerland. The variability of peak flows in response to rainfall of different return periods was evaluated at three different locations in the urban drainage network and partitioned among its sources. The main contribution to the total flow variability was found to originate from the natural climate variability (on average over 74 %). In addition, the relative contribution of the spatial rainfall variability to the total flow variability was found to increase with longer return periods. This suggests that while the use of spatially distributed rainfall data can supply valuable information for sewer network design (typically based on rainfall with return periods from 5 to 15 years), there is a more pronounced relevance when conducting flood risk assessments for larger return periods. The results show the importance of using multiple distributed rainfall realizations in urban hydrology studies to capture the total flow variability in the response of the urban drainage systems to heavy rainfall events.

  17. Probing the limits of alpha power lateralisation as a neural marker of selective attention in middle-aged and older listeners.

    PubMed

    Tune, Sarah; Wöstmann, Malte; Obleser, Jonas

    2018-02-11

    In recent years, hemispheric lateralisation of alpha power has emerged as a neural mechanism thought to underpin spatial attention across sensory modalities. Yet, how healthy ageing, beginning in middle adulthood, impacts the modulation of lateralised alpha power supporting auditory attention remains poorly understood. In the current electroencephalography study, middle-aged and older adults (N = 29; ~40-70 years) performed a dichotic listening task that simulates a challenging, multitalker scenario. We examined the extent to which the modulation of 8-12 Hz alpha power would serve as neural marker of listening success across age. With respect to the increase in interindividual variability with age, we examined an extensive battery of behavioural, perceptual and neural measures. Similar to findings on younger adults, middle-aged and older listeners' auditory spatial attention induced robust lateralisation of alpha power, which synchronised with the speech rate. Notably, the observed relationship between this alpha lateralisation and task performance did not co-vary with age. Instead, task performance was strongly related to an individual's attentional and working memory capacity. Multivariate analyses revealed a separation of neural and behavioural variables independent of age. Our results suggest that in age-varying samples as the present one, the lateralisation of alpha power is neither a sufficient nor necessary neural strategy for an individual's auditory spatial attention, as higher age might come with increased use of alternative, compensatory mechanisms. Our findings emphasise that explaining interindividual variability will be key to understanding the role of alpha oscillations in auditory attention in the ageing listener. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest

    NASA Astrophysics Data System (ADS)

    Kaplan, D.; Muñoz-Carpena, R.

    2011-02-01

    SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios in degraded coastal floodplains.

  19. Large Spatial Scale Variability in Bathyal Macrobenthos Abundance, Biomass, α- and β-Diversity along the Mediterranean Continental Margin

    PubMed Central

    Baldrighi, Elisa; Lavaleye, Marc; Aliani, Stefano; Conversi, Alessandra; Manini, Elena

    2014-01-01

    The large-scale deep-sea biodiversity distribution of the benthic fauna was explored in the Mediterranean Sea, which can be seen as a miniature model of the oceans of the world. Within the framework of the BIOFUN project (“Biodiversity and Ecosystem Functioning in Contrasting Southern European Deep-sea Environments: from viruses to megafauna”), we investigated the large spatial scale variability (over >1,000 km) of the bathyal macrofauna communities that inhabit the Mediterranean basin, and their relationships with the environmental variables. The macrofauna abundance, biomass, community structure and functional diversity were analysed and the α-diversity and β-diversity were estimated across six selected slope areas at different longitudes and along three main depths. The macrobenthic standing stock and α-diversity were lower in the deep-sea sediments of the eastern Mediterranean basin, compared to the western and central basins. The macrofaunal standing stock and diversity decreased significantly from the upper bathyal to the lower bathyal slope stations. The major changes in the community composition of the higher taxa and in the trophic (functional) structure occurred at different longitudes, rather than at increasing water depth. For the β-diversity, very high dissimilarities emerged at all levels: (i) between basins; (ii) between slopes within the same basin; and (iii) between stations at different depths; this therefore demonstrates the high macrofaunal diversity of the Mediterranean basins at large spatial scales. Overall, the food sources (i.e., quantity and quality) that characterised the west, central and eastern Mediterranean basins, as well as sediment grain size, appear to influence the macrobenthic standing stock and the biodiversity along the different slope areas. PMID:25225909

  20. Spatial analysis of groundwater levels using Fuzzy Logic and geostatistical tools

    NASA Astrophysics Data System (ADS)

    Theodoridou, P. G.; Varouchakis, E. A.; Karatzas, G. P.

    2017-12-01

    The spatial variability evaluation of the water table of an aquifer provides useful information in water resources management plans. Geostatistical methods are often employed to map the free surface of an aquifer. In geostatistical analysis using Kriging techniques the selection of the optimal variogram is very important for the optimal method performance. This work compares three different criteria to assess the theoretical variogram that fits to the experimental one: the Least Squares Sum method, the Akaike Information Criterion and the Cressie's Indicator. Moreover, variable distance metrics such as the Euclidean, Minkowski, Manhattan, Canberra and Bray-Curtis are applied to calculate the distance between the observation and the prediction points, that affects both the variogram calculation and the Kriging estimator. A Fuzzy Logic System is then applied to define the appropriate neighbors for each estimation point used in the Kriging algorithm. The two criteria used during the Fuzzy Logic process are the distance between observation and estimation points and the groundwater level value at each observation point. The proposed techniques are applied to a data set of 250 hydraulic head measurements distributed over an alluvial aquifer. The analysis showed that the Power-law variogram model and Manhattan distance metric within ordinary kriging provide the best results when the comprehensive geostatistical analysis process is applied. On the other hand, the Fuzzy Logic approach leads to a Gaussian variogram model and significantly improves the estimation performance. The two different variogram models can be explained in terms of a fractional Brownian motion approach and of aquifer behavior at local scale. Finally, maps of hydraulic head spatial variability and of predictions uncertainty are constructed for the area with the two different approaches comparing their advantages and drawbacks.

  1. Large spatial scale variability in bathyal macrobenthos abundance, biomass, α- and β-diversity along the Mediterranean continental margin.

    PubMed

    Baldrighi, Elisa; Lavaleye, Marc; Aliani, Stefano; Conversi, Alessandra; Manini, Elena

    2014-01-01

    The large-scale deep-sea biodiversity distribution of the benthic fauna was explored in the Mediterranean Sea, which can be seen as a miniature model of the oceans of the world. Within the framework of the BIOFUN project ("Biodiversity and Ecosystem Functioning in Contrasting Southern European Deep-sea Environments: from viruses to megafauna"), we investigated the large spatial scale variability (over >1,000 km) of the bathyal macrofauna communities that inhabit the Mediterranean basin, and their relationships with the environmental variables. The macrofauna abundance, biomass, community structure and functional diversity were analysed and the α-diversity and β-diversity were estimated across six selected slope areas at different longitudes and along three main depths. The macrobenthic standing stock and α-diversity were lower in the deep-sea sediments of the eastern Mediterranean basin, compared to the western and central basins. The macrofaunal standing stock and diversity decreased significantly from the upper bathyal to the lower bathyal slope stations. The major changes in the community composition of the higher taxa and in the trophic (functional) structure occurred at different longitudes, rather than at increasing water depth. For the β-diversity, very high dissimilarities emerged at all levels: (i) between basins; (ii) between slopes within the same basin; and (iii) between stations at different depths; this therefore demonstrates the high macrofaunal diversity of the Mediterranean basins at large spatial scales. Overall, the food sources (i.e., quantity and quality) that characterised the west, central and eastern Mediterranean basins, as well as sediment grain size, appear to influence the macrobenthic standing stock and the biodiversity along the different slope areas.

  2. A Framework for Orbital Performance Evaluation in Distributed Space Missions for Earth Observation

    NASA Technical Reports Server (NTRS)

    Nag, Sreeja; LeMoigne-Stewart, Jacqueline; Miller, David W.; de Weck, Olivier

    2015-01-01

    Distributed Space Missions (DSMs) are gaining momentum in their application to earth science missions owing to their unique ability to increase observation sampling in spatial, spectral and temporal dimensions simultaneously. DSM architectures have a large number of design variables and since they are expected to increase mission flexibility, scalability, evolvability and robustness, their design is a complex problem with many variables and objectives affecting performance. There are very few open-access tools available to explore the tradespace of variables which allow performance assessment and are easy to plug into science goals, and therefore select the most optimal design. This paper presents a software tool developed on the MATLAB engine interfacing with STK, for DSM orbit design and selection. It is capable of generating thousands of homogeneous constellation or formation flight architectures based on pre-defined design variable ranges and sizing those architectures in terms of predefined performance metrics. The metrics can be input into observing system simulation experiments, as available from the science teams, allowing dynamic coupling of science and engineering designs. Design variables include but are not restricted to constellation type, formation flight type, FOV of instrument, altitude and inclination of chief orbits, differential orbital elements, leader satellites, latitudes or regions of interest, planes and satellite numbers. Intermediate performance metrics include angular coverage, number of accesses, revisit coverage, access deterioration over time at every point of the Earth's grid. The orbit design process can be streamlined and variables more bounded along the way, owing to the availability of low fidelity and low complexity models such as corrected HCW equations up to high precision STK models with J2 and drag. The tool can thus help any scientist or program manager select pre-Phase A, Pareto optimal DSM designs for a variety of science goals without having to delve into the details of the engineering design process.

  3. Estimating stand structure using discrete-return lidar: an example from low density, fire prone ponderosa pine forests

    USGS Publications Warehouse

    Hall, S. A.; Burke, I.C.; Box, D. O.; Kaufmann, M. R.; Stoker, Jason M.

    2005-01-01

    The ponderosa pine forests of the Colorado Front Range, USA, have historically been subjected to wildfires. Recent large burns have increased public interest in fire behavior and effects, and scientific interest in the carbon consequences of wildfires. Remote sensing techniques can provide spatially explicit estimates of stand structural characteristics. Some of these characteristics can be used as inputs to fire behavior models, increasing our understanding of the effect of fuels on fire behavior. Others provide estimates of carbon stocks, allowing us to quantify the carbon consequences of fire. Our objective was to use discrete-return lidar to estimate such variables, including stand height, total aboveground biomass, foliage biomass, basal area, tree density, canopy base height and canopy bulk density. We developed 39 metrics from the lidar data, and used them in limited combinations in regression models, which we fit to field estimates of the stand structural variables. We used an information–theoretic approach to select the best model for each variable, and to select the subset of lidar metrics with most predictive potential. Observed versus predicted values of stand structure variables were highly correlated, with r2 ranging from 57% to 87%. The most parsimonious linear models for the biomass structure variables, based on a restricted dataset, explained between 35% and 58% of the observed variability. Our results provide us with useful estimates of stand height, total aboveground biomass, foliage biomass and basal area. There is promise for using this sensor to estimate tree density, canopy base height and canopy bulk density, though more research is needed to generate robust relationships. We selected 14 lidar metrics that showed the most potential as predictors of stand structure. We suggest that the focus of future lidar studies should broaden to include low density forests, particularly systems where the vertical structure of the canopy is important, such as fire prone forests.

  4. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random Finite Element Method (RFEM). This method has been used to investigate the random behavior of soils in the context of a variety of classical geotechnical problems. Afterward, some following studies collected the worldwide variability values of many technical parameters of soils (Phoon and Kulhawy 1999a) and their spatial correlation functions (Phoon and Kulhawy 1999b). In Italy, Cherubini et al. (2007) calculated the spatial variability structure of sandy and clayey soils from the standard cone penetration test readings. The large extent of the worldwide measured spatial variability of soils and rocks heavily affects the reliability of geotechnical designing as well as other uncertainties introduced by testing devices and engineering models. So far, several methods have been provided to deal with the preceding sources of uncertainties in engineering designing models (e.g. First Order Reliability Method, Second Order Reliability Method, Response Surface Method, High Dimensional Model Representation, etc.). Nowadays, the efforts in this field have been focusing on (1) measuring spatial variability of different rocks and soils and (2) developing numerical models that take into account the spatial variability as additional physical variable. References Cherubini C., Vessia G. and Pula W. 2007. Statistical soil characterization of Italian sites for reliability analyses. Proc. 2nd Int. Workshop. on Characterization and Engineering Properties of Natural Soils, 3-4: 2681-2706. Griffiths D.V. and Fenton G.A. 1993. Seepage beneath water retaining structures founded on spatially random soil, Géotechnique, 43(6): 577-587. Mandelbrot B.B. 1983. The Fractal Geometry of Nature. San Francisco: W H Freeman. Matheron G. 1962. Traité de Géostatistique appliquée. Tome 1, Editions Technip, Paris, 334 p. Phoon K.K. and Kulhawy F.H. 1999a. Characterization of geotechnical variability. Can Geotech J, 36(4): 612-624. Phoon K.K. and Kulhawy F.H. 1999b. Evaluation of geotechnical property variability. Can Geotech J, 36(4): 625-639. Terzaghi K. 1943. Theoretical Soil Mechanics. New York: John Wiley and Sons. Turcotte D.L. 1986. Fractals and fragmentation. J Geophys Res, 91: 1921-1926. Vanmarcke E.H. 1977. Probabilistic modeling of soil profiles. J Geotech Eng Div, ASCE, 103: 1227-1246. Vanmarcke E.H. 1983. Random fields: analysis and synthesis. MIT Press, Cambridge.

  5. Spatial heterogeneity of within-stream methane concentrations

    USGS Publications Warehouse

    Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.

    2017-01-01

    Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.

  6. Quantifying Landscape Spatial Pattern: What Is the State of the Art?

    Treesearch

    Eric J. Gustafson

    1998-01-01

    Landscape ecology is based on the premise that there are strong links between ecological pattern and ecological function and process. Ecological systems are spatially heterogeneous, exhibiting consid-erable complexity and variability in time and space. This variability is typically represented by categorical maps or by a collection of samples taken at specific spatial...

  7. Predicting probability of occurrence and factors affecting distribution and abundance of three Ozark endemic crayfish species at multiple spatial scales

    USGS Publications Warehouse

    Nolen, Matthew S.; Magoulick, Daniel D.; DiStefano, Robert J.; Imhoff, Emily M.; Wagner, Brian K.

    2014-01-01

    We found that a range of environmental variables were important in predicting crayfish distribution and abundance at multiple spatial scales and their importance was species-, response variable- and scale dependent. We would encourage others to examine the influence of spatial scale on species distribution and abundance patterns.

  8. The Effects of Spatial Stimulus-Response Compatibility on Choice Time Production Accuracy and Variability

    ERIC Educational Resources Information Center

    Rakitin, Brian C.

    2005-01-01

    Five experiments examined the relations between timing and attention using a choice time production task in which the latency of a spatial choice response is matched to a target interval (3 or 5 s). Experiments 1 and 2 indicated that spatial stimulus-response incompatibility increased nonscalar timing variability without affecting timing accuracy…

  9. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    NASA Astrophysics Data System (ADS)

    Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.

    2015-03-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.

  10. a Novel Approach to Veterinary Spatial Epidemiology: Dasymetric Refinement of the Swiss Dog Tumor Registry Data

    NASA Astrophysics Data System (ADS)

    Boo, G.; Fabrikant, S. I.; Leyk, S.

    2015-08-01

    In spatial epidemiology, disease incidence and demographic data are commonly summarized within larger regions such as administrative units because of privacy concerns. As a consequence, analyses using these aggregated data are subject to the Modifiable Areal Unit Problem (MAUP) as the geographical manifestation of ecological fallacy. In this study, we create small area disease estimates through dasymetric refinement, and investigate the effects on predictive epidemiological models. We perform a binary dasymetric refinement of municipality-aggregated dog tumor incidence counts in Switzerland for the year 2008 using residential land as a limiting ancillary variable. This refinement is expected to improve the quality of spatial data originally aggregated within arbitrary administrative units by deconstructing them into discontinuous subregions that better reflect the underlying population distribution. To shed light on effects of this refinement, we compare a predictive statistical model that uses unrefined administrative units with one that uses dasymetrically refined spatial units. Model diagnostics and spatial distributions of model residuals are assessed to evaluate the model performances in different regions. In particular, we explore changes in the spatial autocorrelation of the model residuals due to spatial refinement of the enumeration units in a selected mountainous region, where the rugged topography induces great shifts of the analytical units i.e., residential land. Such spatial data quality refinement results in a more realistic estimation of the population distribution within administrative units, and thus, in a more accurate modeling of dog tumor incidence patterns. Our results emphasize the benefits of implementing a dasymetric modeling framework in veterinary spatial epidemiology.

  11. Recent advances in catchment hydrology

    NASA Astrophysics Data System (ADS)

    van Meerveld, I. H. J.

    2017-12-01

    Despite the consensus that field observations and catchment studies are imperative to understand hydrological processes, to determine the impacts of global change, to quantify the spatial and temporal variability in hydrological fluxes, and to refine and test hydrological models, there is a decline in the number of field studies. This decline and the importance of fieldwork for catchment hydrology have been described in several recent opinion papers. This presentation will summarize these commentaries, describe how catchment studies have evolved over time, and highlight the findings from selected recent studies published in Water Resources Research.

  12. Effects of spatial structure of population size on the population dynamics of barnacles across their elevational range.

    PubMed

    Fukaya, Keiichi; Okuda, Takehiro; Nakaoka, Masahiro; Noda, Takashi

    2014-11-01

    Explanations for why population dynamics vary across the range of a species reflect two contrasting hypotheses: (i) temporal variability of populations is larger in the centre of the range compared to the margins because overcompensatory density dependence destabilizes population dynamics and (ii) population variability is larger near the margins, where populations are more susceptible to environmental fluctuations. In both of these hypotheses, positions within the range are assumed to affect population variability. In contrast, the fact that population variability is often related to mean population size implies that the spatial structure of the population size within the range of a species may also be a useful predictor of the spatial variation in temporal variability of population size over the range of the species. To explore how population temporal variability varies spatially and the underlying processes responsible for the spatial variation, we focused on the intertidal barnacle Chthamalus dalli and examined differences in its population dynamics along the tidal levels it inhabits. Changes in coverage of barnacle populations were monitored for 10.5 years at 25 plots spanning the elevational range of this species. Data were analysed by fitting a population dynamics model to estimate the effects of density-dependent and density-independent processes on population growth. We also examined the temporal mean-variance relationship of population size with parameters estimated from the population dynamics model. We found that the relative variability of populations tended to increase from the centre of the elevational range towards the margins because of an increase in the magnitude of stochastic fluctuations of growth rates. Thus, our results supported hypothesis (2). We also found that spatial variations in temporal population variability were well characterized by Taylor's power law, the relative population variability being inversely related to the mean population size. Results suggest that understanding the population dynamics of a species over its range may be facilitated by taking the spatial structure of population size into account as well as by considering changes in population processes as a function of position within the range of the species. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  13. Color-selective attention need not be mediated by spatial attention.

    PubMed

    Andersen, Søren K; Müller, Matthias M; Hillyard, Steven A

    2009-06-08

    It is well-established that attention can select stimuli for preferential processing on the basis of non-spatial features such as color, orientation, or direction of motion. Evidence is mixed, however, as to whether feature-selective attention acts by increasing the signal strength of to-be-attended features irrespective of their spatial locations or whether it acts by guiding the spotlight of spatial attention to locations containing the relevant feature. To address this question, we designed a task in which feature-selective attention could not be mediated by spatial selection. Participants observed a display of intermingled dots of two colors, which rapidly and unpredictably changed positions, with the task of detecting brief intervals of reduced luminance of 20% of the dots of one or the other color. Both behavioral indices and electrophysiological measures of steady-state visual evoked potentials showed selectively enhanced processing of the attended-color items. The results demonstrate that feature-selective attention produces a sensory gain enhancement at early levels of the visual cortex that occurs without mediation by spatial attention.

  14. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico).

    PubMed

    Salcedo-Sánchez, Edith R; Garrido Hoyos, Sofía E; Esteller Alberich, Ma Vicenta; Martínez Morales, Manuel

    2016-10-01

    The spatial and temporal variation of water quality in the urban area of the Puebla Valley aquifer was evaluated using historical and present data obtained during this investigation. The current study assessed water quality based on the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME-WQI), which provides a mathematical framework to evaluate the quality of water in combination with a set of conditions representing quality criteria, or limits. This index is flexible regarding the type and number of variables used by the evaluation given that the variables of interest are selected according to the characteristics and objectives of development, conservation and compliance with regulations. The CCME-WQI was calculated using several variables that assess the main use of the wells in the urban area that is public supply, according to criteria for human use and consumption established by Mexican law and international standards proposed by the World Health Organization. The assessment of the index shows a gradual deterioration in the quality of the aquifer over time, as the amount of wells with excellent quality have decreased and those with lower index values (poor quality) have increased throughout the urban area of the Puebla Valley aquifer. The parameters affecting groundwater quality are: total dissolved solids, sulfate, calcium, magnesium and total hardness.

  15. Does Encope emarginata (Echinodermata: Echinoidea) affect spatial variation patterns of estuarine subtidal meiofauna and microphytobenthos?

    NASA Astrophysics Data System (ADS)

    Brustolin, Marco C.; Thomas, Micheli C.; Mafra, Luiz L.; Lana, Paulo da Cunha

    2014-08-01

    Foraging macrofauna, such as the sand dollar Encope emarginata, can modify sediment properties and affect spatial distribution patterns of microphytobenthos and meiobenthos at different spatial scales. We adopted a spatial hierarchical approach composed of five spatial levels (km, 100 s m, 10 s m, 1 s m and cm) to describe variation patterns of microphytobenthos, meiobenthos and sediment variables in shallow subtidal regions in the subtropical Paranaguá Bay (Southern Brazil) with live E. emarginata (LE), dead E. emarginata (only skeletons - (DE), and no E. emarginata (WE). The overall structure of microphytobenthos and meiofauna was always less variable at WE and much of variation at the scale of 100 s m was related to variability within LE and DE, due to foraging activities or to the presence of shell hashes. Likewise, increased variability in chlorophyll-a and phaeopigment contents was observed among locations within LE, although textural parameters of sediment varied mainly at smaller scales. Variations within LE were related to changes on the amount and quality of food as a function of sediment heterogeneity induced by the foraging behavior of sand dollars. We provide strong evidence that top-down effects related to the occurrence of E. emarginata act in synergy with bottom-up structuring related to hydrodynamic processes in determining overall benthic spatial variability. Conversely, species richness is mainly influenced by environmental heterogeneity at small spatial scales (centimeters to meters), which creates a mosaic of microhabitats.

  16. Off-resonance suppression for multispectral MR imaging near metallic implants.

    PubMed

    den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens

    2015-01-01

    Metal artifact reduction in MRI within clinically feasible scan-times without through-plane aliasing. Existing metal artifact reduction techniques include view angle tilting (VAT), which resolves in-plane distortions, and multispectral imaging (MSI) techniques, such as slice encoding for metal artifact correction (SEMAC) and multi-acquisition with variable resonances image combination (MAVRIC), that further reduce image distortions, but significantly increase scan-time. Scan-time depends on anatomy size and anticipated total spectral content of the signal. Signals outside the anticipated spatial region may cause through-plane back-folding. Off-resonance suppression (ORS), using different gradient amplitudes for excitation and refocusing, is proposed to provide well-defined spatial-spectral selectivity in MSI to allow scan-time reduction and flexibility of scan-orientation. Comparisons of MSI techniques with and without ORS were made in phantom and volunteer experiments. Off-resonance suppressed SEMAC (ORS-SEMAC) and outer-region suppressed MAVRIC (ORS-MAVRIC) required limited through-plane phase encoding steps compared with original MSI. Whereas SEMAC (scan time: 5'46") and MAVRIC (4'12") suffered from through-plane aliasing, ORS-SEMAC and ORS-MAVRIC allowed alias-free imaging in the same scan-times. ORS can be used in MSI to limit the selected spatial-spectral region and contribute to metal artifact reduction in clinically feasible scan-times while avoiding slice aliasing. © 2014 Wiley Periodicals, Inc.

  17. Spatial correlation of probabilistic earthquake ground motion and loss

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  18. Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture

    NASA Technical Reports Server (NTRS)

    Gloersen, Per (Inventor)

    2004-01-01

    An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.

  19. Tabulations of ambient ozone data obtained by GASP (Global Air Sampling Program) airliners, March 1975 to July 1979

    NASA Technical Reports Server (NTRS)

    Jasperson, W. H.; Holdeman, J. D.

    1984-01-01

    Tabulations are given of GASP ambient ozone mean, standard deviation, median, 84th percentile, and 98th percentile values, by month, flight level, and geographical region. These data are tabulated to conform to the temporal and spatial resolution required by FAA Advisory Circular 120-38 (monthly by 2000 ft in altitude by 5 deg in latitude) for climatological data used to show compliance with cabin ozone regulations. In addition seasonal x 10 deg latitude tabulations are included which are directly comparable to and supersede the interim GASP ambient ozone tabulations given in appendix B of FAA-EE-80-43 (NASA TM-81528). Selected probability variations are highlighted to illustrate the spatial and temporal variability of ambient ozone and to compare results from the coarse and fine grid analyses.

  20. Visions of visualization aids - Design philosophy and observations

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    1989-01-01

    Aids for the visualization of high-dimensional scientific or other data must be designed. Simply casting multidimensional data into a two-dimensional or three-dimensional spatial metaphor does not guarantee that the presentation will provide insight or a parsimonious description of phenomena implicit in the data. Useful visualization, in contrast to glitzy, high-tech, computer-graphics imagery, is generally based on preexisting theoretical beliefs concerning the underlying phenomena. These beliefs guide selection and formatting of the plotted variables. Visualization tools are useful for understanding naturally three-dimensional data bases such as those used by pilots or astronauts. Two examples of such aids for spatial maneuvering illustrate that informative geometric distortion may be introduced to assist visualization and that visualization of complex dynamics alone may not be adequate to provide the necessary insight into the underlying processes.

Top